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We study the category of .K.k/_K.kC 1/_ � � � _K.n//–local spectra, following a
suggestion of Hovey and Strickland. When kD 0, this is equivalent to the category of
E.n/–local spectra, while for k D n, this is the category of K.n/–local spectra, both
of which have been studied in detail by Hovey and Strickland. Based on their ideas,
we classify the localizing and colocalizing subcategories, and give characterizations
of compact and dualizable objects. We construct an Adams-type spectral sequence
and show that when p � n it collapses with a horizontal vanishing line above
filtration degree n2Cn� k at the E2–page for the sphere spectrum. We then study
the Picard group of .K.k/_K.kC 1/_ � � � _K.n//–local spectra, showing that this
group is algebraic, in a suitable sense, when p � n. We also consider a version
of Gross–Hopkins duality in this category. A key concept throughout is the use of
descent.
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1 Introduction

In their memoir [32] Hovey and Strickland studied the categories of K.n/–local and
En–local spectra in great detail. Here K.n/ is the nth Morava K–theory; the spectrum
whose homotopy groups are the graded field

K.n/� Š FpŒv
˙1
n �; jvnj D 2.p

n
� 1/

and En is the nth Lubin–Tate spectrum, or Morava E–theory, with

.En/� ŠW.Fpn/ŒŒu1; : : : ; un�1��Œu
˙1�; jui j D 0; juj D 2:

As explained in the introduction of [32], the Morava K–theories are the prime field
objects in the stable homotopy category — for a way to make that precise, see Hopkins
and Smith [27], or more specifically, Balmer [4, Corollary 9.5] — and are one of the
fundamental objects in the chromatic approach to stable homotopy theory.

A deep result of Hopkins and Ravenel [48] is that Bousfield localization with respect
to En is smashing, which simplifies the study of the category of En–local spectra
considerably. On the other hand, localization with respect to K.n/ is not smashing [32,
Lemma 8.1], and the monoidal unit LK.n/S0 2 SpK.n/ is dualizable, but not compact.
In the language of tensor-triangulated geometry, SpK.n/ is a nonrigidly compactly
generated category. Because of this, much of the work in [32] is therefore dedicated to
understanding the more complicated category of K.n/–local spectra.

By a Bousfield class argument, the category of En–local spectra is equivalent to the
category of .K.0/_ � � � _K.n//–local spectra. In this paper we study the categories of
.K.k/_ � � � _K.n//–local spectra for 0� k � n, which were suggested as “interesting
to investigate” by Hovey and Strickland; see the remark after Corollary B.9 in [32].
We write Lk;n for the associated Bousfield localization functor. As we shall see, when
k ¤ 0, the category Spk;n of .K.k/_ � � � _K.n//–local spectra behaves much like
the category SpK.n/ D Spn;n of K.n/–local spectra. For example, it is an example
of a nonrigidly compactly generated category; as soon as k ¤ 0, the monoidal unit
Lk;nS

0 2 Spk;n is dualizable, but not compact. However, the categories Spk;n for
k ¤ n are in some sense more complicated than the case k D n; for example, SpK.n/
has no nontrivial (co)localizing subcategories, while this is not true for Spk;n as long
as k ¤ n.
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1A Contents of the paper

We now describe the contents of the paper in more detail. We begin with a study
of Bousfield classes, constructing some other spectra which are Bousfield equivalent
to K.k/ _ � � � _K.n/. In particular, we show that there is a Bousfield equivalence
between a localized quotient of BP , denoted by E.n; Jk/, and K.k/ _ � � � _K.n/.
For this reason, as well as brevity, we often say that X is E.n; Jk/–local, instead of
.K.k/_ � � � _K.n//–local.

As was already noted by Hovey and Strickland [32, Corollary B.9], Spk;n is an algebraic
stable homotopy theory in the sense of Hovey, Palmieri and Strickland [30] with compact
generator Lk;nF.k/, the localization of a finite spectrum of type k. We investigate
some consequences of this; for example, analogous to Hovey and Strickland’s formulas
for LK.n/X , in Proposition 2.24, we prove some formulas for Lk;nX in terms of towers
of finite type k Moore spectra. Some of these results had previously been obtained by
the author and Barthel and Valenzuela [11].

In Section 3 we investigate the tensor-triangulated geometry of Spk;n. We begin by
characterizing the compact objects in Spk;n, culminating in Theorem 3.8 which is a
natural extension of Hovey and Strickland’s results in the cases kD0; n. A classification
of the thick ideals of Sp!k;n is an almost immediate consequence of this classification;
see Theorem 3.16 for the precise result. Of course, here we rely on the deep thick
subcategory theorem in stable homotopy [27] and its consequences. Finally, we classify
the localizing and colocalizing subcategories of Spk;n in Theorem 3.33. We obtain the
following.

Theorem 1.1 There is an order-preserving bijection between (co)localizing subcate-
gories of Spk;n and subsets of fk; : : : ; ng. Moreover , the map that sends a localizing
subcategory C of Spk;n to its left orthogonal C? induces a bijection between the
set of localizing and colocalizing subcategories of Spk;n. The inverse map sends a
colocalizing subcategory U to its right orthogonal ?U .

We also compute the Bousfield lattice of Spk;n (Proposition 3.39) and show that a form
of the telescope conjecture holds (Theorem 3.46).

In Section 4 we show that, as a consequence of the Hopkins–Ravenel smash product
theorem, the commutative algebra object En 2 Spk;n is descendable, in the sense
of Mathew [41]. This has a number of immediate consequences. For example, it
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implies the existence of a strongly convergent Adams-type spectral sequence, which
we call the E.n; Jk/–local En–Adams spectral sequence, computing ��.Lk;nX/ for
any spectrum X . Moreover, descendability implies this collapses with a horizontal
vanishing line at a finite stage (independent of X ). In the case of X D S0 it is known
that, in the cases k D 0 and k D n, this vanishing line already occurs on the E2–page
so long as p� n. In order to generalize this result, we first show that when X D S0,
the E2–term of the E.n; Jk/–local En–Adams spectral sequence spectral sequence
can be given as the inverse limit of certain Ext groups computed in the category of
.En/�En–comodules; see Proposition 4.16 for the precise result. We are then able to
utilize a chromatic spectral sequence and Morava’s change of rings theorem to show
the following (Theorem 4.24):

Theorem 1.2 Suppose p� 1 does not divide kC s for 0� s � n� k (for example , if
p > nC 1), then in the E2–term of the E.n; Jk/–local En–Adams spectral sequence
converging to Lk;nS0, we have Es;t2 D 0 for s > n2Cn� k.

In the case k D 0, this recovers a result of Hovey and Sadofsky [31, Theorem 5.1].

As noted previously, so long as k¤ 0, the categories of dualizable and compact spectra
do not coincide in Spk;n; every compact spectrum is dualizable, but the converse does
not hold, with the unit Lk;nS0 being an example. In Section 5 we study the category of
dualizable objects in Spk;n. As a consequence of descendability, we show thatX 2Spk;n
is dualizable if and only ifLk;n.En^X/ is dualizable in the category ofE.n; Jk/–local
En–modules. In turn, we show that this holds if and only if Lk;n.En^X/ is dualizable
(equivalently, compact) in the category of En–modules. We deduce that X 2 Spk;n is
dualizable if and only if its Morava module .Ek;n/_� .X/ WD��Lk;n.En^X/ is finitely
generated as an .En/�–module; see Theorem 5.11. This generalizes a result of Hovey
and Strickland, but even in this case our proof differs from theirs.

It is an observation of Hopkins that the Picard group of invertible K.n/–local spectra
is an interesting object to study; see Hopkins, Mahowald and Sadofsky [26]. Likewise,
Hovey and Sadofsky [31] have studied the Picard group of E.n/–local spectra. In
Section 6 we study the Picard group Pick;n of E.n; Jk/–local spectra. Our first result,
which is a consequence of descent, is that X 2 Spk;n is invertible if and only if its
Morava module .Ek;n/_� .X/ is free of rank 1. We then study the Picard spectrum —
see Mathew and Stojanoska [44] — of the category Spk;n. Using descent again, we
construct a spectral sequence whose abutment for �0 is exactly Pick;n. The existence of
this spectral sequence in the case k D n is folklore. We say that this spectral sequence
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is algebraic if the only nonzero terms in the spectral sequence occur in filtration degree
0 and 1. Using Theorem 1.2 we deduce the following result (Theorem 6.8). In the case
k D n, this is a theorem of Pstrągowski [45].

Theorem 1.3 If 2p�2� n2Cn�k and p�1 does not divide kCs for 0� s � n�k,
then Pick;n is algebraic. For example , this holds if 2p� 2 > n2Cn.

There is an interesting element in the K.n/–local Picard group, namely the Brown–
Comenetz dual of the monochromatic sphere [32, Theorem 10.2]. In Section 7 we
extend Brown–Comenetz duality to the E.n; Jk/–local category. We do not know
when the Brown–Comenetz dual of the monochromatic sphere defines an element of
Pick;n; this is not true when k D 0, and we provide a series of equivalent conditions
for the general case in Proposition 7.10.

The case n D 2 and k D 1

The first example that has essentially not been studied in the literature is when nD 2
and k D 1, ie the category of .K.1/_K.2//–local spectra. In Section 5B we give a
computation of the Balmer spectrum of .K.1/_K.2//–locally dualizable spectra. For
this, we recall that Hovey and Strickland have conjectured a description of the Balmer
spectrum Spc.Spdual

K.n/
/ of dualizable objects in K.n/–local spectra [32, page 61]. This

was investigated by the author, along with Barthel and Naumann, in [10]. This admits a
natural generalization to Spdual

k;n
. For i �n, let Di denote the category ofX 2Spdual

k;n
such

that X is a retract of Y ^Z for some Y 2 Spdual
k;n

and some finite spectrum Z of type
at least i . We also set DnC1 D .0/. The conjecture is that these exhaust all the thick
tensor-ideals of Spdual

k;n
. We show in Theorem 5.21 that if this holds K.n/–locally (ie in

Spdual
n;n ), then it holds for all Spdual

k;n
. In particular, since it is known to hold K.2/–locally

by [10, Theorem 4.15], we obtain the following; see Corollary 5.22.

Theorem 1.4 The Balmer spectrum of K.1/_K.2/–locally dualizable spectra

Spc.Spdual
1;2 /D fD1;D2;D3g

with topology determined by fDj g D fDi j i � j g. In particular , if C is a thick
tensor-ideal of Spdual

1;2 , then C D Dk for 0� k � 3.

Conventions and notation

We let hXi denote the Bousfield class of a spectrum X . The smallest thick tensor-
ideal containing an object A will be denoted by thick˝hAi (it will always be clear
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in which category this thick subcategory should be taken in). Likewise, the smallest
thick (resp. localizing) subcategory containing an object A will be written as Thick.A/
(resp. Loc.A/).

Acknowledgements

It goes without saying that this paper owes a tremendous intellectual debt to Hovey
and Strickland, in particular for the wonderful manuscript [32]. We also thank Neil
Strickland for a helpful conversation, as well as his comments on a draft version of this
document.

2 The category of Spk;n–local spectra

2A Chromatic spectra

We begin by introducing some of the main spectra that we will be interested in.

Definition 2.1 Let BP denote the Brown–Peterson homotopy ring spectrum with
coefficient ring

BP� Š Z.p/Œv1; v2; : : : �

with jvi j D 2.pi � 1/.

Remark 2.2 The classes vi are not intrinsically defined, and so the definition ofBP de-
pends on a choice of sequence of generators; for example, they could be the Hazewinkel
generators or the Araki generators. However, the ideals In D .p; v1; : : : ; vn�1/ for
0� n�1 do not depend on this choice.

By taking quotients and localizations of BP — for example, using the theory of
structured ring spectra [19, Chapter V] — we can form new homotopy ring spectra.
In particular, let Jk denote a fixed invariant regular sequence pi0 ; vi11 ; : : : ; v

ik�1

k�1
of

length k. Then we can form the homotopy associative ring spectrum BPJk with

.BPJk/� Š BP�=Jk :

These were first studied by Johnson and Yosimura [35]. A detailed study on the product
structure one obtains via this method can be found in [51].

Definition 2.3 We let E.n; Jk/ for n� k denote the Landweber exact spectrum with

E.n; Jk/� Š v
�1
n ..BPJk/�=.vnC1; vnC2; : : : //:
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Here Landweber exact means over BPJk (as studied by Yosimura [56]), that is, there
is an isomorphism

E.n; Jk/�.X/Š .BPJk/�.X/˝BP�=Jk
E.n; Jk/�:

Example 2.4 If k D 0 (so that Jk is the trivial sequence), then E.n; J0/ ' E.n/,
Johnson–Wilson theory. For the other extreme, if Jn D p; v1; : : : ; vn�1, then BPJn is
the spectrum known as P.n/, and E.n; Jn/'K.n/ is Morava K–theory [32].

Definition 2.5 For k � n <1, we let Spk;n � Sp denote the full subcategory of
.K.k/_K.kC 1/_ � � � _K.n//–local spectra.

Lemma 2.6 The inclusion Spk;n ,! Sp has a left adjoint Lk;n, and Spk;n is a pre-
sentable , stable1–category.

Proof This is a consequence of [39, Proposition 5.5.4.15].

Remark 2.7 The category Spk;n and localization functor Lk;n only depend on the
Bousfield class hK.k/_ � � � _K.n/i.

Notation 2.8 We will follow standard conventions and write Sp0;n as Spn and Spn;n
as SpK.n/. Similarly, the corresponding Bousfield localization functors will be denoted
by L0;n D Ln and Ln;n D LK.n/, respectively.

Remark 2.9 By [46, Theorem 2.1] we have hE.n/i D hK.0/_ � � � _K.n/i. In fact,
let E be a BP –module spectrum that is Landweber exact over BP , and is vn–periodic,
in the sense that vn 2 BP� maps to a unit in E�=.p; v1; : : : ; vn�1/. Then Hovey has
shown that hEi D hK.0/_ � � � _K.n/i [28, Corollary 1.12]. In particular, this applies
to the Lubin–Tate E–theory spectrum En — see [49] — with

.En/� ŠW.Fpn/ŒŒu1; : : : ; un�1��Œu
˙1�

or the completed version of E–theory used in [32] with

E� Š .E.n/�/
^
In
Š ZpŒv1; : : : ; vn�1; v

˙1
n �^In

:

2B Bousfield decomposition

In the previous section we introduced the spectra E.n; Jk/ for n� k and an invariant
regular sequence pi0 ; : : : ; vik�1

k�1
of length k. We now give Bousfield decompositions

for E.n; Jk/–local spectra.
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Proposition 2.10 There are equivalences of Bousfield classes:

(1) (Johnson–Yosimura) hv�1n BPJki D hE.n; Jk/i.

(2) (Yosimura) hE.n; Jk/i D
Wn
iDkhK.i/i.

(3) hEn=Iki D
Wn
iDkhK.i/i.

Proof Part (1) is [35, Corollary 4.11]. Part (2) can be deduced from [57] as we now
explain. First, by [57, Corollary 1.3 and Proposition 1.4] along with (1),

hE.n; Jk/i D hv
�1
n BPJki D hLnBPJki D

n_
iDk

hv�1i P.i/i:

By [57, Corollary 1.8] we have hv�1i P.i/i D hK.i/i, and hence (2) follows. For (3),
we first note that by the thick subcategory theorem hEn=Iki D hEn ^F.k/i for some
finite type k spectrum. Since En D

Wn
iD0K.i/, (3) then follows from the definition of

a type k spectrum.

Remark 2.11 In other words, the category of E.n; Jk/–local spectra is equivalent
to the category of K.k/_ � � �K.n/–local spectra. Note that this implies this category
only depends on the length of the sequence, and not the integers i0; : : : ; in�1. We will
therefore sometimes say that a spectrum X is E.n; Jk/–local if X 2 Spk;n.

2C Algebraic stable homotopy categories

We now begin by recalling the basics on algebraic stable homotopy theories; see [30]
in the triangulated setting.

Definition 2.12 A stable homotopy theory is a presentable, symmetric monoidal
stable1–category .C;˝; 1/ where the tensor product commutes with all colimits. It
is algebraic if there is a set G of compact objects such that the smallest localizing
subcategory of C containing all G 2 G is C itself.

Remark 2.13 The assumptions on C imply that it the functor �^Y has a right adjoint
F.Y;�/, ie the symmetric monoidal structure on C is closed.

Remark 2.14 The associated homotopy category Ho.C/ is then an algebraic stable
homotopy theory in the sense of [30]. We note that compactness can be checked at the
level of the homotopy category; see [40, Remark 1.4.4.3].

Applying [32, Corollary B.9; 30, Theorem 3.5.1], we have the following.
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Proposition 2.15 (Hovey, Palmieri and Strickland) Spk;n is an algebraic stable
homotopy category with compact generator Lk;nF.k/. The symmetric monoidal
structure in Spk;n is given by

X x̂ Y WD Lk;n.X ^Y /:

Colimits are computed by taking the colimit in spectra and then applying Lk;n, while
function objects and limits are computed in the category of spectra.

Remark 2.16 The most difficult part of the above proposition is that Lk;nF.k/ is
a compact generator of Spk;n. Indeed, one must show that the conditions of [32,
Proposition B.7] are satisfied and to do this, one at some point needs to invoke the
thick subcategory theorem [27], or one its consequences (such as the Hopkins–Ravenel
smash product theorem [48]).

Remark 2.17 The localization Ln D L0;n is smashing (that is LnX ' LnS0 ^X)
by the Hopkins–Ravenel smash product theorem [48] and in this case X x̂ Y 'X ^Y .
However, if k ¤ 0, then localization Lk;n is not smashing as the following lemma
shows, and so X x̂ Y 6'X ^Y in general.

Lemma 2.18 If k¤ 0, thenLk;n is not smashing , andLk;nS0 is not compact in Spk;n.

Proof We first claim that hLk;nS0i D hE.n/i. To see this, note that we have ring
maps LnS0! Lk;nS

0! LK.n/S
0, so hLK.n/S0i � hLk;nS0i � hLnS0i. However,

hLK.n/S
0i D hLnS

0i D hE.n/i [32, Corollary 5.3], so these inequalities are actually
equalities, and all three are Bousfield equivalent to E.n/.

Suppose now that Lk;n were smashing, so that hLk;nS0i D
Wn
iDkhK.i/i; see [46,

Proposition 1.27]. Then, since hE.n/i �
Wn
iDkhK.i/i as soon as k ¤ 0, we have

obtained a contradiction.

The second part is then a consequence of [30, Theorem 3.5.2].

Remark 2.19 Using the periodicity theorem of Hopkins and Smith [27], Hovey and
Strickland [32, Section 4] constructed a sequence of ideals fIj gj �m�E0 and type k
spectra fMk.j /gj with the following properties (see also [7, Remark 2.1]):

(1) IjC1 � Ij and \j Ij D 0;

(2) E0=Ij is finite; and
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(3) E�.Mk.j // Š E�=Ij and there are spectrum maps q WMk.j C 1/!Mk.j /

realizing the quotient E�=Mk.j C 1/!E�=Mk.j /.

We call such a tower fMk.j /gj a tower of generalized Moore spectrum of type k.

Remark 2.20 The tower as above is constructed in the homotopy category of spectra.
However, as explained in [27, page 9, equation (15)], such sequential diagrams can
always be lifted to a sequence of cofibrations between cofibrant objects, and in particular
to a diagram in the1–category of spectra (the point is that such diagrams have no
nontrivial homotopy coherence data). Then, the (co)limit in the1–categorical sense,
agrees with the homotopy (co)limit used in [30, Definitions 2.2.3 and 2.2.10].

Notation 2.21 We write Mk;nX for the fiber of the localization map LnX!Lk�1X .
By definition, we set M0;n D Ln.

Lemma 2.22 We have an equality of Bousfield classes

hMk;nS
0
i D

n_
iDk

hK.i/i:

Proof Recall that, by definition, there is a cofiber sequence

Ck�1S
0
! S0! Lk�1S

0:

Applying Ln to this and using LiLj ' Lmin.i;j / we see that

Mk;nS
0
' LnCk�1S

0
' Ck�1LnS

0;

where the last equivalence follows as both functors are smashing. It follows from [32,
Proposition 5.3] that hMk;nS

0i D
Wn
iDkhK.i/i as claimed.

Remark 2.23 In [32, Proposition 7.10(e)] Hovey and Strickland give a formula for
LK.n/X in terms of towers of generalized Moore spectra. We show now that their
proof extends to Lk;nX .

Proposition 2.24 There are equivalences

Lk;nX ' LF.k/LnX ' lim
 ��
j

.LnX ^Mk.j //' F.Mk;nS
0; LnX/;

where the limit is taken over a tower fMk.j /g of generalized Moore spectra of type k.

Proof We first note that Lk�1X ' LnLk�1X ' LnL
f

k�1
X , the latter by Corollary

6.10 of [32]. It follows that Mk;nX ' LnC
f

k�1
X , where C f

k�1
is the acyclization
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functor associated to Lf
k�1

. By [32, Proposition 7.10(a)] (and Remark 2.20) C f
k�1

X '

lim
��!j

D.Mk.j //^X , so Mk;nX ' lim
��!j

D.Mk.j //^LnX . It follows that

lim
 ��
j

.LnX ^Mk.j //' F.Mk;nS
0; LnX/:

Moreover, by [32, Proposition 7.10(a)] this is equivalent to LF.k/LnX .

To finish the proof, we will show that Lk;nX ' LF.k/LnX . First, note that X !
LnX is an LnS0–equivalence, and LnX ! LF.k/LnX is an F.k/–equivalence, so
X ! LF.k/LnX is an LnS0 ^ F.k/–equivalence. But LnS0 ^ F.k/ ' LnF.k/

and hLnF.k/i D
Wn
iDkhK.i/i [32, Proposition 5.3]. Therefore X ! LF.k/LnX

is a .K.k/_ � � � _K.n//–equivalence, and we only need show that LF.k/LnX is
.K.k/_ � � � _K.n//–local. But LF.k/LnX ' F.Mk;nS

0; LnX/ and so it follows
from Lemma 2.22 that LF.k/LnX is .K.k/_ � � � _K.n//–local. We conclude that
Lk;nX ' LF.k/LnX , as required.

Remark 2.25 The equivalence

Lk;nX ' lim
 ��
j

.LnX ^Mk.j //

has also been obtained in [11, Proposition 6.21] using the theory and complete and
torsion objects in a stable 1–category. The next result is also contained in [11,
Corollary 6.17].

Proposition 2.26 For any spectrum X there is a pullback square

LnX Lk;nX

Lk�1X Lk�1Lk;nX

Proof This is a standard consequence of the Bousfield decomposition

hE.n/i D hE.k� 1/i _ hE.n; Jk/i

using for example [13, Proposition 2.2] (or, in the1–categorical setting, see [1]).

Remark 2.27 Use [13, Proposition 2.2] one can deduce various other chromatic
fracture squares. For example, we have a pullback square

Lk;nX Lk;hX

LhC1;nX Lk;hLhC1;nX

for k � h� n� 1.
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Remark 2.28 These types of iterated chromatic localizations have been investigated
by Bellumat and Strickland [53]. Results such as the chromatic fracture square can be
recovered from their work; however we do not investigate this in detail.

Corollary 2.29 Suppose Mj is a generalized Moore spectrum of type at least k. Then
LnMj ' Lk;nMj .

Proof By definition, Lk�1Mj ' �, and so by the pullback square of Proposition 2.26
we must show that Lk�1Lk;nMj is contractible. Because Mj is a finite complex, this
is equivalent to Lk�1..Lk;nS0/^Mj /' �, and the result follows.

Definition 2.30 Let Mk;n denote the essential image of the functor Mk;n W Sp! Sp.

Theorem 2.31 For any spectrum X , we have natural equivalences

Mk;nLk;nX 'Mk;nX; Lk;nX ' Lk;nMk;nX:

It follows that there is an equivalence of categories Mk;n ' Spk;n given by Lk;n, with
inverse given by Mk;n.

Proof The proof of Hovey and Strickland in the case k D n generalizes essentially
without change.

By definition, Mk;nX fits into a cofiber sequence

Mk;nX ! LnX ! Lk�1X;

so applying Lk;n gives a cofiber sequence

Lk;nMk;nX ! Lk;nLnX ! Lk;nLk�1X:

But hE.k�1/iD
Wk�1
iD0 hK.k/i, soLk;nLk�1X'0, while clearlyLk;nLnX'Lk;nX .

It follows that Lk;nMk;nX ' Lk;nX .

Using Proposition 2.24, Lk;nX ' F.Mk;nS
0; LnX/, and so applying F.�; LnX/ to

the defining cofiber sequence for Mk;nS
0 we obtain a cofiber sequence

F.Lk�1S
0; LnX/! F.LnS

0; LnX/! F.Mk;nS
0; LnX/;

or, equivalently,
F.Lk�1S

0; LnX/! LnX ! Lk;nX:

It is easy to check that F.Lk�1S0; LnX/ is E.k�1/–local, and so by Lemma 2.22 we
have Mk;nF.Lk�1S

0; LnX/'�. It follows thatMk;nLnX 'Mk;nX 'Mk;nLk;nX

as claimed.
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Remark 2.32 Once again, this result was obtained (by different methods) in [11,
Proposition 6.21].

3 Thick subcategories and (co)localizing subcategories

In this section we compute the thick subcategories of compact objects in Spk;n and
(co)localizing subcategories of Spk;n. When k D 0 or k D n both results have been
obtained by Hovey and Strickland. Along the way we give a classification of the
compact objects in Spk;n.

3A Compact objects in Spk;n

In this section we characterize the compact objects in Spk;n. We will use this in the
next section to compute the thick subcategories of Sp!k;n.

We begin by recalling the notions of thick and (co)localizing subcategories.

Definition 3.1 Let .C;^; 1/ be an algebraic stable homotopy category, and let D be a
full, stable subcategory.

(1) D is called thick if it is closed under extensions and retracts.

(2) D is called localizing if it is thick and closed under arbitrary colimits.

(3) D is called colocalizing if it is thick and closed under arbitrary limits.

(4) D is a tensor-ideal if X 2 C and Y 2 D implies X ^Y 2 D.

(5) D is a coideal if X 2 C and Y 2 D implies F.X; Y / 2 D.

We will also speak of localizing (or thick) tensor-ideals and colocalizing coideals.

Remark 3.2 In Spn the dualizable and compact objects coincide, and are precisely
those that lie in the thick subcategory generated by the tensor unit LnS0. In categories
whose tensor unit is not compact, such as Spk;n for k ¤ 0, the dualizable and compact
objects do not coincide — for example, the tensor unit is always dualizable, but is not
compact (Lemma 2.18). In [32] Hovey and Strickland gave numerous characterizations
of compact objects in SpK.n/. In this section we extend some of these characterizations
to Spk;n. We first recall the concept of a nilpotent object in a symmetric monoidal
category.

Definition 3.3 We say that X is R–nilpotent if X lies in the thick ˝–ideal generated
by R, ie X 2 Thick˝hRi.
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Lemma 3.4 The category of En=Ik–nilpotent spectra is the same in Spk;n, Spn
and Sp.

Proof Using that hEn=Iki D hE.n; Jk/i (Proposition 2.10) we see that En=Ik ^X
is always E.n; Jk/–local, from which the result easily follows.

Remark 3.5 In other words, we can talk unambiguously about the category of En=Ik–
nilpotent spectra.

We will also need the following generalization of [32, Lemma 6.15].

Lemma 3.6 If X is a finite spectrum of type at least k, then LnX ' Lk;nX is
En=Ik–nilpotent.

Proof The argument is only a slight adaptation of that given by Hovey and Strickland.
By a thick subcategory argument, we can assume that X DMk is a generalized Moore
spectrum of type k. By [48], LnS0 2 thick˝hEni, and it follows that LnS0 ^Mk '

LnMk 2 thick˝hEn^Mki. But it is easy to see that thick˝hEn^Mki' thick˝hEn=Iki
and we are done.

Remark 3.7 The fact thatLnS0 2 thick˝hEni is equivalent to the claim thatEn 2Spn
is descendable, a condition we investigate further in Section 4A.

The compact objects in Spk;n can be characterized in the following ways, partially
generalizing [32, Theorem 8.5]. We note that every compact object in Spk;n is auto-
matically dualizable by [30, Theorem 2.1.3]; we investigate the dualizable objects in
Spk;n in more detail in Section 5.

Theorem 3.8 The following are equivalent for X 2 Spk;n:

(1) X is compact.

(2) X 2 thickhLnF.k/i.

(3) X is a retract of LnX 0 ' Lk;nX 0 for a finite spectrum X 0 of type at least k.

(4) X is a retract of Y ^X 0, where Y is dualizable and X 0 is a finite spectrum of
type at least k.

(5) X is dualizable and En=Ik–nilpotent.

The category Sp!k;n � Spdual
k;n

is thick. Moreover , if X 2 Sp!k;n and Y 2 Spdual
k;n

, then
X ^Y; F.X; Y / and F.Y;X/ lie in Sp!k;n. In particular , F.X;Lk;nS0/ 2 Sp!n .
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Proof The equivalence of (1) and (2) is [30, Theorem 2.1.3] along with Proposition 2.15.
Item (3) implies (2) because every finite spectrum of type at least k lies in the thick
subcategory generated by F.k/. That (1) implies (3) is the same as given by Hovey
and Strickland [32, Theorem 8.5]. Namely, suppose that X 2 Spk;n is compact. By
Proposition 2.24, X ' lim

��!j
.X ^DMk.j //, so ŒX;X� ' lim

��!j
ŒX;X ^DMk.j /�. In

particular, X is a retract of Y WD X ^DMk.j /. We claim that such a Y is compact
in Spn. Indeed, let fZig be a filtered diagram of En–local spectra. Then we have
equivalences

ŒY; lim
��!
i

Zi �� ' ŒX;LnMk.j /^ lim
��!
i

Zi ��

'
�
X;Lk;n lim

��!
i

.Mk.j /^Zi /
�
�

' lim
 ��
i

ŒX;Mk.j /^Zi ��

' lim
 ��
i

ŒY;Zi ��:

The first and last equivalence follow by adjunction, the second because hLnMk.j /i DWn
iDkhK.i/i [32, Proposition 5.3], so

LnMk.j /^ lim
��!
i

Zi ' LnMk.j /^Lk;n lim
��!
i

Zi ' Lk;n lim
��!
i

.Mk.j /^Zi /;

while the third equivalence follows because X 2 Sp!k;n by assumption and because
Lk;n lim

��!i
is the colimit in Spk;n. We have K.i/�Y D 0 for i < k and so Corollary 6.11

of [32] implies that Y , and hence X , is a retract of LnZ 'Lk;nZ for a finite spectrum
Z of type at least k. This shows that (1), (2) and (3) are equivalent.

Assume now that (4) holds. Note that Y ^X 0 isE.n; Jk/–local, and moreover Y ^X 0'
Y ^Lk;nX

0, where Lk;nX 0 2 Sp!k;n. By [30, Theorem 2.1.3] the smash product of a
dualizable and compact object is compact, and so X is a retract of a compact E.n; Jk/–
local spectrum, and thus is also compact; ie (1) holds.

To see that (3) implies (5), we use a thick subcategory argument to reduce to the case
that X DLnMk 'Lk;nMk is a localized generalized Moore spectrum of type k. Such
an X is clearly dualizable and is additionally En=Ik–nilpotent by Lemma 3.6.

Now suppose that X satisfies (5). Following Hovey and Strickland [32, Proof of
Corollary 12.16] let J be the collection of spectra Z 2 Spk;n such that Z is a module
over a generalized Moore spectrum of type i (for a fixed i with k � i � n). By [32,
Proposition 4.17], J forms an ideal. Because K.i/^Z is nonzero and a wedge of sus-
pensions of K.i/, J contains the ideal of K.i/–nilpotent spectra. Moreover, it follows
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from the Bousfield decomposition hEn=IkiD
Wn
iDkhK.i/i thatK.i/^En=Ik¤ 0, and

so thick˝hK.i/i � thick˝hEn=Iki; ie every K.i/–nilpotent spectrum (for k � i � n)
is also En=Ik–nilpotent. In particular, X 2J , so X is retract of a spectrum of the form
Y ^X where Y is a generalized Moore spectrum of type i , and thus (4) holds.

Finally, we prove the subsidiary claims. It is immediate from (2) that Sp!k;n � Spdual
k;n

is thick, and it is an ideal by [30, Theorem 2.1.3(a)]. Because generalized Moore
spectra are self-dual — see [32, Proposition 4.18] — (c) implies that Sp!k;n is closed
under Spanier–Whitehead duality. Therefore, F.X; Y / ' F.X;Lk;nS

0/ x̂ Y and
F.Y;X/'X x̂ F.Y;Lk;nS

0/ lie in Sp!k;n.

Remark 3.9 When k D 0, then X is compact if and only if X is dualizable [32,
Theorem 6.2]. To reconcile this with (5) of the previous theorem, we note that every
spectrum X 2 Spn is En=I0 'En–nilpotent [48, Theorem 5.3].

3B The thick subcategory theorem

We now give a thick subcategory theorem for Sp!k;n. As we shall see, given Theorem 3.8
this is an immediate consequence of the classification of thick subcategories of Sp!n ,
which ultimately relies on the Devinatz–Hopkins–Smith nilpotence theorem.

Definition 3.10 For 0� j �nC1 let Cj denote the thick subcategory of Spn consisting
of all compact spectra X such that K.i/�X D 0 for all i < j ; ie

Cj D fX 2 Sp!n jK.i/�X D 0 for all i < j g:

Remark 3.11 By [32, Proposition 6.8], we equivalently have

Cj D fX 2 Sp!n jK.j � 1/�X D 0g:

Remark 3.12 We have

C0 © C1 © � � �© CnC1 D .0/;

and moreover LnF.j / is in Cj , but not CjC1.

We now present the result of Hovey and Strickland [32, Theorem 6.9].

Theorem 3.13 (Hovey–Strickland) If C is a thick subcategory of Sp!n , then C D Cj
for some j such that 0� j � nC 1.

Remark 3.14 This result can be restated in terms of the Balmer spectrum of Sp!n [3].
In particular,

Spc.Sp!n /Š fC1; : : : ; CnC1g
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with topology determined by the closure operator fCj g D fCi j i � j g. This is in fact
equivalent to Theorem 3.13, essentially by the same argument as in [10, Proposition 3.5].

The Balmer support of X 2 Sp!n , defined in [3, Definition 2.1], is given by

supp.X/D fP 2 Spc.Sp!n / jX … Pg:

Note that X … Cj if and only if K.j � 1/�X ¤ 0. Therefore, by Theorem 3.13,

supp.X/D fi 2 f0; : : : ; ng jK.i/�X ¤ 0g D fi 2 f0; : : : ; ng jK.i/^X ¤ 0g:

For a thick subcategory J , we define supp.J / D
S
X2J supp.X/. Then, Balmer’s

classification result [3, Theorem 4.10] shows that there is a bijection

fthick subcategories of Sp!n g
�

supp��! fspecialization closed subsets of {0; : : : ; n}g:

with the topology on {0; : : : ; n} determined by fkg D fk; kC 1; : : : ; ng, with inverse
given by sending a specialization closed subset Y to fX 2 Sp!n j supp.X/� Y g. Note
that there are exactly nC2 such specialization closed subsets, namely ∅ and the subsets
fk; : : : ; ng for k D 0; : : : ; n. The thick subcategory CnC1 corresponds to ∅ under this
bijection, while Ck corresponds to fk; : : : ; ng for 0� k � n.

Given the classification of compact E.n; Jk/–local spectra in Theorem 3.8, we deduce
the following.

Lemma 3.15 The category of compact E.n; Jk/–local spectra , Sp!k;n, is equivalent to
the thick subcategory Ck � Sp!n .

Proof By [32, Corollary 6.11] ifX 2 Ck , thenX is a retract ofLnY 'Lk;nY for some
finite spectrum Y of type of least k. Then X is a compact E.n; Jk/–local spectrum
by Theorem 3.8. Conversely, if X is a compact E.n; Jk/–local spectrum, then X
is a retract of LnY ' Lk;nY for Y a finite spectrum Y of type of least k, again by
Theorem 3.8. Therefore K.i/�X D 0 for i < k and X 2 Ck .

Theorem 3.16 (thick subcategory theorem) There is a bijection

fthick subcategories of Sp!k;ng
�

supp��! fspecialization closed subsets of fk; : : : ; ngg;

with inverse given by sending a specialization closed subset Y to

fX 2 Sp!k;n j supp.X/� Y g:

In particular , if C is a thick subcategory of Sp!k;n, then C D Cj for some j such that
k � j � nC 1.
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Proof This follows by combining Theorem 3.13 and Lemma 3.15.

Remark 3.17 Note that Sp!k;n is not a tensor-triangulated category when k ¤ 0, as
it does not have a tensor unit. Therefore, we cannot speak of the Balmer spectrum
of Sp!k;n.

We also have a nilpotence theorem.

Proposition 3.18 Let X 2 Sp!k;n, and u W†dX ! X a self-map such that K.i/�u is
nilpotent for k � i � n. Then u is nilpotent ; ie the j–fold composite

u ı � � � ıu W†jdX !X

is trivial for large enough j .

Proof In light of Lemma 3.15, this follows from [32, Corollary 6.6].

3C Localizing and colocalizing subcategories

In this section we calculate the (co)localizing (co)ideals of Spk;n. We first observe that
every (co)localizing subcategory is automatically a (co)ideal, so it suffices in fact to
concentrate on (co)localizing subcategories.

Lemma 3.19 Every (co)localizing subcategory of Spk;n is a (co)ideal.

Proof We prove the case of localizing subcategories — the case of colocalizing sub-
categories is similar.1 To that end, let C � Spk;n be a localizing subcategory, and
consider the collection DD fX 2 Sp jX x̂ C � Cg. This is a localizing subcategory of
Sp containing S, and hence DD Sp itself. It follows that C is a localizing ideal.

Remark 3.20 We remind the reader that 1 is not compact in Spk;n unless k D 0 (see
Lemma 2.18). Therefore, in all other cases, 1 is a noncompact generator of Spk;n.

Notation 3.21 Throughout this section we let QD fk; : : : ; ng.

We begin by defining a notion of support and cosupport in Spk;n, extending the notion
of support defined previously for Sp!n .

Definition 3.22 For a spectrum X 2 Spk;n, we define the support and cosupport of X
by

supp.X/D fi 2Q jK.i/^X ¤ 0g; cosupp.X/D fi 2Q j F.K.i/; X/¤ 0g:
1We thank Neil Strickland for providing this argument, which simplifies a previous argument.
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Example 3.23 Because K.i/^K.j /D 0 if i ¤ j , and K.i/^K.i/¤ 0 [46, Theorem
2.1], we have

supp.K.i//D i

for i 2Q. On the other hand, K.i/�K.j /D HomK.i/�.K.i/�K.j /;K.i/�/, and so

cosupp.K.i//D i

as well.

Remark 3.24 The notion of support is slightly ambiguous, as objects can live in
multiple categories. For example LK.n/S0 2 Spi;n for all 0 � i � n, and in fact has
different support in each category. However, it should also be clear in which category
we are considering the support.

Remark 3.25 Because K.i/^X is always K.i/–local, we equivalently have

supp.X/D fi 2Q jK.i/ x̂ X ¤ 0g:

Remark 3.26 In [32, Definition 6.7] Hovey and Strickland define the support of an
object by

suppHS.X/D fi jK.i/^X ¤ 0g:

By definition then, supp.X/D suppHS.X/\Q.

Support and cosupport are well behaved with respect to products and function objects
in Spk;n.

Lemma 3.27 For any X; Y 2 Spk;n there are equalities

supp.X x̂ Y /D supp.X/\ supp.Y /; cosupp.F.X; Y //D supp.X/\ cosupp.Y /:

Proof Because K.i/^X is always K.i/–local, K.i/^ .X x̂ Y / ' K.i/^X ^ Y ,
and it is clear that supp.X x̂ Y /� supp.X/\ supp.Y /. The converse follows because
K.i/� is a graded field; ifK.i/^X^Y '� then eitherK.i/^X '� orK.i/^Y '�.

For the cosupport, suppose i 2 cosupp.F.X; Y //, ie F.K.i/; F.X; Y // ¤ 0. By
adjunction we must have F.K.i/ ^ X; Y / ¤ 0 as well as F.X; F.K.i/; Y // ¤ 0,
so that K.i/ ^ X ¤ 0 and F.K.i/; Y / ¤ 0. This shows that cosupp.F.X; Y // �
supp.X/\ cosupp.Y /. For the converse, let i 2 supp.X/\ cosupp.Y /, and consider
F.K.i/; F.X; Y //' F.K.i/^X; Y /. Because i 2 supp.X/, and K.i/� is a graded
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field, K.i/ ^ X is a wedge of suspensions of K.i/, and it suffices to show that
F.K.i/; Y / 6' 0, which is precisely the statement that i 2 cosupp.Y /. Therefore,
i 2 cosupp.F.X; Y //, as required.

Notation 3.28 For an arbitrary collection C of objects we set

supp.C/D
[
X2C

supp.X/; cosupp.C/D
[
X2C

cosupp.X/:

For a subset T �Q we also define

supp�1.T /D fX 2 Spk;n j supp.X/� T g;

cosupp�1.T /D fX 2 Spk;n j cosupp.X/� T g:

Lemma 3.29 For a subset T � Q, supp�1.T / and cosupp�1.T / are localizing and
colocalizing subcategories of Spk;n, respectively.

Proof We simply note that

supp�1.T /D fX 2 Spk;n jK.i/^X D 0 for all i 2Q n T g;

cosupp�1.T /D fX 2 Spk;n j F.K.i/; X/' 0 for all i 2Q n T g;

which are clearly (co)localizing subcategories of Spk;n.

We thus obtain maps

flocalizing subcategories of Spk;ng
supp

//

supp�1

oo fsubsets of Qg;(3-1)

fcolocalizing subcategories of Spk;ng
cosupp

//

cosupp�1

oo fsubsets of Qg:(3-2)

We will see that these are bijections. We need the following local–global principle,
which is a slight variant of that given by Hovey and Strickland [32, Proposition 6.18].

Proposition 3.30 (local–global principle) For any X 2 Spk;n,

X 2 LocSpk;n
.X/D LocSpk;n

.K.i/ j i 2 supp.X//;

X 2 ColocSpk;n
.X/D ColocSpk;n

.K.i/ j i 2 cosupp.X//:

Proof Because X 2 Spk;n � Spn, applying [32, Proposition 6.18] we have

(3-3) X 2 LocSp.X/D LocSp.K.i/ j i 2 suppHS.X//;

X 2 ColocSp.X/D ColocSp.K.i/ j i 2 cosupp.X//:
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The result for colocalizing subcategories is then clear, as we get the same result taking
the colocalizing subcategories in Spk;n. For localizing subcategories we apply [8,
Lemma 2.5] to (3-3) with the colimit-preserving functor F DLk;n W Sp! Spk;n to see
that

Lk;nX 'X 2 LocSpk;n
.X/D LocSpk;n

.K.i/ j i 2 suppHS.X/\Q/;

where we have used that

Lk;nK.i/'

�
K.i/ if i 2Q;
0 if i …Q:

As noted in Remark 3.26, suppHS.X/\QD supp.X/, and the result follows.

Remark 3.31 If follows from the local–global principle that both support and cosup-
port detect trivial objects:

supp.X/D∅ () X ' 0 () cosupp.X/D∅:

Corollary 3.32 We have

supp�1.T /D LocSpk;n
.K.i/ j i 2 T /; cosupp�1.T /D ColocSpk;n

.K.i/ j i 2 T /:

Proof Let AD LocSpk;n
.K.i/ j i 2 T /. Because supp.K.i//D i (Example 3.23), it

is clear that A � supp�1.T /. Conversely, if X 2 supp�1.T /, then Proposition 3.30
shows that

X 2 LocSpk;n
.K.i/ j i 2 T /DA;

so supp�1.T /DA, as claimed. The argument for colocalizing categories is similar.

We now give the promised classification of localizing and colocalizing subcategories.

Theorem 3.33 (1) The maps (3-1) give an order-preserving bijection between
localizing subcategories of Spk;n and subsets of QD fk; : : : ; ng.

(2) The maps (3-2) give an order-preserving bijection between colocalizing subcate-
gories of Spk;n and subsets of QD fk; : : : ; ng.

Proof Let C � Spk;n be a localizing subcategory and T � fk; : : : ; ng a subset. Then
via Corollary 3.32 and basic properties of support,

supp.supp�1.T //D
[
i2T

supp.K.i//D T :

Now suppose that X 2 C, so that supp.X/� supp.C/. It follows from the definitions
that X 2 supp�1.supp.C//, and so C � supp�1.supp.C//. We are therefore reduced
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to showing that supp�1.supp.C//� C. To that end, let Y 2 supp�1.supp.C//, so that
supp.Y /� supp.C /. Using the local–global principle, Proposition 3.30, we then have

Y 2 LocSpk;n
.K.i/ j i 2 supp.Y //� LocSpk;n

.K.i/ j i 2 supp.C//D C;

where the last equality follows from Proposition 3.30 again. The proof for colocalizing
subcategories is analogous.

Notation 3.34 For the following, we recall that for C � Spk;n the right orthogonal C?

is defined as
C? D fY 2 Spk;n j F.X; Y /D 0 for all X 2 Cg:

Similarly, the left orthogonal ?C is
?C D fY 2 Spk;n j F.Y;X/D 0 for all X 2 Cg:

Moreover, the right orthogonal is a colocalizing subcategory, and the left orthogonal is
a localizing subcategory.

Corollary 3.35 The map that sends a localizing subcategory C of Spk;n to C? induces
a bijection

(3-4) fLocalizing subcategories of Spk;ng
��!Colocalizing subcategories of Spk;ng:

The inverse map sends a colocalizing subcategory U to ?U .

Proof We follow [14, Corollary 9.9]. Let C be a localizing subcategory; then, using
Remark 3.31 and Lemma 3.27,

C? D fY 2 Spk;n j F.X; Y /D 0 for all X 2 Cg

D fY 2 Spk;n j cosupp.Y /\ supp.C/D∅g

D fY 2 Spk;n j cosupp.Y /�Q n supp.C/g

D cosupp�1.Q n supp.C//:
Similarly, if U is a colocalizing subcategory, then

?U D fX 2 Spk;n j F.X; Y /D 0 for all Y 2 Ug

D fX 2 Spk;n j cosupp.U/\ supp.X/D∅g

D fX 2 Spk;n j supp.X/�Q n cosupp.U/g

D supp�1.Q n cosupp.U//:

It follows that under the equivalences of Theorem 3.33, the maps C 7! C? and U 7! ?U
correspond to the map Q!Q sending a subset to its complement, and are thus mutually
inverse bijections.
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3D The Bousfield lattice

We recall the basics on the Bousfield lattice of an algebraic stable homotopy theory. In
order to avoid confusion with the (localized) categories of spectra considered previously
we let .C;^; 1/ denote a tensor triangulated category.

Definition 3.36 The Bousfield class of an object X 2 C is the full subcategory of
objects

hXi D fW 2 C jX ^W D 0g:

Remark 3.37 We always assume that our categories are compactly generated and
hence there is a set of Bousfield classes [34, Theorem 3.1].

Remark 3.38 We let BL.C/ denote the set of Bousfield classes of C. As is known, this
has a lattice structure, which we now describe. We say that hXi � hY i if Y ^W D 0
impliesX^W D0. Hence, h0i is the minimum Bousfield class, and h1i is the maximum.
The join is defined by

W
i2I hXi i D

˝`
i2I Xi

˛
, and the meet is the join of all lower

bounds.

Proposition 3.39 The Bousfield lattice BL.Spk;n/ is isomorphic to the lattice of
subsets of Q via the map sending hXi to supp.X/.

Proof Define a map that sends T �Q to h
W
i2T K.i/i in BL.Spk;n/. We claim that

this gives the necessary inverse map. By the local–global principle (Proposition 3.30),

LocSpk;n
.X/D LocSpk;n

.K.i/ j i 2 supp.X//:

In particular, X x̂ W ' 0 if and only if K.i/ x̂ W ' 0 for all i 2 supp.X/, so

(3-5) hXi D

� _
i2supp.X/

K.i/

�
:

The result then follows by direct computation.

3E The telescope conjecture and variants

We begin by considering variants of the telescope conjecture in the localized categories
Spk;n using work of Wolcott [55].

Definition 3.40 For i 2Q, let lfi W Spk;n! Spk;n denote finite localization away from
Lk;nF.i C 1/.
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Remark 3.41 Because Lk;nF.i C 1/ is in Sp!k;n by Theorem 3.8, this is a smashing
localization.

Remark 3.42 By [55, Proposition 3.8] we have an equivalence of endofunctors of
Spk;n (recall that hTel.n/i is the Bousfield class of a telescope of a finite type n
spectrum),

l
f
i ' LLk;n Tel.0/_Lk;n Tel.1/_���_Lk;n Tel.i/:

We note thatLk;n Tel.j / is trivial when j …Q by [48, Proposition A.2.13]. In particular,

l
f
i ' LLk;n Tel.k/_���_Lk;n Tel.i/:

We also consider the following Bousfield localization on Spk;n.

Definition 3.43 For i 2 Q, let li W Spk;n ! Spk;n denote Bousfield localization at
K.k/_K.kC 1/_ � � � _K.i/.

Remark 3.44 Following Wolcott [55], we consider the following variants of the
telescope conjecture on Spk;n for i 2Q:

LTC1i hLk;n Tel.i/i D hK.i/i in BL.Spk;n/.

LTC2i l
f
i X

��! liX for all X , or equivalently,� i_
jDk

Lk;n Tel.j /
�
D

� i_
jDk

K.j /

�
in BL.Spk;n/.

LTC3i If X is a type i spectrum and f is a vi self-map, li .Lk;nX/ŠLk;n.f �1X/.

GSC Every smashing localization is generated by a set of compact objects.

SDGSC Every smashing localization is generated by a set of dualizable objects.

Here LTC stands for the localized telescope conjecture, GSC is the generalized smashing
conjecture, and SDGSC is the strongly dualizable generalized smashing conjecture. We
emphasize the difference here because compact and dualizable objects do not coincide
in Spk;n when k ¤ 0.

Proposition 3.45 On Spk;n, we have that LTC1i, LTC2i and LTC3i hold for all i 2Q.

Proof By [55, Theorem 3.12] it suffices to prove that LTC1i holds. By Proposition 3.39
this will follow if we show that Lk;n Tel.i/ and K.i/ have the same support in Spk;n.
To see this, we have supp.K.i//D fig by Example 3.23, while supp.Tel.i//D fig by
[55, Lemmas 2.10 and 3.7].
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We now classify all smashing localizations on Spk;n and show that all variants of the
telescope conjecture hold.

Theorem 3.46 Let L be a nontrivial smashing localization functor on Spk;n. Then
L' l

f
j ' lj for some j 2Q. In particular , the GSC and SDGSC both hold in Spk;n.

Proof We closely follow [55, Theorem 4.4]. Throughout the proof we let 1 denote
Lk;nS

0, the monoidal unit in Spk;n, so that hLi D hL1i. By (3-5),

hL1i D
� _
i2supp.L1/

K.i/

�
:

Note that supp.L1/ is nonempty because we assume L ¤ 0. Hence, we can fix
j 2 supp.L1/ such that hK.j /i � hL.1/i in BL.Spk;n/. It follows that LK.j /L '
LLK.j /'LK.j /, and hLK.j /1i D hLK.j /1 x̂ L1i � hL1i in BL.Spk;n/. We also note
that LK.j /1D LK.j /Lk;nS0 ' LK.j /S0.

By [32, Proposition 5.3], hLK.j /S0i D
Wj
iD0hK.i/i in BL.Sp/, and it follows easily

that hLK.j /S0i D
Wj

iDk
hK.i/i in BL.Spk;n/. It follows that hL1i �

Wj

iDk
hK.i/i in

BL.Spk;n/. We deduce that hL1i D
Wj

iDk
hK.i/i, where j D maxfsupp.L1/g, and

hence by Proposition 3.45 that L' lfj ' lj . Finally, because LnF.j C 1/ is compact
and therefore also dualizable in Spk;n, both the GSC and SDGSC hold in Spk;n.

Remark 3.47 Using [30, Proposition 3.8.3] and Theorems 3.33 and 3.46 one can
reprove the thick subcategory theorem Theorem 3.16.

4 Descent theory and the E.n; Jk/–local Adams spectral
sequence

In this section we use descent theory to construct an Adams-type spectral sequence in
the E.n; Jk/–local category. Using descent, we shall see that this has a vanishing line
at some finite stage. Moreover, for p� n, we show that the E.n; Jk/–local Adams
spectral sequence computing ��Lk;nS0 has a horizontal vanishing line on theE2–page,
and there are no nontrivial differentials.

4A Descendability

We begin with the notion of a descendable object in an algebraic stable homotopy
category.
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Remark 4.1 We recall that in C there is an 1–category CAlg.C/ of commutative
algebra objects; see [40, Chapter 3]. Moreover, given A 2 CAlg.C/ we can define a
stable, presentable, symmetric monoidal1–category ModA.C/ of A–modules internal
to C, with the relative A–linear tensor product [40, Section 4.5]. We will mainly focus
on the case A D En and C D Spk;n, so that ModEn

.Spk;n/ denotes the1–category
of E.n; Jk/–local En–modules, that is En–modules whose underlying spectrum is
E.n; Jk/–local, with monoidal structure A^B D Lk;n.A^E B/.

Remark 4.2 Note that En 2 CAlg.Sp/ by the Goerss–Hopkins–Miller [21] theorem,
and soEn 2CAlg.Spk;n/ as well. On the other hand, E.n; Jk/ will not, in general, be a
commutative ring spectrum (for example, K.n/ is never a commutative ring spectrum).

Definition 4.3 [41, Definition 3.18] A commutative algebra object A 2 CAlg.C/
is said to be descendable if 1 2 C is A–nilpotent (Definition 3.3), or equivalently
C D thick˝hAi.

One reason to be interested in descendable objects is the following [41, Proposition
3.22].

Proposition 4.4 (Mathew) Let A 2 CAlg.C/ be descendable. Then the adjunction
C �ModC.A/ given by tensoring with A and forgetting is comonadic. In particular ,
the natural functor from C to the totalization

C! Tot
�

ModA.C/ //
// ModA^A.C/

//

//
//
�

is an equivalence.

We also note the following [41, Proposition 3.19].

Proposition 4.5 (Mathew) If A 2 CAlg.C/ is descendable , then the functor

C!ModA.C/; M 7!M ^A;

is conservative.

4B Morava modules and L–complete comodules

The following theorem, essentially due to Hopkins–Ravenel [48], shows that the
results of the previous section can be applied in Spk;n. We note that En 2 Sp is a
commutative algebra object; this is the Goerss–Hopkins–Miller theorem [21]. It follows
that En 2 CAlg.Spk;n/.
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Theorem 4.6 En 2 CAlg.Spk;n/ is descendable , and there is an equivalence of
symmetric-monoidal stable1–categories

(4-1) Spk;n ' Tot
�

ModEn
.Spk;n/

//
// ModEn x̂En

.Spk;n/
//

//
//
�

Proof It is consequence of the Hopkins–Ravenel smash product theorem that En 2
CAlg.Spn/ is descendable; see [41, Theorem 4.18]. It follows from [41, Corollary 3.21]
that Lk;nEn ' En is descendable in Spk;n. The equivalence then follows from
Proposition 4.4.

By Proposition 4.5 we deduce the following.

Corollary 4.7 The functor En x̂ .�/ W Spk;n!ModEn
.Spk;n/ is conservative.

We therefore define the following.

Definition 4.8 For X 2 Spk;n the Morava module of X is .Ek;n/_�X WD ��.En x̂ X/.

We recall that Lk;nX ' lim
 ��j

.LnX ^Mk.j // (Proposition 2.24). The Milnor sequence
then gives the following.

Lemma 4.9 There is a short exact sequence

0! lim
 ��
j

1.En/�C1.X ^Mj .k//! .Ek;n/
_
�X ! lim

 ��
j

E�.X ^Mj .k//! 0:

Example 4.10 If .En/�X is a free .En/�–module, then the lim
 ��

1 term vanishes and it
follows that .Ek;n/_�X D .E�X/

^
Ik

.

Remark 4.11 As the short exact sequence shows, .Ek;n/_�X is not always complete
with respect to the Ik–adic topology. However, it is always LIk

0 –complete in the sense
of [32, Appendix A] — this the same argument as given in [32, Proposition 8.4(a)].

4C The E.n; Jk/–local En–Adams spectral sequence

In this section we construct an Adams-type spectral sequence in the E.n; Jk/–local
category. When k D 0, this is the En–Adams spectral sequence, while when k D n
this is the K.n/–local En–Adams spectral sequence considered in [16, Appendix A].
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To begin, we recall that the cobar (or Amitsur) complex for En in Spk;n is

CB�.En/ W En
//
// En x̂ En

//

//
// � � � :

Definition 4.12 Let cExts;�
.Ek;n/

_
� .En/

..En/�; .En/�/ WDH
s
�
��.CB

�.En//
�
, ie it is the

cohomology of the complex

.En/�
//
// .Ek;n/

_
� .En/

//

//
// � � � :

More generally, we letcExts;�
.Ek;n/

_
� .En/

..En/�; .Ek;n/
_
� .X// WDH

s
�
��.X x̂ CB

�.En//
�
:

Proposition 4.13 For any spectrum X there is a strongly convergent spectral sequence

E
s;t
2 Š

cExts;�
.Ek;n/

_
� .En/

..En/�; .Ek;n/
_
� .X//) ��.Lk;nX/

which has a horizontal vanishing line at a finite stage (independent of X ).

Proof This is the Bousfield–Kan spectral sequence associated to the tower

X x̂ CB�.En/:

The claimed results are a consequence of descendability (Theorem 4.6); see [41,
Corollary 4.4; 42, Example 2.11, Propositions 2.12 and 2.14].

Remark 4.14 For the SpK.n/–local homotopy category, this completed Ext can be
interpreted as an Ext group in the category of LIn

0 –complete comodules [9]. In the case
of X D S0, Morava’s change of rings theorem, in the form [9, Theorem 4.3], shows
that

E
s;t
2 ŠH

s
c .Gn; .En/t /;

the continuous cohomology of the Morava stabilizer group Gn, and this spectral
sequence is isomorphic to that considered by Devinatz and Hopkins in [16, Appendix A].
The key point is the computation that

.En/
_
� .En/Š Homc.Gn; .En/�/;

for which see [29]. We remark that we do not know what .Ek;n/_� .En/ is for k ¤ n.
However, the same arguments as in [9] go through; the pair ..En/�; .Ek;n/_� .En// is
an LIk

0 –complete comodule, and if .Ek;n/_� .X/ is either a finitely generated .En/�–
module, is the Ik–adic completion of a free-module, or has bounded Ik–torsion,
then .Ek;n/_� .X/ is a comodule over this Hopf algebroid — see [9, Lemma 1.17 and
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Proposition 1.22]. The relative homological algebra studied in [9, Section 2] also goes
through to see that cExts;� as used above is a relative Ext group in the category of
L
Ik

0 –complete comodules. We will not use this in what follows, so we leave the details
to the interested reader.

Remark 4.15 In [26, Section 7] the authors construct the K.n/–local Adams spectral
sequence for dualizable K.n/–local X as the inverse limit of the En–Adams spectral
sequences for X ^Mn.j /. The following result recovers the identification of the
E2–term in the case k D n.

Proposition 4.16 Let Mk.j / be a tower of generalized Moore spectra of height k.
Then there is an isomorphismcExts;t

.Ek;n/
_
� .En/

..En/�; .En/�/Š lim
 ��
j

Exts;t
.En/�En

�
.En/�; .En/�.Mk.j //

�
:

Proof By definition, cExts;t
.Ek;n/

_
� .En/

..En/�; .En/�/ is the cohomology of the complex

.En/�
//
// .Ek;n/

_
� .En/

//

//
// � � � :

The t th term of this complex is the homotopy of Lk;n.E^tn /' lim
 ��j

.E^tn ^Mk.j // by
Proposition 2.24, and there is a corresponding Milnor exact sequence of the form

0! lim
 ��
j

1�qC1.E
^t
n ^Mk.j //! �q.Lk;n.E

^t
n //! lim

 ��
j

�q.E
^t
n ^Mk.j //! 0:

We note thatE^tn is Landweber exact, as the smash product of Landweber exact spectra;
see [12, Lemma 4.3]. It follows that ��.E^tn ^Mk.j //Š ��.E

^t
n /=.p

i0 ; : : : ; u
ik�1

k�1
/

for suitable integers i0; : : : ; ik�1. In particular, the maps in the tower are surjections
by the construction of the tower fMk.j /g (see Remark 2.19), and so the lim

 ��

1
j

–term
vanishes, and

.Ek;n/
_
� .E

t�1
n /Š ��.Lk;n.E

^t
n //Š lim

 ��
j

�q.E
^t
n ^Mk.j //:

Note that the cohomology of the complex f�q.Etn ^Mk.j //gt is

Ext�;�
.En/�En

�
.En/�; .En/�.Mk.j //

�
:

Therefore, there is an exact sequence

0! lim
 ��
j

1 Extq�1;�
.En/�En

�
.En/�; .En/�.Mk.j //

�
! cExtq;�

.Ek;n/
_
� .En/

..En/�; .En/�/

! lim
 ��
j

Extq;�
.En/�En

�
.En/�; .En/�.Mk.j //

�
! 0:
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We will see below in Corollary 4.22 that Extq;�
.En/�En

�
.En/�; .En/�.Mk.j //

�
is finite,

and so the lim
 ��

1
j

–term vanishes in the exact sequence, and the result follows.

Remark 4.17 It follows that when k ¤ 0, the groups cExts;t
.Ek;n/

_
� .En/

..En/�; .En/�/

are profinite, ie either finite or uncountable. Contrast the case k D 0, where

Exts;t
.En/�En

..En/�; .En/�/

is countable [28, Proof of Lemma 5.4].

4D Vanishing lines in the E.n; Jk/–local En–Adams spectral sequence

In Proposition 4.13 we constructed a spectral sequencecExts;t
.Ek;n/

_
� .En/

..En/�; .En/�/) �t�s.Lk;nS
0/;

and showed that, as a consequence of descendability, this has a horizontal vanishing
line at some finite stage. In the extreme cases of kD 0 and kD n it is known that when
p�n andX DS0, this vanishing line occurs on theE2–page, and occurs at sDn2Cn
and s D n2, respectively; see [31, Theorem 5.1] and [47, Theorem 6.2.10]. In this
section, we show (Theorem 4.24) that the analogous result occurs in general; for p� n

there is a vanishing line on the E2–page of the spectral sequence of Proposition 4.13
above, and s D n2C n� k in the case X D S0. The proof relies on a variant of the
chromatic spectral sequence [47, Chapter 5], which we now construct. Along the way
we prove Corollary 4.22, which also completes the proof of Proposition 4.16.

Remark 4.18 (the chromatic spectral sequence) Fix k � n, and for 0� s � n�k let
M s denote the .En/�.En/–comodule

u�1kCs.En/�=.p; u1; : : : ; uk�1; u
1
k ; : : : ; u

1
kCs�1/:

Arguing as in [47, Lemma 5.1.6], there is an exact sequence of .En/�.En/–comodules

.En/�=Ik!M 0
!M 1

! � � � !M n�k
! 0:

Applying [47, Theorem A.1.3.2], there is then a chromatic spectral sequence of the
form

(4-2) E
s;r;�
1 Š Extr;�

.En/�.En/
..En/�;M

s/) ExtrCs;�
.En/�.En/

..En/�; .En/�=Ik/:

Proposition 4.19 In the chromatic spectral sequence (4-2),

E
s;r;�
1 Š

(
Extr;�

.EkCs/�.EkCs/
..EkCs/�; .EkCs/�=.p; : : : ; uk�1; u

1
k
; : : : ; u1

kCs�1
// if s � n�k;

0 if s > n�k:
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If particular , if p�1 does not divide kC s, we have Es;r;�1 D 0 for r > .sCk/2. Thus ,
if p� 1 does not divide kC s for all 0� s � n� k,2 then

Exts;�
.En/�.En/

..En/�; .En/�=Ik/D 0

for s > n2Cn� k.

Proof This is similar to the proof by Hovey and Sadofsky [31, Theorem 5.1], which is
the case where kD0. We first recall the change of rings theorem of Hovey and Sadofsky
[31, Theorem 3.1]; if M is a BP�BP –comodule, on which vj acts isomorphically, and
n� j , then there is an isomorphism3

Ext�;�BP�BP .BP�;M/Š Ext�;�
.En/�.En/

..En/�; .En/�˝BP�M/:

Applying this change of rings theorem twice to the BP�BP –comodule

u�1kCsBP�=.p; : : : ; uk�1; u
1
k ; : : : ; u

1
kCs�1/

with j D kC s and j D n shows that the E1–term has the claimed form.

For brevity, let us denote I D .p; : : : ; uk�1; u1k ; : : : ; u
1
kCs�1

/. By Morava’s change
of rings theorem,

Extr;�
.EkCs/�.EkCs/

..EkCs/�; .EkCs/�=I /ŠH
r.GkCs; .EkCs/�=I /:

Morava’s vanishing theorem [47, Theorem 6.2.10] shows that if p� 1 does not divide
kC s, then

H r.GkCs; .EkCs/�/D 0

for r > .kCs/2. Along with an argument similar to that given by Hovey and Sadofsky’s,
using standard exact sequences and taking direct limits we find that

Extr;�
.EkCs/�.EkCs/

..EkCs/�; .EkCs/�=I /D 0

for r > .kC s/2 as well.

Remark 4.20 Let Mk denote a generalized Moore spectrum of type k. Then there is
an obvious analog of this spectral sequence, whose abutment is

ExtrCs;�
.En/�.En/

..En/�; .En/�.Mk//Š ExtrCs;�
.En/�.En/

..En/�; .En/�=.p
i0 ; : : : ; u

ik�1

k�1
//

2Taking p > nC 1 suffices, but may not be optimal.
3Hovey and Sadofsky work with E.n/ instead of En, but this does not change anything in light of [33,
Theorem C].
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with E1–term of the form

E
s;r;�
1 Š

(
Extr;�

.EkCs/�.EkCs/
..EkCs/�; .EkCs/�=.p

i0; : : : ; u
ik�1

k�1
;u1
k
; : : : ;u1

kCs�1
// if s � n�k;

0 if s > n�k:

Remark 4.21 The following completes the proof of Proposition 4.16.

Corollary 4.22 Let Mk denote a generalized Moore spectrum of type k. Then the
group Extr;�

.En/�.En/
..En/�; .En/�.Mk// is finite.

Proof By taking appropriate exact sequences it suffices to show this for .En/�=Ik
(alternatively, one can argue directly using the spectral sequence of Remark 4.20). Given
the chromatic spectral sequence, we can reduce to showing thatH r.GkCs; .EkCs/�=I /

is finite, with I as in the proof of the previous proposition. For this, see Proposition 4.2.2
of [54].

Corollary 4.23 LetMk denote a generalized Moore spectrum of type k. Then if p�1
does not divide kC s for 0� s � n� k,

Exts;�
.En/�.En/

..En/�; .En/�.Mk//D 0

for s > n2Cn� k.

Proof Recall that .En/�.Mk/Š .En/�=.p
i0 ; : : : ; u

ik�1

k�1
/ for a suitable sequence of

integers .i0; : : : ; ik�1/. The result for the sequence .1; : : : ; 1/ holds by Proposition 4.19,
and therefore in general by taking appropriate exact sequences.

Theorem 4.24 Suppose p� 1 does not divide kC s for 0� s � n� k. ThencExts;t
.Ek;n/

_
� .En/

..En/�; .En/�/D 0

for s > n2Cn� k.

Proof Combine Proposition 4.16 and Corollary 4.23.

Remark 4.25 The condition on the prime is always satisfied if p is large enough
compared to n (in fact p > nC 1 suffices). This suggests the following, which we do
not attempt to make precise: for large enough primes, the cohomological dimension
of .En/� in a suitable category of (completed) .Ek;n/_� .En/–comodules is finite, and
equal to n2Cn� k.

Algebraic & Geometric Topology, Volume 23 (2023)



The Spk;n–local stable homotopy category 3687

We also have the following expected sparseness result.

Proposition 4.26 Let q D 2.p� 1/. ThencExts;t
.En/

_
� .En/

..En/�; .En/�/D 0

for all s and t unless t�0 mod q. Consequently, in the spectral sequence of Proposition
4.13, dr is nontrivial only if r � 1 mod q and E�;�mqC2 DE

�;�
mqCqC1 for all m� 0.

Proof Using Proposition 4.16 it suffices to show the first statement for the E1–term of
the chromatic spectral sequence of Proposition 4.19. Again using the Hovey–Sadofsky
change of rings theorem, this E1–term is isomorphic to

Exts;�;�BP�BP

�
BP�; u

�1
kCsBP�=.p; : : : ; uk�1; u

1
k ; : : : ; u

1
kCs�1/

�
:

Now apply [47, Proposition 4.4.2].

5 Dualizable objects in Spk;n

In this section we use descendability to characterize the dualizable objects in Spk;n.
As noted previously, as long as k ¤ 0, these differ from the compact objects studied in
Section 3A.

Definition 5.1 Let .C;^; 1/ be a symmetric-monoidal1–category. Then X 2 C is
dualizable if there exists an object DCX and a pair of morphisms

e WDCX ^X ! 1; c W 1!X ^DCX

such that the composites

X c^id
��!X ^DCX ^X

id^e
��!X; DCX

id^c
��!DCX ^X ^DCX

e^id
��!DCX

are the identity on X and DCX , respectively.

Remark 5.2 The definition makes it clear that X 2 C is dualizable if and only if it is
dualizable in the homotopy category of C. Moreover, a formal argument shows that,
if it exists, we must have DCX ' F.X; 1/. Finally, for the equivalence with other
definitions of dualizability the reader may have seen, see [17, Theorem 1.3].

Definition 5.3 We let Cdual� C denote the full subcategory consisting of the dualizable
objects of C.

Remark 5.4 The full subcategory Cdual is a thick tensor ideal [30, Theorem A.2.5].
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We have the following relationship between descent theory and dualizability.

Proposition 5.5 LetA2CAlg.C/ be descendable. Then the adjunction C�ModA.C/
gives rise to an equivalence of symmetric monoidal1–categories

Cdual
! Tot

�
ModA.C/dual //

// ModA^A.C/dual //

//
//
�
:

In particular , M 2 C is dualizable if and only if M ^A 2ModA.C/ is dualizable.

Proof The first claim follows from Proposition 4.4 because passing to dualizable
objects commutes with limits of1–categories [40, Proposition 4.6.1.11]. The second
is then an easy consequence, using that all the maps in the totalization are symmetric
monoidal.

5A Dualizable objects in the E.n; Jk/–local category

Using Theorem 4.6 and Proposition 5.5 we deduce the following.

Proposition 5.6 The adjunction Spk;n�ModEn
.Spk;n/ gives rise to an equivalence

of symmetric monoidal1–categories

Spdual
k;n ! Tot

�
ModEn

.Spk;n/
dual //

// ModEn x̂En
.Spk;n/

dual //

//
//
�
:

In particular , X 2 Spk;n is dualizable if and only if En x̂ X 2 ModEn
.Spk;n/ is

dualizable.

This proposition suggests we begin by studying dualizable objects in the category
ModEn

.Spk;n/. Fortunately, these have a nice characterization. We begin with the
following.

Lemma 5.7 If X is dualizable in ModEn
.Spk;n/ then the spectrum underlying X is

K.n/–local.

Proof We first note that for any M 2ModEn
(in particular, for M DX ), the Bousfield

localization LK.n/M is the spectrum underlying LEn

En^X
, where the latter denotes

the Bousfield localization with respect to En ^ X internal to the category of En–
modules. In particular, the localization mapM!LK.n/M is a map in ModEn

; see [19,
Chapter VIII], particularly [19, Proposition VIII.1.8]. If follows that K.n/–localization
defines a localization

LK.n/ WModEn
.Spk;n/!ModEn

.SpK.n//:
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Because X 2 ModEn
.Spk;n/

dual, using [30, Lemma 3.3.1], we see that there are
equivalences

LK.n/X ' Lk;n..LK.n/En/^En
X/' Lk;n.En ^En

X/' Lk;nX 'X:

Remark 5.8 For the following, we let Kn Š En=In. This is a 2–periodic form of
Morava K–theory; indeed,

.Kn/�X Š .Kn/�˝K.n/� K.n/�X;

and so hK.n/i D hKni. We use this only because Kn is naturally an En–module.

Proposition 5.9 For X 2ModEn
.Spk;n/ the following are equivalent :

(1) X is dualizable in ModEn
.Spk;n/.

(2) X is compact (equivalently, dualizable) in ModEn
.Sp/.

(3) The spectrum underlyingX isK.n/–local and the homotopy groups ��.Kn^En
X/

are finite.

Proof We first show that (2) implies (1). The compact objects in ModEn
.Sp/ are

precisely those in the thick subcategory generated by En; see, for example, [40,
Proposition 7.2.4.2]. Since En 2ModEn

.Spk;n/
dual, and the collection of dualizable

objects is thick, the implication (2) implies (1) follows.

Conversely, assume that (1) holds. As above, we have a symmetric-monoidal localiza-
tion

LK.n/ WModEn
.Spk;n/!ModEn

.SpK.n//;

which preserves dualizable objects (as any symmetric-monoidal functor does). Using
Lemma 5.7 it follows thatLK.n/X'X is dualizable in ModEn

.SpK.n//, which implies
by [41, Proposition 10.11] that X is compact in ModEn

.Sp/.

Finally, the equivalence of (2) and (3) is well known; see for example Proposition 2.9.4
of [25].4

Remark 5.10 Suppose X 2 Spdual
k;n

, so that Lk;n.En ^X/ 2ModEn
.Spk;n/

dual. The
previous proposition then implies that

Lk;n.En ^X/' LK.n/Lk;n.En ^X/' LK.n/.En ^X/:

In other words, for dualizable X , there is an isomorphism .Ek;n/
_
� .X/Š .En;n/

_
� .X/.

4Lurie has confirmed via private communication that the cited proposition [25, Proposition 2.9.4] should
additionally have the assumption X is K.n/–local in condition (3).
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We now give our characterization of dualizable spectra in Spk;n — see [32, Theorem 8.6]
for the case k D n. We note that even in this case our proof, which uses descendability,
differs from that of Hovey and Strickland.

Theorem 5.11 The following are equivalent for X 2 Spk;n:

(1) X is dualizable.

(2) X is F –small , ie for any collection of objects fZig, the natural map

Lk;n

�_
i

F.X;Zi /

�
! F

�
X;Lk;n

�_
i

Zi

��
is an equivalence.

(3) En x̂ X 2ModEn
.Spk;n/ is dualizable.

(4) En x̂ X 2ModEn
.Sp/ is dualizable (equivalently, compact).

(5) En x̂ X is K.n/–local and .Kn/�X is finite.

(6) .Ek;n/
_
� .X/ is a finitely generated E�–module.

Proof The equivalences between the first five items come from [30, Theorem 2.1.3(c)]
(.1/() .2/), Proposition 5.5 (.1/() .3/) and Proposition 5.9 (.3/() .4/() .5/).
We note that if M is an En–module, then M is compact if and only if ��M is finitely
generated over .En/�; see [22, Lemma 10.2(i)]. Applying this with M DEn x̂X gives
the equivalence between .4/ and .6/.

Finally, we show that there is only a set of isomorphism classes of dualizable objects.

Lemma 5.12 There are at most 2@0 isomorphism classes of objects in Spdual
k;n

.

Proof This is the same as the argument given in [32, Propositon 12.17]. Namely,
there are only countably many finite spectra X 0 of type at least k, and for each one
ŒLnX

0; LnX
0� is finite, so LnX 0 has only finitely many retracts. By Theorem 3.8

it follows that there is a countable set of isomorphism classes of objects in Sp!k;n.
If U and V are finite, then ŒU; V � is finite, and so there are at most @@0

0 D 2@0

different towers of spectra in Sp!k;n. For X 2 Spdual
k;n

, write X ' lim
 ��j

X ^Mk.j /, as
in Proposition 2.24. Because X is dualizable and Mk.j / is compact, X ^Mk.j / is
compact [30, Theorem 2.1.3(a)]. Therefore, X is the inverse limit of a tower of spectra
in Sp!k;n, and hence there are at most 2@0 isomorphism classes of objects in Spdual

k;n
.
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5B The spectrum of dualizable objects

In Theorem 3.16 we computed the thick subcategories (equivalently, thick tensor-ideals)
of compact objects in Spk;n. One could also ask for a classification of the thick tensor-
ideals of dualizable objects in Spk;n, or equivalently a computation of the Balmer
spectrum Spc.Spdual

k;n
/ (which is well defined by Lemma 5.12). Based on a conjecture

of Hovey and Strickland, the author, along with Barthel and Naumann, investigated
Spc.Spdual

K.n/
/ in detail in [10], showing that the Hovey–Strickland conjecture holds

when n D 1 and 2, and that in general it is implied by a hope of Chai in arithmetic
geometry. In this section, we make some general comments regarding Spc.Spdual

k;n
/.

Remark 5.13 The following full subcategories were considered in the case k D n by
Hovey and Strickland [32, Definition 12.14].

Definition 5.14 For i � n, let Di denote the category of spectra X 2 Spdual
k;n

such that
X is a retract of Y ^Z for some Y 2 Spdual

k;n
and some finite spectrum Z of type at

least i . It is also useful to set DnC1 D .0/.

Remark 5.15 We note that Dk ' Sp!k;n; this is a consequence of the characterization
of compact objects given in Theorem 3.8, and that D0 D Spdual

k;n
.

The following is [32, Proposition 4.17].

Lemma 5.16 X is in Dk if and only if X is a module over a generalized Moore
spectrum of type k. Moreover , Dk � Spdual

k;n
is a thick tensor ideal.

Hovey and Strickland conjecture that in the case k D n these exhaust the thick-tensor
ideals of Spdual

K.n/
. This has been investigated in detail in [10]. We conjecture this holds

more generally in Spk;n.

Conjecture 5.17 If C is a thick tensor-ideal of Spdual
k;n

, then C D Di for some 0� i �
nC 1. Equivalently,

Spc.Spdual
k;n /D fD1; : : : ;DnC1g

with topology determined by the closure operator fDig D fDj j j � ig.

In this section we show that if Conjecture 5.17 holds K.n/–locally, ie for Spdual
n;n , then

it holds for all Spdual
k;n

. We first recall the following definition.
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Definition 5.18 Suppose F W K! L is an exact tensor triangulated functor between
tensor-triangulated categories. We say that F detects tensor-nilpotence of morphisms
if every morphism f WX ! Y in K such that F.f /D 0 satisfies f ˝m D 0 for some
m� 1.

We will use the following.

Proposition 5.19 Suppose A 2 CAlg.C/ is descendable. Then extension of scalars
C!ModA.C/ detects tensor-nilpotence of morphisms.

Proof Let I denote the fiber of 1 �
�!A, and let � W I ! 1 denote the induced map. By

[43, Proposition 4.7] if A is descendable, then there exists m� 1 such that I˝m! 1 is
null-homotopic, ie � is tensor-nilpotent. We can now argue as in (ii) implies (iii) of [5]:
suppose we are given f W X ! Y , a morphism in C, with A˝ f W A˝X ! A˝ Y

null-homotopic. Now consider the diagram of fiber sequences:

I ˝X X A˝X

I ˝Y Y A˝Y

�˝idX �˝idX

�˝idY �˝idY

idI˝f f idA˝f

We see that .�˝ idY /f is null-homotopic, so f factors through � ˝ idY , which is
tensor-nilpotent.

The following is our key observation.

Proposition 5.20 If i > k, then the map induced by localization

Spc.Spdual
i;n /! Spc.Spdual

k;n /

is surjective.

Proof By [6, Theorem 1.3] it suffices to show that the functor Li;n W Spdual
k;n
! Spdual

i;n

detects tensor-nilpotence of morphisms. To that end, let f WX ! Y be a morphism in
Spdual
k;n

with Li;n.f /D 0, so that we must show f x̂m D 0 for some m � 1. Because
En 2 Spk;n is descendable, Proposition 5.19 shows that

Lk;n.En ^�/ W Spk;n!ModEn
.Spk;n/

detects tensor-nilpotence of morphisms, and hence so does its restriction to dualizable
objects; ie Lk;n.En ^ f / D 0 implies f x̂m D 0 for some m � 1. In other words,
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it suffices to show that Lk;n.En ^ f / is trivial. By Lemma 5.7 however, this is a
morphism in ModEn

.Spn;n/. In particular,

Lk;n.En ^f /' Li;n.En ^f /' Li;n.En ^Li;n.f //D 0

because Li;n.f /D 0 by assumption.

Theorem 5.21 Suppose Conjecture 5.17 holds for Spdual
n;n . Then it holds for all Spdual

k;n
.

Proof By [10, Proposition 3.5], Conjecture 5.17 holds for Spdual
n;n if and only if

Ln;n W Spdual
0;n ! Spdual

n;n induces a homeomorphism on Balmer spectra. In other words,
the composite, induced by the localization maps,

Spc.Spdual
n;n /! Spc.Spdual

n�1;n/! � � � ! Spc.Spdual
0;n /

is a homeomorphism. It follows that Spc.Ln�1;n/ W Spc.Spdual
n;n /! Spc.Spdual

n�1;n/ is
an injection, and hence a bijection by Proposition 5.20. Using that Spc.Ln�1;n/ is
continuous and the topologies on each space, we see that it is fact a homeomorphism.
It follows that Spc.Spdual

n�1;n/! Spc.Spdual
0;n / is a homeomorphism, and we can now

repeat the argument.

By [10, Theorem 4.15], Conjecture 5.17 holds for Spdual
2;2 . Along with Theorem 5.21

we deduce the following.

Corollary 5.22 The Balmer spectrum Spc.Spdual
1;2 /D fD1;D2;D3g with

.0/D D3 ¨ D2 ¨ D1 D Sp!1;2:

In particular , if C is a thick tensor-ideal of Spdual
1;2 , then C D Dk for 0� k � 3.

6 The Picard group of the Spk;n–local category

In this section we study invertible objects in the Spk;n–local category. We show that
invertibility of an object can be detected by its Morava module. We construct a spectral
sequence computing the homotopy groups of the Picard spectrum of Spk;n and use
this to show that if p is large compared to n, then the Picard group of Spk;n is entirely
algebraic, in a sense we make precise.

6A Invertible objects and Picard spectra

We recall that if C is a symmetric monoidal category, we denote by Pic.C/ the group of
isomorphism classes of invertible objects; a priori this could be a proper class, but if
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C is a presentable stable1–category (which it will always be in our cases), then it is
actually a set [44, Remark 2.1.4].

The following standard lemma will be useful for us. Here we write DC.X/ for the dual
of an object in a category C, ie DC.X/ D F.X; 1/. Note that an invertible object is
always dualizable [30, Proposition A.2.8].

Lemma 6.1 Let F W C! D be a symmetric-monoidal conservative functor between
stable1–categories. Then X 2 C is invertible if and only if F.X/ 2 D is invertible.

Proof We first note that X is invertible if and only if the natural morphism

X ˝CDC.X/! 1C

is an equivalence; see [30, Proposition A.2.8]. Because F is assumed to be sym-
metric monoidal and conservative, this is an equivalence if and only if it is so after
applying F ; ie if and only if F.X/ ˝D F.DC.X// ! 1D is an equivalence. But
F.DC.X//'DD.F.X//, as symmetric-monoidal functors preserve dualizable objects,
and the result follows.

Remark 6.2 To our symmetric monoidal category C we can instead associate the
Picard spectrum pic.C/ [44, Definition 2.2.1]; this is a connective spectrum with the
property that

�i .pic.C//D

8<:
Pic.C/ if i D 0;
.�0.EndC.1//� if i D 1;
�i�1.EndC.1// if i > 1:

The key advantage of using the Picard spectrum is that, as a functor from the1–category
of symmetric monoidal1–categories to the1–category of connective spectra, pic
commutes with limits [44, Proposition 2.2.3].

Example 6.3 Let C be a category and A 2 CAlg.C/. Then the Picard spectrum of the
category ModA.C/ of A–modules internal to C satisfies

�i .pic.ModA.C//D

8<:
Pic.ModA.C// if i D 0;
.�0.HomC.1C; A//

� if i D 1;
�i�1.HomC.1C; A// if i > 1:

This follows becauseA is the tensor unit in ModA.C/. Indeed, writing F WC!ModC.A/

for the extension of scalars functor (so that A' F.1C/), we have

EndModA.C/.A/D HomModA.C/.F.1C/; A/' HomC.1C; A/

by adjunction.
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6B Invertible objects in the Spk;n–local category

Our main group of interest is the Picard group of K.k/_ � � � _K.n/–local spectra.

Definition 6.4 Let Pick;nDPic.Spk;n/, the group of invertibleK.k/_� � �_K.n/–local
spectra.

Remark 6.5 By [36, Lemma 2.2] the localization functors induce natural morphisms
Pic0;n! Pic1;n! � � � ! Picn;n.

Remark 6.6 The morphism X 7!En x̂ X induces a functor

Pick;n! Pic.ModEn
.Spk;n//:

We can fully understand the latter Picard group.

Lemma 6.7 For all 0� k � n,

Pic.ModEn
.Spk;n//Š Pic.ModEn

/Š Pic.En�/Š Z=2:

Proof We always have Pic.ModEn
/ � Pic.ModEn

.Spk;n// because any invertible
En–module is compact, and hence E.n; Jk/–local. The other inclusion follows if any
M 2 Pic.ModEn

.Spk;n// is compact as an En–module. Such an M is automatically
dualizable in ModEn

.Spk;n/, and hence compact in ModEn
by Proposition 5.9. This

gives the first of the above isomorphisms, and the others hold by work of Baker and
Richter [2].

We now give criteria for when X 2 Pick;n is invertible. This (partially) extends work
of Hopkins, Mahowald and Sadofsky [26], who considered the case k D n.

Theorem 6.8 Let X 2 Spk;n. The following are equivalent :

(1) X 2 Pick;n.

(2) En x̂ X 2 Pic.ModEn
.Spk;n//.

(3) En x̂ X 2 Pic.ModEn
/.

(4) .Ek;n/
_
�X Š .En/�, up to suspension.

Proof The equivalence of (1) and (2) follows from Corollary 4.7 and Lemma 6.1,
while the equivalence of (2) and (3) follows from Lemma 6.7, which also shows that
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(3) implies (4). Finally, to see that (4) implies (3), we note that if M is any En–module
whose homotopy groups are free of rank one over .En/�, then M is equivalent to a
suspension of En; for the elementary proof, see [23, Proposition 2.2]. Thus, (4) implies
that En x̂ X 'En, up to suspension, and hence (3) holds.

Remark 6.9 When nD 1, there are two possibilities, the K.1/ and E.1/–local Picard
groups, both of which are known:

Pic0;1 D
�

Z˚Z=2 if p D 2;
Z if p > 2;

Pic1;1 D
�

Z2˚Z=4˚Z=2 if p D 2;
Zp˚Z=.p� 1/˚Z=2 if p > 2:

These are due to Hovey and Sadofsky [31] and Hopkins, Mahowald and Sadofsky [26],
respectively.

When nD 2, we have three possibilities, theK.2/, K.1/_K.2/, and E.2/–local Picard
groups. The first and last are known for p > 2:

Pic0;2 D
�

Z˚Z=3˚Z=3 if p D 3;
Z if p > 3;

Pic2;2 D
�

Z3˚Z3˚Z=16˚Z=3˚Z=3 if p D 3;
Zp˚Zp˚Z=.2.p2� 1// if p > 3:

These are due to a combination of authors: Hovey and Sadofsky [31], Lader [38],
Goerss, Henn, Mahowald and Rezk [20], Karamanov [37], and Hopkins (unpublished).

This leaves the remaining case of Pic1;1. We note the following.

Proposition 6.10 If p � 3, then the morphism Pic0;2! Pic1;1 of Remark 6.5 is an
injection.

Proof The morphism in question factors through the morphism Pic0;2! Pic2;2 and
so it suffices to show that this is an injection. When p > 3 this is clear, and so we focus
on the case p D 3. In this case, the calculations of Goerss, Henn, Mahowald and Rezk
[20] show that this map is an injection.

Remark 6.11 As noted in the proof, the interesting case in the above proposition is
the case pD 3. In fact, for all n and p� n we have that Pic0;n! Pici;n is an injection
for i � 0. However, here Pic0;n Š Z (by [31]), so this is not particularly helpful.

6C Descent and Picard groups

In Remark 6.2 we recalled that we can associate a connective Picard spectrum pic.C/ to
a symmetric-monoidal1–category C. Using descent for the E.n; Jk/–local category,
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we now construct a spectral sequence whose �0 computes Pick;n. We need to introduce
another algebraic gadget to describe the spectral sequence.

Definition 6.12 We let Picalg
k;n

denote the first cohomology of the complex

.En/
�
0

//
// ..Ek;n/

_
0 .En//

�
//

//
// � � �

induced by taking the units in degree 0 in the cobar complex.

Theorem 6.13 There exists a spectral sequence with

E
s;t
2 Š

8̂<̂
:

Z=2 if s D t D 0;

Picalg
k;n

if s D t D 1;cExts;t�1
.Ek;n/

_
� .En/

..En/�; .En/�/ t � 2;

which converges for t�s�0 to �t�spic.Spk;n/. In particular , when tDs, this computes
Pick;n. The differentials in the spectral sequence run dr WE

s;t
r !E

sCr;tCr�1
r .

Proof Because pic commutes with limits (Remark 6.2), Theorem 4.6 implies that

(6-1) pic.Spk;n/' ��0 Tot
�
pic.ModEn

.Spk;n//
//
// pic.ModEn x̂En

.Spk;n//
//

//
//
�
:

We have (compare Example 6.3)

(6-2) �t .pic.ModE x̂i
n
.Spk;n//Š

8<:
Pic.ModE x̂i

n
/ if t D 0;

�0.E
x̂i
n /
� if t D 1;

�t�1.E
x̂i
n / if t � 2:

The Bousfield–Kan spectral sequence associated to (6-1) has the form

E
s;t
2 ŠH

s
�
�tpic.ModEn

.Spk;n//
//
// �tpic.ModEn x̂En

.Spk;n//
//

//
//
�
:

By (6-2) when t � 2, the spectral sequence is just a shift of the E.n; Jk/–local Adams
spectral for X D S0 sequence considered in Proposition 4.13.

When t D 0 and i D 0, we have Pic.ModEn
.Spk;n// Š Z=2 by Lemma 6.7. We do

not know the higher terms, but this does not matter as only the Z=2 is relevant for the
s D t D 0 part of the spectral sequence.

Finally, we consider the t D 1 part of the spectral sequence. Again using (6-2),

E
s;1
2 Š H s

�
.En/

�
0

//
// ..Ek;n/

_
0 .En//

�
//

//
// � � �

�
:

By definition, when s D 1 this is Picalg
k;n

.
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Remark 6.14 The proof shows that when t D 1, we can compute Es;12 as the sth

cohomology of the complex in Definition 6.12. However, unless k D 0 or n we do
not have a convenient description of this group (for the case k D n, see Example 6.18
below).

Definition 6.15 We will say that Pick;n is algebraic if the only contributions come
from the s D 0 and s D 1 lines of the spectral sequence.

Remark 6.16 The E0;02 term of the spectral sequence always survives the spectral
sequence, as it is the Picard group of En–modules. It is however possible that there is
a nontrivial differential in the E1;1r spot.

Theorem 6.17 Suppose that 2p� 2� n2Cn� k and p� 1 does not divide kC s for
0� s � n� k. Then Pick;n is algebraic. For example , this holds if 2p� 2 > n2Cn.

Proof For all primes p and t � 2 we have that Es;t2 D 0 unless t�1� 0 mod 2.p�1/
by Proposition 4.26. In particular, for s > 2, Es;s2 D 0 unless s � 1 mod 2p� 2, and
the lowest possible nonalgebraic term is in filtration degree 2p� 1.

By Theorem 4.24 and the assumption that p�1 does not divide kCs for 0� s � n�k
we have that Es;s2 D 0 for s >n2Cn�k. Therefore, if additionally 2p�2� n2Cn�k,
there can be no nonalgebraic contributions to the spectral sequence.

Finally, if 2p � 2 > n2C n, then p > nC 1, and in particular p � 1 does not divide
kC s for 0� s � n� k.

Example 6.18 Let us spell out the details in the case k D n. We first claim that the
spectral sequence of Theorem 6.13 takes the form

E
s;t
2 Š

8<:
Z=2 if s D t D 0;
H s
c .Gn; .En/

�
0 / if t D 1;

H s
c .Gn; �t�1En/ if t � 2;

and converges for t � s � 0 to �t�spic.SpK.n//.

The identification is much as in Remark 4.14. For the t D 1 term, we note that
�0.E

x̂i
n /
� Š Homc.G�.i�1/n ; .En/0/

� Š Homc.G�.i�1/n ; .En/
�
0 /.

The existence of such a spectral sequence is folklore; see [18, Remark 6.10] or [45,
Remark 2.6]. In fact, the latter also proves Theorem 6.17 in the case k D n.

Algebraic & Geometric Topology, Volume 23 (2023)



The Spk;n–local stable homotopy category 3699

7 E.n; Jk/–local Brown–Comenetz duality

We recall the classical definition of Brown–Comenetz duality. The group Q=Z is an
injective abelian group, and so the functor

X 7! Hom.�0X;Q=Z/

defines a cohomology theory on spectra represented by a spectrum IQ=Z; this is the
Brown–Comenetz dual of the sphere. The Brown–Comenetz dual of a spectrum X is
then defined as IQ=ZX WD F.X; IQ=Z/, and satisfies

ŒY; IQ=ZX�0 Š Hom.�0.X ^Y /;Q=Z/:

It is an insight of Hopkins [24] that there is a good notion of Brown–Comenetz duality
(also known as Gross–Hopkins duality) internal to the K.n/–local category, given by
defining InX D F.MnX; IQ=Z/ for a K.n/–local spectrum X . For details on this,
see [52]. As we will see, this definition can also naturally be made in theE.n; Jk/–local
category. We begin with the following generalization of a result of Stojanoska [50,
Proposition 2.2]. We recall that, by definition, M0;n D Ln. In this case, the following
lemma just says that F.LnX; Y / is already Ln–local.

Proposition 7.1 For any X and Y , the natural map F.LnX; Y /! F.Mk;nX; Y / is
an E.n; Jk/–localization.

Proof We can repeat Stojanoska’s argument. First, we show that F.Mk;nX; Y / is
E.n; Jk/–local. Indeed, let Z be E.n; Jk/–acyclic. Then we must show that

F.Z; F.Mk;nX; Y //' F.Z ^Mk;nX; Y /' F.Mk;nZ ^X; Y /

is contractible. Here we have used that Mk;n is smashing. But Mk;nZ 'Mk;nLk;nZ

by Theorem 2.31 and this is contractible because Z is E.n; Jk/–acyclic.

We now show that the fiber F.Lk�1X; Y / is E.n; Jk/–acyclic. By Proposition 2.15
it suffices by a localizing subcategory argument to show this after smashing with a
generalized Moore spectrum M.k/ of type k. Then (up to suspension),

F.Lk�1X; Y /^M.k/' F.Lk�1X; Y /^DM.k/

' F.M.k/; F.Lk�1X; Y //

' F..Lk�1M.k//^X; Y /' �:
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Definition 7.2 The E.n; Jk/–local Brown–Comenetz dual of X is

Ik;nX D IQ=Z.Mk;nX/D F.Mk;nX; IQ=Z/:

We let Ik;n denote the E.n; Jk/–local Brown–Comenetz dual of Lk;nS0.

Remark 7.3 It does not matter if we ask that X be E.n; Jk/–local in the previous
definition, as Ik;nX only depends on the E.n; Jk/–localization of X . Indeed, we have
equivalences

Ik;nX D F.Mk;nX; IQ=Z/' F.Mk;nLk;nX; IQ=Z/D Ik;n.Lk;nX/:

In particular, Ik;n D Ik;n.Lk;nS0/' Ik;nS0.

From the definition of IQ=Z, we deduce the following.

Lemma 7.4 There is a natural isomorphism

ŒY; Ik;nX�0 Š Hom.�0.Mk;n.X/^Y /;Q=Z/:

As a consequence of Proposition 7.1 we deduce the following.

Lemma 7.5 Ik;nX is always E.n; Jk/–local. In fact , Ik;nX ' Lk;nIQ=Z.LnX/ and
moreover , Ik;nX Š Lk;nIj;nX for any j � k.

It follows that we have natural maps given by localization,

I0;n! I1;n! � � � ! In;n:

Example 7.6 Let nD 1 and p > 2. Then I0;1 ' L1.S2p /, the localization of the p–
completion of S2. On the other hand, when pD 2 we have I0;1'†2L1.DQ^2 / where
DQ is the dual question mark complex [15, Remark 1.5]. Similarly, I1;1 ' LK.1/S2

if p > 2, while I1;1 '†2LK.1/DQ.

Example 7.7 We always have Ik;n.Kn/'Kn. Indeed, first note that Lk;nKn 'Kn,
so Lemma 7.5 allows us to reduce the case where k D 0 (although the proof is no more
difficult in the other cases — just note that Mk;nKn 'Kn). Using the fact that

ŒY;Kn�� Š Hom.Kn/�..Kn/�X; .Kn/�/;

we argue as in [32, Theorem 10.2(a)] to see that

ŒY;Kn�0 Š Hom..Kn/0X;Fp/Š Hom..Kn/0X;Q=Z/Š ŒY; I0;n.Kn/�0:

This implies that I0;n.Kn/'Kn, as claimed.
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Theorem 7.8 Let X 2 Spk;n. Then the natural map X ! I 2
k;n
X is an isomorphism

when ��.F.k/^X/Š ��.Lk;nF.k/^X/ is finite in each degree. In particular , this
holds for X D Lk;nS0.

Proof Let �X WX ! I 2
k;n
X denote the natural map. We first note that

I 2k;n.F.k/ x̂ X/' I
2
k;n.F.k/^X/' F.k/^ I

2
k;n.X/;

because F.k/ is compact (and hence dualizable) in Sp. As in the proof of Theorem 10.2
in [32], this identifies �F.k/^X ' idF ^ �X , and so it is enough to show that �Y is an
equivalence, where Y D F.k/^X .

Because F.k/ has type k, Lk�1F.k/' �, and Mk;nF.k/' LnF.k/, so

Mk;nY DMk;n.F.k/^X/'Mk;nF.k/^X ' LnF.k/^X ' Y:

Likewise, Mk;n.Ik;nY /'Mk;n.DF.k/^ Ik;nX/'DF.k/^ Ik;nX ' Ik;nY . This
implies that ��I 2k;nY Š Hom.Hom.��Y;Q=Z/;Q=Z/, which is the same as ��Y
because ��Y is finite in each degree. Therefore �Y is an equivalence, as required.

Remark 7.9 The Gross–Hopkins dual In;n is always an invertible K.n/–local spec-
trum. We do not know what happens for Ik;n in general; however we note the following
result.

Proposition 7.10 The following are equivalent :

(1) Ik;n 2 Spdual
k;n

;

(2) Ik;n 2 Pick;n;

(3) .Ek;n/
_
� .Ik;n/ is a finitely generated E�–module;

(4) En x̂ Ik;n is K.n/–local.

Proof Suppose first that (1) holds. Then, F.Ik;n; Ik;n/ 'DIk;n x̂ Ik;n, but on the
other hand F.Ik;n; Ik;n/' I 2k;n.Lk;nS

0/' Lk;nS
0 by Theorem 7.8. It follows that

Ik;n 2Pick;n, ie that (2) holds. The converse, (2)D) (1), always holds; see for example
[30, Proposition A.2.8].

The equivalence of .1/ and .3/ is just Theorem 5.11.
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Finally to see that (1)() (4), we note that it suffices to show that .Kn/�Ik;n is finite.
In fact, because .Kn/� is a graded field, it suffices to see that .Kn/�Ik;n is finite. For
this, we compute, using Example 7.7 and Theorem 7.8,

ŒIk;n; Kn�� ' ŒIk;n; Ik;n.Kn/��

' ŒIk;n; F .Kn; Ik;n/��

' ŒKn; F .Ik;n; Ik;n/��

' ŒKn; Lk;nS
0��:

By [32, Lemma 10.4] if Mn denotes a generalized Moore spectrum of type n, then
ŒEn; LK.n/Mn�� ' ŒEn; Lk;nMn�� is finite (the last equivalence follows, for example,
from the fact that LnMn ' LK.n/Mn for a generalized Moore spectrum of type n).
As in [32, Corollary 10.5] it follows that ŒEn x̂DMn; Lk;nS

0� is finite, and hence so
is ŒKn; Lk;nS0�, as Kn lies in the thick subcategory generalized by En x̂DMn (note
that DMn is also the localization of a generalized Moore spectrum of type n; see [32,
Proposition 4.18]).

Question 7.11 For which values of k and n do the conditions of Proposition 7.10
hold?

Remark 7.12 Condition (4) clearly holds in the case kDn. Of course, Proposition 7.10
is precisely Hovey and Strickland’s proof in this case. However, due to the p–
completion, this does not hold for n D 1 and k D 0 (Example 7.6). In fact, this
fails at all heights when k D 0, as we now explain.

Remark 7.13 Fix n > 1 and k D 0, and take p� n. Then Pic0;n Š Z, generated by
LnS

1 [31, Theorem 5.4]. Therefore, if Proposition 7.10 held for k D 0, we must have
I0;n ' LnS

k for some k 2 Z. On the other hand, work of Hopkins and Gross [24], as
written up by Strickland [52], and known results about the K.n/–local Picard group
[26, Proposition 7.5] show that In;n '†n

2�nShdeti, where Shdeti is the determinant
sphere spectrum [7]. It cannot then be the case that LK.n/I0;n ' In;n; a contradiction
to Lemma 7.5. We do not know what occurs in the cases k ¤ 0; n.
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