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Two-dimensional extended homotopy field theories

KÜRŞAT SÖZER

We give another definition of 2–dimensional extended homotopy field theories
(EHFTs) with aspherical targets and classify them. When the target of EHFT is
chosen to be a K.G; 1/–space, we classify EHFTs taking values in the symmetric
monoidal bicategory of algebras, bimodules, and bimodule maps by certain Frobenius
G–algebras called quasibiangular G–algebras. As an application, for any discrete
groupG, we verify a special case of the .G�SO.2//–structured cobordism hypothesis
due to Lurie.
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1 Introduction

Extended topological field theories (ETFTs) are generalizations of topological field
theories (usually called TQFTs or TFTs) to manifolds with corners and higher categories;
see Freed [7], Lawrence [14] and J Baez and J Dolan [2]. A different generalization
of TFTs is obtained by considering manifolds equipped with principal G–bundles.
When G is a discrete group, such a generalization was introduced by Turaev [27], who
called them homotopy (quantum) field theories (HFTs). These theories are defined
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3910 Kürşat Sözer

by applying axioms of TFTs to manifolds and cobordisms endowed with maps to a
fixed target space. In this paper, we combine ETFTs and HFTs in dimension 2. More
precisely, we define 2–dimensional extended homotopy field theories (EHFTs) with
aspherical targets and classify them.

1.1 Main results

To define a 2–dimensional EHFT with target X ' K.G; 1/, we introduce an X–
cobordism bicategory XBord2. The objects of XBord2 are compact oriented 0–
dimensional manifolds and the 1–morphisms are oriented cobordisms between such
manifolds equipped with homotopy classes of maps toX. The 2–morphisms ofXBord2
are equivalence classes of pairs .S; P /, where S is a certain type of oriented surface
with corners and P is a homotopy class of a map from S to X. The equivalence relation
is given by diffeomorphisms respecting P and restricting to the identity on the boundary.
The disjoint union operation turns XBord2 into a symmetric monoidal bicategory and
a 2–dimensional EHFT with target X (extended X–HFT) is defined as a symmetric
monoidal 2–functor from XBord2 to any other symmetric monoidal bicategory.

For a given symmetric monoidal bicategory C, our classification of C–valued 2–
dimensional extended X–HFTs comprises two steps. Firstly, we define certain combi-
natorial diagrams in I D Œ0; 1�, I 2, and I 3, called G–linear, G–planar, and G–spatial
diagrams, respectively. These diagrams generalize the ones of Schommer-Pries [22]
and they possess the same information as the morphisms of XBord2. As the second
step, we define a symmetric monoidal bicategory XBPD whose 1– and 2–morphisms
are defined using these diagrams. This bicategory is equivalent to XBord2 and has a
convenient description in terms of generators and relations. Figures 25 and 26 show the
corresponding list of generators and relations for XBord2. Then, the classification of 2–
dimensional extendedX–HFTs reduces to an application of the cofibrancy theorem [22],
which is a coherence theorem for symmetric monoidal 2–functors explained below.

For a computadic symmetric monoidal bicategory F.P / constructed from a list of
generators and relations P, let SymMon.F.P /;C/ denote the bicategory of symmetric
monoidal 2–functors, transformations, and modifications. The cofibrancy theorem
gives an equivalence SymMon.F.P /;C/ ' P .C/ of bicategories, where P .C/ is the
bicategory, called P–data in C, whose objects are assignments of generators in P to
the objects, 1–morphisms, and 2–morphisms of C subject to relations (see Section 4.2).
Applying this theorem to the list of generators and relations XP of XBPD, along with
the equivalence XBord2 ' XBPD, gives the following classification theorem:

Algebraic & Geometric Topology, Volume 23 (2023)



Two-dimensional extended homotopy field theories 3911

Theorem 4.10 For any symmetric monoidal bicategory C, there is an equivalence of
bicategories

SymMon.XBord2;C/'XP .C/:

Next, we consider a specific target bicategory Alg2k of k–algebras, bimodules, and
bimodule maps for a commutative ring k with unit. The following notions are the
main ingredients of our result on Alg2k–valued 2–dimensional extended X–HFTs. For
a discrete group G with identity element e, a strongly graded G–algebra is a G–graded
associative k–algebra A D

L
g2G Ag with unity such that AgAg 0 D Agg 0 for all

g; g0 2 G. The opposite G–algebra of A is Aop D
L
g2G Ag�1 , where the order of

multiplication is reversed.

A Frobenius G–algebra is a pair .A; �/, where A D
L
g2G Ag is a G–algebra such

that each Ag is a finitely generated projective k–module, and � W A ˝ A ! k is
a nondegenerate bilinear form satisfying �.ab; c/ D �.a; bc/ for any a; b; c 2 A. A
quasibiangularG–algebra is a strongly graded FrobeniusG–algebra .A; �/ in which the
identity component Ae is separable and � satisfies certain conditions (see Section 4.3).
We also need G–graded Morita contexts between G–algebras, which were introduced
by Boisen [3]. We recall their definition and introduce a notion of compatibility with
Frobenius structures in Section 4.3.

Theorem 4.19 Let k be a commutative ring and X be a CW–complex which is a
K.G; 1/–space for a discrete group G. Then any Alg2k–valued 2–dimensional extended
X–HFT Z W XBord2 ! Alg2k whose precomposition XBPD '

�! XBord2
Z
�! Alg2k

gives a strict symmetric monoidal 2–functor determines a triple .A;B; �/, where A
and B are quasibiangular G–algebras and � is a compatible G–graded Morita context
between A and Bop. Conversely , for any such triple .A;B; �/ there exists an Alg2k–
valued 2–dimensional extended X–HFT.

This generalizes Schommer-Pries’ classification of Alg2k–valued 2–dimensional ex-
tended TFTs [22] in terms of separable symmetric Frobenius algebras. Theorem 4.10
suggests studying the bicategory XP .Alg2k/ to understand SymMon.XBord2;Alg2k/,
more specifically to answer the question of which triples yield equivalent extended
X–HFTs. This study leads us to define a bicategory, FrobG, which has quasibiangular
G–algebras as objects, compatible G–graded Morita contexts as 1–morphisms, and
equivalences of such Morita contexts as 2–morphisms (see Section 4.3).

Algebraic & Geometric Topology, Volume 23 (2023)



3912 Kürşat Sözer

Theorem 4.24 Under the assumptions of Theorem 4.19, there is an equivalence of
bicategories

SymMon.XBord2;Alg2k/' FrobG :

On the level of objects, this equivalence maps a triple .A;B; �/ to A. Consequently,
Theorem 4.24 implies the following corollary:

Corollary 4.25 Under the assumptions of Theorem 4.19, two triples .A1; B1; �1/ and
.A2; B2; �2/ produce equivalent 2–dimensional extended X–HFTs if and only if there
exists a compatible G–graded Morita context between A1 and A2.

A different approach to the classification of 2–dimensional EHFTs withK.G; 1/ targets
is given by the .G�SO.2//–structured cobordism hypothesis due to J Lurie [15]. This
hypothesis states a classification of such EHFTs in terms of homotopy .G�SO.2//–fixed
points (see Section 4.5). Davidovich [6] computed these fixed points in Alg2k when k

is an algebraically closed field of characteristic zero. By comparing Theorem 4.24 with
Davidovich’s results, we verify a special case of the .G�SO.2//–structured cobordism
hypothesis as follows:

Corollary 4.27 For any discrete group G and any algebraically closed field k of
characteristic zero , the .G�SO.2//–structured cobordism hypothesis for Alg2k–valued
oriented EHFTs with target X 'K.G; 1/ holds true.

In the definition of XBord2, we use oriented manifolds. By using unoriented manifolds,
we define the unoriented X–cobordism bicategory XBordun

2 and provide a list of
generators and relations. Then, parallel to the oriented case, we classify 2–dimensional
extended unoriented HFTs and verify a special case of the .G�O.2//–structured
cobordism hypothesis.

1.2 Related works

Our main reference is Schommer-Pries’ thesis [22] on the classification of 2–dimensional
extended TFTs. In addition to detailed classification of oriented and unoriented extended
TFTs, Schommer-Pries sketched the classification of 2–dimensional structured extended
TFTs (see [22, Section 3.5]). In this approach the structured cobordism bicategory
is defined using topological stacks. In particular, a stack corresponding to principal
G–bundles and orientation structures provides an alternative formulation for extended
.G�SO.2//–structured TFTs, or equivalently 2–dimensional extended HFTs with
K.G; 1/ targets.

Algebraic & Geometric Topology, Volume 23 (2023)
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When defining 2–dimensional extended TFTs, Schommer-Pries [22] defined the co-
bordism bicategory in all dimensions, not only in dimension 2. Schweigert and
Woike [23] extended this cobordism bicategory to the setting of homotopy field theories
and defined extended HFTs in all dimensions. Similarly, Müller and Szabo [18]
constructed a geometric cobordism bicategory CobFn;n�1;n�2, where F is a general stack
which encodes the arbitrary background fields in the corresponding quantum field theory
(see also Müller [17]). In their work [19], when the background fields F are chosen for
2–dimensional Dijkgraaf–Witten theories, namely principal bundles with finite structure
group G and orientations, the symmetric monoidal bicategory CobF2;1;0 is equivalent
to XBord2, described above. Using the n–dimensional version CobFn;n�1;n�2 of this
bicategory, they defined an n–dimensional extended homotopy field theory for all n� 2.
Moreover, Müller and Woike [20] constructed an n–dimensional extended HFT from a
flat .n�1/–gerbe on a target space represented by a U.1/–valued singular cocycle (see
also [17] and Bunke, Turner and Willerton [4]). This construction was generalized to
unoriented extended HFTs by Young [29].

A state sum approach to both 2–dimensional extended TFTs and HFTs was taken by
Davidovich [6]. As mentioned above, Davidovich [6] also classified Alg2k–valued
2–dimensional extended .G�SO.2//–structured TFTs following the cobordism hypoth-
esis.

Conventions Throughout the paper, G is a discrete group with identity element e and
the target space is a pointed aspherical CW–complex .X; x/ with �1.X; x/DG. All
manifolds are assumed to be smooth and all algebras are unital. By a closed manifold
we mean a compact manifold without boundary. For smooth manifolds M and N, the
space of smooth maps C1.M;N / is provided with the Whitney C1–topology. For
subsets K �M and L�N, the notation Œ.M;K/; .N;L/� stands for the set of relative
homotopy classes of maps between pairs.

Acknowledgments I would like to thank my advisor Vladimir Turaev for introducing
this problem to me and his support throughout this project. I would also like to thank
Noah Snyder for fruitful and enlightening discussions on extended field theories and
the cobordism hypothesis. I am grateful to Patrick Chu for helpful discussions and to
Alexis Virelizier for his comments on the earlier version of this paper. I would like to
thank the referee for valuable comments and suggestions. This work was supported by
NSF grant DMS-1664358.
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2 The 2–dimensional X–cobordism bicategory

In his study of HFTs, Turaev [27] introduced notions of X–manifold and X–cobordism
using pointed manifolds, where X is a connected CW–complex with a specified point
x 2 X. In this paper, X is always a K.G; 1/–space. In this case, a pointed manifold
is a manifold with a basepoint on each connected component. We denote the set
of basepoints of a pointed manifold M by bpM . An n–dimensional X–manifold is
a pair .M; g/ consisting of a closed pointed n–manifold M and a homotopy class
g 2 Œ.M; bpM /; .X; x/�, called the characteristic map. An X–cobordism between X–
manifolds .M; g/ and .M 0; g0/ is a pair .W; P/ consisting of a cobordism W between
M and M 0 and a homotopy class P 2 Œ.W; bpM [bpM 0/; .X; x/� restricting to g and g0

on the corresponding boundary components.

Given an aspherical space X, a 2–dimensional extended X–HFT is a symmetric
monoidal 2–functor from the 2–dimensional X–cobordism bicategory XBord2 to
another symmetric monoidal bicategory. Therefore, this bicategory plays a key role in
the definition of 2–dimensional extended X–HFTs.

There are existing definitions of structured or equivariant cobordism bicategories
related to XBord2. These include the homotopy bicategory of the .1; 2/–category
of cobordisms with .G�SO.2//–structures (see [15; 5]), the structured cobordism
bicategory BordF2 introduced in [22] with a topological stack F corresponding to
principalG–bundles and orientation structures, theG–equivariant cobordism bicategory
G–Cob.2; 1; 0/ introduced in [23], and the structured cobordism bicategory CobF2;1;0
introduced in [18] with an appropriate choice of a stack F (see [19; 17]). It can be
shown that these symmetric monoidal bicategories are equivalent to XBord2 and hence
the corresponding extended HFTs with aspherical targets are equivalent.

We start this section with a descriptive definition of XBord2 to motivate the types of
X–manifolds and structures on them, which form the 1– and 2–morphisms of this
bicategory. Then we provide the complete definition of XBord2.

2.1 Surfaces with corners

Roughly, the objects of XBord2 are compact oriented 0–manifolds, 1–morphisms
are 1–dimensional X–cobordisms, and 2–morphisms are X–homeomorphism classes
of 2–dimensional X–cobordisms between those X–cobordisms. This hints that the
underlying manifold of a 2–morphism must be a surface with corners. Recall that a
surface with corners M is a 2–dimensional topological manifold whose coordinate
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charts are of the form ' W U !R2
C

, where U �M is open and R2
C
D Œ0;1/� Œ0;1/.

Compatibility of charts is given by diffeomorphisms; that is, two charts .U; '/ and
.U 0; '0/ with U \U 0 ¤∅ are compatible if the composition '0 ı'�1 W '.U \U 0/!
'0.U \U 0/ is a diffeomorphism. Here, when '.U \U 0/\@R2

C
¤∅, the map '0 ı'�1

is a diffeomorphism if it is a restriction of a diffeomorphism defined on an open set
containing '.U \U 0/.

The composition of 2–morphisms in the X–cobordism bicategory is given by gluing
surfaces with corners along their common boundaries. Recall that the first step of
gluing construction is to choose collar neighborhoods. Nevertheless, not every sur-
face with corners admits collar neighborhoods. Following [22], we use h2i–surfaces,
which are special cases of hni–manifolds defined in [13]. These surfaces admit collar
neighborhoods (see [13]) and they are a certain type of surfaces with faces.

A surface with faces M is a surface with corners such that any point m 2M belongs
to index.m/ different connected faces. Here, the index of a point m is the number of
zeros in '.m/ 2 R2

C
, where .U; '/ is a chart with m 2 U and a connected face of a

surface with corners M is the closure of a component of fm 2M j index.m/D 1g. A
face is a disjoint union of connected faces.

Definition 2.1 A h2i–surface is a 2–dimensional compact manifold with faces S
equipped with two submanifolds with faces @hS and @vS , called the horizontal and
vertical faces, respectively, such that @S D @hS [ @vS and @hS \ @vS is either empty
or a face of both. A h2i–surface S is pointed if it is equipped with a finite set R � @S
such that @hS \ @vS � R, @vS \R D @hS \ @vS, and every connected component
of @hS contains at least two elements of R.

Definition 2.2 A h2i–X–surface is a triple .S;R; P/, where .S;R/ is a pointed ori-
ented h2i–surface and P 2 Œ.S;R/; .X; x/� is a homotopy class. A h2i–X–surface
.S;R; P/ is said to be of cobordism type if @vS is diffeomorphic to a product X–
manifold with a constant characteristic map, ie .@vS; Pj@vS / Š .M � I; PjM�I /,
where I D Œ0; 1�, .M; PjM / is a 0–dimensional X–manifold, and the restriction of
PjM�I 2 Œ.M � I; @.M � I //; .X; x/� to each connected component is the constant
homotopy class.

Figure 1 shows an example of a cobordism type h2i–X–surface .S;R; P/, where we
encode the data of relative homotopy class P by arrows and G–labels are determined
uniquely by P and arrows. Observe that the horizontal boundary of a h2i–X–surface
.S 0; R0; P0/ is not a 1–dimensional X–cobordism if R0 ¤ @.@hS 0/. Since we regard
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Figure 1: Examples of cobordism type h2i–X–surfaces and their compositions.

2–morphisms of XBord2 to be X–cobordisms between 1–morphisms, this observation
implies that 1–morphisms are more general than 1–dimensional X–cobordisms in that
there are possibly extra points in the interior of the underlying 1–dimensional compact
manifold.

Definition 2.3 A 1–dimensional marked X–manifold is a triple .M; T; g/, where
M is an oriented compact 1–manifold, T � M is a finite set with @M � T such
that each connected component of M contains at least two elements of T, and g 2
Œ.M; T /; .X; x/�.

According to the arguments above, the bicategory XBord2 is expected to have compact
oriented 0–manifolds as objects, 1–dimensional marked X–manifolds as 1–morphisms,
and cobordism type h2i–X–surfaces as 2–morphisms. In this case, for a given cobordism
type h2i–X–surface, its source and target 1–morphisms are certain components of the
horizontal boundary. However, the composition of morphisms is a delicate issue,
especially the composition of 1–morphisms.

When we glue two manifolds along their common boundary, the smooth structure
on the resulting topological manifold depends on the choice of collar neighborhoods
(see [16]). Equivalently, different choices of collars give different smooth structures.
However, different choices give diffeomorphic smooth manifolds and diffeomorphisms
are noncanonical. Therefore, gluing operation on smooth manifolds is not well defined
on the nose, but up to a noncanonical diffeomorphism.

The same results continue to hold for h2i–X–surfaces. Let .S;R; P/ be a h2i–X–surface
and .N;N \R; PjN / be a face with the inclusion map � W .N;N \R/ ,! .S;R/. For a
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collar neighborhood UN � S of N, a collar is a diffeomorphism ‰N W UN !N �RC
(see Figure 1). The following proposition implies that 2–morphisms of XBord2 must
be (relative) diffeomorphism classes of cobordism type h2i–X–surfaces in order to
have well-defined horizontal and vertical compositions of 2–morphisms:

Proposition 2.4 Let .S;R; P/ and .S 0; R0; P0/ be cobordism type h2i–X–surfaces with
faces and .N; T; g/ be a 1–dimensional marked X–manifold together with inclusions
� W .N; T; g/ ,! .S;R; P/ and �0 W .N; T; g/ ,! .S 0; R0; P0/ realizing .N; T; g/ as a face
of both h2i–X–surfaces. Then S [N S 0 is a topological manifold with boundary. If in
addition we are given collars ‰C W N �RC! S and ‰� W N �RC! S 0, then there
exists a canonical smooth structure on S [N S 0 which is compatible with the smooth
structures on S and S 0. Moreover , different choices of collars produce noncanonically
diffeomorphic cobordism type h2i–surfaces.

The proof of this theorem follows from the proofs of Proposition 3.1 and Theorem 3.3
in [22]. Note that gluing h2i–X–surfaces vertically along their common horizontal
boundary components does not yield a cobordism type h2i–X–surface. One needs
to choose a diffeomorphism I [ I Š I and omit the points on the faces through
which h2i–X–surfaces are glued. Figure 1 shows examples of vertical and horizontal
compositions of h2i–X–surfaces, denoted by ı and �, respectively. Following [22],
we solve the problem of composition of 1–morphisms by equipping manifolds with
germs of neighborhoods. The notion of a germ of neighborhoods was made precise by
Schommer-Pries (see Section 3.2.3 in [22]) using halations which are formulated as
maps of pro-manifolds.

2.2 Pro-X–manifolds and X–halations

Recall that a directed set is a tuple .D;�/, where D is a nonempty set and � is a
reflexive and transitive binary relation such that, for any x; y 2D, there exists z 2D
with x � z and y � z. We think of a directed set .D;�/ as a category D whose
objects are elements of D and morphisms are given by the relation �. Let ManX

be the category of smooth X–manifolds and smooth pointed maps commuting with
characteristic maps. A pro-X–manifold is a pair .D; A/, where D is a directed set and
A WD!ManX is a functor.

Two directed sets play an important role in describing germs of neighborhoods of
X–manifolds: the first one is trivial one, D� D f�g, and the second one is associated
to an embedding of X–manifolds as follows. Let .M; g/ and .N; h/ be X–manifolds
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possibly with boundary or corners, and let � W .M; g/ ,! .N; h/ be an embedding of
X–manifolds, ie �.bpM / D bpN and g D h ı Œ�� as elements of Œ.M; bpM /; .X; x/�.
Then the directed set DN is given by codimension zero closed X–submanifolds of N
containing �.M/ and the relation is inclusion.

For a given X–manifold .M; g/, we denote the pro-X–manifolds corresponding to
these directed sets with .M; g/ and . �M � N; yg/, respectively. There is an obvious
inclusion {M W .M; g/ ,! . �M � N; yg/ of pro-X–manifolds and an X–halation is an
inclusion of pro-X–manifolds isomorphic to {M . Here morphisms of pro-X–manifolds
are the morphisms in ManX of the corresponding limits and colimits of the diagrams.
More precisely, the set of morphisms between two pro-X–manifolds discussed above is

Hompro-ManX .D�;DN /D lim
p

colim
q

HomManX .D�.p/;DN .q//;

where the limit and colimit are taken in the category of sets. The codimension of an X–
halation is the codimension of the embedding. We denote an X–halation by .M; �M; yg/
and call an X–manifold equipped with an X–halation an X–haloed manifold. A map
between X–haloed manifolds .A; yA; ya/ and .B; yB; yb/ is a pair of pro-X–manifold
morphisms A! B and yA! yB such that the diagram involving the inclusions A ,! yA
and B ,! yB commutes. The category of pro-objects in a category C is generally defined
using cofiltered diagrams instead of directed sets. Here we use the results in [22] to
simplify arguments and refer reader to [22, Sections 3.2.1 and 3.2.2] for a more detailed
exposition on halations.

The solution to the problem of composition of 1–morphisms is to use compatible X–
haloed manifolds. The compatibility is given by choosing an orientation for the normal
bundle of the embedding which defines X–halation. Such an X–halation is called
cooriented. Now assume that .M0; T0; g0/ and .M1; T1; g1/ are 1–dimensional marked
X–manifolds equipped with cooriented codimension one X–halations . �M0 �N0; yg0/
and . �M1 � N1; yg1/, respectively. Using the tubular neighborhood theorem and
the coorientations of the source and target objects, we write these X–halations as
.Mi �Mi �R[@Mi�R�f0g @Mi � .R�RC// for i D 0; 1. Using [22, Lemma 3.25],
we refine the index of both pro-X–manifolds to natural numbers N as

i 7!M0 � f0g[@tM0 @tM0 � f0g �
�
�
1

i
; 0
i
[@sM0 @sM0 � f0g �

h
0;
1

i

�
;

i 7!M1 � f0g[@sM1 @sM1 � f0g �
h
0;
1

i

�
[@tM1 @tM1[f0g �

�
�
1

i
; 0
i
;

i 7! Y �
�
�
1

i
;
1

i

�
;
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.N; ON2; Oh2/.N; ON1; Oh1/.N; h/ .A; OA0; OA1; T; Op1/ .M; OM2; Og2/

��

Figure 2: Cooriented X–halations and an X–haloed 1–cobordism.

where @s and @t denote the source and target boundary components and Y Š @tM0 Š

@sM1. For each i 2N, the pushout exists and it is the smooth manifold M1 [Y M0

whose smooth structure is determined by the embedding of Y � .�1=i; 1=i/ and by
the smooth structures of M0 and M1. The pushout as a cooriented codimension one
X–haloed manifold, ie as a 1–morphism of XBord2, exists by the results in [11] on
commutativity of finite colimits and (cofiltered) limits. Here note that the colimit
is taken over the pushout diagram K D � �! �, which is clearly finite (see [22,
Section 3.2.3] for details).

2.3 The X–cobordism bicategory XBord2

We are now equipped with the necessary information to define the 2–dimensional
X–cobordism bicategory.

Definition 2.5 The 2–dimensional X–cobordism bicategory XBord2 is as follows:

(1) The objects are triples f..M; g/; .M; �M1; yg1/; .M; �M2; yg2//g, where .M; g/ is
a compact oriented 0–manifold, and .M; �M1; yg1/ and .M; �M2; yg2/ are cooriented
codimension one and codimension two X–halations, respectively, with inclusions
.M; g/ ,! .M; �M1; yg1/ ,! .M; �M2; yg2/. For brevity we denote such an object as
.M; �M1; �M2; yg2/.

(2) The 1–morphisms are X–haloed 1–dimensional X–cobordisms; an X–haloed 1–
dimensionalX–cobordism .A; yA0; yA1;T;yp1/ from .M; �M1; �M2;yg2/ to .N; yN1; yN2;yh2/
consists of

� a 1–dimensional marked X–manifold .A; T; p/,

� a codimension zero X–halation .A; yA0; yp0/ and a cooriented codimension one
X–halation .A; yA1; yp1/ with inclusions .A; p/ ,! .A; yA0; yp0/ ,! .A; yA1; yp1/,

� a decomposition of the boundary of .A; T; p/ as @AD @inAq@outA with isomor-
phisms of X–halations preserving coorientations (see Figure 2)

.M; �M1; �M2; yg2/
�

Š
�! .@inA; yA0j@in ;

yA1j@in ; yp1/;

.N; yN1; yN2; yh2/
�

Š
�! .@outA; yA0j@out ;

yA1j@out ; yp1/;
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.N; e/ .M; e/

.A; p/

.B; q/

gi gj

e

e

e

e

gi

gj

.A; p/

.M � I; e/.B; q/.N � I; e/

+

Figure 3: An example of decomposition of a 2–morphism in XBord2.

where yA0j@in is cooriented by an inward pointing normal vector and yA0j@out is
cooriented by an outward pointing normal vector.

(3) The 2–morphisms are isomorphism classes of X–haloed 2–dimensional X–cobor-
disms; an X–haloed 2–dimensional X–cobordism .S; yS;R; yF/ from .A; yA0; yA1; T; yp1/
to .B; yB0; yB1;Q; yq1/ consists of a cobordism type h2i–X–surface .S;R; F/ together
with a codimension zero X–halation .S; yS; yF/ and isomorphisms of X–halations (see
Figure 3)

.A; yA1; yp1/q .B; yB1; yq1/
�

Š
�! .@hS; yS j@hS ; yFj@hS /;

.M � I; 2M � I 2; ye/q .N � I;2N � I 2; ye/ �

Š
�! .@vS; yS j@vS ; yFj@vS /;

where .A; yA1; yp/ is cooriented by an inward pointing normal vector and .B; yB1; yq/
is cooriented by an outward pointing normal vector. The X–halations of M � I
and N � I are induced by their embeddings into M � I 2 and N � I 2 with constant
homotopy class ye. Coorientations are given by an inward pointing normal vector for
.M �I; 2M � I 2; ye/ and an outward pointing normal vector for .N �I;2N � I 2; ye/. For
such an X–haloed 2–cobordism we have the notation �.A/D @h;inS, �.B/D @h;outS,
�.M � I /D @v;inS, and �.N � I /D @v;outS.

Two X–haloed 2–cobordisms .S0; yS0; R0; yF0/ and .S1; yS1; R1; yF1/ are isomorphic if
there is an isomorphism of X–halations � W .S0; yS0; yF0/! .S1; yS1; yF1/ which restricts
isomorphisms

.@h;inS0; . yS0/j@h;inS0 ; .yF0/j@h;inS0/! .@h;inS1; . yS1/j@h;inS1 ; .yF1/j@h;inS1/;

.@h;outS0; . yS0/j@h;outS0 ; .yF0/j@h;outS0/! .@h;outS1; . yS1/j@h;outS1 ; .yF1/j@h;outS1/;

.@v;inS0; . yS0/j@v;inS0 ; .yF0/j@v;inS0/! .@v;inS1; . yS1/j@v;inS1 ; .yF1/j@v;inS1/;

.@v;outS0; . yS0/j@v;outS0 ; .yF0/j@v;outS0/! .@v;outS1; . yS1/j@v;outS1 ; .yF1/j@v;outS1/

such that �j@S0 is identity, � ı �D �0 and � ı � D � 0, where � 0 and �0 are isomorphisms
of cooriented X–halations corresponding to the decomposition @S1 D @hS1q @vS1.
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Lemma 2.6 The bicategoryXBord2 is a symmetric monoidal bicategory under disjoint
union.

We skip the proof, which is given in [25] using a method developed by Shulman [24].
Recall that two major goals of this paper are to define 2–dimensional extended homotopy
field theories and classify them. The following definition addresses to the first one:

Definition 2.7 Let C be a symmetric monoidal bicategory. A C–valued 2–dimensional
extended homotopy field theory with target X is a symmetric monoidal 2–functor from
XBord2 to C.

3 The G–planar decompositions

3.1 G–linear diagrams

Linear diagrams, introduced by Schommer-Pries [22], represent 1–dimensional compact
manifolds equipped with a Morse function to Œ0; 1�. Briefly speaking, a linear diagram
is a triple formed by the set of critical values of a Morse function on a compact 1–
manifold, an open cover of Œ0; 1�, and combinatorial data describing preimages of a
Morse function on open sets. By labeling critical values with cup or cap instead of
their indices (see Figure 4) the first ingredient of a linear diagram is defined as follows:

Definition 3.1 [22] A 1–dimensional graphic ‰ is a finite subset of .0; 1/ where
each point is labeled with either cup or cap.

For a given 1–dimensional graphic ‰, an open cover U D fU˛g˛2J of Œ0; 1� having
at most double intersections is said to be ‰–compatible if each U˛ contains at most
one element from ‰ and double intersections are disjoint from ‰. It is not hard to find
such open covers and the second ingredient of a linear diagram is defined as follows:

Definition 3.2 [22] Let ‰ be a 1–dimensional graphic. A chambering set � for ‰
is a set of isolated points in .0; 1/ disjoint from �. Chambers of � are the connected
components of Œ0; 1�n.�[�/. A chambering set � is said to be subordinate to an open
cover UD fU˛g˛2J of Œ0; 1� if each chamber is a subset of at least one U˛.

Example 3.3 Figure 5 shows an example of a 1–dimensional oriented compact
manifold M equipped with a Morse function f W .M; @M/ ! .Œ0; 1�; f0; 1g/. The
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cup cap

Figure 4: Singularities of a Morse function on a 1–manifold and their images
in R.

critical values of f define a 1–dimensional graphic ‰ (see Figure 4). An open cover
U D fUig

4
iD1 of Œ0; 1� is a ‰–compatible open cover and turquoise points form a

chambering set subordinate to U.

For an oriented compact 1–manifold M, a Morse function of the form f W .M; @M/!

.Œ0; 1�; f0; 1g/ whose critical values are distinct and lie in .0; 1/ is called a generic map.
Let ‰ be a 1–dimensional graphic induced from a pair .M; f / of an oriented compact
1–manifold equipped with a generic map. Let � be a chambering set subordinate to a
‰–compatible open cover U. Since f is a Morse function and chambers are disjoint
from �, the preimage f �1.V / of a chamber V consists of a disjoint union of arcs
(possibly empty), each mapping diffeomorphically onto V under f. A trivialization
of V is an identification of f �1.V / with N�N �V for some N 2N, where N�N D

fa 2N j 0 < a �N g if f �1.V / is nonempty and an identification with the empty set
otherwise. In this case, each fig �V is called a sheet and each sheet is equipped with
an orientation.

Trivializations of two neighboring chambers have the same number of sheets if chambers
are separated by a point in � . If a point in � separates chambers, then, by the Morse

f

cup cupcap cap

U1 U2 U3 U4

0 1

Figure 5: Induced 1–dimensional graphic and a chambering set.
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g0

g00

g000

e

Figure 6: 1–dimensional marked X–manifold .M; T; g/.

lemma, the number of sheets differ by two (see Figure 4). A sheet data S [22] for a pair
.‰; �/ consists of a trivialization of each chamber and an injection or a permutation
between trivializations of neighboring chambers preserving orientations and describing
how sheets are glued.

Definition 3.4 [22, Definition 3.45] A linear diagram is a triple .‰; �; S/ consisting
of a 1–dimensional graphic ‰, a chambering set � subordinate to a ‰–compatible open
cover UD fU˛g˛2J of Œ0; 1�, and a sheet data S associated to the pair .‰; �/.

Any linear diagram yields an oriented compact 1–manifold and a generic map to Œ0; 1�.
Our goal is to add extra data of X–manifolds to linear diagrams so that these diagrams
produce oriented 1–dimensional marked X–manifolds. Recall that a 1–dimensional
marked X–manifold is a triple .M; T; g/, where M is an oriented compact 1–manifold,
T �M is a finite set with @M � T such that each closed connected component of M
contains at least two elements of T, and g 2 Œ.M; T /; .X; x/�.

We describe the extra data on linear diagrams in an example. Let .M; T; g/ be a 1–
dimensional marked X–manifold, shown in Figure 6, whose underlying manifold M is
the 1–dimensional oriented compact manifold considered in Example 3.3. We consider
the same generic map f W .M; @M/! .I; @I / and chambering set as in Example 3.3
giving the linear diagram .‰; �; S/. First we label elements of � . A point in � is
labeled with ˇ� , where � 2 SN is the permutation coming from the sheet data of this
point. We then add the elements of f .T / to � , which means there are possibly new
chambers. Each new chamber has the induced trivialization from the larger chamber,
which splits into two. We do not label these added points. After that we equip the
boundary components of every sheet, except the critical points of f, with oriented
points using the orientation of M (brown points in Figure 7) and label each sheet with
a group element using the characteristic map g as shown in Figure 7.

Next, we add labeled points to Œ0; 1� as follows. If the preimage of a chamber does
not have any singularity then the midpoint of that chamber is added. The label of this
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g0

g00

cupe˝Pe cupe˝Pecapg0˝Pe Pe˝capg000

e

e

e

eeeee

e

e
e

ee

Peˇ�Pe

ˇePe

Pe

Pe˝Ne˝Pg00

ˇ�
0

Pe

g000

0 1

Figure 7: Example of a G–linear diagram without sheet data.

point is given as follows. We assign Pg1 for such a sheet with + boundary points and
g1–label, and assign Ng2 for a such a sheet with - boundary points and g2–label. Then
the label of the added point is given by A1˝A2˝ � � �˝An, where Ai is the assigned
label of the i th sheet according to the trivialization of the chamber for i D 1; : : : ; n.
Similarly, we modify labels cup and cap according to assignments to sheets which are
in the same trivialization with these singularities (see Figure 7). Lastly, on sheet data
trivialization of sheets involves labeling each sheet with a group element with an arrow
as described above and each (unlabeled) point is lifted to boundary of a sheet. We
denote this modified linear diagram using the extra data of the 1–dimensional marked
X–manifold with .‰G ; �G ; SG/ and call it a G–linear diagram.

It is clear that any G–linear diagram .‰G ; �G ; SG/ produces a pair ..M 0; T 0; g0/; f 0/.
For any such pair, by choosing a compatible chambering set, we obtain a new pair.
These two pairs are related by the following notion. An X–homeomorphism between
(marked) X–manifolds is a pointed orientation-preserving diffeomorphism commuting
with the characteristic maps. An X–homeomorphism between such pairs is called over
Œ0; 1� if it commutes with the fixed generic maps.

Proposition 3.5 Let .‰G ; �G ; SG/ be a G–linear diagram induced from a pair
..M; T; g/; f / of a 1–dimensional oriented marked X–manifold and a generic map
f W .M; @M/! .Œ0; 1�; f0; 1g/, and a chambering set � for a ‰–compatible open cover
U of Œ0; 1�. If the pair ..M 0; T 0; g0/; f 0/ is constructed from .‰G ; �G ; SG/, then there
exists an X–homeomorphism F WM !M 0 over Œ0; 1�.

Proof The diffeomorphism F maps inverse images of chambers to corresponding
trivializations. Since corresponding connected components have the same G–labels

Algebraic & Geometric Topology, Volume 23 (2023)



Two-dimensional extended homotopy field theories 3925

cap cup saddle-1

saddle-2 cusp-2cusp-1

fold-2

Figure 8: Singularities of Schommer-Pries stratification and their graphics in R2.

and both f and f 0 ıF restrict to the same map on f �1.V / for any chamber V, F is
an X–homeomorphism over Œ0; 1�.

3.2 G–planar diagrams

Planar diagrams, introduced by Schommer-Pries [22], represent cobordism type h2i–
surfaces equipped with a generic map to I 2D Œ0; 1�� Œ0; 1�. Here generic maps refer to
Schommer-Pries’ stratification of jet spaces described below. Parallel to linear diagrams,
a planar diagram consists of a graphic of a generic map, an open cover of I 2, and a
combinatorial data describing preimages of a generic map on open sets.

In his classification of 2–dimensional extended TFTs, Schommer-Pries [22] studied
maps from cobordism type h2i–surfaces to I 2 and refined the Thom–Boardman stratifi-
cation of jet spaces. Figure 8 shows the singularities of Schommer-Pries’ stratification
in normal coordinates and their graphics in I 2. Here, by a graphic we mean the image
of a singularity under a generic map. In this context, by a generic map we mean a
map whose jet sections are transversal to each stratum. In Figure 8, generic maps are
projections to the page. The numbers on singularity names indicate their indices. By
an index of a singularity, we mean a symmetry of either a singularity or its graphic. For
example, fold-1 is obtained from fold-2 by changing the folding direction. Similarly,
cap, cup, saddle-1, and saddle-2 are different indices of the Morse singularity. Observe
that a cusp singularity has four indices.

For a given cobordism type h2i–surface †, a generic map for Schommer-Pries stratifi-
cation has the form

f W .†; @v†; @h†/! .I 2; @I � I; I � @I /:
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Transversality theorems (see [22; 8]) imply that the set of generic maps is dense
in C1..†; @v†; @h†/; .I 2; @I � I; I � @I //. The properties of Schommer-Pries’
stratification are listed in the following definition. In particular, the graphic of a generic
map for this stratification is a 2–dimensional graphic, which is defined as follows:

Definition 3.6 [22, Definition 1.29] A 2–dimensional graphicˆD .�; �/ is a diagram
in I 2 consisting of a finite number of embedded labeled curves (�) and a finite number
of labeled points (�) satisfying the following conditions:

(i) Elements of � can only have transversal intersections and no three elements
intersect at a point. Each element of � is labeled with either fold-1 or fold-2.

(ii) Elements of � are disjoint from @I � I and intersect transversely with I � @I.
Labeling each of these intersection points on I � @I with cup for fold-1 labeled
curves and with cap for fold-2 labeled curves produces 1–dimensional graphics
on I � f0g and I � f1g.

(iii) Projections of elements of � to the last coordinate of I 2 are local diffeomor-
phisms.

(iv) Elements of � are isolated and disjoint from @.I � I /. Each element is labeled
with one of cup, cap, saddle-1, saddle-2 or cusp-i for i D 1; 2; 3; 4.

(v) Each element in � has a neighborhood in which two elements of � form one of
cup, cap, saddle-1, saddle-2 or cusp-i graphic for i D 1; 2; 3; 4 (see Figure 8).

We want to extend this definition to cobordism type h2i–X–surfaces so that a 2–
dimensional graphic additionally contains the X–manifold data. First we consider
h2i–X–surfaces whose underlying manifolds are singularities of Schommer-Pries’
stratification in normal coordinates (see Figure 8). Figure 9 shows their graphics with
the X–manifold data. Note that we abbreviate fold-i label to Fi , saddle-i to Si , and
cusp-i to Ci for i D 1; 2. Also observe that fold-1 and fold-2 singularities are paths of
cup and cap singularities in the previous section. For this reason, henceforth, on any
G–linear diagram we replace cup and cap labels with F1 and F2 labels, respectively.
This implies that the restriction of each diagram in Figure 9 to I � @I yields two
partial G–linear diagrams. Later we complete them to G–linear diagrams by adding
chambering sets and sheet data.

Compared to graphics of singularities in Figure 8, there are additional arcs connecting
graphics of Morse1 and cusp singularities to the (red) points of the boundary G–linear

1Similar to the graphics of saddles, one can add arcs to the graphics of cup and cap and label them with ∅.
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Figure 9: Graphics of singularities with X–manifold data.

diagram. The reason behind the addition of these arcs is the connection between
these diagrams and string diagrams, which is the content of Theorem 4.5. We call
h2i–X–surfaces in Figure 9 elementary h2i–X–surfaces since they are building blocks
of cobordism type h2i–X–surfaces under horizontal and vertical gluing operations.
However, this list is not complete. The rest of the elementary h2i–X–surfaces and their
graphics are given in Figure 10.

We now know the extra data on 2–dimensional graphics of elementary h2i–X–surfaces.
Using these modified diagrams, for any generic map on a cobordism type h2i–X–
surface .†;R; P/ we add the X–manifold data .R; P/ to the graphic of the generic map
in two steps. First we decompose .†;R; P/ into horizontal and vertical compositions of
elementary h2i–X–surfaces. This is always possible by the nature of Schommer-Pries’
stratification and above arguments. Using P we choose G–labels on each elementary
h2i–X–surface in the decomposition. We then consider the modified diagrams of these
h2i–X–surfaces in I 2, as described above. Figure 11 shows an example of this process
where the generic map is projection to the page. For a given 2–dimensional graphic
ˆD .�; �/, we denote the union of � and arcs encoding the X–manifold data by �G

and, similarly, �G denotes the union of � and additional labeled points. We call such a
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Figure 10: The remaining elementary h2i–X–surfaces and their graphics.

2–dimensional graphic ˆ equipped with X–manifold data a 2–dimensional G–graphic
and denote it by ˆG D .�G ; �G/.

LetˆG D .�G ; �G/ be a 2–dimensionalG–graphic; an open cover UDfU˛g˛2J of I 2

with at most triple intersections is said to beˆ–compatible [22] if each triple intersection
is disjoint from �, each double intersection is disjoint from �[� or contains a single
element from �, and the open covers

˚
U˛ \ .I � fig/

	
˛2J

of I � fig for i D 0; 1 are

S2
F
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Figure 11: Adding X–manifold data to a graphic and an example of a cham-
bering graph.
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compatible with corresponding 1–dimensional graphics obtained from ˆG. Knowing
that R2 has covering dimension two and sets � and � are finite, it is not hard to find
ˆ–compatible open covers for a given graphic ˆ.

Definition 3.7 [22, Definition 1.42] Let ˆG D .�G ; �G/ be a 2–dimensional G–
graphic. A chambering graph � for ˆG is a smoothly embedded graph in I 2 satisfying
the following conditions. Vertices of � are disjoint from elements of ˆG and have
degree either one or three. Edges of � are disjoint from @I � I and transverse to ˆG

and I � @I. Furthermore, projection of each edge to the last coordinate is a local
diffeomorphism and around each trivalent vertex one of the edges projects to the
opposite side of the projection of the other two edges with respect to the image of the
vertex.

Definition 3.8 Let � be a chambering graph for ˆG D .�G ; �G/. Chambers of �
are the connected components of I 2n.� [ �[�/. A chambering graph � is said to
be subordinate to an open cover UD fU˛g˛2J of I 2 if each chamber is a subset of at
least one U˛ with ˛ 2 J and the chambering sets � \ .I � fig/ are compatible with
the restricted open covers

˚
U˛ \ .I � fig/

	
˛2J

for i D 0; 1.

Example 3.9 Figure 11 shows an example of a chambering graph � where each
colored region is a chamber. Note that the chambering graph leads to new red points on
I � @I forming two partial G–linear graphs. In this example all new points are labeled
with Pe˝Ne.

Proposition 3.10 Let ˆG be a 2–dimensional G–graphic in I 2 and let UD fU˛g˛2J
be a ˆ–compatible open cover of I 2. Then there exists a chambering graph � for ˆG

subordinate to U.

The 2–dimensional graphic version of this proposition was proven in Proposition 1.46
of [22]. This version follows from that only using transversality arguments. From now
on we assume that all chambering graphs are subordinate to some compatible open
cover.

Next, we recall sheet data associated to a pair .ˆ; �/. We know sheet data on the
components of I � @I from the previous section. For the other boundary component
@I � I, sheet data is similar and indeed simpler since vertical boundary components
are all identical. Therefore, we consider the open subsets of chambers by removing
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Figure 12

boundary components. That is, for any chamber Uˇ which intersects with @.I � I / we
considerU 0

ˇ
DUˇ�.Uˇ\@.I�I //. Since f is generic, the preimage f �1.U 0

ˇ
/ consists

of a disjoint union of open sets (possibly empty) each mapping diffeomorphically
onto U 0

ˇ
. A trivialization of U 0

ˇ
is an identification of f �1.U 0

ˇ
/ with N�N � U 0ˇ

for some N 2 N if f �1.U 0
ˇ
/ is nonempty and an identification with the empty set

otherwise. In this case, each fig �U 0
ˇ

is called a sheet and each sheet is oriented. By
requiring the same trivializations on U 0

ˇ
and @Uˇ , we extend these identifications to

N�N �Uˇ .

Similar to the 1–dimensional case, trivializations of two neighboring chambers have
the same number of sheets if chambers are separated by an edge of � (see Figure 12).
If an element in � separates chambers then the number of sheets differ by two because
it is a fold graphic (see Figure 8). Sheet data S [22] for a pair .ˆ; �/ consists of a

Uˇ1

Uˇ2N C 1

N C 1 N C 2

N C 3

�1 �2

Figure 13
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trivialization of each chamber and an injection or a permutation between trivializa-
tions of neighboring chambers preserving orientations and describing how sheets are
glued (see Figure 12). The gluing description of sheets requires certain conditions on
permutations and injections. For example, if three chambers are separated by edges
of a trivalent vertex of � , then the circular composition of permutations must be the
identity. Also, the permutation corresponding to the edge of a univalent vertex must be
the trivial permutation. The only nontrivial sheet data is that of a cusp graphic, which
we briefly describe. Consider the cusp-2 labeled point in Figure 13. Let N�NC3�Uˇ1
and N�NC1 � Uˇ2 be the trivializations such that the sheets

SNC3
iDNC1 i � Uˇ1 and

.NC1/�Uˇ2 belong to a cusp singularity as shown in Figure 13. In this case, restriction
of injections to the cusp singularity gives �1.N C1/DN C1 and �2.N C1/DN C3.

Definition 3.11 [22, Definition 1.48] A planar diagram is a triple .ˆ; �; S/ consisting
of a 2–dimensional graphic ˆ, a chambering graph � for ˆ subordinate to a ˆ–
compatible open cover UD fU˛g˛2J of I 2, and a sheet data S associated to the pair
.ˆ; �/.

Any planar diagram .ˆ; �; S/ produces a cobordism type h2i–surface † with a generic
map f W .†; @v†; @h†/! .I 2; @I � I; I � @I /. In the case of a tuple .ˆG ; �/, the
associated sheet data can be improved to produce a h2i–X–surface .†;R; P/. We
call such sheet data carrying X–manifold data to sheets G–sheet data and denote it
by SG. Then, generalizing a planar diagram, we define a G–planar diagram as a triple
.ˆG ; �; SG/. As an extension of G–linear diagrams, we label edges of a chambering
graph with ˇ� , where � is the permutation coming from sheet data. If both sheets are
trivialized by the empty set, then the separating edge is labeled with ˇ{ . We also label
vertices of chambering graph as follows. For a fixed trivalent vertex, if two of the edges
direct upward, the vertex is labeled with X�;�

0

, and if two of the edges direct downward
then it is labeled with .X�;�

0

/�1. Here � and � 0 are the permutations corresponding
to the sheet data of these edges. A univalent vertex is labeled with Xe if its edge
directs upward and it is labeled with .Xe/�1 if its edge directs downward. We also
label intersections of edges of the chambering graph and 2–dimensional G–graphic.
For such an intersection, if an edge of the chambering graph is labeled with ˇ� and an
arc of the 2–dimensional G–graphic is labeled with A, then the intersection is labeled
with ˇ�A .

Example 3.12 Figure 14 shows an example of a cobordism type h2i–X–surface
.†;R; P/ and its G–planar diagram with respect to the projection map. We denote the
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Figure 14: Example of a cobordism type h2i–X–surface and its G–planar diagram.

trivializations of sheets with numbers on †. Correspondingly, we encode this data on
the G–planar diagram by labeling chambers with ordered signed points. Here signs
come from the sign of the points on the corner of the corresponding sheet.

Let .†;R; P/ and .†0; R0; P0/ be h2i–X–surfaces endowed with generic maps f and f 0,
respectively. An X–homeomorphism F W .†;R; P/! .†0; R0; P0/ is said to be over I 2

if it commutes with the fixed generic maps, ie f 0 ıF D f.

Proposition 3.13 Let f W .†; @v†; @h†/! .I 2; @I � I; I � @I / be a generic map on
a cobordism type h2i–X–surface .†;R; P/ inducing a 2–dimensional graphic ˆG. Let
� be a chambering graph for ˆG subordinate to a ˆ–compatible open cover giving
a G–planar diagram .ˆG ; �; SG/. If the pair ..†0; R0; P0/; f 0/ is constructed from
.ˆG ; �; SG/, then there exists an X–homeomorphism F W†!†0 over I 2.

Proof The diffeomorphism F W † ! †0 maps inverse images of chambers to the
corresponding trivializations. Since F.R/DR0, ŒP0 ıF �D P, and both f and f 0 ıF
restrict to the same map on f �1.Uˇ / for any chamber Uˇ , F is an X–homeomorphism
over I 2.

3.3 G–spatial diagrams

Schommer-Pries [22] introduced spatial diagrams to identify planar diagrams which
produce diffeomorphic cobordism type h2i–surfaces. We extend them to G–spatial dia-
grams which identify thoseG–planar diagrams producingX–homeomorphic cobordism
type h2i–X–surfaces. Then, using these identifications, we define an equivalence
relation among G–planar diagrams, and prove the G–planar decomposition theorem.
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Figure 15: Movie moves coming from codimension 3 singularities.

Different generic maps on a fixed cobordism type h2i–surface yield different graphics
just as different Morse functions yield different critical values. In the latter case, Cerf
theory relates different sets of critical values in terms of isotopies or birth and death of
critical values. Similarly, Schommer-Pries [22] related different graphics obtained from
different generic maps in terms of isotopies and certain local moves of graphics, called
movie moves (see Figure 15). These movie moves are obtained from the singularities
of certain stratification of jet spaces

J r..†� I; @h†� I; @v†� I /; .I
2
� I; I � @I � I; @I � I � I //

for a cobordism type h2i–surface †. Note that in general the map F is not of the form
F.x; t/D .ft .x/; t/. For our purposes, we consider the subspace of J r.†�I; I 2�I /
consisting of paths of functions.

Figure 16 shows the graphics of singularities for the Schommer-Pries stratification
in normal coordinates. Observe the relation between movie moves in Figure 15 and
the horizontal boundary components of the new graphics. The remaining movie
moves coming from this stratification are shown in Figure 17. The properties of this
stratification are listed in the following definition. In particular, the graphic of a generic
map for this stratification is a 3–dimensional graphic, which is defined as follows:

Definition 3.14 [22, Definition 1.30] A 3–dimensional graphic � D .ı; �; �/ is
a diagram in I 2 � I consisting of a finite number of embedded compact labeled
surfaces .ı/, a finite number of embedded labeled curves .�/, and a finite number of
embedded labeled points .�/ satisfying the following conditions:
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Figure 16: Graphics of the singularities in I 2 � I.

(i) Projections of elements of ı to the last two coordinates are local diffeomor-
phisms. Elements of ı intersect with I � fig � I along vertical line segments
f.x; i; s/gs2Œ0;1� for some x 2 .0; 1/ and for i D 0; 1. Each element of ı is labeled
with either fold-1 or fold-2.

(ii) Projections of elements of � to the last coordinate are local diffeomorphisms.
Every element of � has a neighborhood in which two elements of ı form either
Morse or cusp graphics (see Figure 16). Each element of � is labeled with either
Morse-i or cusp-i , where i D 1; 2; 3; 4 indicates the indices.2

(iii) Each element of � has a neighborhood in which some elements of ı and � form
one of the graphics Morse relation-i , cusp inversion-j, cusp inversion0-j, cusp
flip-j, or swallowtail-i , where i D 1; 2; 3; 4 and j D 1; 2 indicate graphics of
different indices.

(iv) Elements of � are labeled with one of the singularities Morse relation-i , cusp
inversion-j, cusp inversion0-j, cusp flip-j or swallowtail-j, where 1� i � 8 and
j D 1; 2; 3; 4 indicate the indices.

(v) The restriction of the graphic to the components of I 2�@I gives 2–dimensional
graphics.

(vi) Elements of ı, �, and � are disjoint from @I � I 2. They are transversal with
respect to each other and to I 2 � @I. Moreover, when two surfaces intersect

2Morse singularities are paths of cap, cup, saddle-1 and saddle-2 singularities.
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along an arc, there can only be finitely many points on the arc with tangent space
lying in h@x; @yi, where .x; y; t/ is the coordinate for I 2 � I.

Let † be a cobordism type h2i–surface and

F W .†� I; @h†� I; @v†� I /! .I 2 � I; I � @I � I; @I � I � I /

be a generic map. We know that the restriction of F to the boundary components
†� f0g and †� f1g gives two generic maps on †. The converse is also true. That is,
for any given two generic maps f1; f2 W .†; @v†; @h†/! .I 2; @I � I; I � @I /, there
exists a generic map F on †� I with F j†�f0g D f1 and F j†�f1g D f2. Therefore,
3–dimensional graphics are designed to identify 2–dimensional graphics obtained
from generic maps on h2i–surfaces which are diffeomorphic relative to boundary.
Using 2–dimensional G–graphics, we extend this result to h2i–X–surfaces which are
X–homeomorphic relative to their boundary. This is useful since, in the cobordism
bicategory XBord2, the 2–morphisms are X–homeomorphism classes of cobordism
type h2i–X–surfaces relative to their boundary.

Movie moves are local relations on 2–dimensional graphics generating the identification
of 2–dimensional graphics induced from different generic maps. Figures 18 and 19 show
some of the generalized movie moves relating 2–dimensional G–graphics. The remain-
ing generalized movie moves involve singularities with different indices, orientations,
and decomposition into elementary h2i–X–surfaces. Similarly, movie moves given in
Figure 17 are generalized and their possible versions (different indices, orientations

Figure 17: Movie moves coming from intersection of codimension 1 and 2 singularities.
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Figure 18: Some of the generalized movie moves.
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Figure 19: Some of the generalized movie moves obtained by gluing elemen-
tary h2i–X–surfaces.
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3938 Kürşat Sözer

I �C3 CP CK4
I �C1

Figure 20: Local models for a chambering foam.

and decompositions) form generalized movie moves. From now on, whenever we refer
to these figures we mean the complete list of movie moves.

Similar to the previous two sections, we generalize a 3–dimensional graphic to a G–
graphic by adding (labeled) surfaces, arcs, and points. For every new movie move, the
corresponding graphic is shown in Figure 19, right. Then we define a 3–dimensional
G–graphic �G D .ıG ; �G ; �G/ as a 3–dimensional graphic �D .ı; �; �/ along with a
2–dimensional locally conical stratified space of compact type which is transverse to the
graphic and whose local models are given in Figure 19. The notion of locally conical
stratified space is also the main ingredient of Definition 3.15 below. Its definition can
be found in [22, Definition 1.41]. The reader can think of a locally conical stratified
space as a space constructed from given local models just as a manifold is built locally
from disks.

Let �G D .ıG ; �G ; �G/ be a 3–dimensional G–graphic. An open cover UD fU˛g˛2J
of I 3 with at most 4–fold intersections is said to be �–compatible [22] if each 4–fold
intersection is disjoint from ı[ �[�, each 3–fold intersection is disjoint from �[ �

and contains at most a single component of surfaces in ı, each double intersection
is disjoint from points in �, and the open covers

˚
U˛ \ .I

2 � fig/
	
˛2J

of I 2 � fig
for i D 0; 1 are compatible with the corresponding 2–dimensional graphics obtained
from �G. Since I 3 has covering dimension 3 and there are only finitely many elements
in ı, � and �, �–compatible open covers exist.

Definition 3.15 [22, Definition 1.43] Let �G D .ıG ; �G ; �G/ be a 3–dimensional
G–graphic. A chambering foam � for �G is a smooth embedding of a 2–dimensional
locally conical stratified space � of compact type into I � .0; 1/�I with the following
properties. The space � is locally conical with respect to the system of local models
I 2, I �C1, I �C3, CP, and CK4 shown in Figure 20. Vertices are disjoint from �G
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and lie in the interior. Edges can only intersect with a surface from ıG. Faces can only
intersect with surfaces from ıG and arcs from �G. All intersections are transversal and
� additionally satisfies the following conditions:

(I) The projection p W �! I � I to the last two coordinates has no singularity and
projection of faces to the last coordinate has no singularity.

(II) For every t 2 I satisfying that .I 2 � ftg/\�G D ∅, t is not a critical value
of projection pr W � ! I to the last coordinate, and .I 2 � ftg/ \ � does not
include a vertex of � , the graph .I 2 � ftg/\� forms a chambering graph for
the 2–dimensional G–graphic �G \ .I 2 � ftg/.

(III) The projection of each one of four edges in the CK4–model connecting at the
cone point to the last coordinate is a local diffeomorphism. Additionally, at least
one of them must map to downward of the cone point and at least one of them
must map to upward of the cone point.

(IV) The projection of the two edges in the CP–model connecting at the cone point
to the last coordinate maps both edges to the same direction with respect to the
image of the cone point.

Definition 3.16 Let �G D .ıG ; �G ; �G/ be a 3–dimensional G–graphic and let �
be a chambering foam for �G. Chambers of � are the connected components of
I 2 � In.� [ ı[ �[�/. A chambering foam � is said to be subordinate to an open
cover O D fO˛g˛2J of I 2 � I if each chamber is a subset of at least one O˛ with
˛ 2 J and the chambering graphs � \ .I 2 � fig/ are compatible with the restricted
open cover

˚
O˛ \ I

2 � fig
	
˛2J

for i D 0; 1.

Lemma 3.17 Let � be a chambering foam for a 3–dimensional G–graphic �G in-
ducing 2–dimensional G–graphics and chambering graphs .ˆG0 ; �0/ and .ˆG1 ; �1/ on
I 2 � f0g and I 2 � f1g, respectively. Let OD fO˛g˛2J be a �–compatible open cover
of I 3 such that �i is subordinate to Oi D OjI2�fig for i D 0; 1. Then there exists
a chambering foam � 0 for �G subordinate to O whose restrictions to I 2 � f0g and
I 2 � f1g yield �0 and �1, respectively.

In [22], the corresponding statement for a 3–dimensional graphic was proven (see [22,
Corollary 1.47]). In the case of nontransversal intersections with new elements encoding
X–manifold data, � can be slightly modified to make all intersections transversal while
being compatible with O.
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Just as the movie moves in Figures 18 and 19 generate relations locally between
two G–planar diagrams on the boundary of a G–spatial diagram, there are movie
moves describing local relations between two chambering graphs on the boundary of
a compatible chambering foam. These moves along with corresponding chambering
foams are shown in Figure 21. Moreover, there are movie moves coming from an
intersection of a 3–dimensional G–graphic with a chambering foam. These local
relations are shown in Figure 22, in which the labels are omitted.

Next, we describe the sheet data. Let�D .ı; �; �/ be a 3–dimensional graphic induced
from a generic map F W .†� I; @h†� I; @v†� I /! .I 2� I; I � @I � I; @I � I � I /,
where † is a cobordism type h2i–surface. Let � be a chambering foam subordinate
to a �–compatible open cover. Similar to the previous section, sheet data associated
to .�; �/ extends the sheet data of planar diagrams on faces I 2 � f0; 1g. Since F is
generic, the preimage F�1.Oˇ / of an open chamber consists of a disjoint union of
open sets, each mapping diffeomorphically onto Oˇ . If a chamber Oˇ is not open
then we consider O 0

ˇ
D Oˇn.Oˇ \ @.I

2 � I //. Then, a trivialization of a chamber
is the identification of F�1.Oˇ / with N�N �Oˇ if F�1.Oˇ / is nonempty and an
identification with the empty set otherwise. Each fig �Oˇ is called a sheet and each
sheet is oriented. For every chamber Oˇ which is not open, we extend identifications
to N�N �Oˇ by requiring the same trivializations on O 0

ˇ
and Oˇ \@.I 2� I / coming

from sheet data of planar diagrams.

Trivializations of two neighboring chambers have the same number of sheets if chambers
are separated by a 2–dimensional stratum of � . If an element in ı separates chambers,
then the number of sheets differs by two. Sheet data S [22] for a pair .�; �/ consists of
a trivialization of each chamber and an injection or a permutation between trivializations
of neighboring chambers preserving orientations and describing how sheets are glued.

The gluing description of sheets requires the following conditions on permutations and
injections. In the local models I �C3, CP, and CK4, circular compositions of three
or four permutations must be the identity. Since fold, cusp, and Morse graphics are
paths of the corresponding graphics in the previous section, their sheet data do not
change. According to properties of multijet stratification, transversal double and triple
fold intersections are possible. There are four chambers for the double and eight for
the triple fold intersection. In both cases, different compositions of injections starting
from the chamber with the least number of sheets and ending at the chamber with the
maximum number of sheets must be the same. The sheet data for the intersection of
fold and Morse graphics is the same as double fold intersection and the sheet data
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Figure 21: Movie moves for chambering graphs and the corresponding cham-
bering foams.
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C reflections with respect to vertical and horizontal axes

Figure 22: Generating relations (XR) from movie moves of graphics and
chambering graphs.

for intersection of fold and cusp graphics follows from the sheet data of cusp graphic.
Sheet data of Morse relation, cusp inversion, cusp inversion0, and cusp flip graphics can
be interpreted from the corresponding movie moves (see Figure 15). For the details of
these sheet data, see [22, Section 1.5.2].

We briefly describe the sheet data of swallowtail-1 graphic shown in Figure 23, where
two (blue and green) out of three fold singularities form a double fold crossing. Let
N�N �Uˇ1 , N�NC2�Uˇ2 , and N�NC4�Uˇ3 be trivializations of chambers such that
the sheets

SNC2
iDNC1 i �Uˇ2 and

SNC4
jDNC1 j �Uˇ3 belong to a swallowtail singularity

as shown in Figure 23. Using the sheet data for cusp singularities, restrictions of
injections to these sheets give

�2.N C 1/DN C 3; �2.N C 2/DN C 4;

�3.N C 1/DN C 1; �3.N C 2/DN C 2;

�5.N C 1/DN C 1; �5.N C 2/DN C 4:
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Figure 23: The swallowtail-1 sheet data.

Definition 3.18 [22, Definition 1.49] A spatial diagram is a triple .�; �; S/ con-
sisting of a 3–dimensional graphic �, a chambering foam � for � subordinate to
a �–compatible cover O D fO˛g˛2J of I 3, and a sheet data S associated to the
pair .�; �/.

Any spatial diagram .�; �; S/ produces a compact 3–dimensional manifold with cor-
ners M with @M D †1 t †2, where †1 and †2 are h2i–surfaces. Similar to the
previous two sections, in the case of a tuple .�G ; �/, the associated sheet data can
be improved to yield a relative homotopy class from M to X and h2i–X–surfaces
.†1; R1; P1/ and .†2; R2; P2/. We call such sheet data carrying X–manifold data to
sheets G–sheet data and denote it with SG. Then, generalizing a spatial diagram, we
define a G–spatial diagram as a triple .�G ; �; SG/.

Proposition 3.19 Let .ˆG1 ; �1; S
G
1 / and .ˆG2 ; �2; S

G
2 / be G–planar diagrams and let

.†1; R1; P1/ and .†2; R2; P2/ be the constructed cobordism type h2i–X–surfaces ,
respectively. Then .†1; R1; P1/ is X–homeomorphic to .†2; R2; P2/ relative to bound-
ary if and only if there exists a G–spatial diagram .�G ; �; SG/ which restricts to
.ˆG1 ; �1; S

G
1 / and .ˆG2 ; �2; S

G
2 / on the components of I 2 � @I.

Proof .D)/ For a given such X–homeomorphism F, we obtain a G–spatial diagram
by first taking a generic map on the mapping cylinder of F and then choosing a
compatible chambering foam.

. D)/ The properties of the stratification imply that the boundary components of
the manifold constructed from the G–spatial diagram are diffeomorphic relative to
boundary and the compatibility of G–labels of the arcs on the constructed manifold
implies that they are X–homeomorphic.
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We define a relation amongG–planar diagrams by .ˆG1 ; �1; S
G
1 /� .ˆ

G
2 ; �2; S

G
2 / if there

exists a G–spatial diagram .�G ; �; SG/ restricting to the given G–planar diagrams on
the components of I 2�@I. It is not hard to see that � is an equivalence relation. Since
generalized movie moves provide (nontrivial) local relations on G–planar diagrams,
the equivalence relation � can be described using these moves as follows:

Proposition 3.20 Two G–planar diagrams are equivalent if and only if they can be
related by a finite sequence of isotopies or movie moves in Figures 17, 18, 19, 21
and 22.3

Proposition 3.19 implies the following theorem, which is the first main step towards
the classification of 2–dimensional extended X–HFTs:

Theorem 3.21 (G–planar decomposition theorem) The relative X–homeomorphism
classes of cobordism type h2i–X–surfaces are in bijection with the equivalence classes
of G–planar diagrams.

4 The classification of 2–dimensional extended X–HFTs

4.1 New bicategories arising from diagrams

In this section, we use the G–planar decomposition theorem to introduce symmetric
monoidal X–cobordism bicategories with diagrams.

Definition 4.1 An object of an X–cobordism bicategory with diagrams XBordPD
2 is a

triple ..M; �M1; �M2; yg2/;M ; !/, where .M; �M1; �M2; yg2/ is an object ofXBord2,M is
a finite set of ordered oriented points, and ! WM !M is an orientation-preserving
bijection.

A 1–morphism is a triple ..A; yA0; yA1; T; yp1/; L; �/, where .A; yA0; yA1; T; yp1/ is an
X–haloed 1–cobordism, LD .‰G ; �; SG/ is a G–linear diagram, and � W .A; T; p/!
. xA; T ; xp/ is anX–homeomorphism over I with �.T /DT, where . xA; T ; xp/ is the pointed
1–cobordism constructed from the G–linear diagram. The composition of two compos-
able triples is componentwise: the composition of 1–morphisms in XBord2, the com-
position of diagrams described below, and the extension of two X–homeomorphisms
over I, respectively.

A 2–morphism is a triple .Œ.S; yS;R; yF/�; P; �/, where Œ.S; yS;R; yF/� is an isomorphism
class of an X–haloed 2–cobordism, P D Œ.ˆG ; �; SG/� is an equivalence class of a

3By referencing these figures we mean the list of all generalized movie moves described in this section.
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2–morphisms in XBPD horizontal and vertical compositions symmetric monoidal product P1˝P2

P1 D

P2 D

P1�P2 D

P2ıP1

Figure 24: Compositions and symmetric monoidal product of 2–morphisms
in XBPD.

G–planar diagram, and � W .S;R; F/! .S;R; xF/ is an X–homeomorphism over I 2,
where .S;R; xF/ is a cobordism type h2i–X–manifold constructed from a representative
.ˆG ; �; SG/. The composition of two composable triples is componentwise, similar to
the composition of 1–morphisms.

The second bicategory XBPD is defined by forgetting X–haloed manifolds and co-
bordisms in XBordPD

2 and taking isotopy classes of G–linear diagrams. In order to
define isotopic G–linear diagrams, we first need to explain compositions and monoidal
products of diagrams.

Horizontal compositions ofG–linear andG–planar diagrams are given by the horizontal
concatenation of diagrams, where both G–sheet data agree and form new G–sheet
data. Vertical composition of equivalence classes of G–planar diagrams is vertical
concatenation of diagrams followed by an isomorphism I [pt I Š I and forgetting the
G–linear diagram on the face along which two G–planar diagrams are concatenated.
Figure 24 shows an example of horizontal and vertical compositions of 2–morphisms
in XBPD whose labels are omitted.

A symmetric monoidal structure on XBPD is defined as follows. Let P1D .ˆG1 ; �1; S
G
1 /

and P2 D .ˆG1 ; �1; S
G
2 / be two G–planar diagrams on Œm; n�� I and on Œa; b�� I for

m; n; a; b 2 Z, respectively. Let Vleft be the leftmost chamber of P1 and Vright be the
rightmost chamber of P2. Then P1˝P2 is defined by stretching Vleft to the left by b�a
units, stretching Vright to the right by n�m units, and joining the stretched diagrams
(see Figure 24). The G–sheet data and the labels of the resulting diagram are modified
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accordingly. The symmetric monoidal structure on G–linear diagrams can be deduced
from this description. It is not hard to see that the described symmetric monoidal
product of diagrams is compatible with the disjoint union of X–haloed manifolds.

Recall that objects of XBPD are finite set of ordered oriented points, 1–morphisms are
isotopy classes of G–linear diagrams, and 2–morphisms are equivalence classes of
G–planar diagrams. The notion of isotopy between G–linear diagrams is generated by
the following identifications. Let LD .‰G ; �; SG/ be any G–linear diagram, ∅ be the
empty G–linear diagram for the empty 1–manifold, and ida be the identity G–linear
diagram of the ordered set a. Then LD L˝∅D∅˝L and LD L ı ida D idb ıL,
where L W a! b. In this case, it is not hard to see that XBPD is a strict 2–category.

Lemma 4.2 Both XBordPD
2 and XBPD are symmetric monoidal bicategories under

disjoint union of X–haloed manifolds with operation˝ on diagrams.

The proof for XBPD is very similar to the proof of Lemma 2.6. The case of XBordPD
2

follows from the compatibility of symmetric monoidal structures. Considering the G–
planar decomposition theorem, a natural question is whether the symmetric monoidal
bicategory XBPD defined by using diagrams is symmetric monoidally equivalent to
X–cobordism bicategory XBord2. We give a positive answer using the following
theorem:

Theorem 4.3 (Whitehead theorem for symmetric monoidal bicategories [22, Theorem
2.25]) Let B and C be symmetric monoidal bicategories. A symmetric monoidal
2–functor F W B ! C is a symmetric monoidal equivalence if and only if it is an
equivalence of underlying bicategories. That is , F is essentially surjective on objects ,
essentially full on 1–morphisms , and fully faithful on 2–morphisms.

Proposition 4.4 The forgetful 2–functors F and G given by forgetting X–haloed
cobordisms and diagrams , respectively,

XBPD F

'
 �XBordPD

2
G

'
�!XBord2;

are symmetric monoidal equivalences.

Proof For any given finite set W of ordered oriented points or a compact oriented 0–
manifold with cooriented codimension twoX–halation .Y; yY0; yY1; yg/, there exist objects
in XBordPD

2 whose images under F and G are isomorphic to W and .Y; yY0; yY1; yg/,
respectively. For any given X–haloed 1–cobordism, there exists a Morse function
with distinct critical values leading to a G–linear diagram and any G–linear diagram
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produces an X–haloed4 1–cobordism. Thus, by Proposition 3.5, each 2–functor is
(essentially) full on 1–morphisms. Lastly, by the G–planar decomposition theorem,
the 2–functors F and G are fully faithful on 2–morphisms.

Proposition 4.4 implies that theX–cobordism bicategoryXBord2 is symmetric monoid-
ally equivalent to XBPD. The advantage of XBPD is being a computadic unbiased
semistrict symmetric monoidal 2–category. In the appendix, we provide the definition
of computadic unbiased semistrict symmetric monoidal 2–category and prove this
claim, whose precise statement is given below (see Theorem 4.5). This result is an
important step of the classification, which we want to describe here.

The fact that XBPD is a computadic symmetric monoidal bicategory roughly means that
there exist four sets — namely generating objects XG0, generating 1–morphisms XG1,
generating 2–morphisms XG2, and generating relations XR among 2–morphisms
forming the presentation XP — such that there exists a (canonical) isomorphism of
symmetric monoidal bicategories Fuss.XP /! XBPD, where Fuss.XP / is constructed
from XP. Therefore, we have

(1) Fuss.XP /
9

'
// XBPD F

'
 �XBordPD

2
G

'
�!XBord2

and the cofibrancy theorem states that symmetric monoidal 2–functors out of Fuss.XP /

are determined by the images of generating sets subject to the relations. Thus, the
classification of 2–dimensional extended X–HFTs up to symmetric monoidal equiva-
lence reduces to understanding images of generators in XP satisfying relations. The
following theorem lists the presentation XP D .XG0;XG1;XG2;XR/ of XBPD and its
proof is given in Section A.3.

Theorem 4.5 The symmetric monoidal bicategory XBPD is a computadic unbiased
semistrict symmetric monoidal 2–category with presentation

XP D .XG0;XG1;XG2;XR/

given by the diagram versions5 of elements in Figures 25 and 26, and pairs of G–planar
diagrams corresponding to equalities in Figure 22, where the labels g1, g2, g3, g4, g,
g0 and g00 are indexed over G so that g1g2g3g4 D e.

4Halation can be encoded into G–sheet data by equipping trivializations of chambers with halations.
5For generating 2–morphisms, we mean equivalence classes of G–planar diagrams. We consider G–linear
and G–planar diagrams whose chambering sets and graphs are trivial, corresponding to covers with single
elements.
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Figure 25: Generating objects (XG0), 1–morphisms (XG1/, and 2–morphisms (XG2).

4.2 The cofibrancy theorem

Knowing the equivalence XBPD
' XBord2, the classification of 2–dimensional ex-

tended X–HFTs mainly concerns the understanding of symmetric monoidal 2–functors
defined on XBPD. The cofibrancy theorem [22] is a coherence theorem for such 2–
functors. More precisely, this theorem allows replacing (weak) symmetric monoidal
2–functors defined on computadic symmetric monoidal bicategories with their strict
versions naturally. Furthermore, such strict 2–functors are determined by the images of
generating sets of a presentation subject to the relations.

The cofibrancy theorem holds for any computadic monoidal bicategory (see [22; 21])
and specifically for stricter versions of symmetric monoidal bicategories. In this section,
we only focus on its version for computadic unbiased semistrict symmetric monoidal
2–categories, which is the key step of the classification. In the following, we denote
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Figure 26: Generating relations (XR) among 2–morphisms.

the collection of objects of a symmetric monoidal bicategory C by C0, 1–morphisms
by C1, and 2–morphisms by C2.

Definition 4.6 Let .P D .G0;G1;G2;R/; s; t/ be an unbiased semistrict symmetric
presentation and C be a symmetric monoidal bicategory. The bicategory P .C/ of P–data
in C is defined as follows:

� The objects of P .C/ are triples of assignments .A0; A1; A2/ such that Ai W Gi ! Ci

for i D 0; 1; 2 satisfying the following conditions. These assignments extend canoni-
cally to BWuss.G0/, BSuss.G1/=�, and PGuss.G2/=� using the monoidal product and
braiding of C as follows. For any x D a1 : : : an 2 BWuss.G0/, we have A0.x/ D
A0.a1/˝ � � �˝A0.an/, idx D idA0.x/ and ˇ�

a;�.a/
for � 2 Sn is given by writing � as

Algebraic & Geometric Topology, Volume 23 (2023)



3950 Kürşat Sözer

a product of adjacent transpositions first and then applying the braiding of C to each of
them. Composition and monoidal product of 1–morphisms follow similarly by extend-
ing A1 to BSuss.G1/=�. In the extension to PGuss.G2/ interchanger 2–morphisms �
are taken as the identity and the extension to the remaining 2–morphisms uses the
naturality of the braiding of C and the corresponding modifications. These extensions
are required to be globular, ie A0ıpDpıA1 and A1ıpDpıA2, where p is used for
the source s and target t maps. Among all extensions, only those with A2.x/D A2.y/
for all .x; y/ 2 R are considered.

� The 1–morphisms from AD .A0; A1; A2/ to B D .B0; B1; B2/ are pairs of assign-
ments .˛0; ˛1/ such that ˛i W Gi ! CiC1 for i D 0; 1, s.˛0.a//D A0.a/, t .˛0.b//D
B0.b/ and ˛1.f / W B1.f / ı ˛0.a/ Š�! ˛0.b/ ıA1.f / for all f W a! b 2 G1. These
assignments extend canonically to BWuss.G0/ using the monoidal product of C and to
BSuss.G1/=� using induction on the number of monoidal products and compositions
as follows. For x D a1 : : : an 2 BWuss.G0/, ˛1.idx/ is the composition

B1.idx/ı˛0.x/D idB0.x/ı˛0.x/
`C
�!˛0.x/

.rC/�1
����!˛0.x/ıidA0.x/D˛0.x/ıA1.idx/;

where ` and r are the left and right unitors of the underlying bicategory of C. For
x D a1 : : : an 2 BWuss.G0/ and � 2 Sn, the 2–morphism ˛1.ˇ

�
x;�.x/

/ is given by the
components of the braiding (equivalence transformation) of C on the 1–morphism
˛0.x/. Next, for elements f W a! b and f W a0 ! b0 in BWuss.G1/, ˛1.f ˝ f 0/ is
defined as the composition

.B1.f /˝B1.f
0// ı .˛0.a/˝˛0.a

0//! .B1.f / ı˛0.a//˝ .B1.f
0/ ı˛0.a

0//

˛1.f /˝˛1.f
0/

����������! .˛0.b/ ıA1.f //˝ .˛0.b
0/ ıA1.f

0//

! .˛0.b/˝˛0.b
0// ı .A1.f /˝A1.f

0//:

For elements f W a ! b and g W b ! c in BWuss.G1/, ˛1.g ı f / is defined as the
composition

.B1.g/ıB1.f //ı˛0.a/
PaC
�!B1.g/ı.B1.f /ı˛0.a//

id�˛1.f /
������!B1.g/ı.˛0.b/ıA1.f //

. PaC/�1

�����! .B1.g/ ı˛0.b// ıA1.f /
˛1.g/�id
������! .˛0.c/ ıA1.g// ıA1.f /

PaC
�! ˛0.c/ ı .A1.g/ ıA1.f //;

where PaC is the associator of the underlying bicategory of C. These assignments are
also required to be natural with respect to equivalence classes of paragraphs. That
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is, for any Œˇ� 2 PGuss.G2/=� with ˇ W f ! g, we have .id˛0.b/ �A2.ˇ// ı ˛1.f /D
˛1.g/ ı .B2.ˇ/� id˛0.a//; equivalently,

A0.a/ A0.b/

B0.a/ B0.b/

˛0.a/

A1.g/

A1.f /

˛0.b/

B1.f /

A2.ˇ/

˛1.f /

D

A0.a/ A0.b/

B0.a/ B0.b/

A1.g/

˛0.a/ ˛1.g/ ˛0.b/

B1.g/

B1.f /

B2.ˇ/

� The 2–morphisms from ˛ D .˛0; ˛1/ to ˇ D .ˇ0; ˇ1/ are assignments �0 W G0! C2

such that �0.a/ W˛0.a/!ˇ0.a/ for all a2G0, where ˛; ˇ WA!B forAD .A0; A1; A2/
and B D .B0; B1; B2/. These assignments extend canonically to BWuss.G0/ using the
monoidal product of C and they are required to be natural with respect to BWuss.G1/.
That is, for any f W a ! b 2 BWuss.G1/, we have ˇ1.f / ı .�0.a/ � idB1.f // D
.idA1.f / � �0.b// ı˛1.f /; equivalently,

A0.a/ A0.b/

B0.a/ B0.b/

A1.f /

˛0.a/ ˇ0.a/
�0.a/ ˇ1.f / ˇ0.b/

B1.f /

D

A0.a/ A0.b/

B0.a/ B0.b/

A1.f /

˛0.a/

˛1.f /

˛0.b/ ˇ0.b/
�0.b/

B1.f /

With the trivial coherence data .�; �;W;G;R;U/, any object of P .C/ considered with
the extensions gives rise to a strict symmetric monoidal 2–functor Fuss.P /! C (see
[22; 25]). Similarly, any 1–morphism and 2–morphism of P .C/ considered with their
extensions yield a strict6 symmetric monoidal transformation and a symmetric monoidal
modification, respectively (see [22, Section 2.3]).

Definition 4.7 Let C be a symmetric monoidal bicategory and Fuss.P / be a com-
putadic unbiased semistrict symmetric monoidal 2–category for a given presentation

6Those monoidal transformations whose monoidal structure 1– and 2–morphisms are identities.
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P D .G0;G1;G2;R/. The bicategory SymMon.Fuss.P /;C/ has symmetric monoidal
2–functors as objects, symmetric monoidal transformations as 1–morphisms, and
symmetric monoidal modifications as 2–morphisms.

By construction of P .C/, we have a strict inclusion functor

{ W P .C/ ,! SymMon.Fuss.P /;C/

given by the associated 2–functors, transformations, and modifications. The cofibrancy
theorem below states that { is an equivalence of bicategories:

Theorem 4.8 (cofibrancy theorem [22, Theorem 2.78]) Let C be a symmetric
monoidal bicategory and let Fuss.P / be a computadic unbiased semistrict symmet-
ric monoidal 2–category constructed from an unbiased semistrict presentation P D

.G0;G1;G2;R/. Then the inclusion { W P .C/ ,! SymMon.Fuss.P /;C/ is an equivalence
of bicategories.

The following lemma, taken from [22, Lemma 2.15], implies that, for any symmetric
monoidal bicategory C, the bicategories SymMon.XBord2;C/ and SymMon.XBPD;C/

of symmetric monoidal 2–functors, symmetric monoidal transformations, and modifi-
cations are equivalent:

Lemma 4.9 [22] Let M and M0 be symmetric monoidal bicategories , and H WM!
M0 be a symmetric monoidal 2–functor which is an equivalence. Then there is a
canonical equivalenceH� W SymMon.M 0; B/! SymMon.M;B/ of bicategories given
by composition on the level of objects , and by symmetric monoidal whiskering on the
level of 1– and 2–morphisms.

We denote the bicategory SymMon.XBord2;C/ by E–HFT.X;C/ and state the classi-
fication of 2–dimensional extended HFTs with target X 'K.G; 1/ as follows:

Theorem 4.10 Let XP be the presentation of XBPD given in Theorem 4.5. Then ,
for any symmetric monoidal bicategory C, there is an equivalence of bicategories
E–HFT.X;C/'XP .C/.

Proof Theorem 4.5 gives a presentation XP of XBPD as a computadic unbiased
semistrict symmetric monoidal 2–category. By the cofibrancy theorem, we have
SymMon.XBPD;C/ ' XP .C/. Using the symmetric monoidal equivalence between
XBPD and XBord2 in Proposition 4.4 and Lemma 4.9, we obtain the result.
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4.3 Alg2
k–valued 2–dimensional extended X–HFTs

Every 2–dimensional extended X–HFT gives a nonextended one by restricting to
oriented X–circles and X–cobordisms between them. A natural question is how the
classification of 2–dimensional extended HFTs is related to Turaev’s classification of 2–
dimensional HFTs by crossed Frobenius G–algebras [27]. To understand this relation,
we study extended HFTs taking values in Alg2k, which has k–algebras as objects,
bimodules as 1–morphisms, and bimodule maps as 2–morphisms for a commutative
ring k with unity.

The symmetric monoidal structure of Alg2k is given by tensoring over k. We denote
.E; C /–bimodule D by EDC and omit the symbol k when either C or E is k. We
regard EDC as a 1–morphism from C to E, which is in line with the composition in
XBord2 (see Figure 3). Composition of 1–morphisms EDC and CBA is the bimodule

E .D˝C B/A.

Before studying Alg2k–valued 2–dimensional extended X–HFTs, we recall necessary
algebraic notions and introduce quasibiangular G–algebras. Recall that a G–algebra
over a commutative ring k is an associative k–algebraK equipped with a decomposition
K D

L
g2G Kg such that KgKh � Kgh for any g; h 2 G. In this case, Ke is the

principal component and K is called strongly graded if KgKh DKgh or, equivalently,
the natural map Kg ˝Ke Kh!Kgh is an isomorphism for all g; h 2G. The opposite
G–algebra of K is defined as Kop D

L
g2G Kg�1 , where the order of multiplication

is reversed.

Definition 4.11 [28] Let K D
L
g2G Kg be a G–algebra over a commutative ring k.

Recall that an inner product onK is a symmetric bilinear form � WK˝K!k satisfying
�.ab; c/ D �.a; bc/ for any a; b; c 2 K such that �jKg˝Kh is nondegenerate when
ghD e and zero otherwise. A Frobenius G–algebra is a G–algebra K with an inner
product � and components of K are finitely generated projective k–modules.

Let
�
K D

L
g2G Kg ; �

�
be a Frobenius G–algebra over k. Each nondegenerate form

�jKg˝Kg�1 yields an element ��g D
P
i2Ig

p
g
i ˝ q

g
i 2 Kg ˝Kg�1 , called an inner

product element, where Ig is finite and ��g is characterized by aD
P
i2Ig

�.a; q
g
i /p

g
i

for any a 2Kg . Since � is symmetric, we have
P
i p

g�1

i ˝ q
g�1

i D
P
i q
g
i ˝p

g
i for

all g 2G.

Recall that an associative k–algebra A is separable if there exists an element a DPn
iD1 pi ˝ qi 2 A˝kA

op, called separability idempotent, such that
Pn
iD1 piqi D 1
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3954 Kürşat Sözer

and ab D ba for all b 2 A. A separable algebra A is called strongly separable if the
separability idempotent is symmetric, ie aD

Pn
iD1 pi ˝ qi D

Pn
iD1 qi ˝pi .

Lemma 4.12 Let
�
K D

L
g2G Kg ; �

�
be a Frobenius G–algebra with inner product

elements
˚
��g D

P
i p

g
i ˝q

g
i

	
g2G

and z 2Ke . Then , for any g; h 2G and b 2Kg�1 ,
we have

(2)
X
i

phi ˝ zq
h
i b D

X
j

bp
gh
j ˝ zq

gh
j :

In particular , for any b 2K and c 2Kh�1 , we have
P
j p

g
j bzq

g
j c D

P
k cp

hg

k
bzq

hg

k
.

Proof Since both sides belong to Kh ˝Kh�1g�1 , it is enough to check that they
give the same functionals on the dual k–module Kh�1 ˝Kgh. For any x 2Kh�1 and
y 2Kgh, applying x˝ y to the left-hand side of (2) and using the cyclic symmetry
property of �, we obtainX

i

�.phi ; x/�.zq
h
i b; y/D

X
i

�.x; phi /�.q
h
i ; byz/D �

�
x;
X
i

�.byz; qhi /p
h
i

�
D �.x; byz/:

Similarly, applying x˝y to the right-hand side of (2), we haveX
j

�.bp
gh
j ; x/�.zq

gh
j ; y/D

X
j

�.xb; p
gh
j /�.q

gh
j ; yz/D�

�
xb;

X
j

�.yz; q
gh
j /p

gh
j

�
D�.xb; yz/:

We generalize biangular G–algebras, which were introduced by Turaev [27], as follows:

Definition 4.13 A strongly graded Frobenius G–algebra .K; �/ is called quasibiangu-
lar if there exists a central element z 2Ke , ie zaD az for all a 2Ke , such that, for the
collection of inner product elements

˚P
i p

g
i ˝q

g
i

	
g2G

, the equations
P
i p

g
i zq

g
i D 1

hold for all g 2G.

Remark By Lemma 4.12, the principal component of a quasibiangular G–algebra is
a separable algebra with separability idempotent

P
i p

e
i ˝ zq

e
i . A biangular G–algebra

is a quasibiangular G–algebra with z D 1. Similarly, the principal component of a
biangular G–algebra is strongly separable.

One way of studying an algebra is to study the category of modules over it. Recall that
Morita equivalence of algebras is the equivalence of categories of modules. In the case
of a graded algebra, one studies the category of graded modules. An equivalence of
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such categories is called a graded Morita equivalence (see [3, Theorem 3.2]), which
was introduced by Boisen [3] as follows:

Definition 4.14 [3] A G–graded Morita equivalence � between G–algebras K DL
g2G Kg and L D

L
g2G Lg is a quadruple .LUK ;KVL; �; �/, where LUK DL

g2G Ug is a graded .L;K/–bimodule — that is, LgUhKg 0 � Ughg 0 —KVL DL
g2G Vg is a graded .K;L/–bimodule, and � WKKK !KV ˝L UK and � W LU ˝K

VL!LLL are graded .K;K/– and .L;L/–bimodule maps, respectively, such that the
compositions

LUK ! LU ˝K KK
id˝�
��! LU ˝K .V ˝L UK/! .LU ˝K V /˝L UK

�˝id
��! LL˝L UK ! LUK ;

KVL!KK˝K VL
�˝id
��! .KV ˝L U/˝K VL!KV ˝L .U ˝K VL/

id˝�
��!KV ˝LLL!KVL

are idU and idV , respectively. When � and � are invertible as G–graded bimodule
maps, � is called a G–graded Morita context.

Definition 4.15 Let � D .LUK ;KVL; �; �/ and �0 D .LU 0K ;KV
0
L; �
0; �0/ be two G–

graded Morita equivalences. An equivalence of G–graded Morita equivalences � and �0

is a pair of G–graded bimodule maps � W LUK ! LU
0
K and � WKVL!KV

0
L such that

�D �0 ı .�˝ �/ and � 0 D .�˝ �/ ı � .

Lemma 4.16 [9] Assume that G–algebras K D
L
g2G Kg and LD

L
g2G Lg are

G–graded Morita equivalent. Then , if K is strongly graded , then L is also strongly
graded.

Next, we transfer the inner product of one Frobenius G–algebra to another using a
graded Morita context between them. As the first step we recall the following lemma:

Lemma 4.17 [22; 10] Any Morita context �D .LUK ;KVL; �; �/ between k–algebras
K and L induces a canonical isomorphism of k–modules �� WK=ŒK;K�! L=ŒL;L�.

An explicit formula for the isomorphism �� in the lemma is provided in [10]. The inner
product � of a Frobenius G–algebra .K; �/ is determined at its principal component by
�.a; b � 1/D �.ab; 1/. This allows us to denote .K; �/ by .K;ƒ/, where ƒ WKe! k

is a nondegenerate trace. Since � is symmetric, ƒ factors through Ke=ŒKe; Ke�.
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Lemma 4.12 implies that, for a symmetric Frobenius algebra .Ke; ƒe/, an inner product
element

P
i p

e
i ˝ q

e
i can be considered as the image of 1˝ 1 under a bimodule map

� WK1e .Ke/K2e˝K3e .Ke/K4e !K1e
.Ke/K4e˝K3e .Ke/K2e , where numbers indicate module

actions, ie Kie D Ke for i D 1; 2; 3; 4. In the case of a quasibiangular G–algebra�
K D

L
g2G Kg ; ƒ

�
, inner product elements

˚P
i p

g
i ˝ q

g
i

	
g2Gnfeg

are the images
of 1˝ 1 under the composition

(3) K1e
.Ke/K2e ˝K3e .Ke/K4e !K1e

.Ke/K2e ˝K3e .Kg�1 ˝Ke Ke˝Ke Kg/K4e

!K1e
.Ke˝KeKg/K4e ˝K3e .Kg�1˝KeKe/K2e !K1e

.Kg/K4e ˝K3e .Kg�1/K2e ;

where the second homomorphism is the identity on Kg�1 and Kg , and � on Ke˝Ke .
In the following, we consider inner product elements as the images of 1˝ 1 under the
above bimodule maps.

Definition 4.18 Let .K;ƒK/ and .L;ƒL/ be quasibiangular G–algebras over k with
collections of inner product elements f�Kg gg2G and f�Lg gg2G , respectively. A G–
graded Morita context �D .LUK ;KVL; �; �/ betweenK and L is said to be compatible
if ƒL D .�feg/�ƒK and �Lg D .�feg/�.�

K
g / for all g 2 G, where .�feg/�.�Kg / consists

of inner product elements for .L; .�e/�ƒK/ given by � 0.1˝ 1/ under the commutative
diagram

Le .Ue˝Ke˝Ve/Le ˝k Le .Ue˝Ke˝Ve/Le

id˝�˝id
��

�feg
oo

Le .Ue˝Ke˝Ve/Le ˝k Le .Ue˝Ke˝Ve/Le �feg
oo

Le .Le/Le ˝k Le .Le/Le

�0

��

Le .Le/Le ˝k Le .Le/Le

The remaining inner product elements are obtained from � 0 as described above.

Theorem 4.19 Any Alg2k–valued 2–dimensional extended X–HFT Z W XBord2!
Alg2k whose precomposition XBPD '

�! XBord2
Z
�! Alg2k gives a strict symmetric

monoidal 2–functor determines a triple .A;B; �/, where A and B are quasibiangular
G–algebras , and � is a compatible G–graded Morita context between A and Bop.
Conversely , for any such triple .A;B; �/, there exists an Alg2k–valued 2–dimensional
extended X–HFT.

Proof LetZ WXBord2!Alg2k be such a 2–dimensional extended HFT. The cofibrancy
theorem implies that there exists an object Z0 in XP .Alg2k/ such that {.Z0/ is the com-
position XBPD '

�!XBord2
Z
�!Alg2k, where { WXP .Alg2k/! SymMon.XBPD;Alg2k/

is the equivalence of bicategories.
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Figure 27: Part of generators and relations giving G–algebra and G–graded module.

We have k–algebras Z0.�C/ D Ae and Z0.��/ D Be in Z00.XG0/, corresponding to
two generating objects of XP. There are four types of generating 1–morphisms and
each is indexed by the elements of G. For every g 2 G, they give the bimodules, in
Z01.XG1/,

Z0. CC
g /D Ag .Ae; Ae/–bimodule;

Z0.� �
g /D Bg .Be; Be/–bimodule;

Z0. gC
� /DMg .Be˝kAe;k/–bimodule;

Z0.g �
C/DNg .k; Ae˝kBe/–bimodule:

The first 2–morphism in Figure 27 defines a G–graded product on the bimoduleL
g2G Ag . Associativity of this product is the obvious relation in Figure 26. Denote

the corresponding G–algebra by AD
L
g2G Ag . The first relation in Figure 26 shows

that the bimodule map

(4) Ae .Ag 0/˝Ae .Ag/Ae
Š�!Ae .Agg 0/Ae

is invertible for all g; g0 2 G. Since multiplication in the G–algebra A is defined
using (4), we have AgAg 0 D Agg 0 for all g; g0 2 G, ie A is strongly graded. Similar
arguments for .Be; Be/–bimodules fBggg2G yield another strongly graded G–algebra
B D

L
g2G Bg .

Using the opposite algebra, we can turn algebra actions on bimodules around. More
precisely, a left Be–action on Ae˝BeMg can be turned into a right Bop

e –action and
the right Be–action on .Ng/Ae˝Be can be turned into a left Bop

e –action. The second
2–morphism in Figure 27 gives

(5) Be˝Ae .Bg�1 ˝kAg 0/˝Be˝AeMh
Š�! Be˝AeMg�1hg 0 :

Turning Be–actions on Bg around gives Ae .Mghg 0/Bop
e

and the collection of all such
bimodule maps turns fAe .Mg/Bop

e
gg2G into a G–graded .A;Bop/–bimodule M DL

g2GMg . Similarly, reflections of this 2–morphism and the corresponding relations
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with respect to a vertical axis show that N D
L
g2G Ng is a G–graded .Bop; A/–

bimodule.

There are four types of cusp generators and each is indexed by two elements of G. For
every g; g0 2G they give the bimodule maps, in Z02.XG2/,

f
gg 0

1 WAe .Agg 0/Ae !AeMg ˝B
op
e
.Ng 0/Ae ;

f
gg 0

2 W B
op
e
Ng ˝Ae .Mg 0/Bop

e
! B

op
e
.B

op
gg 0/Bop

e
;

f
gg 0

3 W B
op
e
.B

op
gg 0/Bop

e
! B

op
e
Ng ˝Ae .Mg 0/Bop

e
;

f
gg 0

4 WAeMg ˝B
op
e
.Ng 0/Ae !Ae .Agg 0/Ae ;

given in the order of cusp generators in Figure 25. These bimodule maps are required
to satisfy the relations in XR. Relations containing cusp generators indicate that these
bimodule maps are two-sided inverses, ie f gg

0

1 D .f
gg 0

4 /�1 and f gg
0

2 D .f
gg 0

3 /�1. It
is not hard to see that for each i the collection ff gg

0

i gg;g 02G of bimodule maps forms
a G–graded bimodule map fi . The collection of swallowtail morphisms corresponds
to the compositions of graded bimodule maps

BopNA!BopN ˝AAA
id˝f1
����!BopN ˝AM ˝BopNA

f2˝id
����!BopBop

˝BopNA!BopNA;

AMBop!AA˝AMBop
f1˝id
����!AM ˝BopN ˝AMBop

id˝f2
����!AM ˝BopB

op
Bop!AMBop :

Swallowtail relations imply that both compositions equal to identity bimodule maps
of N and M, respectively. In other words, � D .BopNA;AMBop ; f1; f2/ is a G–graded
Morita context. Using �, we can replace Bop–module actions with A–module actions
as follows. A right (left) Bop–module can be turned into a right (left) A–module
by tensoring with Bop.N /A (AMBop), such as tensoring AMBop with Bop.N /A yields

AM ˝Bop NA, which is isomorphic to AAA via f4.

The remaining generators are Morse generators consisting of saddles, cup, and cap 2–
morphisms. The collection of bimodule maps in Z02.XG2/ for the first saddle morphism
in Figure 25 yields a graded bimodule map of the form

A˝BM ˝kNA˝B !A˝B.A˝kB/A˝B :

By turning the B–module actions around, we obtain

A˝Bop.M ˝kN/A˝Bop !A˝Bop.A˝kB/A˝Bop ;

where the left Bop–action is on N and the right Bop–action is on M. As pointed out
above, Bop–module actions can be replaced by A–module actions and we get a graded
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Figure 28: Saddle morphisms and cusp flip relation.

.A1˝A3; A2˝A4/–bimodule map of the form

� WA1AA2 ˝kA3AA4 !A1AA4 ˝kA3AA2 ;

where numbers indicate module actions, ie Ai DA for i D 1; 2; 3; 4. The first morphism
in Figure 28 shows that an arbitrary saddle morphism can be obtained from an e–
labeled saddle morphism and other generating 2–morphisms. This implies that the
graded bimodule map � is determined at 1˝ 1 2 Ae ˝ Ae, which we denote by a
finite sum

P
i p

e
i ˝ q

e
i , and it satisfies

P
i ap

e
i ˝ q

e
i D

P
i p

e
i ˝ q

e
i a for all a 2 A.

Similarly, we denote the image of 1˝ 1 under the second 2–morphism in Figure 28 by
�Ag D

P
i p

g
i ˝ q

g
i for all g 2G (compare with (3)).

In the same way, the collection of bimodule maps in Z02.XG2/ for the second saddle
morphism gives a graded .A1˝A3; A2˝A4/–bimodule map of the form

� WA1AA2 ˝kA3AA4 !A1AA4 ˝kA3AA2 :

The cusp flip relation shown in Figure 28 implies that � D �. Before considering
cup and cap generators, note that, using �, we can assign the collection of all g– and
g�1–labeled circles to

L
g2G Ag ˝.Ae˝A

op
e /
Ag�1 . The collections of 2–morphisms

g

g�1

g

e g�1

e

e

g

g�1

g g�1

g g�1

e

e

e

g g�1

g

g�1

g

e

g�1

e

e g g�1

g

g�1
e

e

e

e e e

e

Figure 29: Cup and cap morphisms on nonprincipal components.
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in Figure 29 give the bimodule maps

ƒ W
M
g2G

Ag ˝Ae˝A
op
e
Ag�1 ! k; u W k!

M
g2G

Ag ˝Ae˝A
op
e
Ag�1 ;

respectively. Figure 29 implies that cup and cap morphisms are determined on the prin-
cipal component. Since Ae˝Ae˝Aop

e
AeDAe=ŒAe; Ae�, cup morphism on the principal

component can be considered as a symmetric linear map ƒ W Ae ! k. Additionally,
Figure 29 shows that, on nonprincipal components, cup morphism is given by multipli-
cation followed by ƒ, leading to a symmetric k–bilinear map �g W Ag ˝Ag�1 ! k.
Morse relations involving cup morphism indicate the nondegeneracy of �g as follows.
Assuming

P
j ˇ

j
g ˝ 1˝ˇ

j

g�1
is the image of 1 under Ae ��! Ag ˝Ae Ae˝Ae Ag�1 ,

the first (left) 2–morphism in Figure 30 corresponds to the composition

a 7! 1˝ 1˝ a 7!
X
j

ˇjg ˝

�X
i

pei ˝ q
e
i

�
˝ˇ

j

g�1
˝ a 7!

X
i

p
g
i ˝ q

g
i ˝ a

7!

X
i

p
g
i �.q

g
i ; a/

and the Morse relation implies that it is equivalent to idAg . Similarly, reflection of this
morphism with label g�1 gives b D

P
i �g.b; p

g
i /q

g
i for any b 2 Ag�1 , which shows

that �g is nondegenerate. Thus, .A; �A/ is a Frobenius G–algebra, where .�A/jAg˝Ah
is �g when hD g�1 and zero otherwise.

The remaining Morse relations contain cap morphisms which are determined on the
principal component. For any c 2Ae , assuming u.1/jAe˝Ae D

P
j aj ˝bj , the second

2–morphism in Figure 30 corresponds to the compositions

c˝
X
j

aj ˝ bj 7!
X
i;j

cpei ˝ aj q
e
i ˝ bj 7!

X
i;j

cpei bjaj q
e
i 7! c

X
i

pei zq
e
i ;

where z D
P
j bjaj 2 Ae. The Morse relation implies that

P
i p

e
i zq

e
i D 1 and conse-

quently
P
i p

e
i ˝ zq

e
i is a separability idempotent of the algebra Ae. Thus, .Ae; �e/

is a separable symmetric Frobenius algebra, as shown in [22]. Similarly, we haveP
i p

g
i zq

g
i D 1 using the saddle whose image gives �Ag . Until now we used � to

replace Bop–actions by A–actions. By changing the roles of A and B, we obtain a
quasibiangular G–algebra B and � is a compatible graded Morita context between B
and Aop.

Thus, any object in XP PD determines a triple .A;B; �/. Conversely, for any such
triple, one constructs an object of XP .Alg2k/ by assigning values to generating ob-
jects, 1–morphisms, and 2–morphisms of XP satisfying generating relations using
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Figure 30: Compositions of generating 2–morphisms forming Morse relations.

the above arguments. Then, by the cofibrancy theorem, this object gives a strict
symmetric monoidal 2–functor XBPD

!Alg2k whose composition with the equivalence
XBord2 ��! XBPD produces the desired extended X–HFT.

Remark The cofibrancy theorem implies that any symmetric monoidal 2–functor
Z W XBPD

! Alg2k can be strictified. That is, Z is equivalent to a strict symmetric
monoidal 2–functor. From now on, by an Alg2k–valued extended X–HFT giving triple
.A;B; �/ we mean the triple coming from the corresponding strict symmetric monoidal
2–functor.

Turaev [28] defined the G–center of a biangular G–algebra. We extend this notion to a
G–center of a quasibiangular G–algebra .K; �/ as ZG.K/D

L
g2G ‰.Kg/, where

‰.a/D
P
i p

e
i aq

e
i for inner product elements

˚P
i p

g
i ˝ q

g
i

	
g2G

. In general, the G–
center is not commutative and it differs from the usual center of the algebra. However,
it has a crossed Frobenius G–algebra structure, which is defined as follows:

Definition 4.20 [28] A Frobenius G–algebra
�
L D

L
g2G Lg ; �

�
is crossed if L

is endowed with a group homomorphism ' W G ! Aut.L/ satisfying the following
conditions:

(i) ' is conjugation type, ie 'h.Lg/DLhgh�1 and 'hjLh D idLg for every g; h2G.

(ii) baD 'h.a/b for any a 2 L and b 2 Lh.

(iii) Tr.�'h WLg!Lg/DTr.'g�1�c WLh!Lh/ for all g; h2G and c2Lghg�1h�1 ,
where �c W L! L is left multiplication by c and Tr is the trace of a map.

(iv) � is invariant under '.
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Lemma 4.21 Let .K; �/ be a quasibiangular G–algebra with a central element z 2Ke
and a collection of inner product elements

˚P
i p

g
i ˝q

g
i

	
g2G

. Then ZG.K/ is a unital
G–algebra with multiplication

P
i p

e
i aq

e
i �
P
i p

e
i bq

e
i D

P
i;j p

e
i aq

e
i p
e
j bq

e
j z
�1 for

all a; b 2K and the triple .ZG.K/; �jZG.K/; f'g jZG.K/gg2G/ is a crossed Frobenius
G–algebra , where 'g.a/D

P
i p

g
i azq

g
i for all a 2K and all g 2G.

Proof The unit of ZG.K/ is ‰.z2/D z. By Lemma 4.12, we have the equality

(6)
X
i

phi bz
0qhi c D

X
i

cp
gh
i bz0q

gh
i

for all c 2Kg�1 , z0 2Ke, b 2K and g; h 2G. Taking z0 D 1 and g D hD e gives

(7) ‰.a‰.b/z�1/D
X
i;j

pei ap
e
j bq

e
j z
�1qei D

X
i;j

pei ap
e
j bq

e
j q
e
i z
�1

D

X
i;j

pei aq
e
i p
e
j bq

e
j z
�1
D‰.a/ �‰.b/;

which implies that ZG.K/ is closed under multiplication. Restriction of � to ZG.K/
is an inner product and hence .ZG.K/; �jZG.K// is a Frobenius G–algebra. For any
b 2K and for all h 2G, we have

‰.z'h.b//D
X
j

pej z

�X
i

phi bzq
h
i

�
qej D

X
i;j

pej zq
e
j p

h
i bzq

h
i D

X
i

phi bzq
h
i D'h.b/;

which shows that 'h.K/�ZG.K/. Similarly, for any
P
i p

e
i aq

e
i 2ZG.K/, we have

'e

�X
i

pei aq
e
i

�
D

X
j

pej

�X
i

pei aq
e
i

�
zqej D

X
i;j

pej zq
e
j p

e
i aq

e
i D

X
i

pei aq
e
i ;

showing 'ejZG.K/ D idZG.K/. Note that, for any g 2G and a 2K, we have

'g.‰.a//D
X
j

p
g
j

�X
i

pei aq
e
i

�
zq
g
j D

X
j

p
g
j zq

g
j

X
i

p
g
i aq

g
i D

X
i

p
g
i aq

g
i

and using this we have the equality, for all NaD‰.a/; Nb D‰.b/ 2ZG.K/ and g 2G,

'g. Na � Nb/D
X
k

p
g

k

�X
i;j

pei aq
e
i p
e
j bq

e
j z
�1

�
zq
g

k

D

�X
i

p
g
i aq

g
i

��X
j

p
g
j bq

g
j

��X
k

p
g

k
q
g

k

�
D 'g. Na/ �'g. Nb/;
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showing 'g is an algebra homomorphism. For the last equality, we have
P
k p

g

k
q
g

k
Dz�1

since
P
k p

g

k
q
g

k
D
P
i;j p

e
i ˇ
j
gˇ

j

g�1
qei D

P
i p

e
i q
e
i D z

�1, where
P
j ˇ

j
g ˝ ˇ

j

g�1
2

Kg ˝Ke Kg�1 is the inverse of 1 2Ke under the product map Kh˝Ke Kh�1 !Ke

(compare the first equality with the bimodule map corresponding to the second 2–
morphism in Figure 28). We also have

'g
�
'h.‰.b//

�
D

X
j

p
g
j

�X
i

phi bq
h
i

�
zq
g
j D

X
j

p
g
j zq

g
j

X
i

p
gh
i bq

gh
i D 'gh.‰.b//

for all g; h 2 G and b 2 K, which also implies that 'g�1 is the inverse of 'g for all
g 2 G. For all Na D ‰.a/; Nb D ‰.b/ 2 ZG.K/ and g 2 G, using the cyclic symmetry
of �, we have

�.'g. Na/; Nb/D �

�X
i

p
g
i Nazq

g
i ;
X
j

pej bq
e
j

�
D �

�
Na;
X
i;j

zq
g
i p

e
j bq

e
j p

g
i

�
D �

�
Na;
X
i;k

p
g�1

k
bq
g�1

k
zq
g
i p

g
i

�
D �. Na; 'g�1.

Nb//;

showing the inner product � is invariant under ' W G ! Aut.ZG.K//. For any Nc D
‰.c/ 2ZG.K/h, we have

'h. Nc/D
X
i

phi cq
h
i D

X
i;j

pei ˇ
j

h
cˇ
j

h�1
qei D

X
i

pei cq
e
i D Nc;

where
P
j ˇ

j

h
˝ˇ

j

h�1
2Kh˝Kh�1 is the inverse of 12Ke under the product bimodule

map. This shows that 'h acts by the identity on ZG.K/h for all h 2G. Equation (6)
gives 'g.a/b D b'h�1g.a/ for a 2 K; b 2 Kh and g; h 2 G. In this case, by taking
g D h, we have 'h.a/b D ba. Let �c WK!K be multiplication by c 2K; then, for
any g; h 2G and c 2Kghg�1h�1 , we have7

Tr.�c'h WKg !Kg/D
X
i

�.c'h.p
g
i /; q

g
i /D

X
i;j

�.cphj p
g
i zq

h
j ; q

g
i /

D

X
i;j

�.q
g
i cp

h
j zp

g
i ; q

h
j /D

X
j

�.'g�1.cp
h
j /; q

h
j /

D Tr.'g�1�c WKh!Kh/:

Any 2–dimensional extended HFT produces a nonextended one by restricting it to a
symmetric monoidal full subcategory XCob2 of XBord2, defined as follows. The
objects of XCob2 are f

ge
gg2G , the empty 1–morphism in XBord2, and disjoint

7See [28] for the first equality.
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unions of these 1–morphisms. The morphisms of XCob2 are the 2–morphisms
of XBord2 among these 1–morphisms. We define a symmetric monoidal functor
D W XCob2! XCob2 by

ge
7!

g
for any g 2G. On morphisms, D forgets

a point on each boundary component and takes the corresponding relative homotopy
class. Using the definitions, it is not hard to see that D is an equivalence of categories.
By the restriction of Z W XBord2! Alg2k to XCob2 above, we mean precomposing
Z with D�1 WXCob2!XCob2.

Corollary 4.22 Let Z WXBord2! Alg2k be an extended HFT giving .A;B; �/. Then ,
the nonextended HFT obtained from Z by restricting to XCob2 is the nonextended
HFT associated to the G–center of the quasibiangular G–algebra .A; �A/.

Proof Proceeding with the notation used in the proof of Theorem 4.19, the image of a
g–labeled circle under Z is given by

Ae˝Ae˝A
op
e
Ag D fb 2 Ag j a � b D b � a for all a 2 Aeg:

The G–center of .A; �A/ is ZG.A/D
L
g2G ‰.Ag/. For any a 2Ae˝Ae˝Aop

e
Ag , we

have
aD 1 � aD

�X
i

pei zq
e
i

�
aD

X
i

pei azq
e
i D‰.az/ 2‰.Ag/

and, for any
P
i p

e
i aq

e
i 2‰.Ag/ and b 2 Ae, we have�X

i

pei aq
e
i

�
b D

X
i

pei aq
e
i b D

X
i

bpei aq
e
i D b

�X
i

pei aq
e
i

�
;

where the middle equality is the result of Lemma 4.12. Thus, we haveAe˝Ae˝Aop
e
AgD

‰.Ag/ for all g 2G. The third 2–morphism in Figure 30 gives the crossed structure
on the restricted HFT and it corresponds to the sequence of compositions

1˝a 7!1˝
X
j

aj bj˝a 7!
X
j

1˝ˇ
j

h
zˇ
j

h�1
˝a 7!1˝

X
j

ˇ
j

h

�X
i

pei ˝zq
e
i

�
ˇ
j

h�1
˝a

7! 1˝
X
i

phi ˝ zq
h
i ˝ a 7! 1˝

X
i

phi azq
h
i ;

which coincides with the crossed structure of ZG.A/.

Example 4.23 Let k be an algebraically closed field. Then separable k–algebras
are the same as semisimple k–algebras. By the Artin–Wedderburn structure theorem,
any separable algebra is isomorphic to a product of finitely many matrix algebras
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over k. Consider the G–algebra A D
L
g2G Ag whose principal component is a

product Ae D
Qn
iD1Mki .k/ of ki � ki matrix algebras over k such that each ki is

invertible in k and each component is given by Ag D `gAe , where `g is a basis, ie for
any a 2 Ag , there exists b 2 Ae such that aD `gb. Define an inner product � on A as

�.a; b/D

�
r Tr.Lab W Ae! Ae/ when ab 2 Ae;
0 otherwise;

where r 2 k is invertible and Lab is the left multiplication by ab map. We can express
the inner product concretely as �

�
`g
Qn
iD1Ai ; `g�1

Qn
iD1Bi

�
D r

Pn
iD1 ki Tr.AiBi /.

For each g 2G, an inner product element can be chosen as

��g D r
�1

nY
iD1

k�1i

kiX
˛;ˇD1

`gE˛;ˇ ˝ `g�1Eˇ;˛ 2 Ag ˝Ag�1 ;

where E˛;ˇ is the .˛; ˇ/–elementary matrix. In this case, the central element z 2 Ae
is given by .rIk1 ; : : : ; rIkn/, where Iki denotes the ki � ki identity matrix. Note thatQn
iD1 k

�1
i

Pki
˛;ˇD1

E˛;ˇ ˝Eˇ;˛ is a separability idempotent of Ae. Thus, the map
‰ W Ag ! Ag is given by

‰

�
`g

nY
iD1

Ai

�
D r�1

nY
iD1

k�1i

kiX
˛;ˇD1

E˛;ˇ .`gAi /Eˇ;˛ D r
�1

nY
iD1

k�1i `g Tr.Ai /Iki ;

which is a projection onto its center `gkn.

4.4 The bicategory of 2–dimensional extended X–HFTs

Until now we have studied the objects of XP .Alg2k/. Theorem 4.10 implies that
studying 1– and 2–morphisms of XP .Alg2k/ leads us to a bicategory equivalent to
E–HFT.X;Alg2k/. Let Z0 and Z1 be extended HFTs with target X giving triples
.A;B; �/ and .A0; B 0; �0/, respectively. A 1–morphism ˛ W Z0 ! Z1 in XP .Alg2k/
gives 1–morphisms ˛0.�C/DA0eRAe and ˛0.��/D B 0e

SBe , and 2–morphisms

˛1. CC
g / WA0eA

0
g ˝A0e RAe !A0e

R˝Ae .Ag/Ae ;

˛1.� �
g / W B 0eB

0
g ˝B 0e SBe ! B 0e

S ˝Be .Bg/Be ;

˛1. gC
� / WA0e˝B 0e .M

0
g/k!A0e˝B

0
e
.R˝S/˝Ae˝Be .Mg/k;

˛1.g
�
C/ W kN

0
g ˝B 0e˝A

0
e
.S ˝R/Be˝Ae ! k.Ng/Be˝Ae ;
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which are isomorphisms for all g 2G and G–graded bimodules M, M 0, N and N 0 are
the components of � and �0. These morphisms are natural with respect to generating
2–morphisms. Naturality with respect to graded multiplication

g
C
g 0

gg 0

C
C

CC

leads to the commutativity of the diagram

A0e
.A0g 0/˝A0e A

0
g ˝A0e RAe

˛1.
g

CCC

g 0

/
//

Z1

� g
C
g 0

gg 0

C
C

CC

�
��

A0e
R˝Ae Ag 0 ˝Ae .Ag/Ae

Z0

� g
C
g 0

gg 0

C
C

CC

�
��

A0e
A0gg 0 ˝A0e RAe

˛1.C C

gg 0
/

//
A0e
R˝Ae .Agg 0/Ae

for all g; g0 2 G. We denote bimodules A0eA
0
g ˝A0e RAe and A0e

R ˝Ae .Ag/Ae by

A0e
.R0g/Ae and A0e .R

00
g/Ae , respectively. Commutativity of the above diagram implies

that they are naturally isomorphic. Thus, we can use one of them and denote it by Rg .
Similarly, Sg denotes a .B 0e; Be/–bimodule. These assignments and naturality with
respect to n g

C
g 0

gg 0

C
C

CC

o
g;g 02G

turn these bimodules into G–graded .A0; A/– and .B 0; B/–bimodules RD
L
g2G Rg

and S D
L
g2G Sg , respectively. Similarly, naturality with respect to G–module

generators turns collections f˛1. gC
� /gg2G and f˛1.g �

C/gg2G into G–graded
.A0˝B 0;k/– and .k; B˝A/–bimodule maps, respectively.

Using ˛0.��/, we define a 1–morphism ˛00.�
C/DAeR

0

A0e
by

˛00.�
C/D ŒZ1.

e
�
C
/˝ idZ0.�C/�ı Œ˛.�

�/˝�Z0.�C/;Z1.�C/�ı ŒZ0.
e

�
C /˝ idZ1.�C/�;

˛00.�
C/D Œ.N 0e/B 0e˝A0e ˝kAe .Ae/Ae �˝B 0e˝A0e˝Ae ŒB 0eSBe ˝k �Ae;A0e �

˝Be˝Ae˝A
0
e
ŒBe˝AeMe˝kA0e .A

0
e/A0e �;

where � is the symmetric braiding of Alg2k. Using ˛00.�
C/, we define a 2–morphism

˛01. CC
g /DZ0. CC

g / ı˛00.�
C/! ˛00.�

C/ ıZ1. CC
g /;

˛01. CC
g /DAeAe˝Ae R

0

A0e
!AeR

0
˝A0e .A

0
g/A0e :

Using naturality, R0 is turned into a G–graded .A;A0/–bimodule R0 D
L
g2G R

0
g .

The 1–morphism ˛0.�
�/ can be obtained from ˛00.�

C/ by applying the composition
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Z1. / ı id˛0.��/ ıZ0. / to the 1–morphism

ŒZ1.
e
�
C
/˝Z0.

e �
C/˝ idZ1.��/� ı Œ˛0.�

�/˝ �Z0.�C/;Z1.�C/˝ �Z1.��/;Z0.��/�

ı ŒZ0.
e

�
C /˝Z1.

e
C
�

/˝ idZ0.��/�

and, similarly, ˛1.� �
g / can be obtained from ˛01. CC

g /. Likewise, using ˛00.�
C/ in

the images of cusp generators under Z0, the 2–morphisms ˛01. gC
� / and ˛01.g

�
C/

are defined, and ˛1. gC
� / and ˛1.g �

C/ can be obtained from these 2–morphisms.

As in the proof of Theorem 4.19, using G–graded Morita contexts � and �0, graded
bimodules M and M 0 can be replaced byA˝AopA andA0˝.A0/opA0. We can also replace
the graded bimodule S by R0 using ˛00.�

C/. Thus, naturality with respect to G–
module generators turns the collection f˛01. gC

� /gg2G into a bimodule mapA0A0A0!

A0R˝AR
0
A0 . Similarly, the collection f˛01.g

�
C/gg2G is turned into a bimodule map

AR
0 ˝A0 RA ! AAA. Naturality with respect to cusp generators indicates that the

compositions

A0RA!A0A
0
A0˝A0R

˛01.�
C

/˝id
����������!A0R˝AR

0
˝A0RA

id˝˛01. C
�
/

����������!A0R˝AAA!A0RA;

AR
0
A0!AR

0
˝A0A

0
A0

id˝˛01.�
C

/
����������!AR

0
˝A0R˝AR

0
A0

˛01. C
�
/˝id

����������!AA˝AR
0
A0!AR

0
A0

are idR and idR0 , respectively. In other words, ˛ gives a G–graded Morita context
between A and A0. Similarly, one can define ˛00.� �

g / and obtain a G–graded Morita
context between B and B 0. Naturality with respect to Morse generators indicates that
G–graded Morita contexts are compatible. Hence, ˛ leads to two compatible G–graded
Morita contexts. In the theory of bicategories, this means that both ˛0.�C/ and ˛0.��/
are parts of two adjoint equivalences. Since an adjoint equivalence is the same as an
equivalence (see [22, Proposition A.27]), Z0 and Z1 are equivalent extended HFTs.

Let ˛1; ˛2 WZ0!Z1 be 1–morphisms in XP .Alg2k/ and � W˛1!˛2 be a 2–morphism
in XP .Alg2k/. Assume that Z0 and Z1 give triples .A;B; �/ and .A0; B 0; �0/ as before
and 1–morphisms give ˛10.�

C/DA0eRAe and ˛20.�
C/DA0ePAe . Then �0.�C/ WA0eRAe!

A0e
PAe and the naturality of �0.�C/ with respect to CC

g is the commutativity of the
diagram

A0e
A0g ˝A0e RAe

˛11. CC
g

/
//

�0.�
C/

��

A0e
R˝Ae .Ag/Ae

�0.�
C/

��

A0e
A0g ˝A0e PAe

˛21. CC
g

/

//
A0e
P ˝Ae .Ag/Ae
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which shows that �0.�C/ is a G–graded bimodule map. Assuming .˛00/
1.�C/DAeR

0

A0e
and .˛00/

2.�C/DA0eP
0
Ae

, we similarly have a graded bimodule map � 00.�
C/ WAeR

0

A0e
!

AeP
0

A0e
using �0.��/ and .˛00/

i .�C/ for i D 1; 2. Naturality with respect to gC
� and

g �
C corresponds to the commutativity of these bimodule maps with the unit and

counit of the adjunctions. In other words, � leads to an equivalence of graded Morita
contexts. In the same way, using B and B 0, one gets another equivalence of graded
Morita contexts.

Motivated by these observations, we define a bicategory FrobG and a forgetful 2–
functor F0 WXP .Alg2k/! FrobG as follows. The bicategory FrobG has quasibiangular
G–algebras as objects, compatible G–graded Morita contexts as 1–morphisms, and
equivalences of G–graded Morita contexts as 2–morphisms. The forgetful 2–functor
F0 maps an object of XP .Alg2k/ giving .A;B; �/ to A. On 1–morphisms, F0 maps
˛ W Z0 ! Z1 to a compatible G–graded Morita context between quasibiangular G–
algebras whose principal components are Z0.�C/ and Z1.�C/. On 2–morphisms,
F0 maps � W ˛1! ˛2 to an equivalence of the compatible G–graded Morita contexts.
Composing F0 with the equivalence E–HFT.X;Alg2k/'XP .Alg2k/, we define F.

Theorem 4.24 The 2–functor F is an equivalence of bicategories E–HFT.X;Alg2k/'
FrobG.

Proof It is enough to show that F0 is an equivalence and we use the Whitehead theorem
(Theorem 4.3). For a given quasibiangular G–algebra A, the triple .A;Aop; id/ gives an
object Z of XP .Alg2k/ such that F0.Z/D A. Let ˛ be a compatible G–graded Morita
context between quasibiangular G–algebras A and A0. Then triples .A; .A0/op; ˛/

and .A0; Aop; ˛/ give objects Z0 and Z1 in XP .Alg2k/ such that F0.˛0/ D ˛, where
˛0 WZ0!Z1.

For any two 1–morphisms ˛1; ˛2 WZ0!Z1, we claim that

F0.˛1; ˛2/ W Hom.˛1; ˛2/! Hom.F0.˛1/;F0.˛2//

is an injection. Assume that different 2–morphisms �1; �2 W ˛1 ! ˛2 in XP .Alg2k/
give the same equivalence of G–graded Morita contexts. This means that pairs
.�10 .�

�/; .� 00/
1.��// and .�20 .�

�/; .� 00/
2.��// give different graded bimodule maps

while the images of �1 and �2 under F0, .�10 .�
C/; .� 00/

1.�C// and .�20 .�
C/; .� 00/

2.�C//,
give the same graded bimodules maps. This is a contradiction because each .� 00/

i .��/

is obtained from .�0/
i .�C/ and each .� 00/

i .�C/ is obtained from .�0/
i .��/ for i D 1; 2.
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For the surjectivity, let � WF0.˛1/!F0.˛2/ be an equivalence of graded Morita contexts.
Then the equivalence of graded Morita contexts .�0.��/; � 00.�

�// can be obtained from
�0.�

C/, � 00.�
C/, .˛00/

1.��/, and .˛00/
2.��/.

Corollary 4.25 Two triples .A1; B1; �1/ and .A2; B2; �2/ produce equivalent extended
X–HFTs if and only if there exists a compatible G–graded Morita context between A1
and A2.

Lastly, we comment on the relation between extended HFTs whose targets are related by
covering maps. Let Y 'K.H; 1/ be a pointed CW–complex for a nontrivial subgroup
H � G and p W .Y; y/! .X; x/ be a covering. Then, any Y –manifold can be turned
into an X–manifold by postcomposing a representative of the characteristic map with p.
This gives a symmetric monoidal 2–functor �H W YBord2!XBord2 and precomposing
any extendedX–HFT with �H yields an extended Y –HFT. Moreover, for any symmetric
monoidal bicategory C, precomposition of a C–valued extended X–HFT with � lifts to a
2–functor SymMon.XBord2;C/! SymMon.YBord2;C/ by forgetting the naturality
of transformations with respect to GnH–labeled 1–morphisms. Correspondingly, there
is a 2–functor XP .C/! YP .C/, where XP and YP are the presentations of XBord2
and YBord2, respectively. When C is Alg2k, the functor FrobG! FrobH is given by
forgetting the GnH components of quasibiangular G–algebras, compatible G–graded
Morita contexts, and equivalences of G–graded Morita contexts. In other words, a
G–graded Morita context can be considered as a collection of Morita contexts indexed
by the subgroups of G (see [3]).

4.5 The .G�SO.2//–structured cobordism hypothesis

A different approach to categorical classification of (fully) extended oriented HFTs is
given by the structured cobordism hypothesis due to Lurie [15]. The cobordism hypoth-
esis [1; 15; 2] was conjectured by Baez and Dolan in their seminal paper [2]. Lurie [15]
reformulated the cobordism hypothesis using .1; n/–categories and generalized it to a
structured cobordism hypothesis using homotopy fixed points.

The bordism category involved in the structured cobordism hypothesis consists of
manifolds with corresponding structures. For a topological group � and a fixed contin-
uous homomorphism � W � !O.n/, let �� W Rn �� E� denote the associated rank n
vector bundle over the classified space B� . Then, a �–structure on a manifold M
of dimension k � n consists of a continuous map f WM ! B� and an isomorphism
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TM ˚Rn�k ! f ��� of vector bundles, where Rn�k is a trivial rank n� k vector
bundle. In the following theorem the category Bord�n consists of manifolds equipped
with �–structures for a fixed homomorphism �.

.�; �/–structured cobordism hypothesis (Lurie [15]) Let C be a symmetric mon-
oidal .1; n/–category (see [5]) and Bord�n be the symmetric monoidal �–structured
cobordism .1; n/–category for a group � . Then there is a canonical equivalence of
.1; n/–categories

Fun˝.Bord�n ;C/
��! ..Cfd/�/h� ;

where Fun˝ is the .1; n/–category of symmetric monoidal functors between symmetric
monoidal .1; n/–categories, Cfd is the .1; n/–subcategory of fully dualizable objects
with duality data, .Cfd/� is the underlying 1–groupoid and ..Cfd/�/h� is the 1–
groupoid of homotopy �–fixed points given by

..Cfd/�/h� D Hom�.E�; .Cfd/�/;

where E� is a weakly contractible1–groupoid equipped with a free �–action.

Remark A 2–dimensional EHFT with target X 'K.G; 1/, ie a classifying space BG,
is a .G�SO.2//–structured 2–dimensional ETFT, where � WG�SO.2/!O.2/ is given
by .g; A/ 7! A.

When k is an algebraically closed field of characteristic zero, Davidovich [6] showed
that, for a finite group G, homotopy .G�SO.2//–fixed points in .Algfd

k/
� are given

by G–equivariant algebras. A G–equivariant algebra is a strongly graded Frobenius
G–algebra with semisimple principal component. Her methods do not particularly
require G to be finite and can be extended to discrete groups directly. Since the
notions of separability and semisimplicity for a k–algebra are equivalent when k is an
algebraically closed field of characteristic zero, the objects of FrobG and the objects of
..Algfd

k/
�/h.G�SO.2// coincide.

Assume that k is an algebraically closed field of characteristic zero. The Artin–
Wedderburn theorem implies that any separable k–algebra is isomorphic to a product
of matrix algebras over k. Let Ae D End.V1/ � End.V2/ � � � � � End.Vn/ be such
an algebra, where V1; V2; : : : ; Vn are finite-dimensional k–vector spaces. Recall that
A D

L
g2G Ag is strongly graded by the generators, leading to bimodule isomor-

phisms f�g;g 0 WAg 0˝AeAg
Š�!Agg 0gg;g2G ; that is, each Ag is an invertible .Ae; Ae/–

bimodule. Under the above assumption on Ae, these isomorphisms form a function
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� W G � G ! .k�/n. Moreover, the relations involving these generators give the
commutative diagram, for all g; g0; g00 2G,

.Ag 00 ˝Ae Ag 0/˝Ae Ag

Š

��

�.g 0;g 00/˝id
// Ag 0g 00 ˝Ae Ag

�.g;g 0g 00/
// Agg 0g 00

id
��

Ag 00 ˝Ae .Ag 0 ˝Ae Ag/ id˝�.g;g 0/
// Ag 00 ˝Ae Agg 0

�.gg 0;g 00/

// Agg 0g 00

and isotopy classes ofG–linear diagrams generate the relations, which can be expressed
as the commutative diagram, for all g 2G,

Ag ˝Ae Ae
�.e;g/

//

Š
''

Ag

id
��

Ae˝Ae Ag
�.g;e/

oo

Š
ww

Ag

which imply that � is a normalized 2–cocycle. Davidovich [6] showed that any invertible
.Ae; Ae/–bimodule is isomorphic to one of the form

Homk.V�.1/; V1/�Homk.V�.2/; V2/� � � � �Homk.V�.n/; Vn/

for some permutation � 2 Sn; denote this bimodule by A� . Since the direct sum
A D

L
g2G Ag forms a G–algebra, permutations indeed form a homomorphism

� WG! Sn.

It is known that all traces on a matrix algebra are given as some (nonzero) constant
multiple of the matrix trace. Thus, in the case ofAeDEnd.V1/�End.V2/�� � ��End.Vn/
there are constants ri 2 k� for i D 1; : : : ; n and the inner product of the quasibiangular
G–algebra AD

L
g2G A

�.g/ is given by �.f; g/DTr.r ı.gı� f // for any f 2Ag and
g 2 Ag�1 , where r D .r1 idV1 ; : : : ; rn idVn/ and ı� is the composition of morphisms
under � such as fi ıg�.i/ for fi 2Homk.V�.i/; Vi / and g�.i/ 2Homk.V�.�.i//; V�.i//.
Since the inner product is invariant under cyclic order, ie �.f; g � h/ D �.h � f; g/ D
�.h; f �g/, the vector r 2 .k�/n must satisfy Im.�/�StabSn.r/, where Sn acts on r by
permuting the entries. More explicitly, as an example, consider the products .hı�g/ı�f
and g ı� .f ı� h/ for f 2 Ag , g 2 Ag 0 and h 2 A.gg 0/�1 . Then the corresponding
traces of these morphisms in Ae D End.V1/�End.V2/� � � � �End.Vn/ are related by
the permutation �.gg0/ 2 Sn.

Using the above arguments, when k is an algebraically closed field of characteris-
tic zero, we can conclude that, up to an isomorphism, a quasibiangular G–algebra
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�
AD

L
g2G Ag ; �

�
is determined by a Morita class of the principal component .n� 1/,

a normalized 2–cocycle � W G �G ! .k�/n, a homomorphism � W G ! Sn, and an
element r 2 .k�/n with Im.�/� StabSn.r/.

Let .A2MA1 ;A1NA2 ; �; �/ be a graded Morita context between two quasibiangular G–
algebras .A1; �1/ and .A2; �2/ which are determined by the normalized 2–cocycles �i ,
homomorphisms �i WG! Sn, and elements ri 2 .k�/n with Im.�i /� StabSn.ri / for
iD1; 2. ThenM andN are invertible .A2; A1/– and .A1; A2/–bimodules, respectively,
which means there exists � 2 Sn such that Me is isomorphic to

M �
D Hom.V�.1/; W1/�Hom.V�.2/; W2/� � � � �Hom.V�.n/; Wn/;

where .Ai /g D Hom.V�g
i
.1/; V1/ � � � � � Hom.V�g

i
.n/; Vn/ for all g 2 G and �gi D

�i .g/ 2 Sn for i D 1; 2. Being a graded .A2; A1/–bimodule forces � to satisfy �g2 D
��

g
1 �
�1 for all g 2 G. In this case, nonprincipal components are given as Mg D

Hom.V� 0g.1/; W1/ � � � � �Hom.V� 0g.n/; Wn/, where � 0g D ��
g
1 D �

g
2 � for all g 2 G.

Using the similar arguments for the invertible .A1; A2/–bimodule N, we obtain Ng D
Hom.W� 00g .1/; V1/�� � ��Hom.W� 00g .n/; Vn/ for � 00gD�

g�1

1 ��1D��1�
g�1

2 for all g2G.

Transferring the Frobenius form via the graded Morita context amounts to finding a
central element in .A2/e corresponding to r12 .k�/n. Using the identity componentMe ,
this element is given by �.r1/.idW1 ; idW2 ; : : : ; idWn/. Thus, we have the equality
�.r1/D r2 2 .k�/n. The bimodule isomorphisms � WA1.A1/A1 !A1N ˝A2MA1 and
� WA2M ˝A1 NA2 !A2.A2/A2 lead to a map � W G! .k�/n and the graded Morita
context equations produce a map � W .A1/g! .A2/g for all g 2G such that the diagram

.A1/g ˝ .A1/h
�1.g;h/

//

�.g/�.h/

��

.A1/gh

�.gh/

��

.A2/g ˝ .A2/h
�2.g;h/

// .A2/gh

commutes for all g; h 2G. This means that normalized 2–cocycles �1; �2 WG �G!
.k�/n differ by a coboundary @�. Thus, we conclude that quasibiangular G–algebras,
up to compatible G–graded Morita contexts, are in bijection with

1a
rD1

a
Œr�2.k�/n=Sn

H 2.GI .k�/n/�Hom.G;StabSn.r//=�;

where the equivalence � is given by conjugation. Using Theorem 4.24, we derive the
following proposition, which was previously proven by Davidovich [6]:
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Proposition 4.26 [6] The set of equivalence classes of fully extended oriented 2–
dimensional G–equivariant TFTs , ie EHFTs with K.G; 1/ target , with values in Alg2k
is in bijection with

�0Fun˝.BordG�SO.2/
2 ;Alg2k/

Š

1a
rD1

a
Œr�2.k�/n=Sn

H 2.GI .k�/n/�Hom.G;StabSn.r//=�;

where the equivalence � is given by conjugation.

The fact that Alg2k–valued fully extended oriented 2–dimensional G–equivariant TFTs
are classified in two different ways — namely using the structured cobordism hy-
pothesis and without using it — is an important step towards the verification of the
.G�SO.2//–structured cobordism hypothesis for Alg2k–valued such TFTs. In this case,
the .G�SO.2//–structured cobordism hypothesis gives an equivalence of bigroupoids
E–HFT.X;Alg2k/ ' ..Algfd

k/
�/h.G�SO.2//. We have E–HFT.X;Alg2k/ ' FrobG

by Theorem 4.24 and Davidovich [6] showed that the fundamental bigroupoid of
..Algfd

k/
�/h.G�SO.2// is equivalent to the bigroupoid Grp2.BG;Gori/ of 2–functors,

transformations, and modifications. Here the bigroupoid BG has one object, jGj 1–
morphisms, and only identity 2–morphisms, and the bigroupoid Gori has semisimple
Frobenius algebras as objects, invertible bimodules compatible with Frobenius forms
as 1–morphisms, and invertible bimodule maps as 2–morphisms (see Proposition 3.3.2
in [6]).

Davidovich showed that every 2–functor F W BG! Gori gives rise to a quasibiangular
G–algebra, and vice versa [6, Proposition 3.4.5]. We define a 2–functor F W FrobG!
Grp2.BG;Gori/ as follows. The image of a quasibiangular G–algebra is the correspond-
ing functor described above. Next, let .A2MA1 ;A1NA2 ; �; �/ be aG–graded compatible
Morita context between two quasibiangular G–algebras .A1; �1/ and .A2; �2/ which
are determined by two triples .�i ; �i ; ri / for iD1; 2 such thatMeŠM

� , as in the proof
of Proposition 4.26 above. Then we define F..A2MA1 ;A1NA2 ; �; �// to be the natural
transformation between the corresponding 2–functors producing the bimodule M �

(see the proof of Proposition 4.26 given in [6]). Lastly, the image of an equivalence
of G–graded Morita contexts under F is the modification producing the invertible
bimodule map M � !M � 0 between the corresponding bimodules described above.

Proposition 4.26 implies that F is essentially surjective on objects. The fact that any
natural transformation � W F1! F2 between functors F1; F2 WBG! Gori is isomorphic
to one producing a bimodule of the form M � (see the proof of Proposition 4.26 given
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in [6]) implies that F is essentially full on 1–morphisms. Using similar arguments as
in the proof of Theorem 4.24, one can show that F is fully faithful on 2–morphisms.
Consequently, the 2–functor F W FrobG ! Grp2.BG;Gori/ is an equivalence by the
Whitehead theorem for bicategories (Theorem 4.3).

Corollary 4.27 For any discrete group G and any algebraically closed field k of
characteristic zero , the .G�SO.2//–structured cobordism hypothesis for Alg2k–valued
oriented EHFTs with target X 'K.G; 1/ holds true.

5 Extended unoriented X–HFTs and their classifications

In this section, by allowing X–manifolds and X–cobordisms to be nonorientable, we
define 2–dimensional extended unoriented X–HFTs and classify them. The definition
and classification of these theories are parallel with the oriented case and we only
describe the changes. All of the manifolds and cobordisms in this section do not have
any orientation data and they are not necessarily orientable.

5.1 The unoriented X–cobordism bicategory and its presentation

In this section, we define 2–dimensional extended unoriented HFTs with target X '
K.G; 1/, where every element of G has order two. To avoid repetition, from now on,
we assume that G is such a group and X is a pointed K.G; 1/–space. The restriction
to such groups is not essential but for convenience.8 As in the oriented case, the
2–dimensional extended unoriented X–cobordism bicategory plays the essential role
and it is defined using X–halations (see Section 2.2) as follows:

Definition 5.1 The 2–dimensional extended unoriented X–cobordism bicategory
XBordun

2 has

� quadruples .M; �M1; �M2; yg2/ consisting of compact 0–manifolds equipped with
two cooriented X–halations as objects,

� quintuples .A; yA0; yA1; T; yp1/ consisting of 1–dimensional marked X–manifolds
equipped with two cooriented X–halations as 1–morphisms,

� isomorphism classes Œ.S; yS;R; yF/� of quadruples consisting of cobordism type
h2i–X–surfaces equipped with a codimension zero X–halation as 2–morphisms.

8Order two elements appear as a result of new generators and we avoid keeping track of which elements
are required to have order two and which ones are not. See [12] for the case of nonextended HFTs with
arbitrary aspherical targets.
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Figure 31: Additional generating 2–morphisms of XGun
2 .

Similar to XBord2, the disjoint union operation is the symmetric monoidal product for
XBordun

2 .

Definition 5.2 For a symmetric monoidal bicategory C, a C–valued 2–dimensional
extended unoriented homotopy field theory with target X is a symmetric monoidal
2–functor from XBordun

2 to C.

It is not hard to modify G–linear, G–planar, and G–spatial diagrams for the unoriented
setting. We only need to consider sheets with no additional orientation data. In this case,
each diagram produces an unoriented version of the corresponding X–manifold. There
are new sheet data for the fold singularity coming from h2i–X–surface representatives
of a Möbius band. These h2i–X–surfaces are shown in Figure 31. This extra sheet
data produces new relations coming from different possible gluings of these generators
with themselves and with the earlier (orientable) generators. Figure 32 shows these
relations of 2–morphisms ofXBordun

2 instead of the corresponding unorientedG–planar
diagrams. By generalizing the equivalence relations on the set of unoriented G–planar
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Figure 32: Additional generating relations of XRun.
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diagrams given by unoriented G–spatial diagrams, we obtain the following unoriented
G–planar decomposition theorem:

Theorem 5.3 The relative X–homeomorphism classes of unoriented cobordism type
h2i–X–surfaces are in bijection with the equivalence classes of unoriented G–planar
diagrams.

Parallel to the oriented case, we define a new symmetric monoidal bicategory XBPD;un,
which has unoriented points as objects, unoriented G–linear diagrams as 1–morphisms,
and equivalence classes of unoriented G–planar diagrams as 2–morphisms. The un-
oriented G–planar decomposition theorem implies that XBPD;un is symmetric monoid-
ally equivalent to XBordun

2 via the Whitehead theorem for symmetric monoidal bi-
categories. The correspondence between G–planar diagrams and the string diagrams
for unbiased semistrict symmetric monoidal bicategories gives the following result:

Theorem 5.4 The symmetric monoidal bicategory XBPD;un is a computadic unbiased
semistrict symmetric monoidal 2–category with the presentation

XP un
D .XGun

0 ;XG
un
1 ;XG

un
2 ;XR

un/

which has one generating object , f�g, G–linear diagrams of f g ;
g
;
g
gg2G as the

generating 1–morphisms , G–planar diagram versions of elements in Figures 25 and 31
as the generating 2–morphisms , and G–planar diagram versions of pairs in Figures 26
and 32 as the generating relations.

The bicategory E–HFTun.X;C/ of 2–dimensional extended unoriented X–HFTs has
C–valued unoriented extended X–HFTs as objects, symmetric monoidal transforma-
tions as 1–morphisms, and symmetric monoidal modifications as 2–morphisms. For
any given symmetric monoidal bicategory C, using the cofibrancy theorem, we state
the classification of C–valued 2–dimensional extended unoriented X–HFTs as the
equivalence of bicategories E–HFTun.X;C/'XP un.C/.

Remark There is a symmetric monoidal 2–functor Forgetor
W XBord2 ! XBordun

2

given by forgetting the orientation. In the same way, any oriented or unoriented 2–
dimensional extended TFT leads to an oriented or unoriented extended HFT, respectively,
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by forgetting the X–manifold data. The diagram

E–TFTun.C/
Forgetor

//

ForgetX
��

E–TFT.C/

ForgetX

��

E–HFTun.X;C/
Forgetor

// E–HFT.X;C/

indicates the universality of unoriented 2–dimensional extended TFTs in this context,
where E–TFTun.C/ and E–TFT.C/ are defined similarly using Bordun

2 and Bord2,
respectively.

5.2 Alg2
k–valued 2–dimensional extended unoriented X–HFTs

Tagami [26] classified 2–dimensional nonextended unoriented HFTs by extended
crossed Frobenius G–algebras (see also [12]). Similar to the oriented case, our goal is
to understand the relation between his classification and the restriction of Alg2k–valued
2–dimensional extended unoriented HFTs to circles and cobordisms between them.

Firstly, we introduce necessary algebraic notions. Let K be a G–algebra and V be
a .K;Kop/–bimodule. The conjugate of V is the .K;Kop/–bimodule V obtained
by turning actions around. Similarly, the conjugate of a graded Morita context � D
.KopUK ;KVKop ; �; �/ is given by � D .KopUK ;KVKop ; � ; �/. We generalize stellar
algebras introduced in [22] to stellar G–algebras as follows:

Definition 5.5 A stellar G–algebra is a G–algebra K D
L
g2G Kg equipped with a

G–graded Morita context � D .KopUK ;KVKop ; �; �/ together with an isomorphism of
G–graded Morita contexts � W � Š � such that � ı � is the identity isomorphism, where
� is the induced isomorphism between � and �.

The stellar structure on a G–algebra can be transferred along a graded Morita context as
follows. Let �D .KU 0L;LV

0
K ; �; �/ be a G–graded Morita context between G–algebras

K and L and let .K; �; �/ be a stellar structure on K with � D .KopUK ;KVKop ; �; �/.
Then .L; ���; ���/ is a stellar algebra, where

��� D .LopU 0˝Kop U ˝K U
0
L;LV

0
˝K V ˝Kop V 0Lop ; �˝ � ˝ �; �˝�˝ �/

and ��� W ��� Š ��� is given by � .
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Definition 5.6 Let .K; �; �/ be a stellarG–algebra with �D .KopUK ;KVKop ; �; �/ and
let .K; �/ be a quasibiangular G–algebra. The stellar structure is said to be compatible
with the quasibiangular G–algebra if there exists an element

P
j aj ˝ bj 2Ke˝Ke

giving the central element z D
P
j bjaj such that the diagrams9

K˝K
�˝id

//

id˝�
��

.V ˝U/˝K
�˝id

// .V ˝U /˝K
��1˝id

// K˝K

�

��

K˝.V ˝U/
id˝�

// K˝.V ˝U /
id˝��1

// K˝K
�

// k

k
�

//

�

��

K˝K
�˝id

// .V ˝U/˝K
�˝id

// .V ˝U/˝K

��1˝id
��

K˝K
id˝�

// K˝.V ˝U/
id˝�

// K˝.V ˝U/
id˝��1

// K˝K

K˝K
�˝id

//

id˝�
��

.V ˝U/˝K
�˝id

// .V ˝U /˝K
��1˝id

// K˝K

�

��

K˝.V ˝U/ //

id˝�
// K˝.V ˝U /

id˝��1
// K˝K

�

// K˝K

commute, where �.1/jKe˝KeD
P
j aj˝bj and � WK1KK2˝K3KK4!K1KK4˝K3KK2

is a graded bimodule map with Ki DK for i D 1; 2; 3; 4 and �.1/D
P
i p

e
i ˝q

e
i is an

inner product element of the principal component. We call such a compatible quadruple
.K; �; �; �/ a quasibiangular stellar G–algebra.

Definition 5.7 A morphism of quasibiangular stellar G–algebras .K; �k; �K ; �K/
and .L; �L; �L; �L/ is a compatible G–graded Morita context �D .KUL;LVK ; �; �/
together with an equivalence of G–graded Morita contexts � W �L! ���

K such that
���

K ı � D � ı �L, where � W �L! ���
K. Two such morphisms .�; �/ and .�0; �0/

are isomorphic if there exists an equivalence of G–graded Morita contexts ˛ W �! �0

such that �0 D ˛ ı� and �0 D ˛ ı� for ˛ W �! �0.

Theorem 5.8 Let G be a group with each nonidentity element having order 2 and X
be a K.G; 1/–space. Any Alg2k–valued 2–dimensional extended unoriented X–HFT
Z WXBordun

2 ! Alg2k whose precomposition XBPD;un '
�!XBordun

2
Z
�! Alg2k gives a

9Tensors in diagrams are taken over K, Kop or K˝kK
op.

Algebraic & Geometric Topology, Volume 23 (2023)



Two-dimensional extended homotopy field theories 3979

strict symmetric monoidal 2–functor determines a quasibiangular stellar G–algebra
.A; �; �; �/. Conversely , for any quasibiangular stellar G–algebra .A; �; �; �/, there
exists an Alg2k–valued 2–dimensional extended unoriented X–HFT.

Proof Let Z WXBordun
2 ! Alg2k be such a 2–dimensional extended unoriented HFT.

The cofibrancy theorem implies that there exists an object Z0 in XP un.Alg2k/ such that
{.Z0/ is the composition XBPD;un '

�! XBordun
2

Z
�! Alg2k, where { W XP un.Alg2k/!

SymMon.XBPD;un;Alg2k/ is the equivalence of bicategories.

Following the proof of Theorem 4.19, we have a strongly graded G–algebra A DL
g2G Ag , where Z0.�/D Ae. We also have G–graded .A˝A;k/– and .k; A˝A/–

bimodules M D
L
g2GMg and N D

L
g2G Ng , respectively. By turning actions

around, we obtain the .A;Aop/–bimodule M and .Aop; A/–bimodule N.

Bimodule maps in Z02.X
unG2/ corresponding to cusp generators (subject to relations)

yield aG–graded Morita context �D .AopNA;AMAop ; f1; f2/ betweenA andAop, where
f1 WAAA!AM ˝Aop NA and f2 WAopN ˝AMAop !AopA

op
Aop are invertible G–graded

bimodule maps. Bimodule maps in Z02.X
unG2/ for the Morse generators satisfying the

relations imply that .A; �/ is a quasibiangular G–algebra. The generators in Figure 31
give the graded bimodule maps, in Z02.X

unG2/,

�1 WAMAop !AMAop ; �2 WAopNA!AopNA;

� 01 WAMAop !AMAop ; � 02 WAopNA!AopNA:

These graded bimodule maps are subject to the relations in Figure 32. Thereby, we have
� 01ı�1D idM , �1ı� 01D idM , � 02ı�2D idN , and �2ı� 02D idN . These isomorphisms of
bimodules lead to an isomorphism � W �Š �. Applying � to � gives another isomorphism
� W � ! �, whose composition with � gives � ı � W � Š �. The third relation in the
first row of Figure 32 and its reflection indicate that compositions of bimodule maps
M !M !M and N !N !N are identity maps.

Thus, additional generators and relations among them lead to a stellar structure .�; �/
on the quasibiangular G–algebra A. The remaining relations imply compatibility,
giving the quasibiangular stellar G–algebra .A; �; �; �/. For any quasibiangular stellar
G–algebra, one constructs an object of XP un.Alg2k/ by assigning values to generating
objects, 1–morphisms, and 2–morphisms of XP satisfying generating relations using
the above arguments. Then, this object gives a strict symmetric monoidal 2–functor
XBPD;un

! Alg2k whose composition with the equivalence XBordun
2
��! XBPD;un

produces the desired unoriented extended X–HFT.
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Similar to the oriented case, every 2–dimensional extended unoriented HFT with
targetX produces a nonextended one by precomposition,XCobun

2 !XCobun
2 !Alg2k,

where XCobun
2 and XCobun

2 are defined just as XCob2 and XCob2 using unoriented
X–manifolds. In the unoriented case, extended crossed Frobenius G–algebras play an
important role in the study of 2–dimensional nonextended unoriented X–HFTs and
they are defined as follows:

Definition 5.9 [26] Let .K; �; '/ be a crossed Frobenius G–algebra over k. An
extended structure on K consists of a k–module homomorphism ˆ W K ! K and a
family of elements f�g 2Kegg2G satisfying the following conditions:

(1) ˆ.Kg/�Kg and ˆ.�g/D �g for all g 2G.

(2) ˆ ı'g D 'g ıˆ for all g 2G.

(3) ˆ.vw/Dˆ.w/ˆ.v/ for any v;w 2K and ˆ.1K/D 1K .

(4) ˆ2 D id.

(5) � ı .ˆ˝ˆ/D �.

(6) For any g; h; l 2G and v 2Kgh, we have

m ı .ˆ ı'l/ ı�g;h.v/D 'l.�gl�lv/;

m ı .'l ˝ˆ/ ı�g;h.v/D 'l.�hl�lv/;

where �g;h WKgh!Kg˝Kh is defined by .idg˝�/ı.�g;h˝ idh/Dm. Such
a map �g;h is uniquely determined since � is nondegenerate and each Kg is
finitely generated.

(7) ˆ.�hv/D 'hg.�hgv/ for any g; h 2G and v 2Kg .

(8) 'h.�g/D �g for any g; h 2G.

(9) For any g; h; l 2G, we have �g�h�l D q.1/�ghl , where q W k!Ke is defined as
follows: let fai 2KghgniD1 and fbi 2KghgniD1 be families of elements of Kgh
satisfying

P
i �.bi ˝ v/ai D 'hl.v/ for any v 2Kgh. As in .3/, such ai and bi

are uniquely determined and q.1/D
P
i aibi .

Theorem 5.10 (Tagami [26]) Let G be a group with each nonidentity element having
order 2. There is a bijection between the isomorphism classes of 2–dimensional
unoriented HFTs with target X 'K.G; 1/ and the isomorphism classes of extended
crossed Frobenius G–algebras.
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Corollary 5.11 Assume that Z WXBordun
2 !Alg2k determines a quasibiangular stellar

G–algebra .A; �; �; �/. The stellar structure .�; �/ gives an extended structure on the
crossed Frobenius G–algebra ZG.A/. Moreover , the corresponding 2–dimensional
X–HFT is the unoriented X–HFT obtained by restricting Z to XCobun

2 .

Proof We have a crossed Frobenius G–algebra .ZG.A/; �jZG.A/; f'jZG.A/gg2G/.
By Tagami’s classification, the 2–dimensional unoriented HFT given by the restriction
of Z to circles and cobordisms between them induces an extended structure on ZG.A/.
We claim that the homomorphism ˆ and elements f�g 2ZG.A/egg2G come from the
stellar structure .�; �/ on A.

In [26], for each g 2G, the restrictionˆjZG.A/g WZG.A/g!ZG.A/g is the involution
induced by an orientation-reversing homeomorphism of a g–labeled circle. In the
extended case, this morphism is given by additional 2–morphisms (Figure 31). More
precisely, ˆjZG.A/g W Ae ˝Ae˝Aop

e
Ag ! Ae ˝Ae˝A

op
e
Ag is defined by ˆ.a˝ b/ D

a˝ˆg.b/, where ˆg is defined so that the diagram

AeMg ˝A
op
e
.Ne/Ae

Š
//

�1˝id
��

Ae .Ag/Ae

ˆgDZ
�
g

g �
��

AeMg ˝A
op
e
.Ne/Ae

//
Ae .Ag/Ae

commutes. It is not hard to see that ˆ reverses the orientation of the oriented (input)
circle. In [26], for every g 2G, the element �g is the image of HFT under the Möbius
strip whose boundary is labeled by g2 D e, where the Möbius strip is considered as
the cobordism from the empty 1–manifold to the boundary circle. In the extended case,
�g 2 Ae˝Ae˝A

op
e
Ae is the image of 1 2 k under the composition of a fg; gg–labeled

cap morphism followed by new generators (see Figure 32), which is composed with
module actions turning boundary labels into fe; eg (see Figure 29).

The involution ˆ and elements f�ggg2G are defined according to their topological
description given in [26]. Hence, .ZG.A/; �jZG.A/; f'g jZG.A/gg2G ; ˆ; f�ggg2G/ is
an extended crossed Frobenius G–algebra, which, by definition, corresponds to the
restriction ofZ WXBordun

2 !Alg2k toX–circles and unorientedX–cobordisms between
them.

5.3 The bicategory of 2–dimensional extended unoriented X–HFTs

In order to upgrade Theorem 5.8 to an equivalence of bicategories, we study morphisms
in the bicategory XP un.Alg2k/. Let ˛ be a 1–morphism from Z0 to Z1 giving quasi-
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biangular stellar G–algebras .A; �; �; �/ and .A0; �0; �0; � 0/, respectively. We know
from the oriented case that ˛ gives a compatible G–graded Morita context � between
G–algebras A and A0. Assuming ˛0.�/DAeRA0e and � D .ARA0 ;A0R0A; �; �/, naturality
with respect to the first generator in Figure 31 is the commutativity of the diagram

A0e
.M 0g/.A0e/op

� 0DZ1

�
g

g �
��

˛1. g/
//
A0e
R0˝AeMg ˝A

op
e
R0
.A0e/op

���DZ0

�
g

g �
��

A0e
.M 0g/.A0e/op

˛1. g/
//
A0e
R0˝AeMg ˝A

op
e
R0
.A0e/op

where M and M 0 are components of the graded Morita contexts � and �0, respectively.
There are similar commutative diagrams for the remaining three generators. These
diagrams indicate that theG–graded Morita context � gives an equivalence ofG–graded
Morita contexts �0 and ��� with ˛ı� 0D ��� ı˛. In other words, ˛ leads to a morphism
of stellar G–algebras (see Definition 5.7).

Let � W ˛1! ˛2 be a 2–morphism in XP .Alg2k/ with �0.�/DAeRA0e !AePA0e . In the
oriented case we observed that � induces an equivalence of G–graded Morita contexts
� D .ARA0 ;A0R

0
A; �; �/ and �D .APA0 ;A0P 0A; �; �/. Naturality of �0.�/ with respect to

g is the commutativity of the diagram

A0e
.M 0g/.A0e/op

id
��

˛11.
g/
//
A0e
R0˝AeMg ˝A

op
e
R0
.A0e/op

�0.� �/

��

A0e
.M 0g/.A0e/op

˛21.
g/

//
A0e
P 0˝AeMg ˝A

op
e
P 0
.A0e/op

and there is a similar diagram for the naturality with respect to g . Naturality
for f

g
gg2G and f

g
gg2G gives ˛2 D � ı ˛1 and naturality for f ggg2G and

fg gg2G gives ˛2 D � ı ˛1. In other words, � gives an isomorphism of stellar
G–algebra morphisms (see Definition 5.7).

These observations lead us to define a bicategory FrobG� , which has quasibiangular
stellar G–algebras as objects, their morphisms as 1–morphisms, and isomorphisms of
quasibiangular stellar G–algebra morphisms as 2–morphisms. The above arguments
imply that there exists a 2–functor F0 WXP un.Alg2k/! FrobG� . Composing F0 with the
equivalence E–HFTun.X;Alg2k/'XP un.Alg2k/, we define the 2–functor F.
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e1

e2
p

he1; e2i
SO.2/

 2 �1.Gr.2;R1/; he1; e2i/z

A

AopNAlg

f

�e1

�e2

O.2/ nSO.2/

z 0

�e1

e2

M

Figure 33: A reflection-invariant map.

Theorem 5.12 The 2–functor F W E–HFTun.X;Alg2k/! FrobG� is an equivalence of
bicategories.

Proof The proof follows from the above arguments and the Whitehead theorem for
bicategories.

5.4 The .G�O.2//–structured cobordism hypothesis

Parallel to oriented case, we want to compare Theorem 5.12 with the classification given
by the .G�O.2//–structured cobordism hypothesis. To do this, we need to understand
homotopy .G�O.2//–fixed points in .Algfd

k/
�, which are given by

..Algfd
k/
�/h.G�O.2// DMapG

�
EG;MapO.2/.EO.2/;Alg/

�
;

where G acts on invariant maps trivially and Alg is the 2–type corresponding to the
1–groupoid .Algfd

k/
�. Recall that the unoriented Grassmannian Gr.2;R1/ is a model

forBO.2/ and the Stiefel manifold V.2;R1/ is one forEO.2/. The universal principal
O.2/–bundle p W V.2;R1/! Gr.2;R1/ is given by p..e1; e2// D he1; e2i, ie the
plane generated by the orthonormal 2–frame .e1; e2/.

Lemma 5.13 The reflection-invariant maps in Map.V .2;R1/;Alg/ determine stellar
structures on k–algebras.

Proof A reflection ! in O.2/ acts on Alg by sending a k–algebra A to its opposite
algebra Aop. Let f be a reflection-invariant map with f ..e1; e2// D A. Let  be a
representative of the nontrivial element of �1.Gr.2;R1/; he1; e2i/ Š Z=2Z. Lift 
to z starting at .e1; e2/ and ending at !..e1; e2// (see Figure 33). Then f .z/ is a
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.Aop; A/–bimodule M and invariance under ! means f .!.z// D AopMA D !.M/.
Lifting  to z 0 starting at !..e1; e2// gives a path ending at .e1; e2/. Similarly, f .z 0/ is
an .A;Aop/–bimodule N and we have f .!.z 0//DANAop D !.N/. Loops z 0 � z and
z � z 0 bound disks since V.2;R1/ is contractible. In other words, there exist basepoint-
fixing homotopies which take these loops to constant loops at .e1; e2/ and !..e1; e2//,
respectively. Images of the second homotopy and the time reversed version of the first
homotopy under f yield invertible bimodule maps � WAopM ˝ANAop !AopA

op
Aop and

� WAAA!AN ˝Aop MA, respectively. The compositions of homotopies corresponding
to the conditions on � and � to form a Morita context are the constant homotopies of
paths z and z 0. Thus, � D .AopMA;ANAop ; �; �/ is a Morita context. Similarly, loops
z �!.z/ and z 0 �!.z 0/ bound, which implies that there is an equivalence of Morita
contexts � W � Š �. Since the order of reflection is two, we have � ı � D id. Thus, any
reflection-invariant map leads to stellar algebra structures on algebras.

Lemma 5.14 For an algebraically closed field k of characteristic zero , the homotopy
.G�O.2//–fixed points of .Algfd

k/
� are quasibiangular stellar G–algebras.

Proof Serre automorphism trivializes the homotopy SO.2/–action (see [6]), which
turns the space of homotopy .G�SO.2//–fixed points into

MapG
�
EG;Map.eGr.2;R1/;Alg/

�
:

Davidovich [6] showed that homotopy SO.2/–fixed points are semisimple symmetric
Frobenius k–algebras. Then, understanding homotopy O.2/–fixed points means under-
standing invariance under reflections. Using Lemma 5.13, we conclude that homotopy
O.2/–fixed points are finite-dimensional semisimple symmetric Frobenius k–algebras
with a stellar structure.

The stellar structure is compatible with the Frobenius form as follows. A Frobenius
form on a k–algebra A is determined by a central element, which is the image of 1
under a bimodule map z WAAA!AAA. Geometrically, z.1/ is an element of

�2
�
Map.BSO.2/;Algr/; f

�
Š .k�/r ;

where the algebra A 2 Algr � AlgD
`1
rD1 Algr is isomorphic to

End.V1/�End.V2/� � � � �End.Vr/

under the Artin–Wedderburn isomorphism for finite-dimensional k–vector spaces
V1; : : : ; Vr .
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Compatibility means that (horizontal) composition of z with � yields z again. Geo-
metrically, this corresponds to conjugating the representing sphere based at f with
loops in Algr given by bimodules of �. Since this loop is contractible, conjugation
does not change z.1/ in the second homotopy group. Thus, we have a compatible
stellar structure, and following Davidovich’s methods [6] we obtain that, for a discrete
group G, homotopy .G�O.2//–fixed points are quasibiangular stellar G–algebras.

The above lemma is an important step toward the verification of the .G�O.2//–
structured cobordism hypothesis for Alg2k–valued 2–dimensional extended unoriented
HFTs with K.G; 1/ target. This version of the cobordism hypothesis states the equiva-
lence of bigroupoids FrobG� and ..Algfd

k/
�/
h.G�O.2//
�2 , where ..Algfd

k/
�/
h.G�O.2//
�2 is

the fundamental bigroupoid of ..Algfd
k/
�/h.G�O.2//. Lemma 5.14 implies that the

objects of these bigroupoids coincide. The next step is to give an explicit (algebraic)
description of the bigroupoid ..Algfd

k/
�/
h.G�O.2//
�2 and to write down the 2–functor

F W FrobG�
'
�! ..Algfd

k/
�/
h.G�O.2//
�2 , similar to the oriented case. Here we skip these

steps, which may later appear elsewhere.

Appendix Unbiased semistrict symmetric monoidal
2–categories

In this section we recall unbiased semistrict monoidal 2–categories and their computadic
versions, and prove Theorem 4.5. Our main reference is [22, Section 2.10]. A similar
exposition is given in [21, Appendix].

A.1 String diagrams for bicategories

The symmetric monoidal bicategory XBPD is not a fully weak symmetric monoidal
bicategory but a certain stricter version. The strict bicategories we are interested in
are unbiased semistrict symmetric monoidal 2–categories introduced by Schommer-
Pries [22]. To recall their definition, we first review string diagrams for bicategories.

Alternative to pasting diagrams, string diagrams are tools describing morphisms in
a bicategory. Instead of arrows between objects and 1–morphisms, a string diagram
consists of regions, arcs, and vertices. Each region represents an object and each arc
represents a 1–morphism between objects whose corresponding regions share this arc
as a common boundary. Each vertex represents a 2–morphism between 1–morphisms
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f2 f1
f3

ˇ�
00

ˇ��
0

ˇe

B A

C

f

g h
˛ f

Bg

˛

C A
h

!1

˛

!2

!3

!4

!5

!7

!6

Xe

ˇ�
0

ˇ��
0

X�;�
0

.X�;�
0
/�1

ˇ�
00.f3/

f3

ˇ�
00

f3
ˇ�

Figure 34: Pasting diagram with the corresponding string diagram and a
string diagram for an unbiased semistrict symmetric monoidal 2–category.

whose corresponding arcs are connected with each other via this vertex. In Figure 34,
left, a pasting diagram and the corresponding string diagram is shown. Note that we
read string diagrams from right to left and from top to bottom.

Unbiased semistrict symmetric monoidal 2–categories are strict enough to admit
a version of a string diagram. An example of such a string diagram is shown in
Figure 34, in which regions are labeled with objects f!ig7iD1, red arcs are labeled with
1–morphisms ffj g3jD1, and a red vertex is labeled with a 2–morphism ˛. However,
there are additional strings and vertices of different colors coming from the coherence
morphisms of an unbiased semistrict symmetric monoidal 2–category.

Definition A.1 [22, Definition 2.32] An unbiased semistrict symmetric monoidal
2–category is a triple .C; ˇ;X/, where CD .C;˝; {; ˛; �; �;P;M;L;R/ is a monoidal
bicategory (see [25, Appendix]) such that:

(i) The underlying bicategory is a strict 2–category.

(ii) The transformations ˛, � and � and modifications P, M, L and R are identities.

(iii) The monoidal product ˝ D .˝; �˝
.f;f 0/;.g;g 0/

; �˝
.a;a0/

/ W C � C! C is cubical.
That is, the interchanger

�˝
.f;f 0/;.g;g 0/

W .f ˝f 0/ ı .g˝g0/! .f ıg/˝ .f 0 ıg0/

is the identity if either f or g0 is the identity 1–morphism and �˝
.a;a0/

W ida˝a0!
ida˝ ida0 is the identity for all objects a and a0.

Secondly, ˇ denotes a collection of transformations (turquoise edges and yellow point
in Figure 34)

fˇ� W .C1˝C2˝ � � �˝Cn! C/! .C�.1/˝C�.2/˝ � � �˝C�.n/! C/g�2Sn;n�0;
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where Ci D C for all i D 1; : : : ; n and S0 WD f{g with ˇ{ W .{ ,! C/! .{ ,! C/ being the
identity transformation between inclusions of functors. Lastly, X denotes a collection
of invertible modifications (turquoise points in Figure 34)

X�;�
0

W .ˇ� � 1/ ıˇ�
0

! ˇ��
0

and Xe W id! ˇe

for every �; � 0 2 Sn and identity element e 2 Sn such that:

(i) The transformations fˇ�g�2Sn;n�0 and modifications fX�;�
0

; Xeg�;� 0;e2Sn;n�0

satisfy the conditions

ˇidt�
D id˝ˇ� ; ˇ�tid

D ˇ� ˝ id;

X .idt�/;.idt�
0/
D id�X�;�

0

; X .�tid/;.� 0tid/
DX�;�

0

� id

and the first three conditions on Figure 35 for all �:� 0; � 00; e 2 Sn and n > 0,

(ii) For a fixed n > 0 and a collection of n natural numbers fkigniD1, let z� 2 SN be
given by the operadic product10 � ı.�i /, whereN D

P
i ki , � 2Sn, and �i 2Ski

for all i D 1; 2; : : : ; n. Then the 2–morphism ˇ�
.ˇt�i /

Dˇt��.i/ ıˇ�!ˇ� ıˇt�i

satisfies the equality given by the last condition in Figure 35 for all n>0, � 2Sn,
and �i 2 Ski . In particular, when �i D e for all i D 1; : : : ; n, we have ˇz� D ˇ� ,
X Qe DXe, and X z�;z�

0

DX�;� for all �; � 0; e 2 Sn,

(iii) The transformations fˇ�g�2Sn;n�0 and modifications fX�;�
0

; Xeg�;� 0;e2Sn;n�0

satisfy the conditions given by the reflections of diagrams in Figure 35 with
respect to a horizontal axis.

In order to prove Theorem 4.5, we first need to show that the symmetric monoidal
bicategory XBPD is an unbiased semistrict symmetric monoidal 2–category. Recall that
objects of XBPD are finite sets of ordered oriented points, 1–morphisms are isotopy
classes of G–linear diagrams, and 2–morphisms are equivalence classes of G–planar
diagrams.

Lemma A.2 Chambering sets , graphs , and foams equip XBPD with the structure of
an unbiased semistrict symmetric monoidal 2–category.

Proof Recall that compositions of morphisms in XBPD are given by the concatenation
of diagrams. Since 1–morphisms are isotopy classes of G–linear diagrams and 2–
morphisms are equivalence classes of G–planar diagrams, the underlying bicategory is

10By an operadic product we mean the composition �.�1; : : : ; �n/.
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3988 Kürşat Sözer

Figure 35: Some of the axioms of an unbiased semistrict symmetric monoidal
2–category.

a strict 2–category. The symmetric monoidal structure of XBPD is cubical by definition.
The transformations ˛, � and � and modifications P;L, M and R are identities since
2–morphisms are equivalence classes of G–planar diagrams. The local models CP
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relations among string diagrams corresponding chambering foams

x

y

t

ˇe

ˇe

Xe

.Xe/�1
ˇe

ˇ��
0

ˇ��
0

ˇ� ˇ�
0

.X�;�
0
/�1

X�;�
0

ˇ��
0

.Xe/�1

ˇe

Xe

ˇ� ˇ�
0

X�;�
0

ˇ��
0

ˇ� ˇ�
0

ˇ� ˇ�
0

.X�;�
0
/�1

.X��
0;e/�1

ˇ��
0

ˇ��
0

ˇe
ˇ�
00

ˇ�
00

Xe;�
00

ˇ��
0

ˇ�
00

X��
0;�00

ˇ��
0�00

ˇ��
0

.X��
0;�00 /�1

ˇ�
00

ˇ��
0 ˇ�

00

.Xe;�
00
/�1

ˇe

ˇ�
00

X��
0;e

ˇ��
0

Figure 36: Relations between string diagrams for unbiased semistrict sym-
metric monoidal 2–categories and the corresponding spatial foams.

and CK4 of chambering foam shown in Figure 20 give two conditions in Figure 35,
left. For the remaining two conditions, recall that a chambering graph can only have
univalent and trivalent vertices.

Let .C; ˇ;X/ be an unbiased semistrict symmetric monoidal 2–category. The invert-
ibility of modifications fX�;�

0

; Xeg�;� 0;e2Sn;n�0 and axioms of unbiased semistrict
symmetric monoidal 2–category generate relations between structure morphisms. These
relations are given11 in Figure 36, left, in terms of string diagrams. Since chamber-
ing foams are responsible for the relations between boundary chambering graphs, in
Figure 36, right, chambering foams corresponding to these relations are shown.

A.2 Computadic unbiased semistrict symmetric monoidal 2–categories

To finish the proof of Theorem 4.5, we need to show that the unbiased semistrict
symmetric monoidal 2–category XBPD is computadic. As the next step, we review
computadic unbiased semistrict symmetric monoidal 2–categories and show that XBPD

is an example. Such a 2–category is constructed from a certain presentation (an unbiased
semistrict symmetric monoidal 3–computad), which we call an unbiased semistrict
presentation. This type of presentation P consists of four sets .G0;G1;G2;R/ together
with source and target maps s; t WG1!BWuss.G0/ and s; t WG2!BSuss.G1/, which we

11Different labelings of string diagrams are possible and each possible labeling is a relation.

Algebraic & Geometric Topology, Volume 23 (2023)



3990 Kürşat Sözer

describe below. For a given such P D .G0;G1;G2;R; s; t/, the four sets are respectively
called generating objects, generating 1–morphisms, generating 2–morphisms, and
generating relations among 2–morphisms. The following series of definitions start with
the ingredients of Fuss.P / and continue with the definition of each ingredient in the
given order.

Definition A.3 For a given unbiased semistrict presentation P D .G0;G1;G2;R; s; t/,
the objects of Fuss.P / are binary words in G0, the 1–morphisms are binary sentences
in G1, and the 2–morphisms are equivalence classes of paragraphs in G2.

Definition A.4 Let G0 be a set. The set BWuss.G0/ of binary words in G0 contains
the symbol {, the elements of G0, and ˝ products, ie a ˝ b 2 BWuss.G0/ for all
a; b 2 BWuss.G0/ such that, for any a 2 G0, the elements { ˝ a, a, and a˝ { are
identified.

Since binary words in G0 form the objects of Fuss.P /, the set G1 of generating 1–
morphisms is equipped with source and target maps s; t W G1! BWuss.G0/.

Definition A.5 Let G1 be a set equipped with maps s; t W G1! BWuss.G0/. The set
BWuss.G1/ of binary words in G1 contains elements of G1, ida and ˇ�

a;�.a/
for any

a 2 BWuss.G0/ and �Sn, where a is a word of length n. The extension of the source
and target maps to these elements are s.ida/ D a, t .ida/ D a, s.ˇ�

a;�.a/
/ D a and

t .ˇ�
a;�.a/

/D �.a/.

Definition A.6 Let BWuss.G1/ be a set of binary words in G1 with s; t W BWuss.G1/!

BWuss.G0/. The set BSuss.G1/ contains binary words in G1, compositions g ı f
for any f; g 2 BWuss.G1/ with s.g/ D t .f /, and monoidal products f ˝ g for any
f; g 2 BWuss.G1/. The source and target maps extend naturally to BSuss.G1/ by

� s.g ıf /D s.f / and t .g ıf /D t .g/ for any g ıf 2 BSuss.G1/,

� s.f ˝g/D s.f /˝ s.g/ and t .f ˝g/D t .f /˝ t .g/ for any f; g 2BWuss.G1/.

The set BSuss.G1/ of binary sentences in G1 is the quotient BSuss.G1/=�, where� is the
smallest equivalence relation generated by the identifications f ˝ id{ � f , f � id{˝f,
f ı ida � f � idb ıf, and f ˝f 0 � .idb˝f 0/ı .f ˝ ida0/ for any f; f 0 2BSuss.G1/

with s.f /D a, t .f /D b, s.f 0/D a0, and t .f 0/D b0 (see [22, Lemma 2.81]).
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symbol source target

idf f f

�˝
.f1;f2/;.f3;f4/

.f1˝f2/ ı .f3˝f4/ .f1 ıf3/˝ .f2 ıf4/

�˝
a;a0

ida˝a0 ida˝ ida0

rˇ
�
f

f ıˇ� ˇx� ıf

lˇ
�
f

ˇ� ıf f ıˇx�

X�;�
0

.ˇ� � 1/ ıˇ�
0

ˇ��
0

Xe id ˇe

Table 1: Binary words in G2.

Since binary sentences in G1 form the 1–morphisms of Fuss.P /, the set G2 of generating
2–morphisms is equipped with source and target maps s; t W G2! BSuss.G1/ satisfying
sısD sıt and tısD tıt . Then, an unbiased semistrict symmetric monoidal 2–computad
PG consists of generating sets G0, G1 and G2 together with maps s; t WG1!BWuss.G0/,
and s; t W G2! BSuss.G1/ satisfying s ı s D s ı t and t ı s D t ı t .

Definition A.7 Let G2 be a set equipped with s; t WG2!BSuss.G1/ satisfying sısD sıt
and t ı s D t ı t . The set BWuss.G2/ of binary words in G2 contains every element
of G2 and the symbols in Table 1 for every f 2 BWuss.G1/ and every f1; f2; f3; f4 2
BSuss.G1/ with s.f1/ D t .f3/ and s.f2/ D t .f4/, and for all �; e 2 Sn; x� 2 Sm
for n;m � 0. Moreover, BWuss.G2/ contains the inverses of symbols in Table 1
except for symbols containing the ˇ� . The set of preparagraphs PGuss.G2/ is con-
structed from BWuss.G2/ by adding compositions and monoidal products as above.
Similar to BSuss.G1/, there are certain identifications on PGuss.G2/ generated by
�˝
.id;f2/;.f3;f4/

D id, �˝
.f1;f2/;.f3;id/

D id and �˝
.a;a0/

D id for all f1; f2; f3; f4 2
Buss.G1/ and a; a0 2 BWuss.G0/. We consider the smallest equivalence relation �
on PGuss.G2/ generated by these identifications along with identifications

fp ıp�1 D idt.p/; p
�1
ıp D ids.p/gp2PGuss.G2/

and those for ˇ and X coming from the definition of unbiased semistrict symmetric
monoidal 2–category. The quotient set is denoted by PGuss.G2/ and called the set of
paragraphs in G2.

Definition A.8 The set R of generating relations among 2–morphisms for an unbiased
semistrict symmetric monoidal 2–computad PG D .G0;G1;G2; s; t/ consists of pairs
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.F;G/ of paragraphs in G2 in F.PG/ with s.F /D s.G/ and t .F /D t .G/. An unbiased
semistrict presentation or unbiased semistrict symmetric monoidal 3–computad P

consists of an unbiased semistrict symmetric monoidal 2–computad PG and a set R of
generating relations among 2–morphisms for PG.

The 2–morphisms of the computadic unbiased semistrict symmetric monoidal 2–
category Fuss.P / are the o–equivalence classes of paragraphs in G2, where o is the
smallest equivalence relation on PGuss.G2/ such that o is generated by R and closed
under compositions and monoidal products. An unbiased semistrict symmetric monoidal
2–category .C; ˇ;X/ is called computadic if there exists a strict symmetric monoidal
equivalence F W Fuss.P /! C for an unbiased semistrict presentation P.

In simpler terms, Fuss.P / can be described as follows. The objects of Fuss.P / are words
in G0. There are two kinds of elementary 1–morphisms, which can be described as

(i) ˇ�
a;�.a/

W a! �.a/, where � 2 Sn for n� 0 and a is a word of length n,

(ii) ida˝f ˝ idb , where f 2 G1 and a; b 2 BWuss.G0/,

so that nonidentity 1–morphisms of Fuss.P / are given by compositions of elementary 1–
morphisms. The 2–morphisms of Fuss.P / are the equivalence classes of string diagrams,
where two string diagrams are equivalent if they are related by finitely many (local)
moves which come from the generating relations R, Figures 35 and 36, and the naturality
of ˇ and X with generating morphisms. Compositions of morphisms are given by
horizontal and vertical concatenations of string diagrams while the (cubical) monoidal
product is given by stretching out diagrams from different horizontal directions and
merging them (see Figure 24).

Example A.9 Consider an unbiased semistrict presentation

XP D .XG0;XG1;XG2;XR/

whose generating sets are given as XG0 D f�C; ��g, XG1 D f F
g
2 ; F

g
1 ; Pg ; Ng g, ie

G–linear diagrams of f gC
� ; g �

C; CC
g ;� �

g gg2G without chambering sets,
and XG2 consists of G–planar diagrams without chambering graphs of generating
2–morphisms in Figure 25. The set of relations XR consists of pairs of G–planar
diagrams corresponding to pairs of h2i–X–surfaces in Figure 26.

An object of Fuss.XP / is either { or words in �C and ��. Each 1–morphism is a
composition of the following two types of elementary 1–morphisms: ˇ�

a;�.a/
, where
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� 2 Sn and a is a word of length n; and a G–linear diagram whose 1–morphism is
labeled with ida1˝� � �˝f˝� � �˝idan for some 0<k�n, where ai is either �C or �� and
f 2G1. Here we use id

�C
D Pe , id��D Ne , and f ˝f 0D .idb˝f 0/ı.f ˝ida0/. The

2–morphisms of Fuss.XP / are equivalence classes of paragraphs PGuss.XG2/, where
the equivalence relation is generated by the set of generating relations XR (see Figures
17, 18, 19, and 26), and the string diagrams are given in Figures 22, 35, and 36.

A.3 Proof of Theorem 4.5

Note that the string diagram interpretation of elements of PGuss.XG2/ coincides with
the string diagram interpretation of 2–morphisms of XBPD except for (possible) black
points on G–linear diagrams (see Figure 14). More precisely, the sets of labels for
regions coincide, in both string diagrams there are two types of 1–morphisms whose sets
of labels and possible intersecting patterns coincide, and in both string diagrams there
are three types of vertices whose sets of labels coincide for each type of vertex. Lastly,
equivalence relations on both string diagrams are generated by the same local moves
or, equivalently, by the same movie moves. This observation suggests an isomorphism
between Fuss.XP / and XBPD, namely a symmetric monoidal equivalence preserving
the unbiased semistrict symmetric monoidal structures. The following lemma shows
that this is indeed the case and finishes the proof of Theorem 4.5:

Lemma A.10 There exists a canonical isomorphism‚ WFuss.XP /!XBPD of unbiased
semistrict symmetric monoidal 2–categories.

Proof Comparing the descriptions of unbiased semistrict symmetric monoidal 2–
categories Fuss.XP / and XBPD given above, it is not hard to define the 2–functor ‚.
On the level of objects ‚ maps { to the empty set and words in set f�C; ��g to the finite
ordered oriented points given by the words.

On 1–morphisms, it is enough to specify the images of elementary 1–morphisms
fˇ� ; ida1 ˝ � � � ˝ f ˝ � � � ˝ idang, where � 2 Sn, n � 0, f 2 XG1, and ai 2 f�C; ��g
for 1 � i � n. For � 2 Sn and a word a, the 1–morphism ‚.ˇ�

a;�.a/
/ is a G–linear

diagram whose chambering set has only one element labeled by ˇ� . The latter 1–
morphism is mapped to a G–linear diagram described in Example A.9. Recall that
1–morphisms of Fuss.XP / are equivalence classes determined by certain identifications
and 1–morphisms of XBPD are isotopy classes of G–linear diagrams. It is not hard to
see that the above assignments are well defined on 1–morphisms.
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The 2–functor ‚ maps the equivalence class ŒP � of a paragraph P 2 PGuss.XG2/=� to
the equivalence class of the string diagram corresponding to P. This assignment makes
sense because, as mentioned in Example A.9, any representative string diagram can be
interpreted in both 2–categories. Since in both the 2–categories Fuss.XP / and XBPD

string diagrams are considered up to the same lists of local moves (movie moves), this
assignment is well defined.

We use the Whitehead theorem for symmetric monoidal bicategories (Theorem 4.3)
to show that ‚ is a symmetric monoidal equivalence. It is clear that ‚ is essentially
surjective on objects. We claim that ‚ is essentially full on 1–morphisms. To prove
this, it is enough to show that every G–linear diagram is isomorphic to a composition
of 1–morphisms f‚.ˇ�

a;�.a/
/;‚.ida1 ˝ � � � ˝ idan/;‚.ida1 ˝ � � � ˝ f ˝ � � � ˝ idan/g

for some n� 0, � 2 Sn, and f 2XG1. For a given G–linear diagram it is obvious how
to write it as a composition of these diagrams except for extra black points. Recall that
when we compose G–linear diagrams we do not remove black points along which two
diagrams are concatenated. However, there are invertible G–planar diagrams which
remove these points (see Figure 10). Therefore, up to invertible 2–morphisms, every
G–linear diagram can be written as a composition of the above 1–morphisms.

Recall that G–planar diagrams are formed using generic maps and the X–manifold
data of cobordism type h2i–X–surfaces. Thus, any G–planar diagram can be obtained
from generating 2–morphisms in Figure 25 under horizontal and vertical compositions,
and symmetric monoidal product operation. This implies that, for any G–planar
diagram, there exists a paragraph such that their equivalence classes are matched by ‚.
Consequently, � is fully faithful on 2–morphisms.

Hence, the Whitehead theorem implies that ‚ is an equivalence. By definition, ‚
preserves the unbiased semistrict symmetric monoidal structures. That is, XBPD is a
computadic unbiased semistrict symmetric monoidal 2–category.
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