$\frac{A}{2} g$

ALgebraic é Geometric Topology

Volume 23 (2023)

The group of quasi-isometries of the real line cannot act effectively on the line

SHENGKUI YE
YANXIN ZHAO

The group of quasi-isometries of the real line cannot act effectively on the line

Shengkui Ye
Yanxin Zhao

We prove that the group $\mathrm{QI}^{+}(\mathbb{R})$ of orientation-preserving quasi-isometries of the real line is a left-orderable, nonsimple group, which cannot act effectively on the real line \mathbb{R}.

20F65

1 Introduction

A function $f: X \rightarrow Y$ between metric spaces X and Y is a quasi-isometry if there exist real numbers $K \geq 1$ and $C \geq 0$ such that

$$
\frac{1}{K} d\left(x_{1}, x_{2}\right)-C \leq d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq K d\left(x_{1}, x_{2}\right)+C
$$

for any $x_{1}, x_{2} \in X$, and $d(\operatorname{Im} f, y) \leq C$ for any $y \in Y$. Two quasi-isometries f and g are called equivalent if they are of bounded distance; ie $\sup _{x \in X} d(f(x), g(x))<\infty$. The quasi-isometry group $\mathrm{QI}(X)$ is the group of all equivalence classes [f] of quasiisometries $f: X \rightarrow X$ under composition. The notion of quasi-isometries is one of the fundamental concepts in geometric group theory. In this note, we consider the quasi-isometry group $\mathrm{QI}(\mathbb{R})$ of the real line. Gromov and Pansu [3, Section 3.3B] noted that the group of bi-Lipschitz homeomorphisms has a full image in $\mathrm{QI}(\mathbb{R})$. Sankaran [9] proved that the orientation-preserving subgroup $\mathrm{QI}^{+}(\mathbb{R})$ is torsion-free and many large groups, like Thompson groups and free groups of infinite rank, can be embedded into $\mathrm{QI}^{+}(\mathbb{R})$.

Recall that a group G is left-orderable if there is a total order \leq on G such that $g \leq h$ implies $f g \leq f h$ for any $f \in G$. We will prove the following.

Theorem 1.1 The quasi-isometry group $\mathrm{QI}^{+}(\mathbb{R})$ - or $\mathrm{QI}([0,+\infty))$ - is not simple.

[^0]Theorem 1.2 The quasi-isometry group $\mathrm{QI}^{+}(\mathbb{R})$ - or $\mathrm{QI}([0,+\infty))$ - is left-orderable.

Theorem 1.3 The quasi-isometry group $\mathrm{QI}^{+}(\mathbb{R})$ cannot act effectively on the real line \mathbb{R}.

Other (uncountable) left-orderable groups that cannot act on the line are been known. For example, the germ group $\mathcal{G}_{\infty}(\mathbb{R})$, due to Mann [4] and Rivas; and the compact supported diffeomorphism group $\operatorname{Diff}_{c}\left(\mathbb{R}^{n}\right)$ for $n>1$, due to Chen and Mann [1].

2 The group structure of $\mathrm{QI}(\mathbb{R})$

Let $\mathrm{QI}\left(\mathbb{R}_{+}\right)$(resp. $\mathrm{QI}\left(\mathbb{R}_{-}\right)$) be the quasi-isometry group of the ray $[0,+\infty)$ (resp. $(-\infty, 0])$, viewed as subgroup of $\mathrm{QI}(\mathbb{R})$ fixing the negative (resp. positive) part.

Lemma 2.1 $\mathrm{QI}(\mathbb{R})=\left(\mathrm{QI}\left(\mathbb{R}_{+}\right) \times \mathrm{QI}\left(\mathbb{R}_{-}\right)\right) \rtimes\langle t\rangle$, where $t \in \mathrm{QI}(\mathbb{R})$ is the reflection $t(x)=-x$ for any $x \in \mathbb{R}$.

Proof Sankaran [9] proves that the group $\mathrm{PL}_{\delta}(\mathbb{R})$ consisting of piecewise linear homeomorphisms with bounded slopes has a full image in $\mathrm{QI}(\mathbb{R})$. Since every homeomorphism $f \in \mathrm{PL}_{\delta}(\mathbb{R})$ is of bounded distance to the map $f-f(0) \in \mathrm{PL}_{\delta}(\mathbb{R})$, we see that the subgroup

$$
\mathrm{PL}_{\delta, 0}(\mathbb{R})=\left\{f \in \mathrm{PL}_{\delta}(\mathbb{R}) \mid f(0)=0\right\}
$$

also has full image in $\mathrm{QI}(\mathbb{R})$. Let

$$
\begin{aligned}
\operatorname{PL}_{\delta,+}(\mathbb{R}) & =\left\{f \in \operatorname{PL}_{\delta}(\mathbb{R}) \mid f(x)=x, x \leq 0\right\} \\
\operatorname{PL}_{\delta,-}(\mathbb{R}) & =\left\{f \in \operatorname{PL}_{\delta}(\mathbb{R}) \mid f(x)=x, x \geq 0\right\} .
\end{aligned}
$$

Since $\mathrm{PL}_{\delta,+}(\mathbb{R}) \cap \mathrm{PL}_{\delta,-}(\mathbb{R})=\left\{\mathrm{id}_{\mathbb{R}}\right\}$, we see that $\mathrm{PL}_{\delta,+}(\mathbb{R}) \times \mathrm{PL}_{\delta,-}(\mathbb{R})$ has a full image in $\mathrm{QI}^{+}(\mathbb{R})$, the orientation-preserving subgroup of $\mathrm{QI}(\mathbb{R})$. It's obvious that $\mathrm{PL}_{\delta,+}(\mathbb{R})\left(\right.$ resp. $\left.\mathrm{PL}_{\delta,-}(\mathbb{R})\right)$ has a full image in $\mathrm{QI}\left(\mathbb{R}_{+}\right)$(resp. $\mathrm{QI}\left(\mathbb{R}_{-}\right)$). Therefore, $\mathrm{QI}(\mathbb{R})=\left(\mathrm{QI}\left(\mathbb{R}_{+}\right) \times \mathrm{QI}\left(\mathbb{R}_{-}\right)\right) \rtimes\langle t\rangle$.

Let $\mathrm{Homeo}_{+}(\mathbb{R})$ be the group of orientation-preserving homeomorphisms of the real line. Two functions $f, g \in$ Homeo $_{+}(\mathbb{R})$ are of bounded distance if

$$
\sup _{|x| \geq M}|f(x)-g(x)|<\infty
$$

for a sufficiently large real number M. This means when we study elements $[f]$ in $\mathrm{QI}(\mathbb{R})$, we don't need to care too much about the function values $f(x)$ for x with small
absolute values. We will implicitly use this fact in the following context. As $\mathrm{PL}_{\delta}(\mathbb{R})$ has a full image in $\mathrm{QI}(\mathbb{R})$ (by Sankaran [9]), we take representatives of quasi-isometries which are homeomorphisms in the rest of the article.

2.1 $\mathrm{QI}\left(\mathbb{R}_{+}\right)$is not simple

Let $\mathrm{QI}\left(\mathbb{R}_{+}\right)$be the quasi-isometry group of the half-line $[0,+\infty)$. Note that the quasiisometry group $\mathrm{QI}^{+}(\mathbb{R})=\mathrm{QI}\left(\mathbb{R}_{+}\right) \times \mathrm{QI}\left(\mathbb{R}_{-}\right)$and $\mathrm{QI}\left(\mathbb{R}_{+}\right) \cong \mathrm{QI}\left(\mathbb{R}_{-}\right)$, by Lemma 2.1. Let $H=\left\{[f] \in \mathrm{QI}\left(\mathbb{R}_{+}\right) \mid \lim _{x \rightarrow \infty}(f(x)-x) / x=0\right\}$. Theorem 1.1 follows from the following theorem.

Theorem 2.2 H is a proper normal subgroup of $\mathrm{QI}\left(\mathbb{R}_{+}\right)$. In particular, $\mathrm{QI}\left(\mathbb{R}_{+}\right)$is not simple.

Proof For any $[f],[g] \in H$,

$$
\frac{f(g(x))-x}{x}=\frac{f(g(x))-g(x)}{g(x)} \frac{g(x)}{x}+\frac{g(x)-x}{x} .
$$

Since g is a quasi-isometry, we know that $(1 / K) x-C \leq g(x)-g(0) \leq K x+C$. Therefore, $1 / K-1 \leq g(x) / x \leq K+1$ for sufficiently large x. When $x \rightarrow \infty$, we have $g(x) \rightarrow \infty$. This means $(f(g(x))-g(x)) / g(x) \rightarrow 0$. Therefore, $(f(g(x))-x) / x \rightarrow 0$ as $x \rightarrow \infty$. This proves that $[f g] \in H$.
Note that

$$
\frac{\left|f^{-1}(x)-x\right|}{x}=\frac{\left|f^{-1}(x)-f^{-1}(f(x))\right|}{x} \leq \frac{K|x-f(x)|+C}{x} .
$$

Therefore,

$$
\lim _{x \rightarrow \infty} \frac{\left|f^{-1}(x)-x\right|}{x}=0 .
$$

This means $\left[f^{-1}\right] \in H$ and that H is a subgroup.
For any quasi-isometric homeomorphism $g \in \operatorname{Homeo}\left(\mathbb{R}_{+}\right)$and any $[f] \in H$,

$$
\begin{aligned}
\frac{g^{-1}(f(g(x)))-x}{x} & =\frac{g^{-1}(f(g(x)))-g^{-1}(g(x))}{x} \\
& =\frac{g^{-1}(f(g(x)))-g^{-1}(g(x))}{g(x)} \frac{g(x)}{x}
\end{aligned}
$$

Note that when $x \rightarrow \infty$, the function $g(x) / x$ is bounded. Let $y=g(x)$. We have

$$
\frac{\left|g^{-1}(f(y))-g^{-1}(y)\right|}{y} \leq \frac{K|f(y)-y|+C}{y} \rightarrow 0, \quad x \rightarrow \infty .
$$

Therefore, $\left[g^{-1} f g\right] \in H$.

It's obvious that the function f defined by $f(x)=2 x$ is not an element in H. The function defined by $g(x)=x+\ln (x+1)$ gives a nontrivial element in H. Thus H is a proper normal subgroup of $\mathrm{QI}\left(\mathbb{R}_{+}\right)$.

Lemma 2.3 Let

$$
W(\mathbb{R})=\left\{f \in \operatorname{Diff}(\mathbb{R})\left|\sup _{x \in \mathbb{R}}\right| f(x)-x\left|<\infty, \sup _{x \in \mathbb{R}}\right| f^{\prime}(x) \mid<\infty\right\}
$$

be the group consisting of diffeomorphisms with bounded derivatives and of bounded distance from the identity. Define a homeomorphism $h: \mathbb{R} \rightarrow \mathbb{R}$ by $h(x)=e^{x}$ when $x \geq 1, h(x)=-h(-x)$ when $x \leq-1$, and $h(x)=e x$ when $-1 \leq x \leq 1$. Then $h f h^{-1}$ is a quasi-isometry for any $f \in W(\mathbb{R})$.

Proof For any $f \in W(\mathbb{R})$ and sufficiently large $x>0$, its derivative satisfies that

$$
\begin{aligned}
\left|h f h^{-1}(x)^{\prime}\right| & =\left|\left(e^{f(\ln x)}\right)^{\prime}\right| \\
& =\left|\left(x e^{f(\ln x)-\ln x}\right)^{\prime}\right| \\
& =\left|e^{f(\ln x)-\ln x}\left(1+f^{\prime}(\ln x)-1\right)\right| \\
& =\left|e^{f(\ln x)-\ln x} f^{\prime}(\ln x)\right| \\
& \leq e^{\sup _{x \in \mathbb{R}}|f(x)-x|} \cdot \sup _{x \in \mathbb{R}}\left|f^{\prime}(x)\right|
\end{aligned}
$$

The case for negative $x<0$ can be calculated similarly. This proves that $h f h^{-1}$ is a quasi-isometry.

The following result was proved by Sankaran [9].

Corollary 2.4 The quasi-isometry group $\mathrm{QI}(\mathbb{R})$ contains $\operatorname{Diff}_{\mathbb{Z}}(\mathbb{R})\left(\right.$ the lift of $\operatorname{Diff}\left(S^{1}\right)$ to $\operatorname{Homeo}(\mathbb{R})$).

Proof For any $f \in \operatorname{Diff}_{\mathbb{Z}}(\mathbb{R})$, we have $f(x+1)=f(x)+1$ for any $x \in \mathbb{R}$. This means $\sup _{x \in \mathbb{R}}|f(x)-x|<+\infty$. Since $f(x)-x$ is periodic, we know that $f^{\prime}(x)$ is bounded. Suppose that $f(x)>x$ for some $x \in[0,1]$. Take $y_{n}=e^{x+n}$ for $n>0$. Let h be the function defined in Lemma 2.3. We have

$$
\left|h f h^{-1}\left(y_{n}\right)-y_{n}\right|=\left|e^{f(x+n)}-e^{x+n}\right|=\left|e^{f(x)}-e^{x}\right| e^{n} \rightarrow \infty
$$

which means $\left[h f h^{-1}\right] \neq[\mathrm{id}] \in \mathrm{QI}(\mathbb{R})$.

Lemma 2.5 $\mathrm{QI}(\mathbb{R})$ contains the semidirect product $\operatorname{Diff}_{\mathbb{Z}}(\mathbb{R}) \ltimes H$.

Proof Since H is normal, it's enough to prove that $\operatorname{Diff}_{\mathbb{Z}}(\mathbb{R}) \cap H=\{e\}$, the trivial subgroup. Actually, for any $f \in \operatorname{Diff}_{\mathbb{Z}}(\mathbb{R})$, the conjugate $h f h^{-1}$ is a quasi-isometry as in the proof of Corollary 2.4. If $h f h^{-1} \in H$, then

$$
\lim _{x \rightarrow \infty} \frac{h f h^{-1}(x)}{x}=\lim _{x \rightarrow \infty} \frac{x e^{f(\ln x)-\ln x}}{x}=\lim _{x \rightarrow \infty} e^{f(\ln x)-\ln x}=1 .
$$

Since $f(x)-x$ is periodic, we know that $f(\ln x)=\ln x$ for any sufficiently large x. But this means that $f(y)=y$ for any y, so f is the identity.

2.2 Affine subgroups of $\mathbf{Q I}(\mathbb{R})$

Lemma 2.6 The quasi-isometry group $\mathrm{QI}\left(\mathbb{R}_{+}\right)$(actually, the semidirect product $\left.\operatorname{Diff}_{\mathbb{Z}}(\mathbb{R}) \ltimes H\right)$ contains the semidirect product $\mathbb{R}_{>0} \ltimes\left(\bigoplus_{i \in \mathbb{R}_{\geq 1}} \mathbb{R}\right)$, generated by A_{t} and $B_{i, s}$ for $t \in \mathbb{R}_{>0}, i \in \mathbb{R}_{\geq 1}=[1, \infty)$ and $s \in \mathbb{R}$ satisfying

$$
\begin{aligned}
& A_{t} B_{i, s} A_{t}^{-1}=B_{i, s t}^{\frac{i}{i+1}}, \quad B_{i, s_{1}} B_{i, s_{2}}=B_{i, s_{1}+s_{2}}, \\
& A_{t_{1}} A_{t_{2}}=A_{t_{1} t_{2}}, \quad B_{i, s_{1}} B_{j, s_{2}}=B_{j, s_{2}} B_{i, s_{1}},
\end{aligned}
$$

for any $t_{1}, t_{2} \in \mathbb{R}_{>0}, i, j \in \mathbb{R}_{\geq 1}$ and $s_{1}, s_{2} \in \mathbb{R}$.
Proof Let

$$
\begin{aligned}
A_{t}(x) & =t x, & & t \in \mathbb{R}_{>0}, \\
B_{i, s}(x) & =x+s x^{\frac{1}{i+1}}, & & s \in \mathbb{R},
\end{aligned}
$$

for $x \geq 0$. We define $A_{t}(x)=B_{i, s}(x)=x$ for $x \leq 0$. Since the derivatives

$$
A_{t}^{\prime}(x)=t, \quad B_{i, s}^{\prime}(x)=1+\frac{s}{i+1} x^{\frac{-i}{i+1}}
$$

are bounded for sufficiently large x, we know that A_{t} and $B_{i, s}$ are quasi-isometries. For any $x \geq 1$,

$$
A_{t} B_{i, s} A_{t}^{-1}(x)=A_{t} B_{i, s}\left(\frac{x}{t}\right)=A_{t}\left(\frac{x}{t}+s\left(\frac{x}{t}\right)^{\frac{1}{i+1}}\right)=x+s t^{\frac{i}{i+1}} x^{\frac{1}{i+1}}=B_{i, s t}{ }^{\frac{i}{i+1}}(x)
$$

For any $x \geq 1$,

$$
B_{i, s_{1}} B_{i, s_{2}}(x)=B_{i, s_{1}}\left(x+s_{2} x^{\frac{1}{i+1}}\right)=x+s_{2} x^{\frac{1}{i+1}}+s_{1}\left(x+s_{2} x^{\frac{1}{i+1}}\right)^{\frac{1}{i+1}}
$$

and
$\left|B_{i, s_{1}} B_{s_{2}}(x)-B_{i, s_{1}+s_{2}}(x)\right|=\left|s_{1}\left(\left(x+s_{2} x^{\frac{1}{i+1}}\right)^{\frac{1}{i+1}}-x^{\frac{1}{i+1}}\right)\right| \leq\left|s_{1} \frac{s_{2} x^{\frac{1}{i+1}}}{x^{\frac{i}{i+1}}}\right| \leq\left|s_{1} s_{2}\right|$
by Newton's binomial theorem. This means that $B_{i, s_{1}} B_{i, s_{2}}$ and $B_{i, s_{1}+s_{2}}$ are of bounded distance. It is obvious that $A_{t_{1}} A_{t_{2}}=A_{t_{1} t_{2}}$.

When $i<j$ are distinct natural numbers,

$$
\begin{aligned}
& \mid B_{i, s_{1}} B_{j, s_{2}}(x)-B_{j, s_{2}} B_{i, s_{1}}(x) \mid \\
&=\left|x+s_{2} x^{\frac{1}{j+1}}+s_{1}\left(x+s_{2} x^{\frac{1}{j+1}}\right)^{\frac{1}{i+1}}-\left(x+s_{1} x^{\frac{1}{i+1}}+s_{2}\left(x+s_{1} x^{\frac{1}{i+1}}\right)^{\frac{1}{j+1}}\right)\right| \\
&=\left|s_{1}\left(\left(x+s_{2} x^{\frac{1}{j+1}}\right)^{\frac{1}{i+1}}-x^{\frac{1}{i+1}}\right)+s_{2}\left(x^{\frac{1}{j+1}}-\left(x+s_{1} x^{\frac{1}{i+1}}\right)^{\frac{1}{j+1}}\right)\right| \\
& \leq\left|s_{1} \frac{s_{2} x^{\frac{1}{j+1}}}{x^{\frac{i}{i+1}}}\right|+\left|s_{2} \frac{s_{1} x^{\frac{1}{i+1}}}{x^{\frac{j}{j+1}}}\right| \\
& \quad \leq 2\left|s_{1} s_{2}\right|
\end{aligned}
$$

for any $x \geq 1$. This proves that images $\left[A_{t}\right],\left[B_{i, s}\right] \in \mathrm{QI}\left(\mathbb{R}_{\geq 0}\right)$ satisfy the relations. By abuse of notation, we still denote the classes by the same letters.

We prove that the subgroup generated by $\left\{B_{i, s} \mid i \in \mathbb{R}_{\geq 1}, s \in \mathbb{R}\right\}$ is the infinite direct $\operatorname{sum} \bigoplus_{i \in \mathbb{R}_{\geq 1}} \mathbb{R}$. It's enough to prove that $B_{i_{1}, s_{1}}, B_{i_{2}, s_{2}}, \ldots, B_{i_{k}, s_{k}}$ are \mathbb{Z}-linearly independent for distinct $i_{1}, i_{2}, \ldots, i_{k}$ and nonzero $s_{1}, s_{2}, \ldots, s_{k} \in \mathbb{R}$. This can directly checked. For integers $n_{1}, n_{2}, \ldots, n_{k}$, suppose that $B_{i_{1}, s_{1}}^{n_{1}} \circ B_{i_{2}, s_{2}}^{n_{2}} \circ \cdots \circ B_{i_{k}, s_{k}}^{n_{k}}=\mathrm{id} \in$ $\mathrm{QI}\left(\mathbb{R}_{\geq 0}\right)$. We have

$$
\begin{aligned}
& \sup _{x \in \mathbb{R}_{>0}}\left|B_{i_{1}, s_{1}}^{n_{1}} \circ B_{i_{2}, s_{2}}^{n_{2}} \circ \cdots \circ B_{i_{k}, s_{k}}^{n_{k}}(x)-x\right| \\
& \quad=\sup _{x \in \mathbb{R}_{>0}}\left|n_{k} s_{k} x^{\frac{1}{i_{k}+1}}+n_{k-1} s_{k-1}\left(x+n_{k} s_{k} x^{\frac{1}{i_{k}+1}}\right)^{\frac{1}{i_{k-1}+1}}+\cdots+n_{1} s_{1}(x+\cdots)^{\frac{1}{i_{1}+1}}\right| \\
& \quad<+\infty
\end{aligned}
$$

which implies $n_{1}=n_{2}=\cdots=n_{k}=0$, considering the exponents.
The subgroup $\mathbb{R}_{>0} \ltimes\left(\bigoplus_{i \in \mathbb{R}_{>1}} \mathbb{R}\right)$ lies in $\operatorname{Diff}_{\mathbb{Z}}(\mathbb{R}) \ltimes H$ by the following construction. Let $a_{t}, b_{i, s}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $a_{t}(x)=x+\ln t$ and $b_{i, s}(x)=\ln \left(e^{x}+s e^{\frac{x}{i+1}}\right)$ for $t \in \mathbb{R}_{>0}, i \in \mathbb{R}_{\geq 1}$ and $s \in \mathbb{R}$. It can be directly checked that $a_{t} \in \operatorname{Diff}_{\mathbb{Z}}(\mathbb{R})$ and $b_{i, s} \in W(\mathbb{R})$ (defined in Lemma 2.3). Let $h(x)=e^{x}$. A direct calculation shows that $h a_{t} h^{-1}=A_{t}$ and $h b_{i, s} h^{-1}=B_{i, s}$, as elements in $\mathrm{QI}\left(\mathbb{R}_{+}\right)$.

3 Left-orderability

The following is well known; for a proof, see [7, Proposition 1.4]:
Lemma 3.1 A group G is left-orderable if and only if, for every finite collection of nontrivial elements g_{1}, \ldots, g_{k}, there exist choices $\varepsilon_{i} \in\{1,-1\}$ such that the identity is not an element of the semigroup generated by $\left\{g_{i}^{\varepsilon_{i}} \mid i=1,2, \ldots, k\right\}$.

The proof of Theorem 1.2 follows a similar strategy used by Navas to prove the left-orderability of the group \mathcal{G}_{∞} of germs at ∞ of homeomorphisms of \mathbb{R}; cf [2, Remark 1.1.13] or [4, Proposition 2.2].

Proof of Theorem 1.2 It's enough to prove that $\mathrm{QI}\left(\mathbb{R}_{+}\right)$is left-orderable. Let $f_{1}, f_{2}, \ldots, f_{n} \in \mathrm{QI}\left(\mathbb{R}_{+}\right)$be any finitely many nontrivial elements. Note that any $1 \neq[f] \in \mathrm{QI}\left(\mathbb{R}_{+}\right)$has $\sup _{x>0}|f(x)-x|=\infty$. This property doesn't depend on the choice of $f \in[f]$. Without confusion, we still denote $[f]$ by f. Choose a sequence $\left\{x_{1, k}\right\} \subset \mathbb{R}_{+}$such that $\sup _{k \in \mathbb{N}}\left|f_{1}\left(x_{1, k}\right)-x_{1, k}\right|=\infty$. For each $i>1$, we have either $\sup _{k \in \mathbb{N}}\left|f_{i}\left(x_{1, k}\right)-x_{1, k}\right|=\infty$ or $\sup _{k \in \mathbb{N}}\left|f_{i}\left(x_{1, k}\right)-x_{1, k}\right| \leq M$ for a real number M. After passing to subsequences, we assume for each $i=1,2, \ldots, n$ that either $f_{i}\left(x_{1, k}\right)-x_{1, k} \rightarrow+\infty, f_{i}\left(x_{1, k}\right)-x_{1, k} \rightarrow-\infty$ or $\sup _{k \in \mathbb{N}}\left|f_{i}\left(x_{1, k}\right)-x_{1, k}\right| \leq M$. We assign $\varepsilon_{i}=1$ for the first case and $\varepsilon_{i}=-1$ for the second case. For the third case, let

$$
S_{1}=\left\{f_{i}\left|\sup _{k \in \mathbb{N}}\right| f_{i}\left(x_{1, k}\right)-x_{1, k} \mid \leq M\right\} .
$$

Note that $f_{1} \notin S_{1}$. Choose $f_{i_{0}} \in S_{1}$ if S_{1} is not empty. We choose another sequence $\left\{x_{2, k}\right\}$ such that $\sup _{k \in \mathbb{N}}\left|f_{i_{0}}\left(x_{2, k}\right)-x_{2, k}\right|=\infty$. Similarly, after passing to a subsequence, we have for each $f \in S_{1}$ that either $f\left(x_{2, k}\right)-x_{2, k} \rightarrow+\infty$, $f\left(x_{2, k}\right)-x_{2, k} \rightarrow-\infty$ or $\sup _{k \in \mathbb{N}}\left|f\left(x_{2, k}\right)-x_{2, k}\right| \leq M^{\prime}$ for another real number M^{\prime}. Assign $\varepsilon_{i}=1$ for the first case and $\varepsilon_{i}=-1$ for the second case. Continue this process to define S_{2}, S_{3}, \ldots and choose sequences $\left\{x_{i, k}\right\}, i=3,4, \ldots$ to assign ε_{i} for each f_{i}. Note that the process will stop at n times, as the number of elements without assignment is strictly decreasing.
For an element $f \in \mathrm{QI}\left(\mathbb{R}_{+}\right)$satisfying $f\left(x_{i}\right)-x_{i} \rightarrow \infty$ as $i \rightarrow \infty$ for some sequence $\left\{x_{i}\right\}$, we assume that $f\left(x_{i}\right)-x_{i}>0$ for each i. Since f and f^{-1} are orientationpreserving,

$$
\begin{aligned}
f^{-1}\left(x_{i}\right)-x_{i} & =-\left(x_{i}-f^{-1}\left(x_{i}\right)\right) \\
& =-\left(f^{-1}\left(f\left(x_{i}\right)\right)-f^{-1}\left(x_{i}\right)\right) \leq-\left(\frac{1}{K}\left(f\left(x_{i}\right)-x_{i}\right)-C\right) \rightarrow-\infty .
\end{aligned}
$$

Let $w=f_{i_{1}}^{\varepsilon_{i_{1}}} \cdots f_{i_{m}}^{\varepsilon_{i_{m}}} \in\left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle$ be a nontrivial word. If $\left\{i_{1}, \ldots, i_{m}\right\} \nsubseteq S_{1}$, we have $w\left(x_{1, k}\right)-x_{1, k} \rightarrow \infty$. Otherwise, $\sup _{k \in \mathbb{N}}\left|w\left(x_{1, k}\right)-x_{1, k}\right|<\infty$. Suppose that $\left\{i_{1}, \ldots, i_{m}\right\} \subset S_{t}$, but $\left\{i_{1}, \ldots, i_{m}\right\} \nsubseteq S_{t+1}$ with the assumption that $S_{0}=$ $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$. We have $w\left(x_{t+1, k}\right)-x_{t+1, k} \rightarrow \infty$ as $k \rightarrow \infty$. This proves that $w \neq 1 \in \mathrm{QI}\left(\mathbb{R}_{+}\right)$. Therefore, $\mathrm{QI}\left(\mathbb{R}_{+}\right)$is left-orderable by Lemma 3.1.

Lemma 3.2 The group $\mathrm{QI}\left(\mathbb{R}_{+}\right)$is not locally indicable.

Proof Note that $\mathrm{QI}\left(\mathbb{R}_{+}\right)$contains the lift $\tilde{\Gamma}$ of $\operatorname{PSL}(2, \mathbb{R})<\operatorname{Diff}\left(S^{1}\right)$ to $\operatorname{Homeo}(\mathbb{R})$ (Corollary 2.4). But this lift $\tilde{\Gamma}$ contains a subgroup $\Gamma=\left\langle f, g, h: f^{2}=g^{3}=h^{7}=f g h\right\rangle$, the lift of the ($2,3,7$)-triangle group. There are no nontrivial maps from Γ to $(\mathbb{R},+)$; for more details see [2, page 94].

4 The quasi-isometric group cannot act effectively on the line

The following was proved by Mann [4, Proposition 6].
Lemma 4.1 Consider the affine group $\mathbb{R}_{>0} \ltimes \mathbb{R}$, generated by A_{t} and B_{s} for $t \in \mathbb{R}>0$ and $s \in \mathbb{R}$ satisfying

$$
A_{t} B_{s} A_{t}^{-1}=B_{t s}, \quad B_{s_{1}} B_{s_{2}}=B_{s_{1}+s_{2}}, \quad A_{t_{1}} A_{t_{2}}=A_{t_{1} t_{2}} .
$$

The affine group $\mathbb{R}_{>0} \ltimes \mathbb{R}$ cannot act effectively on the real line \mathbb{R} by homeomorphisms with A_{t} a translation for each t.

Proof Suppose that $\mathbb{R}_{>0} \ltimes \mathbb{R}$ acts effectively on the real line \mathbb{R} with each A_{t} a translation. After passing to an index-2 subgroup, we assume that the group is orientation-preserving. If B_{1} acts freely on \mathbb{R}, then it is conjugate to the translation $T: \mathbb{R} \rightarrow \mathbb{R}$ defined by $x \mapsto x+1$. In such a case, we have $A_{2} T A_{2}^{-1}=T^{2}$. Therefore, $A_{2}^{-1}(x+2)=A_{2}^{-1}(x)+1$ for any x. Since A_{2}^{-1} maps intervals of length 2 to an interval of length 1 , it is a contracting map, and thus has a fixed point.

If B_{1} has a nonempty fixed point set $\operatorname{Fix}\left(B_{1}\right)$, choose I to be a connected component of $\mathbb{R} \backslash \operatorname{Fix}\left(B_{1}\right)$. Suppose that $A_{2}(x)=x+a$, a translation by some real number $a>0$. Since $A_{2}=A_{2^{1 / n}}^{n}$, we have $A_{2^{1 / n}}(x)=x+a / n$ for each positive integer n. For each n, let $F_{n}=A_{2^{1 / n}} B_{1} A_{2^{1 / n}}^{-1}$. Since $A_{2^{1 / n}} B_{1} A_{2^{1 / n}}^{-1}$ commutes with B_{1}, we see that $F_{n} \operatorname{Fix}\left(B_{1}\right)=\operatorname{Fix}\left(B_{1}\right)$. This means that either $F_{n}(I)=I$ or $F_{n}(I) \cap I=\varnothing$. Since $F_{n}(x)=B_{1}(x-a / n)+a / n$ for any $x \in \mathbb{R}$, we know that $F_{n}(I)=I$ for sufficiently large n. Without loss of generality, we assume that I is of the form (x, y) or $(-\infty, y)$. Choose a sufficiently large n such that $y-a / n \in I$. We have

$$
A_{2^{1 / n}} B_{1} A_{2^{1 / n}}^{-1}(y)=B_{1}\left(y-\frac{a}{n}\right)+\frac{a}{n} \neq y,
$$

which is a contradiction to the fact that $F_{n}(I)=I$.
Definition 4.2 A topologically diagonal embedding of a group $G<\operatorname{Homeo}(\mathbb{R})$ is a homomorphism $\phi: G \rightarrow$ Homeo $_{+}(\mathbb{R})$ defined as follows. Choose a collection of disjoint open intervals $I_{n} \subset \mathbb{R}$ and homeomorphisms $f_{n}: \mathbb{R} \rightarrow I_{n}$. Define ϕ by $\phi(g)(x)=f_{n} g f_{n}^{-1}(x)$ when $x \in I_{n}$ and $\phi(g)(x)=x$ when $x \notin I_{n}$.

The following is similar to a result proved by Militon [6].
Lemma 4.3 (Militon [6]) Let $\Gamma=\operatorname{PSL}_{2}(\mathbb{R})$ and $\tilde{\Gamma}<$ Homeo $_{+}(\mathbb{R})$ be the lift of Γ to the real line. Any effective action $\phi: \tilde{\Gamma} \hookrightarrow$ Homeo $_{+}(\mathbb{R})$ of $\tilde{\Gamma}$ on the real line \mathbb{R} is a topological diagonal embedding.

Proof After passing to an index-2 subgroup, we assume the action is orientationpreserving. Let $\tau: \mathbb{R} \rightarrow \mathbb{R}$ be the translation $x \mapsto x+1$. Suppose that $\operatorname{Fix}(\phi(\tau)) \neq \varnothing$. Note that τ lies in the center of $\widetilde{\Gamma}$. The quotient group $\Gamma=\widetilde{\Gamma} /\langle\tau\rangle$ acts on the fixed point set $\operatorname{Fix}(\phi(\tau))$. For any $f \in \Gamma$ and $x \in \operatorname{Fix}(\phi(\tau))$, we denote the action by $f(x)$ without confusion. Choose any torsion-element $f \in \Gamma$ and any $x \in \operatorname{Fix}(\phi(\tau))$. We must have $x=f(x)$, for otherwise $x<f(x)<f^{2}(x)<\cdots<f^{k}(x)$ for any k. Since Γ is simple, we know that the action of $\tilde{\Gamma}$ on $\operatorname{Fix}(\tau)$ is trivial. For each connected component $I_{i} \subset \mathbb{R} \backslash \operatorname{Fix}(\phi(\tau))$, we know that $\left.\tau\right|_{I_{i}}$ is conjugate to a translation. The group $\Gamma=\tilde{\Gamma} /\langle\tau\rangle$ acts on $I_{i} /\langle\phi(\tau)\rangle=S^{1}$. A result of Matsumoto [5, Theorem 5.2] says that the group Γ is conjugate to the natural inclusion $\operatorname{PSL}_{2}(\mathbb{R}) \hookrightarrow$ Homeo $\left(S^{1}\right)$ by a homeomorphism $g \in \operatorname{Homeo}_{+}\left(S^{1}\right)$. Therefore, the group $\left.\phi(\widetilde{\Gamma})\right|_{I_{i}}$ is conjugate to the image of the natural inclusion $\widetilde{\Gamma} \hookrightarrow$ Homeo $_{+}(\mathbb{R})$.

For a real number $a \in \mathbb{R}$, let

$$
t_{a}: \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto x+a
$$

be the translation. Denote by $A=\left\langle t_{a}: a \in \mathbb{R}\right\rangle$, the subgroup of translations in the lift $\tilde{\Gamma}$ of $\mathrm{PSL}_{2}(\mathbb{R})$.

Corollary 4.4 For any injective group homomorphism $\phi: \widetilde{\Gamma} \rightarrow$ Homeo (\mathbb{R}), the image $\phi(A)$ is a continuous one-parameter subgroup; ie $\lim _{a \rightarrow a_{0}} \phi\left(t_{a}\right)=\phi\left(t_{a_{0}}\right)$ for any $a_{0} \in \mathbb{R}$.

Proof If ϕ is injective, the previous lemma says that ϕ is a topological diagonal embedding. Therefore, $\phi(A)$ is continuous.

We will need the following elementary fact.
Lemma 4.5 Let $\phi:(\mathbb{R},+) \rightarrow(\mathbb{R},+)$ be a group homomorphism. If ϕ is continuous at any $x \neq 0$, then ϕ is \mathbb{R}-linear.

Proof For any nonzero integer n, we have $\phi(n)=n \phi(1)$ and $\phi(1)=\phi\left(\frac{1}{n} n\right)=n \phi\left(\frac{1}{n}\right)$. Since ϕ is additive, we have $\phi\left(\frac{m}{n}\right)=m \phi\left(\frac{1}{n}\right)=\frac{m}{n} \phi(1)$ for any integers $m, n \neq 0$.

For any nonzero real number $a \in \mathbb{R}$, choose a rational sequence $r_{i} \rightarrow a$. When ϕ is continuous, we have that $\phi\left(r_{i}\right) \rightarrow \phi(a)$ and $\phi\left(r_{i}\right)=r_{i} \phi(1) \rightarrow a \phi(1)=\phi(a)$.

The following is the classical theorem of Hölder: a group acting freely on \mathbb{R} is semiconjugate to a group of translations; see Navas [8, Section 2.2.4].

Lemma 4.6 Let Γ be a group acting freely on the real line \mathbb{R}. There is an injective group homomorphism $\phi: \Gamma \rightarrow(\mathbb{R},+)$ and a continuous nondecreasing map $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\varphi(h(x))=\varphi(x)+\phi(h)
$$

for any $x \in \mathbb{R}$ and $h \in \Gamma$.
Corollary 4.7 Suppose that the affine group $\mathbb{R}_{>0} \ltimes \mathbb{R}=\left\langle a_{t}: t \in \mathbb{R}_{>0}\right\rangle \ltimes\left\langle b_{s}: s \in \mathbb{R}\right\rangle$ acts on the real line \mathbb{R} by homeomorphisms satisfying
(1) the action of the subgroup $\mathbb{R}=\left\langle b_{s}: s \in \mathbb{R}\right\rangle$ is free;
(2) for any fixed $x \in \mathbb{R}, a_{t}(x)$ is continuous with respect to $t \in \mathbb{R}>0$.

Let $\phi:\left\langle b_{s}: s \in \mathbb{R}\right\rangle \rightarrow(\mathbb{R},+)$ be the additive map in Lemma 4.6 for $\Gamma=\left\langle b_{s}: s \in \mathbb{R}\right\rangle$. Then ϕ is an \mathbb{R}-linear map.

Proof Note that $a_{t} b_{s} a_{t}^{-1}=b_{t s}$. We have

$$
\varphi\left(b_{t s}(x)\right)=\varphi(x)+\phi\left(b_{t s}\right) .
$$

Since $b_{t s}(x)=a_{t} b_{s} a_{t}^{-1}(x) \rightarrow b_{s}(x)$ when $t \rightarrow 1$, we have that

$$
\varphi(x)+\phi\left(b_{t s}\right) \rightarrow \varphi\left(b_{s}(x)\right)=\varphi(x)+\phi\left(b_{s}\right) .
$$

This implies that $\phi\left(b_{t s}\right) \rightarrow \phi\left(b_{s}\right)$ as $t \rightarrow 1$. For any nonzero $x \in \mathbb{R}$ and sequence $x_{n} \rightarrow x$,

$$
\phi\left(b_{x_{n}}\right)=\phi\left(b_{\frac{x_{n}}{x} x}\right) \rightarrow \phi\left(b_{x}\right) .
$$

The map ϕ is \mathbb{R}-linear by Lemma 4.5 .
Theorem 4.8 Consider $G=\mathbb{R}_{>0} \ltimes\left(\bigoplus_{i \in \mathbb{R}_{\geq 1}} \mathbb{R}\right)$, generated by A_{t} and $B_{i, s}$ for $t \in \mathbb{R}_{>0}, i \in \mathbb{R}_{\geq 1}=[1, \infty)$ and $s \in \mathbb{R}$ satisfying

$$
\begin{aligned}
A_{t} B_{i, s} A_{t}^{-1} & =B_{i, s t} \frac{i}{i+1}, & & B_{i, s_{1}} B_{i, s_{2}}=B_{i, s_{1}+s_{2}}, \\
A_{t_{1}} A_{t_{2}} & =A_{t_{1} t_{2}}, & & B_{i, s_{1}} B_{j, s_{2}}=B_{j, s_{2}} B_{i, s_{1}}
\end{aligned}
$$

for any $t_{1}, t_{2} \in \mathbb{R}_{>0}, i, j \in \mathbb{R}_{\geq 1}$ and $s_{1}, s_{2} \in \mathbb{R}$. Then G cannot act effectively on the real line \mathbb{R} by homeomorphisms when the induced action of $\left\langle A_{t}: t \in \mathbb{R}_{>0}\right\rangle$ is a topologically diagonal embedding of the translation subgroup $(\mathbb{R},+) \hookrightarrow$ Homeo (\mathbb{R}).

Proof Suppose that G acts effectively on \mathbb{R} with the induced action of $\left\langle A_{t}: t \in \mathbb{R}>0\right\rangle$, a topologically diagonal embedding of the translation subgroup $(\mathbb{R},+) \hookrightarrow \operatorname{Homeo}(\mathbb{R})$.
Let I be a connected component of $\mathbb{R} \backslash \operatorname{Fix}\left(\left\langle A_{t}, B_{i, s}: t \in \mathbb{R}_{>0}, i=1, s \in \mathbb{R}\right\rangle\right)$.
Suppose that there is an element $B_{1, s}$ having a fixed point $x \in I$ for some $s>0$. Since $A_{4} B_{1, s} A_{4}^{-1}=B_{1, s}^{2}$, we know that $A_{4} x \in \operatorname{Fix}\left(B_{1, s}\right)=\operatorname{Fix}\left(B_{1, s}^{2}\right)$. Since there are no fixed points in I for $\left\langle A_{t}, B_{1, s}: t \in \mathbb{R}_{>0}, s \in \mathbb{R}\right\rangle$, we know that $\lim _{n \rightarrow \infty} A_{4}^{n} x \notin I .{ }^{1}$ This implies that A_{4} has no fixed point in I. Since the group homomorphism

$$
\left\langle A_{t}: t \in \mathbb{R}_{>0}\right\rangle \rightarrow \operatorname{Homeo}(\mathbb{R})
$$

is a diagonal embedding, we see that each A_{t} has no fixed point in I and the action of $\left\langle A_{t}: t \in \mathbb{R}_{>0}\right\rangle$ on I is conjugate to a group of translations. By Lemma 4.1, the affine $\operatorname{group}\left\langle A_{t}, B_{1, s}: t \in \mathbb{R}_{>0}, s \in \mathbb{R}\right\rangle$ cannot act effectively on I. Suppose that $A_{t} B_{1, s^{\prime}}$ acts trivially on I for some $t>0$ and $s^{\prime}>0$. We have that $A_{t} B_{1, s}=A_{s^{2} s^{\prime}-2}\left(A_{t} B_{1, s^{\prime}}\right) A_{s^{2} s^{\prime}-2}^{-1}$ acts trivially on I. But $A_{t} B_{1, s}(x)=A_{t}(x)=x$ implies that $t=1$. Therefore, the element $B_{1, s}$ (and any $B_{1, t}=A_{t^{2} s^{-2}} B_{1, s} A_{t^{2} s^{-2}}^{-1}$ for $t \in \mathbb{R}_{>0}$) acts trivially on I. This means that the action of $\left\langle B_{1, s}: s \in \mathbb{R}\right\rangle$ on the connected component I is either trivial or free. Since the action of G is effective, there is a connected component I_{1} on which $B_{1, s}$ acts freely. A similar argument shows that $B_{i, s^{\prime}}$ acts freely on a component I_{i} for each $i \in \mathbb{R}_{\geq 1}$ and any $s^{\prime} \in \mathbb{R} \backslash\{0\}$.

Since $B_{i, s^{\prime}}$ commutes with $B_{j, s}$, we have $B_{i, s^{\prime}}\left(I_{1}\right) \subset \mathbb{R} \backslash \operatorname{Fix}\left(\left\langle B_{j, s}: s \in \mathbb{R}\right\rangle\right)$. Moreover, $B_{i, s^{\prime}}\left(I_{j}\right) \cap I_{j}$ is either I_{j} or the empty set. Suppose that $I_{i} \cap I_{j} \neq \varnothing$ and the right end b_{i} of I_{i} lies in I_{j}. Choose $x \in I_{i} \cap I_{j}$. Note that $B_{j, s}\left(\left[x, b_{i}\right)\right) \cap\left[x, b_{i}\right)=\varnothing$ for any $s>0$. This is impossible as $B_{j, s / n}(x) \rightarrow x$ as $n \rightarrow \infty$. Therefore, $I_{i} \cap I_{j}=I_{i}$ or is empty for distinct $i, j \in \mathbb{R}_{\geq 1}$. Since we have uncountably many $i \in \mathbb{R}_{>0}$, there must be some distinct $i, j \in \mathbb{R}_{\geq 1}$ such that $I_{i}=I_{j}$. This means that the subgroup $\mathbb{R} \oplus \mathbb{R}$ spanned by the i, j-components acts freely on I_{i}. Hölder's theorem (Lemma 4.6) gives an injective group homomorphism $\phi: \mathbb{R} \oplus \mathbb{R} \rightarrow(\mathbb{R},+)$ and a continuous nondecreasing map $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\varphi(h(x))=\varphi(x)+\phi(h)
$$

for any $x \in \mathbb{R}$. Since $\left\langle A_{t}: t \in \mathbb{R}_{>0}\right\rangle \rightarrow \operatorname{Homeo}(\mathbb{R})$ is a topological embedding, we have that for any fixed $x \in \mathbb{R}, A_{t}(x)$ is continuous with respect to $t \in \mathbb{R}_{>0}$. By Corollary 4.7,

[^1]the restriction map $\left.\phi\right|_{\mathbb{R}}$ is \mathbb{R}-linear for each direct summand \mathbb{R}. This is a contradiction to the fact that ϕ is injective. Therefore, the group G cannot act effectively.

Proof of Theorem 1.3 Suppose that $\mathrm{QI}^{+}(\mathbb{R})$ acts on the real line by an injective group homomorphism $\phi: \mathrm{QI}^{+}(\mathbb{R}) \rightarrow \operatorname{Homeo}(\mathbb{R})$. The group $\mathrm{QI}^{+}(\mathbb{R})$ contains the semidirect product $\mathbb{R}_{>0} \ltimes\left(\bigoplus_{i \in \mathbb{R}_{\geq 1}} \mathbb{R}\right)$, by Lemma 2.6. The subgroup $\mathbb{R}_{>0}$ (as the image of the exponential map) is a homomorphic image of the subgroup $\mathbb{R}<\tilde{\Gamma}$, which is the lift of $\operatorname{SO}(2) /\left\{ \pm I_{2}\right\}<\operatorname{PSL}_{2}(\mathbb{R})$ to Homeo($\left.\mathbb{R}\right)$. Note that $\tilde{\Gamma}$ is embedded into $\mathrm{QI}^{+}(\mathbb{R})$ (see Corollary 2.4 and its proof). By Lemma 4.3, any effective action of $\tilde{\Gamma}$ on the real line \mathbb{R} is a topological diagonal embedding. This means that the action of $\mathbb{R}_{>0}$ is a topological diagonal embedding (Corollary 4.4). Theorem 4.8 shows that the action of $\mathbb{R}_{>0} \ltimes\left(\bigoplus_{i \in \mathbb{R}_{\geq 1}} \mathbb{R}\right)$ is not effective.

Acknowledgements The authors would like to thank Li Cai and Xiaolei Wu for their helpful discussions. This work is supported by NSFC (grant 11971389).

References

[1] L Chen, K Mann, There are no exotic actions of diffeomorphism groups on 1-manifolds, Groups Geom. Dyn. 17 (2023) 91-99 MR Zbl
[2] B Deroin, A Navas, C Rivas, Groups, orders, and dynamics, preprint (2014) arXiv 1408.5805
[3] M Gromov, P Pansu, Rigidity of lattices: An introduction, from "Geometric topology: Recent developments" (P De Bartolomeis, F Tricerri, editors), Lecture Notes in Math. 1504, Springer (1991) 39-137 MR Zbl
[4] K Mann, Left-orderable groups that don't act on the line, Math. Z. 280 (2015) 905-918 MR Zbl
[5] S Matsumoto, Numerical invariants for semiconjugacy of homeomorphisms of the circle, Proc. Amer. Math. Soc. 98 (1986) 163-168 MR Zbl
[6] E Militon, Actions of groups of homeomorphisms on one-manifolds, Groups Geom. Dyn. 10 (2016) 45-63 MR Zbl
[7] A Navas, On the dynamics of (left) orderable groups, Ann. Inst. Fourier (Grenoble) 60 (2010) 1685-1740 MR Zbl
[8] A Navas, Groups of circle diffeomorphisms, Univ. of Chicago Press (2011) MR Zbl
[9] P Sankaran, On homeomorphisms and quasi-isometries of the real line, Proc. Amer. Math. Soc. 134 (2006) 1875-1880 MR Zbl

NYU-ECNU Institute of Mathematical Sciences, NYU Shanghai Shanghai, China
Department of Pure Mathematics, Xi'an Jiaotong-Liverpool University Suzhou, Jiangsu, China
sy55@nyu.edu, yanxin.zhao19@student.xjtlu.edu.cn

Received: 26 March 2022 Revised: 28 May 2022

Algebraic \& Geometric Topology

msp.org/agt

EDITORS

John Etnyre etnyre@math.gatech.edu
Georgia Institute of Technology
Kathryn Hess
kathryn.hess@epfl.ch
École Polytechnique Fédérale de Lausanne

Principal Academic Editors

Board of Editors

Julie Bergner	University of Virginia jeb2md@eservices.virginia.edu	Robert Lipshitz	University of Oregon lipshitz@uoregon.edu
Steven Boyer	Université du Québec à Montréal cohf@math.rochester.edu	Norihiko Minami	Nagoya Institute of Technology nori@nitech.ac.jp
Tara E Brendle	University of Glasgow tara.brendle@glasgow.ac.uk	Andrés Navas	Universidad de Santiago de Chile andres.navas@usach.cl
Indira Chatterji	CNRS \& Univ. Côte d'Azur (Nice) indira.chatterji@math.cnrs.fr	Thomas Nikolaus	University of Münster nikolaus@uni-muenster.de
Alexander Dranishnikov	University of Florida dranish@math.ufl.edu	Robert Oliver	Université Paris 13 bobol@math.univ-paris13.fr
Tobias Ekholm	Uppsala University, Sweden tobias.ekholm@math.uu.se	Jessica S Purcell	Monash University jessica.purcell@monash.edu
Mario Eudave-Muñoz	Univ. Nacional Autónoma de México mario@matem.unam.mx	Birgit Richter	Universität Hamburg birgit.richter@uni-hamburg.de
David Futer	Temple University dfuter@temple.edu	Jérôme Scherer	École Polytech. Féd. de Lausanne jerome.scherer@epfl.ch
John Greenlees	University of Warwick john.greenlees@warwick.ac.uk	Vesna Stojanoska	Univ. of Illinois at Urbana-Champaign vesna@illinois.edu
Ian Hambleton	McMaster University ian@math.memaster.ca	Zoltán Szabó	Princeton University szabo@math.princeton.edu
Matthew Hedden	Michigan State University mhedden@math.msu.edu	Maggy Tomova	University of Iowa maggy-tomova@uiowa.edu
Hans-Werner Henn	Université Louis Pasteur henn@math.u-strasbg.fr	Nathalie Wahl	University of Copenhagen wahl@math.ku.dk
Daniel Isaksen	Wayne State University isaksen@math.wayne.edu	Chris Wendl	Humboldt-Universität zu Berlin wendl@math.hu-berlin.de
Thomas Koberda	University of Virginia thomas.koberda@virginia.edu	Daniel T Wise	McGill University, Canada daniel.wise@mcgill.ca
Christine Lescop	Université Joseph Fourier lescop@ujf-grenoble.fr		

See inside back cover or msp.org/agt for submission instructions.
The subscription price for 2023 is US $\$ 650 /$ year for the electronic version, and $\$ 940 /$ year ($+\$ 70$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Algebraic \& Geometric Topology is indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Algebraic \& Geometric Topology (ISSN 1472-2747 printed, 1472-2739 electronic) is published 9 times per year and continuously online, by Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall \#3840, Berkeley, CA 94720-3840. Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall \#3840, Berkeley, CA 94720-3840.

AGT peer review and production are managed by EditFlow ${ }^{\circledR}$ from MSP.
PUBLISHED BY
mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2023 Mathematical Sciences Publishers

Algebraic \& Geometric Topology

Volume 23 Issue 8 (pages 3417-3908) 2023Partial Torelli groups and homological stability3417Andrew Putman
On symplectic fillings of small Seifert 3-manifolds 3497
Hakho Choi and Jongil Park
Milnor-Witt motivic cohomology of complements of hyperplane arrangements 3531
Keyao Peng
Connective models for topological modular forms of level n 3553Lennart Meier
Asymptotic dimension of graphs of groups and one-relator groups 3587
Panagiotis Tselekidis
Pressure metrics for deformation spaces of quasifuchsian groups with parabolics 3615Harrison Bray, Richard Canary and Lien-Yung Kao
The $\mathrm{Sp}_{k, n}$-local stable homotopy category 3655Drew Heard
Smooth one-dimensional topological field theories are vector bundles with 3707 connection
Daniel Berwick-Evans and Dmitri Pavlov
Round fold maps on 3-manifolds 3745
Naoki Kitazawa and Osamu Saeki
The upsilon invariant at 1 of 3 -braid knots3763
Paula Truöl
Cusps and commensurability classes of hyperbolic 4-manifolds 3805
Connor Sell
The group of quasi-isometries of the real line cannot act effectively on the line3835
Shengkui Ye and Yanxin Zhao
Simplicial model structures on pro-categories3849

[^0]: © 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

[^1]: ${ }^{1}$ Otherwise, $\lim _{n \rightarrow \infty} A_{4}^{n} x \in I$. But $A_{t}\left(\lim _{n \rightarrow \infty} A_{4}^{n} x\right)=\lim _{n \rightarrow \infty} A_{4}^{n} x$ for any $t>0$ by the topologically diagonal embedding. For any s^{\prime}, we have $B_{1, s^{\prime}}=A_{s^{\prime 2} s^{-2}} B_{1, s} A_{s^{\prime 2} s^{-2}}^{-1}$ and $B_{1, s^{\prime}}\left(\lim _{n \rightarrow \infty} A_{4}^{n} x\right)=$ $\lim _{n \rightarrow \infty} A_{4}^{n} x$. This would imply that $\lim _{n \rightarrow \infty} A_{4}^{n} x$ is a global fixed point of $\left\langle A_{t}, B_{1, s}: t \in \mathbb{R}_{>0}, s \in \mathbb{R}\right\rangle$.

