
ATG

Algebraic & Geometric
Topology

msp

Volume 23 (2023)

The group of quasi-isometries of the real line
cannot act effectively on the line

SHENGKUI YE

YANXIN ZHAO





msp
Algebraic & Geometric Topology 23:8 (2023) 3835–3847

DOI: 10.2140/agt.2023.23.3835
Published: 5 November 2023

The group of quasi-isometries of the real line
cannot act effectively on the line

SHENGKUI YE

YANXIN ZHAO

We prove that the group QIC.R/ of orientation-preserving quasi-isometries of the
real line is a left-orderable, nonsimple group, which cannot act effectively on the real
line R.
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1 Introduction

A function f W X ! Y between metric spaces X and Y is a quasi-isometry if there
exist real numbers K � 1 and C � 0 such that

1

K
d.x1; x2/�C � d.f .x1/; f .x2//�Kd.x1; x2/CC

for any x1; x2 2X , and d.Imf; y/� C for any y 2 Y . Two quasi-isometries f and g
are called equivalent if they are of bounded distance; ie supx2X d.f .x/; g.x// <1.
The quasi-isometry group QI.X/ is the group of all equivalence classes Œf � of quasi-
isometries f W X ! X under composition. The notion of quasi-isometries is one of
the fundamental concepts in geometric group theory. In this note, we consider the
quasi-isometry group QI.R/ of the real line. Gromov and Pansu [3, Section 3.3B] noted
that the group of bi-Lipschitz homeomorphisms has a full image in QI.R/. Sankaran [9]
proved that the orientation-preserving subgroup QIC.R/ is torsion-free and many large
groups, like Thompson groups and free groups of infinite rank, can be embedded into
QIC.R/.

Recall that a group G is left-orderable if there is a total order � on G such that g � h
implies fg � f h for any f 2G. We will prove the following.

Theorem 1.1 The quasi-isometry group QIC.R/— or QI.Œ0;C1//— is not simple.
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Theorem 1.2 The quasi-isometry group QIC.R/— or QI.Œ0;C1//— is left-order-
able.

Theorem 1.3 The quasi-isometry group QIC.R/ cannot act effectively on the real
line R.

Other (uncountable) left-orderable groups that cannot act on the line are been known.
For example, the germ group G1.R/, due to Mann [4] and Rivas; and the compact
supported diffeomorphism group Diffc.Rn/ for n > 1, due to Chen and Mann [1].

2 The group structure of QI.R/

Let QI.RC/ (resp. QI.R�/) be the quasi-isometry group of the ray Œ0;C1/ (resp.
.�1; 0�), viewed as subgroup of QI.R/ fixing the negative (resp. positive) part.

Lemma 2.1 QI.R/ D .QI.RC/�QI.R�// Ì hti, where t 2 QI.R/ is the reflection
t .x/D�x for any x 2R.

Proof Sankaran [9] proves that the group PLı.R/ consisting of piecewise linear
homeomorphisms with bounded slopes has a full image in QI.R/. Since every homeo-
morphism f 2 PLı.R/ is of bounded distance to the map f �f .0/ 2 PLı.R/, we see
that the subgroup

PLı;0.R/D ff 2 PLı.R/ j f .0/D 0g

also has full image in QI.R/. Let

PLı;C.R/D ff 2 PLı.R/ j f .x/D x; x � 0g;

PLı;�.R/D ff 2 PLı.R/ j f .x/D x; x � 0g:

Since PLı;C.R/\ PLı;�.R/ D fidRg, we see that PLı;C.R/ � PLı;�.R/ has a full
image in QIC.R/, the orientation-preserving subgroup of QI.R/. It’s obvious that
PLı;C.R/ (resp. PLı;�.R/) has a full image in QI.RC/ (resp. QI.R�/). Therefore,
QI.R/D .QI.RC/�QI.R�//Ì hti.

Let HomeoC.R/ be the group of orientation-preserving homeomorphisms of the real
line. Two functions f; g 2 HomeoC.R/ are of bounded distance if

sup
jxj�M

jf .x/�g.x/j<1

for a sufficiently large real number M . This means when we study elements Œf � in
QI.R/, we don’t need to care too much about the function values f .x/ for x with small
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absolute values. We will implicitly use this fact in the following context. As PLı.R/
has a full image in QI.R/ (by Sankaran [9]), we take representatives of quasi-isometries
which are homeomorphisms in the rest of the article.

2.1 QI.RC/ is not simple

Let QI.RC/ be the quasi-isometry group of the half-line Œ0;C1/. Note that the quasi-
isometry group QIC.R/ DQI.RC/�QI.R�/ and QI.RC/ŠQI.R�/, by Lemma 2.1.
Let H D fŒf � 2 QI.RC/ j limx!1.f .x/�x/=x D 0g. Theorem 1.1 follows from the
following theorem.

Theorem 2.2 H is a proper normal subgroup of QI.RC/. In particular , QI.RC/ is
not simple.

Proof For any Œf �; Œg� 2H ,
f .g.x//� x

x
D
f .g.x//�g.x/

g.x/

g.x/

x
C
g.x/� x

x
:

Since g is a quasi-isometry, we know that .1=K/x � C � g.x/� g.0/ � Kx C C .
Therefore, 1=K�1� g.x/=x �KC1 for sufficiently large x. When x!1, we have
g.x/!1. This means .f .g.x//�g.x//=g.x/! 0. Therefore, .f .g.x//�x/=x! 0

as x!1. This proves that Œfg� 2H .

Note that
jf �1.x/� xj

x
D
jf �1.x/�f �1.f .x//j

x
�
Kjx�f .x/jCC

x
:

Therefore,

lim
x!1

jf �1.x/� xj

x
D 0:

This means Œf �1� 2H and that H is a subgroup.

For any quasi-isometric homeomorphism g 2 Homeo.RC/ and any Œf � 2H ,

g�1.f .g.x///� x

x
D
g�1.f .g.x///�g�1.g.x//

x

D
g�1.f .g.x///�g�1.g.x//

g.x/

g.x/

x
:

Note that when x!1, the function g.x/=x is bounded. Let y D g.x/. We have

jg�1.f .y//�g�1.y/j

y
�
Kjf .y/�yjCC

y
! 0; x!1:

Therefore, Œg�1fg� 2H .
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It’s obvious that the function f defined by f .x/D 2x is not an element in H . The
function defined by g.x/D xC ln.xC 1/ gives a nontrivial element in H . Thus H is
a proper normal subgroup of QI.RC/.

Lemma 2.3 Let

W.R/D
˚
f 2 Diff.R/ j sup

x2R
jf .x/� xj<1; sup

x2R
jf 0.x/j<1

	
be the group consisting of diffeomorphisms with bounded derivatives and of bounded
distance from the identity. Define a homeomorphism h W R! R by h.x/D ex when
x � 1, h.x/D�h.�x/ when x ��1, and h.x/D ex when �1� x � 1. Then hf h�1

is a quasi-isometry for any f 2W.R/.

Proof For any f 2W.R/ and sufficiently large x > 0, its derivative satisfies that

jhf h�1.x/0j D j.ef .lnx//0j

D j.xef .lnx/�lnx/0j

D jef .lnx/�lnx.1Cf 0.ln x/� 1/j

D jef .lnx/�lnxf 0.ln x/j

� esupx2R jf .x/�xj � sup
x2R
jf 0.x/j:

The case for negative x < 0 can be calculated similarly. This proves that hf h�1 is a
quasi-isometry.

The following result was proved by Sankaran [9].

Corollary 2.4 The quasi-isometry group QI.R/ contains DiffZ.R/ (the lift of Diff.S1/
to Homeo.R/).

Proof For any f 2 DiffZ.R/, we have f .xC 1/ D f .x/C 1 for any x 2 R. This
means supx2R jf .x/� xj<C1. Since f .x/� x is periodic, we know that f 0.x/ is
bounded. Suppose that f .x/ > x for some x 2 Œ0; 1�. Take yn D exCn for n > 0. Let
h be the function defined in Lemma 2.3. We have

jhf h�1.yn/�ynj D je
f .xCn/

� exCnj D jef .x/� exjen!1;

which means Œhf h�1�¤ Œid� 2 QI.R/.

Lemma 2.5 QI.R/ contains the semidirect product DiffZ.R/ËH .

Algebraic & Geometric Topology, Volume 23 (2023)



The group of quasi-isometries of the real line cannot act effectively on the line 3839

Proof Since H is normal, it’s enough to prove that DiffZ.R/\H D feg, the trivial
subgroup. Actually, for any f 2 DiffZ.R/, the conjugate hf h�1 is a quasi-isometry
as in the proof of Corollary 2.4. If hf h�1 2H , then

lim
x!1

hf h�1.x/

x
D lim
x!1

xef .lnx/�lnx

x
D lim
x!1

ef .lnx/�lnx
D 1:

Since f .x/� x is periodic, we know that f .ln x/D ln x for any sufficiently large x.
But this means that f .y/D y for any y, so f is the identity.

2.2 Affine subgroups of QI.R/

Lemma 2.6 The quasi-isometry group QI.RC/ (actually, the semidirect product
DiffZ.R/ËH ) contains the semidirect product R>0 Ë

�L
i2R�1

R
�
, generated by At

and Bi;s for t 2R>0, i 2R�1 D Œ1;1/ and s 2R satisfying

AtBi;sA
�1
t D B

i;st
i

iC1
; Bi;s1Bi;s2 D Bi;s1Cs2 ;

At1At2 D At1t2 ; Bi;s1Bj;s2 D Bj;s2Bi;s1 ;

for any t1; t2 2R>0, i; j 2R�1 and s1; s2 2R.

Proof Let
At .x/D tx; t 2R>0;

Bi;s.x/D xC sx
1

iC1 ; s 2R;

for x � 0. We define At .x/D Bi;s.x/D x for x � 0. Since the derivatives

A0t .x/D t; B 0i;s.x/D 1C
s

i C 1
x
�i

iC1

are bounded for sufficiently large x, we know that At and Bi;s are quasi-isometries.
For any x � 1,

AtBi;sA
�1
t .x/DAtBi;s

�
x

t

�
DAt

�
x

t
Cs
�
x

t

� 1
iC1

�
D xCst

i
iC1x

1
iC1 DB

i;st
i

iC1
.x/:

For any x � 1,

Bi;s1Bi;s2.x/D Bi;s1.xC s2x
1

iC1 /D xC s2x
1

iC1 C s1.xC s2x
1

iC1 /
1

iC1

and

jBi;s1Bs2.x/�Bi;s1Cs2.x/j D js1..xC s2x
1

iC1 /
1

iC1 � x
1

iC1 /j �

ˇ̌̌̌
s1
s2x

1
iC1

x
i

iC1

ˇ̌̌̌
� js1s2j

by Newton’s binomial theorem. This means that Bi;s1Bi;s2 and Bi;s1Cs2 are of bounded
distance. It is obvious that At1At2 D At1t2 .
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When i < j are distinct natural numbers,

jBi;s1Bj;s2.x/�Bj;s2Bi;s1.x/j

D jxC s2x
1

jC1 C s1.xC s2x
1

jC1 /
1

iC1 � .xC s1x
1

iC1 C s2.xC s1x
1

iC1 /
1

jC1 /j

D js1..xC s2x
1

jC1 /
1

iC1 � x
1

iC1 /C s2.x
1

jC1 � .xC s1x
1

iC1 /
1

jC1 /j

�

ˇ̌̌̌
s1
s2x

1
jC1

x
i

iC1

ˇ̌̌̌
C

ˇ̌̌̌
s2
s1x

1
iC1

x
j

jC1

ˇ̌̌̌
� 2js1s2j

for any x � 1. This proves that images ŒAt �; ŒBi;s� 2 QI.R�0/ satisfy the relations. By
abuse of notation, we still denote the classes by the same letters.

We prove that the subgroup generated by fBi;s j i 2R�1; s 2Rg is the infinite direct
sum

L
i2R�1

R. It’s enough to prove that Bi1;s1 ; Bi2;s2 ; : : : ; Bik ;sk are Z–linearly
independent for distinct i1; i2; : : : ; ik and nonzero s1; s2; : : : ; sk 2R. This can directly
checked. For integers n1; n2; : : : ; nk , suppose that Bn1

i1;s1
ıB

n2

i2;s2
ı � � � ıB

nk

ik ;sk
D id 2

QI.R�0/. We have

sup
x2R>0

jB
n1

i1;s1
ıB

n2

i2;s2
ı � � � ıB

nk

ik ;sk
.x/� xj

D sup
x2R>0

jnkskx
1

ikC1Cnk�1sk�1.xCnkskx
1

ikC1 /
1

ik�1C1C� � �Cn1s1.xC� � � /
1

i1C1 j

<C1;

which implies n1 D n2 D � � � D nk D 0, considering the exponents.

The subgroup R>0Ë
�L

i2R�1
R
�

lies in DiffZ.R/ËH by the following construction.
Let at ; bi;s W R! R be defined by at .x/ D x C ln t and bi;s.x/ D ln.ex C se

x
iC1 /

for t 2 R>0, i 2 R�1 and s 2 R. It can be directly checked that at 2 DiffZ.R/ and
bi;s 2W.R/ (defined in Lemma 2.3). Let h.x/D ex . A direct calculation shows that
hath

�1 D At and hbi;sh�1 D Bi;s , as elements in QI.RC/.

3 Left-orderability

The following is well known; for a proof, see [7, Proposition 1.4]:

Lemma 3.1 A group G is left-orderable if and only if , for every finite collection of
nontrivial elements g1; : : : ; gk , there exist choices "i 2 f1;�1g such that the identity is
not an element of the semigroup generated by fg"i

i j i D 1; 2; : : : ; kg.
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The proof of Theorem 1.2 follows a similar strategy used by Navas to prove the
left-orderability of the group G1 of germs at 1 of homeomorphisms of R; cf [2,
Remark 1.1.13] or [4, Proposition 2.2].

Proof of Theorem 1.2 It’s enough to prove that QI.RC/ is left-orderable. Let
f1; f2; : : : ; fn 2 QI.RC/ be any finitely many nontrivial elements. Note that any
1 ¤ Œf � 2 QI.RC/ has supx>0 jf .x/ � xj D 1. This property doesn’t depend on
the choice of f 2 Œf �. Without confusion, we still denote Œf � by f . Choose a
sequence fx1;kg � RC such that supk2N jf1.x1;k/� x1;kj D1. For each i > 1, we
have either supk2N jfi .x1;k/�x1;kj D1 or supk2N jfi .x1;k/�x1;kj �M for a real
number M . After passing to subsequences, we assume for each i D 1; 2; : : : ; n that
either fi .x1;k/�x1;k!C1, fi .x1;k/�x1;k!�1 or supk2N jfi .x1;k/�x1;kj�M .
We assign "i D 1 for the first case and "i D�1 for the second case. For the third case,
let

S1 D ffi j sup
k2N
jfi .x1;k/� x1;kj �M g:

Note that f1 … S1. Choose fi0 2 S1 if S1 is not empty. We choose another se-
quence fx2;kg such that supk2N jfi0.x2;k/ � x2;kj D 1. Similarly, after passing
to a subsequence, we have for each f 2 S1 that either f .x2;k/ � x2;k ! C1,
f .x2;k/�x2;k!�1 or supk2N jf .x2;k/�x2;kj �M

0 for another real number M 0.
Assign "i D 1 for the first case and "i D�1 for the second case. Continue this process
to define S2; S3; : : : and choose sequences fxi;kg; i D 3; 4; : : : to assign "i for each fi .
Note that the process will stop at n times, as the number of elements without assignment
is strictly decreasing.

For an element f 2QI.RC/ satisfying f .xi /�xi !1 as i !1 for some sequence
fxig, we assume that f .xi /� xi > 0 for each i . Since f and f �1 are orientation-
preserving,

f �1.xi /� xi D�.xi �f
�1.xi //

D�.f �1.f .xi //�f
�1.xi //� �

�
1

K
.f .xi /� xi /�C

�
!�1:

Let w D f
"i1

i1
� � � f

"im

im
2 hf1; f2; : : : ; fni be a nontrivial word. If fi1; : : : ; img ª S1,

we have w.x1;k/ � x1;k ! 1. Otherwise, supk2N jw.x1;k/ � x1;kj < 1. Sup-
pose that fi1; : : : ; img � St , but fi1; : : : ; img ª StC1 with the assumption that S0 D
ff1; f2; : : : ; fng. We have w.xtC1;k/� xtC1;k !1 as k !1. This proves that
w ¤ 1 2 QI.RC/. Therefore, QI.RC/ is left-orderable by Lemma 3.1.

Lemma 3.2 The group QI.RC/ is not locally indicable.
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Proof Note that QI.RC/ contains the lift z� of PSL.2;R/ < Diff.S1/ to Homeo.R/
(Corollary 2.4). But this lift z� contains a subgroup �Dhf; g; h Wf 2Dg3Dh7Dfghi,
the lift of the .2; 3; 7/–triangle group. There are no nontrivial maps from � to .R;C/;
for more details see [2, page 94].

4 The quasi-isometric group cannot act effectively on the line

The following was proved by Mann [4, Proposition 6].

Lemma 4.1 Consider the affine group R>0 Ë R, generated by At and Bs for t 2R>0
and s 2R satisfying

AtBsA
�1
t D Bts; Bs1Bs2 D Bs1Cs2 ; At1At2 D At1t2 :

The affine group R>0ËR cannot act effectively on the real line R by homeomorphisms
with At a translation for each t .

Proof Suppose that R>0 Ë R acts effectively on the real line R with each At a
translation. After passing to an index-2 subgroup, we assume that the group is
orientation-preserving. If B1 acts freely on R, then it is conjugate to the translation
T WR!R defined by x 7! xC 1. In such a case, we have A2TA�12 D T

2. Therefore,
A�12 .x C 2/ D A�12 .x/C 1 for any x. Since A�12 maps intervals of length 2 to an
interval of length 1, it is a contracting map, and thus has a fixed point.

If B1 has a nonempty fixed point set Fix.B1/, choose I to be a connected component
of RnFix.B1/. Suppose that A2.x/D xCa, a translation by some real number a > 0.
Since A2 D An

21=n , we have A21=n.x/ D x C a=n for each positive integer n. For
each n, let FnDA21=nB1A

�1
21=n . Since A21=nB1A

�1
21=n commutes with B1, we see that

FnFix.B1/ D Fix.B1/. This means that either Fn.I / D I or Fn.I /\ I D ∅. Since
Fn.x/D B1.x� a=n/C a=n for any x 2R, we know that Fn.I /D I for sufficiently
large n. Without loss of generality, we assume that I is of the form .x; y/ or .�1; y/.
Choose a sufficiently large n such that y � a=n 2 I . We have

A21=nB1A
�1
21=n.y/D B1

�
y �

a

n

�
C
a

n
¤ y;

which is a contradiction to the fact that Fn.I /D I .

Definition 4.2 A topologically diagonal embedding of a group G < Homeo.R/ is
a homomorphism � W G ! HomeoC.R/ defined as follows. Choose a collection of
disjoint open intervals In � R and homeomorphisms fn W R ! In. Define � by
�.g/.x/D fngf

�1
n .x/ when x 2 In and �.g/.x/D x when x … In.

Algebraic & Geometric Topology, Volume 23 (2023)
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The following is similar to a result proved by Militon [6].

Lemma 4.3 (Militon [6]) Let � D PSL2.R/ and z� < HomeoC.R/ be the lift of �
to the real line. Any effective action � W z� ,! HomeoC.R/ of z� on the real line R is a
topological diagonal embedding.

Proof After passing to an index-2 subgroup, we assume the action is orientation-
preserving. Let � WR!R be the translation x 7! xC 1. Suppose that Fix.�.�//¤∅.
Note that � lies in the center of z� . The quotient group � D z�=h�i acts on the fixed
point set Fix.�.�//. For any f 2 � and x 2 Fix.�.�//, we denote the action by f .x/
without confusion. Choose any torsion-element f 2 � and any x 2 Fix.�.�//. We
must have xD f .x/, for otherwise x < f .x/ < f 2.x/ < � � �< f k.x/ for any k. Since
� is simple, we know that the action of z� on Fix.�/ is trivial. For each connected
component Ii � R n Fix.�.�//, we know that � jIi

is conjugate to a translation. The
group � D z�=h�i acts on Ii=h�.�/i D S1. A result of Matsumoto [5, Theorem 5.2]
says that the group � is conjugate to the natural inclusion PSL2.R/ ,! HomeoC.S1/
by a homeomorphism g 2 HomeoC.S1/. Therefore, the group �.z�/jIi

is conjugate to
the image of the natural inclusion z� ,! HomeoC.R/.

For a real number a 2R, let

ta WR!R; x 7! xC a

be the translation. Denote by AD hta W a 2Ri, the subgroup of translations in the lift
z� of PSL2.R/.

Corollary 4.4 For any injective group homomorphism � W z�! Homeo.R/, the image
�.A/ is a continuous one-parameter subgroup; ie lima!a0

�.ta/ D �.ta0
/ for any

a0 2R.

Proof If � is injective, the previous lemma says that � is a topological diagonal
embedding. Therefore, �.A/ is continuous.

We will need the following elementary fact.

Lemma 4.5 Let � W .R;C/! .R;C/ be a group homomorphism. If � is continuous
at any x ¤ 0, then � is R–linear.

Proof For any nonzero integer n, we have �.n/D n�.1/ and �.1/D �
�
1
n
n
�
D n�

�
1
n

�
.

Since � is additive, we have �
�
m
n

�
D m�

�
1
n

�
D

m
n
�.1/ for any integers m; n ¤ 0.
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For any nonzero real number a 2 R, choose a rational sequence ri ! a. When � is
continuous, we have that �.ri /! �.a/ and �.ri /D ri�.1/! a�.1/D �.a/.

The following is the classical theorem of Hölder: a group acting freely on R is semi-
conjugate to a group of translations; see Navas [8, Section 2.2.4].

Lemma 4.6 Let � be a group acting freely on the real line R. There is an injective
group homomorphism � W �! .R;C/ and a continuous nondecreasing map ' WR!R

such that
'.h.x//D '.x/C�.h/

for any x 2R and h 2 � .

Corollary 4.7 Suppose that the affine group R>0ËRDhat W t 2 R>0iËhbs W s 2 Ri

acts on the real line R by homeomorphisms satisfying

(1) the action of the subgroup RDhbs W s 2Ri is free;

(2) for any fixed x 2R, at .x/ is continuous with respect to t 2R>0.

Let � W hbs W s 2Ri ! .R;C/ be the additive map in Lemma 4.6 for � D hbs W s 2Ri.
Then � is an R–linear map.

Proof Note that atbsa�1t D bts . We have

'.bts.x//D '.x/C�.bts/:

Since bts.x/D atbsa�1t .x/! bs.x/ when t ! 1, we have that

'.x/C�.bts/! '.bs.x//D '.x/C�.bs/:

This implies that �.bts/! �.bs/ as t ! 1. For any nonzero x 2 R and sequence
xn! x,

�.bxn
/D �.bxn

x
x/! �.bx/:

The map � is R–linear by Lemma 4.5.

Theorem 4.8 Consider G D R>0 Ë
�L

i2R�1
R
�
, generated by At and Bi;s for

t 2R>0, i 2R�1 D Œ1;1/ and s 2R satisfying

AtBi;sA
�1
t D B

i;st
i

iC1
; Bi;s1Bi;s2 D Bi;s1Cs2 ;

At1At2 D At1t2 ; Bi;s1Bj;s2 D Bj;s2Bi;s1

for any t1; t2 2 R>0, i; j 2 R�1 and s1; s2 2 R. Then G cannot act effectively on
the real line R by homeomorphisms when the induced action of hAt W t 2 R>0i is a
topologically diagonal embedding of the translation subgroup .R;C/ ,! Homeo.R/.
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Proof Suppose that G acts effectively on R with the induced action of hAt W t 2R>0i,
a topologically diagonal embedding of the translation subgroup .R;C/ ,! Homeo.R/.
Let I be a connected component of R nFix.hAt ; Bi;s W t 2R>0; i D 1; s 2Ri/.

Suppose that there is an element B1;s having a fixed point x 2 I for some s > 0. Since
A4B1;sA

�1
4 D B

2
1;s , we know that A4x 2 Fix.B1;s/D Fix.B21;s/. Since there are no

fixed points in I for hAt ; B1;s W t 2 R>0; s 2 Ri, we know that limn!1An4x … I .1

This implies that A4 has no fixed point in I . Since the group homomorphism

hAt W t 2R>0i ! Homeo.R/

is a diagonal embedding, we see that each At has no fixed point in I and the action of
hAt W t 2R>0i on I is conjugate to a group of translations. By Lemma 4.1, the affine
group hAt ; B1;s W t 2R>0; s 2Ri cannot act effectively on I . Suppose that AtB1;s0 acts
trivially on I for some t >0 and s0>0. We have thatAtB1;sDAs2s0�2.AtB1;s0/A

�1
s2s0�2

acts trivially on I . But AtB1;s.x/ D At .x/ D x implies that t D 1. Therefore, the
element B1;s (and any B1;t DAt2s�2B1;sA

�1
t2s�2 for t 2R>0) acts trivially on I . This

means that the action of hB1;s W s 2Ri on the connected component I is either trivial
or free. Since the action of G is effective, there is a connected component I1 on which
B1;s acts freely. A similar argument shows that Bi;s0 acts freely on a component Ii for
each i 2R�1 and any s0 2R n f0g.

Since Bi;s0 commutes with Bj;s , we have Bi;s0.I1/�RnFix.hBj;s W s 2Ri/. Moreover,
Bi;s0.Ij /\ Ij is either Ij or the empty set. Suppose that Ii \ Ij ¤∅ and the right end
bi of Ii lies in Ij . Choose x 2 Ii \ Ij . Note that Bj;s.Œx; bi //\ Œx; bi /D ∅ for any
s > 0. This is impossible as Bj;s=n.x/! x as n!1. Therefore, Ii \ Ij D Ii or is
empty for distinct i; j 2R�1. Since we have uncountably many i 2R>0, there must
be some distinct i; j 2 R�1 such that Ii D Ij . This means that the subgroup R˚R

spanned by the i; j –components acts freely on Ii . Hölder’s theorem (Lemma 4.6) gives
an injective group homomorphism � WR˚R! .R;C/ and a continuous nondecreasing
map ' WR!R such that

'.h.x//D '.x/C�.h/

for any x 2R. Since hAt W t 2R>0i!Homeo.R/ is a topological embedding, we have
that for any fixed x 2R, At .x/ is continuous with respect to t 2R>0. By Corollary 4.7,

1Otherwise, limn!1 An4x 2I . ButAt .limn!1 An4x/D limn!1 An4x for any t >0 by the topologically
diagonal embedding. For any s0, we have B1;s0 D As02s�2B1;sA

�1
s02s�2 and B1;s0.limn!1 An4x/ D

limn!1 An4x. This would imply that limn!1 An4x is a global fixed point of hAt ; B1;s W t 2R>0; s 2Ri.
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the restriction map �jR is R–linear for each direct summand R. This is a contradiction
to the fact that � is injective. Therefore, the group G cannot act effectively.

Proof of Theorem 1.3 Suppose that QIC.R/ acts on the real line by an injective group
homomorphism � WQIC.R/!Homeo.R/. The group QIC.R/ contains the semidirect
product R>0 Ë

�L
i2R�1

R
�
, by Lemma 2.6. The subgroup R>0 (as the image of the

exponential map) is a homomorphic image of the subgroup R < z� , which is the lift
of SO.2/=f˙I2g < PSL2.R/ to Homeo.R/. Note that z� is embedded into QIC.R/
(see Corollary 2.4 and its proof). By Lemma 4.3, any effective action of z� on the real
line R is a topological diagonal embedding. This means that the action of R>0 is a
topological diagonal embedding (Corollary 4.4). Theorem 4.8 shows that the action of
R>0 Ë

�L
i2R�1

R
�

is not effective.
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