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The upsilon invariant at 1 of 3–braid knots

PAULA TRUÖL

We provide explicit formulas for the integer-valued smooth concordance invariant
�.K/D ‡K .1/ for every 3–braid knot K. We determine this invariant, which was
defined by Ozsváth, Stipsicz and Szabó (2017), by constructing cobordisms between
3–braid knots and (connected sums of) torus knots. As an application, we show
that for positive 3–braid knots K several alternating distances all equal the sum
g.K/C�.K/, where g.K/ denotes the 3–genus of K. In particular, we compute the
alternation number, the dealternating number and the Turaev genus for all positive
3–braid knots. We also provide upper and lower bounds on the alternation number
and dealternating number of every 3–braid knot which differ by 1.

57K10; 20F36, 57K18

1 Introduction

We study knots in the 3–sphere S3, ie nonempty, connected, oriented, closed, smooth
1–dimensional submanifolds of S3, considered up to ambient isotopy. Two knots K

and J are called concordant if there exists an annulus AŠ S1 � Œ0; 1� smoothly and
properly embedded in S3 � Œ0; 1� such that @ADK � f0g[J � f1g and such that the
induced orientation on the boundary of the annulus agrees with the orientation of K,
but is the opposite one on J . Knots up to concordance form a group, the concordance
group C, with the group operation induced by connected sum.

In [46], Ozsváth, Stipsicz and Szabó used the Heegaard Floer knot complex to define the
invariant ‡K of a knot K, which induces a homomorphism from the knot concordance
group to the group of real-valued piecewise-linear functions on the interval Œ0; 2�. The
function ‡K evaluated at t D 1, �.K/ WD ‡K .1/, induces a homomorphism C! Z.
In this article, we will call �.K/ upsilon of K.
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D

Figure 1: Generators and relation in the braid group B3. Left: the two
generators a and b. Right: the braid relation abaD bab.

A 3–braid is an element of the braid group on three strands, denoted B3. The classical
presentation of B3 with generators a and b and relation abaD bab, the braid relation,
was introduced by Artin [5]. A braid word  — a word in the generators of B3 and
their inverses — defines a diagram for a (geometric) 3–braid; the generators a and b

correspond to the geometric 3–braids given by braid diagrams as in Figure 1. In our
figures, braid diagrams will always be oriented from bottom to top. We denote by �
the braid abaD bab, and note that its square �2 D .ab/3 (the positive full twist on
three strands) generates the center of B3; see Chow [14, Theorem 3]. A 3–braid knot
is a knot that arises as the closure O of a 3–braid  .

As our main result, we determine the upsilon invariant for all 3–braid knots. More
precisely, we show the following.

Theorem 1.1 Let  D�2`a�p1bq1a�p2bq2 � � � a�pr bqr be a braid word in the gen-
erators a and b of B3 for some integers ` 2 Z, r � 1 and pi ; qi � 1 for i 2 f1; : : : ; rg,
where �2 D .ab/3. Suppose that the closure K D O of  is a knot. Then its upsilon
invariant is

�.K/D
1

2

� rX
iD1

.pi � qi/

�
� 2`:

By Murasugi’s classification of the conjugacy classes of 3–braids [45, Proposition 2.1],
indeed all 3–braid knots — except for the torus knots that are closures of 3–braids —
are covered by Theorem 1.1. However, for torus knots the invariant � can be calculated
explicitly by a combinatorial, inductive formula in terms of their Alexander polynomial
[46, Theorem 1.15]; see (12) below. Hence, we have indeed determined �.K/ for all
3–braid knots K.

As an application of Theorem 1.1, we show that the following invariants coincide for
positive 3–braid knots — knots that are the closure of positive 3–braids.
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Corollary 1.2 Let K be a knot that is the closure of a positive 3–braid , ie an element
of B3 that can be written as a word in the generators a and b only (no inverses). Then

alt.K/D dalt.K/D gT .K/DAs.K/D g.K/C �.K/:

Here, the alternation number alt.K/, dealternating number dalt.K/ and Turaev genus
gT .K/ are different ways of measuring how far the knot K is from being alternating.
The best known among them is certainly the first one: the alternation number alt.K/ of
a knot K was first defined by Kawauchi [31] as the minimal Gordian distance of K to
the set of alternating knots. In Section 5, we will review the precise definition and prove
Corollary 1.2. The invariant As.K/ introduced by Friedl, Livingston and Zentner [23]
is defined as the minimal number of double point singularities in a generically immersed
concordance from a knot K to an alternating knot. Lastly, g.K/ denotes the 3–genus
of K, the minimal genus of a compact, connected, oriented, smooth surface in S3 with
oriented boundary the knot K.

Two other corollaries of Theorem 1.1 for positive 3–braid knots are the following.

Corollary 1.3 Let K be a positive 3–braid knot. Then the minimal r such that K is the
closure of ap1bq1ap2bq2 � � � apr bqr for positive integers pi and qi , for i 2 f1; : : : ; rg,
is r D g.K/C �.K/C 1.

Corollary 1.4 If K and J are concordant knots that are both closures of positive
3–braids , then the minimal r from Corollary 1.3 is the same for both K and J .

Proposition 3.2 provides a normal form for 3–braids, the Garside normal form, which
is different from Murasugi’s normal form mentioned above (see Definition 4.15). The
Garside normal form allows us to read off from a braid word whether it is conjugate to
a positive braid word. In Section 6, we provide formulas for the fractional Dehn twist
coefficient for all 3–braids in Garside normal form; see Corollary 6.1.

Proof strategy for Theorem 1.1 A crucial property of the invariant � is that it
provides a lower bound on the 4–genus g4.K/ of a knot K, the minimal genus of
a compact, connected, oriented surface smoothly embedded in the 4–ball B4 with
oriented boundary the knot K in S3 D @B4: we have

(1) j�.K/j � g4.K/

Algebraic & Geometric Topology, Volume 23 (2023)
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for any knot K [46, Theorem 1.11]. Our general strategy to find �.K/ for any 3–braid
knot K will be to construct a cobordism between K and another knot J for which
the value of � is known. A cobordism between K and J is a smoothly and properly
embedded oriented surface C in S3� Œ0; 1� with boundary K�f0g[J �f1g such that
the induced orientation on the boundary of C agrees with the orientation of K and
disagrees with the orientation of J . We have

(2) j�.K/� �.J /j � g.C /

for any cobordism C between K and J , where g.C / denotes the genus of the cobordism;
see inequality (15) in Section 4.1. This provides bounds on �.K/ in terms of �.J /
and g.C /.

We will find such cobordisms for example by algebraic modifications of a braid word
representing K and by saddle moves corresponding to the addition or deletion of
generators from such braid words. We will also repeatedly make use of the trick
described in Example 4.1 in Section 4.1 of looking at cobordisms of genus 1 between
O # T2;2nC1 and 1b2n for 3–braid words  and n� 1.

To prove Theorem 1.1, we will first determine � for all positive 3–braid knots and
then generalize our computations to all 3–braid knots. This extension was somewhat
unexpected for the author since, in contrast, the same method would not work to
determine slice-torus invariants — see Lewark [33] — like the invariant � defined by
Ozsváth and Szabó [48] or Rasmussen’s invariant s [50] for all 3–braid knots. We will
elaborate on this in Section 4.4.2.

Remark 1.5 As we will only use properties of the upsilon invariant (see Section 2.2)
and not its definition, we can similarly determine any concordance homomorphism
C!Z whose absolute value bounds the 4–genus of a knot from below and which takes
the same value as � on torus knots of braid index 2 and 3. An example is �1

2
t for the

concordance invariant t constructed by Ballinger [8] from the E.�1/ spectral sequence
on Khovanov homology. The invariant t defines a concordance homomorphism valued
in the even integers which satisfies

ˇ̌
1
2
t.K/

ˇ̌
� g4.K/ for any knot K [8, Theorem 1.1].

Moreover, it fulfills t.Tp;q/ D �2�.Tp;q/ for the torus knots Tp;q for any coprime
positive integers p and q [8, page 22]. The same method we use for the proof of
Theorem 1.1 shows that t.K/D�2�.K/ for any 3–braid knot K.

Remark 1.6 Theorem 1.1 and a result of Erle [17] imply that �.K/D 2�.K/ for all
3–braid knots K except when KD˙T3;3`Ck for odd ` > 0 and k 2 f1; 2g. Here �.K/
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denotes the classical signature of the knot K; see Trotter [54].1 In the exceptional
cases, �.K/D 2�.K/�2. This observation improves a result by Feller and Krcatovich
who showed that

ˇ̌
�.K/� 1

2
�.K/

ˇ̌
� 2 for all 3–braid knots K [20, Proposition 4.4];

see also Section 4.4.1.

Organization The remainder of this article is organized as follows. In Section 2, we
will provide the necessary background on (positive) braids and the upsilon invariant
before providing a normal form for 3–braids (Proposition 3.2) that we call the Garside
normal form in Section 3. Then in Section 4, after a more detailed outline of our
proof strategy (Section 4.1), we will prove Theorem 1.1 first for positive 3–braid knots
(Section 4.2) and afterwards in the general 3–braid case (Section 4.3). We will prove
Corollaries 1.3 and 1.4 in Section 4.2. Section 4.4 will provide further context on our
results. Section 5 is concerned with the proof of Corollary 1.2 (Section 5.1) and the
application of our result about the upsilon invariant to alternating distances of general
3–braid knots (Section 5.2). In particular, we determine the alternation number of any
3–braid knot up to an additive error of at most 1. Finally, in Section 6, we determine
the fractional Dehn twist coefficient for all 3–braids in Garside normal form.

Acknowledgements I would like to thank Peter Feller for introducing me to the topic
and for all the helpful discussions. Thanks also to Lukas Lewark for lots of useful
comments, including during my stay in Regensburg in September 2020, and to Xenia
Flamm for her feedback. Finally, I thank the referee for many valuable remarks and
improvements. This project is supported by the Swiss National Science Foundation
grant 181199.

2 Preliminaries

We recall important concepts about knots and braids, and also the necessary properties
of the upsilon invariant and the knot invariant � coming from Heegaard Floer homology.

2.1 Knots and braids

By a fundamental theorem of Alexander [4], every knot in S3 can be represented as the
closure of a geometric n–braid for some positive integer n. An n–braid is an element

1We use the standard signature convention that the positive torus knots have negative signatures, eg
�.T3;2/D�2.
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of the braid group on n strands, denoted by Bn, which is presented by n�1 generators
�1; : : : ; �n�1 and relations

�i�j D �j�i if ji � j j � 2;

�i�iC1�i D �iC1�i�iC1I

see [5]. We call a word in the generators of Bn and their inverses a braid word. A braid
word defines a diagram for a (geometric) n–braid where the generators �i of the braid
group correspond to the geometric n–braids given by the braid diagrams in which the
i th and .iC1/st strands cross once positively. In the following, we will always identify
braid words with the corresponding geometric braids, and we suppress n if the context
is clear.

By gluing the top ends of the (oriented) strands of a geometric braid  2 Bn to the
corresponding bottom ends, we get a knot (or link) O , called the closure of  . If 
induces a permutation with only one cycle on the ends of its n strands, then its closure
O is a knot and we call it an n–braid knot. Note that conjugate braids 0; 1 2 Bn,
denoted by 0 � 1, have isotopic closures O0 D O1. For a more detailed account on
braids, we refer the reader to [10].

A positive braid is an element of the braid group Bn for some n that can be written as
a positive braid word �s1

�s2
� � � �sl

with si 2 f1; : : : ; n� 1g. A knot is called a positive
braid knot if it can be represented as the closure of a positive braid. The set of positive
braid knots contains the sets of (positive) torus knots and algebraic knots, while itself
being a subset of the set of positive knots or, more generally, the frequently studied set
of (strongly) quasipositive knots.

Let wr. / denote the writhe of a braid word  2Bn, ie the exponent sum of the word  .
If  is a positive n–braid such that K D O is a knot, then, by work of Bennequin [9]
and Rudolph [51] — the latter building on Kronheimer and Mrowka’s proof of the local
Thom conjecture [32] — we have

(3) g4.K/D g.K/D 1
2
.wr. /� nC 1/:

2.2 The concordance invariants � and ‡

In [48], Ozsváth and Szabó constructed the knot invariant � via the knot filtration on
the Heegaard Floer chain complex of S3; the latter was also defined independently
by Rasmussen [49]. The invariant � induces a group homomorphism C! Z from the
(smooth) knot concordance group C to the group of integers Z and gives a lower bound
on the 4–ball genus g4.K/: we have j�.K/j � g4.K/ for any knot K. For the torus
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knots Tp;q , where p and q are coprime positive integers, the invariant � recovers the
3–genus [48, Corollary 1.7]; namely,

(4) �.Tp;q/D g.Tp;q/D
1
2
.p� 1/.q� 1/:

Moreover, it follows from [34, Theorem 4 and Corollary 7] together with (3) above
that, for any knot K that is the closure of a positive n–braid  ,

(5) �.K/D 1
2
.wr. /� nC 1/D g4.K/D g.K/:

The invariant ‡ was defined by Ozsváth, Stipsicz and Szabó in [46]. We will not recall
the definition of ‡ via the knot Floer complex CFK1.K/ since the properties of ‡
mentioned below will be enough for our later computations and we will not explicitly
use the Heegaard Floer theory behind it. For an overview on the properties of ‡ , see the
original article [46] or Livingston’s notes on ‡ [35]; see [28] for a survey on Heegaard
Floer homology and knot concordance.

For every knot K, the knot invariant ‡K W Œ0; 1�!R is a continuous, piecewise linear
function with the following properties [46]:

‡K .0/D 0;(6)

the slope of ‡K .t/ at t D 0 is given by � �.K/;(7)

‡K1#K2
.t/D ‡K1

.t/C‡K2
.t/ for all 0� t � 1 and all knots K1 and K2;(8)

‡�K .t/D�‡K .t/ for all 0� t � 1;(9)

j‡K .t/j � g4.K/t for all 0� t � 1:(10)

Here, �K is the knot obtained by mirroring K and reversing its orientation. Its
concordance class is the inverse of the class of K in the knot concordance group C. It
follows from (8)–(10) that ‡ induces a homomorphism from the concordance group to
the group of real-valued piecewise-linear functions on the interval Œ0; 1�.

For some classes of knots, the invariant ‡ can be explicitly computed in terms of
classical knot invariants like the signature and the Alexander polynomial.

Proposition 2.1 [46, Theorem 1.14] We have ‡K .t/D
1
2
�.K/t for all alternating or

quasialternating knots K and all 0� t � 1.

For positive torus knots, ‡K .t/ is completely determined by a combinatorial formula
in terms of their Alexander polynomial [46, Theorem 1.15]. For torus knots of braid
index 2 or 3, the following holds; see eg [18]. For `� 0,

(11) ‡T2;2`C1
.t/D��.T2;2`C1/ � t D�` � t for all 0� t � 1:
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For `� 0 and k 2 f1; 2g,

(12)

‡T3;3`C1
.1/D ‡T3;3`C2

.1/C 1D�2`;

‡T3;3`Ck
.t/D��.T3;3`Ck/t D�.3`C k � 1/t for all 0� t � 2

3

‡T3;3`Ck
.t/ is linear on

�
2
3
; 1
�
:

3 The Garside normal form for 3–braids

In this section, we provide a classification result on the conjugacy classes of 3–braids;
see Proposition 3.2. This result is basically due to work of Garside [25] who gave the
first solution to the conjugacy problem for all braid groups Bn with n � 3 in 1965.
Proposition 3.2 might be known to the experts, but since the explicit formulas appear
to be missing from the literature, we will provide them here.

Throughout, we denote the two generators of the braid group B3 by a WD �1 and
b WD �2 which are subject to the braid relation aba D bab. Recall that the braid
�2 D .aba/2 D .ab/3 generates the center of B3.

Remark 3.1 Any 3–braid is conjugate to the same braid with generators a and b

interchanged. More precisely, let  D ap1bq1 � � � apr bqr for some r � 1 and integers
pi and qi for i 2 f1; : : : ; rg be a 3–braid. Then using �a D b� and �b D a�, we
have

 D��1�ap1bq1 � � � apr bqr D��1bp1aq1 � � � bpr aqr�� bp1aq1 � � � bpr aqr :

In Proposition 3.2, we will provide a certain standard form for the conjugacy classes of
3–braids.

Proposition 3.2 Let  be a 3–braid. Then  is conjugate to one of the 3–braids

�2`ap; `2Z; p�0;(A)

�2`apb; `2Z; p2f1;2;3g;(B)

�2`ap1bq1 � � �apr bqr ; `2Z; r�1; pi ;qi�2; i 2f1; : : : ; rg;(C)

�2`C1ap1bq1 � � �apr�1bqr�1apr ; `2Z; r�1; pr ;pi ;qi�2; i 2f1; : : : ; r � 1g:(D)

If  is a positive 3–braid , then `� 0. If O is a knot , then only cases (B)–(D) can occur
and p must be odd in case (B), at least one of the pi and one of the qi must be odd in
case (C), and at least one of the pi or qi must be odd in case (D).
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While we will never use it in this article, we note — without proof — the following
uniqueness result related to Proposition 3.2.

Remark 3.3 Up to cyclic permutation of the powers p1; q1; : : : ;pr ; qr in (C) and
p1; q1; : : : ;pr�1; qr�1;pr in (D), each 3–braid is conjugate to exactly one of the 3–
braids listed in Proposition 3.2. This follows from Garside’s work [25]. In his notation,
each of the 3–braids listed in (A)–(D) in Proposition 3.2 is the standard form of a
certain element in the (so-called) summit set of  . For 3–braids of the form (C) or (D),
the summit set consists of those 3–braids obtained by cyclic permutation of the powers
p1; q1; : : : ;pr ; qr in (C) and p1; q1; : : : ;pr�1; qr�1;pr in (D), respectively.

Definition 3.4 We call a braid word of the form in (A)–(D) a 3–braid in Garside
normal form.

Remark 3.5 The advantage of the Garside normal form over Murasugi’s normal form
for 3–braids used later in Section 4.3 (see Definition 4.15) is that positive 3–braids are
easier to detect in this normal form: if  is a positive 3–braid, then  is conjugate to
one of the braids in (A)–(D) with ` � 0. Since Garside’s solution to the conjugacy
problem works for any n–braid with n� 3, one might hope to generalize an explicit
standard form as in Proposition 3.2 to n–braids for any n� 3.

Remark 3.6 For odd p, case (B) of Proposition 3.2 covers the torus knots of braid
index 3. More precisely, if  � �2`ab D .ab/3`C1, then its closure is O D T3;3`C1

for ` � 0 and O D �T3;3.�`�1/C2 for ` < 0, and if  � �2`a3b � .ab/3`C2, then
O D T3;3`C2 for `� 0 and O D�T3;3.�`�1/C1 for ` < 0.

Proof of Proposition 3.2 The proof will follow from the following claim.

Claim 1 Let  be a positive 3–braid. Then  is conjugate to one of the 3–braids in
(A)–(D) with `� 0.

We first deduce Proposition 3.2 from this claim. To that end, let  be any 3–braid. If 
is a positive braid, we are done by Claim 1. If not, then  can be written in the form
 D�m˛ where m is a negative integer and ˛ a positive 3–braid [25, Theorem 5]. In
fact, inserting ��1� if m is odd, we can assume  to be of the form ��2n˛ for some
n � 1 and a positive 3–braid ˛. The proposition then easily follows using the claim
for ˛. It remains to prove Claim 1.

Proof of Claim 1 A positive 3–braid  has the form  D aP1bQ1 � � � aPR bQR for
integers R� 1 and Pi ;Qi � 0 for i 2 f1; : : : ;Rg. If all the Pi or all the Qi are 0, then
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(possibly using Remark 3.1)  is conjugate to ap for some p� 0 and we are in case (A)
for `D 0. Possibly after conjugation and reduction of R, we can thus assume that all of
the integers Pi and Qi are nonzero. If P1;Q1 � 2 applies for all i 2 f1; : : : ;Rg, then
 is of the form in (C) for `D 0. If RD 1, ie  D aP1bQ1 for integers P1;Q1 � 1,
and P1 D 1 or Q1 D 1, then (possibly using Remark 3.1)  is conjugate to a braid of
the form in (B).

It remains to consider the case where R� 2 and at least one of the Pi or Qi is 1. In that
case — if necessary after conjugation —  contains �D abaD bab as a subword and
is thus conjugate to �˛ for some positive 3–braid ˛. Now, let n� 1 be maximal with
the property that  is conjugate to �n˛ for some positive 3–braid ˛. Then, possibly
after conjugation of  , the braid word ˛ must be one of the following:

(13)

ap; p � 0;

apb; p � 1;

ap1bq1 � � � apr bqr ; r � 1; pi ; qi � 2; i 2 f1; : : : ; rg;

ap1bq1 � � � apr�1bqr�1apr ; r � 1; pr � 2; pi ; qi � 2; i 2 f1; : : : ; r � 1g:

Indeed, using Remark 3.1, up to conjugation these are the only possible words such
that �n˛ does not contain any additional � as a subword. Note that ˛ can be the empty
word, which is covered by the first case in (13) for p D 0. Further, note that

(14)

�2`apb ��2`C1ap�2;

�2`C1a��2`a3b;

�2`C1apb ��2`C1apC1;

�2`C1ap1bq1 � � � apr bqr ��2`C1ap1Cqr bq1ap2 � � � bqr�1apr ;

�2`ap1bq1 � � � apr�1bqr�1apr ��2`ap1Cpr bq1ap2 � � � apr�1bpr�1

for any `� 0, p � 1 and pi ; qi � 2 for i 2 f1; : : : ; rg. It follows from a case by case
analysis of the cases in (13), using (14) and taking the parity of n into account, that
any positive 3–braid is conjugate to one of the 3–braids in (A)–(D) with `� 0.

4 The upsilon invariant of 3–braid knots

In this section, we prove Theorem 1.1. Along the way, we compute the invariant
� for positive 3–braid knots in Garside normal form (Proposition 4.2) and prove
Corollaries 1.3 and 1.4.
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4.1 Methodology

We first recall inequality (2) from the introduction — which will be repeatedly used in
Section 4 — in more generality.

The cobordism distance d.K;J / between two knots K and J is defined as the 4–
genus g4.K #�J / of the connected sum of K and the inverse of J . Equivalently, the
cobordism distance d.K;J / could be defined as the minimal genus of a smoothly and
properly embedded oriented surface C in S3 � Œ0; 1� with boundary K � f0g[J � f1g

such that the induced orientation on the boundary of C agrees with the orientation of K

and disagrees with the orientation of J . Suppose the genus of a cobordism C between
two knots K and J is g.C /. We then have d.K;J / � g.C /, so by the properties
(8)–(10) of ‡ from Section 2.2 we get

(15) j‡K .t/�‡J .t/j D j‡K#�J .t/j � g4.K #�T /t D d.K;T /t � g.C /t

for all 0� t � 1. This provides bounds on ‡K .t/ in terms of ‡J .t/ and g.C /.

We now give an example for the cobordisms we will use later on.

Example 4.1 Among other things, we will frequently use the following trick the
author first saw in [20, Example 4.5]. Let  be a 3–braid such that K D O is a knot.
Consider the 3–braid ˛ WD b2n for some n� 1. Then Ǫ is also a knot and there is a
cobordism between Ǫ and the connected sum K # T2;2nC1 of genus 1. This cobordism
can be realized by two saddle moves (1–handle attachments) of the form shown in
Figure 2, right, performed in the two circled regions of Figure 2, left. One of them is
used to add a generator b to the braid ˛ to obtain the braid word b2nC1 and the other
is used to transform the closure of this new braid word into a connected sum of K and
T2;2nC1. Recall that our braid diagrams are oriented from bottom to top.

Using �.T2;2nC1/D�n by (11) and that the genus of the cobordism is 1, by (15) for
t D 1 we have

(16) j�. Ǫ /� �.K # T2;2nC1/j � 1 () j�. Ǫ /� �.K/C nj � 1;

which provides the lower bound �.K/� �
�
Ǫ
�
C n� 1 on �.K/.

4.2 The upsilon invariant of positive 3–braid knots

In this section, we determine the invariant � for all positive 3–braid knots.

By Proposition 3.2 and Remark 3.6, positive 3–braid knots are either the torus knots
T3;3`Ck for `� 0 and k 2 f1; 2g which have braid representatives of Garside normal
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2n

Ǫ

2n

C1

O # T2;2nC1

2 saddle
moves

Figure 2: An example illustrating our proof strategy. Left: a schematic of
a cobordism between the knots Ǫ and O # T2;2nC1 realized by two saddle
moves. Right: a saddle move.

form (B), or closures of positive 3–braids of Garside normal form (C) or (D) (see
Definition 3.4). The following proposition thus proves Theorem 1.1 for all positive
3–braid knots.

Proposition 4.2 Let  be a positive 3–braid such that K D O is a knot. Then

�.K/D

8̂<̂
:
�2`� 1

2
.p�1/ if  is conjugate to a braid in (B);

�
1
2

�Pr
iD1.piCqi/

�
Cr �2` if  is conjugate to a braid in (C);

�
1
2

�Pr�1
iD1.piCqi/Cpr

�
Cr �2`� 3

2
if  is conjugate to a braid in (D):

Remark 4.3 In fact, the formulas from Proposition 4.2 also give the correct upsilon
invariant in terms of the Garside normal form of a 3–braid representative of a knot K

if K is the closure of any 3–braid in Garside normal form (C) or (D), not necessarily
a positive one. This follows from Theorem 1.1 (proved in the next section) and the
observations of Section 4.4.3.

Recall that for the torus knots of braid index 3, we know the invariant � by (12). In the
following, we will determine the invariant � for all knots that are closures of positive
3–braids of Garside normal form (C) or (D).
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We first provide an upper bound on ‡K .t/ for positive 3–braid knots K and 0� t � 1.
The following inequality (17) in Lemma 4.4 could also be shown using the dealternating
number and a result of Abe and Kishimoto [2, Lemma 2.2], whereas the main work
for the upper bound on � for the knots in the second and third case in Proposition 4.2
will be to rewrite the braid words representing these knots. We use the approach below
since it will also give bounds on the minimal cobordism distance between any positive
3–braid knot and an alternating knot; see Remark 4.14.

Lemma 4.4 Let  D ap1bq1 � � � apr bqr be a positive 3–braid , where r � 1 and
pi ; qi � 1 for i 2 f1; : : : ; rg are integers such that K D O is a knot. Then

(17) ‡K .t/� .�g.K/C r � 1/t for all 0� t � 1:

Proof We claim that there is a cobordism C of genus

(18) g.C /D 1
2
.r � 1C "/

between K and the connected sum

J" D T2;
Pr

iD1 piC"p
# T2;q1C"1

# T2;q2C"2
# � � � # T2;qrC"r

;

where "1; : : : ; "r ; "p 2 f0; 1g are chosen such that J" is a connected sum of torus knots
(rather than links), ie such that

Pr
iD1 piC"p , q1C"1, q2C"2; : : : ; qrC"r are all odd,

and " WD "pC
Pr

iD1 "i . This cobordism C can be realized by r�1C" saddle moves as
follows. Following the schematic in Figure 3, we add " generators b by " saddle moves
and additionally perform r � 1 saddle moves of the form shown in Figure 2, right, in
the circled regions of Figure 3. In Figure 3, a box on the left labeled pi or qi stands for
the positive braid api or bqi , respectively. The Euler characteristic of the cobordism C

is �.C /D�r C 1� ". Since C is connected and — as J" and K are knots — has two
boundary components, the genus of C is g.C /D�1

2
�.C /D 1

2
.r � 1C "/ as claimed.

By (15), we get j‡K .t/�‡J"
.t/j � g.C /t for all 0� t � 1; hence

(19) ‡K .t/� ‡J"
.t/Cg.C /t for all 0� t � 1:

By (8) and (11) from Section 2.2,

‡J"
.t/D

�
�

1

2

� rX
iD1

piC"p�1

�
�

1

2
.q1C"1�1/�

1

2
.q2C"2�1/�� � ��

1

2
.qrC"r�1/

�
t

D�
1

2

� rX
iD1

.piCqi/�.rC1/C"

�
t;
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p1p1

q1

p2p2

q2

pr

qr

q1

C"1

q2

C"2

qr

C"r

r � 1 C "

saddle
moves

pr

C"p

K J"

Figure 3: A schematic of a cobordism between K D O and the connected
sum of torus knots J" D T2;

Pr
iD1 piC"p

# T2;q1C"1
# T2;q2C"2

# � � �# T2;qrC"r

realized by r � 1C " saddle moves.

so (18) and (19) imply

‡K .t/�

�
�

1

2

� rX
iD1

.pi C qi/

�
C r

�
t for all 0� t � 1:
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The claim follows, since by (3),

g.K/D
wr. /� 2

2
D

1

2

� rX
iD1

.pi C qi/� 2

�
:

The following two lemmas improve the bound from Lemma 4.4 for knots that are
closures of positive 3–braids of Garside normal form (C) or (D), respectively.

Lemma 4.5 Let  D�2`C1ap1bq1 � � � apr�1bqr�1apr for some `� 0, r � 1, pr � 1

and pi ; qi � 1 for i 2 f1; : : : ; r � 1g such that K D O is a knot. Then

‡K .t/�

�
�

1

2

� r�1X
iD1

.pi C qi/Cpr

�
C r � 2`�

3

2

�
t for all 0� t � 1:

In the proof of Lemma 4.5, we will use that in B3,

(20) .ab/3nC1
D ab�2n

D a2ba3.aba3/n�1ban for all n� 1;

where �2 D .aba/2 D .ab/3 D .ba/3; see [18, Proof of Proposition 22].

Proof of Lemma 4.5 Let † D
Pr�1

iD1.pi C qi/Cpr and note that using (3),

(21) g.K/D 1
2
.3.2`C 1/C† � 2/D 1

2
† C 3`C 1

2
:

If `D 0, then  D�ap1bq1 � � � apr�1bqr�1apr is conjugate to

1 D ap1C1bq1 � � � apr�1bqr�1aprC1b

and O1 D O DK, so g. O1/D
1
2
† C

1
2

. By Lemma 4.4,

‡K .t/� .�g. O1/C r � 1/t D
�
�

1
2
† C r � 3

2

�
t for all 0� t � 1:

For `� 1, using �2`C1 D .ab/3`abaD .ab/3`C1a,

 D�2`C1ap1bq1 � � � apr�1bqr�1apr

D .ab/3`C1ap1C1bq1 � � � apr�1bqr�1apr

D a2ba3.aba3/`�1bap1C`C1bq1 � � � apr�1bqr�1apr (by (20))

� aprC2ba3.aba3/`�1bap1C`C1bq1 � � � apr�1bqr�1 DW 1:

We have O1 D O DK and g. O1/D
1
2
† C 3`C 1

2
by (21). Again, Lemma 4.4 implies

‡K .t/� .�g. O1/C r C `� 1/t D
�
�

1
2
† C r � 2`� 3

2

�
t for all 0� t � 1;

which proves the claim of the lemma.

Algebraic & Geometric Topology, Volume 23 (2023)



3778 Paula Truöl

Lemma 4.6 Let  D�2`ap1bq1 � � � apr bqr for some ` � 0, r � 1 and pi ; qi � 1 for
i 2 f1; : : : ; rg such that K D O is a knot. Then

‡K .t/�

�
�

1

2

� rX
iD1

.pi C qi/

�
C r � 2`

�
t for all 0� t � 1:

In the proof, we will need the following statement about positive 3–braids.

Lemma 4.7 In B3, we have .ab/3n�1 D a2nb.a2b2/n�1a for all n� 1.

Proof Starting with the left-hand side,

.ab/3n�1
D a.ba/3.n�1/bab D a.ab/3.n�1/aba;

which proves the lemma for nD 1. We now show by induction that

(22) .ab/3.n�1/aD a2n�1b.a2b2/n�2a2b for all n� 2;

which implies the lemma for all n� 1. For nD 2,

.ab/3aD a.ba/3 D a.ab/3 D a2babab D a3ba2b:

Assuming that (22) is true for some n� 1� 2,

.ab/3.n�1/aD a.ba/3.n�1/

D a.ab/3.n�1/

D a2.ba/3.n�2/babab

D a2.ab/3.n�2/aba2b

D a2.a2n�3b.a2b2/n�3a2b/ba2b

D a2n�1b.a2b2/n�2a2b;

using the induction hypothesis in the second to last equality.

Proof of Lemma 4.6 Let † D
Pr

iD1.piCqi/. If `D 0, then by (3) and Lemma 4.4,

‡K .t/� .�g.K/C r � 1/t D
�
�

1
2
† C r

�
t for all 0� t � 1:

For `� 1, using �2 D .ba/3 and Lemma 4.7,

 D .ba/3`ap1bq1 � � � apr bqr � .ab/3`�1ap1C1bq1 � � � apr bqrC1

� a2`b.a2b2/`�1ap1C2bq1 � � � apr bqrC1
DW 1:

Note that O1 D O DK and by (3),

g. O1/D g.K/D 1
2
.6`C† � 2/D 1

2
† C 3`� 1:
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Again by Lemma 4.4,

‡K .t/� .�g. O1/C r C `� 1/t D
�
�

1
2
† C r � 2`

�
t for all 0� t � 1:

We will now focus on �.K/D ‡K .1/ and prove Proposition 4.2 by showing that the
upper bounds on ‡K .t/ from Lemmas 4.5 and 4.6 for t D 1 are also lower bounds. We
will need the following observation used in [20, Example 4.5] about 3–braids, which
we prove here for completeness.

Lemma 4.8 In B3, a2nC1b.a2b2/nD .ab/3nC1 and b2nC1a.b2a2/nD .ba/3nC1 for
all n� 0.

Proof We prove the first statement by induction. For n D 0, the equality is clearly
true. For nD 1, using �aD b� and �b D a�, we have

a3ba2b2
D a2�ab2

D a2ba�b D a�2b D�2ab D .ab/4:

We now assume the lemma is true for some n� 1� 0. Using the induction hypothesis
and the equality for nD 1,

a2nC1b.a2b2/n D a2.ab/3.n�1/C1a2b2
D a3b�2.n�1/a2b2

D�2.n�1/a3ba2b2
D .ab/3.n�1/.ab/4 D .ab/3nC1:

Lemma 4.9 Let  D�2`C1ap1bq1 � � � apr�1bqr�1apr for some `� 0, r � 1, pr � 3

and pi ; qi � 2 for i 2 f1; : : : ; r � 1g such that K D O is a knot. Then

�.K/D�
1

2

� r�1X
iD1

.pi C qi/Cpr

�
C r � 2`�

3

2
:

Proof Let † D
Pr�1

iD1.pi C qi/Cpr . From Lemma 4.5, it follows directly that

�.K/D ‡K .1/� �
1
2
† C r � 2`� 3

2
;

so we are left to show that �.K/� �1
2
† C r � 2`� 3

2
. To that end, consider

 D�2`C1ap1bq1 � � � apr�1bqr�1apr

��2`a�ap1bq1 � � � apr�1bqr�1apr�1

D�2`bab2ap1bq1 � � � apr�1bqr�1apr�1
DW 1;

where we used a�D abab D bab2. Note that O1 D O DK. Now, define

˛ WD b2r1 D�
2`b2rC1ab2ap1bq1 � � � apr�1bqr�1apr�1
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and note that Ǫ is a knot. By assumption, pr � 1� 2. There is a cobordism between Ǫ
and the connected sum T2;2rC1 # O1 D T2;2rC1 # K of genus 1 by using two saddle
moves similar to the two saddle moves illustrated in Figure 2. Similarly as in (16) from
Example 4.1, we have �.K/� �. Ǫ /C r � 1. In order to find a lower bound for �. Ǫ /,
note that there is a cobordism C between Ǫ and the torus knot T D T3;3.`Cr/C1 of
genus g.C / D 1

2
† � 2r C 1

2
. Here we think of T as the closure of the braid word

ˇ D�2`b2rC1a.b2a2/r , which is equal to �2`.ba/3rC1 D .ba/3.`Cr/C1 as 3–braids
by Lemma 4.8. The cobordism C between Ǫ and T D Ǒ can thus be realized by

p1� 2C q1� 2C � � �Cpr�1� 2C qr�1� 2Cpr � 3D† � 4r C 1

saddle moves corresponding to the deletion of the same number of generators a and b

from the braid word ˛ to obtain ˇ. Hence the Euler characteristic of the cobordism C

is �.C /D�† C4r �1. Since C is connected and has two boundary components (as
Ǫ and T D Ǒ are knots), the genus of C is indeed g.C /D 1

2
† � 2r C 1

2
. Now, by

(15) and (12),

�. Ǫ /� �.T /�g.C /D�2.`C r/�
�

1
2
† � 2r C 1

2

�
D�

1
2
† � 2`� 1

2
:

It follows that
�.K/� �. Ǫ /C r � 1� �1

2
† C r � 2`� 3

2
:

Lemma 4.10 Let  D �2`ap1bq1 � � � apr bqr for some ` � 0, r � 1, pr ; qr � 3 and
pi ; qi � 2 for i 2 f1; : : : ; r � 1g such that K D O is a knot. Then

�.K/D�
1

2

� rX
iD1

.pi C qi/

�
C r � 2`:

Proof The proof uses similar ideas as that of Lemma 4.9. Let† D
Pr

iD1.piCqi/. By
Lemma 4.6, �.K/��1

2
†Cr�2`, so it remains to show that �.K/��1

2
†Cr�2`.

To that end, we consider

 D�2`ap1bq1 � � � apr bqr ��2`bap1bq1 � � � apr bqr�1
DW 1:

Note that O1 D O DK. We define

˛ WD a2r1 D a2r�2`bap1bq1 � � � apr bqr�1
��2`ba2r bap1bq1 � � � apr bqr�2

DW ˛1:

Then Ǫ1 D Ǫ is a knot and by assumption we have qr � 2� 1. There is a cobordism
between Ǫ and T2;2rC1 # O1 D T2;2rC1 # K of genus 1 by using two saddle moves
similar to the cobordism considered in Example 4.1 and in the proof of Lemma 4.9;
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hence �.K/� �. Ǫ1/C r � 1. To find a lower bound for �. Ǫ1/, we observe that there
is a cobordism C between the knot Ǫ1 and the knot Ǒ, where

ˇ D�2`ba2r b.a2b2/r�1a3b:

Using Lemma 4.8 for n� 1, in B3,

ba2nb.a2b2/n�1a2
D ba.ab/3.n�1/C1a2

D ba�2.n�1/aba2
D�2n for all n� 1:

We thus have ˇ D �2`�2r ab D .ab/3.`Cr/C1, so the closure of ˇ is the torus knot
T D T3;3.`Cr/C1 with �.T /D�2.`C r/ by (12). The cobordism C between Ǫ1 and
T D Ǒ can be realized by

p1� 2C q1� 2C � � �Cpr�1� 2C qr�1� 2Cpr � 3C qr � 3D† � 4r � 2

saddle moves corresponding to the deletion of the same number of generators a and b

from the braid word ˛1 to obtain ˇ. By a similar Euler characteristic argument as in the
proofs of Lemmas 4.4 and 4.9, the genus of this cobordism is g.C /D 1

2
† � 2r � 1.

Note that here we used pr � 3 and qr � 3. Now, by (15),

�. Ǫ1/� �.T /�g.C / D�1
2
† � 2`C 1;

�.K/� �. Ǫ1/C r � 1� �1
2
† C r � 2`:

Lemma 4.11 Let  D�2`ap1bq1 � � � apr bqr for some `� 0, r � 2 and pi ; qi � 2 for
i 2 f1; : : : ; rg. Suppose that qr � 3 and pk � 3 for some 1� k < r and that K D O is
a knot. Then

�.K/D�
1

2

� rX
iD1

.pi C qi/

�
C r � 2`:

Proof We proceed as in the proof of Lemma 4.10, but here we will look at a different
cobordism to obtain a lower bound for �. Ǫ1/. The steps of the proof are exactly the
same until then, so we consider

 D�2`ap1bq1 � � � apr bqr ��2`bap1bq1 � � � apr bqr�1
DW 1

and define
˛ WD a2r1 ��

2`ba2r bap1bq1 � � � apr bqr�2
DW ˛1:

Again, we have �.K/� �. Ǫ1/C r � 1: Now, in order to find a lower bound for �. Ǫ1/,
we observe that there is a cobordism C between Ǫ1 and the knot Ǒ, where

ˇ D�2`ba2r b.a2b2/k�1a3b2.a2b2/r�k�1a2b:
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We find the cobordism C by the deletion of generators from the braid word ˇ to
obtain ˛1, where we use the assumptions qr � 3 and pk � 3. In fact, the cobordism
can be realized by

p1� 2C q1� 2C � � �Cpk�1� 2C qk�1� 2Cpk � 3C qk � 2

CpkC1� 2C qkC1� 2C � � �Cpr�1� 2C qr�1� 2

Cpr � 2C qr � 3D† � 4r � 2

saddle moves, so its genus is g.C /D 1
2
† � 2r � 1. Using

a2k�1b.a2b2/k�1
D .ab/3k�2

from Lemma 4.8, we have

ˇ D�2`ba2r�2kC1.ab/3k�2a3b2.a2b2/r�k�1a2b

D�2`ba2r�2kC1�2.k�1/aba3b2.a2b2/r�k�1a2b

��2.`Ck�1/�a2b2.a2b2/r�k�1a2b2a2r�2kC1

D�2.`Ck�1/C1.a2b2/r�kC1a2r�2kC1
DW ˇ1:

Note that by our assumptions on `, r and k, we have `Ck � 1� 0, r �kC 1� 2 and
2r � 2kC 1� 3, so ˇ1 has the form of the braid words considered in Lemma 4.9. We
thus have

�. Ǒ/D �. Ǒ1/D�
1
2
.4.r � kC 1/C 2r � 2kC 1/C .r � kC 2/� 2.`C k � 1/� 3

2

D�2.`C r/:

By (15),
�. Ǫ1/� �. Ǒ/�g.C /D�1

2
† � 2`C 1;

�.K/� �. Ǫ1/C r � 1� �1
2
† C r � 2`:

Proof of Proposition 4.2 The first case of Proposition 4.2 follows from Remark 3.6
and (12). Lemmas 4.10 and 4.11 together prove the second case, Lemma 4.9 proves
the third case. Note that up to conjugation, by Remark 3.1 and the remarks in
Proposition 3.2, it is no restriction to assume that pr � 3 in Lemma 4.9 and that
qr � 3 and either pr � 3 or pk � 3 for some 1 � k < r in Lemmas 4.10 and 4.11,
respectively.

Before we proceed with the general case where the knot K is given as the closure of
any 3–braid, let us prove the following corollaries of our results in this section.
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Corollary 4.12 (Corollary 1.3) Let K be a knot that is the closure of a positive
3–braid. Then

r D g.K/C �.K/C 1

is minimal among all integers r � 1 such that K is the closure of a positive 3–braid
ap1bq1 � � � apr bqr for integers pi ; qi � 1 for i 2 f1; : : : ; rg.

Proof By Lemma 4.4,

�.K/� �g.K/C r � 1 () g.K/C �.K/C 1� r

whenever K is the closure of a positive 3–braid ap1bq1 � � � apr bqr for integers r � 1

and pi ; qi � 1 for i 2 f1; : : : ; rg. It remains to show that we can always find a positive
braid representative for K of the form ap1bq1 � � � apr bqr with r D g.K/C �.K/C 1.
We will use Proposition 3.2. In fact, if K is the closure of a positive braid  of the form
in (C) with `� 0, then g.K/C�.K/C1D rC` by (3) applied to  and Lemmas 4.10
and 4.11. Moreover,

 D ap1bq1 � � � apr bqr if `D 0;

 � a2`b.a2b2/`�1ap1C2bq1 � � � apr bqrC1 if `� 1

by the proof of Lemma 4.6; these give the desired braid representatives for K. Fur-
thermore, if K is represented by a positive braid  of the form in (D) with `� 0, then
g.K/C �.K/C 1D r C ` by (3) and Lemma 4.9, and we have

 � ap1C1bq1 � � � apr�1bqr�1aprC1b if `D 0;

 � aprC2ba3.aba3/`�1bap1C`C1bq1 � � � apr�1bqr�1 if `� 1

by the proof of Lemma 4.5. Finally, if KDT3;3`Ck for `� 0 and k 2 f1; 2g, then by (4)
and (12), we have g.K/C�.K/C1D `C1 and T3;3`C1 and T3;3`C2 are represented
by the positive 3–braids .ab/3`C1D a2`C1b.a2b2/` and .ab/3`C2 � a2`C3b.a2b2/`;

respectively, by Lemmas 4.8 and 4.7.

Corollary 4.13 (Corollary 1.4) If K and J are concordant knots that are both closures
of positive 3–braids , then the minimal r from Corollary 4.12 is the same for both K

and J .

Proof If K and J are concordant, then their 4–genus and their upsilon invariants
are equal. So by (3) from Section 2.1 and by Corollary 4.12, positive 3–braids with
closures K and J , respectively, will have the same minimal r .
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Remark 4.14 Let Ag.K/ denote the minimal genus of a cobordism between a knot
K and an alternating knot, ie the cobordism distance d.K; falternating knotsg/. By
[23, Theorem 8], we have 1

2
j�.K/C�.K/j �Ag.K/ for any knot K. It thus follows

from our results in this section that

1
2
.r C `� 1/�Ag.K/�

1
2
.r C `� 1C "/

for any knot K that is the closure of a positive 3–braid in Garside normal form (C)
or (D), where "� 0 is an integer depending on K. The lower bound uses Proposition 4.2
and (5) from Section 2.2; see also the proof of Corollary 4.12. The upper bound follows
from the proofs of Lemmas 4.5 and 4.6; see also the proof of Lemma 4.4. Note that
for most positive 3–braid knots, we have " > 0, so we do not get an equality.

A shorter proof of Lemma 4.4 without cobordisms follows from a result of Abe and
Kishimoto on the dealternating number of positive 3–braid knots. Indeed, by (5), (24)
and (27),

j‡K .t/Cg.K/t jDj‡K .t/C�.K/t j�alt.K/t�dalt.K/t� .r�1/t for all 0� t�1:

The definitions of the dealternating number dalt.K/ and the alternation number alt.K/
of a knot K and more details on the inequalities used here will be provided in Section 5.

4.3 Proof of Theorem 1.1

It remains to show Theorem 1.1 when K is the closure of a not necessarily positive
3–braid. We first recall a result of Murasugi, which implies that indeed all 3–braid
knots except for the torus knots of braid index 3 are covered by Theorem 1.1.

Let  be a 3–braid. Then, by [45, Proposition 2.1],  is conjugate to one and only one
of the 3–braids

�2`ap or �2`C1 for ` 2 Z; p 2 Z;(a)

�2`ab or �2`.ab/2 for ` 2 Z;(b)

�2`a�p1bq1 � � � a�pr bqr for ` 2 Z; r � 1; pi ; qi � 1; i 2 f1; : : : ; rg:(c)

Definition 4.15 We call a braid word of the form in (a)–(c) a 3–braid in Murasugi
normal form.

Remark 4.16 The closures of the 3–braids in Murasugi normal form (a) are links of
two (if p is odd) or three components and the closures of the 3–braids in Murasugi
normal form (b) are the torus knots of braid index 3 (see Remark 3.6).
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If `D 0 in case (c), the braid word  D a�p1bq1 � � � a�pr bqr for integers r � 1 and
pi ; qi � 1 for i 2 f1; : : : ; rg gives rise to an alternating braid diagram. If K D O is a
knot, by Proposition 2.1 we thus have �.K/D 1

2
�.K/ in that case and the statement of

Theorem 1.1 follows directly from a result by Erle on the signature of 3–braid knots.

Proposition 4.17 [17, Theorem 2.6] Let  D�2`a�p1bq1 � � � a�pr bqr for integers
` 2 Z, r � 1 and pi ; qi � 1 for i 2 f1; : : : ; rg such that K D O is a knot. Then

�.K/D

rX
iD1

.pi � qi/� 4`:

We still need to show Theorem 1.1 when K is the closure of a 3–braid in Murasugi
normal form (c) with `¤ 0. The proof will follow from the following two lemmas.

Lemma 4.18 Let  D�2`a�p1bq1 � � � a�pr bqr for some `� 1, r � 1 and pi ; qi � 1

for i 2 f1; : : : ; rg such that K D O is a knot. Then

‡K .t/�

�
1

2

� rX
iD1

.pi � qi/

�
� 2`

�
t for all 0� t � 1:

Lemma 4.19 Let  D�2`a�p1bq1 � � � a�pr bqr for some `� 0, r � 1 and pi ; qi � 1

for i 2 f1; : : : ; rg such that K D O is a knot. Then

�.K/�
1

2

� rX
iD1

.pi � qi/

�
� 2`:

Proof of Theorem 1.1 For ` � 1, the statement of the theorem follows directly
from Lemmas 4.18 and 4.19. If ` < 0, the knot �K is represented by the braid word
��2`a�qr bpr � � � a�q1bp1 with �`� 1 and accordingly we have

�.�K/D
1

2

� rX
iD1

.qi �pi/

�
C 2`:

Using that �.�K/D��.K/ by (9) from Section 2.2, this implies the claim.

The remainder of this section is devoted to the proofs of the above lemmas.

Proof of Lemma 4.18 We first consider the case where p1 � 2 and ` � 2. Using
�a�1 D ab and

.ab/3nC2
D bnC1a.b3ab/n�1b3ab3 for all n� 1
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from [18, Proof of Proposition 22], we have

 D�2`a�p1bq1 � � � a�pr bqr

D�2.`�1/C1aba�p1C1bq1 � � � a�pr bqr

D .ba/3.`�1/C2ba�p1C1bq1 � � � a�pr bqr

� .ab/3.`�1/C2a�p1C1bq1 � � � a�pr bqrC1

� a.b3ab/`�2b3ab3a�p1C1bq1 � � � a�pr bqrC`C1
DW 1:

Now, we claim that there is a cobordism C of genus g.C /D 1
2
.`C r �1C "/ between

the closure K of 1 and the connected sum

J" D�T2;p1�1�"1
#�T2;p2�"2

# � � � #�T2;pr�"r
# T2;

Pr
iD1 qiC5`�1C"q

;

where we choose "1; : : : ; "r ; "q 2 f0; 1g such that J" is a connected sum of torus knots,
ie such that

Pr
iD1 qi C 5`� 1C "q , p1 � 1� "1, p2 � "2; : : : ;pr � "r are all odd;

and "D "qC
Pr

iD1 "i . This cobordism C can be realized using `C r � 1C " saddle
moves as follows. On the one hand, we add

Pr
iD1 "i generators a and "q generators

b to the braid word 1; on the other hand, we perform `C r � 1 saddle moves of the
form as the r �1 saddle moves used in the proof of Lemma 4.4 to get a connected sum
of torus knots. The Euler characteristic of C is �.C / D �`� r C 1� ". Since C is
connected and has two boundary components (as K and J" are knots), the genus of C

is g.C /D�1
2
�.C /D 1

2
.`C r � 1C "/ as claimed. By (8) and (11),

‡J"
.t/D

�
1

2

� rX
iD1

.pi � qi/� "� r � 5`C 1

��
t for all 0� t � 1;

and by (15),

‡K .t/� ‡J"
.t/Cg.C /t D

�
1

2

� rX
iD1

.pi � qi/

�
� 2`

�
t for all 0� t � 1:

If p1 � 2 and `D 1, then

 � .ab/2a�p1C1bq1 � � � a�pr bqrC1
� ab2a�p1C1bq1 � � � a�pr bqrC2

DW 1;

and similarly as above, there is a cobordism C of genus g.C /D 1
2
.r C "/ between the

closure K of 1 and the connected sum

J" D�T2;p1�1�"1
#�T2;p2�"2

# � � � #�T2;pr�"r
# T2;

Pr
iD1 qiC4C"q

;
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where we choose "1; : : : ; "r ; "q 2 f0; 1g such that J" is a connected sum of torus knots
and "D "qC

Pr
iD1 "i . The claim follows also in this case from equations (8) and (11),

and the inequality in (15).

It remains to show the claim when p1 D 1. In that case, using �a�1 D ab,

 D�2`a�1bq1 � � � a�pr bqr

D�2`�1abq1C1
� � � a�pr bqr ��2`�1bq1C1

� � � a�pr bqrC1:

If `D 1, then  is conjugate to 1 D abq1C2a�p2bq2 � � � a�pr bqrC2 and if `� 2, then
using (20) from Section 4.2,

 ��2.`�1/C1bq1C1a�p2bq2 � � � a�pr bqrC1

D .ba/3.`�1/C1bq1C2a�p2bq2 � � � a�pr bqrC1

� ab3.bab3/`�2abq1C`C1a�p2bq2 � � � a�pr bqrC3
DW 1:

In both cases, there is a cobordism C of genus g.C /D 1
2
.`C r � 2C "/ between the

closure K of 1 and the connected sum

J" D�T2;p2�"2
# � � � #�T2;pr�"r

# T2;
Pr

iD1 qiC5`�1C"q
;

where we choose "1; : : : ; "r ; "q 2 f0; 1g such that J" is a connected sum of torus knots
and "D "qC

Pr
iD1 "i . Using (8), (11), and (15) again, the claim follows.

We will need the following two technical lemmas for the proof of Lemma 4.19.

Lemma 4.20 Let  D�2`ap1bq1 � � � apr bqr for some `� 0, r � 1 and integers pi and
qi such that pi < 0 or pi � 2, and qi < 0 or qi � 2, for any i 2 f1; : : : ; rg. Moreover ,
assume that K D O is a knot. Then

�.K/� �
1

2

� rX
iD1

.pi C qi/

�
C r � 2`� #fi j pi < 0g� #fi j qi < 0g;

where #A denotes the cardinality of the set A.

Lemma 4.21 Let  D �2`C1ap1bq1 � � � apr�1bqr�1apr for some ` � 0, r � 1 and
integers pi and qi such that pi < 0 or pi � 2 for any i 2 f1; : : : ; rg and qi < 0 or qi � 2

for any i 2 f1; : : : ; r � 1g. Moreover , assume that K D O is a knot. Then

�.K/� �
1

2

� r�1X
iD1

.pi C qi/Cpr

�
C r � 2`�

3

2
� #fi j pi < 0g� #fi j qi < 0g:
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For the proofs of Lemmas 4.20 and 4.21, we refer the reader to the very end of this
section; we will first prove Lemma 4.19 using these lemmas.

Proof of Lemma 4.19 Let k be the number of exponents qj of  with qj D 1 and let
J D fj1; : : : ; jkg for 0 � k � r be the set of indices such that qj D 1 if and only if
j 2 J . For all j 2 J , we rewrite the subword a�pj bqj of  using ��1ab D a�1 as

a�pj bqj D a�pj b D a�pj a�1���1ab D a�pj�1�a�1
D�b�pj�1a�1:

Note that if j ; jC12J , then a�pj bqj a�pjC1bqjC1 D�2a�pj�1b�pjC1�2a�1: After
rewriting a�pj bqj for all j 2 J , the braid  is conjugate to 1 D �

2`Ck˛ for some
3–braid ˛ which is of the form

˛ D

�
a Qp1b Qq1 � � � a Qpnb Qqn for nD r � 1

2
k if k is even;

b Qp1aQq1 � � � b Qpn�1aQqn�1b Qpn for nD r � 1
2
.k � 1/ if k is odd;

where
Pn

iD1. Qpi C Qqi/ D
Pr

iD1.�pi C qi/� 3k and where the Qpi and Qqi fulfill the
assumptions of Lemmas 4.20 and 4.21, respectively, ie where Qpi < 0 or � 2 and Qqi < 0

or � 2 for any i . The number of negative exponents in ˛ equals the number of negative
exponents �pi in  , so

#fi j Qpi < 0gC #fi j Qqi < 0g D r:

If k is even, by Lemma 4.20,

�. O /� �
1

2

� nX
iD1

. Qpi C Qqi/

�
C n� .2`C k/� #fi j Qpi < 0gC #fi j Qqi < 0g

D �
1

2

� rX
iD1

.�pi C qi/� 3k

�
C r �

k

2
� .2`C k/� r

D
1

2

� rX
iD1

.pi � qi/

�
� 2`:

Similarly, if k is odd, the claim follows from Lemma 4.21.

It remains to prove Lemmas 4.20 and 4.21.

Proof of Lemma 4.20 We will modify the braid word  in 2r steps, where each step
corresponds to one of the 2r exponents pi or qi , for i 2 f1; : : : ; rg, of  . In every step,
we will either just conjugate  (if the corresponding exponent is positive) or perform
a cobordism of genus 1 between the closure of a2n or b2n and the connected sum
T2;2nC1 # O for some n� 0 — similar to the cobordism described in Example 4.1 and

Algebraic & Geometric Topology, Volume 23 (2023)



The upsilon invariant at 1 of 3–braid knots 3789

used in the proofs of Lemmas 4.9, 4.10 and 4.11. We now describe these steps in more
detail. First, let  0

0;q
D  and define

a�p1C2C"1;p 00;q D�
2`a2C"1;p bq1ap2bq2 � � � apr bqr

��2`bq1ap2bq2 � � � apr bqr a2C"1;p DW  01;p if p1 < 0;

 00;q ��
2`bq1ap2bq2 � � � apr bqr ap1 DW  01;p if p1 > 0;

so that  0
1;p
D�2`bq1ap2 � � � apr bqr a Qp1 for some Qp1� 2 (note that we assumed p1< 0

or p1 � 2). Here, if p1 < 0, we choose "1;p 2 f0; 1g such that �p1C 2C "1;p is even
and O 0

1;p
is a knot. Second, let "1;q 2 f0; 1g be such that �q1 C 2C "1;q is even if

q1 < 0, and define

1;q D b�q1C2C"1;q 01;p D�
2`b2C"1;q ap2bq2 � � � apr bqr a Qp1

��2`ap2bq2 � � � apr bqr a Qp1b2C"1;q DW  01;q if q1 < 0;

1;q D 
0
1;p ��

2`ap2bq2 � � � apr bqr a Qp1bq1 DW  01;q if q1 > 0;

so that  0
1;q
D�2`ap2bq2 � � � apr bqr a Qp1b Qq1 for some Qp1; Qq1 � 2. Inductively, for any

1� i � r , we let

a�piC2C"i;p 0i�1;q

D�2`a2C"i;p bqi apiC1 � � � apr bqr a Qp1b Qq1 � � � a Qpi�1b Qqi�1

��2`bqi apiC1 � � � apr bqr a Qp1b Qq1 � � � a Qpi�1b Qqi�1a2C"i;p DW  0i;p if pi < 0;

 0i�1;q ��
2`bqi apiC1 � � � apr bqr a Qp1b Qq1 � � � a Qpi�1b Qqi�1api DW  0i;p if pi > 0;

so that
 0i;p D�

2`bqi apiC1 � � � apr bqr a Qp1b Qq1 � � � a Qpi�1b Qqi�1a Qpi

for some integers Qp1; Qq1; : : : ; Qpi�1; Qqi�1; Qpi � 2. Here we choose "i;p 2 f0; 1g such
that �pi C 2C "i;p is even if pi < 0. Moreover, for 1� i � r , we let "i;q 2 f0; 1g be
such that �qi C 2C "i;q is even, and define

i;q D

�
b�qiC2C"i;q 0i;p if qi < 0;

 0i;p if qi > 0;

and we define  0i;q similarly as  0
1;q

. Inductively, after 2r steps, we get the positive
3–braid

 0r;q D�
2`a Qp1b Qq1 � � � a Qpr b Qqr

with

Qpi D

�
2C "i;p if pi < 0;

pi if pi > 0;
and Qqi D

�
2C "i;q if qi < 0;

qi if qi > 0;

Algebraic & Geometric Topology, Volume 23 (2023)



3790 Paula Truöl

for all 1� i � r ; so Qp1; Qq1; : : : ; Qpr ; Qqr � 2. By Proposition 4.2,

�. O 0r;q/D�
1

2

� rX
iD1

pi>0

pi C

rX
iD1
qi>0

qi C

rX
iD1

pi<0

.2C "i;p/C

rX
iD1
qi<0

.2C "i;q/

�
C r � 2`:

Now, note that if pi <0 for some 1� i � r , then there is a cobordism of genus 1 between
O 0i;p and T2;2mC1 # O 0

i�1;q
by using two saddle moves, where mD 1

2
.�pi C 2C "i;p/,

so similarly as in (16) from Example 4.1, we have

�. O 0i�1;q/� �. O
0
i;p/Cm� 1D �. O 0i;p/C

1
2
.�pi C "i;p/:

Similarly, if qi < 0 for some 1 � i � r , then �. O 0i;p/ � �. O
0
i;q/C

1
2
.�qi C "i;q/. In

addition, if pi > 0, then �. O 0i;p/ D �. O
0
i�1;q

/, and if qi > 0, then �. O 0i;q/ D �. O
0
i;p/.

We conclude that

�. O /D �. O 00;q/� �. O
0
r;q/C

rX
iD1

pi<0

�pi C "i;p

2
C

rX
iD1
qi<0

�qi C "i;q

2

D�
1

2

� rX
iD1

pi>0

pi C

rX
iD1
qi>0

qi C

rX
iD1

pi<0

.pi C 2/C

rX
iD1
qi<0

.qi C 2/

�
C r � 2`

D�
1

2

� rX
iD1

.pi C qi/

�
C r � 2`� #fi j pi < 0g� #fi j qi < 0g:

Proof of Lemma 4.21 The strategy of the proof is the same as in the proof of
Lemma 4.20. Here, we need 2r � 1 steps corresponding to the 2r � 1 exponents
p1; q1; : : : ;pr�1; qr�1;pr of  . The steps are similar to the proof of Lemma 4.20, the
only change is that we multiply  0

i�1;q
by a power of b if pi < 0, and  0i;p by a power

of a if qi < 0 (since a�2`C1 D�2`C1b and b�2`C1 D�2`C1a). Thus, starting with
 0

0;q
D  , after 2r � 1 steps we obtain the positive 3–braid

 0r;p D�
2`C1a Qp1b Qq1 � � � a Qpr�1b Qqr�1a Qpr

with
Qpi D

�
2C "i;p if pi < 0;

pi if pi > 0;
and Qqi D

�
2C "i;q if qi < 0;

qi if qi > 0:

By Lemma 4.9,

�. 0r;p/D�
1

2

� rX
iD1

pi>0

pi C

r�1X
iD1
qi>0

qi C

rX
iD1

pi<0

.2C "i;p/C

r�1X
iD1
qi<0

.2C "i;q/

�
C r � 2`�

3

2
:
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Since the steps we performed have similar effects on �. O / as the ones in the proof of
Lemma 4.20, we get

�. O /D �. O 00;q/� �. O
0
r;p/C

rX
iD1

pi<0

�pi C "i;p

2
C

r�1X
iD1
qi<0

�qi C "i;q

2

D�
1

2

� rX
iD1

pi>0

pi C

r�1X
iD1
qi>0

qi C

rX
iD1

pi<0

.pi C 2/C

r�1X
iD1
qi<0

.qi C 2/

�
C r � 2`�

3

2

D�
1

2

� r�1X
iD1

.pi C qi/Cpr

�
C r � 2`�

3

2
� #fi j pi < 0g� #fi j qi < 0g:

4.4 Further discussion of Theorem 1.1

In this section, we provide some further context on our main result. In particular, in
Section 4.4.2 we will discuss why it might be surprising that our proof strategy works
for all 3–braid knots.

4.4.1 Comparison of upsilon and the classical signature By Theorem 1.1 and
Proposition 4.17,

(23) �.K/D 2�.K/

for any knot K that is the closure of a 3–braid  D�2`a�p1bq1 � � � a�pr bqr for integers
` 2 Z, r � 1 and pi ; qi � 1 for i 2 f1; : : : ; rg. Computations of the signature for torus
knots (and links) of braid index 3, first done by Hirzebruch, Murasugi and Shinora
[45, Proposition 9.1, pages 34–35], together with (12) from Section 2.2 imply that
the equality in (23) is in fact true for all 3–braid knots K except for the cases that
K D ˙T3;3`C1 for odd ` > 0 or K D ˙T3;3`C2 for odd ` > 0. In the exceptional
cases, we have �.K/D 2�.K/� 2. As mentioned in the introduction, this improves
the inequality

ˇ̌
�.K/� 1

2
�.K/

ˇ̌
� 2 for all 3–braid knots K in [20, Proposition 4.4].

It was shown in [47, Theorem 1.2] that
ˇ̌
�.K/� 1

2
�.K/

ˇ̌
gives a lower bound on the

nonorientable smooth 4–genus of a knot K, denoted by 4.K/, the minimal first Betti
number of a nonorientable surface in B4 that meets the boundary S3 along K. The
similarity of the invariant � and the classical signature � on 3–braid knots K described
above clearly does not lead to a good lower bound on 4.K/.

However, the equality �.K/ D 2�.K/ for most 3–braid knots is actually no great
surprise when noting that in fact

ˇ̌
�.K/� 1

2
�.K/

ˇ̌
� 1 must be true for all 3–braid
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knots K for the following reason. It is not hard to see that for every 3–braid knot K,
there is a nonorientable band move to a 2–bridge knot J , which is alternating [26].
This implies that the nonorientable cobordism distance d .K;J / D 4.K # �J /

between K and J is bounded from above by 1. On the other hand, using that �
and � induce homomorphisms C ! Z (see Section 2.2 and [44]), the inequalityˇ̌
�.K/� 1

2
�.K/

ˇ̌
� 4.K/ implies thatˇ̌

�.K/� 1
2
�.K/

ˇ̌
D
ˇ̌
�.K #�J /� 1

2
�.K #�J /

ˇ̌
� d .K;J /� 1;

where we used �.J /D 1
2
�.J / by Proposition 2.1.

Note that a similar argument shows that
ˇ̌
�.K/� 1

2
�.K/

ˇ̌
� 2 for all 4–braid knots K,

using two nonorientable band moves to transform K into a 2–bridge link, which is also
alternating.

4.4.2 On the proof technique As mentioned in the introduction, it came as a surprise
to the author that our proof strategy works not only for positive 3–braid knots, but for
all 3–braid knots. Let us make this more precise.

The proofs in Sections 4.2 and 4.3 imply, for any 3–braid knot K, the existence of
cobordisms C1 and C2 of genus g.C1/ and g.C2/ between K and (connected sums of)
torus knots T1 and T2, respectively, such that

g.C1/Cg.C2/D j�.T2/� �.T1/j

and
�.K/D �.T1/Cg.C1/D �.T2/�g.C2/:

For example, for knots K that are closures of positive 3–braids of Garside normal
form (D), the proof of Lemma 4.5 shows the existence of such a cobordism C1 for
T1 D J" as in the proof of Lemma 4.4; and the existence of such a cobordism C2

between K and T2 D T3;3.`Cr/C1 #�T2;2rC1 follows from the proof of Lemma 4.9.

The same strategy would work to determine the concordance invariants s and � for
all positive 3–braid knots K. Indeed, every positive 3–braid knot can be realized
as the slice of a cobordism C between the unknot U and a torus knot T of braid
index 3 such that g.C / D j�.U / � �.T /j D js.U / � s.T /j [21, Proposition 4.1].
However, in contrast, there are 3–braid knots where this strategy provably fails to
determine s and � . A concrete example is the 3–braid knot 10125 — the closure of
a�5ba3b [36] — which is not squeezed [21, Example 3.1]. This means that every
cobordism C between two connected sums of torus knots T1 and T2 that has 10125 as
a slice satisfies g.C / > j�.T2/� �.T1/j D js.T2/� s.T1/j.
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4.4.3 Comparison of the normal forms for 3–braids An algorithm described in
[11, Section 7] as Schreier’s solution to the conjugacy problem [52] can be used to
convert 3–braids in Garside normal form (see Definition 3.4) to 3–braids in Murasugi
normal form (see Definition 4.15): if  is a 3–braid of Garside normal form (C), then

 ��2.`Cr/a�1bp1�2a�1bq1�2
� � � a�1bpr�2a�1bqr�2;

and if  is of Garside normal form (D), then

 ��2.`Cr/a�1bp1�2a�1bq1�2
� � � a�1bpr�1�2a�1bqr�1�2a�1bpr�2:

In addition, it is easy to see how 3–braids of Garside normal form (A) or (B) are
conjugate to braids of Murasugi normal form (a) or (b).

5 On alternating distances of 3–braid knots

In this section, we prove Corollary 1.2 from the introduction and provide lower and
upper bounds on the alternation number and dealternating number of any 3–braid knot
which differ by 1.

5.1 Alternating distances of positive 3–braid knots

We will prove the following proposition.

Proposition 5.1 Let K be a knot that is the closure of a positive 3–braid. Then

alt.K/D dalt.K/D �.K/C �.K/

D

�
` if K is the torus knot T3;3`Ck for `� 0 and k 2 f1; 2g;

r C `� 1 if K is the closure of a braid of the form in (C) or (D);
where (C) and (D) refer to the Garside normal forms from Proposition 3.2.

Remark 5.2 Some of the cases in Proposition 5.1 have already been proved by other
authors. Indeed, Feller, Pohlmann and Zentner used the observation (25) below to
show that alt.T3;3`Ck/D ` for all `� 0 and k 2 f1; 2g [22, Theorem 1.1]. The upper
bound they used was provided by [30, Theorem 8]; in fact, the equality had already
been shown by Kanenobu in half of the cases, namely when ` is even. Moreover, Abe
and Kishimoto [2, Theorem 3.1] showed that alt.K/ D dalt.K/ D r C `� 1 if K is
a knot that is the closure of a positive 3–braid of the form in (C). However, to the
best of this author’s knowledge, it is new that alt.K/D g.K/C �.K/ for all positive
3–braid knots K. Recall that �.K/ D g.K/ for all positive 3–braid knots K by (5)
from Section 2.1.
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Before we prove Proposition 5.1, let us provide the necessary definitions and background.
The Gordian distance dG.K;J / between two knots K and J is the minimal number
of crossing changes needed to transform a diagram of K into a diagram of J , where
the minimum is taken over all diagrams of K [43]. The alternation number alt.K/
of a knot K is defined as the minimal Gordian distance of the knot K to the set of
alternating knots [31], ie

alt.K/DminfdG.K;J / j J is an alternating knotg:

The dealternating number dalt.K/ of a knot K is defined via a more diagrammatic
approach [3]: it is the minimal number n such that K has a diagram that can be turned
into an alternating diagram by n crossing changes. It follows from the definitions that

(24) alt.K/� dalt.K/

for any knot K and alt.K/ D dalt.K/ D 0 if and only if K is alternating. Note that
there are families of knots for which the difference between the alternation number
and the dealternating number becomes arbitrarily large [38, Theorem 1.1].

In the proof of Proposition 5.1, we will use that

(25) j�.K/C �.K/j � alt.K/

for any knot K. In fact, for all alternating knots K,

(26) �.K/D 1
2
s.K/D��.K/D�1

t
‡K .t/D�

1
2
�.K/

for any t 2 .0; 1�— see [46, Theorem 1.14; 48, Theorem 1.4; 50, Theorem 3] — where s

denotes Rasmussen’s concordance invariant from Khovanov homology [50]. It follows
from [1, Theorem 2.1] — which builds on ideas of Livingston [34, Corollary 3] — that
the absolute value of the difference of any two of the invariants in (26) is a lower bound
on alt.K/. It was first observed in [22] that the upsilon invariant fits very well in this
context; see also [23, Lemma 8].

Another main ingredient of our proof of Proposition 5.1 is the inequality

(27) dalt. O /� r � 1

for any positive 3–braid  D ap1bq1 � � � apr bqr with integers r � 1 and pi ; qi � 1 for
i 2 f1; : : : ; rg [2, Lemma 2.2].

Proof of Proposition 5.1 Let K be a knot that is the closure of a positive 3–braid 
of the form in (C) or (D) from Proposition 3.2 with `� 0. We claim that

(28) r C `� 1D �.K/C �.K/D j�.K/C �.K/j � alt.K/� dalt.K/� r C `� 1;
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which implies the statement of the proposition for these knots. The two equalities in
(28) directly follow from our computations of �.K/ in Proposition 4.2 and (5) applied
to  . The first two inequalities are direct consequences of the inequalities (25) and (24).
Finally, the last inequality follows from inequality (27) applied to the particular braid
representatives of K considered in the proof of Corollary 4.12.

For torus knots of braid index 3, the statement follows analogously. More precisely, if
KDT3;3`Ck for `� 0 and k 2f1; 2g, then by (4) and (12), we have j�.K/C�.K/jD `.
In addition, the inequality in (27) applied to the particular braid representatives of K

considered in the proof of Corollary 4.12 implies that dalt.T3;3`Ck/� `.

From Proposition 5.1, it is easy to deduce that the alternating positive 3–braid knots
are precisely the unknot and the connected sums T2;2pC1 # T2;2qC1 of two torus knots
of braid index 2 for p; q � 0. This was already known; in fact, the stronger statement
is true that the only prime alternating positive braid knots are the torus knots of braid
index 2 [6, Corollary 3]. Note that by [42] — see also [11, Corollary 7.2] — the only
composite 3–braid knots are the connected sums T2;2pC1 # T2;2qC1 for p; q 2 Z.

By [1, Theorem 1.1], the only torus knots with alternation number 1 are the torus knots
T3;4 and T3;5. A knot with dealternating number 1 is called almost alternating.

Corollary 5.3 A positive 3–braid knot is almost alternating if and only if it is one of
the torus knots T3;4 or T3;5, or it is represented by a braid of the form

ap1bq1ap2bq2 ; �ap1bq1ap2 ; �2ap1bq1 or �3ap1

for some integers p1;p2; q1; q2 � 2.

Proof This follows directly from Proposition 5.1.

Remark 5.4 In particular, the seven positive 3–braid knots with crossing number 12 —
see [36] — are all almost alternating.

Remark 5.5 Our results imply that the Turaev genus equals the alternation number
for all positive 3–braid knots. Indeed, let K be a knot that is the closure of a positive
braid of the form in (C) or (D) with `� 0. Then we have

(29) gT .K/D alt.K/D dalt.K/D r C `� 1;
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where gT .K/ denotes the Turaev genus of the knot K. The Turaev genus gT .K/ of
a knot K is another alternating distance [38], which was first defined in [15] as the
minimal genus of a Turaev surface F.D/, where the minimum is taken over all diagrams
D of K. The Turaev surface F.D/ is a closed orientable surface embedded in S3

associated to the diagram D. It is formed by building the natural cobordism between
the circles in the two extreme Kauffman states (the all-A–state and the all-B–state)
of the diagram D via adding saddles for each crossing of D, and then capping off
the boundary components with disks. More details on the definition can be found, for
example, in a survey by Champanerkar and Kofman [13].

The equality gT .K/ D dalt.K/ in (29) easily follows from Proposition 5.1, the in-
equalities

ˇ̌
�.K/C 1

2
�.K/

ˇ̌
� gT .K/ [16, Theorem 1.1] and gT .K/ � dalt.K/ [2,

Corollary 5.4], and the fact that �.K/ D 2�.K/ for all knots that are closures of
positive braids of Garside normal form (C) or (D) (see Section 4.4.1).

It is not known whether the alternation number and the Turaev genus of a knot are
in general comparable; namely, it is not known whether alt.K/ � gT .K/ for all
knots K — see [38, Question 3]. However, it was shown by Abe and Kishimoto that
gT .T3;3`Ck/ D dalt.T3;3`Ck/ D ` for all ` � 0 and k 2 f1; 2g [2, Theorem 5.9], so
gT .K/D alt.K/D dalt.K/ is true for all positive 3–braid knots.

Remark 5.6 In [23], Friedl, Livingston and Zentner introduce the invariant As.K/, the
minimal number of double point singularities in a generically immersed concordance
from a knot K to an alternating knot. In the case that the alternating knot is the unknot,
this is the well studied invariant c4.K/ called the 4–dimensional clasp number [53].
A sequence of crossing changes in a diagram of a knot K leading to a diagram of
an alternating knot J realizes an immersed concordance from K to J where any
crossing change gives rise to a double point singularity in the concordance. We thus
have As.K/� alt.K/ for any knot K, which resembles the inequality c4.K/� u.K/

between the 4–dimensional clasp number and the unknotting number u.K/ of K.
Moreover, we have j�.K/C �.K/j � As.K/ for any knot K [23, Theorem 18], so
Proposition 5.1 implies As.K/D alt.K/ for all positive 3–braid knots K.

We are now ready to prove Corollary 1.2 from the introduction.

Proof of Corollary 1.2 The corollary follows directly from Proposition 5.1 and
Remarks 5.5 and 5.6.
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5.2 Bounds on the alternation number of general 3–braid knots

In the following, we turn our attention to 3–braid knots in general, which are not
necessarily the closure of positive 3–braids. We will use that

(30)
ˇ̌

1
2
s.K/C �.K/

ˇ̌
� alt.K/

for any knot K, which follows from [1, Theorem 2.1]; see also (26) from Section 5.1.
Rasmussen’s invariant s was computed for all 3–braid knots in Murasugi normal form
(see Definition 4.15) by Greene.2

Corollary 5.7 Let  D�2`a�p1bq1 � � � a�pr bqr for some ` 2Z, r � 1 and pi ; qi � 1

for i 2 f1; : : : ; rg such that K D O is a knot. Then

j`j � 1� alt.K/� dalt.K/� j`j if `¤ 0:

Proof The lower bound on the alternation number follows from (30), Theorem 1.1
and the values of the invariant s for K D O [27, Proposition 2.4]; namely

s.K/D

�
�
Pr

iD1.pi � qi/C 6`� 2 if ` > 0;

�
Pr

iD1.pi � qi/C 6`C 2 if ` < 0:

Moreover, it follows from [2, Theorem 2.5] that dalt. O /� j`j.

Remark 5.8 An alternative way to prove the upper bound on dalt.K/ in Corollary 5.7
for `� 1 follows from our observations in the proof of Lemma 4.18. In fact, the braid
diagrams given by the braid representatives 1 of K D O considered in that proof can
easily be transformed into alternating diagrams by ` crossing changes: it is enough to
change the positive crossings corresponding to the single generators a in 1 to negative
crossings; we obtain generators a�1 in the corresponding braid words which then
correspond to alternating braid diagrams.

Remark 5.9 If K is represented by a 3–braid of Garside normal form (C) or (D) (see
Definition 3.4), then using the observations in Section 4.4.3, Corollary 5.7 implies

(31) jr C `j � 1� alt.K/� dalt.K/� jr C `j if jr C `j> 0;

alt.K/D dalt.K/D 0 if r C `D 0:

By Proposition 5.1, the lower bound in (31) is sharp whenever K is the closure of
a positive 3–braid of Garside normal form (C) or (D). However, there are examples

2These computations were generalized to all links that are closures of 3–braids in [41].
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where the upper bound in (31) is sharp. The two easiest such examples in terms of
crossing number are the nonalternating knots 820 and 821, which are represented by
the 3–braids

a3b�1a�3b�1
���3a7; a3ba�2b2

���2a3b2a2b3;

respectively; see [36]. The lower bound on the alternation number from (31) is

jr C `j � 1D 0

in both cases. Indeed, by [7, Theorem 8.6] both knots are quasialternating, so all the
invariants from (26) are equal [7, Proposition 1.4; 40; 46].

Remark 5.10 In a similar fashion as Corollary 5.7, the Turaev genus of all 3–braid
knots was determined up to an additive error of at most 1 by Lowrance using his
computation of the Khovanov width for these knots [37, Proposition 4.15]. More
precisely,

j`j � 1� gT .K/� j`j if `¤ 0

for any knot K that is represented by  D �2`a�p1bq1 � � � a�pr bqr for some ` 2 Z,
r � 1 and pi ; qi � 1 for i 2 f1; : : : ; rg.

6 The fractional Dehn twist coefficient of 3–braids in Garside
normal form

In this section, we compute the fractional Dehn twist coefficient of any 3–braid in
Garside normal form (see Definition 3.4).

The fractional Dehn twist coefficient is a homogeneous quasimorphism on the braid
group Bn that assigns to any n–braid  a rational number !. /. Here, a quasimorphism
on a group G is any map ' WG!R such that

sup
.a;b/2G�G

j'.ab/�'.a/�'.b/j DWD' <1;

where D' is called the defect of '. A quasimorphism ' WG!R is called homogeneous
if '.ak/ D k'.a/ for all k 2 Z and a 2 G. Any homogeneous quasimorphism is
invariant under conjugation, so !. / is invariant under the conjugacy class of  .

The fractional Dehn twist coefficient first appeared in [24] in a different language. It
can be defined for mapping classes of general surfaces with boundary, where we here
view braids as mapping classes of the n times punctured closed disk. Malyutin defined
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the fractional Dehn twist coefficient ! W Bn!R, with n� 2, for all braid groups and
showed that its defect is 1 if n � 3 and 0 if n D 2 [39, Theorem 6.3]. We refer the
reader to [39] for a more detailed account.

Corollary 6.1 Let  be a 3–braid. Then its fractional Dehn twist coefficient is

!. /D

8<:
` if  is conjugate to a braid in (A);
1
6
.pC 1/C ` if  is conjugate to a braid in (B);

r C ` if  is conjugate to a braid in (C) or (D);

where (A)–(D) refer to the Garside normal forms from Proposition 3.2.

Remark 6.2 The fractional Dehn twist coefficient was computed for 3–braids in
Murasugi normal form (see Definition 4.15) in [29, Proposition 6.6].

In the proof of Corollary 6.1, we will use that the fractional Dehn twist coefficient
of any 3–braid  is completely determined by the writhe wr. / and the homogenized
upsilon invariant Q� of  : we have, by [19, Theorem 1.3],

(32) !. /D Q�. /C 1
2

wr. /

for any 3–braid  . The invariant Q� is another real-valued homogeneous quasimorphism
on the braid group B3 which can be defined as

Q� W B3!R;  7! Q�. /D lim
k!1

�.1 6kab/

6k
:

More generally, Brandenbursky [12, Theorem 2.6] showed that a homogeneous quasi-
morphism Bn!R can be assigned to any concordance homomorphism C!R that is
bounded above by a constant multiple of the 4–genus. We refer the reader to [12] or
[19, Appendix A] for more details on homogenized concordance invariants.

Proposition 6.3 Let  be a 3–braid. Then

Q�. /D

8̂̂̂<̂
ˆ̂:
�

1
2
p�2` if  is conjugate to a braid in (A);

�
1
3
.pC1/�2` if  is conjugate to a braid in (B);

�
1
2

�Pr
iD1.piCqi/

�
Cr �2` if  is conjugate to a braid in (C);

�
1
2

�Pr�1
iD1.piCqi/Cpr

�
Cr �2`� 3

2
if  is conjugate to a braid in (D):

Proof We will use that Q�.˛ˇ/D Q�.˛/C Q�.ˇ/ if ˛ and ˇ commute [19, Lemma A.1].
In particular, for any 3–braid  and any ` 2 Z,

(33) Q�.�2` /D Q�.�2`/C Q�. /:
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Moreover, by the definition of Q� , equation (12) and the homogeneity of Q� ,

(34) Q�.�2`/D�2` for all ` 2 Z:

We will now compute Q�. / for the positive 3–braids  of the form (A)–(D), ie assuming
`� 0 in (A)–(D). The statement of Proposition 6.3 will then follow from (33) and (34).

First, let  D�2`ap for some `� 0 and p � 0. If pD 0, we have Q�. /D�2` by (34).
If p � 1, we have

 6kab D�12`ka6pkab ��12`kC1a6pk�1;

so by Lemma 4.9, for k � 1,

�.1 6kab/D�1
2
.6pk � 1/C 1� 12`k � 3

2
D�3pk � 12`k;

Q�. /D lim
k!1

�.1 6kab/

6k
D lim

k!1

�3pk � 12`k

6k
D�

p

2
� 2`:

Second, let  D�2`apb for some `� 0 and p 2 f1; 2; 3g. We have

 6kab D�12`k.ab/6kab D�12`kC4kab if p D 1;

 6kab D�12`k.a2ba2b/3kab D�12`k.ababab/3kab D�12`kC6kab if p D 2;

 6kab D�12`k.a3ba3ba3b/2kab D�12`k.a2babababa2b/2kab

D�12`kC8kab if p D 3:

By (12),
Q�. /D lim

k!1

�12`k � .2pC 2/k

6k
D�2`�

pC 1

3
:

Third, let  D �2`ap1bq1 � � � apr bqr for some ` � 0, r � 1 and pi ; qi � 2 for
i 2 f1; : : : ; rg. Then

 6kab D�12`k.ap1bq1 � � � apr bqr /6kab

��12`kC1ap1�1bq1 � � � apr bqr .ap1bq1 � � � apr bqr /6k�1

��12`kC1.bq1ap2bq2 � � � apr bqr ap1/6k�1bq1ap2bq2 � � � apr bp1Cqr�1;

where p1C qr � 1� 3. By Lemma 4.9,

�.1 6kab/D�3k

rX
iD1

.pi C qi/C 6kr � 12`k � 1;

Q�. /D�
1

2

rX
iD1

.pi C qi/C r � 2`:
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Finally, let  D �2`C1ap1bq1 � � � apr�1bqr�1apr for some ` � 0, r � 1, pr � 2, and
pi ; qi � 2 for i 2 f1; : : : ; r � 1g. Then

 6kab D�12`k.�ap1bq1 � � � apr�1bqr�1apr /6kab

D�12`k.�2bp1aq1 � � � bpr�1aqr�1bpr ap1bq1 � � � apr�1bqr�1apr /3kab

D�12`kC6k.bp1 � � � bpr ap1 � � � apr /3kab

��12`kC6kaq1bp2 � � � bpr ap1 � � �

� � � apr .bp1 � � � bpr ap1 � � � apr /3k�2bp1 � � � bpr ap1 � � � aprC1bp1C1;

where pr C 1;p1C 1� 3. By Lemma 4.10,

�.1 6kab/D�3k

� r�1X
iD1

.pi C qi/Cpr

�
C 6kr � 12`k � 9k � 1;

Q�. /D�
1

2

� r�1X
iD1

.pi C qi/Cpr

�
C r � 2`�

3

2
:

Proof of Corollary 6.1 This follows directly from Proposition 6.3, (32), and a straight-
forward calculation of the writhe of the braids in (A)–(D).

Remark 6.4 If  is a 3–braid conjugate to a braid of the form in (C) or (D) such that O
is a knot, then Proposition 6.3 and Theorem 1.1 imply Q�. /D �. O /. If  additionally
is a positive 3–braid, then !. /D r C `D g. O /C �. O /C 1 is the minimal number
from Corollary 1.3 (ie Corollary 4.12).

Remark 6.5 Our computation of!. / in Corollary 6.1 together with [19, Theorem 1.3]
completely determines e‡.t/. / for all 0� t �1 for any 3–braid  , where e‡.t/. / is the
homogenization of the invariant ‡.t/ W C!R, defined similarly as the homogenization
Q� of � .
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