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Efficient multisections of odd-dimensional tori

THOMAS KINDRED

Rubinstein and Tillmann generalized the notions of Heegaard splittings of 3–manifolds
and trisections of 4–manifolds by defining multisections of PL n–manifolds, which
are decompositions into kD

�
1
2
n
˘
C1 n–dimensional 1–handlebodies with nice inter-

section properties. For each odd-dimensional torus T n, we construct a multisection
which is efficient in the sense that each 1–handlebody has genus n, which we prove is
optimal; each multisection is symmetric with respect to both the permutation action
of Sn on the indices and the Zk translation action along the main diagonal. We also
construct such a trisection of T 4, lift all symmetric multisections of tori to certain
cubulated manifolds, and obtain combinatorial identities as corollaries.

57K50, 57M99, 57N99, 57R10, 57R15; 05A10

1 Introduction

Every closed 3–manifold1 X admits a decomposition into two 3–dimensional 1–
handlebodies2 glued along their boundaries. Gay and Kirby extended this classi-
cal notion of Heegaard splittings by proving that every closed 4–manifold admits
a trisection, ie a decomposition X D

S
i2Z3

Xi where each Xi is a 4–dimensional
1–handlebody, each Xi \XiC1 is a 3–dimensional 1–handlebody, and X0\X1\X2
is a closed surface. Rubinstein and Tillmann [9] then extended these decompositions to
arbitrary dimension by proving that every closed (PL) manifold of arbitrary dimension
admits a PL multisection:

Definition 1.1 A PL multisection of a closed manifold X of dimension nD 2k � 1
(resp. 2k� 2) is a decomposition X D

S
i2Zk

Xi , where:

1Unless stated otherwise, all manifolds are piecewise-linear (PL), compact, connected, and orientable. A
manifold X is closed if @X D¿. A general reference by Rourke and Sanderson is [8].
2A d–dimensional h–handlebody is a d–manifold obtained by gluing d–dimensional r–handles for
various r D 0; : : : ; h. Since we work in the PL category, the gluing maps must be PL and the attaching
regions must be PL submanifolds.
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the Creative Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing
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� Each Xi is an n–dimensional 1–handlebody.

�
T
i2Zk

Xi is a closed .nC1�k/–dimensional submanifold.

�
T
i2I Xi is an .nC1�jI j/–dimensional jI j– (resp. (jI j�1)–) handlebody for

each I � Zk with 2� jI j � k� 1.3

One may define smooth multisections of smooth manifolds analogously: the only extra
condition is that, for each nonempty I � Zk , the inclusion of XI D

T
i2I Xi into X

is a smooth embedding, with corners.4 Lambert-Cole and Miller proved that every
smooth 5–manifold admits a smooth trisection [6]. In dimensions n� 6, the topic is
wide open. In particular:

Question 1 Does every closed smooth manifold of arbitrary dimension admit a smooth
multisection?

The distinction between PL multisections and smooth ones comes down to that of PL and
smooth handle decompositions.5 This is because any PL multisection X D

S
i2Zk

Xi

gives rise to a nice PL handle decomposition (see Proposition 2.5) coming from handle
decompositions of the variousXI ; requiring each inclusionXI ,!X to be smooth (with
corners) ensures that the gluings in this handle decomposition are smooth. Henceforth,
unless stated otherwise, all multisections are PL.

The topology of a closed manifold X of dimension n¤ 2 bounds the efficiency of its
multisection as follows. Let g.Xi / denote the genus of Xi .6

Definition 1.2 The efficiency of a multisection X D
S
i2Zk

Xi is

1C rank�1.X/
1Cmaxi g.Xi /

:

A multisection is efficient if its efficiency is 1.

3Rubinstein and Tillmann state this condition differently, requiring that each
T
i2I Xi is an .nC1�jI j/–

dimensional submanifold with an jI j- (resp. .jI j�1/-) dimensional spine, where a spine of a manifoldN is
a subpolyhedron P � int.N / onto which N collapses. Certainly any h–handlebody has an h–dimensional
spine. Conversely, given a spine P of N , we may assume that N is triangulated and P is a simplicial
subcomplex which admits no elementary collapses; thenN is PL homeomorphic to a regular neighborhood
R of P in N , and R has handle decomposition consisting of one r–handle for each r–simplex in P .
4More precisely, for nonempty I � Zk , the set of corner points of XI must be corners.XI / DS
i;j…I Ii¤j XI \Xi \Xj :

5While any smooth structure determines a (smooth) handle decomposition, and conversely, a PL handle
decomposition does not necessarily determine a smooth structure.
6Xi is an n–dimensional 1–handlebody, so we haveXi Š \g .S1�Dn�1/ for some gD g.Xi /. (Through-
out, we denote PL homeomorphism byŠ.)
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We will show:

Corollary 2.7 In any dimension n¤ 2, no multisection of any manifold has efficiency
greater than 1, and in any efficient multisection X D

S
i2Zk

Xi , all Xi have the same
genus , g.Xi /D rank�1.X/.7

This notion of an efficient multisection generalizes a notion introduced by Lambert-Cole
and Meier in [5]. They call a trisection of a simply connected 4–manifold X efficient if
the genus of the central surface† equals b2.X/. Indeed, one always has g.†/� b2.X/,
and equality holds if and only if each piece of the trisection is a 4–ball.

We close the introduction with an outline of the paper.

� Section 2 establishes several general properties of multisections.

� Section 3 begins a detailed investigation of multisections of odd-dimensional tori,
starting with detailed descriptions of the multisections of T n for nD 3; 4; 5. Roughly
stated, the main result is:

Theorem 7.10 Each nD .2k�1/–torus admits an efficient multisection which is sym-
metric with respect to the Sn permutation action on the indices and the Zk translation
action along the main diagonal.

The full version of Theorem 7.10 gives a simple expression (1) for each piece Xi of this
multisection. The hard part is describing a handle decomposition of XI D

T
i2I Xi

for arbitrary n and I ¤ Zk .

� Section 4 introduces three types of building blocks; under our main construction,
each handle of each XI will be a product of such blocks.

� Section 5 describes further examples of XI under our construction, each featuring a
new complication in its handle decomposition.

� Section 6 proves several combinatorial facts about our main construction. In par-
ticular, Section 6.2 proves that T n D

S
i2Zk

Xi , and Section 6.4 establishes a closed
expression (2) for arbitrary XI . Also, Section 6.3 establishes two combinatorial
corollaries, which may be of independent interest.

7In dimension two, efficiency is strictly bounded above by 2; this bound is sharp, since any surface of
even genus g admits a multisection with efficiency .1C 2g/=.1Cg/.
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� Section 7 describes a handle decomposition of arbitrary XI from our main construc-
tion, confirms the details of this decomposition, shows that the central intersectionT
i2Zk

Xi is a closed k–manifold, and puts everything together to prove Theorem 7.10.

� Section 8 extends Theorem 7.10 to certain cubulated manifolds.

� Appendix A features tables, several detailing follow-up examples for the complica-
tions introduced in Sections 3 and 5, others detailing aspects of the handle decomposition
described in Section 7.1.

� Appendix B describes four other ways one might try to multisect T n.

Acknowledgments Thank you to Mark Brittenham, Charlie Frohman, Hugh Howards,
Peter Lambert-Cole, and Maggie Miller for helpful discussions. Thank you to the
referee for numerous suggestions to improve the clarity and exposition of the paper.
Special thanks to Alex Zupan for helpful discussions throughout the project, especially
during its early stages, when we collaborated to find efficient trisections of T 4 and T 5.

2 Multisections and their efficiency

In this section, we describe a way of obtaining a (PL) handle decomposition of a
manifold given a multisection (see Proposition 2.5), and we deduce, with the exception
of 2–manifolds, that no multisection has efficiency greater than 1 (see Corollary 2.7).
We begin, however, by describing examples of multisections in arbitrary dimension.

2.1 Simple examples of multisections

Example 2.1 For nD 2k� 1, the n–sphere

Sn D @

k�1Y
iD0

D2 D

k�1[
iD0

� i�1Y
jD0

D2 �S1 �

k�1Y
jDiC1

D2
�

admits a multisection in which each

Xi D

i�1Y
jD0

D2 �S1 �

k�1Y
jDiC1

D2

is an n–dimensional 1–handlebody of genus 1. In dimension 3, this is the genus-1
Heegaard splitting of S3 D D2 � D2 with central surface S1 � S1. In arbitrary

Algebraic & Geometric Topology, Volume 23 (2023)
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dimension n, the central intersection is the k–torus
Qk�1
jD0 S

1, and more generally, for
each I � Zk with 1� jI j D `� k� 1, the intersection

XI D
\
j2I

Xi D

k�1Y
jD0

�
S1 if j 2 I;
D2 if j … I

�
Š

`�1Y
jD0

S1 �

k�1Y
jD`

D2 Š T ` �D2.k�`/

is a thickened `–torus. In dimension 5, Lambert-Cole and Miller use this construction
and a second trisection of S5, whose central intersection is a 3–sphere rather than a
3–torus, to show that, unlike Heegaard splittings of 3–manifolds and trisections of
4–manifolds, trisections of a given 5–manifold need not be stably equivalent [6].

Example 2.2 [9] Using homogeneous coordinates Œz0 W � � � W zk�1� on CPk�1, one
can define a multisection by

Xi D fŒz0 W � � � W zk�1� W jzi j � jzj j for j D 0; : : : ; k� 1g:

Then each XI with jI j D ` is related by permutation to a thickened torus

`�1\
iD0

Xi D

�
Œ1 W z1 W � � � W zk�1�

ˇ̌̌
jzj j D 1 for j D 1; : : : ; `� 1;
jzj j � 1 for j D `; : : : ; k� 1

�
Š T `�1 �D2.k�`/:

In particular, the central intersection is the k–torus

fŒ1 W z1 W � � � W zk�1� W jz1j D � � � D jzk�1j D 1g:

These symmetric multisections are also efficient, since each Xi has genus 0.

2.2 General properties of multisections

Proposition 2.3 Let Zi be an n–dimensional hi–handlebody, i D 1; 2, and let
� W Y1 ! Y2 glue compact Yi � @Zi , such that Y1 Š Y2 is an h–handlebody. Then
Z DZ1[� Z2 is an h0–handlebody for h0 Dmaxfh1; h2; hC 1g.

Proof By taking a regular neighborhood N of Y D �.Y1/ D �.Y2/ in Z, where
N � Y � I , we may identify Z n int.N / with Z1 t Z2, which is a 2–component
h00–handlebody, where h00Dmaxfh1; h2g. Then, for each i–handle H �Di �Dn�1�i

in Y for 0� i � h, we can glue on H � I along @.Di � I /�Dn�1�i Š S i �Dn�1�i ,
and so attachingH�I is the same as attaching an .iC1/–handle, where iC1�hC1.

Algebraic & Geometric Topology, Volume 23 (2023)
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Proposition 2.4 Let X D
S
i2Zk

Xi be a multisection of a closed manifold of dimen-
sion nD 2k� 1 (resp. nD 2k� 2). Then for each 1� j � i � k� 1

j�1[
tD0

Xt \

i\
tDj

Xt

is a .2kCj�i�2/–dimensional .iCj /–handlebody (resp. .2kCj�i�3/–dimensional
.iCj�1/–handlebody).

Proof We address the odd-dimensional case, arguing by lexicographical induction
on .i; j /. The even-dimensional case follows analogously. When .i; j /D .1; 1/, the
proposition is true by definition, since X0\X1 is a 2–handlebody.

Let .i; j />.1; 1/. Assume, for each .r; s/<.i; j /, that .X0[� � �[Xs�1/\Xs\� � �\Xr
is a .2kCs�r�2/–dimensional .rCs/–handlebody. Let

Z1 D

j�2[
tD0

Xt \

i\
tDj

Xt and Z2 D

i\
tDj�1

Xt ;

so that
j�1[
tD0

Xt \

i\
tDj

Xt DZ1[Z2:

So, by induction,Z1 is a .2kCj�i�2/–dimensional .iCj�2/–handlebody, and, by the
definition of multisection, Z2 is a .2kCj�i�2/–dimensional .iC1�j /–handlebody.
Further,

Z1\Z2 D

j�2[
tD0

Xt \

i\
tDj�1

Xt ;

which, by induction, is a .2kCj�i�3/–dimensional .iCj�1/–handlebody. Therefore,
by Proposition 2.3, Z1[Z2 is a .2kCj�i�2/–dimensional h–handlebody, where

hDmaxfi C j � 2; i C 1� j; i C j g D i C j:

Proposition 2.5 Let X D
S
i2Zk

Xi be a multisection of a closed manifold of dimen-
sion nD 2k� 1 (resp. nD 2k� 2). Then X admits a handle decomposition in which
each Xj contributes only r–handles for r � 2j C 1 (resp. r � 2j ).

Proof We address the odd-dimensional case; the even-dimensional case follows
analogously. Arguing by induction on i , we will show that X0 [ � � � [Xi admits a
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handle decomposition in which each Xj contributes only r–handles for r � 2j C 1.
The base case is trivial. For the induction step, consider

.X0[ � � � [Xi�1/[.X0[���[Xi�1/\Xi
Xi :

By induction, X0[ � � � [Xi�1 admits a handle decomposition in which each Xj con-
tributes only r–handles for r �2jC1. Extend this to the required handle decomposition
ofX0[� � �[Xi as follows. LetN be a collared neighborhood of .X0[� � �[Xi�1/\Xi
in Xi . As in the proof of Proposition 2.3, first construct the disjoint union

.X0[ � � � [Xi�1/t .Xi n int.N //;

thereby contributing 0– and 1–handles to Xi , as Xi n int.N / is PL homeomorphic
to Xi . Second, glue in N , thereby contributing r–handles for r D 1; : : : ; 2i C 1, since
.X0[ � � � [Xi�1/\Xi is a 2i–handlebody by Proposition 2.4.

2.3 Efficiency of multisections

Next, we consider the efficiency of multisections in light of Proposition 2.5. Recall
Definition 1.2.

Proposition 2.6 In dimension n¤ 2, any multisection X D
S
i2Zk

Xi obeys

min
i2Zk

g.Xi /� rank�1.X/:

Proof Given a multisection of X , label the pieces so that g.Xk�1/� g.Xi / for all i .
Construct a handle structure on X as guaranteed by Proposition 2.5. All the n– and
.n�1/–handles are in Xk�1, since n ¤ 2. Flip X upside down. Now all the 0– and
1–handles are in Xk�1, so

rank�1.X/� rank�1.Xk�1/D g.Xk�1/D min
i2Zk

g.Xi /:

Corollary 2.7 In any dimension n¤ 2, no multisection of any manifold has efficiency
greater than 1, and in any efficient multisection X D

S
i2Zk

Xi , all Xi have the same
genus , g.Xi /D rank�1.X/.

3 Motivating examples

In this section, we describe our multisections of T 3, T 4, and T 5 in detail. We also
establish notation that will be used throughout the rest of the paper.

Algebraic & Geometric Topology, Volume 23 (2023)
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Figure 1: A Heegaard splitting of T 3.

3.1 Intuitive approach to T 3, T 4, and T 5

Figure 1 illustrates an efficient Heegaard splitting of the 3–torus, which suggests
viewing T 3 as .R=2Z/3; then the splitting is determined by a partition of the eight
unit cubes with vertices in the lattice .Z=2Z/3. Moreover, this partition satisfies two
symmetry properties. First, the permutation action of S3 on the indices in T 3 fixes
each piece of the splitting. Second, the Z2 translation action along the main diagonal
of T 3 switches the two pieces: Xi C .1; 1; 1/DXiC1.

How might one construct efficient trisections of T n for n D 4; 5 with symmetry
properties analogous to Figure 1’s splitting of T 3? To begin, one might view these
T n as .R=3Z/n — rather than, say, .R=2Z/n, because we seek a trisection rather than
a splitting — and seek an appropriate partition of the 3n unit cubes with vertices in
the lattice .Z=3Z/n. From now on, for brevity, we will refer to these unit cubes as
subcubes of T n.

To start forming this partition, one might assign each subcube Œi; i C 1�n to Xi

(because of the translation action). Next, one might assign subcubes of the forms
Œi; i C 1�n�1Œi C 1; i C 2� and Œi; i C 1�n�1Œi � 1; i � to Xi as well, and extend these
assignments using the permutation action on the indices. At this point, each Xi is
indeed an n–dimensional 1–handlebody, and so the rest of the partition should be
constructed in a way that preserves this fact, while also giving rise to the needed
intersection properties. Figure 2 illustrates this intermediate stage in the case of T 4.8

8All combinatorial data conveyed in Figures 2 and 3 comes from the arrangements of the nine 3�3 squares
outlined in bold; beyond this, the style of the illustration reflects the fact that each pictured subcube is a
4–cube. A model 4–cube is also drawn, next to coordinate axes. The solid axes represent directions in
which abutting subcubes are shown in contact with each other (understanding that the interval that appears
as Œ0; 3� actually represents the circle R=3Z); the dashed axes represent directions in which abutting
subcubes align at a distance in the figure. Similarly, Figure 1 shows a model 3–cube and coordinate axes,
and Figure 5 a model 5–cube and coordinate axes.

Algebraic & Geometric Topology, Volume 23 (2023)
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Figure 2: Start partitioning the subcubes of T 4 D .R=3Z/4 like this, giving
three 4–dimensional 1–handlebodies.

For T 4, the symmetry properties imply that the remaining partition is determined by
the assignments of the subcubes Œ0; 1�2Œ1; 2�Œ2; 3� and Œ0; 1�2Œ1; 2�2. Assigning both
subcubes to X0 and extending symmetrically gives the decomposition of T 4 illustrated
in Figures 3 and 4. Section 3.3 will confirm that this decomposition is indeed a trisection.

Figure 3: Partitioning the 34 subcubes of T 4 D .R=3Z/4 like this gives a
symmetric efficient trisection.

Algebraic & Geometric Topology, Volume 23 (2023)
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t 2 .0; 1/

t 2 .1; 2/

t 2 .2; 3/

Figure 4: In the multisection of T 4 from Figure 3, each slice T 3 � ftg,
t 2 .R=3Z/ nZ3, intersects X0; X1; X2 like this.

A similar approach leads to the decomposition of T 5 shown in Figure 5. Section 3.4
will confirm that this, too, is a trisection.

3.2 Notation

Notation 3.1 Let X; Y �Z be compact subspaces of a topological space. Denote “X
cut along Y ” by X nn Y . In every example where we use this notation, X nn Y equals
the closure of X nY in Z. (The general construction is somewhat more complicated.)

Figure 5: Partitioning the 35 subcubes of T 5 D .R=3Z/5 like this gives a
symmetric efficient trisection.
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Given n D 2k � 1; 2k � 2, view the n–torus T n as .R=kZ/n. Let Sn denote the
permutation group on n elements.

Notation 3.2 Given Ex D .x1; : : : ; xn/ 2 T n and � 2 Sn, write

Ex� D .x�.1/; : : : ; x�.n//:

Also, given U � T n and Ev 2 T n, write

U C Ev D fEuC Ev W Eu 2 U g:

The symmetric group Sn acts on T n by permuting the indices via � W Ex 7! Ex� . Because
we are interested in subsets of T n which are fixed by this action:

Notation 3.3 For any subset U � T n, write

hU i D fEx� W Ex 2 U; � 2 Sng � T
n:

Note, for any U � T n, that hU i is fixed by the action of Sn on T n. We can state our
main result explicitly:

Theorem 7.10 For nD 2k � 1, the n–torus T n D .R=kZ/n D Œ0; k�n=� admits an
efficient multisection T n D

S
i2Zk

Xi defined by

(1) X0 D hŒ0; 1�
2
� � � Œ0; k� 1�2Œ0; k�i; Xi DX0C .i; : : : ; i /; i 2 Zk :

By construction, the decomposition is symmetric with respect to the permutation action
on the indices and the translation action on the main diagonal.

Anticipating the concrete and (somewhat) low-dimensional nature of the examples in
Sections 3 and 5 and Appendix A, we give the first few intervals Œi; i C 1� for i 2 Zk
special notations:

Notation 3.4 Write

Œ0; 1�D˛; Œ1; 2�Dˇ; Œ2; 3�D; Œ3; 4�Dı; Œ4; 5�D"; Œ5; 6�D�; Œ6; 7�D�:

To further abbreviate our notation, we often omit � symbols and use exponents to
denote repeated factors. For example, we can describe the two pieces of the Heegaard
splitting of T 3 from Figure 1 like this:

X0 D ˛
3
[˛2ˇ[˛ˇ˛[ˇ˛2; X1 D ˇ

3
[ˇ2˛[ˇ˛ˇ[˛ˇ2:

Using Notation 3.3, we can further abbreviate this notation:

X0 D ˛
3
[ h˛2ˇi D h˛2Œ0; 2�i; X1 D ˇ

3
[ h˛ˇ2i D hŒ0; 2�ˇ2i:

Algebraic & Geometric Topology, Volume 23 (2023)
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We often omit the braces around singleton factors. For example, in T 3

X0\X1 D hŒ0; 1�� Œ1; 2�� f0gi[ hŒ0; 1�� Œ1; 2�� f1gi D h˛ˇ0i [ h˛ˇ1i:

We also extend Notation 3.3 in the way suggested by the following example:

h0˛iˇ2 D .f0g �˛�ˇ�ˇ/[ .˛� f0g �ˇ�ˇ/:

More precisely, if we decompose T n as a product T nD T n1 �� � ��T np and Ui � T ni

for i D 1; : : : ; p, then

hU1i � � � hUpi D f.Ex
1
�1
; Ex2�2

; : : : ; Exp�p
/ W Exi 2 T ni ; �i 2 Sni

; i D 1; : : : ; pg;

where, extending Notation 3.2 and writing Exi D .xi1; : : : ; x
i
ni
/,

Exi�i
D .xi�i .1/

; : : : ; xi�i .ni /
/:

Starting in dimension 7, some handle decompositions will require subdividing unit
subintervals ˛; ˇ; ; ı; : : : into halves or thirds. Anticipating this:

Notation 3.5 Write

˛� D
�
0; 1
2

�
; ˛C D

�
1
2
; 1
�
; : : : ;

�
��
�
D
�
6; 13

2

�
; �C D

�
13
2
; 7
�

and

˛�3 D
�
0; 1
3

�
; ˛ı3 D

�
1
3
; 2
3

�
; ˛C3 D

�
2
3
; 1
�
; : : : ; �ı3D

�
19
3
; 20
3

�
; �C3 D

�
20
3
; 7
�
:

Because of the symmetry of our main construction under the Zk translation action
on T n, it will suffice, when considering XI from that construction, to allow I to be
arbitrary only up to cyclic permutation. In order to utilize this convenience:

Notation 3.6 Given I � Zk with jI j D ` > 0, write XI D
T
i2I Xi , and write

I D fisgs2Z`
such that

0� i0 < i1 < � � �< i`�1 � k� 1:

Definition 3.7 Let I D fisgs2Z`
as in Notation 3.6. For each r 2 Z`, define I r D

fiC r W i 2 I g �Zk . Write each I r D firs gs2Z`
with 0� ir0 < i

r
1 < � � �< i

r
`�1
� k�1.

Say that I is simple if, for each r 2 Z`, we have I � I r under the lexicographical
ordering of their elements, ie if each Ir ¤ I has some s 2 Z` with it D irt for each
t D 0; : : : ; s� 1 and is < irs .

Notation 3.8 Given simple I D fisgs2Z`
¤ Zk as in Notation 3.6, define

T D fs 2 Z` W is � 1 … I g:

Algebraic & Geometric Topology, Volume 23 (2023)
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Write T D ftrgr2Zm
with 0 D t0 < � � � < tm < ` (see Observation 3.10). For each

r 2 Zm, write Ir D fitr ; : : : ; itrC1�1g. Then

I D I1 t � � � t Im;

and, for each r D 0; : : : ; m� 1, we have jIr j D max Ir C 1�min Ir (each block Ir
comprises consecutive indices) and min IrC1 �max Ir C 2 (the blocks are nonconsec-
utive).

Given i� 2 I (denoted specifically by i�), denote the block Ir containing i� by I�.

Convention 3.9 Throughout, reserve the notations n, k, ˛; : : : , �, ˛�; : : : , �C, ˛�3 ; : : : ,
�C3 , I , XI , `, T , and m for the way they are used in Notations 3.4–3.8, assume, unless
otherwise stated, that I � Zk is simple, and reserve, for any s 2 Z` or r 2 Zm, the
notations is , tr , Ir , i�, and I� for the way they are used in Notations 3.6 and 3.8.

Observation 3.10 Given I ¤ Zk , we have i0 D 0, i`�1 � k � 2, and jI0j � jIr j for
each r 2 Zm; if jI0j D jIr j, then jI1j � jIrC1j.

Given I � Zk and s 2 Z`, write

.i1; : : : ; Ois; : : : ; i`/D .i1; : : : ; is�1; isC1; : : : ; i`/� T
`�1:

We now have enough notation to describe a closed formula for the XI coming from
our main construction (1):

Lemma 6.13 Given nonempty I j Zk , XI is given by

(2)
[
i�2I

�
.i1; : : : ; Oi�; : : : ; i`/

Y
r2Z`

Œir ; ir C 1�
2
� � � Œir ; irC1� 1�

2Œir ; irC1�

�
:

In particular ,

(3)
\
i2Zk

Xi D
[
i�2Zk

�
.0; : : : ; Oi�; : : : ; k� 1/

Y
i2Zk

Œi; i C 1�

�
:

We will prove Lemma 6.13 in Section 6.4.

3.3 Trisection of T 4

The decomposition of T 4 from Figure 3 is given by

(4)
X0 D h˛

2Œ0; 2�Œ0; 3�i D h˛4i [ h˛3ˇi [ h˛3i [ h˛2ˇ2i [ h˛2ˇi;

Xi DX0C .i; i; i; i/:
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Figure 6: A handle decomposition of X0 in Figure 3’s trisection of T 4. Each
of the five handles has a different color.

It is evident from Figure 3 thatX0[X1[X2DT 4. Also, I Df0g and I Df0; 1g are the
only proper subsets of f0; 1; 2gwhich are simple. Therefore, to check that (4) determines
a trisection of T 4 it suffices to prove that X0 is a 4–dimensional 1–handlebody and
X0\X1 is a 3–dimensional 1–handlebody with @.X0\X1/DX0\X1\X2.

Indeed, Figure 6 shows a handle decomposition of X0 in which h˛2Œ0; 2�2i is a 0–
handle and h˛2Œ0; 2�i supplies four 1–handles, each a permutation of h˛2Œ0; 2�i .
More precisely, each 1–handle is given, in terms of some permutation � 2 S4 (using
Notation 3.2), by

(5) fEx� W Ex 2 h˛
2Œ0; 2�ig:

Now consider

(6) X0\X1 D h˛1ˇŒ1; 3�i [ h0˛ˇ
2
i:

We claim that this is a 3–dimensional 1–handlebody in which

� Y1 D h˛1ˇ
2i is the 0–handle;

� Y2 D h0˛ˇ
2i gives six 1–handles, all permutations of Y �2 D h0˛iˇ

2;

� Y3 D h˛1ˇi gives four 1–handles, all permutations of Y �3 D h˛1ˇi .

Figure 7 shows this decomposition of X0\X1:
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Figure 7: A handle decomposition of X0\X1 in our trisection of T 4. The
trisection diagram on @.X0\X1/DX0\X1\X2Dh˛ˇ02i[h˛12i[hˇ01i
has two types of red curves; one of each is bold. The same holds for blue
and green.

� The shape in the center (which looks like a truncated tetrahedron) is the 0–handle
h˛1ˇ2i, comprising 12 cubes, each a permutation of ˛1ˇ2 (see (5) and the paragraph
before it). The interior lattice point is .1; 1; 1; 1/, and each triangular-looking face is a
permutation of 0h1ˇ2i. Each blue segment on @h˛1ˇ2i is a permutation of h˛1i22.

� Each of the four three-pronged pieces is a permutation of 0h˛ˇ2i, glued to the
0–handle along 0h1ˇ2i. The twelve cubes that form these pieces are then glued in pairs:
eg 0˛ˇ2 and ˛0ˇ2 meet along the face 00ˇ2, and the other pairs are permutations of
this. The union of each pair of cubes (a permutation of) Y �2 D h0˛iˇ

2, is a 1–handle
which is glued to the 0–handle along (the corresponding permutation of) h01iˇ2. Note
that Y �2 intersects other permutations of Y �2 , but only within Y �2 \ Y1. Therefore,
attaching Y �2 to Y1 amounts to attaching six 1–handles.
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� Each of the four remaining pieces is a permutation of Y �3 D h˛1ˇi and attaches to
Y1 and Y2, along (the corresponding permutations of) h˛1ˇi2� h˛1ˇ2i and h˛1ˇi0�
h˛ˇ2i0, respectively.

For emphasis, some key details of this decomposition which will be instructive toward
the odd-dimensional case (we will justify some of these details in Section 4) are

Y1 D Y
�
1 D h˛1ˇ

2
i ŠD3;

so Y1 is a 0-handle,

Y �2 D h0˛iˇ
2
ŠD1 �D2;

Y �2 \ .Y2 nn Y
�
2 /� Y

�
2 \Y1 D .@h0˛i/�ˇ

2
D h01iˇ2 Š S0 �D2;

so attaching Y2 to Y1 amounts to attaching a collection of 1–handles, and

Y �3 D h˛1ˇi ŠD
2
�D1;

Y �3 \ .Y3 nn Y
�
3 /� Y

�
3 \ .Y1[Y2/D h˛1ˇi � @ ŠD

2
�S0;

so attaching Y3 to Y1[Y2 amounts to attaching a collection of 1–handles. Thus,X0\X1
is a 4–dimensional 1–handlebody. Note in Figure 7 that @.X0\X1/ is the central surface

(7) X0\X1\X2 D h˛ˇ02i [ h˛12i [ hˇ01i;

which is colored in Figure 7 according to the color scheme from (7). Moreover, the red
(resp. blue, green) line segments in Figure 7 form the “red (resp. blue, green) curves” in
a trisection diagram for this trisection, and so Figure 7 is, in fact, a trisection diagram;
see [2; 7].

Note that what we have actually shown is that Figures 3, 4, and 7 give a combinatorial
description of an efficient trisection of T 4. Thus, since the PL and smooth categories
coincide in dimension 4, T 4 has a smooth structure for which we have described a
trisection. Most likely, this is the standard smooth structure on T 4, but we have not yet
proven this, nor will we in this paper.

One way to prove this would be to describe a (smoothDPL) isotopy (ie a sequence of
handleslides on the central surface) between our trisection and another trisection of the
standard T 4, such as either of those due to Koenig or Williams, the former obtained
by viewing T 4 as T 3 �S1 [4], the latter by viewing T 4 as T 2 �T 2 [11]. There may
well be isotopies between our constructions and theirs, but attempting to construct
such isotopies explicitly is messy, in part because the central surface has genus 10, and
so it remains an open question as to whether or not all efficient trisections of T 4 are
mutually isotopic. In other words: does the following theorem, proven using minimal
surface theory, extend to dimension four?
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Yz Y �z h z glue to

h˛2Œ0; 2�2i h˛2Œ0; 2�2i 0 1
h˛2Œ0; 2�i h˛2Œ0; 2�i 1 2 1

Table 1: X0 from the trisection of T 4.

Theorem 3.11 (Frohman [1]) Up to isotopy, T 3 has a unique minimal-genus Hee-
gaard splitting.

Question 2 Up to isotopy, does T 4 have a unique efficient trisection?

Question 3 Does T 4 admit exotic smooth structures? If it does, then which of these
exotic structures are compatible with efficient trisections?

3.4 Trisection of T 5

The decomposition of T 5 from Figure 5 is given by

(8) X0 D h˛
2Œ0; 2�2Œ0; 3�i; Xi DX0C .i; i; i; i; i/:

The handle decompositions of XI for I Df0g; f0; 1g are quite similar to those from T 4.
Focus first on I D f0g, ie on the handle decomposition of X0. Note the single factor of
Œ0; 3� in (8). As we will explain shortly, the handle decomposition of X0 here comes
from the decomposition of the interval

Œ0; 3�D Œ0; 2�[ ;

and likewise for X0 from the trisection of T 4. These handle decompositions appear
in Tables 1 and 2. These and subsequent tables are organized as follows. In each zth

row, Yz is a union of handles of index h, Y �z is an example of such an h–handle, and
the entry in the column glue to lists those indices z0 for which Y �z glues to Yz0 along
at least one face of codimension 1. The other handles from Yz are related to Y �z by
permutation; for details, see Section 7.1.5.

Note in both Tables 1 and 2 that Y1DY �1 is star-shaped in a particularly nice way (more
detail to come in Section 4), and hence is a ball which we may view as a 0–handle.

J Yz Y �z h z glue to

¿ h˛2Œ0; 2�3i h˛2Œ0; 2�3i 0 1
f0g h˛2Œ0; 2�2i h˛2Œ0; 2�2i 1 2 1

Table 2: X0 from the trisection of T 5.
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Yz Y �z h z glue to

h˛1ˇ2i h˛1ˇ2i 0 1
h0˛ˇ2i h0˛iˇ2 1 2 1
h˛1ˇi h˛1ˇi 1 3 1,2

Table 3: From the trisection of T 4: X0\X1 D h˛1ˇŒ1; 3�i [ h0˛ˇ2i.

J i� Yz Y �z h z glue to

¿ 0 h˛1ˇ3i h˛1ˇ3i 0 1
1 h0˛ˇ3i h0˛iˇ3 1 2 1

f0g 0 h˛1ˇ2i h˛1ˇ2i 1 3 1,2
1 h0˛ˇ2i h0˛iˇ2 2 4 2,3

Table 4: From the trisection of T 5: X0\X1 D h˛1ˇ2Œ1; 3�i [ h0˛ˇ2Œ1; 3�i.

Then Y �2 is the product of the same sort of star-shaped ball with the interval  and glues
to Y1 along the product of that ball with @ . The red  here, and all red henceforth,
indicates a positive contribution to the handle index h.

Next, consider XI for I D f0; 1g from T 4 and T 5. Similarly to the former (recall (6)),
the latter is given by

(9) X0\X1 D h˛1ˇ
2Œ1; 3�i [ h0˛ˇ2Œ1; 3�i:

Handle decompositions are summarized in Tables 3 and 4, which are organized in
largely the same way as Tables 1 and 2.

Regarding the first columns of Table 4, each Yz there corresponds to a pair .J; i�/,
where J � fmin Irg D f0g9 and i� 2 I D f0; 1g. For details see Section 7.1.2.

3.5 The difficulty with T 6

Suppose we try to quadrisect T 6 in the same way, viewing T 6 as .R=4Z/6D Œ0; 4�6=�
and partitioning the 46 resulting subcubes into four classes. The first problem is that
no such partition is symmetric with respect to both the permutation action of Z6 on the
indices and the translation action of Z4 along the main diagonal. To see this, consider
the subcube ˛33. The problem is that

˛33C .2; 2; 2; 2; 2; 2/D 3˛3 � h˛33i:

9Recall from Notation 3.8 that fmin Ir g D fit W t 2 T g D fit 2 I W it � 1 … I g, so eg fmin Ir g D f0g if
I D f0g, I D f0; 1g or I D f0; 1; 2g, and fmin Ir g D f0; 2g if I D f0; 2g.
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Fundamentally, the problem is that k D 4 and nD 2k� 2D 6 are not relatively prime.
(In odd dimensions this trouble does not arise, since k and 2k�1 are relatively prime.)
Perhaps there is a less symmetric way to partition the subcubes of Œ0; 4�6=� which gives
a quadrisection of T 6, but trial and error suggests to the author that this is unlikely.

Conjecture 4 No partition of the subcubes of Œ0; 4�6=� gives a quadrisection of T 6.

Question 5 Does the 6–dimensional torus admit an efficient quadrisection?

4 Star-shaped building blocks

This section introduces three types of building blocks, each of which is PL home-
omorphic to a ball.10 In Section 7, when we describe and then justify the handle
decomposition of arbitrary XI in arbitrary odd dimension, this will be particularly
helpful. The main idea is that we will decompose arbitrary XI into many pieces. Each
piece will be a product of such building blocks, and hence PL homeomorphic to a ball
(see Lemma 7.6). Of course, we will still need to describe how all these balls are glued
together and explain why this gives a handle decomposition.

In fact, we saw all three types of building blocks in Section 3. For example, denoting PL
homeomorphism byŠ, the factors ˛2Œ0; 2�ŠD3, ˛2Œ0; 2�2ŠD4, and ˛2Œ0; 2�3ŠD5

from Tables 1 and 2 are examples of the first type of building block; see (10). The factor
h0˛i ŠD1 of Y �2 in Tables 3 and 4 is an example of the second type of building block;
see (11). The factor h0˛i ŠD2 from Y �4 in Table 4 is an example of the third type,
as are those factors h˛1ˇri ŠDrC1, which appear in four places in Tables 3 and 4.

Given Ep; Eq 2Rn, denote the convex hull of f Ep; Eqg by

Œ Ep; Eq�D ft EpC .1� t /Eq W 0� t � 1g:

Let Ep 2 Y �Rn. Define the scope of Ep in Y to be the largest star of Ep in Y :

scope.Y I Ep/D fEq 2 Y W Œ Ep; Eq�� Y g:

Say that Y is star-shaped about Ep if Y D scope.Y I Ep/. The link of Ep in Y is

lkY . Ep/D fEv 2Rn W jEvj D 1; Œ Ep; EpC "Ev�� Y for some " > 0g:

Thus, Y is a d–dimensional PL submanifold of Rn near Ep if and only if either

� lkY . Ep/Š Sd�1, in which case Ep is in the interior of Y ; or
� lkY . Ep/ŠDd�1, in which case Ep 2 @Y .

10In the PL category, an n–ball Dn is any manifold PL homeomorphic to the standard n–simplex, and an
n–sphere Sn is any manifold PL homeomorphic to @Dn.
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Figure 8: Left to right: h0˛i, h˛Œ0; 2�i, h˛1ˇi, h0˛Œ0; 2�i, and h˛2Œ0; 2�i.

Suppose Y D scope.Y I Ep/ and lkY . Ep/Š Sd�1, so Y is star-shaped about Ep and is a
PL d–submanifold of Rn near Ep. In this situation, we say Y is strongly star-shaped
about Ep if moreover, for every point Eq 2 Y , every point Ex 2 Œ Ep; Eq� n fEqg satisfies
lkY .Ex/Š Sd�1. This extra requirement implies that, for each Eq 2 linkY . Ep/, the ray
from Ep through Eq contains at most one point of @Y . Moreover:

Proposition 4.1 If Y �Rn is compact and strongly star-shaped about Ep 2 Y , then Y
is PL homeomorphic to a compact ball.

Proof By definition, there is a PL homeomorphism � W Sd�1! lkY . Ep/. There is also
a map  W Y nf Epg! lkY . Ep/ given by  W Eq 7! .Eq� Ep/=jEq� Epj.11 Denote the restriction
 j@Y by ‰. The assumptions that Y is compact and strongly star-shaped about Ep imply
that ‰ has a well-defined continuous inverse map, and hence is a PL homeomorphism.
Define a polar coordinate system ˆ W Y !Dd by ˆ W Ep 7! E0 and, for Eq ¤ Ep,

ˆ W Eq 7!
jEq� Epj

j‰�1 ı .Eq/� Epj
���1 ı .Eq/:

This map ˆ is a PL homeomorphism, because the inverse map Dd ! Y is

ˆ�1 W r E� 7! EpC r j‰�1 ı�.E�/� Epj ��.E�/:

In T nD .R=kZ/n, for d � n�1, identify T d D .R=kZ/d with .R=kZ/d �fE0g� T n,
and likewise for T dC1. For any 0<a1� � � � � ad <k (not necessarily integers), define

C1 D

� dY
rD1

Œ0; ar �

�
� T d ;(10)

C2 D

�
f0g �

dY
rD1

Œ0; ar �

�
� T dC1;(11)

11We use the product metric on Rn: if Ep D .p1; : : : ; pn/ and Eq D .q1; : : : ; qn/, then jEq � Epj D
maxi jqi �pi j.
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Figure 9: Left to right: h˛1ˇ2i and h0˛3i ! h0˛2Œ0; 2�i.

and

(12) C3 D

�
Œ0; a1�� fa1g �

dY
rD2

Œa1; ar �

�
� T dC1:

Figures 8 and 9 show low-dimensional examples of these building blocks. In Figure 8,
h˛Œ0; 2�i and h˛2Œ0; 2�i are examples of C1, h0˛i and h0˛Œ0; 2�i are examples of C2,
and h˛1ˇi is an example of C3. In Figure 9, h0˛3i and h0˛2Œ0; 2�i are examples of C2,
and h˛1ˇ2i is an example of C3.

Lemma 4.2 C1, C2, and C3 from (10)–(12) are PL homeomorphic to Dd .

Proof Let bD 1
2
.kCad /. Then C1� Œ0; b�d and C2; C3� Œ0; b�dC1, where b <k, so

we may view C1 as a subset of Rd , and C2 and C3 as subsets of RdC1. Let aD 1
2
a1,

Ep1 D .a; : : : ; a/ 2 Rd , Ep2 D E0 2 RdC1, and Ep3 D .a1; : : : ; a1/ 2 RdC1. Then, for
i D 1; 2; 3, Ci is compact and strongly star-shaped about Epi , with linkCi

. Epi /Š S
d�1,

and hence PL homeomorphic to Dd by Proposition 4.1.

5 Further examples

As noted in the introduction, the hardest part of verifying our multisection of T n, in
arbitrary odd dimension n, is describing the handle decomposition of XI for arbitrary
I � Zk . That task will follow three main steps. First, Lemma 6.13 will establish a
closed formula (2) for arbitrary XI . Second, Section 7.1 will describe how (in several
steps) to decompose XI into pieces, each of which is a product of the building blocks
from Section 4, and will describe an order on these pieces. Third, Section 7.2 will
establish several properties of the resulting decomposition, eventually proving that it is
an appropriate handle decomposition of XI and thus verifying Theorem 7.10.
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J Yz Y �z h z glue to

¿ h˛2Œ0; 2�2Œ0; 3�2Œ0; 4�3i h˛2Œ0; 2�2Œ0; 3�2Œ0; 4�3i 0 1
f0g h˛2Œ0; 2�2Œ0; 3�2Œ0; 4�2"i h˛2Œ0; 2�2Œ0; 3�2Œ0; 4�2i" 1 2 1

Table 5: X0 from the quadrisection of T 7.

To prepare, this section describes a few more examples, each of which confronts and
resolves an additional complication in the handle decomposition of some XI in some
dimension. This section contains no proofs and little narration. Instead, the reader is
encouraged to peruse the tables in order to build intuition for the denser sections that
follow. Indeed, assuming only the correctness of the formula (2), the reader should
now be able to use their understanding of the building blocks from Section 4 to check
the correctness of the handle decompositions, as detailed in the last five columns of the
tables (starting with Yz).

The harder part will be understanding how each handle decomposition has been con-
structed. This is the purpose of the columns in each table which precede Yz , which we
do not attempt to describe in detail until Section 7.

5.1 Quadrisection of T 7

The next several examples come from the decomposition of T 7 given by X0 D
h˛2Œ0; 2�2Œ0; 3�2Œ0; 4�i and Xi D X0 C .i; i; i; i; i; i; i/. The handle decompositions
of XI for I D f0g; f0; 1g, summarized in Tables 5 and 6, respectively, follow the same
pattern in dimension seven (and all higher odd dimensions) as in dimension five (recall
Tables 2 and 4 and the attending discussions). More instructive examples follow.

5.1.1 XI when I D f0; 2g From the quadrisection of T 7, consider

X0\X2 D h˛
2Œ0; 2�2Œ2; 4�i [ h˛2Œ0; 2�22Œ2; 4�i:

J i� Yz Y �z h z glue to

¿ 0 h˛1ˇ2Œ1; 3�3i h˛1ˇ2Œ1; 3�3i 0 1
1 h0˛ˇ2Œ1; 3�3i h0˛ihˇ2Œ1; 3�3i 1 2 1

f0g 0 h˛1ˇ2Œ1; 3�2ıi h˛1ˇ2Œ1; 3�2iı 1 3 1,2
1 hı0˛ˇ2Œ1; 3�2i hı0˛ihˇ2Œ1; 3�2i 2 4 2,3

Table 6: XI for I D f0; 1g from the quadrisection of T 7
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J i� V V � Yz Y �z h z glue to

¿ 0 ¿ ¿ h˛323i ˛3h23i 0 1
2 ¿ h0˛33i h0˛3i3 0 2

{0} 0 ¿ ¿ h˛322ıi ˛3h22iı 1 3 1,2
2 f0g ¿ hıC0˛32i hıC0˛3i2 0 4

f0g hı�0˛32i ı�h0˛3i2 1 5 2,4
f2g 0 f2g ¿ h˛2ˇC23i ˛2hˇC23i 0 6

f2g h˛2ˇ�23i ˛2ˇ�h23i 1 7 1,6
2 ¿ ¿ h0˛2ˇ3i h0˛2iˇ3 1 8 1,2

f0; 2g 0 f2g ¿ h˛2ˇC22ıi ˛2hˇC22iı 1 9 6,8
f2g h˛2ˇ�22ıi ˛2ˇ�h22iı 2 10 3,7,8,9

2 f0g ¿ hıC0˛2ˇ2i hıC0˛2iˇ2 1 11 3,4
f0g h0˛2ˇ2ı�i h0˛2iˇ2ı� 2 12 3,5,8,11

Table 7: XI for I D f0; 2g from the quadrisection of T 7.

Table 7 summarizes a handle decomposition XI D Y1 [ � � � [ Y12. As with XI for
I D f0; 1g, the decomposition of XI for I D f0; 2g is organized largely according to
f.J; i�/ W J � fmin Irg; i� 2 I g. With Y4, Y5, Y7, Y8, Y10, and Y11 here, we have
J n fmin I�g ¤ ¿, requiring us to split a unit interval into subintervals, in this case
halves. Details on how this is done, including the definitions and purposes of the sets
V � � V � I , appear in Section 7.1, especially Table 10, and in Tables 11 and 12 in
Appendix A.

5.1.2 XI when I D f0; 1; 2g Still in dimension seven, consider

X0\X1\X2 D h˛
2Œ0; 2�2Œ2; 4�2Œ2; 5�i [ h˛2Œ0; 2�22Œ2; 4�2Œ2; 5�i:

Table 8 summarizes a handle decomposition XI D Y1[ � � � [Y12. Again, the decom-
position of XI for I D f0; 1; 2g is organized largely according to

f.J; i�/ W J � fmin Irg; i� 2 I g:

Here, we have a block Ir (in this case Ir D I ) with jIr j� 3, requiring us at times to split
a unit interval into thirds, as seen here in Y6–Y8 and Y14–Y16. Details on this and the set
U appear in Section 7.1, especially Table 10, and in Tables 11 and 12 in Appendix A.

Another new complication arises here in Y1–Y4 and Y9–Y12, where i� C 2 2 I�,
requiring us to split certain unit intervals into halves according to a different rule than
in Section 5.1.1. Again, all the rules for splitting unit intervals into halves and thirds
are detailed in Section 7.1, especially Table 10, and in Tables 11 and 12 in Appendix A.
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J i� U V V � Y �z h z glue to

¿ 0 ¿ {1,2} f1g ˛�1hˇC23i 0 1
¿ h˛C1ihˇC23i 1 2 1

{1,2} ˛�h1ˇ�ih23i 1 3 1
{2} h˛C1ˇ�ih23i 2 4 2,3

1 ¿ ¿ ¿ h0˛ihˇ23i 1 5 1,3
2 f1g ¿ ¿ 0˛ı3h1ˇi

3 1 6 5
h0˛�3 ih1ˇi

3 2 7 5,6
0h˛C3 1ˇi

3 2 8 5,6
f0g 0 ¿ {1,2} f1g ı˛�1hˇC22i 1 9 1,6,7

¿ ıh˛C1ihˇC22i 2 10 2,6,8
{1,2} ı˛�h1ˇ�ih22i 2 11 3,6,7
{2} ıh˛C1ˇ�ih22i 3 12 4,6,8

1 ¿ ¿ ¿ hı0˛ihˇ22i 2 13 5,9,11
2 f1g ¿ ¿ hı0i˛ı3h1ˇi

2 2 14 6,13
hı0˛�3 ih1ˇi

2 3 15 7,13,14
hı0ih˛C3 1ˇi

2 3 16 8,13,14

Table 8: XI for I D f0; 1; 2g from the quadrisection of T 7.

5.2 XI when I D f0; 1; 2 ; 3; 5g from T 13

There is one more complication, which arises, first in dimension 11, whenever XI for
I D I1 t � � � t Im, has some Ir

…

i� with jIr j � 3. In fact, though, the difficulty of this
complication only becomes apparent in dimension 13. From the septisection of T 13,
consider XI for I D f0; 1; 2; 3; 5g, which is given by

h˛1ˇ23ı2Œ3; 5�5"2Œ5; 7�i [ h0˛ˇ23ı2Œ3; 5�5"2Œ5; 7�i [ h0˛1ˇ3ı2Œ3; 5�5"2Œ5; 7�i

[ h0˛1ˇ2ı2Œ3; 5�5"2Œ5; 7�i [ h0˛1ˇ23ı2Œ3; 5�"2Œ5; 7�i:

In this example, the new complication arises when i� D 5 and 0 … J , ie in the part of
XI given by

h0˛1ˇ23ı2Œ3; 5�"3i;

part of which appears in the first several Yz in the handle decomposition of this XI ;
see Table 9. The tricky part here is how to order the pieces Yz; see Section 7.1.4,
especially (23).

Also see Table 18 in Appendix A, which summarizes the start of the handle decompo-
sition of XI for I D f0; 1; 2; 3; 4; 6g from T 15
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V � Y �z h z glue to

¿ 0h˛C1ihˇC2ihC3ı3i�3 0 1
f1g h0˛�i1hˇC2ihC3ı3i�3 1 2 1
f1; 2g h0˛�ih1ˇ�i2hC3ı3i�3 1 3 2
f2g 0h˛C1ˇ�i2hC3ı3i�3 2 4 1,3
f2; 3g 0h˛C1ˇ�ih2�ih3ı3i�3 1 5 4
f1; 2; 3g h0˛�ih1ˇ�ih2�ih3ı3i�3 2 6 3,5
f1; 3g h0˛�i1hˇC2�ih3ı3i�3 2 7 2,6
f3g 0h˛C1ihˇC2�ih3ı3i�3 3 8 1,5,7

Table 9: From the septisection of T 13: the start of the handle decomposition
ofXI when I Df0; 1; 2; 3; 5g. Here, J D¿, i�D5, U D¿, and V Df1; 2; 3g.

6 Combinatorics

This section proves several combinatorial facts about the decompositions of T n. In
particular, Section 6.2 proves that T n D

S
i2Zk

Xi , and Section 6.4 establishes a
closed expression (2) for arbitrary XI . Also, Section 6.3 establishes two combinatorial
corollaries, which may be of independent interest but otherwise are not needed in
this paper.

6.1 Notation

Because each Xi from our construction (1) is symmetric under the permutation action
of Sn on the indices in T n, it will often suffice, when considering an arbitrary point
Ex D .x1; : : : ; xn/ 2 .R=kZ/n D T n, to assume that Ex is monotonic in the sense that
x1 � x2 � � � � � xn � kC x1.

Denoting the main diagonal of T n by �, each monotonic point Ex D .x1; : : : ; xn/ 2
T n n� corresponds to a unique point .x1; : : : ; xn/ 2 Rn with 0 � x1 � x2 � � � � �
xn � x1C k < 2k. For such Ex, extend the point .x1; : : : ; xn/ 2 Rn to a point Ex1 D
.xr/r2Z 2RZ by defining, for each r 2 Zk and m 2 Z,

xrCmn D xr Cmk:

We will mainly be interested in 0� x1 � � � � � x2n, where

x2n D xnC k � x1C 2k < 3k:
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With this setup, for any monotonic Ex 2 T n n�, define the following cutoff indices
ar.Ex/; br.Ex/ 2 Z for each r 2 Z:

ar.Ex/Dminfa W xaC1 � rg and br.Ex/Dminfb W xbC1 > rg:

Note that, in all cases, we have a0.Ex/� 0, with equality if and only if xn ¤ k � 0 2
R=kZ. The main point is:

Observation 6.1 Let Ex 2 T n n� be monotonic. Then Ex 2 Œ0; 1�2 � � � Œ0; k� 1�2Œ0; k�
if and only if bs.Ex/� 2s for every s D 0; : : : ; k� 1.

Note that b0.Ex/ � 0 in all cases. In order to apply the principle of Observation 6.1
more broadly, for each r 2 Z write

Exr D .x1Car .Ex/
; x2Car .Ex/

; : : : ; xnCar .Ex/
/:

The point regarding monotonic points off the main diagonal is:

Observation 6.2 If Ex 2 T n n� is monotonic and r 2 Z, then

r � x1Car .Ex/
� � � � � xnCar .Ex/

< r C k;

and the following conditions are equivalent :

� Exr 2 Œr; r C 1�
2 � � � Œr; r C k� 1�2Œr; r C k�.

� brCs.Exr/� 2s for every s D r C 1; : : : ; r C k.

� brCs.Ex/� ar.Ex/C 2s for every s D r C 1; : : : ; r C k.

Observations 6.1 and 6.2 apply more generally:

Observation 6.3 If Ex 2 Xr � T n n�, then there is a permutation � 2 Sn such that
Ex� 2 Œr; r C 1�

2 � � � Œr; r C k� 1�2Œr; r C k� is monotonic.

Note also that either class of cutoff indices provides two-sided bounds for the other class:

Observation 6.4 If Ex 2 T n is nonzero and monotonic and r 2 Z, then

� � � � ar.Ex/� br.Ex/� arC1.Ex/� brC1.Ex/� � � �

with ar.Ex/D br.Ex/ if and only if xar .Ex/C1
… Zk , and br.Ex/D arC1.Ex/ if and only if

xbr .Ex/C1
� r C 1.

Note that xbr .Ex/C1
is the first coordinate in Ex that exceeds r . Here is another convenient

property:
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Observation 6.5 Any nonzero monotonic Ex 2 T n and r 2 Z�0 satisfy

(13) arCk.Ex/D nC ar.Ex/ and brCk.Ex/D nC br.Ex/:

Noting that Xr \�D f.x; : : : ; x/ W x 2 Œr; rC1�g, we can express each Xr in terms of
cutoff indices as follows:

Proposition 6.6 Let Ex 2 T n n� be monotonic , and let r 2 Zk . Then Ex 2Xr if and
only if Exr 2 Œr; r C 1�2 � � � Œr; r C k� 1�2Œr; r C k�. In particular ,

(14) Xr n�D hmonotonic Ex W brCs.Ex/� ar.Ex/C 2s for s D 0; : : : ; k� 1i:

Proof Write Exr D .x1; : : : ; xn/. Note that r �x1�� � ��xn<rCk. To show that Exr 2
Œr; rC1�2 � � � Œr; rCk�1�2Œr; rCk� if and only if Exr 2Xr , we prove both containments.
One is trivial. For the other, suppose Exr … Œr; r C 1�2 � � � Œr; r C k� 1�2Œr; r C k�. Then
Observation 6.2 implies that brCs.Exr/ < 2s for some s D 0; : : : ; k� 1, so

r C s < x2s; : : : ; xn < r C k:

Thus, at least nC 1� 2s of the coordinates of Ex lie in the open interval .r C s; r C k/.
Yet, 2s of the n factors of Œr; r C 1�2 � � � Œr; r C k� 1�2Œr; r C k� are disjoint from that
open interval, which is a contradiction. Observation 6.3 now implies that Ex 2Xr n� if
and only if Ex is an element of the right side of (14).

6.2 The Xr have disjoint interiors and cover T n

Proposition 6.7 With the setup from Theorem 7.10, Xr and Xs have disjoint interiors
whenever 0� r < s � k� 1.

This is implied by Lemma 6.13, but the following proof is much easier than that of the
lemma; we include it for expository reasons.

Proof By the symmetry of the construction, we may assume that r D 0. Assume
for contradiction that the interiors of Xr and Xs intersect. Then Xr \Xs has positive
measure, so there is a monotonic point Ex D .x1; : : : ; xn/ 2X0\Xj such that for every
i D 1; : : : ; n we have xi … Zk .

So ai .Ex/D bi .Ex/ for each i D 1; : : : ; n, by Observation 6.4. In particular, since Ex 2X0,
we have a0 D b0 D 0, and as D bs � 2s by Proposition 6.6. But then, since Ex 2 Xs
and as � 2s, Observation 6.5 and Proposition 6.6 give the following contradiction:

nD nC b0 D bk D bsC.k�s/; n� asC 2.k� s/; n� 2k:
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Lemma 6.8 We have X0[ � � � [Xk�1 D T n.

Proof Let Ex 2 T n. We will prove that Ex 2Xs for some s. If ExD .x; : : : ; x/ 2�, then
Ex 2 Xbxc. Assume instead that Ex 2 T n n�. Also assume without loss of generality
that Ex is monotonic with a0.Ex/D 0. Throughout this proof, denote each as.Ex/ by as
and each bs.Ex/ by bs .

Let s0 D 0, so that as0 D a0 D 0. If bs � 2s D 2s� as0 for all s D 1; : : : ; k� 1, then
Ex 2X0 DXs0 . Otherwise, choose the smallest s1 such that bs1 < 2s1. Thus, bs � 2s
whenever s < s1, so, by Observation 6.4,

2s1� 2� bs1�1 � as1 � bs1 � 2s1� 1:

Continue in this way: for each st , choose the minimum stC1 D st C 1; : : : ; k� 1 such
that bstC1

< ast
C2.stC1� st /, if such stC1 exists. Eventually this process terminates

with some su, so that

� bs � ast
C 2.s� st / whenever st � s � stC1 for t D 0; : : : ; u� 1,

� bs � ast C 2.s� su/ whenever su � s � k� 1, and

� bstC1
< ast

C 2.stC1� st / for each t D 0; : : : ; u� 1.

Hence, for each t D 0; : : : ; u� 1, Observation 6.4 gives

ast
C 2.stC1� 1� st /� bstC1�1 � astC1

� bstC1
� ast

C 2.stC1� st /� 1:

Subtracting ast
from the first, middle, and last expressions gives

2.stC1� st /� 2� astC1
� ast

� 2.stC1� st /� 1:

Therefore, for any t D 0; : : : ; u� 1,

asu � ast
D

u�1X
rDt

.asrC1
� asr /�

u�1X
rDt

.2.srC1� sr/� 1/D 2.su� st /� .u� t /;

asu � ast
� 2.su� st /� 1:

Rearranging gives

(15) asu � 2su � ast
� 2st � 1:

We claim that Ex 2 Xsu . This is true if (and only if) bs � asu C 2.s � su/ for each
sD su; : : : ; suCk�1. Fix some sD k; : : : ; suCk�1. Then st � s�k � stC1�1 for
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some t D 0; : : : ; u�1. By construction, we have bs�k � ast
C2.s�k� st /. Together

with (13) and (15), this gives

bs D bs�kCn� ast
C2.s�k�st /C2k�1D .ast

�2st�1/C2s � .asu�2su/C2s

D asuC2.s�su/:

6.3 Combinatorial corollaries

This subsection establishes two combinatorial corollaries, which may be of independent
interest but otherwise are not needed in this paper.

We have proven that the pieces Xr of the multisection of T n have disjoint interiors and
cover T n. Also, Xr DX0C .r; : : : ; r/, so all Xr have the same number of unit cubes.
Since there are kn unit cubes in T n D .R=kZ/n, each Xr contains kn�1 unit cubes.
By counting these unit cubes a different way, we obtain the following:12

Corollary 6.9 For any nD 2k� 1,

(16) kn�1 D

nX
i0D2

 
n

i0

!
n�i0X

i2D4�i0

 
n� i0

i1

!
n�i0�i1X

i3D6�i0�i1

 
n� i0� i1

i2

!

� � �

n�
Pk�3

jD0 ijX
ik�2D2k�2�

Pk�3
jD0 ij

 
n�

Pk�3
jD0 ij

ik�1

!
:

Note that (16) is also the number of spanning trees of the complete bipartite graph Kj;j
where j D k [10].

Proof X0 consists of kn�1 subcubes, each of the form
Qn
rD1Œwr ; wr C 1� for some

w1; : : : ; wn 2 Zk . For each s D 0; : : : ; k� 2, there are at least 2sC 2 indices among
r D 1; : : : ; n with wr 2 f0; : : : ; sg, and conversely any subcube of that form with this
property will be in X0. (This characterization follows from the expression (1) for X0.)
In (16), is D #fr W wr D sg, so i0 � 2, i0C i1 � 4, and so on.

As noted above, each subcube of T n has the form
Qn
rD1Œwr ; wr C 1� for some

w1; : : : ; wn 2 Zk . Say that two subcubes
Qn
rD1Œwr ; wr C 1� and

Qn
rD1Œw

0
r ; w

0
r C 1�

have the same combinatorial type if .w01; : : : ; w
0
n/ is a permutation of .w1; : : : ; wn/.

Counting combinatorial cube types in three different ways yields:

12By definition, if a; b 2 Z with b < 0, then
�a
b

�
D 0.
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Corollary 6.10 For any nD 2k� 1, we have

(17) k

nX
i0D2

n�i0X
i1Dmaxf0;4�i0g

n�i0�i1X
i2Dmaxf0;6�i0�i1g

� � �

n�
Pk�3

jD0 ijX
ik�2Dmax f0;2k�2�

Pk�3
jD0 ij g

1

D

nX
i0D0

n�i0X
i1D0

n�i0�i1X
i2D0

� � �

n�
Pk�3

jD0 ijX
ik�2D0

1D

 
3k� 2

k� 1

!
:

Proof The first expression is k times the number of cube types in X0, counted using
the same principle and notation as in Corollary 6.9. The second counts the number of
cube types in T n, each of which we may write in the form

Qk�1
rD0Œr; r C 1�

ir , and is
thus characterized by a tuple .i0; : : : ; ik�1/ with

Pk�1
rD0 ir D n. The third counts the

number of cube types in T n by writing a0 D 0 and ak D 3k� 1, and associating each
AD fa1; : : : ; ak�1g � f1; : : : ; 3k� 2g satisfying a1 < � � �< ak�1 with the cube type

kY
iD1

ai�1Y
jDai�1C1

Œi � 1; i �:

See [10] for other interpretations of (17).

6.4 Verification of the formula XI D (2)

Next, we will use the cutoff indices ar.Ex/ and br.Ex/ to verify (2). To prepare this,
we define subsets CI;s � T n as follows. Let I � Zk following Convention 3.9, with
s 2 Z`, and write is D i�. Then define13

(18) CI;s D

� s�1Y
tD0

fitg � Œit ; it C 1�
2
� � � � � Œit ; itC1� 1�

2
� Œit ; itC1�

�
� Œi�; i�C 1�

2
� � � � � Œi�; isC1� 1�

2
� Œi�; isC1�

�

� `�1Y
tDsC1

fitg � Œit ; it C 1�
2
� � � � � Œit ; itC1� 1�

2
� Œit ; itC1�

�
:

Note the “missing” fi�g at the start of the second line; this corresponds to the Oi� in (2).
Observe that the expression on the right side of (2) equals[

s2Z`

hCI;si:

13The first line in (18) contributes no factors to CI;s if s D 0, and likewise for the third line if s D `� 1.
In particular, if I D f0g, then s D 0 and CI;s D Œ0; 1�2 � � � � � Œ0; k� 1�2Œ0; k�, so hCI;si DX0.
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Proposition 6.11 Let I � Zk follow Convention 3.9, s 2 Z`, and CI;s be as in (18).
Suppose Ex 2 T n n� is monotonic. Then Ex 2 CI;s if and only if all of the following
conditions hold :

� bt .Ex/� 2t C 1 for 0� t < i�,
� bt .Ex/� 2t for i� � t � k� 1,
� at .Ex/� 2t for t D i0; : : : ; i�, and
� at .Ex/� 2t � 1 for t D isC1; : : : ; i`�1.

Proof This follows from the definitions upon consideration of each entry in Ex.

Also note the following generalization of Observation 6.3:

Observation 6.12 Let I � Zk follow Convention 3.9, s 2 Z`, and CI;s be as in (18).
Suppose Ex 2 hCI;si. Then there is a permutation � 2 Sn such that Ex� 2 CI;s is
monotonic.

Lemma 6.13 Given nonempty I � Zk (following Convention 3.9),

(19) XI D
[
s2Z`

hCI;si:

In particular ,

(3)
\
i�2Zk

Xi D
[
i�2I

�
.i1; : : : ; Oi�; : : : ; i`/

Y
i2Zk

Œi; i C 1�

�
:

Note that the formula (19) is equivalent to (2).

Proof We argue by induction on `. When `D 1, XI DX0 D hCI;0i D (2).

Assume now that ` > 1. First, we will show that

(20) XI �
[
s2Z`

hCI;si:

Let Ex 2XI , and define I 0 D I n fi`�1g. Note that I 0 is simple and XI DXI 0 \Xi`�1
.

Since Ex 2XI 0 , the induction hypothesis implies that Ex 2 hCI 0;s0i for some s0 2 Z`�1.
By Observation 6.12, there exists � 2 Sn such that Ex� is monotonic and Ex� 2 CI 0;s0 .
Proposition 6.11 implies that

� bt .Ex� /� 2t C 1 for 0� t � is0 � 1,
� bt .Ex� /� 2t for is0 � t � k� 1,
� at .Ex� /� 2t for t D i0; : : : ; is0 , and
� at .Ex� /� 2t � 1 for t D is0C1; : : : ; i`�2.
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If also ai`�1
.Ex� /�2i`�1�1, then Proposition 6.11 implies that Ex� 2CI;s0 . In that case,

we are done proving the forward containment. Assume instead that ai`�1
.Ex� /� 2i`�1.

We now split into two cases:

Case 1 Assume ai`�1
.Ex� /D 2i`�1. We claim that Ex� 2 CI;`�1. By Proposition 6.11,

since Ex� is monotonic, it will suffice to show

(a) bt .Ex� /� 2t C 1 for 0� t � i`�1� 1,

(b) bt .Ex� /� 2t for i`�1 � t � k� 1, and

(c) at .Ex� /� 2t for t D i0; : : : ; i`�1.

Observation 6.5, Proposition 6.6, and the facts that Ex� 2Xi`�1
and ai`�1

.Ex� /D 2i`�1

imply, for each t D 0; : : : ; i`�1� 1, that

bt .Ex� /D btCk.Ex� /�n� 2.t C k/C ai`�1
.Ex� /� 2i`�1�n� 2t C 1:

This verifies (a). Taking t D i`�1; : : : ; k� 1, similar reasoning confirms (b):

bt .Ex� /� ai`�1
.Ex� /C 2.t � i`�1/� 2t:

Finally, we have at .Ex� / � 2t for each t D i0; : : : ; i`�1. For t D i0; : : : ; i`�2, this is
because Ex� 2 XI 0 ; for t D i`�1, it is our assumption in Case 1. Thus, in Case 1, (a),
(b), and (c) hold, and so Ex� 2 CI;`�1.

Case 2 Assume instead that ai`�1
.Ex� /� 2i`�1C 1. Writing Ex� D .x1; : : : ; xn/, we

claim in this case that x1 D x2 D 0� k and that Ey D .x2; : : : ; xn; x1/ 2 CI;`�1. By
similar reasoning to Case 1,

b0.Ex� /D bk.Ex� /�n� ai`�1
.Ex� /C 2.k� i`�1/�n� 2:

Thus, x1 D x2 D 0 � k. Define Ey as above. Note that, since Ex� is monotonic, Ey
is also monotonic. It remains to show that Ey 2 CI;`�1. The arguments are almost
identical to those in Case 1, except that we need to check that ai`�1

. Ey/� 2i`�1. Using
Observations 6.4 and 6.5 and the fact that ai`�1

. Ey/D ai`�1
.Ex� /� 1, we compute

ai`�1
. Ey/D ai`�1

.Ex� /�1� bk�1.Ex� /�2.k�1�i`�1/�1� ak.Ex� /�2kC1C2i`�1

D a0.Ex� /C.nC1�2k/C2i`�1 D a0.Ex� /C2i`�1 � 2i`�1:

This completes the proof of the forward containment (20). For the reverse containment,
keep the same subset I �Zk from the start of the induction step of the proof, fix some
s 2 Z`, let Ex 2 CI;s be monotonic, and let t 2 I D fi0; : : : ; i`�1g. We will show for
each r D 0; : : : ; k� 1 that btCr.Ex/� at .Ex/C 2r . Proposition 6.6 will then imply that
Ex 2Xt . Since t is arbitrary, this will imply that Ex 2XI , completing the proof. We will
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split into cases, but first note, since Ex is monotonic, that Proposition 6.11 implies

� bt .Ex/� 2t C 1 for 0� t � is � 1,
� bt .Ex/� 2t for is � t � k� 1,
� at .Ex/� 2t for t D i0; : : : ; is , and
� at .Ex/� 2t � 1 for t D isC1; : : : ; i`�2.

Case 1 If t C r � k� 1, then btCr.Ex/� 2.t C r/� at .Ex/C 2r .

Case 2 If instead t C r � k and t C r � kC is � 1, then

btCr.Ex/D nC btCr�k.Ex/� nC 2.t C r � k/C 1D 2t C 2r C .nC 1� 2k/;

btCr.Ex/� at .Ex/C 2r:

Case 3 Similarly, if t C r � k and t � isC1, then

btCr.Ex/D nC btCr�k.Ex/� nC 2.t C r � k/D .2t � 1/C 2r C .nC 1� 2k/;

btCr.Ex/� at .Ex/C 2r:

Are there other cases? If there were, they would satisfy tCr � kC is and t � is , giving

kC is � t C r � isC r so k � r:

Yet r � k� 1 by assumption. Therefore, in every case, btCr.Ex/� at .Ex/C 2r , and so
Ex 2 Xit for arbitrary t 2 I . Thus, Ex 2 XI . This completes the proof of the reverse
containment, and thus of the equality in (2)=(19).

7 General construction

This section confirms the remaining details of our main construction and completes
the proof of our main result, Theorem 7.10. Namely, Section 7.1 describes how to
decompose arbitrary XI , and Section 7.2 shows that this decomposition does in fact
give an appropriate handle structure for XI .

Section 7 uses Notations 3.3, 3.6 and 3.8 and Convention 3.9.

7.1 Handle decompositions: the general case

Throughout Section 7.1, fix arbitrary I D fisgs2Z`
D
F
r2Zm

Ir ¤ Zk , following
Convention 3.9. Recall in particular that T D ft 2Z` W it � 1 … I g D ftrgr2Zm

, so that
fmin Irgr2Zm

D fitgt2T .

7.1.1 Overview In Section 7.1, we will decompose XI into handles in several steps
as follows. First, we will decompose XI into pieces XI;J;i� determined by all pairs
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.J; i�/ where J �fmin Irg and i� 2 I . Second, for fixed .J; i�/, we will define disjoint
subsets U; V � I for the purpose of dividing each interval Œi �1; i � for i 2 I into thirds
if i 2 U , into halves if i 2 V , or neither if i … U; V . Third, still fixing .J; i�/, after
dividing certain intervals into halves and thirds as just described, we will decompose
each piece XI;J;i� into pieces XI;J;i�;V �;U ı;U� ; these pieces are determined by all
triples .V �; U ı; U�/ where V � � V , U ı � U , and U� � U nU ı. For each of the
first three steps, we will describe what to do within each block Ir ; then we will take a
product across all blocks and extend by permutations of the indices.

Fourth, we will order the possibilities of the tuple .J; i�; V �; U ı; U�/, thus determining
an order on the pieces XI;J;i�;V �;U ı;U� . The order will be lexicographical, and will
thus require defining orders on fJ � fmin Irgg, fi� 2 I g, fV � � V g, fU ı � U g, and
fU��U nU ıg. Of these five orders, only the third will be somewhat complicated. Once
we define this order, we will use it to relabel the various pieces XI;J;i�;V �;U ı;U� as Yz ,
with z D 1; 2; 3; : : : . Fifth and finally, we will decompose each Yz into handles, one of
which we denote by Y �z (each handleH from Yz is related to Y �z byH DfEx� W Ex 2Y �z g
for some fixed permutation � 2 Sn).

7.1.2 Decomposing XI according to .J; i �/ Fix arbitrary J � fmin Irg and i� 2 I
for all of Section 7.1.2. Momentarily fixing arbitrary r 2 Zm, write

(21) aDmin Ir ; b Dmax Ir ; c Dmin IrC1; and yCr D

c�1Y
jDbC1

Œb; j �2;

and define

(22) Cr D

8̂̂<̂
:̂

Œa� 1; a� if i� D a 2 J;
Œa� 1; a�� fag if i� ¤ a 2 J;

fag if i� ¤ a … J;
(no factor) if i� D a … J

9>>=>>;
�

bY
iDaC1

�
Œi � 1; i �� fig if i ¤ i�;
Œi � 1; i � if i D i�

�
�

�
yCr � Œb; c � 1� if c … J;

yCr if c 2 J

�
:

Now the piece of XI corresponding to the pair .J; i�/ is given by

XI;J;i� D

� Y
r2Zm

Cr

�
:

7.1.3 The index subsets U; V � I Fix arbitrary J � fmin Irg and i� 2 I for all of
Section 7.1.3. For each r 2 Zm, define subsets Ur ; Vr � Ir following Table 10 (or
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i� … Ir ;
a … J

i� … Ir ;
a 2 J

i� 2 Ir ;
i� � b� 2

i� 2 Ir ;
i� � b� 1

Ur ¿ Ir n fa; bg Ir n fa; i�; i�C 1; bg Ir n fa; i�; bg

Vr Ir n fag fbg fi�C 1; bg ¿
Ir n .Ur [Vr/ fag fag n fbg fa; i�g fa; i�; bg

Table 10: The index subsets Ur ; Vr � Ir when Ir D fa; : : : ; bg.

equivalently according to Tables 11 and 12 in Appendix A, which present Ur and Vr
more explicitly). Note that min Ir … .Ur[Vr/ unless Ir ¤ I� and min Ir Dmax Ir 2 J .
See Table 7 for an example of this exceptional case: XI for I D f0; 2g, from T 7.

Define
U D

[
r2Zm

Ur and V D
[
r2Zm

Vr :

Next, decompose each XI;J;i� into pieces XI;J;i�;V �;U ı;U� as follows. Write

2V D fV � � V g and 2U D fU ı � U g;

and, given U ı � U ,
2UnU

ı

D fU� � U nU ıg:

Given V � � V , write V C D V n V �, and given U ı � U and U� � U nU ı, write
UC D U n .U ı[U�/. Then V D V � tV C and U D U� tU ı tUC. Momentarily
fixing r 2 Zm, write a, b, c, and yCr as in (21), and for each i 2 Ir define

�i D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

�
i � 1; i � 2

3

�
if i 2 U�;�

i � 2
3
; i � 1

3

�
if i 2 U ı;�

i � 1
3
; i
�

if i 2 UC;�
i � 1; i � 1

2

�
if i 2 V �;�

i � 1
2
; i
�

if i 2 V C;
Œmax Ir�1; i � 1� if i D a … J [V;
Œi � 1; i � otherwise:

Note that �i � Œi � 1; i � for each i D aC 1; : : : ; b, that �a � Œa� 1; a� if a 2 J , and
that �c D Œb; c � 1� if c … J . Still fixing r 2 Zm, define

XI;J;i�;V �;U ı;U�;r

D

8̂̂<̂
:̂

�a if i� D a 2 J;
�a�fag if i� ¤ a 2 J;
fag if i� ¤ a … J;

(no factor) if i� D a … J

9>>=>>; �
bY

iDaC1

�
�i�fig if i ¤ i�;
�i if i D i�

�
�

�
yCr��c if c … J;
yCr if c 2 J

�
:
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The piece of XI corresponding to the tuple .J; i�; V �; U ı; U�/ is

XI;J;i�;V �;U ı;U� D

� Y
r2Zm

XI;J;i�;V �;U ı;U�;r

�
:

Note that XI;J;i� D
S
V �;U ı;U� XI;J;i�;V �;U ı;U� .

7.1.4 Ordering the pieces XI;J;i�;V �;U ı;U � Next, we define orders � on I , 2V ,
2U , 2UnU

ı

, and fJ � fmin Irgg and use these to order the pieces XI;J;i�;V �;U ı;U�
lexicographically. We then relabel them as Y1; Y2; Y3; : : : .

Order fJ � fmin Irgg and 2U partially by inclusion so that J 0 � J if J 0 ¤ J and
U 0ı � U ı if U 0ı ¤ U ı; extend these partial orders arbitrarily to total orders. Define an
arbitrary total order � on 2UnU

ı

. Partially order I so that i � i 0 if i 2 Ir , i 0 2 Is , and
i �min Ir < is �min Is; extend arbitrarily to a total order on I .

It remains to order 2V . This will be slightly more complicated. To do this, we first
define a total order �r on 2Vr for each r 2 Zm. First consider the case Ir 3 i�, ie
Ir D I�. If i� �max I��1, we have Vr D¿, so there is nothing to do. Otherwise, we
have i� �max I�� 2 and Vr D fi�C 1;max I�g; in this case, order 2Vr as follows:

fi�C 1g �r ¿�r fi�C 1;max I�g �r fmax I�g:

Now consider the case Ir

…

i�. Define �r on 2Vr recursively by V �r �r V
0�
r if

� maxV �r <maxV 0�r , or

� maxV �r DmaxV 0�r and V 0�r n fmaxV 0�r g �r V
�
r n fmaxV �r g.

Note the reversal of order on the line above. If we assume without loss of generality
that Vr D f0; : : : ; bg, we can write the order explicitly:

(23) ¿�r f0g �r f0; 1g �r f1g �r f1; 2g �r f0; 1; 2g �r f0; 2g �r f2g

�r f2; 3g �r f0; 2; 3g �r f0; 1; 2; 3g �r f1; 2; 3g �r f1; 3g

�r � � � �r f0; 1; 2; bg �r f1; 2; bg �r f1; bg �r f0; 1; bg �r f0; bg �r fbg:

See Tables 9 and 18, and the part of Table 16 where i� D 4.

Use the orderings �r on 2Vr to define a partial order on 2V by declaring V � � V 0� if

� V �\ Ir �r V
0�\ Ir for some r , and

� there is no r for which V 0�\ Ir �r V �\ Ir .
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Extend � arbitrarily to a total order on 2V . This determines a total order on

(24) f.J; i�; V
�; U ı; U�/gJ�T;i�2I;V ��V;U ı�U;U��UnU ı ;

and thus on the piecesXI;J;i�;V �;U ı;U� . Relabel these pieces as Yz for zD1; : : : ; #(24),
according to this order.

7.1.5 Decomposing each Yz into handles Each Yz is now given by an expression of
the form

(25)
� nY
rD1

�r

�
;

where each �r is either a closed interval or a singleton. Fixing arbitrary z, use
the expression (25) to define the coarsest equivalence relation � on f1; : : : ; ng that
obeys the following property: whenever �r � �s , we have r � s. Denote the set of
equivalence classes under � by P D fR1; : : : ; Rpg, and for each r D 1; : : : ; p write˝Q

s2Rr
�s
˛
D �r . Define

(26) Y �z D

pY
rD1

�r :

In Section 7.2, we will see that each Y �z is a handle, and that attaching Yz to
Sz�1
sD1 Ys

amounts to attaching a collection of handles, each related to Y �z as follows. Let

G D f� 2 Sn W Ex� 2 Y
�
z whenever Ex 2 Y �z g D SnjR1j

� � � � �SnjRp j

consist of the permutations on the indices of T n which fix Y �z setwise. Then there is a
one-to-one correspondence between the left cosets of G and the handles in Yz:

�G$ fEx� W Ex 2 Y
�
z g:

Example 7.1 Consider XI � T 9 where I Df0; 1; 2; 3g, which is detailed in Tables 14
and 15. Note that T D f0g. In particular, consider the first and twelfth rows of Table 14
(after the headings), where J D¿, i� D 0, U D f2g, and V D f1; 3g. The first row of
Table 14 corresponds to

(27) Y1 DXI;J;s;V �;U ı;U� D h˛
�1ˇı32

C3ı3i;

where V � D f1g, U ı D f2g, and U� D¿ with

�1 D ˛
�
D
�
0; 1
2

�
; �2 D f1g; �3 D ˇ

ı
3 D

�
4
3
; 5
3

�
; �4 D f2g;

�5 D 
C
D
�
5
2
; 3
�
; �6 D f3g; �7 D �8 D �9 D ı D Œ3; 4�:
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The ensuing partition of f1; : : : ; 9g gives

P D ff1g; f2g; f3g; f4g; f5; 6; 7; 8; 9gg;

and so

Y �1 D �1 ��2 ��3 ��4 � h�5 ��6 ��7 ��8 ��9i D ˛
�1ˇı32h

C3ı3i;

where

�1 D ˛
�; �2 D f1g; �3 D ˇ

ı
3; �4 D f2g; and �5 D h

C3ı3i:

The twelfth row of Table 14 corresponds to

Y12 DXI;J;s;V �;U ı;U� D h˛
C1ˇC3 2

�3ı3i;

where V � D f3g, U ı D¿D U�. The ensuing partition of f1; : : : ; 9g gives

P D ff1; 2g; f3; 4; 5g; f6; 7; 8; 9gg;

and so

Y �12 D h�1 ��2i � h�3 ��4 ��5i � h�6 ��7 ��8 ��9i D h˛
C1i„ƒ‚…
�1

hˇC3 2
�
i„ ƒ‚ …

�2

h3ı3i„ƒ‚…
�3

:

7.2 Properties of handle decompositions

7.2.1 Combinatorics

Proposition 7.2 Let i 2 Is \ V � for some s 2 Zm, where i� … Is . Define b D
max Is and c D max.Is \ V �/. Let V 0� D V � n fig. Then V 0� � V � if and only if
jV �\fi C 1; : : : ; bgj is even.

Proof We use induction on c�i . When c�i D 0, we have cD i >max.Is\V �nfig/
and Ir \V � D Ir \V � n fig for all r ¤ s, so V 0� � V �.

Now assume c�i D t > 0, and that the claim holds if max.Is\V �/�i < t . LetW �D
V � nfcg and W 0�D V 0� nfcg. Then jV �\fiC1; : : : ; bgj and jW �\fiC1; : : : ; bgj
have opposite parities. Also, by construction, V � � V 0� if and only if W 0� � W �.
The result now follows by induction.

Notation 7.3 Denote the symmetric difference of sets R and S by

R	S D .R nS/[ .S nR/:

Proposition 7.4 Let A � V be such that V � � V � 	 fag for each a 2 A. Then
V � � V � nA.
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Proof Suppose first that A � Is for some s 2 Zm. Write A D fa1; : : : ; aqg with
min Is � a1 � � � � � aq � max Is D b. Assume that i� … Is and jIsj � 3 (the other
cases are trivial). Proposition 7.2 implies, for each a 2 A, that jV �\faC 1; : : : ; bgj
is odd if and only if a 2 V �. For each r D 1; : : : ; q, denote the symmetric difference
V �	fa1; : : : ; arg by V �r . Then, jV �a \ faC 1; : : : ; bgj D jV

�\ faC 1; : : : ; bgj for
each aD 0; : : : ; q�1. Since this quantity is odd if and only if a 2 V �, Proposition 7.2
implies

V � � V �1 � � � � � V
�
q D V

�
nA:

For the general case, apply this argument repeatedly for each s 2 Zm.

7.2.2 Topology

Observation 7.5 In XI , if Yz comes from .J; i�; V
�; U ı; U�/ and Yw comes from

.J; i�; V
�; U ı; U 0�/, then Yz \ Yw D ¿ unless U� D U 0�. That is , if U� ¤ U 0�,

then
XI;J;i�;V �;U ı;U� \XI;J;i�;V �;U ı;U 0� D¿:

Lemma 7.6 Each factor �r in the expression (26) for Y �z has one of the forms described
in Lemma 4.2, and thus is PL homeomorphic to Dd.r/ for some d.r/� 0.

Moreover ,
Pp
rD1 d.r/D nC 1� jI j, so Y �z ŠD

nC1�jI j.

Proof Regarding the first claim, we examine the equivalence relation� that led to (26).
Suppose �r � �r 0 . Then, by construction, either �r is a singleton (in I n fi�g) and �r 0
is an interval with this singleton as an endpoint, or else �r � Œmax Is;max IsC 1� for
some s 2 Z`. Moreover, by construction, if �r 0 contains a point of I n fi�g, then it
contains only one such point and it contains no interval of the form Œmax Is;max IsC1�,
and no �r 0 contains more than one interval of the form Œmax Is;max IsC 1�. The first
claim now follows. (For an explicit accounting of the types of factors �r D

˝Q
s2Rr

�s
˛

see Tables 19–21.)

Regarding the second claim, note for each r D 1; : : : ; p that d.r/ equals the number of
intervals among f�sgs2Rr

, which equals the order ofRr minus the number of singletons
among f�sgs2Rr

. Since
Pp
rD1 jRr j D jP j D n and f�s W s D 1; : : : ; ng contains a total

of jI j�1 singletons, it follows that
Pp
rD1 d.r/DnC1�jI j. Thus, Y �z ŠD

nC1�jI j.

We wish to show, in arbitrary XI , that attaching any Yz to
S
w<z Yw amounts to

attaching a collection of .nC1�jI j/–dimensional h.z/–handles for some h.z/. Indeed,
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Lemma 7.6 confirms that each Y �z from XI is a compact .nC1�jI j/–ball, so it remains
to consider how everything is glued together. Our goal is to show that

(28) Y �z \
[
w<z

Yw Š S
h.z/�1

�DnC1�jI j�h.z/

and

(29) Y �z \ .Yz nn Y
�
z /� Y

�
z \

[
w<z

Yw :

The former implies that attaching Y �z to
S
w<z Yw amounts to attaching an .nC1�jI j/–

dimensional h.z/–handle, and the latter further implies that if we attach all the copies of
Y �z one at a time to

S
w<z Yw , then attaching each copy amounts to attaching another

.nC1�jI j/–dimensional h.z/–handle.

Recall that each Y �z has the form
Qp
rD1 �r.z/. Hence,

@Y �z D

p[
aD1

� a�1Y
rD1

�r.z/� @�a.z/�

pY
rDaC1

�r.z/

�
:

We show, given arbitrary Y �z in XI , that there is a subset S.z/� f1; : : : ; pg such that

(30) Y �z \
[
w<z

Yw D
[

a2S.z/

� a�1Y
rD1

�r.z/� �a.z/�

pY
rDaC1

�r.z/

�
:

Then, writing h.z/D
P
r2S.z/ dim.�r/, we will obtain (28):

Y �z \
[
w<z

Yw D
[

a2S.z/

� a�1Y
rD1

�r.z/� �a.z/�

pY
rDaC1

�r.z/

�

Š

�
@
Y

r2S.z/

�r.z/

�
�

Y
r…S.z/

�r.z/

Š @Dh.z/ �DnC1�jI j�h.z/ D Sh.z/�1 �DnC1�jI j�h.z/:

Our next step is to describe the subset S.z/� f1; : : : ; pg. To do so, we characterize
each �r.z/ as type (A) or type (B); then S.z/ will consist of those r D 1; : : : ; p for
which �r.z/ has type (A). After that, Lemmas 7.7 and 7.8 will establish (30) by double
containment, implying (28), and Lemma 7.9 will establish (29).

Consider an arbitrary Y �z D
Qp
rD1 �r.z/ from an arbitrary XI , and classify each factor

�r.z/ into one of two classes, (A) or (B), as follows. Say that �r.z/ is in class (B) if

� �r.z/D
�
i � 2

3
; i � 1

3

�
for some i 2 I ;

� �r.z/D
�
i�; i�C

1
2

�
;
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� Œmax Is; j � is a factor in the expression for �r.z/ for some s and j ; or
� some fig is a factor in the expression for �r.z/ and

– i 2 V C and iC1 2U ı[UC[V C, or i 2U�[U ı[V � and iC1 2 V �;
and

– jV �\fi C 1; : : : ;max Isgj is even, where i 2 Is .

All other types of �r.z/ are of class (A). Tables 19–21 in Appendix A list the possibilities
explicitly.

Lemma 7.7 Suppose Y �z D
Qp
rD1 �r.z/ comes from .J; i�; V

�; U ı; U�/. If , for
some aD 1; : : : ; p, �a.z/ is of class (A) and

Ex D .x1; : : : ; xn/ 2

a�1Y
rD1

�r.z/� @�a.z/�

pY
rDaC1

�r.z/;

then Ex 2 Yw for some w < z.

Proof Suppose first that some fig appears in the expression for �a.z/, where

� i 2 Is;
� i 2 V C and iC1 2U ı[UC[V C, or i 2U�[U ı[V � and iC1 2 V �; and
� jV �\fi C 1; : : : ;max Isgj is odd.

Then Ex is in the Yw coming from .J; i�; V
0�; U ı; U�/ where V 0� is either V �[fig

or V � n fi C 1g. In either case, Proposition 7.2 implies that V 0� � V and thus w < z.

Next, suppose that �a.z/ has no singleton factors. There are two possibilities. If
�a.z/ D Œi� � 1; i�� with i� 2 J , then Ex is in some Yw coming from J n fi�g � J .
Otherwise, �a.z/D

�
i � 1; i � 1

2

�
for some i 2 J \ V �; in this case, i C 1 … I , and

so Ex is in some Yw coming either from J n fig � J or the from same J and i� and
V 0� D V � n fig, where Proposition 7.2 implies that V 0� � V � because i C 1 … I .

The remaining cases follow by similar reasoning. The interested reader may find
Table 21 useful for this.

Lemma 7.8 Let Y �z D
Qp
rD1 �r.z/ come from some .J; i�; V �; U ı; U�/. If

Ex D .x1; : : : ; xn/ 2 Y
�
z \

[
w<z

Yw ;

then

Ex 2

a�1Y
rD1

�r.z/� @�a.z/�

pY
rDaC1

�r.z/

for some aD 1; : : : ; p such that �a.z/ is of class (A).
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Proof Let Ex D .x1; : : : ; xn/ 2 Y �z \Yw 0 for some w0 < z. Choose the smallest w < z
such that Ex 2 Yw , and assume that Yw comes from some .J 0; i 0�; V

0�; U 0ı; U 0�/ with
V 0� � V 0 and U 0ı � U 0, whereas Yz comes from some .J; i�; V �; U ı; U�/ with
V � � V and U ı � U . Write

S D

�
aD 1; : : : ; p W Ex 2

a�1Y
rD0

�r.z/� @�a.z/�

pY
rDaC1

�r.z/

�
:

Assume for contradiction that �a.z/ is of class (B) for every a 2 S . If S D ¿, then
no coordinate of Ex equals i�, so i 0� D i�. Also, in that case, no coordinate of Ex equals
min Is � 1 for any s 2 Zm, and so J and J 0 completely determine the number of
coordinates that Ex has in each open interval .min Is � 1;min IsC1� 1/. It follows that
either J 0 D J or J 0 D T nJ . If J 0 D T nJ , then considering the coordinates of Ex in
Œmin I�;max I�� yields a contradiction. If J 0 D J , then the fact that S D ¿ implies
that V � D V 0�, U ı D U 0ı, and U� D U 0�, contradicting the fact that w < z.

Therefore, S ¤¿. If no coordinate of Ex equals i�, then i 0�D i�, so again either J 0D J
or J 0DT nJ . The latter case gives the same contradiction as before. Therefore J 0DJ ,
and so V 0 D V .

For each i 2 V �	 V 0�, Ex has a coordinate xt D i � 1
2

(using the fact that i 0� D i�
and J 0 D J ). The corresponding �r.z/ has r 2 S , and so by assumption �r.z/ is of
class (B). Therefore, V � � V �	fig for each i 2 V �	V 0�. Proposition 7.4 implies
that V � � V 0� unless V � D V 0�. Since w < z, we must have V � D V 0�.

Each i 2 U 0ı must also be in U ı, or else the corresponding coordinate of Ex would
equal i � 1

3
or i � 2

3
, and the corresponding �a.z/ would be of class (A) with a 2 S ,

contrary to assumption. Thus, U ı � U 0ı. Similarly, each i 2 U ı must also be in U 0ı,
or else the Yw 0 coming from .J; i�; V; U

0ı [ fig; U� n fig/ would still contain Ex but
with w0 <w, contrary to assumption. Thus, U 0ı D U ı.

Finally, we must have U 0� D U�, by Observation 7.5. This implies, contrary to
assumption, that Yw D Yz .

Lemma 7.9 Let Y �z D
Qp
rD1 �r.z/ come from some .J; i�; V �; U ı; U�/. If

Ex D .x1; : : : ; xn/ 2 Y
�
z \ .Yz nn Y

�
z /;

then

Ex 2

a�1Y
rD1

�r.z/� @�a.z/�

pY
rDaC1

�r.z/

for some aD 1; : : : ; p such that �a.z/ is of class (A).
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Proof This follows from a case analysis, for which the interested reader may find
Tables 19–21 useful. It comes down to this. Consider two pieces �a.z/ and �b.z/ of Y �z
for which the infimum min �b.z/ of all coordinates in .0; k/ among all points in �b.z/
equals the supremum max �a.z/ of all coordinates in .0; k/ among all points in �a.z/.
Write max �a.z/Dmin �b.z/D c. Then c 2Zk . If c equals i �1 for some i 2 T , then
i 2 J and �b.z/ is of class (A). Otherwise, c D i� and �a.z/ is of class (A).

7.3 Proof of the main result

The results of Sections 6 and 7.2 provide all the details we need to prove:

Theorem 7.10 For nD2k�12ZC, the n–torus admits a multisection T nD
S
r2Zk

Xr

defined by
X0 D fEx� W Ex 2 Œ0; 1�

2
� � � Œ0; k� 1�2Œ0; k�=�; � 2 Sng;

Xi D fExC .i; : : : ; i / W Ex 2X0g:
(1)

Proof Lemma 6.8 implies that X D
S
i2Zk

Xi , so it remains only to prove, for each
nonempty proper subset I � Zk , that XI D

T
i2I Xi is an .nC1�jI j/–dimensional

submanifold of X with a spine of dimension jI j.

Fix some such I . Assume, without loss of generality, that I is simple. Then XI D (2),
by Lemma 6.13. Decompose XI D

S
z Yz as described in Section 7.1. Lemmas 7.6

and 7.7 imply that Y �1 is an .nC1�jI j/–dimensional 0–handle with no pieces �r.1/ of
class (A); Lemma 7.9 and the symmetry of the construction imply further that Y1 is a
union of .nC1�jI j/–dimensional 0–handles.

For each z, write S.z/ D fr W �r.z/ is of class (A)g. Lemmas 7.6–7.8 imply that
attaching Y �z to

S
w<z Yz amounts to attaching an .nC1�jI j/–dimensional h–handle,

where h.z/ is the sum of the dimensions of those �r.z/ of class (A):

h.z/D
X
r2S.z/

dim.�r.z//� jI j:

Lemma 7.9 and the symmetry of the construction imply further that attaching all of Yz
to
S
w<z Yw amounts to attaching several such handles. Thus, XI is an .nC1�jI j/–

dimensional jI j–handlebody in T n.

It remains to check that XZk
D
T
i2Zk

Xi is a closed k–manifold. We know from
Lemma 6.13 that XZk

is given by (3).
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SinceXZknfk�1g is a .kC1/–manifold, it suffices to check thatXZk
equals @XZknfk�1g,

which is the union of those k–faces of the Yz from the handle decomposition of
XZknfk�1g that are not glued to any other Yw . Case analysis confirms that this union
equals the expression from (3). (The reader may find Tables 19–21 useful.)

Alternatively, one can construct a handle decomposition of XZk
as follows. Cut each

unit interval Œi; i C 1� into thirds and, for each i� 2 Zk , further cut
�
i� �

1
3
; i�
�

and�
i�; i� C

1
3

�
into halves. Then, for each i� 2 Zk , U ı � Zk , U� � Zk n U

ı, and
U � � .fi�C 1g\U

�/[ .fi�g n .U
ı[U�//, define

�i D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

�
i � 2

3
; i � 1

3

�
if i 2 U ı;�

i � 1; i � 2
3

�
if i�C 1¤ i 2 U�;�

i � 1
3
; i
�

if i� ¤ i 2 Zk n .U
ı[U�/;�

i�; i�C
1
6

�
if i�C 1D i 2 U �;�

i�C
1
6
; i�C

1
3

�
if i�C 1D i 2 U� nU �;�

i��
1
6
; i�
�

if i� D i 2 U �;�
i��

1
3
; i��

1
6

�
if i� D i 2 UC nU �;

XZk ;i�;U ı;U�;U� D

Y
i2Zk

�
�i � fig if i ¤ i�;
�i if i D i�

�
:

Order the piecesXZk ;i�;U ı;U�;U� as Yz for zD 1; 2; 3; : : : lexicographically according
to the following orders on the possibilities for .i�; U ı; U�; U �/. Order fi� 2 I g and
U� � U ı arbitrarily. Partially order fU ı � Zkg by inclusion, with U ı � U 0ı if
U ı � U 0ı, and extend arbitrarily to a total order. Order the possibilities for U � the
same way. Then [

iD1;:::;k

Yz D
[
i�2Zk

XZk ;i�;Zk ;¿;¿

is a union of 0–handles, and to attach each Yz DXZk ;i�;U ı;U�;U� to
S
w<z Yw is to

attach a collection of h.z/–handles for h.z/D k� jU ıj � jU �j.

We leave the following question open:

Question 6 Are the multisections in Theorem 7.10 smoothable?

That is, for odd n, does T n (under its standard smooth structure) admit a smooth
multisection such that, when one passes to the unique PL structure on T n, there is a
PL homeomorphism f W T n! T n sending each piece of this smooth multisection to a
piece of the multisection from Theorem 7.10?
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8 Cubulated manifolds of odd dimension

This section extends Theorem 7.10 to certain cubulated manifolds. Consider a covering
space p WM ! T n, where nD 2k� 1. Multisect T n D

S
i2Zk

Xi as in Theorem 7.10.
Then, by Corollary 17 of [9], M D

S
i2Zk

p�1.Xi / determines a PL multisection
of M . In general, one expects such multisections to be less efficient than those from
Theorem 7.10. Also, there seems to be no reason to expect that one can extend the main
construction to cubulated odd-dimensional manifolds in general. There is, however, an
intermediate case to which our construction does extend.

First, we propose a modest generalization of the usual notion of a cubulation. The
generalization is similar to Hatcher’s �–complexes vis-à-vis simplicial complexes [3].
A cube is a homeomorphic copy of In for some n� 0, with the usual cell structure; its
faces are defined in the traditional way.

Consider an arbitrary edge of In joining Ea D .a1; : : : ; ai�1; 0; aiC1; : : : ; an/ and
Eb D .a1; : : : ; ai�1; 1; aiC1; : : : ; an/. Orient this edge so that it runs from Ea to Eb. Do
the same with every edge of the n–cube. Call these the standard orientations on the
edges of the n–cube. Call a face of In positive if it contains E0; otherwise it is negative,
containing E1D .1; : : : ; 1/.

Definition 8.1 A –complex K is a quotient space of a collection of disjoint cubes
obtained by identifying certain faces via PL homeomorphisms.14 If all of these face
identifications glue a positive face of one cube to a negative face of another (not
necessarily distinct) cube and respect the standard orientations on all edges, then K is
a directed –complex.

Note that, by definition, a –complex comes equipped with a cell structure.

Definition 8.2 A generalized cubulation of a manifold M is a PL homeomorphism
to a –complex. A directed cubulation of M is a PL homeomorphism to a directed

–complex.

In other words, a generalized cubulation of an n–manifold M imposes a cell structure
on M in which every n–cell “looks like” an n–cube, and in a directed cubulation, the
n–cells are glued in a particularly nice way.

14Unlike the traditional notion of cubulation, we do not require that these identifications are between faces
of distinct cubes.
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Figure 10: Face identifications (left) for the 3–manifoldM from Example 8.5,
and a 27 W 1 covering space (right) T 3!M .

Example 8.3 The usual cell structure on T n determines a generalized cubulation, and
in fact a directed cubulation, but not a cubulation in the traditional sense.

Let f WM !K be a directed cubulation of an n–manifold for nD 2k� 1, let

g W In D Œ0; k�n! T n D .R=kZ/n D Œ0; k�n=�

be the quotient map, and multisect T n D
S
i2Zk

Xi as in Theorem 7.10. Multisect M
as follows. For each n–cell C in K, let hC W In! C be the identification from K. For
each i 2 Zk , define

X 0i D
[

n–cubes C inK

f �1.hC .g
�1.Xi ///:

Proposition 8.4 With the setup above ,M D
S
i2Zk

X 0i determines a multisection of M .

Proof First consider the case where p WM ! T n is a covering space. Let I � Zk be
arbitrary. Construct a handle structure on XI � T n, as in Section 7.1. By construction,
each handle is a subset of some open cube .a; a C k/n � T n. Hence, the handle
structure on XI � T n pulls back to a handle structure on X 0I �M . The general case
follows for the same reason, due to the fact that the multisection of T n is fixed by the
permutation action on the indices.

Remark In any multisection M D
S
i2Zk

X 0i from Proposition 8.4, all X 0i have genus
n#.n–cubes in K/. In particular, if p WM ! T n is an r W 1 covering space, then M has
a multisection M D

S
i2Zk

X 0i in which each X 0i has genus nr .

Example 8.5 Consider the quotient spaceM obtained from I 3 by identifying the front
and right faces, the left and top faces, and the bottom and back faces, all in the way that
respects the standard orientations on the edges of In; see Figure 10, left. The natural
cell structure on M consists of one vertex, three edges, three faces, and one 3–cell. It is
easy to check that the link of the vertex is a 2–sphere, and so M is a 3–manifold. Here
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M is geometrically flat, since there is a 27 W 1 covering space T 3!M ; see Figure 10,
right. But M is not T 3, since H1.M/ Š Z˚Z3. Proposition 8.4 gives a genus-3
Heegaard splitting of M . Does M have an efficient (genus-2) splitting? We leave this
as a puzzle for the reader.

Example 8.6 Generalizing Example 8.5, let nD 2k � 1 and let � 2 Sn be an even
permutation. Denote the faces of In by F˙i , where FCi D f.x1; : : : ; xn/ W xi D 1g and
F�i D f.x1; : : : ; xn/ W xi D 0g. Identify each FCi with F�

�.i/
by identifying each point

.x1; : : : ; 1; : : : ; xn/ 2 F
C
i with .x��1.1/; : : : ; 0; : : : ; x��1.n// 2 F

�
�.i/

, where 1 and 0
are in the i th and ��1.i/th spots, respectively.

Question 7 For what n and � 2 Sn does the construction in Example 8.6 produce a
manifold M ? When it is a manifold, is M always distinct from T n? Is the multisection
of M from Proposition 8.4 ever efficient?

Appendix A Additional handle decomposition tables

Tables 11 and 12 explicitly detail Ur ; Vr � Ir for arbitrary Ir (following Notation 3.8).
For simplicity, these tables have Ir D I0 D f0; : : : ; wg, listing U0 and V0; this is not
necessarily consistent with Convention 3.9. To adapt U0; V0 � I0 to the general case
Ur ; Vr � Ir , add min Ir in each coordinate.

Table 13 details the handle decomposition of XI from T 9 with I D f0; 1; 3g D I1t I2
for I1 D f0; 1g and I2 D f3g. The interesting feature of this example is how the two
blocks of indices I1 and I2 interact.

I0 0 … J 0 2 J

U0 V0 U0 V0

{0} ¿ ¿ ¿ {0}
{0,1} ¿ f1g ¿ {1}

{0,1,2} ¿ {1,2} {1} {2}
{0,1,2,3} ¿ {1,2,3} {1,2} {3}

{0,1,2,3,4} ¿ {1,2,3,4} {1,2,3} {4}
f0; : : : ; wg ¿ f1; : : : ; wg f1; : : : ; w� 1g fwg

Table 11: The index subsets U0; V0 � I0 when i� … I0.
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I0 U0 V0

{0} ¿ ¿
{0,1} ¿ ¿

{0,1,2}
�
f1g if i� D 2;
¿ if i� ¤ 2

� �
f1; 2g if i� D 0;

¿ if i� ¤ 0

�

{0,1,2,3}

8̂̂<̂
:̂
f2g if i� D 0;
¿ if i� D 1;
f1g if i� D 2;
f1; 2g if i� D 3

9>>=>>;
�
fi�C 1; 3g if i� � 1;

¿ if i� � 2

�

f0; : : : ; wg I0 n f0; i�; i�C 1;wg

�
fi�C 1;wg if i� � w� 2;

¿ if i� � w� 1

�
Table 12: The index subsets U0; V0 � I0 when i� 2 I0.

J i� U V V � Y �z h z glue to

¿ 0 ¿ ¿ h˛1ˇ3ih3ı3i 0 1
1 ¿ ¿ ¿ h0˛iˇ3h3ı3i 1 2 1
3 ¿ {1} ¿ 0h˛C1ˇ3iı3 0 3

{1} h0˛�ih1ˇ3iı3 1 4 3
{0} 0 ¿ ¿ ¿ h˛1ˇ3ih3ı2i" 1 5 1,3,4

1 ¿ ¿ ¿ h"0˛iˇ3h3ı2i 2 6 2,5
3 ¿ {1} ¿ h"0ih˛C1ˇ3iı2 1 7 3

{1} h"0˛�ih1ˇ3iı2 2 8 4,7
{3} 0 ¿ {3} ¿ h˛1ˇ2ihC3ı3i 0 9

{3} h˛1ˇ2i�h3ı3i 1 10 1,9
1 ¿ {3} ¿ h0˛iˇ2hC3ı3i 1 11 9

{3} h0˛iˇ2�h3ı3i 2 12 2,10,11
3 ¿ {1} ¿ 0h˛C1ˇ2iı3 1 13 2,3

{1} h0˛�ih1ˇ2iı3 2 14 2,4,13
{0,3} 0 ¿ {3} ¿ h˛1ˇ2ihC3ı2i" 1 15 9,13,14

f3g h˛1ˇ2i�h3ı2i" 2 16 10,13,14,15
1 ¿ {3} ¿ h"0˛iˇ2hC3ı2i 2 17 11,15

{3} h"0˛iˇ2�h3ı2i 3 18 6,12,16,17
3 ¿ {1} ¿ h"0ih˛C1ˇ2iı2 2 19 6,7,13

{1} h"0˛�ih1ˇ2iı2 3 20 6,8,14,19

Table 13: A genus-9 quintisection of T 9: XI when I D f0; 1; 3g.
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i� U V V � Y �z h z glue to

0 {2} {1,3} ¿ ˛�1ˇı32h
C3ı3i 0 1

˛�h1ˇ�3 i2h
C3ı3i 1 2 1

˛�1hˇC3 2ih
C3ı3i 1 3 1

{1} h˛C1iˇı32h
C3ı3i 1 4 1

h˛C1ˇ�3 i2h
C3ı3i 2 5 2,4

h˛C1ihˇC3 2ih
C3ı3i 2 6 3,4

{3} ˛�1ˇı3h2
�ih3ı3i 1 7 1

˛�h1ˇ�3 ih2
�ih3ı3i 2 8 2,7

˛�1hˇC3 2
�ih3ı3i 2 9 3,7

{1,3} h˛C1iˇı3h2
�ih3ı3i 2 10 4,7

h˛C1ˇ�3 ih2
�ih3ı3i 3 11 5,8,10

h˛C1ihˇC3 2
�ih3ı3i 3 12 6,9,10

1 ¿ {2,3} ¿ h0˛iˇ�2hC3ı3i 1 13 1,2
{2} h0˛ihˇC2ihC3ı3i 2 14 1,3,13
{3} h0˛iˇ�h2�ih3ı3i 2 15 7,8,13

{2,3} h0˛ihˇC2�ih3ı3i 3 16 7,9,14,15
2 {1} ¿ ¿ 0˛ı3h1ˇih3ı

3i 1 17 13
h0˛�3 ih1ˇih3ı

3i 2 18 13,17
0h˛C3 1ˇih3ı

3i 2 19 13,17
3 {1,2} ¿ ¿ 0˛ı31ˇ

ı
3h2iı

3 1 20 17
h0˛�3 i1ˇ

ı
3h2iı

3 2 21 18,20
0h˛C3 1iˇ

ı
3h2iı

3 2 22 19,20
0˛ı3h1ˇ

�
3 ih2iı

3 2 23 17,20
h0˛�3 ih1ˇ

�
3 ih2iı

3 3 24 18,20,23
0h˛C3 1ˇ

�
3 ih2iı

3 3 25 19,22,23
0˛ı31hˇ

C
3 2iı

3 2 26 17,20
h0˛�3 i1hˇ

C
3 2iı

3 3 27 18,21,26
0h˛C3 1ihˇ

C
3 2iı

3 3 28 19,22,26

Table 14: XI for I D f0; 1; 2; 3g, from T 9. Part 1: J D¿.

Tables 14 and 15 detail the handle decomposition of XI for I D f0; 1; 2; 3g from the
quintisection of T 9. Note that, since I D I1 consists of a single block in this example,
we always have I1 D I�.

Tables 16 and 17 detail handle decompositions of XI for I D f0; 1; 2; 4g from the sexa-
section of T 11. The parts of these tables with i� D 4 and 0 … J feature a complication
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i� U V V � Y �z h z glue to

0 {2} {1,3} ¿ ˛�1ˇı32h
C3ı2i" 1 29 1,19,20

˛�h1ˇ�3 i2h
C3ı2i" 2 30 2,22,23,29

˛�1ˇC3 2h
C3ı2i" 2 31 3,25,26,29

{1} h˛C1iˇı32h
C3ı2i" 2 32 4,19,21

h˛C1ˇ�3 i2h
C3ı2i" 3 33 5,22,24,30,32

h˛C1iˇC3 2h
C3ı2i" 3 34 6,25,27,31,32

{3} ˛�1ˇı3h2
�ih3ı2i" 2 35 7,19,20,29

˛�h1ˇ�3 ih2
�ih3ı2i" 3 36 8,22,23,30,35

˛�1hˇC3 2
�ih3ı2i" 3 37 9,25,26,31,35

{1,3} h˛C1iˇı3h2
�ih3ı2i" 3 38 10,19,21,32,35

h˛C1ˇ�3 ih2
�ih3ı2i" 4 39 11,22,24,33,36,38

h˛C1ihˇC3 2
�ih3ı2i" 4 40 12,25,27,34,37,38

1 ¿ {2,3} ¿ h"0˛iˇ�2hC3ı2i 2 41 13,29,30
{2} h"0˛ihˇC2ihC3ı2i 3 42 14,29,31,41
{3} h"0˛iˇ�h2�ih3ı2i 3 43 15,35,36,41

{2,3} h"0˛ihˇC2�ih3ı2i 4 44 16,35,37,42,43
2 {1} ¿ ¿ h"0i˛ı3h1ˇih3ı

2i 2 45 17,41,43
h"0˛�3 ih1ˇih3ı

2i 3 46 18,41,43,45
h"0ih˛C3 1ˇih3ı

2i 3 47 19,41,43,45
3 {1,2} ¿ ¿ h"0i˛ı31ˇ

ı
3h2iı

2 2 48 20,45
h"0˛�3 i1ˇ

ı
3h2iı

2 3 49 21,46,48
h"0ih˛C3 1iˇ

ı
3h2iı

2 3 50 22,47,48
h"0i˛ı3h1ˇ

�
3 ih2iı

2 3 51 23,45,48
h"0˛�3 ih1ˇ

�
3 ih2iı

2 4 52 24,46,49,51
h"0ih˛C3 1ˇ

�
3 ih2iı

2 4 53 25,47,50,51
h"0i˛ı31hˇ

C
3 2iı

2 3 54 26,45,48
h"0˛�3 i1hˇ

C
3 2iı

2 4 55 27,46,49,54
h"0ih˛C3 1ihˇ

C
3 2iı

2 4 56 28,47,50,54

Table 15: XI for I D f0; 1; 2; 3g, from T 9. Part 2: J D f0g.

that does not appear in dimensions n�9. Also see Tables 9 and 18 for more complicated
examples of this pattern.

Table 18 details the start of the handle decomposition of XI from T 15 with I D
f0; 1; 2; 3; 4; 6g, focusing on the first few pieces Yz . Those pieces have J D¿, i� D 6,
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J i� U V V � Y �z h z glue to

¿ 4 ¿ {1,2} ¿ 0h˛C1ihˇC23i"3 0 1
f1g h0˛�i1hˇC23i"3 1 2 1
f1; 2g h0˛�ih1ˇ�ih23i"3 1 3 2
f2g 0h˛C1ˇ�ih23i"3 2 4 1,3

0 ¿ {1,2} ¿ ˛�1hˇC23ih4"3i 0 5
{1} h˛C1ihˇC23ih4"3i 1 6 5
{2} ˛�h1ˇ�ih23ih4"3i 1 7 5

{1,2} h˛C1ˇ�ih23ih4"3i 2 8 5,6
1 ¿ ¿ ¿ h0˛ihˇ23ih4"3i 1 9 5,7
2 f1g ¿ ¿ 0˛ı3h1ˇi

3h4"3i 1 10 9
h0˛�3 ih1ˇi

3h4"3i 2 11 9,10
0h˛C3 1ˇi

3h4"3i 2 12 9,10
f4g 4 ¿ {1,2} ¿ 0h˛C1ihˇC22iı"3 1 13 1,10,12

f1g h0˛�i1hˇC22iı"3 2 14 2,10,11,13
f1; 2g h0˛�ih1ˇ�ih22iı"3 2 15 3,10,11,14
f2g 0h˛C1ˇ�ih22iı"3 3 16 4,10,12,13,15

0 ¿ {1,2} ¿ ˛�1hˇC22ihıC4"3i 0 17
˛�1hˇC22iı�h4"3i 1 18 5,17

{1} h˛C1ihˇC22ihıC4"3i 1 19 17
h˛C1ihˇC22iı�h4"3i 2 20 6,18,19

{2} ˛�h1ˇ�ih22ihıC4"3i 1 21 19
˛�h1ˇ�ih22iı�h4"3i 2 22 7,20,21

{1,2} h˛C1ˇ�ih22ihıC4"3i 2 23 19,21
h˛C1ˇ�ih22iı�h4"3i 3 24 8,20,22,23

1 ¿ f4g ¿ h0˛ihˇ22ihıC4"3i 1 25 17,21
f4g h0˛ihˇ22iı�h4"3i 2 26 9,18,22,25

2 f1g f4g ¿ 0˛ı3h1ˇi
2hıC4"3i 1 27 25

h0˛�3 ih1ˇi
2hıC4"3i 2 28 25,27

0h˛C3 1ˇi
2hıC4"3i 2 29 25,27

f4g 0˛ı3h1ˇi
2ı�h4"3i 2 30 10,26,27

h0˛�3 ih1ˇi
2ı�h4"3i 3 31 11,26,28,30

0h˛C3 1ˇi
2ı�h4"3i 3 32 12,26,29,30

Table 16: Part 1 of XI for I D f0; 1; 2; 4g, from T 11.
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J i� U V V � Y �z h z glue to

f0g 4 f1g {2} ¿ h�0i˛ı31hˇ
C23i"2 1 33 1,2

h�0ih˛C3 1ihˇ
C23i"2 2 34 1,33

h�0˛�3 i1hˇ
C23i"2 2 35 2,33

f2g h�0i˛ı3h1ˇ
�ih23i"2 2 36 3,4,33

h�0ih˛C3 1ˇ
�ih23i"2 3 37 3,34,36

h�0˛�3 ih1ˇ
�ih23i"2 3 38 4,35,36

0 ¿ {1,2} ¿ �˛�1hˇC23ih4"2i 1 39 2,5
{1} �h˛C1ihˇC23ih4"2i 2 40 1,6,39
{2} �˛�h1ˇ�ih23ih4"2i 2 41 3,7,39

{1,2} �h˛C1ˇ�ih23ih4"2i 3 42 4,8,40
1 ¿ ¿ ¿ h�0˛ihˇ23ih4"2i 2 43 9,39,41
2 f1g ¿ ¿ h�0i˛ı3h1ˇi

3h4"2i 2 44 10,43
h�0˛�3 ih1ˇi

3h4"2i 3 45 11,43,44
h�0ih˛C3 1ˇi

3h4"2i 3 46 12,43,44
f0; 4g 4 f1g {2} ¿ h�0i˛ı31hˇ

C22iı"2 2 47 13,14,33,44
h�0ih˛C3 1ihˇ

C22iı"2 3 48 13,34,45,47
h�0˛�3 i1hˇ

C22iı"2 3 49 14,35,46,47
f2g h�0i˛ı3h1ˇ

�ih22iı"2 3 50 15,16,36,44,47
h�0ih˛C3 1ˇ

�ih22iı"2 4 51 16,37,45,48,50
h�0˛�3 ih1ˇ

�ih22iı"2 4 52 15,38,46,49,50
0 ¿ {1,2} ¿ �˛�1hˇC22ihıC4"2i 1 53 14,17

�˛�1hˇC22iı�h4"2i 2 54 14,18,39,53
{1} �h˛C1ihˇC22ihıC4"2i 2 55 13,19,53

�h˛C1ihˇC22iı�h4"2i 3 56 13,20,40,54,55
{2} �˛�h1ˇ�ih22ihıC4"2i 2 57 15,21,53

�˛�h1ˇ�ih22iı�h4"2i 3 58 15,22,41,54,57
{1,2} �h˛C1ˇ�ih22ihıC4"2i 3 59 16,23,55,57

�h˛C1ˇ�ih22iı�h4"2i 4 60 16,24,42,56,58,59
1 ¿ f4g ¿ h�0˛ihˇ22ihıC4"2i 2 61 25,53,57

f4g h�0˛ihˇ22iı�h4"2i 3 62 26,43,54,58,61
2 f1g f4g ¿ h�0i˛ı3h1ˇi

2hıC4"2i 2 63 27,61
h�0˛�3 ih1ˇi

2hıC4"2i 3 64 28,61,63
h�0ih˛C3 1ˇi

2hıC4"2i 3 65 29,61,63
f4g h�0i˛ı3h1ˇi

2ı�h4"2i 3 66 30,44,62,63
h�0˛�3 ih1ˇi

2ı�h4"2i 4 67 31,44,62,64,66
h�0ih˛C3 1ˇi

2ı�h4"2i 4 68 32,45,62,65,66

Table 17: Part 2 of XI for I D f0; 1; 2; 4g, from T 11.
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V � Y �z h z glue to

¿ 0h˛C1ihˇC2ihC3ihıC4"3i�3 0 1
f1g h0˛�i1hˇC2ihC3ihıC4"3i�3 1 2 1
f1; 2g h0˛�ih1ˇ�i2hC3ihıC4"3i�3 1 3 2
f2g 0h˛C1ˇ�i2hC3ihıC4"3i�3 2 4 1,3
f2; 3g 0h˛C1ˇ�ih2�i3hıC4"3i�3 1 5 4
f1; 2; 3g h0˛�ih1ˇ�ih2�i3hıC4"3i�3 2 6 3,5
f1; 3g h0˛�i1hˇC2�i3hıC4"3i�3 2 7 2,6
f3g 0h˛C1ihˇC2�i3hıC4"3i�3 3 8 1,5,7
f3; 4g 0h˛C1ihˇC2�ih3ı�ih4"3i�3 1 9 8
f1; 3; 4g h0˛�i1hˇC2�ih3ı�ih4"3i�3 2 10 7,9
f1; 2; 3; 4g h0˛�ih1ˇ�ih2�ih3ı�ih4"3i�3 2 11 6,10
f2; 3; 4g 0h˛C1ˇ�ih2�ih3ı�ih4"3i�3 3 12 5,9,11
f2; 4g 0h˛C1ˇ�i2hC3ı�ih4"3i�3 2 13 4,12
f1; 2; 4g h0˛�ih1ˇ�i2hC3ı�ih4"3i�3 3 14 3,11,13
f1; 4g h0˛�i1hˇC2ihC3ı�ih4"3i�3 3 15 2,10,14
{4} 0h˛C1ihˇC2ihC3ı�ih4"3i�3 4 16 1,9,13,15

Table 18: Start of the handle decomposition from T 15 with I Df0; 1; 2; 3; 4; 6g,
J D¿, i� D 6, U D¿, and V D f1; 2; 3; 4g.

U D¿, and V D f1; 2; 3; 4g. The interesting feature of this example is the ordering of
these pieces. Compare to (23) and Tables 9, 16, and 17.

Tables 19, 20, and 21 list the possible forms for �r.z/. Table 19 lists those with no
singleton factor. Table 20 lists those with a singleton factor fig, where i 2 V C and
i C 1 2 U ı[UC[V C, or i 2 U�[U ı[V � and i C 1 2 V �; the class of this case

class �r.z/ conditions

(A) Œi�� 1; i�� i� 2 J

(A)
�
i � 1; i � 1

2

�
i 2 J \V � D) i ¤ i�, i C 1 … I

(B)
�
i�; i�C

1
2

�
a � i� � b� 2, i�C 1 2 V �

(B)
�
i � 2

3
; i � 1

3

�
i 2 U ı

(B)
Qc�1
jDi�C1

Œi�; j �
2 i� D b, c 2 J

(B)
Qc�2
jDi�C1

Œi�; j �
2Œi�; c � 1�

3 i� D b, c … J

Table 19: The possible forms for �r .z/with no singleton factor, where i� 2 Is ,
aDmin Is , b Dmax Is , and c Dmin IsC1.
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class �r .z/ conditions on i conditions on i C 1 parity

(A)
�
i � 1

2
; i
�
fig i 2 V C i C 1 2 U ı[UC[V C odd

(A) fig
�
i; i C 1

2

�
i 2 U�[U ı[V � i C 1 2 V � odd

(A)
�
i � 1

2
; i
�
fig
�
i; i C 1

2

�
i 2 V C i C 1 2 V � odd

(B)
�
i � 1

2
; i
�
fig i 2 V C i C 1 2 U ı[UC[V C even

(B) fig
�
i; i C 1

2

�
i 2 U�[U ı[V � i C 1 2 V � even

(B)
�
i � 1

2
; i
�
fig
�
i; i C 1

2

�
i 2 V C i C 1 2 V � even

Table 20: The possible forms for each �r .z/ containing a singleton factor
fig, where i 2 V C and i C 1 2 U ı [UC [ V C, or i 2 U� [U ı [ V � and
i C 1 2 V �; the class depends on the parity of #.V �\fi C 1; : : : ;max Isg/,
where i 2 Is .

depends on the parity of #.V �\fi C 1; : : : ;max Isg/, where i 2 Is . Table 21 lists the
remaining possibilities for �r.z/.

class �r.z/ conditions on i

(A) Œi � 1; i �fig i 2 J , i C 1 2 U ı[UC[V C

(A) Œi � 1; i �figŒi; i C 1� i 2 J , i� D i C 1
(A) Œi � 1; i �fig

�
i; i C 1

3

�
i 2 J , i C 1 2 U�

(A) Œi � 1; i �fig
�
i; i C 1

2

�
i 2 J , i C 1 2 V �

(A)
�
i � 1

3
; i
�
fig i 2 UC, i C 1 2 U ı[UC[V C

(A) fig
�
i; i C 1

3

�
i C 1 2 U�, i 2 U�[U ı[V �

(A)
�
i � 1

3
; i
�
fig
�
i; i C 1

3

�
i 2 UC, i C 1 2 U�

(A)
�
i � 1

3
; i
�
fig
�
i; i C 1

2

�
, i 2 UC, i C 1 2 V �

D) i C 1Dmax Is ¤ i�
(A)

�
i � 1

2
; i
�
fig
�
i; i C 1

3

�
, i 2 V C, i C 1 2 U�

D) i D i�C 1�max Is � 1
(A) fig i 2 .T nJ /[U�[U ı[V �,

i C 1 2 U ı[UC[V C

(B) Œi � 1; i �fig
Qc�2
jDiC1Œi; j �

2Œi; c � 1�q i� Dmin Is D i � 1Dmax Is � 1
(B)

�
i � 1

2
; i
�
fig
Qc�2
jDiC1Œi; j �

2Œi; c � 1�q i Dmax Is 2 V C

(B) fig
Qc�2
jDiC1Œi; j �

2Œi; c � 1�q i Dmax Is 2 V �

Table 21: The possible forms for each �r .z/ not listed in Table 19 or 20.
Each contains a singleton factor fig for i� ¤ i 2 Is with s 2 Zm. Write
c Dmin IsC1 with q 2 f2; 3g.
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Figure 11: Another construction of the minimal-genus Heegaard splitting of S3.

Appendix B Four other attempts to multisect T n for n odd

From the handle decomposition

The n–torus has a natural handle decomposition, with
�
n
h

�
h–handles for each h D

0; : : : ; n, which one can construct as follows. View T n as .R=2Z/n, and decompose
it into the 2n subcubes with vertices in .Z=2Z/n. Then, using Notation 3.4, for each
hD 0; : : : ; n, the h–handles are the subcubes which are permutations of ˛n�hˇh.15

One might hope that Xi D h˛n�iˇi i [ h˛nC1�iˇi�1i determines a multisection.16

Indeed, in dimension 3 this is the Heegaard splitting shown in Figure 1. Yet, the
construction does not work beyond dimension 3, as one can see by noting, eg, that
X0\Xk�1 D

Sn�2
rD0h˛ˇ0

r1n�2�ri is always 2–dimensional.

By gluing pairs of balls

Instead, one might attempt to generalize the following construction; see Figure 11.
View T n as .R=2kZ/n D Œ0; 2k�n=�. Partition the .2k/n unit cubes with vertices in
the lattice .Z=2kZ/n so as to form V0; : : : ; Vn subject to the following conditions:17

� If Ex 2 V0, then ExC .r; : : : ; r/ 2 Vr .

� The permutation action on the indices fixes each Vr .

� V0 contains Œ0; 1�n, is star-shaped about .0; : : : ; 0/, and contains no points with
any coordinate in .n� 1; n/.

15This handle decomposition is optimal in the sense that it has the minimum possible number of handles
of each index, since Hh.T n/ has rank

�n
h

�
.

16Note that n is odd throughout Appendix B.
17These conditions uniquely determine V0; : : : ; Vn.
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Figure 12: Decomposing T 5 D Œ0; 6�5=� as V0 [ � � � [ V5. Does
.V0[V1; V2[V3; V4[V5/ determine a trisection?

Then, for i D 0; : : : ; k D 1
2
.nC 1/, let Xi D V2i [ V2iC1. Figure 11 shows that this

construction does in fact give a genus-3 Heegaard splitting of T 3.

In higher dimensions this construction is promising for many of the same reasons as
the construction behind Theorem 7.10. This construction has at least one additional
advantage, namely that each Vi is a ball. This makes it easy to check that each Xi is
indeed an n–dimensional handlebody of genus n. Unfortunately, the complexity of
this construction grows much more rapidly than the construction behind Theorem 7.10,
making it hard to check the other details, even in dimension 5. Indeed, see Figure 12.

Question 8 Does this construction also give a trisection of T 5? Does it give a
multisection of T n for arbitrary nD 2k� 1?

By summing coordinates

As shown in Figure 13, the genus-3 Heegaard splitting of T 3 D Œ0; 2�3=� can be
constructed as T 3 DX0[X1, where

Xi D f.x1; x2; x3/ W 3i � x1C x2C x3 � 3.i C 1/g=�:

The splitting surface consists of the hexagon f.x1; x2; x3/ W x1 C x2 C x3 D 3g=�

together with three other hexagons. One is f.0; x2; x3/ W 1� x2C x3 � 5g=�, and the
others are obtained from this one by permuting coordinates. A cocore of one 1–handle
in X0 is the triangle f.0; x2; x3/ W x2C x3 � 1g=�, and a cocore of a 1–handle in X0
is the triangle f.0; x2; x3/ W 5 � x2C x3g=�; the other 1–handles of X0 and X1 are
related to these by permuting coordinates.

One might attempt to trisect T 5 D Œ0; 3�5=� as T 5 DX0[X1[X2 with

Xi D f.x1; : : : ; x5/ W 5i � x1C � � �C x5 � 5.i C 1/g=�:
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Figure 13: The efficient Heegaard splitting T 3 D X0 [X1 constructed by
summing coordinates. Four purple hexagons form the splitting surface. Red
and blue triangles are cocores of the 1–handles in X0 and X1, respectively.

Then each Xi is in fact a 4–dimensional 1–handlebody of genus 4: a cocore of a
1–handle of X0 is the 4–simplex f.0; x2; x3; x4; x5/ W x2C x3C x4C x5 � 2g=�, a
cocore of a 1–handle of X1 is f.0; x2; x3; x4; x5/ W 5� x2Cx3Cx4Cx5 � 7g=�, and
a cocore of a 1–handle of X2 is f.0; x2; x3; x4; x5/ W 12� x2Cx3Cx4Cx5g=�. The
other 1–handles of X0, X1, and X2 are related to these by permuting coordinates.

Yet, this is not a trisection, because

X0\X2 D f.x1; x2; x3; 0; 0/� W 4� x1C x2C x3 � 5; � 2 S5g=�

is 3–dimensional, not 4–dimensional.

To fix this problem, one could choose 0 D a0 < a1 < a2 < a3 D 15 differently and
define

Xi D f.x1; : : : ; x5/ W ai � x1C � � �C x5 � aiC1g:

Then X0 \X2 will be 4–dimensional if and only if a2 � a1 < 3. This creates a new
problem: if a2� a1 < 3, then X1 is contractible, and hence a 5–ball. It now follows
from Proposition 2.6 that no choice of a1 and a2 produces a trisection of T 5. The same
difficulty prevails in all other dimensions n > 3 (including even dimensions).

Using the symmetric space T n=Sn

Given a triangulation K of an n–manifold X , Rubinstein and Tillmann multisect X by
mapping each n–simplex of K to the standard .k�1/–simplex

(31) �k�1 D ŒEv0; : : : ; Evk�1�D

�X
j2Zk

aj Evj W 0� aj ;
X
j2Zk

aj D 1

�
;
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v0 v1 v0 v1

v2

v0

v1

v2

v3

Figure 14: The decompositions �k�1 D
S
i2Zk

Zi of the 1–, 2–, and 3–
simplices following Rubinstein and Tillmann.

decomposing �k�1 D
S
i2Zk

Zi , where each

(32) Zi D fEx 2�k�1 W jEx� Evi j � jEx� Evj j for all j 2 Zkg

(see Figure 14), and pulling back. Their maps from the n–simplices of K to �k�1 are
simplest to construct in odd dimension nD 2k� 1. Namely,

� map the barycenter of each r–face to Evj 2�k�1 for j D 2r; 2r C 1; and

� extend linearly in the first barycentric subdivision of K.

The even-dimensional case is similar, but with an extra move.

For example, the triangulation of S3 with two 3–simplices gives a genus-3 Heegaard
splitting, as shown in Figure 15.

Following Rubinstein and Tillmann, one might try to construct a, say PL, multisection
of T n using the symmetric space T n=Sn, which is homeomorphic to a disk-bundle
over the circle; this bundle is twisted when n is even and untwisted when n is odd.

v0 v1

Figure 15: A genus-3 Heegaard splitting (right) of S3, following Rubinstein
and Tillmann’s construction.
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v0 v1

v2

v3

v4

v5

v0 v1

v2

Figure 16: Try viewing T n=Sn as �n=� and �n as an iterated join of k
intervals. Then map �n!�k�1, decompose �k�1, and pull back. It fails,
even for nD 5, shown.

One can also view the symmetric space T n=Sn as an n–simplex �n D ŒEv0; : : : ; Evn�
with certain faces identified. When nD 2k � 1, one can also view �n as an iterated
join of intervals,

�n D ŒEv0; Ev1�� � � � � ŒEv2.k�1/; Ev2k�1�:

Hence, there is a map � W�n!�k�1 D ŒEv0; : : : ; Evn� given by

� W Ex D

k�1X
iD0

wi .ci Ev2i C .1� ci /Ev2iC1/ 7!

k�1X
iD0

wi Evi :

One can then decompose �k�1 symmetrically into k pieces using barycentric coordi-
nates as in (32) and Figure 16. Following Rubinstein and Tillmann’s construction of PL
multisections from triangulations [9], one might attempt to construct a multisection of
T n by pulling back eachXi via �, mapping forward by the quotient map�n!T n=Sn,
and pulling back by the quotient map T n! T n=Sn.

This construction works for T 3 and cuts any T n into k 1–handlebodies of genus n.
Unfortunately, the needed intersection properties fail, even for T 5, so the decomposition
is not a multisection. Note that by writing

�n D ŒEv0; Ev1�� � � � � ŒEv2.k�1/; Ev2k�1�

we made an asymmetric choice, and that the resulting decomposition is generally
different than the one obtained by writing

�n D ŒEv�.0/; Ev�.1/�� � � � � ŒEv�.2k�2/; Ev�.2k�1/�

for arbitrary � 2 Sn and then following the same procedure.
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