

Algebraic & Geometric Topology

Volume 23 (2023)

The group of quasi-isometries of the real line cannot act effectively on the line

SHENGKUI YE YANXIN ZHAO

DOI: 10.2140/agt.2023.23.3835

Published: 5 November 2023

The group of quasi-isometries of the real line cannot act effectively on the line

SHENGKUI YE YANXIN ZHAO

We prove that the group $QI^+(\mathbb{R})$ of orientation-preserving quasi-isometries of the real line is a left-orderable, nonsimple group, which cannot act effectively on the real line \mathbb{R} .

20F65

1 Introduction

A function $f: X \to Y$ between metric spaces X and Y is a quasi-isometry if there exist real numbers $K \ge 1$ and $C \ge 0$ such that

$$\frac{1}{K}d(x_1, x_2) - C \le d(f(x_1), f(x_2)) \le Kd(x_1, x_2) + C$$

for any $x_1, x_2 \in X$, and $d(\operatorname{Im} f, y) \leq C$ for any $y \in Y$. Two quasi-isometries f and g are called equivalent if they are of bounded distance; ie $\sup_{x \in X} d(f(x), g(x)) < \infty$. The quasi-isometry group $\operatorname{QI}(X)$ is the group of all equivalence classes [f] of quasi-isometries $f: X \to X$ under composition. The notion of quasi-isometries is one of the fundamental concepts in geometric group theory. In this note, we consider the quasi-isometry group $\operatorname{QI}(\mathbb{R})$ of the real line. Gromov and Pansu $[3, \operatorname{Section} 3.3B]$ noted that the group of bi-Lipschitz homeomorphisms has a full image in $\operatorname{QI}(\mathbb{R})$. Sankaran [9] proved that the orientation-preserving subgroup $\operatorname{QI}^+(\mathbb{R})$ is torsion-free and many large groups, like Thompson groups and free groups of infinite rank, can be embedded into $\operatorname{QI}^+(\mathbb{R})$.

Recall that a group G is left-orderable if there is a total order \leq on G such that $g \leq h$ implies $fg \leq fh$ for any $f \in G$. We will prove the following.

Theorem 1.1 The quasi-isometry group $QI^+(\mathbb{R})$ — or $QI([0, +\infty))$ — is not simple.

^{© 2023} MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

Theorem 1.2 The quasi-isometry group $QI^+(\mathbb{R})$ — or $QI([0, +\infty))$ — is left-orderable.

Theorem 1.3 The quasi-isometry group $QI^+(\mathbb{R})$ cannot act effectively on the real line \mathbb{R} .

Other (uncountable) left-orderable groups that cannot act on the line are been known. For example, the germ group $\mathcal{G}_{\infty}(\mathbb{R})$, due to Mann [4] and Rivas; and the compact supported diffeomorphism group $\mathrm{Diff}_c(\mathbb{R}^n)$ for n > 1, due to Chen and Mann [1].

2 The group structure of $QI(\mathbb{R})$

Let $QI(\mathbb{R}_+)$ (resp. $QI(\mathbb{R}_-)$) be the quasi-isometry group of the ray $[0, +\infty)$ (resp. $(-\infty, 0]$), viewed as subgroup of $QI(\mathbb{R})$ fixing the negative (resp. positive) part.

Lemma 2.1 $QI(\mathbb{R}) = (QI(\mathbb{R}_+) \times QI(\mathbb{R}_-)) \rtimes \langle t \rangle$, where $t \in QI(\mathbb{R})$ is the reflection t(x) = -x for any $x \in \mathbb{R}$.

Proof Sankaran [9] proves that the group $PL_{\delta}(\mathbb{R})$ consisting of piecewise linear homeomorphisms with bounded slopes has a full image in $QI(\mathbb{R})$. Since every homeomorphism $f \in PL_{\delta}(\mathbb{R})$ is of bounded distance to the map $f - f(0) \in PL_{\delta}(\mathbb{R})$, we see that the subgroup

$$PL_{\delta,0}(\mathbb{R}) = \{ f \in PL_{\delta}(\mathbb{R}) \mid f(0) = 0 \}$$

also has full image in $QI(\mathbb{R})$. Let

$$PL_{\delta,+}(\mathbb{R}) = \{ f \in PL_{\delta}(\mathbb{R}) \mid f(x) = x, x \le 0 \},$$

$$PL_{\delta,-}(\mathbb{R}) = \{ f \in PL_{\delta}(\mathbb{R}) \mid f(x) = x, x \ge 0 \}.$$

Since $PL_{\delta,+}(\mathbb{R}) \cap PL_{\delta,-}(\mathbb{R}) = \{id_{\mathbb{R}}\}$, we see that $PL_{\delta,+}(\mathbb{R}) \times PL_{\delta,-}(\mathbb{R})$ has a full image in $QI^+(\mathbb{R})$, the orientation-preserving subgroup of $QI(\mathbb{R})$. It's obvious that $PL_{\delta,+}(\mathbb{R})$ (resp. $PL_{\delta,-}(\mathbb{R})$) has a full image in $QI(\mathbb{R}_+)$ (resp. $QI(\mathbb{R}_-)$). Therefore, $QI(\mathbb{R}) = (QI(\mathbb{R}_+) \times QI(\mathbb{R}_-)) \times \langle t \rangle$.

Let $\operatorname{Homeo}_+(\mathbb{R})$ be the group of orientation-preserving homeomorphisms of the real line. Two functions $f,g\in\operatorname{Homeo}_+(\mathbb{R})$ are of bounded distance if

$$\sup_{|x| \ge M} |f(x) - g(x)| < \infty$$

for a sufficiently large real number M. This means when we study elements [f] in $QI(\mathbb{R})$, we don't need to care too much about the function values f(x) for x with small

absolute values. We will implicitly use this fact in the following context. As $PL_{\delta}(\mathbb{R})$ has a full image in $QI(\mathbb{R})$ (by Sankaran [9]), we take representatives of quasi-isometries which are homeomorphisms in the rest of the article.

2.1 QI(\mathbb{R}_+) is not simple

Let $QI(\mathbb{R}_+)$ be the quasi-isometry group of the half-line $[0, +\infty)$. Note that the quasi-isometry group $QI^+(\mathbb{R}) = QI(\mathbb{R}_+) \times QI(\mathbb{R}_-)$ and $QI(\mathbb{R}_+) \cong QI(\mathbb{R}_-)$, by Lemma 2.1. Let $H = \{[f] \in QI(\mathbb{R}_+) \mid \lim_{x \to \infty} (f(x) - x)/x = 0\}$. Theorem 1.1 follows from the following theorem.

Theorem 2.2 *H* is a proper normal subgroup of $QI(\mathbb{R}_+)$. In particular, $QI(\mathbb{R}_+)$ is not simple.

Proof For any $[f], [g] \in H$,

$$\frac{f(g(x))-x}{x} = \frac{f(g(x))-g(x)}{g(x)}\frac{g(x)}{x} + \frac{g(x)-x}{x}.$$

Since g is a quasi-isometry, we know that $(1/K)x - C \le g(x) - g(0) \le Kx + C$. Therefore, $1/K - 1 \le g(x)/x \le K + 1$ for sufficiently large x. When $x \to \infty$, we have $g(x) \to \infty$. This means $(f(g(x)) - g(x))/g(x) \to 0$. Therefore, $(f(g(x)) - x)/x \to 0$ as $x \to \infty$. This proves that $[fg] \in H$.

Note that

$$\frac{|f^{-1}(x) - x|}{x} = \frac{|f^{-1}(x) - f^{-1}(f(x))|}{x} \le \frac{K|x - f(x)| + C}{x}.$$

Therefore,

$$\lim_{x \to \infty} \frac{|f^{-1}(x) - x|}{x} = 0.$$

This means $[f^{-1}] \in H$ and that H is a subgroup.

For any quasi-isometric homeomorphism $g \in \text{Homeo}(\mathbb{R}_+)$ and any $[f] \in H$,

$$\frac{g^{-1}(f(g(x))) - x}{x} = \frac{g^{-1}(f(g(x))) - g^{-1}(g(x))}{x}$$
$$= \frac{g^{-1}(f(g(x))) - g^{-1}(g(x))}{g(x)} \frac{g(x)}{x}.$$

Note that when $x \to \infty$, the function g(x)/x is bounded. Let y = g(x). We have

$$\frac{|g^{-1}(f(y)) - g^{-1}(y)|}{y} \le \frac{K|f(y) - y| + C}{y} \to 0, \quad x \to \infty.$$

Therefore, $[g^{-1}fg] \in H$.

It's obvious that the function f defined by f(x) = 2x is not an element in H. The function defined by $g(x) = x + \ln(x + 1)$ gives a nontrivial element in H. Thus H is a proper normal subgroup of $QI(\mathbb{R}_+)$.

Lemma 2.3 Let

$$W(\mathbb{R}) = \left\{ f \in \text{Diff}(\mathbb{R}) \mid \sup_{x \in \mathbb{R}} |f(x) - x| < \infty, \sup_{x \in \mathbb{R}} |f'(x)| < \infty \right\}$$

be the group consisting of diffeomorphisms with bounded derivatives and of bounded distance from the identity. Define a homeomorphism $h: \mathbb{R} \to \mathbb{R}$ by $h(x) = e^x$ when $x \ge 1$, h(x) = -h(-x) when $x \le -1$, and $h(x) = e^x$ when $-1 \le x \le 1$. Then hfh^{-1} is a quasi-isometry for any $f \in W(\mathbb{R})$.

Proof For any $f \in W(\mathbb{R})$ and sufficiently large x > 0, its derivative satisfies that

$$|hfh^{-1}(x)'| = |(e^{f(\ln x)})'|$$

$$= |(xe^{f(\ln x) - \ln x})'|$$

$$= |e^{f(\ln x) - \ln x}(1 + f'(\ln x) - 1)|$$

$$= |e^{f(\ln x) - \ln x}f'(\ln x)|$$

$$\leq e^{\sup_{x \in \mathbb{R}} |f(x) - x|} \cdot \sup_{x \in \mathbb{R}} |f'(x)|.$$

The case for negative x < 0 can be calculated similarly. This proves that hfh^{-1} is a quasi-isometry.

The following result was proved by Sankaran [9].

Corollary 2.4 The quasi-isometry group $QI(\mathbb{R})$ contains $Diff_{\mathbb{Z}}(\mathbb{R})$ (the lift of $Diff(S^1)$ to $Homeo(\mathbb{R})$).

Proof For any $f \in \mathrm{Diff}_{\mathbb{Z}}(\mathbb{R})$, we have f(x+1) = f(x) + 1 for any $x \in \mathbb{R}$. This means $\sup_{x \in \mathbb{R}} |f(x) - x| < +\infty$. Since f(x) - x is periodic, we know that f'(x) is bounded. Suppose that f(x) > x for some $x \in [0, 1]$. Take $y_n = e^{x+n}$ for n > 0. Let h be the function defined in Lemma 2.3. We have

$$|hfh^{-1}(y_n) - y_n| = |e^{f(x+n)} - e^{x+n}| = |e^{f(x)} - e^x|e^n \to \infty,$$

which means $[hfh^{-1}] \neq [id] \in QI(\mathbb{R})$.

Lemma 2.5 QI(\mathbb{R}) contains the semidirect product Diff_{\mathbb{Z}}(\mathbb{R}) $\ltimes H$.

Proof Since H is normal, it's enough to prove that $\mathrm{Diff}_{\mathbb{Z}}(\mathbb{R}) \cap H = \{e\}$, the trivial subgroup. Actually, for any $f \in \mathrm{Diff}_{\mathbb{Z}}(\mathbb{R})$, the conjugate hfh^{-1} is a quasi-isometry as in the proof of Corollary 2.4. If $hfh^{-1} \in H$, then

$$\lim_{x \to \infty} \frac{hfh^{-1}(x)}{x} = \lim_{x \to \infty} \frac{xe^{f(\ln x) - \ln x}}{x} = \lim_{x \to \infty} e^{f(\ln x) - \ln x} = 1.$$

Since f(x) - x is periodic, we know that $f(\ln x) = \ln x$ for any sufficiently large x. But this means that f(y) = y for any y, so f is the identity. \Box

2.2 Affine subgroups of $QI(\mathbb{R})$

Lemma 2.6 The quasi-isometry group $QI(\mathbb{R}_+)$ (actually, the semidirect product $Diff_{\mathbb{Z}}(\mathbb{R}) \ltimes H$) contains the semidirect product $\mathbb{R}_{>0} \ltimes (\bigoplus_{i \in \mathbb{R}_{\geq 1}} \mathbb{R})$, generated by A_t and $B_{i,s}$ for $t \in \mathbb{R}_{>0}$, $i \in \mathbb{R}_{\geq 1} = [1, \infty)$ and $s \in \mathbb{R}$ satisfying

$$A_t B_{i,s} A_t^{-1} = B_{i,st}^{i}_{i+1}, \quad B_{i,s_1} B_{i,s_2} = B_{i,s_1+s_2},$$

 $A_{t_1} A_{t_2} = A_{t_1t_2}, \qquad B_{i,s_1} B_{j,s_2} = B_{j,s_2} B_{i,s_1},$

for any $t_1, t_2 \in \mathbb{R}_{>0}$, $i, j \in \mathbb{R}_{\geq 1}$ and $s_1, s_2 \in \mathbb{R}$.

Proof Let

$$A_t(x) = tx,$$
 $t \in \mathbb{R}_{>0},$
 $B_{i,s}(x) = x + sx^{\frac{1}{i+1}}, \quad s \in \mathbb{R},$

for $x \ge 0$. We define $A_t(x) = B_{i,s}(x) = x$ for $x \le 0$. Since the derivatives

$$A'_{t}(x) = t$$
, $B'_{i,s}(x) = 1 + \frac{s}{i+1}x^{\frac{-i}{i+1}}$

are bounded for sufficiently large x, we know that A_t and $B_{i,s}$ are quasi-isometries. For any $x \ge 1$,

$$A_t B_{i,s} A_t^{-1}(x) = A_t B_{i,s} \left(\frac{x}{t}\right) = A_t \left(\frac{x}{t} + s\left(\frac{x}{t}\right)^{\frac{1}{i+1}}\right) = x + st^{\frac{i}{i+1}} x^{\frac{1}{i+1}} = B_{i,st^{\frac{i}{i+1}}}(x).$$

For any $x \ge 1$,

$$B_{i,s_1}B_{i,s_2}(x) = B_{i,s_1}(x + s_2x^{\frac{1}{i+1}}) = x + s_2x^{\frac{1}{i+1}} + s_1(x + s_2x^{\frac{1}{i+1}})^{\frac{1}{i+1}}$$

and

$$|B_{i,s_1}B_{s_2}(x) - B_{i,s_1+s_2}(x)| = |s_1((x+s_2x^{\frac{1}{i+1}})^{\frac{1}{i+1}} - x^{\frac{1}{i+1}})| \le \left|s_1\frac{s_2x^{\frac{1}{i+1}}}{x^{\frac{i}{i+1}}}\right| \le |s_1s_2|$$

by Newton's binomial theorem. This means that $B_{i,s_1}B_{i,s_2}$ and B_{i,s_1+s_2} are of bounded distance. It is obvious that $A_{t_1}A_{t_2}=A_{t_1t_2}$.

When i < j are distinct natural numbers,

$$|B_{i,s_{1}}B_{j,s_{2}}(x) - B_{j,s_{2}}B_{i,s_{1}}(x)|$$

$$= |x + s_{2}x^{\frac{1}{j+1}} + s_{1}(x + s_{2}x^{\frac{1}{j+1}})^{\frac{1}{i+1}} - (x + s_{1}x^{\frac{1}{i+1}} + s_{2}(x + s_{1}x^{\frac{1}{i+1}})^{\frac{1}{j+1}})|$$

$$= |s_{1}((x + s_{2}x^{\frac{1}{j+1}})^{\frac{1}{i+1}} - x^{\frac{1}{i+1}}) + s_{2}(x^{\frac{1}{j+1}} - (x + s_{1}x^{\frac{1}{i+1}})^{\frac{1}{j+1}})|$$

$$\leq |s_{1}\frac{s_{2}x^{\frac{1}{j+1}}}{x^{\frac{i}{i+1}}}| + |s_{2}\frac{s_{1}x^{\frac{1}{i+1}}}{x^{\frac{j}{j+1}}}|$$

$$\leq 2|s_{1}s_{2}|$$

for any $x \ge 1$. This proves that images $[A_t], [B_{i,s}] \in QI(\mathbb{R}_{\ge 0})$ satisfy the relations. By abuse of notation, we still denote the classes by the same letters.

We prove that the subgroup generated by $\{B_{i,s} \mid i \in \mathbb{R}_{\geq 1}, s \in \mathbb{R}\}$ is the infinite direct sum $\bigoplus_{i \in \mathbb{R}_{\geq 1}} \mathbb{R}$. It's enough to prove that $B_{i_1,s_1}, B_{i_2,s_2}, \ldots, B_{i_k,s_k}$ are \mathbb{Z} -linearly independent for distinct i_1, i_2, \ldots, i_k and nonzero $s_1, s_2, \ldots, s_k \in \mathbb{R}$. This can directly checked. For integers n_1, n_2, \ldots, n_k , suppose that $B_{i_1,s_1}^{n_1} \circ B_{i_2,s_2}^{n_2} \circ \cdots \circ B_{i_k,s_k}^{n_k} = \mathrm{id} \in \mathrm{QI}(\mathbb{R}_{\geq 0})$. We have

$$\sup_{x \in \mathbb{R}_{>0}} |B_{i_1,s_1}^{n_1} \circ B_{i_2,s_2}^{n_2} \circ \cdots \circ B_{i_k,s_k}^{n_k}(x) - x|$$

$$= \sup_{x \in \mathbb{R}_{>0}} |n_k s_k x^{\frac{1}{i_k+1}} + n_{k-1} s_{k-1} (x + n_k s_k x^{\frac{1}{i_k+1}})^{\frac{1}{i_k-1}+1} + \cdots + n_1 s_1 (x + \cdots)^{\frac{1}{i_1+1}}|$$

$$< +\infty,$$

which implies $n_1 = n_2 = \cdots = n_k = 0$, considering the exponents.

The subgroup $\mathbb{R}_{>0} \ltimes \left(\bigoplus_{i \in \mathbb{R}_{\geq 1}} \mathbb{R}\right)$ lies in $\mathrm{Diff}_{\mathbb{Z}}(\mathbb{R}) \ltimes H$ by the following construction. Let $a_t, b_{i,s} \colon \mathbb{R} \to \mathbb{R}$ be defined by $a_t(x) = x + \ln t$ and $b_{i,s}(x) = \ln(e^x + se^{\frac{x}{i+1}})$ for $t \in \mathbb{R}_{>0}$, $i \in \mathbb{R}_{\geq 1}$ and $s \in \mathbb{R}$. It can be directly checked that $a_t \in \mathrm{Diff}_{\mathbb{Z}}(\mathbb{R})$ and $b_{i,s} \in W(\mathbb{R})$ (defined in Lemma 2.3). Let $h(x) = e^x$. A direct calculation shows that $ha_t h^{-1} = A_t$ and $hb_{i,s} h^{-1} = B_{i,s}$, as elements in $\mathrm{QI}(\mathbb{R}_+)$.

3 Left-orderability

The following is well known; for a proof, see [7, Proposition 1.4]:

Lemma 3.1 A group G is left-orderable if and only if, for every finite collection of nontrivial elements g_1, \ldots, g_k , there exist choices $\varepsilon_i \in \{1, -1\}$ such that the identity is not an element of the semigroup generated by $\{g_i^{\varepsilon_i} \mid i = 1, 2, \ldots, k\}$.

The proof of Theorem 1.2 follows a similar strategy used by Navas to prove the left-orderability of the group \mathcal{G}_{∞} of germs at ∞ of homeomorphisms of \mathbb{R} ; cf [2, Remark 1.1.13] or [4, Proposition 2.2].

Proof of Theorem 1.2 It's enough to prove that $QI(\mathbb{R}_+)$ is left-orderable. Let $f_1, f_2, \ldots, f_n \in QI(\mathbb{R}_+)$ be any finitely many nontrivial elements. Note that any $1 \neq [f] \in QI(\mathbb{R}_+)$ has $\sup_{x>0} |f(x)-x| = \infty$. This property doesn't depend on the choice of $f \in [f]$. Without confusion, we still denote [f] by f. Choose a sequence $\{x_{1,k}\} \subset \mathbb{R}_+$ such that $\sup_{k \in \mathbb{N}} |f_1(x_{1,k}) - x_{1,k}| = \infty$. For each i > 1, we have either $\sup_{k \in \mathbb{N}} |f_i(x_{1,k}) - x_{1,k}| = \infty$ or $\sup_{k \in \mathbb{N}} |f_i(x_{1,k}) - x_{1,k}| \leq M$ for a real number M. After passing to subsequences, we assume for each $i = 1, 2, \ldots, n$ that either $f_i(x_{1,k}) - x_{1,k} \to +\infty$, $f_i(x_{1,k}) - x_{1,k} \to -\infty$ or $\sup_{k \in \mathbb{N}} |f_i(x_{1,k}) - x_{1,k}| \leq M$. We assign $\varepsilon_i = 1$ for the first case and $\varepsilon_i = -1$ for the second case. For the third case, let

$$S_1 = \{ f_i \mid \sup_{k \in \mathbb{N}} |f_i(x_{1,k}) - x_{1,k}| \le M \}.$$

Note that $f_1 \notin S_1$. Choose $f_{i_0} \in S_1$ if S_1 is not empty. We choose another sequence $\{x_{2,k}\}$ such that $\sup_{k \in \mathbb{N}} |f_{i_0}(x_{2,k}) - x_{2,k}| = \infty$. Similarly, after passing to a subsequence, we have for each $f \in S_1$ that either $f(x_{2,k}) - x_{2,k} \to +\infty$, $f(x_{2,k}) - x_{2,k} \to -\infty$ or $\sup_{k \in \mathbb{N}} |f(x_{2,k}) - x_{2,k}| \le M'$ for another real number M'. Assign $\varepsilon_i = 1$ for the first case and $\varepsilon_i = -1$ for the second case. Continue this process to define S_2, S_3, \ldots and choose sequences $\{x_{i,k}\}, i = 3, 4, \ldots$ to assign ε_i for each f_i . Note that the process will stop at n times, as the number of elements without assignment is strictly decreasing.

For an element $f \in QI(\mathbb{R}_+)$ satisfying $f(x_i) - x_i \to \infty$ as $i \to \infty$ for some sequence $\{x_i\}$, we assume that $f(x_i) - x_i > 0$ for each i. Since f and f^{-1} are orientation-preserving,

$$f^{-1}(x_i) - x_i = -(x_i - f^{-1}(x_i))$$

= $-(f^{-1}(f(x_i)) - f^{-1}(x_i)) \le -\left(\frac{1}{K}(f(x_i) - x_i) - C\right) \to -\infty.$

Let $w=f_{i_1}^{\varepsilon_{i_1}}\cdots f_{i_m}^{\varepsilon_{i_m}}\in \langle f_1,f_2,\ldots,f_n\rangle$ be a nontrivial word. If $\{i_1,\ldots,i_m\}\not\subseteq S_1$, we have $w(x_{1,k})-x_{1,k}\to\infty$. Otherwise, $\sup_{k\in\mathbb{N}}|w(x_{1,k})-x_{1,k}|<\infty$. Suppose that $\{i_1,\ldots,i_m\}\subset S_t$, but $\{i_1,\ldots,i_m\}\not\subseteq S_{t+1}$ with the assumption that $S_0=\{f_1,f_2,\ldots,f_n\}$. We have $w(x_{t+1,k})-x_{t+1,k}\to\infty$ as $k\to\infty$. This proves that $w\neq 1\in \mathrm{QI}(\mathbb{R}_+)$. Therefore, $\mathrm{QI}(\mathbb{R}_+)$ is left-orderable by Lemma 3.1.

Lemma 3.2 The group $QI(\mathbb{R}_+)$ is not locally indicable.

Proof Note that $QI(\mathbb{R}_+)$ contains the lift $\widetilde{\Gamma}$ of $PSL(2,\mathbb{R}) < Diff(S^1)$ to $Homeo(\mathbb{R})$ (Corollary 2.4). But this lift $\widetilde{\Gamma}$ contains a subgroup $\Gamma = \langle f, g, h : f^2 = g^3 = h^7 = fgh \rangle$, the lift of the (2,3,7)-triangle group. There are no nontrivial maps from Γ to $(\mathbb{R},+)$; for more details see [2, page 94].

4 The quasi-isometric group cannot act effectively on the line

The following was proved by Mann [4, Proposition 6].

Lemma 4.1 Consider the affine group $\mathbb{R}_{>0} \ltimes \mathbb{R}$, generated by A_t and B_s for $t \in \mathbb{R}_{>0}$ and $s \in \mathbb{R}$ satisfying

$$A_t B_s A_t^{-1} = B_{ts}, \quad B_{s_1} B_{s_2} = B_{s_1 + s_2}, \quad A_{t_1} A_{t_2} = A_{t_1 t_2}.$$

The affine group $\mathbb{R}_{>0} \ltimes \mathbb{R}$ cannot act effectively on the real line \mathbb{R} by homeomorphisms with A_t a translation for each t.

Proof Suppose that $\mathbb{R}_{>0} \ltimes \mathbb{R}$ acts effectively on the real line \mathbb{R} with each A_t a translation. After passing to an index-2 subgroup, we assume that the group is orientation-preserving. If B_1 acts freely on \mathbb{R} , then it is conjugate to the translation $T: \mathbb{R} \to \mathbb{R}$ defined by $x \mapsto x + 1$. In such a case, we have $A_2TA_2^{-1} = T^2$. Therefore, $A_2^{-1}(x+2) = A_2^{-1}(x) + 1$ for any x. Since A_2^{-1} maps intervals of length 2 to an interval of length 1, it is a contracting map, and thus has a fixed point.

If B_1 has a nonempty fixed point set $\operatorname{Fix}(B_1)$, choose I to be a connected component of $\mathbb{R} \setminus \operatorname{Fix}(B_1)$. Suppose that $A_2(x) = x + a$, a translation by some real number a > 0. Since $A_2 = A_{2^{1/n}}^n$, we have $A_{2^{1/n}}(x) = x + a/n$ for each positive integer n. For each n, let $F_n = A_{2^{1/n}} B_1 A_{2^{1/n}}^{-1}$. Since $A_{2^{1/n}} B_1 A_{2^{1/n}}^{-1}$ commutes with B_1 , we see that $F_n \operatorname{Fix}(B_1) = \operatorname{Fix}(B_1)$. This means that either $F_n(I) = I$ or $F_n(I) \cap I = \emptyset$. Since $F_n(x) = B_1(x - a/n) + a/n$ for any $x \in \mathbb{R}$, we know that $F_n(I) = I$ for sufficiently large n. Without loss of generality, we assume that I is of the form (x, y) or $(-\infty, y)$. Choose a sufficiently large n such that $y - a/n \in I$. We have

$$A_{2^{1/n}}B_1A_{2^{1/n}}^{-1}(y) = B_1\left(y - \frac{a}{n}\right) + \frac{a}{n} \neq y,$$

which is a contradiction to the fact that $F_n(I) = I$.

Definition 4.2 A topologically diagonal embedding of a group $G < \text{Homeo}(\mathbb{R})$ is a homomorphism $\phi \colon G \to \text{Homeo}_+(\mathbb{R})$ defined as follows. Choose a collection of disjoint open intervals $I_n \subset \mathbb{R}$ and homeomorphisms $f_n \colon \mathbb{R} \to I_n$. Define ϕ by $\phi(g)(x) = f_n g f_n^{-1}(x)$ when $x \in I_n$ and $\phi(g)(x) = x$ when $x \notin I_n$.

The following is similar to a result proved by Militon [6].

Lemma 4.3 (Militon [6]) Let $\Gamma = PSL_2(\mathbb{R})$ and $\widetilde{\Gamma} < Homeo_+(\mathbb{R})$ be the lift of Γ to the real line. Any effective action $\phi \colon \widetilde{\Gamma} \hookrightarrow Homeo_+(\mathbb{R})$ of $\widetilde{\Gamma}$ on the real line \mathbb{R} is a topological diagonal embedding.

Proof After passing to an index-2 subgroup, we assume the action is orientation-preserving. Let $\tau \colon \mathbb{R} \to \mathbb{R}$ be the translation $x \mapsto x + 1$. Suppose that $\mathrm{Fix}(\phi(\tau)) \neq \varnothing$. Note that τ lies in the center of $\widetilde{\Gamma}$. The quotient group $\Gamma = \widetilde{\Gamma}/\langle \tau \rangle$ acts on the fixed point set $\mathrm{Fix}(\phi(\tau))$. For any $f \in \Gamma$ and $x \in \mathrm{Fix}(\phi(\tau))$, we denote the action by f(x) without confusion. Choose any torsion-element $f \in \Gamma$ and any $x \in \mathrm{Fix}(\phi(\tau))$. We must have x = f(x), for otherwise $x < f(x) < f^2(x) < \cdots < f^k(x)$ for any k. Since Γ is simple, we know that the action of $\widetilde{\Gamma}$ on $\mathrm{Fix}(\tau)$ is trivial. For each connected component $I_i \subset \mathbb{R} \setminus \mathrm{Fix}(\phi(\tau))$, we know that $\tau|_{I_i}$ is conjugate to a translation. The group $\Gamma = \widetilde{\Gamma}/\langle \tau \rangle$ acts on $I_i/\langle \phi(\tau) \rangle = S^1$. A result of Matsumoto [5, Theorem 5.2] says that the group Γ is conjugate to the natural inclusion $\mathrm{PSL}_2(\mathbb{R}) \hookrightarrow \mathrm{Homeo}_+(S^1)$ by a homeomorphism $g \in \mathrm{Homeo}_+(S^1)$. Therefore, the group $\phi(\widetilde{\Gamma})|_{I_i}$ is conjugate to the image of the natural inclusion $\widetilde{\Gamma} \hookrightarrow \mathrm{Homeo}_+(\mathbb{R})$.

For a real number $a \in \mathbb{R}$, let

$$t_a: \mathbb{R} \to \mathbb{R}, \quad x \mapsto x + a$$

be the translation. Denote by $A = \langle t_a : a \in \mathbb{R} \rangle$, the subgroup of translations in the lift $\widetilde{\Gamma}$ of $PSL_2(\mathbb{R})$.

Corollary 4.4 For any injective group homomorphism $\phi \colon \widetilde{\Gamma} \to \operatorname{Homeo}(\mathbb{R})$, the image $\phi(A)$ is a continuous one-parameter subgroup; ie $\lim_{a \to a_0} \phi(t_a) = \phi(t_{a_0})$ for any $a_0 \in \mathbb{R}$.

Proof If ϕ is injective, the previous lemma says that ϕ is a topological diagonal embedding. Therefore, $\phi(A)$ is continuous.

We will need the following elementary fact.

Lemma 4.5 Let $\phi: (\mathbb{R}, +) \to (\mathbb{R}, +)$ be a group homomorphism. If ϕ is continuous at any $x \neq 0$, then ϕ is \mathbb{R} -linear.

Proof For any nonzero integer n, we have $\phi(n) = n\phi(1)$ and $\phi(1) = \phi(\frac{1}{n}n) = n\phi(\frac{1}{n})$. Since ϕ is additive, we have $\phi(\frac{m}{n}) = m\phi(\frac{1}{n}) = \frac{m}{n}\phi(1)$ for any integers $m, n \neq 0$.

For any nonzero real number $a \in \mathbb{R}$, choose a rational sequence $r_i \to a$. When ϕ is continuous, we have that $\phi(r_i) \to \phi(a)$ and $\phi(r_i) = r_i \phi(1) \to a \phi(1) = \phi(a)$.

The following is the classical theorem of Hölder: a group acting freely on \mathbb{R} is semi-conjugate to a group of translations; see Navas [8, Section 2.2.4].

Lemma 4.6 Let Γ be a group acting freely on the real line \mathbb{R} . There is an injective group homomorphism $\phi \colon \Gamma \to (\mathbb{R}, +)$ and a continuous nondecreasing map $\varphi \colon \mathbb{R} \to \mathbb{R}$ such that

$$\varphi(h(x)) = \varphi(x) + \phi(h)$$

for any $x \in \mathbb{R}$ and $h \in \Gamma$.

Corollary 4.7 Suppose that the affine group $\mathbb{R}_{>0} \ltimes \mathbb{R} = \langle a_t : t \in \mathbb{R}_{>0} \rangle \ltimes \langle b_s : s \in \mathbb{R} \rangle$ acts on the real line \mathbb{R} by homeomorphisms satisfying

- (1) the action of the subgroup $\mathbb{R} = \langle b_s : s \in \mathbb{R} \rangle$ is free;
- (2) for any fixed $x \in \mathbb{R}$, $a_t(x)$ is continuous with respect to $t \in \mathbb{R}_{>0}$.

Let $\phi: \langle b_s : s \in \mathbb{R} \rangle \to (\mathbb{R}, +)$ be the additive map in Lemma 4.6 for $\Gamma = \langle b_s : s \in \mathbb{R} \rangle$. Then ϕ is an \mathbb{R} -linear map.

Proof Note that $a_t b_s a_t^{-1} = b_{ts}$. We have

$$\varphi(b_{ts}(x)) = \varphi(x) + \phi(b_{ts}).$$

Since $b_{ts}(x) = a_t b_s a_t^{-1}(x) \rightarrow b_s(x)$ when $t \rightarrow 1$, we have that

$$\varphi(x) + \phi(b_{ts}) \rightarrow \varphi(b_s(x)) = \varphi(x) + \phi(b_s).$$

This implies that $\phi(b_{ts}) \to \phi(b_s)$ as $t \to 1$. For any nonzero $x \in \mathbb{R}$ and sequence $x_n \to x$,

$$\phi(b_{x_n}) = \phi(b_{\frac{x_n}{x}x}) \to \phi(b_x).$$

The map ϕ is \mathbb{R} -linear by Lemma 4.5.

Theorem 4.8 Consider $G = \mathbb{R}_{>0} \ltimes (\bigoplus_{i \in \mathbb{R}_{\geq 1}} \mathbb{R})$, generated by A_t and $B_{i,s}$ for $t \in \mathbb{R}_{>0}$, $i \in \mathbb{R}_{\geq 1} = [1, \infty)$ and $s \in \mathbb{R}$ satisfying

$$A_t B_{i,s} A_t^{-1} = B_{i,st} \frac{i}{i+1}, \quad B_{i,s_1} B_{i,s_2} = B_{i,s_1+s_2},$$

 $A_{t_1} A_{t_2} = A_{t_1t_2}, \qquad B_{i,s_1} B_{j,s_2} = B_{j,s_2} B_{i,s_1}$

for any $t_1, t_2 \in \mathbb{R}_{>0}$, $i, j \in \mathbb{R}_{\geq 1}$ and $s_1, s_2 \in \mathbb{R}$. Then G cannot act effectively on the real line \mathbb{R} by homeomorphisms when the induced action of $\langle A_t : t \in \mathbb{R}_{>0} \rangle$ is a topologically diagonal embedding of the translation subgroup $(\mathbb{R}, +) \hookrightarrow \text{Homeo}(\mathbb{R})$.

Proof Suppose that G acts effectively on \mathbb{R} with the induced action of $\langle A_t : t \in \mathbb{R}_{>0} \rangle$, a topologically diagonal embedding of the translation subgroup $(\mathbb{R}, +) \hookrightarrow \operatorname{Homeo}(\mathbb{R})$. Let I be a connected component of $\mathbb{R} \setminus \operatorname{Fix}(\langle A_t, B_{i,s} : t \in \mathbb{R}_{>0}, i = 1, s \in \mathbb{R} \rangle)$.

Suppose that there is an element $B_{1,s}$ having a fixed point $x \in I$ for some s > 0. Since $A_4B_{1,s}A_4^{-1} = B_{1,s}^2$, we know that $A_4x \in \operatorname{Fix}(B_{1,s}) = \operatorname{Fix}(B_{1,s}^2)$. Since there are no fixed points in I for $\langle A_t, B_{1,s} : t \in \mathbb{R}_{>0}, s \in \mathbb{R} \rangle$, we know that $\lim_{n \to \infty} A_4^n x \notin I$. This implies that A_4 has no fixed point in I. Since the group homomorphism

$$\langle A_t : t \in \mathbb{R}_{>0} \rangle \to \text{Homeo}(\mathbb{R})$$

is a diagonal embedding, we see that each A_t has no fixed point in I and the action of $\langle A_t:t\in\mathbb{R}_{>0}\rangle$ on I is conjugate to a group of translations. By Lemma 4.1, the affine group $\langle A_t,B_{1,s}:t\in\mathbb{R}_{>0},s\in\mathbb{R}\rangle$ cannot act effectively on I. Suppose that $A_tB_{1,s'}$ acts trivially on I for some t>0 and s'>0. We have that $A_tB_{1,s}=A_{s^2s'-2}(A_tB_{1,s'})A_{s^2s'-2}^{-1}$ acts trivially on I. But $A_tB_{1,s}(x)=A_t(x)=x$ implies that t=1. Therefore, the element $B_{1,s}$ (and any $B_{1,t}=A_{t^2s-2}B_{1,s}A_{t^2s-2}^{-1}$ for $t\in\mathbb{R}_{>0}$) acts trivially on I. This means that the action of $\langle B_{1,s}:s\in\mathbb{R}\rangle$ on the connected component I is either trivial or free. Since the action of G is effective, there is a connected component I_1 on which $B_{1,s}$ acts freely. A similar argument shows that $B_{i,s'}$ acts freely on a component I_i for each $i\in\mathbb{R}_{>1}$ and any $s'\in\mathbb{R}\setminus\{0\}$.

Since $B_{i,s'}$ commutes with $B_{j,s}$, we have $B_{i,s'}(I_1) \subset \mathbb{R} \setminus \mathrm{Fix}(\langle B_{j,s} : s \in \mathbb{R} \rangle)$. Moreover, $B_{i,s'}(I_j) \cap I_j$ is either I_j or the empty set. Suppose that $I_i \cap I_j \neq \emptyset$ and the right end b_i of I_i lies in I_j . Choose $x \in I_i \cap I_j$. Note that $B_{j,s}([x,b_i)) \cap [x,b_i) = \emptyset$ for any s > 0. This is impossible as $B_{j,s/n}(x) \to x$ as $n \to \infty$. Therefore, $I_i \cap I_j = I_i$ or is empty for distinct $i,j \in \mathbb{R}_{\geq 1}$. Since we have uncountably many $i \in \mathbb{R}_{>0}$, there must be some distinct $i,j \in \mathbb{R}_{\geq 1}$ such that $I_i = I_j$. This means that the subgroup $\mathbb{R} \oplus \mathbb{R}$ spanned by the i,j-components acts freely on I_i . Hölder's theorem (Lemma 4.6) gives an injective group homomorphism $\phi : \mathbb{R} \oplus \mathbb{R} \to (\mathbb{R}, +)$ and a continuous nondecreasing map $\varphi : \mathbb{R} \to \mathbb{R}$ such that

$$\varphi(h(x)) = \varphi(x) + \phi(h)$$

for any $x \in \mathbb{R}$. Since $\langle A_t : t \in \mathbb{R}_{>0} \rangle \to \text{Homeo}(\mathbb{R})$ is a topological embedding, we have that for any fixed $x \in \mathbb{R}$, $A_t(x)$ is continuous with respect to $t \in \mathbb{R}_{>0}$. By Corollary 4.7,

¹Otherwise, $\lim_{n\to\infty} A_4^n x \in I$. But $A_t(\lim_{n\to\infty} A_4^n x) = \lim_{n\to\infty} A_4^n x$ for any t>0 by the topologically diagonal embedding. For any s', we have $B_{1,s'} = A_{s'^2s^{-2}}B_{1,s}A_{s'^2s^{-2}}^{-1}$ and $B_{1,s'}(\lim_{n\to\infty} A_4^n x) = \lim_{n\to\infty} A_4^n x$. This would imply that $\lim_{n\to\infty} A_4^n x$ is a global fixed point of $\langle A_t, B_{1,s} : t \in \mathbb{R}_{>0}, s \in \mathbb{R} \rangle$.

the restriction map $\phi|_{\mathbb{R}}$ is \mathbb{R} -linear for each direct summand \mathbb{R} . This is a contradiction to the fact that ϕ is injective. Therefore, the group G cannot act effectively.

Proof of Theorem 1.3 Suppose that $\mathrm{QI}^+(\mathbb{R})$ acts on the real line by an injective group homomorphism $\phi \colon \mathrm{QI}^+(\mathbb{R}) \to \mathrm{Homeo}(\mathbb{R})$. The group $\mathrm{QI}^+(\mathbb{R})$ contains the semidirect product $\mathbb{R}_{\geq 0} \ltimes \left(\bigoplus_{i \in \mathbb{R}_{\geq 1}} \mathbb{R}\right)$, by Lemma 2.6. The subgroup $\mathbb{R}_{\geq 0}$ (as the image of the exponential map) is a homomorphic image of the subgroup $\mathbb{R} < \widetilde{\Gamma}$, which is the lift of $\mathrm{SO}(2)/\{\pm I_2\} < \mathrm{PSL}_2(\mathbb{R})$ to $\mathrm{Homeo}(\mathbb{R})$. Note that $\widetilde{\Gamma}$ is embedded into $\mathrm{QI}^+(\mathbb{R})$ (see Corollary 2.4 and its proof). By Lemma 4.3, any effective action of $\widetilde{\Gamma}$ on the real line \mathbb{R} is a topological diagonal embedding. This means that the action of $\mathbb{R}_{\geq 0}$ is a topological diagonal embedding (Corollary 4.4). Theorem 4.8 shows that the action of $\mathbb{R}_{\geq 0} \ltimes \left(\bigoplus_{i \in \mathbb{R}_{\geq 1}} \mathbb{R}\right)$ is not effective.

Acknowledgements The authors would like to thank Li Cai and Xiaolei Wu for their helpful discussions. This work is supported by NSFC (grant 11971389).

References

- [1] **L Chen, K Mann**, *There are no exotic actions of diffeomorphism groups on 1–manifolds*, Groups Geom. Dyn. 17 (2023) 91–99 MR Zbl
- [2] **B Deroin**, **A Navas**, **C Rivas**, *Groups*, *orders*, *and dynamics*, preprint (2014) arXiv 1408.5805
- [3] **M Gromov**, **P Pansu**, *Rigidity of lattices: An introduction*, from "Geometric topology: Recent developments" (P De Bartolomeis, F Tricerri, editors), Lecture Notes in Math. 1504, Springer (1991) 39–137 MR Zbl
- [4] K Mann, Left-orderable groups that don't act on the line, Math. Z. 280 (2015) 905–918MR Zbl
- [5] **S Matsumoto**, *Numerical invariants for semiconjugacy of homeomorphisms of the circle*, Proc. Amer. Math. Soc. 98 (1986) 163–168 MR Zbl
- [6] **E Militon**, *Actions of groups of homeomorphisms on one-manifolds*, Groups Geom. Dyn. 10 (2016) 45–63 MR Zbl
- [7] A Navas, On the dynamics of (left) orderable groups, Ann. Inst. Fourier (Grenoble) 60 (2010) 1685–1740 MR Zbl
- [8] A Navas, Groups of circle diffeomorphisms, Univ. of Chicago Press (2011) MR Zbl
- [9] P Sankaran, On homeomorphisms and quasi-isometries of the real line, Proc. Amer. Math. Soc. 134 (2006) 1875–1880 MR Zbl

NYU-ECNU Institute of Mathematical Sciences, NYU Shanghai Shanghai, China

Department of Pure Mathematics, Xi'an Jiaotong–Liverpool University Suzhou, Jiangsu, China

sy55@nyu.edu, yanxin.zhao19@student.xjtlu.edu.cn

Received: 26 March 2022 Revised: 28 May 2022

ALGEBRAIC & GEOMETRIC TOPOLOGY

msp.org/agt

EDITORS

PRINCIPAL ACADEMIC EDITORS

John Etnyre Kathryn Hess
etnyre@math.gatech.edu kathryn.hess@epfl.ch
Georgia Institute of Technology École Polytechnique Fédérale de Lausanne

BOARD OF EDITORS

Julie Bergner	University of Virginia jeb2md@eservices.virginia.edu	Robert Lipshitz	University of Oregon lipshitz@uoregon.edu
Steven Boyer	Université du Québec à Montréal cohf@math.rochester.edu	Norihiko Minami	Nagoya Institute of Technology nori@nitech.ac.jp
Tara E Brendle	University of Glasgow tara.brendle@glasgow.ac.uk	Andrés Navas	Universidad de Santiago de Chile andres.navas@usach.cl
Indira Chatterji	CNRS & Univ. Côte d'Azur (Nice) indira.chatterji@math.cnrs.fr	Thomas Nikolaus	University of Münster nikolaus@uni-muenster.de
Alexander Dranishnikov	University of Florida dranish@math.ufl.edu	Robert Oliver	Université Paris 13 bobol@math.univ-paris13.fr
Tobias Ekholm	Uppsala University, Sweden tobias.ekholm@math.uu.se	Jessica S Purcell	Monash University jessica.purcell@monash.edu
Mario Eudave-Muñoz	Univ. Nacional Autónoma de México mario@matem.unam.mx	Birgit Richter	Universität Hamburg birgit.richter@uni-hamburg.de
David Futer	Temple University dfuter@temple.edu	Jérôme Scherer	École Polytech. Féd. de Lausanne jerome.scherer@epfl.ch
John Greenlees	University of Warwick john.greenlees@warwick.ac.uk	Vesna Stojanoska	Univ. of Illinois at Urbana-Champaign vesna@illinois.edu
Ian Hambleton	McMaster University ian@math.mcmaster.ca	Zoltán Szabó	Princeton University szabo@math.princeton.edu
Matthew Hedden	Michigan State University mhedden@math.msu.edu	Maggy Tomova	University of Iowa maggy-tomova@uiowa.edu
Hans-Werner Henn	Université Louis Pasteur henn@math.u-strasbg.fr	Nathalie Wahl	University of Copenhagen wahl@math.ku.dk
Daniel Isaksen	Wayne State University isaksen@math.wayne.edu	Chris Wendl	Humboldt-Universität zu Berlin wendl@math.hu-berlin.de
Thomas Koberda	University of Virginia thomas.koberda@virginia.edu	Daniel T Wise	McGill University, Canada daniel.wise@mcgill.ca
Christine Lescop	Université Joseph Fourier lescop@ujf-grenoble.fr		

See inside back cover or msp.org/agt for submission instructions.

The subscription price for 2023 is US \$650/year for the electronic version, and \$940/year (+\$70, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Algebraic & Geometric Topology is indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Algebraic & Geometric Topology (ISSN 1472-2747 printed, 1472-2739 electronic) is published 9 times per year and continuously online, by Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840. Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.

AGT peer review and production are managed by EditFlow® from MSP.

mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/

© 2023 Mathematical Sciences Publishers

ALGEBRAIC & GEOMETRIC TOPOLOGY

volume 25 — Issue 8 (pages 5417—5908) — 2025			
Partial Torelli groups and homological stability	3417		
Andrew Putman			
On symplectic fillings of small Seifert 3-manifolds			
HAKHO CHOI and JONGIL PARK			
Milnor–Witt motivic cohomology of complements of hyperplane arrangements	3531		
Keyao Peng			
Connective models for topological modular forms of level <i>n</i>	3553		
Lennart Meier			
Asymptotic dimension of graphs of groups and one-relator groups	3587		
Panagiotis Tselekidis			
Pressure metrics for deformation spaces of quasifuchsian groups with parabolics	3615		
HARRISON BRAY, RICHARD CANARY and LIEN-YUNG KAO			
The $Sp_{k,n}$ -local stable homotopy category	3655		
Drew Heard			
Smooth one-dimensional topological field theories are vector bundles with connection	3707		
DANIEL BERWICK-EVANS and DMITRI PAVLOV			
Round fold maps on 3-manifolds	3745		
NAOKI KITAZAWA and OSAMU SAEKI			
The upsilon invariant at 1 of 3-braid knots	3763		
Paula Truöl			
Cusps and commensurability classes of hyperbolic 4-manifolds	3805		
CONNOR SELL			
The group of quasi-isometries of the real line cannot act effectively on the line	3835		
SHENGKUI YE and YANXIN ZHAO			
Simplicial model structures on pro-categories	3849		

THOMAS BLOM and IEKE MOERDIJK