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On symplectic fillings of small Seifert 3–manifolds

HAKHO CHOI

JONGIL PARK

We investigate the minimal symplectic fillings of small Seifert 3–manifolds with
a canonical contact structure. As a result, we list all minimal symplectic fillings
using curve configurations for small Seifert 3–manifolds satisfying certain conditions.
Furthermore, we also demonstrate that every such a minimal symplectic filling is
obtained by a sequence of rational blowdowns from the minimal resolution of the
corresponding weighted homogeneous complex surface singularity.

53D05, 57R17; 32S25

1 Introduction

One of the fundamental problems in symplectic 4–manifold topology is to classify
symplectic fillings of certain 3–manifolds equipped with a natural contact structure.
Among them, researchers have long studied symplectic fillings of the link of a normal
complex surface singularity. Note that the link of a normal surface singularity carries
a canonical contact structure also known as the Milnor fillable contact structure. For
example, P Lisca [8], M Bhupal and K Ono [1], and H Park, J Park, D Shin and
G Urzúa [12] completely classified all minimal symplectic fillings of lens spaces and
certain small Seifert 3–manifolds coming from the link of quotient surface singularities.
L Starkston [16] also investigated minimal symplectic fillings of the link of some
weighted homogeneous surface singularities.

On the one hand, topologists working on 4–manifold topology are also interested in
finding a surgical interpretation for symplectic fillings of a given 3–manifold. More
specifically, one may ask whether there is any surgical description of those fillings. In
fact, it has been known that rational blowdown surgery, introduced by R Fintushel and
R Stern [5] and generalized by the second author [14] and A Stipsicz, Z Szabó and
J Wahl [18], is a powerful tool to answer this question. For example, for the link of
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Figure 1: Surgery diagram of Y and its associated plumbing graph � .

quotient surface singularities equipped with a canonical contact structure, it was proven
that every minimal symplectic filling is obtained by a sequence of rational blowdowns
from the minimal resolution of the singularity; see Bhupal and Ozbagci [2], Choi
and Park [4]. On the other hand, L Starkston [17] showed that there are symplectic
fillings of some Seifert 3–manifolds that cannot be obtained by a sequence of rational
blowdowns from the minimal resolution of the singularity. Note that Seifert 3–manifolds
can be viewed as the link of weighted homogeneous surface singularities. Hence, it
is an intriguing question as to which Seifert 3–manifolds have a rational blowdown
interpretation for their minimal symplectic fillings.

In this paper, we investigate the minimal symplectic fillings of small Seifert 3–manifolds
over the 2–sphere satisfying certain conditions. By a small Seifert (fibered) 3–manifold,
we assume that it admits at most 3 singular fibers when it is considered as an S1–
fibration over the 2–sphere. In general, a Seifert 3–manifold as an S1–fibration over a
Riemann surface can have any number of singular fibers. We denote a small Seifert
3–manifold Y by Y .�bI .˛1; ˇ1/; .˛2; ˇ2/; .˛3; ˇ3// whose surgery diagram is given
in Figure 1 and which is also given as a boundary of a plumbing 4–manifold of disk
bundles of 2–spheres according to the graph � in Figure 1. The integers bij � 2 in
Figure 1 are uniquely determined by the continued fraction

˛i

ˇi
D Œbi1; bi2; : : : ; biri

�D bi1�
1

bi2�
1

� � ��
1

biri

:

If the intersection matrix of a plumbing graph � is negative definite, which is always
true for b�3, then there is a canonical contact structure on Y induced from a symplectic
structure of the plumbing 4–manifold, where each vertex corresponds to a symplectic
2–sphere and each edge represents an orthogonal intersection between the symplectic
2–spheres; see Gay and Stipsicz [7]. Furthermore, the canonical contact structure
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on Y is contactomorphic to the contact structure defined by the complex tangency of
a complex structure on the link of the corresponding singularity, which is called the
Milnor fillable contact structure; see Park and Stipsicz [13].

This paper aims to classify all possible list of minimal symplectic fillings of small
Seifert 3–manifolds satisfying certain conditions, and to prove that every such a minimal
symplectic filling is obtained by a sequence of rational blowdowns from the minimal
resolution of the corresponding weighted homogeneous surface singularity, as it is
true for a quotient surface singularity. Our strategy is as follows. For a given minimal
symplectic filling W of Y .�bI .˛1; ˇ1/; .˛2; ˇ2/; .˛3; ˇ3//with b�4, we glue W with
a concave cap K to get a closed symplectic 4–manifold X . Then, since the concave cap
K always contains an embedded .C1/ 2–sphere corresponding the central vertex, X is a
rational symplectic 4–manifold by McDuff [9]. Furthermore, the adjunction formula and
intersection data impose a constraint on the homological data of K in X ŠCP2]N CP2.
Under blowdowns along all exceptional 2–spheres away from the .C1/ 2–sphere in
X ŠCP2]N CP2, the concave cap K becomes a neighborhood of symplectic 2–spheres
which are isotopic to b number of complex lines through symplectic 2–spheres in CP2;
see Starkston [16; 17] for details. Since the symplectic deformation type of W ŠX nK

is determined by the isotopy class of a symplectic embedding of K within a fixed
homological embedding, we investigate a symplectic embedding of K using a curve
configuration corresponding to W , which consists of strands representing irreducible
components of K and exceptional 2–spheres intersecting them (Definition 3.1 and
Figure 5). Since the curve configuration corresponding to W determines a symplectic
embedding of K, we can recover all minimal symplectic fillings by investigating all
possible curve configurations of Y . Sometimes, we find a certain chain of symplectic
2–spheres lying in W , which can be rationally blowing down, from the homological
data of K. Note that by rationally blowing down the chain of symplectic 2–spheres
lying in W , we obtain another minimal symplectic W 0 from W . In this case, we keep
track of changes in the homological data of K so that we get a curve configuration of
W 0 from that of W . Finally, by analyzing the effect of rational blowdown surgery on
the curve configuration of minimal symplectic fillings, we obtain our main result.

Theorem 1.1 For a small Seifert 3–manifold Y .�bI .˛1; ˇ1/; .˛2; ˇ2/; .˛3; ˇ3// with
its canonical contact structure and b � 4, all minimal symplectic fillings of Y are listed
explicitly by curve configurations. Furthermore , they are also obtained by a sequence
of rational blowdowns from the minimal resolution of the corresponding weighted
homogeneous surface singularity.

Algebraic & Geometric Topology, Volume 23 (2023)



3500 Hakho Choi and Jongil Park

Remark L Starkston [16] originally described a general scheme for how to obtain
minimal symplectic fillings from given homological data of an embedding of the cap and
got some results in special cases. L Starkston [17] also showed that the isotopy type of
a symplectic line arrangement is uniquely (up to deformation equivalence) determined
by its intersection data in the cases that multi-intersection points of a symplectic
line arrangement satisfy some mild conditions, which contain the cases appearing in
Proposition 3.4. Thus, by combining Propositions 3.3 and 3.4 with Starkston’s result
[17, Proposition 4.2], we conclude that there exists at most one minimal symplectic
filling for each possible curve configuration. Then we prove in Section 4 that every
such a curve configuration gives the corresponding minimal symplectic filling, which
implies the first statement in Theorem 1.1 above.

Acknowledgements The authors would like to thank the referees for their valuable
comments. Jongil Park was supported by Samsung Science and Technology Foundation
under Project Number SSTF-BA1602-02 and by the National Research Foundation of
Korea (NRF) Grant 2020R1A5A1016126 funded by the Korea government. He also
holds a joint appointment in the Research Institute of Mathematics, SNU.

2 Preliminaries

2.1 Weighted homogeneous surface singularities and Seifert 3–manifolds

We briefly recall some basics of weighted homogeneous surface singularities and
Seifert 3–manifolds; see [10] for details. Suppose that .w0; : : : ; wn/ are nonzero
rational numbers. A polynomial f .z0; : : : ; zn/ is called weighted homogeneous of type
.w0; : : : ; wn/ if it can be expressed as a linear combination of monomials z

i0

0
� � � z

in
n

for which
i0

w 0
C

i1

w 1
C � � �C

in

w n
D 1:

Equivalently, there exist nonzero integers .q0; : : : ; qn/ and a positive integer d satis-
fying f .tq0z0; : : : t

qnzn/D tdf .z0; : : : ; zn/. Then, a weighted homogeneous surface
singularity .X; 0/ is a normal surface singularity that is defined as the zero loci of
weighted homogeneous polynomials of the same type. Note that there is a natural
C�–action given by

t � .z0; : : : ; zn/D .t
q0z0; : : : ; t

qnzn/;
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with a single fixed point 0 2X . This C�–action induces a fixed-point-free S1 �C�

action on the link L WDX \ @B of the singularity, where B is a small ball centered at
the origin. Hence, the link L is a Seifert fibered 3–manifold over a genus g Riemann
surface, denoted by Y .�bIgI .˛1; ˇ1/; .˛2; ˇ2/; : : : ; .˛k ; ˇk// for some integers b, ˛i

and ˇi with 0< ˇi < ˛i and .˛i ; ˇi/D 1. Note that k is the number of singular fibers,
and there is an associated star-shaped plumbing graph �: the central vertex has genus g

and weight �b, and each vertex in k arms has genus 0 and weight �bij uniquely
determined by the continued fraction

˛i

ˇi
D Œbi1; bi2; : : : ; biri

�D bi1�
1

bi2�
1

� � ��
1

biri

with bij �2. For example, Figure 1 shows the case of gD0 and kD3, which is called a
small Seifert (fibered) 3–manifold. By P Orlik and P Wagreich [11], it is well known that
the plumbing graph � is a dual graph of the minimal resolution of .X; 0/. Conversely,
if the intersection matrix of � is negative definite, there is a weighted homogeneous
surface singularity whose dual graph of the minimal resolution is �; see [15]. Note
that a Seifert 3–manifold Y , as a boundary of a plumbed 4–manifold according to � ,
inherits a canonical contact structure providing that each vertex represents a symplectic
2–sphere, all intersections between them are orthogonal, and the intersection matrix
of � is negative definite; see [7]. Furthermore, if the Seifert 3–manifold Y can be
viewed as the link L of a weighted homogeneous surface singularity, then the canonical
contact structure above is contactomorphic to the Milnor fillable contact structure,
which is given by TL\JTL; see [13].

2.2 Rational blowdowns and symplectic fillings

Rational blowdown surgery, first introduced by R Fintushel and R Stern [5], is one of
the most powerful cut-and-paste techniques. It replaces a certain linear plumbing Cp

of disk bundles over a 2–sphere whose boundary is a lens space L.p2;p � 1/ with
a rational homology 4–ball Bp which has the same boundary. Later, Fintushel and
Stern’s rational blowdown surgery was generalized by J Park [14] using a configuration
Cp;q obtained by linear plumbing disk bundles over a 2–sphere according to the dual

� � �
�.pC 2/ �2 �2 �2

Figure 2: Linear plumbing Cp .
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Figure 3: Plumbing graph �p;q;r .

resolution graph of L.p2;pq�1/, which also bounds a rational homology 4–ball Bp;q .
In the case of a symplectic 4–manifold .X; !/, rational blowdown surgery can be
performed in the symplectic category: if all 2–spheres in the plumbing graph are
symplectically embedded and their intersections are !–orthogonal, then the surgered
4–manifold Xp;q D .X �Cp;q/[Bp;q also admits a symplectic structure induced from
the symplectic structure of X ; see [19; 20]. In fact, the rational homology 4–ball
Bp;q admits a symplectic structure compatible with the canonical contact structure
on the boundary L.p2;pq � 1/. More generally, in addition to the linear plumbing
of 2–spheres, there is a plumbing of 2–spheres according to star-shaped plumbing
graphs with 3 or 4 legs admitting a symplectic rational homology 4–ball; see [18; 3].
That is, the corresponding Seifert 3–manifold Y .�b; .˛1; ˇ1/; .˛2; ˇ2/; .˛3; ˇ3//, or
Y .�b; .˛1; ˇ1/; .˛2; ˇ2/; .˛3; ˇ3/; .˛4; ˇ4// with a canonical contact structure, has
a minimal symplectic filling whose rational homology is isomorphic to that of the
4–ball [6]. For example, a plumbing graph �p;q;r in Figure 3 can be rationally blown
down. We will use this later in the proof of the main theorem.

As rational blowdown surgery does not affect the symplectic structure near the boundary,
if there is a plumbing of disk bundles over symplectically embedded 2–spheres that can
be rationally blown down, then one can obtain another symplectic filling by replacing
the plumbing with a rational homology 4–ball. In the case of the link of quotient surface
singularities, it was proven [2; 4] that every minimal symplectic filling is obtained by a
sequence of rational blowdowns from the minimal resolution of the singularity, which is
diffeomorphic to a plumbing of disk bundles over symplectically embedded 2–spheres.
First, they constructed a genus-0 or genus-1 Lefschetz fibration X on each minimal
symplectic filling of the link of a quotient surface singularity. Suppose that w1 and w2

are two words consisting of right-handed Dehn twists along curves in a generic fiber,
which represent the same element in the mapping class group of the generic fiber. If the
monodromy factorization of X is given by w1 �w

0, one can construct another Lefschetz
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fibration X 0 whose monodromy factorization is given by w2 �w
0. The operation of

replacing w1 with w2 is called a monodromy substitution. Next, they showed that the
monodromy factorization of each minimal symplectic filling of the link of a quotient
surface singularity is obtained by a sequence of monodromy substitutions from that of
the minimal resolution. Furthermore, these monodromy substitutions can be interpreted
as rational blowdown surgeries topologically. Note that all rational blowdown surgeries
mentioned here are linear: a certain linear chain Cp;q of 2–spheres is replaced with a
rational homology 4–ball.

2.3 Minimal symplectic fillings of a small Seifert 3–manifold

In this subsection, we briefly review Starkston’s results [16; 17] for minimal symplectic
fillings of a small Seifert fibered 3–manifold Y .�bI .˛1; ˇ1/; .˛2; ˇ2/; .˛3; ˇ3// with
b � 4. The condition b � 4 on the weight (equivalently, degree) of a central vertex of
the plumbing graph � ensures that one can always choose a concave cap K, which is
also star-shaped, with a .C1/ central 2–sphere and b� 4 arms, each of which consists
of a single .�1/ 2–sphere as in Figure 4. Here Œai1; ai2; : : : ; aini

� denotes a dual
continued fraction of Œbi1; bi2; : : : ; biri

�; that is, ˛i=.˛i � ˇi/ D Œai1; ai2; : : : ; aini
�

while ˛i=ˇi D Œbi1; bi2; : : : ; biri
�.

For a given minimal symplectic filling W of Y , we glue W and K along Y to get
a closed symplectic 4–manifold X . Then, the existence of a .C1/ 2–sphere implies
that X is a rational symplectic 4–manifold and, after a finite number of blowdowns,
X becomes CP2 and the .C1/ 2–sphere in K becomes a complex line CP1

�CP2;
see McDuff [9] for details. Under these circumstances, it is natural to ask the following
question: What is the image of K in CP2 under blowdowns? In the case that K is linear,
which means that the corresponding Y is a lens space, Lisca showed that the image of K

is two symplectic 2–spheres in CP2, each of which is homologous to CP1
� CP2.

� � �

b� 4
:::

:::
:::

C1
�a11 �a21 �a31 �1 �1

�a12 �a22 �a32

�a1n1
�a2n2

�a3n3

Figure 4: Concave cap K.
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By analyzing the proof of Lisca’s result [8, Theorem 4.2], Starkston [16] showed that
the image of K is b symplectic 2–spheres in CP2, each of which is homologous to
CP1

�CP2. For the complete classification of minimal symplectic fillings of Y , one
needs to classify the isotopy classes of these b symplectic 2–spheres, which are called
symplectic line arrangements. Since all these spheres are J–holomorphic for some
J tamed by the standard Kähler form of CP2 and are homologous to CP1

� CP2,
they intersect each other at a single point for each pair of 2–spheres. Note that these
intersection points need not be all distinct. These intersection data of a symplectic line
arrangement are determined by the homological data of K, which also have constraints
from the adjunction formula. In [17], Starkston showed that symplectic line arrange-
ments with certain types of intersections are isotopic to complex line arrangements, that
is, the corresponding b symplectic 2–spheres are isotopic (through symplectic spheres)
to b complex lines in CP2. For example, Starkston classified minimal symplectic
fillings by an explicit computation of all possible homological embeddings of K for
some families of Seifert fibered spaces; see [16, Sections 3 and 4.4; 17, Section 5].

3 Strategy for the main theorem

As we saw in the previous section, for each minimal symplectic filling W of Y , we
obtain a rational symplectic 4–manifold X which is symplectomorphic to CP2]N CP2

for some integer N by gluing K to W along Y . Conversely, given an embedding of a
concave cap K into CP2 ]N CP2, we obtain a symplectic filling W of Y by taking a
complement of K in CP2 ]N CP2. So the classification of minimal symplectic fillings
of Y is equivalent to the classification of the embeddings of K into CP2 ]N CP2 for
some N . Hence, in order to investigate minimal symplectic fillings W of Y , we first
introduce two notions, homological data and curve configuration of the corresponding
embedding of K, which are defined as follows.

Definition 3.1 Suppose that W is a minimal symplectic filling of a small Seifert
3–manifold Y equipped with a concave cap K. Then we have an embedding of K into
a rational symplectic 4–manifold X ŠCP2 ]N CP2 such that the .C1/ 2–sphere in
K is identified with CP1

�CP2. Let l be a homology class represented by a complex
line CP1 in CP2 and ei be homology classes of exceptional spheres coming from
blowups. Then fl; e1; : : : ; eN g becomes a basis for H2.X IZ/, so that the homology
class of each irreducible component of K can be expressed in terms of this basis, which
we call the homological data of K for W .

Algebraic & Geometric Topology, Volume 23 (2023)
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Note that K is symplectically embedded in X ŠCP2]N CP2 and each irreducible com-
ponent of K can be assumed to be J–holomorphic for some J tamed by standard Kähler
form on X . Then there is a sequence of blowdowns from X to CP2 and we can find a J–
holomorphic exceptional sphere†i whose homology class is ei disjoint from the central
.C1/ 2–sphere of K at each stage of blowing down. Because of the J–holomorphic
condition and homological restrictions from the adjunction formula together with
intersection data of K, the exceptional sphere†i intersects positively at most once with
the image of an irreducible component of K or is one of the image of irreducible com-
ponents of K; see [8, Proposition 4.4]. In particular, for each image Cj of irreducible
components of K, the intersection number between ei and ŒCj � lies in f�1; 0; 1g.

As mentioned in the previous section, we finally get a symplectic line arrangement
in CP2 which consists of J–holomorphic 2–spheres, each of which is the image
of the first component of each arm under blowdowns. The intersection data of the
symplectic line arrangement are determined by the homological data of K, so that it can
be represented as a configuration of strands: each strand represents a J–holomorphic
2–sphere of a symplectic line arrangement in CP2, while the intersection of two
strands represents a geometric intersection of two 2–spheres. Then, starting from the
configuration of the symplectic line arrangement, we can draw a configuration C of
strands with degrees by blowups according to the homological data of K until we get
K in the configuration. Here the degree of each strand in C means a self-intersection
number of the strand. To be more precise, when we blow up a point p on a strand
in a configuration, we introduce a new strand with degree �1 to the point p so that
we resolve intersection of strands at p and we decrease the degree of the strands
containing p by one. Hence the configuration C , which represents the total transform
of a symplectic line arrangement, contains strands representing irreducible components
of K and exceptional .�1/ 2–spheres intersecting with the irreducible components. We
say that two configurations C1 and C2 for W are equivalent if there is a bijective map
between .�1/ strands preserving intersections with the irreducible components of K.

Definition 3.2 If there are no strands with degree less than or equal to �2 in C except
for irreducible components of K, we call the configuration C the curve configuration
of a minimal symplectic filling W .

Remark A curve configuration C of W consists of strands representing irreducible
components of K and exceptional 2–spheres intersecting the irreducible components

Algebraic & Geometric Topology, Volume 23 (2023)
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�3 �2 �5 �4 �2

�2

�3 �2 �2 �1

�2 �2

�3

C1

Figure 5: Plumbing graph � and curve configuration for corresponding con-
cave cap K.

of K. We denote the exceptional 2–spheres by dash-dotted strands. See Figure 5 for
example.

Remark We often use the terminology configuration of strands when we deal with
an intermediate configuration between a symplectic line arrangement and a curve
configuration, or a configuration containing K but with strands with degree less than
or equal to �2 other than irreducible components of K.

Proposition 3.3 For given homological data of K for W , there is a unique curve
configuration C up to equivalence.

Proof Since each strand in a curve configuration C represents a J–holomorphic
2–sphere for some J tamed by standard Kähler form on X Š CP2 ] N CP2, all
intersections between the strands represent positive geometric intersections between the
corresponding J–holomorphic 2–spheres. Note that there is at most one intersection
point between any two strands due to homological restrictions. Furthermore, if ei is a
homology class of an exceptional 2–sphere satisfying ei �ŒCj �2f0; 1g for any irreducible
component Cj of K, then there is a .�1/ strand Li in C whose homology class is ei ;
otherwise, there is a blowup on the strand Li so that the proper transform of Li becomes
an irreducible component Cj of K whose intersection with ei is �1, contradicting the
assumption. Hence there is a .�1/ strand Li representing a J–holomorphic exceptional
sphere †i whose homology class is ei in C if and only if ei � ŒCj � 2 f0; 1g for any
irreducible component Cj of K.

Let C and C 0 be two curve configurations for a fixed homological data of K for W .
Then, the numbers of .�1/ strands in C and C 0 are equal to the number of ei satisfying
the condition ei � ŒCj � 2 f0; 1g for any irreducible component Cj of K. Hence we
can construct a desired bijection between the .�1/ strands by finding correspondence
between such ei and .�1/ strands in two curve configurations.

Algebraic & Geometric Topology, Volume 23 (2023)
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� � � � � �

Figure 6: Symplectic line arrangements.

Now, we investigate minimal symplectic fillings of a given small Seifert 3–manifold Y

by analyzing all the possible curve configurations. For this, we first determine all
possible symplectic line arrangements.

Proposition 3.4 For minimal symplectic fillings of a small Seifert fibered 3–manifold
Y .�bI .˛1; ˇ1/; .˛2; ˇ2/; .˛3; ˇ3// with b � 4, there are only two possible intersection
relations of symplectic line arrangements , which can be drawn as in Figure 6.

Proof Since Y is a small Seifert 3–manifolds with b � 4, we can always choose a
concave cap K with a .C1/ central 2–sphere and b�4 arms, each of which consists of
a single .�1/ 2–sphere as in Figure 4. Furthermore, since the blowdowns are disjoint
from the central 2–sphere in K, each of b � 1 arms in K descends to a single .C1/

J–holomorphic 2–sphere intersecting at a distinct point with an image of the central
2–sphere of K under the blowdowns. Let C1;C2; : : : ;Cb�4 be the images of b � 4

many .�1/ 2–spheres in K under the blowdowns. Then they should have a common
intersection point in CP2: otherwise, we have distinct two points p and q on some
Ci such that Ci intersects Cj and Ck at p and q, respectively. Let r be an intersection
point of Cj and Ck . Then any J–holomorphic 2–sphere coming from an arm of K

other than C1; : : :Cb�4 must pass two of p; q and r , which is a contradiction.

If b � 6, a similar argument shows that there is at most one J–holomorphic 2–sphere
coming from an arm of K intersecting at a different point from the common intersection
point p with Ci , which proves the proposition.

Ci

CjCk

p

q

r

Figure 7: Configuration for Ci , Cj and Ck .
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In the case of b � 5, we can easily check that Figure 6 gives all possible symplectic
line arrangements: if b D 5, then there is only one C1 coming from .�1/ 2–sphere
from K. Recall that there are at most two intersection points on C1. If there is only one
intersection point on C1, then we get the left-hand figure in Figure 6. If there are two
intersection points p and q on C1, then two of three J–holomorphic 2–spheres coming
from the arms of K other than C1 pass p, and the other passes q (or vice versa), so that
we get the right-hand figure in Figure 6. For b D 4 case, we have only three strands in
a figure for a symplectic line arrangement except the strand from .C1/ 2–sphere so
that we have only two possibilities.

Next, for the complete classification of minimal symplectic fillings of Y , we need to
consider the isotopy classes of embeddings of K with a fixed homological data in
X ŠCP2]N CP2. By blowing down J–holomorphic 2–spheres, it descends to isotopic
types of corresponding symplectic line arrangement in CP2. By [17, Propositions
4.1 and 4.2], two symplectic line arrangements in Figure 6 are actually isotopic to
complex line arrangements through symplectic configurations, which means that there
is a unique minimal symplectic filling up to symplectic deformation equivalence for
each possible choice of homological data of K. Since a choice of homological data
of K gives a unique curve configuration C up to equivalence by Proposition 3.3, we
analyze minimal symplectic fillings of a small Seifert 3–manifold Y by considering all
possible curve configurations obtained from the complex line arrangements in Figure 6.

As previously mentioned, in the case of quotient surface singularities that include all lens
spaces and some small Seifert 3–manifolds, every minimal symplectic filling is obtained
by linear rational blowdown surgeries from the minimal resolution of the corresponding
singularity. However, this is not true anymore for small Seifert 3–manifolds in general.
For example, a rational homology 4–ball of �p;q;r in Figure 3 might not be obtained
by linear rational blowdown surgeries. Nevertheless, many cases such as b � 5 are
in fact obtained by linear rational blowdowns from their minimal resolutions. For the
case of b D 4, one might need 3–legged rational blowdown surgeries to get a minimal
symplectic filling. Hence, it is natural to prove the two cases b� 5 and bD 4 separately.

3.1 The case b � 5

We consider all possible curve configurations coming from two complex line arrange-
ments in Figure 6 which can be divided into three types. First, we need to blow up
all intersection points in the line arrangements so that we get two configurations as

Algebraic & Geometric Topology, Volume 23 (2023)
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�1

C1

0 0 0 0 �1 �1 �1

C1

Figure 8: Blowups of the line arrangements.

in Figure 8. There are two possibilities for a strand representing exceptional sphere
in intermediate configurations coming from blowups: to blow up some intersection
points, or not. Once we blow up an intersection point on a strand representing an
exceptional sphere †, which means the proper transform of † becomes an irreducible
component of K, we should blow up all the intersection points except one intersection
point because each strand intersecting the strand for † become irreducible components
of distinct arms in K. We can also blow up the last intersection point we did not blow
up to get another curve configuration, but it is not necessary in general.

If we do blow up an intersection point on the dash-dotted strand of the left-hand side
of Figure 8, we get the configuration on the left-hand side of Figure 9. When we start
with two configurations in Figure 9, we can assume without loss of generality that the
first three arms become essential arms in K, which consist of strands with degree less
than or equal to �2. Since the degree of the other arms is already �1, we can only
blow up e1 and e2 among dotted exceptional strands. In conclusion, we can divide all
the possible curve configurations into following three types:

� Type A Curve configurations obtained from Figure 8, left, without blowing up
the exceptional strand.

c

e1

e2

�1 �1 �1

C1

c

e1

e2

�1 �1 �1

C1

Figure 9: Two configurations.
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� Type B Curve configurations obtained from Figure 9, left or right, by blowing
up at most one ei , with 1� i � 2.

� Type C Curve configurations obtained from Figure 9, left or right, by blowing
up both e1 and e2.

3.2 The case bD 4

We divide all curve configurations for b D 4 into the following two cases:

� Curve configurations of types A, B or, C as in the b � 5 case.

� Type D Curve configurations obtained from Figure 9, right, by blowing up all
exceptional .�1/ strands.

Then, since we can deal with the first case using the same argument in the b � 5 case, it
suffices to prove the type D case whose corresponding curve configurations come from
some configurations Cp;q;r in Figure 22, which are obtained from the right-hand figure
in Figure 9; see Section 4.4 for details. The main difference between the b D 4 case
and the b � 5 case is that one can use all three exceptional 2–spheres to get a concave
cap K for bD 4, while one can use only e1 and e2 for b � 5 from the right-hand figure
in Figure 9.

4 Proof of main theorem

In this section, for a given possible curve configuration C , we show that there is
a sequence of rational blowdowns from the minimal resolution zM to the minimal
symplectic filling W of Y corresponding to C . Since any minimal symplectic filling of
a lens space is obtained by a sequence of rational blowdowns from a linear plumbing
which is the minimal resolution corresponding to the lens space [2], it suffices to
construct a sequence of curve configurations C D C0;C1; : : : ;Cn such that each
minimal symplectic filling Wi corresponding to Ci is obtained from WiC1 by replacing
a certain linear plumbing Li with its minimal symplectic filling. Here Cn denotes a
curve configuration for the minimal resolution zM . As previously mentioned, since
our possible symplectic line arrangements are isotopic to complex line arrangements,
it suffices to work in complex category with a symplectic form ! coming from the
standard Kähler form on CP2. In order to show that there is a symplectic embedding
of Li in WiC1, we construct a configuration C 0

iC1
of strands, which is not a curve
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configuration for WiC1, from a complex line arrangement by blowups with the same
homological data of K for WiC1 so that we have Li disjoint from K in C 0

iC1
. Since we

work in complex category, each strand in C 0
iC1

can be considered as a complex rational
curve in a rational surface X while the intersections between strands represent positive
geometric intersections between the corresponding rational curves. This observation
implies that Li is symplectically embedded in WiC1.

Now we introduce the notion of standard blowups, which frequently appears in the
construction of Wi from WiC1. Let K and K0 be two star-shaped plumbing graphs
having the same number of arms together with a .C1/ central vertex, and let �aij

for 1 � j � ni and �a0ij for 1 � j � n0i be the weights (equivalently, degrees) of
the j th vertex in the i th arm of K and K0, respectively. We say K0 � K if n0i � ni

and a0ij � aij for any i and j except for a0in0
i
< ain0

i
in the case of n0i < ni . The

condition K0 �K guarantees that we can obtain a configuration of strands representing
K by blowups from a configuration representing K0 in the following way: we blow up
nonintersection points of the last component of each i th arm in K0 consecutively until
we get ni components, and then we blow up each component at nonintersection points
to get the right weights.

Definition 4.1 Let C 0 be a configuration of strands obtained from a complex line ar-
rangement by blowups containing a star-shaped plumbing graph K0 with a homological
data. If K0 �K and the degree of all strands in C 0 nK0 is �1, then we can obtain a
curve configuration zC 0 from C 0 by blowing up at nonintersection points only. In this
case, we say that the curve configuration zC 0 is obtained by standard blowups from C 0.

Remark With given homological data of K0 in C 0, the standard blowups induce a
unique homological data of K for zC 0: Let e be a homology class of an exceptional
sphere coming from blowing-ups from C 0 to zC 0. Since we blow up nonintersection
points, e appears in at most two ŒC i1

j1
� and ŒC i2

j2
�, where C i

j denotes the j th component
in the i th arm of K. Moreover, if e appears in two ŒC i1

j1
� and ŒC i2

j2
�, then i1 D i2 D i

and j2 D j1C 1 with e � ŒC i
j1
�D 1 and e � ŒC i

j1C1
�D�1.

For a given star-shaped plumbing graph K0 � K, in general if n0i < ni for some i ,
where n0i and ni are the number of components in i th arm of K0 and K respectively,
there are possibly other ways of blowing up to get the i th arm of K from that of K0.
Let C 0 be a configuration of strands containing K0 �K as in Definition 4.1. Assume
furthermore that n0i < ni for some i . Let zC 0 be a curve configuration obtained from C 0

by standard blowups. Then we get the following three fundamental lemmas.

Algebraic & Geometric Topology, Volume 23 (2023)



3512 Hakho Choi and Jongil Park

�a0
in0

i

� 1

�1

�ain0
i

�ain0
i
C1

�aini

�br

�br�1

�b1

:::

:::

Figure 10: Finding an embedding of L.

Lemma 4.2 Let C be a curve configuration for K, and let W be the minimal sym-
plectic filling of Y corresponding to C . Suppose C 0 is a configuration for K0 � K

such that the standard blowups zC 0 of C 0 differs from C only in the components C i
j for

n0i � j � ni . Let zW denote the minimal symplectic filling of Y corresponding to zC 0.
Then there is a symplectically embedded linear plumbing L of 2–spheres determined by
Œb1; b2; : : : ; br � in zW such that W is obtained by zW by replacing the plumbing L with
some minimal filling WL of the lens space boundary of the linear plumbing L. Further ,
Œb1; b2; : : : ; br � is the dual of Œ.ain0

i
�a0in0

i
/; ain0

i
C1; ain0

i
C2; : : : ; aini

�, where �aij and
�a0ij are the weights of the j th component in the i th arm of K and K0, respectively.

Proof We can assume that ain0
i
� a0in0

i
� 2 because the way of blowing up from the

i th arm of K0 to that of K remains the same when we replace K0 with K00, where K00

is obtained from K0 by blowing up the last component of the i th arm.

First we show that there is a symplectic linear embedding L in zW . Let S be a
configuration of strands containing K obtained as follows. We blow up the last
component in the i th arm of K0 in C 0 at a nonintersection point so that we have
two consecutive strands of degree �a0in0

i
� 1 and �1. Since the continued fraction

Œb1; b2; : : : ; br � is dual to Œ.ain0
i
�a0in0

i
/; ain0

i
C1; ain0

i
C2; : : : aini

� by the definition of L,
we obtain a linear chain of strands containing the rest of the i th arm in K and L from
the two strands by blowing up consecutively at intersection points as in Figure 10,
so that there is an embedding L in the complement of K in a rational surface X .
Furthermore, since we started from the same homological data of K0 in C 0 and since a
blowup for C 0 to S either increases the number of components or decreases the degree
of an irreducible component of K, the homological data of K for both zC 0 and S are
the same, so that there is a symplectic embedding L in zW .
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Before we examine the effect of replacing L with its minimal symplectic filling WL,
we briefly review the classification of minimal symplectic fillings of lens space, which
can be found in [1] and [8]. For notational convenience, we denote a linear plumbing
graph and a lens space determined the plumbing graph by the same L. For a lens
space L given by Œb1; b2; : : : ; br �, we can choose a concave cap KL of the form

C1 �a1C1 �a2 �an

where Œa1; a2; : : : ; an� is a dual continued fraction of Œb1; b2; : : : ; br �. Suppose XL Š

CP2 ]N0CP2 is a rational symplectic 4–manifold obtained by gluing two plumbings
according to L and KL whose second homology class is generated by flg [E D

fE1; : : : ;EN0
g. Then, for a given minimal symplectic filling WL of L, we get a

rational symplectic 4–manifold XWL
ŠCP2 ]N CP2 by gluing WL and KL and the

image of KL under blowing down is isotopic to two complex lines in CP2, which
means that a minimal symplectic filling of L is determined by a choice of homological
data of KL in CP2 ]N CP2 for some N . Hence, we draw a curve configuration CWL

for WL starting from a configuration of two .C1/ strands in CP2 by blowing-ups
with only one .C1/ strand. This observation shows that the effect of replacing L

in XL with WL is the following: We have another rational symplectic 4–manifold
XWL

ŠCP2 ]N CP2 and the second homology classes in the complement of L are
changed so that

l! l and ŒLi �
E
! ŒLi �

e for 1� i � n;

where ŒLi �
E and ŒLi �

e are homology classes of irreducible components of KL in terms
of flg[E D fE1; : : : ;EN0

g and flg[ e D fe1; : : : ; eN g respectively.

Let ŒC i
j �

C and ŒC i
j �

C 0

be homology classes of C i
j in C and C 0 respectively. Note

that C is a curve configuration completed from the last .�a0
in0

i

/ strand in the i th arm
of K0 by blowups without using any other strand in C 0. If we blow up in the same
ways starting with a single .C1/ strand instead of .�a0

in0
i

/ strand, we get a curve
configuration CWL

containing KL. Hence there is a minimal symplectic filling WL of
L whose homological data of KL in XWL

.DWL [KL/Š CP2 ]N CP2 are given
by ŒLj � D ŒC

i
n0

i
Cj�1

�C except for ŒL0� D l and ŒL1� D l C ŒC i
n0

i
�C � ŒC i

n0
i
�C

0

, where
eD fe1; : : : ; eN g is homology classes of exceptional spheres coming from the blowups
from C 0 to C .

Finally, we show that the minimal symplectic filling W corresponding to C is given
by . zW n L/ [WL. Suppose X 0 is a rational symplectic 4–manifold obtained by
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blowups from a complex line arrangement so that it contains C 0. We take a small
Darboux neighborhood B0 of a disk D in C i

n0
i

of K0 so that B0 is disjoint from any
other irreducible components of K0. Now we arrange all the blowups from C 0 to C

inside B0 and let B be blowups of B0. Then we have a symplectic embedding of K in
X D .X 0 nB0/[B and homological data of K that agrees with C . Furthermore, B nK

is symplectic deformation equivalent to WL: consider two complex lines in CP2 and a
symplectic embedding of B0 such that the image of D in C i

n0
i

is a disk in one complex
line and B0 is disjoint from the other complex line. By the construction of B, there is
a symplectic embedding of KL in .CP2

nB0/[B, where the first component of KL

is the complex line in .CP2
nB0/ and the complement of KL in .CP2

nB0/[B is
symplectic deformation equivalent to WL. Since the complement of a neighborhood
of CP1 in CP2 is a ball, B nK D B nKL is also symplectic deformation equivalent
to WL. Note that K D .K\ .X 0 nB0//[ .K\B/D .K0 nB0/[ .K\B/. Hence

W DX nK D ..X 0 nB0/ nK/[ .B nK/Š .X 0 n .K0[B0//[WL:

By a similar argument, zW Š .X 0 n .K0[B0//[L, so that W is obtained from zW by
replacing L by WL.

Assume furthermore that there is a .�1/ curve intersecting both C i
n0

i
and another

irreducible component C k
l

of K0 in C 0. Then there is a slight modification of the
Lemma 4.2, involving two arms of K.

Lemma 4.3 Suppose that there is a .�1/ curve E intersecting C i
n0

i
and C k

l
of K0

in C 0 with a0
kl
< akl . If the standard blowup zC 0 of C 0 differs from C only in C k

l

and components C i
j for n0i � j � ni , then there is a symplectically embedded linear

plumbing L�W , described in Figure 11, such that W is obtained by zW by replacing
the plumbing L with some minimal filling WL. Furthermore , Œb1; b2; : : : ; br � is the dual
of Œ.ain0

i
� a0in0

i
/C 1; ain0

i
C1; ain0

i
C2; : : : ; aini

�, where �aij and �a0ij are the weights
of the j th component in the i th arm of K and K0, respectively.

Proof The proof is similar to that of Lemma 4.2 except for blowups at two intersection
points of E in C 0 to find an embedding L. That is, we construct a configuration S of
strands containing K, as in Figure 12, whose homological data is equal to that of zC 0,
so that there is a symplectic embedding of L in zW .

Next, by viewing L as a two-legged plumbing graph with a degree .�b1 � 1/ of a
central vertex, we get a concave cap KL as in Figure 11: starting from the zero section
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�b1� 1

�2

�2

�2

�b2

�b3

�br

akl � a0kl � 1

:::

C1

a0kl � akl

a0in0
i
� ain0

i

�ain0
i
C1

�aini

Figure 11: A plumbing graph of L and its concave cap KL.

and infinity section together with two generic fibers of Fb1�1, we construct arms
corresponding to Œ�2; : : : ;�2� and Œ�b2; : : : ;�br �. Then, by consecutive blowups at
intersection points of the proper transform of zero section and the arm corresponding
to Œ�b2; : : : ;�br �, we get a concave cap KL for L. As before, for a given minimal
symplectic filling of L, we get a rational symplectic 4–manifold by gluing KL along
L and the image of KL in CP2 under blowing down is three complex lines in CP2

intersecting generically, implying that any curve configuration for KL is obtained from
blowing up at an intersection point between two complex lines in CP2. Therefore,
using blowup data from C 0 to C (Figure 13), we get a minimal symplectic filling WL

of L.

Suppose that X 0 is a rational symplectic 4–manifold containing C 00, obtained from C 0

by blowing down E, and let B0 be a small Darboux neighborhood of the intersection
point coming from the blowing down. Then a similar argument as in Lemma 4.2 above
shows that the minimal symplectic filling W corresponding to C is obtained from zW

by replacing L with WL.

�1 E

�a0kl �a0in0
i

�1 �2 �2
� � �
�2

�akl �a0in0
iakl � a0kl

�2 �2
� � �
�2

�b1� 1

�b2

� � �
�br

�aini

� � �
�ain0

i
C1

�akl
�ain0

i

akl � a0kl � 1

Figure 12: Embedding of L to zW .
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�1

�a0kl �a0in0
i

:::

:::

�akl �ain0
i

�ain0
i
C1

�aini

�1

C1

0 0

:::

:::

C1

a0kl � akl

a0in0
i
� ain0

i
�ain0

i
C1

�aini

Figure 13: Top: blowups from C 0 to C . Bottom: curve configuration for WL.

Assume that C 0 is a curve configuration containing K0 �K corresponding to a mini-
mal symplectic filling W 0 of another small Seifert 3–manifold Y 0 and zC 0 is a curve
configuration obtained from C 0 by standard blowups. Then we can describe a minimal
symplectic filling zW of Y corresponding to zC 0 explicitly.

Lemma 4.4 Under the assumption above , there is a symplectically embedded plumb-
ing of 2–spheres � 0 in the minimal resolution zM such that a minimal symplectic filling
zW of Y corresponding to zC 0 is obtained from zM by replacing � 0 with W 0.

Proof Let K0 be a plumbing graph determined by black strands in the left-hand side
of Figure 8. Clearly, K0 �K so that there is a curve configuration C zM obtained by
standard blowups from Figure 8, left. We first show that the curve configuration C zM

corresponds to the minimal resolution zM . Recall that a concave cap K in Figure 4 can
be found in [18; 16]: Starting from the zero and infinity sections with b � 1 generic
fibers of a Hirzebruch surface F1 which can be drawn as the left-hand side in Figure 8,
we blow up intersection points of generic fibers and the infinity section so that we have
a .�b/ rational curve which corresponds to the central vertex of the minimal resolution
graph � . Then, we obtain a linear chain of strands containing both i th arm of K and
� from two .�1/ strands by blowups, as in Figure 14, bottom. As a result, we have a
configuration S zM containing both � and K disjointly, so that the complement of K in
a rational surface XY is the minimal resolution zM and K is a concave cap for Y . By
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C1

0 0 0 0 � � � 0 !

C1

�b

�1 �1 �1 �1 �1

� � �

�1 �1 �1 �1 �1

�1

�1

�ai1

�ai2

�ain1

�biri

�biri�1

�bi1

:::

:::

Figure 14: Top: blowing up Hirzebruch surface F1. Bottom: construction of
each arm in K and � .

using the same argument as in the proof of Lemma 4.2 above, we conclude that C zM is
a curve configuration for zM .

In the same way, we could get a configuration S� 0 of strands containing both K0 and a
plumbing graph � 0 so that the complement of K0 in the resulting rational symplectic
4–manifold XY 0 ŠCP2 ]M CP2 is a plumbing of 2–spheres according to � 0. Note
that M�1 is the number of blowups in the standard blowups from the left-hand side of
Figure 8 to K0. Since K0 �K, we obtain a configuration S 0zM of strands containing
� 0 and K disjointly from S� 0 by standard blowups at nonintersection points in the
last component of each i th arm of K0. Let X D XY 0 ]N CP2 be a resulting rational
symplectic 4–manifold. Then X Š XY D

zM [K, since the number of blowups in
the standard blowups from the left-hand side of Figure 8 to K is equal to the sum of
numbers of blowups for the left-hand side of Figure 8 to K0, and K0 to K. Furthermore,
the homological data of K in S 0zM is also equal to that of C zM . Hence a plumbing graph
� 0 is symplectically embedded in zM .

If there is a sequence of blowups from a configuration of strands representing K0 to K,
then we have a corresponding symplectic cobordism Z from Y 0 to Y because the
total transform of K0 is still a concave cap for Y 0 while K is a concave cap for Y .
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In particular, if C 0 is a curve configuration for a minimal symplectic filling W 0, then
we get a curve configuration C for a minimal filling W by the sequence of blowups
from K0 to K and W DW 0[Z. In the case of standard blowups from K0 to K, we
can deduce from the construction of S 0zM that the corresponding cobordism is equal
to zM n� 0. Hence we have zW DW 0 [ . zM n� 0/, so that zW is obtained from zM by
replacing � 0 with W 0.

4.1 Proof for type A

For a curve configuration C of type A, we want to show that the corresponding minimal
symplectic filling W is obtained from the minimal resolution zM by replacing each
arm in the resolution graph � with its minimal symplectic filling. Since we already
know in the proof of Lemma 4.4 above that a curve configuration C zM , which is
obtained from the left-hand side of Figure 8 by standard blowups, corresponds to zM by
repeatedly applying Lemma 4.2 with K0 as in the left-hand side of Figure 8 so that the
corresponding L is one of three arms in � , we conclude that all minimal symplectic
fillings corresponding to a curve configuration C of type A are obtained by a sequence
of rational blowdowns from the minimal resolution zM .

The following example illustrates this case.

Example 4.1 Let Y be a small Seifert 3–manifold whose associated plumbing graph
and concave cap are shown in Figure 15, top. Then, there are two curve configurations
of type A as in Figure 15, bottom. Of course, there exist other curve configurations of
type B and C for minimal symplectic fillings of Y , which will be treated in Example 4.2
and Example 4.3 later. Note that each dash-dotted strand represents an exceptional 2–
sphere, that is, a 2–sphere with self-intersection �1. We omit the degree of irreducible
components of the concave cap for the sake of convenience in the figure. The bottom left
curve configuration in Figure 15 is obtained by standard blowups from that of Figure 8,
which means that the corresponding minimal filling is the minimal resolution. Note
that only the third arm in the plumbing graph � has a nontrivial minimal symplectic
filling that is obtained by rationally blowing down the .�4/ 2–sphere. Using Lisca’s
description of the minimal symplectic fillings of lens spaces, we obtain the bottom right
curve configuration in Figure 15, which represents a minimal symplectic filling obtained
from the minimal resolution by rationally blowing down the .�4/ 2–sphere in the
third arm.
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�3 �2 �5 �4 �2

�2

C1
�3 �2 �2 �1

�2 �2

�3

C1 C1

Figure 15: Top: plumbing graph � , and its concave cap K. Bottom: two
curve configurations in Example 4.1.

4.2 Proof for type B

For a curve configuration C of type B, we want to show that the corresponding minimal
symplectic filling W is obtained from the minimal resolution zM by replacing disjoint
subgraphs in the resolution graph � with their minimal symplectic filling. By reindexing
if needed, we assume that the first and the second arms of the configurations in Figure 9
become the first and the second arm of K in C , respectively, and the proper transform
of e2 is not an irreducible component of K. Since we do not use e2 during the blowups,
we can get the first and the second arm of K, so that the homological data for the
irreducible components in these arms agrees with that of C , from the configurations
in Figure 9 leaving the third single .�1/ arm unchanged. Hence we arrange the order
of blowups from a configuration in Figure 9 to C so that we have an intermediate
configuration C 0 of strands containing K0 �K as in Figure 16. Note that the degree of
strands in C 0 nK0 is all �1. If we choose a linear plumbing graph

L0 D
�b1r1 �b11 �b �b21 �b2r2

to be a subgraph of � as a two-legged plumbing graph with the .�b/ central vertex, then
K0 gives a concave cap of L0 and C 0 is a curve configuration for a minimal symplectic
filling WL0 of L0.

Let C1 be a curve configuration obtained by standard blowups from C 0. Then, by
Lemma 4.4, the curve configuration C1 corresponds to a minimal symplectic filling W1,
which is obtained from the minimal resolution zM by replacing L0 with WL0 . Further-
more, since Œa31; a32; : : : ; a3n3

�D Œ2; : : : ; 2; c1C 1; c2; : : : ; ck �, where Œc1; c2; : : : ; ck �
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� � �

b� 3

:::
:::

C1
�a11 �a21 �1 �1 �1
�a12 �a22

�a1n1
�a2n2

Figure 16: Concave cap K0 for linear subgraph of � .

is the dual of Œb32; b33; : : : ; b3r3
�, by Lemma 4.2 with L as a linear chain determined by

Œb32; b33; : : : ; b3r3
�, we conclude that the minimal symplectic filling W corresponding

to C is obtained from W1 by replacing L with its minimal symplectic filling. Hence
the desired minimal symplectic filling W is obtained from zM by replacing disjoint
linear subgraphs

�b1r1 �b11 �b �b21 �b2r2 and
�b32 �b33 �b3r3

of � with their minimal symplectic fillings, so that there is a sequence of rational
blowdowns from zM to W .

The following example illustrates the curve configurations of type B.

Example 4.2 We again consider a small Seifert 3–manifold Y used in Example 4.1.
Since the left-hand configuration without exceptional 2–spheres in Figure 17 gives a
concave cap of a lens space determined by a subgraph

�3 �2 �5 �2

of � , it gives a minimal symplectic filling WL of the lens space L.39; 16/. Then, by
blowups at points lying on the third arm different from the intersection point with the
exceptional curve e, we get an embedding of a concave cap K of Y as in the right-hand
curve configuration C1 of Figure 17, which gives a minimal symplectic filling W1 of Y .
Furthermore, since there is a unique minimal symplectic filling of lens space L.2; 1/

corresponding to the .�2/ 2–sphere in the third arm of � , W1 is obtained from the
minimal symplectic filling WL. In fact, there are three more minimal symplectic fillings
of Y which are of type B — see Figure 17 for the corresponding curve configurations.
Note that the curve configuration C1 for W1 in Figure 17 comes from the right-hand
configuration in Figure 9 and the curve c becomes a component of the first arm of K in
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e

�1

C1

�1

C1

C2

�1
C1

C3

�1
C1

C4

�1
C1

Figure 17: Top: curve configuration C1 for W1. Bottom: curve configurations
for other symplectic fillings of Y .

the top right of Figure 15. Similarly, the curve configuration Ci for Wi .2� i � 4/ is
also obtained from the right-hand configuration in Figure 9. One can easily check that
each Wi is obtained from the minimal resolution of Y by a linear rational blowdown
surgery: explicitly, W2, W3 and W4 are obtained by rationally blowing down along
subgraphs

�2 �5
;
�5 �2 and �3 �2 �5 �4 �2

in � , respectively. And W1 is also obtained by rationally blowing down along

�3 �5 �2
;

which is embedded in another plumbing

�3 �2 �5 �2
:

4.3 Proof for type C

For a minimal symplectic filling W corresponding to a curve configuration C of type C,
we want to find a curve configuration C1 of type B such that there is a symplectically
embedded linear chain L of 2–spheres (that is not visible in �) in W1 corresponding
to C1 so that W is obtained from W1 by replacing L with its minimal symplectic
filling WL.
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:::

e2

e

:::
:::

:::

C1
�a11 �a21 �1
�a12 �a22

�a0
1n

C 1
n

�a1n1
�a2n2

e2

:::
:::

e

C1
�a011

�a21 �1
�a22

�a1n1
�a2n2

Figure 18: Part of intermediate configuration C 0.

By reindexing if needed, we may assume that the first and the second arm of configura-
tions in Figure 9 become that of K respectively, and the proper transform of e2 becomes
an irreducible component in the third arm of K after blowups. For convenience, we omit
in figures all exceptional .�1/ strands that intersect only one irreducible component of
the corresponding concave cap K.

Now, by blowups at intersection points of e1 consecutively, we get the first and the
second arm so that the homological data for the irreducible components in these arms
agrees with that of C except for one irreducible component, say C 1

n , of the first arm of
K leaving the third single .�1/ arm unchanged. Note that there is only one exceptional
strand e connecting the first and the second arm as in Figure 18 because we blow up at
intersection points of e1 to get the first and the second arm of K. Hence we can arrange
a sequence of blowups from a configuration in Figure 9 to a curve configuration C of
type C so that we have an intermediate configuration C 0 of strands as in Figure 18: The
left-hand/right-hand figures comes from the left-hand/right-hand figures in Figure 9,
respectively. For simplicity, we only explain a curve configuration coming from the
left-hand side in Figure 9. In contrast to the type B case, we have a .�a0

1n
/ strand with

a1n > a0
1n

in C 0 because we need to blow up at the intersection point of e2 and c in
Figure 9, which becomes the .�a1n/ strand in the curve configuration C at the top of
Figure 19. Let C1 be a curve configuration obtained from C 0 by standard blowups and
W1 be a minimal symplectic filling of Y corresponding to C1. Then, by Lemma 4.3,
there is a symplectic embedding L in W1 so that W is obtained from W1 by replacing
L with its minimal symplectic filling WL, where L is a plumbing graph at the bottom
of Figure 19. Since a curve configuration C1 for W1 is of type B, there is a sequence
of rational blowdowns from zM to W as desired.
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:::
:::

e

:::
:::

:::

C1
�a11 �a21 �a31

�a12 �a22 �a32

C 1
n
�a1n

�a1n1
�a2n2

�a3n3

:::
:::

:::

e

C1
�a11 �a21 �a31

�a22 �a32

�a1n1
�a2n2

�a3n3

�b31� 1

�2

�2

�2

�b32

�b33

�b3r3

a1n� a0
1n
� 1

Figure 19: Top: part of curve configuration C for W . Bottom: a plumbing
graph of L.

The following example illustrates this case.

Example 4.3 We consider a minimal symplectic filling W5 of Y in Example 4.1,
represented by a curve configuration C5 in Figure 20. The curve configuration C5 is
obtained from the right-hand configuration in Figure 9, and the proper transforms of e1

and e2 are irreducible components of the concave cap K. Thus, as in the proof, we can
find an intermediate configuration C 0 between the right-hand configuration in Figure 9
and C5. Then it is easy to check that the homological data for standard blowups zC 0 of
C 0 and that of C1 is equal; see Figures 17 and 20. From the proof of Lemma 4.3, we

e

�1�1

C1

C 0

C 2
1

C 3
1 C 4

1

C 1
2

�1

C1

C 1
1

C 3
2C 3

3

C5

Figure 20: Curve configuration C5 for symplectic filling W5 of Y .
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can explicitly check that there is a symplectic embedding of

L1 D
�5 �2

to W1 in Example 4.2, and W5 is obtained by rationally blowing it down: let C
j
i be

the i th component of the j th arm in K. Then the homological data of K for W1 in
X DW1[K ŠCP2 ] 10CP2 is given by

ŒC0�D l;

ŒC 1
1 �D l � e2� e3� e4� e5; ŒC 1

2 �D e2� e6;

ŒC 2
1 �D l � e1� e2� e6;

ŒC 3
1 �D l � e1� e3� e7; ŒC 3

2 �D e7� e8; ŒC 3
3 �D e8� e9� e10;

ŒC 4
1 �D l � e1� e4;

where C0 is the central .C1/ 2–sphere of K, l is the homology class representing the
complex line in CP2, and ei is the homology class of each exceptional 2–sphere. As
in the proof of Lemma 4.3, we can find a symplectic embedding of

LD
�5 �2

to W1�X whose homological data is given by e3�e5�e7�e8�e9 and e9�e10; refer
to Figure 21, top. There are two minimal symplectic fillings of L whose corresponding
curve configurations are as in Figure 21, bottom. Note that the first figure represents a
linear plumbing while the second figure represents a rational homology 4–ball.

Hence, if we rationally blow down L from XLDL[KLŠCP2 ]6CP2, then we get
a new rational symplectic 4–manifold X 0

L
ŠCP2 ] 4CP2, and the homological data

of KL changes as follows:
l! l;

l � e1� e2! l �E1�E2;

e2� e3!E2�E3;

e3� e4!E3�E4;

e4� e5� e6!E1�E2�E3:

Here ei and Ei denote the homology classes of exceptional spheres in XL and X 0
L

.
Note that the homological data of L in XL is given by e1 � e2 � e3 � e4 � e5 and
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e

�1 �1

C1

�5

�2

�2

�1

C1

�5 �2

�2

�3

�1

C1

C1

�1

�2

�2

�3

C1

�1

�2

�2

�3

Figure 21: Top: embedding of L1 in W1. Bottom: two curve configurations
for YL.

e5�e6. Therefore, if we see X as XL ]4CP2, we get X 0ŠCP2 ]8CP2 by rationally
blowing down L from X , and the homological data of KL is changed by

l! l;

l � e3� e5! l �E1�E2;

e5� e7!E2�E3;

e7� e8!E3�E4;

e8� e9� e10!E1�E2�E3;

where e1; e2; e4; e6 and E1;E2;E3;E4 represent the standard exceptional 2–spheres
in X 0 Š CP2 ] 8CP2. Therefore, the new homological data for the concave cap K,
which give the right-hand curve configuration in Figure 20, are as follows:

ŒC0�D l;

ŒC 1
1 �D l � e2� e4�E1�E2; ŒC 1

2 �D e2� e6;

ŒC 2
1 �D l � e1� e2� e6;

ŒC 3
1 �D l � e1�E1�E3; ŒC 3

2 �DE3�E4; ŒC 3
3 �DE1�E2�E3;

ŒC 4
1 �D l � e1� e4:
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Remark We investigated all possible curve configurations for a small Seifert 3–
manifold Y with b � 5 in the proof of the main theorem. As a result, we can find
all minimal symplectic fillings of Y via corresponding curve configurations. For
example, a complete list of minimal symplectic fillings of Y in Example 4.1 are given
by Examples 4.1–4.3.

4.4 Proof for type D

We start to prove this case for a curve configuration coming from C0;0;0. Note that C0;0;0

itself is a curve configuration containing K0;0;0 corresponding to rational homology
ball filling of �0;0;0 in Figure 3. By repeatedly blowing up at intersection points
between exceptional strands and the first component of each arm, we can get a curve
configuration Cp;q;r containing Kp;q;r corresponding to a rational homology ball filling
of �p;q;r as in Figure 22. For notational convenience, we denote three exceptional
strands in each Cp;q;r by the same ei with i 2Z3 so that ei intersects the last component
of i th arm and the first component of .iC1/st arm of Kp;q;r . Let C�1;�1;�1 be the
right-hand figure of Figure 9 and Cp;q;�1 be a configuration of strands obtained from
Cp;q;0 by blowing down e2 in Figure 22. Then Cp;q;�1 contains Kp;q;�1, which is the
proper transform of Kp;q;0 under blowing down.

Proposition 4.5 For a curve configuration C coming from C0;0;0, there is a curve
configuration Ca;b;c containing Ka;b;c with a; b; c � �1 such that

(i) there is a sequence of blowups from Ca;b;c to C ,

(ii) there is either no blowup at ei or blowups at both intersection points on ei during
the sequence of blowups ,

(iii) there is no blowup at intersection points of Ka;b;c .

C1

�2 �2 �2

�2

e1
�2

e2

e3 �2

C1

�.r C 2/ �.pC 2/ �.qC 2/

: : :

pC 1

e1

: : :

qC 1

e2

e3
r C 1

Figure 22: Curve configurations C0;0;0 and Cp;q;r .
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:::
.n1� 1/

�.n1� 1/

e1

:::
.n1� 1/

�n1

�1

�3

:::

:::

.n1� 1/

.p� n1/

�p

�1

�3

Figure 23: Part of the blowups from Cn1�3;n2�3;n3�3 to C 0.

Proof Since there are no strands with degree � �2 in C except for irreducible
components of K, each irreducible component of K0;0;0 in C0;0;0 should become an
irreducible component of K under blowups from C0;0;0 to C . Hence, in order to get C

from C0;0;0 by blowups ei , we should blow up at either two intersection points of ei with
arms or an intersection point of ei with the .iC1/st arm only. Note that we get Cp;q;r

containing Kp;q;r by blowups the latter case repeatedly. Hence, by rearranging the order
of blowups from C0;0;0 to a curve configuration C , we may assume that C is obtained
from Cp;q;r with p; q; r � 0 and there are no more blowups at an intersection point of
ei with the .iC1/st arm only. Since the configuration Cp;q;r clearly satisfies conditions
(i) and (ii), we are done if there is no blowup at intersection points of Kp;q;r in Cp;q;r .

If there are blowups at intersection points of Kp;q;r in Cp;q;r to C , then we will find
another Ca;b;c with a � p, b � q and c � r satisfying conditions (i)–(iii) as follows.
Let xi be the first intersection point in the i th arm of Kp;q;r among the intersection
points to be blown up, and C 0 be a configuration of strands obtained by blowing up
at xi for 1 � i � 3. For notational convenience, we denote exceptional strands in
Cp;q;r and the proper transform of ei in C 0 by the same ei . There is a unique .�1/

exceptional strand in each i th arm of K0 in C 0, which is the ni
th component of the i th

arm with ni � 2, where K0 is the total transform of Kp;q;r . Then we claim that there
is a sequence of blowups from Cn1�3;n2�3;n3�3 to C 0: we blow up two intersection
points of ei simultaneously, and then we blow up at the intersection point between the
exceptional .�1/ strand and the first component of the .iC1/st arm consecutively to
get C 0; for example, see Figure 23 for the first arm. We see from the construction that
a configuration Cn1�3;n2�3;n3�3 satisfies conditions (i) and (ii). Moreover, since xi is
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�3 �4 �2 �3

�3

�4

�2

C1
�2 �2 �3

�2 �3

�2

�3

�2

Figure 24: Plumbing graph � and its concave cap K.

the uppermost point among the intersection points to be blown up, there is no blowup
at intersection points of Kn1�3;n2�3;n3�3 during the blowups from Cn1�3;n2�3;n3�3

to C . Therefore Cn1�3;n2�3;n3�3 is a desired curve configuration Ca;b;c .

Since Ka;b;c �K (guaranteed by condition (ii) in Proposition 4.5), there is a curve
configuration C1 of Y obtained from Ca;b;c by standard blowups. If one of a; b; c

is �1, then the curve configuration C1 is of type B or type C, so that there is a sequence
of rational blowdowns from zM to the minimal symplectic filling W1 corresponding
to C1. If all a; b; c � 0, then W1 is obtained from zM by replacing �a;b;c with its
rational homology ball filling by Lemma 4.4. On the other hand, conditions (ii) and
(iii) in Proposition 4.5 guarantee that there is a sequence of rational blowdowns from
W1 to the minimal symplectic filling W corresponding to C by using Lemma 4.2 or
Lemma 4.3 repeatedly.

We end this section by giving an example of minimal symplectic fillings involving
3–legged rational blowdown surgery.

Example 4.4 Let Y be a small Seifert 3–manifold whose minimal resolution graph �
and concave cap K are given by Figure 24. We consider two minimal symplectic fillings
W1 and W2 of Y whose respective curve configurations are given by Figure 25, top and
bottom. Note that the curve configuration in Figure 25, top, is obtained from C0;0;0 by
standard blowups. Thus, as in the proof, W1 is obtained from the minimal resolution
by rationally blowing down �0;0;0. Let us denote v0 by a central vertex and vj

i by i th

vertex of the j th arm in � . Then, v0; v
1
1
; v2

1
and v3

1
C v3

2
give a symplectic embedding

of �0;0;0 to the minimal resolution. A computation similar to that of Example 4.3 shows
that there is a symplectic embedding L of

�5 �2

to W1, and W2 is obtained from W1 by rationally blowing down L.
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C1

�2 �2 �2

�2

e1
�2

e2

e3 �2

C1

C1

�2 �2 �2

�2

e1
�2

e2

e3 �2

C1

Figure 25: Top: curve configuration for W1. Bottom: curve configuration for W2.
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