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Bigrading the symplectic Khovanov cohomology

ZHECHI CHENG

We construct a well-defined relative second grading on symplectic Khovanov coho-
mology from holomorphic disc counting. We use a version of symplectic Khovanov
cohomology defined for bridge diagrams rather than braids. We show that our second
grading recovers the Jones grading of Khovanov homology up to an overall grading
shift over any characteristic-zero field, through proving that the isomorphism of
Abouzaid and Smith can be refined as an isomorphism between bigraded cohomology
theories. The central idea of the proof is to construct an exact triangle for symplectic
Khovanov cohomology that behaves similarly to the unoriented skein exact triangle
for Khovanov homology.

53D40, 57K18, 57K10, 57R58

1 Introduction

In [11], Seidel and Smith defined a singly graded link invariant, symplectic Khovanov
cohomology Kh�symp.L/. It is the Lagrangian intersection Floer cohomology of two
Lagrangians in a symplectic manifold Yn. The manifold Yn is built through taking a fiber
of the restriction of the adjoint quotient map � W sl2n.C/! Conf0

2n.C/ to a nilpotent
slice Sn. The Lagrangians are determined by the link L as follows. A given link L in S3

can be realized as a braid closure of ˇL 2 Brn for some n depending on L. The braid
ˇL � id 2 Br2n gives a path in the configuration space Conf0

2n.C/. Parallel transport
along ˇL � id induces a symplectomorphism of Yn to itself (precisely speaking, from
an arbitrarily large compact subset of Yn to itself). There is a distinguished Lagrangian
submanifold K given by iterated vanishing cycles. Let .ˇL� id/.K/ be its image under
the parallel transport. Kh�symp.L/ is defined to be the Floer cohomology group

(1-1) Kh�symp.L/D HF�CnCw.K; .ˇL � id/.K//;

where w is the writhe of ˇL. There is a conjectural relation between Kh�symp and the
original Khovanov homology Kh�;� defined by Khovanov in [5].
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Conjecture 1.1 [11, Conjecture 2] For any link L� S3,

Khk
symp.L/Š

M
i�jDk

Khi;j .L/:

This conjecture is true over any characteristic-zero field, proved by Abouzaid and Smith
in [2, Theorem 7.6]. For the cases of characteristic-nonzero fields, in the very few
examples that have been computed, such as the case of the trefoil in [11, Proposition 55],
the theories are isomorphic.

Our results rely on the theorem of Abouzaid and Smith that Conjecture 1.1 is true over
any characteristic-zero field, so we assume the characteristic of the base field k to be
zero unless noted otherwise.

Note that both Khovanov homology and symplectic Khovanov cohomology are the
homology of graded or relatively graded cochain complexes in which the differential
raises the grading by one.

We work with the framework of Manolescu’s Hilbert scheme reformulation of Kh�symp,
in which Yn is viewed as a symplectically embedded open subscheme of Hilbn.A2n�1/,
the nth Hilbert scheme of the Milnor fiber of A2n�1–surface singularity.

One of the advantages of Manolescu’s reformulation [7] is that we can work with bridge
diagrams instead of braid closures. A bridge diagram is a decorated link diagram
obtained by breaking the link diagrams into n pairwise disjoint ˛ arcs and n pairwise
disjoint ˇ arcs so that ˇ arcs overcross ˛ arcs at any intersection. These arcs give
rise to two Lagrangians K˛ and Kˇ in Yn � Hilbn.A2n�1/. The main theorem of [7]
implies that Kh�symp.L/ Š HF�CnCw.K˛;Kˇ/ for a specific type of bridge diagram,
called a flattened braid diagram, where n is the number of strands and w is the writhe
of the corresponding braid. All braids can give rise to flattened braid diagrams, but not
all bridge diagrams are isotopic to flattened braid diagrams.

Attempts were made to generalize symplectic Khovanov cohomology to arbitrary bridge
diagrams, an F2–coefficients version by Hendricks, Lipshitz and Sarkar [4, Section 7],
and a relatively graded version by Waldron [13, Section 6]. In this paper, we give an
absolute grading for Waldron’s construction. Recall that the writhe w of the diagram
is the number of positive crossings minus the number of negative crossings, and the
rotation number rot of the diagram is the number of counterclockwise minus the number
of clockwise Seifert circles. We can conclude:

Algebraic & Geometric Topology, Volume 23 (2023)



Bigrading the symplectic Khovanov cohomology 4059

Theorem 1.2 For any oriented bridge diagram representing a link L, let x0 be the
generator whose coordinates are the starting point of each ˇ arc. Then the Floer
cohomology groups

(1-2) Kh�symp.L/D HF�Cgr.x0/CwCrot.K˛;Kˇ/

are link invariants.

As Waldron proved in the relative case [13, Theorem 1.1], the absolutely graded
invariant defined with bridge diagram is also canonical, ie the Floer groups from two
equivalent bridge diagrams are related through a canonical isomorphism.

The orientation of the diagram, especially for a link diagram, is crucial in computing
the correction terms and locating x0. Throughout this paper, we always assume that
our bridge diagrams are oriented.

Abouzaid and Smith [1, Equation 2.31] constructed an endomorphism � of CF�.K˛;Kˇ/
from the linear part of an nc-vector field, which was introduced in [1, Definition 2.3].
This endomorphism is a chain map and thus induces a generalized eigenspace decom-
position of HF�.K˛;Kˇ/. The eigenvalues will equip the Floer cohomology group
HF�.K˛;Kˇ/ with an additional grading, called the weight grading.

We will only use a relative version of the weight grading because an absolute grading
relies on choices of auxiliary data for each Lagrangian, called equivariant structures.
Equivariant structures are defined in [1, Definition 2.10] and in Definition 3.3 of
this paper; the choice of equivariant structure changes the grading by a shift, as in
[1, Lemma 2.1.2(2)], so we may obtain our relative grading without addressing this
choice. As a result, we will skip the discussion of equivariant structures in this paper.
We prove that for any bridge diagram, the relative weight grading recovers the Jones
grading (called the quantum grading in some contexts) of Khovanov homology.

Theorem 1.3 Symplectic Khovanov cohomology, graded by .gr;wt/, and Khovanov
homology, graded by .i; j /, are isomorphic as bigraded vector spaces over any field
of characteristic zero , where the gradings are related by grD i � j and wtD�j C c,
where c is a correction term for the relative weight grading.

By definition, the weight grading lives in xk, the algebraic closure of the base field k.
The theorem implies that the weight grading is integral. Defining an absolute weight
grading requires us to make a specific choice on the equivariant structures on the
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Lagrangians depending on the writhe, crossing number, and other properties of the
bridge diagram. It is natural for us to ask the following question.

Question 1.4 How do we specify the choice of the equivariant structure such that the
weight grading is an absolute grading?

As for the purpose of this paper, we are satisfied with a relative grading. Thus, we will
only fix an arbitrary choice of equivariant structures throughout this paper.

To prove Theorem 1.3, we show that Abouzaid and Smith’s long exact sequence of the
unoriented skein relation for symplectic Khovanov cohomology groups [2, Equation 7.9]
decomposes with respect to the weight grading. In other words, if we choose any weight
grading wt1 of the first group, there exists a weight grading wt2 of the second group
and wt3 of the third group such that the map connecting the first and second group
changes the weight grading by a constant wt2 � wt1, and constant weight grading
changes wt3�wt2 and wt1�wt3 for the other two maps:

(1-3) � � � ! HF�;wt1.LC/! HF�;wt2.L0/! HF�C2;wt3.L1/

! HF�C1;wt1.LC/! � � � ;

where LC is a link with a positive crossing at p, and L0 and L1 are the two resolutions
at p.

In the singly graded case, the isomorphism of Abouzaid and Smith between symplectic
Khovanov cohomology and Khovanov homology can be used to build a commutative
diagram between the exact triangle above and the exact triangle for the unoriented
skein relation in Khovanov homology. We show the maps between the exact triangles
given by the isomorphism of Abouzaid and Smith are bigraded by induction on the
number of crossings. A purity result of Abouzaid and Smith [1, Theorem 1.1] leads to a
computation for crossingless diagrams of an unlink that every element x 2 Khk

symp.L/

will satisfy wt.x/D k for some choice of equivariant structures.

This finishes the proof of Theorem 1.3. Our argument so far is diagrammatic: we have
not proved that the relative weight grading is independent of bridge diagrams yet. Now
that we know the relative weight grading recovers the Jones grading up to an overall
grading shift for any diagram, and with the fact that Jones grading is independent of
link diagrams, we prove a conjecture of Abouzaid and Smith.

Theorem 1.5 The relative weight grading on Kh�symp.L/ is independent of the choice
of link diagram.

Algebraic & Geometric Topology, Volume 23 (2023)



Bigrading the symplectic Khovanov cohomology 4061

It is worth noting that our proof of Theorem 1.5 is not internal to symplectic geometry,
and the invariance of the relative weight grading relies on the well-definedness of the
Jones grading in combinatorial Khovanov homology. We conclude this introduction
with the following question.

Question 1.6 Is there a proof of invariance of the weight grading from pure symplectic
geometry?

Organization

The paper is organized as follows. In Section 2, we review the definition of symplectic
Khovanov cohomology and construct an absolute grading on the symplectic Khovanov
cohomology for bridge diagrams. In Section 3, we give a precise definition of the
weight grading and construct a bigraded unoriented skein exact triangle of symplectic
Khovanov cohomology. In Section 4, we prove the main theorem by showing that
Abouzaid and Smith’s isomorphism between symplectic Khovanov cohomology and
combinatorial Khovanov homology preserves the second grading.
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2 A review of symplectic Khovanov cohomology Kh�

symp.L/

We will briefly review the original definition of symplectic Khovanov cohomology and
give a formal definition of symplectic Khovanov cohomology of a bridge diagram in
Section 2.1. We will discuss the homological grading in Section 2.2. The construction
of this section is not restricted to characteristic-zero fields.
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2.1 Symplectic Khovanov cohomology for bridge diagrams

The link invariant Kh�symp.L/ was first introduced by Seidel and Smith in [11] as
the Lagrangian intersection Floer cohomology of two Lagrangians in Yn, constructed
as a nilpotent slice in sl2n.C/. In this original formulation, the first Lagrangian is
created by a technique called the iterated vanishing cycle, while the second Lagrangian
is the image of the first Lagrangian under the symplectomorphism induced by the
braid whose closure is the link L. Manolescu in [7] introduced a reformulation using
Hilbert schemes, which is easier to visualize and more similar to other low-dimensional
invariants, such as Heegaard Floer homology. In this subsection, Lagrangian Floer
cohomology groups are relatively graded; see Remark 2.4.

Let us start with the complex surface of Milnor fiber A2n�1. Consider the complex
surface

(2-1) A2n�1 D f.u; v; z/ 2C3
j u2
C v2

Cp.z/D 0g 2C3;

where p.z/D .z�p1/ � � � .z�p2n/.

Recall that the Hilbert scheme of n points on A2n�1, Hilbn.A2n�1/, is the space
of closed zero-dimensional subschemes of A2n�1 of length n. The Hilbert scheme
Hilbn.A2n�1/ is closely related to the n–fold symmetric product Symn.A2n�1/ of
A2n�1, through the Hilbert–Chow morphism:

Proposition 2.1 [8, Chapter 9] The Hilbert–Chow morphism � is a natural morphism
from Hilbn.X / to Symn.X / such that

(2-2) �.Z/D
X
x2X

length.Zx/Œx�:

Moreover , if X is complex one-dimensional , then � is an isomorphism. If X is smooth
and complex two-dimensional , � is a crepant resolution of singularities and Hilbn.X /

is smooth.

Let � D f.x1; : : : ;xn/ 2 Symn.A2n�1/ j xi D xj for some i ¤ j g be the diagonal
of the symmetric product. The proposition above implies that � is one-to-one away
from the diagonal �, so we can think of Hilbn.A2n�1/ as Symn.A2n�1/ when away
from �. Explicitly, a point in Hilbn.A2n�1/ corresponds to an ideal

I �ODCŒu; v; z�=.u2
C v2

Cp.z//
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with dimC.O=I/ D n. Thus, given n distinct points .ui ; vi ; zi/ in A2n�1, we can
construct an ideal by taking the product of .u�ui ; v� vi ; z� zi/, which gives a point
in Hilbn.A2n�1/.

Now we proceed to the definition of the manifold Yn. First, we consider a projection
i WA2n�1!C such that i.u; v; z/D z. It induces a map CŒz� ,!CŒu; v; z�!O. As
CŒz� intersects with the ideal .u2C v2Cp.z// in CŒu; v; z� trivially, if we denote by
R1 the image of CŒz� in O, we have R1 ŠCŒz�. For any ideal I 2 Hilbn.C/, we then
define the projection i.I/D I \R1 and the manifold

(2-3) Yn D fI 2 Hilbn.A2n�1/ j i.I/ has length ng:

The complement of Yn defines a divisor in the Hilbert scheme Hilbn.A2n�1/,

(2-4) Dr D fI 2 Hilbn.A2n�1/ j i.I/ has at most length n� 1g:

Manolescu proved [7, Proposition 2.7] that Yn is biholomorphic to the space Seidel
and Smith considered in [11].

Now, we construct the Lagrangians from a link diagram. A bridge diagram D for a
link L is a triple . Ę; Ě; Ep/, where Ep D .p1;p2; : : : ;p2n/ are 2n distinct points in R2,
Ę D .˛1; ˛2; : : : ; ˛n/ are n pairwise disjoint embedded arcs and Ě D .ˇ1; ˇ2; : : : ; ˇn/

are also pairwise disjoint embedded arcs such that @
�S

˛i

�
D @

�S
ˇi

�
Dfp1; : : : ;p2ng

and if we let the ˇ arcs overcross the ˛ arcs at the intersections in R2, we obtain a
diagram for L.

For each arc ˛i or ˇi , we can associate a Lagrangian sphere †˛i
or †ˇi

in A2n�1

through the equations

†˛i
D f.u; v; z/ 2A2n�1 j z 2 ˛i ;u; v 2

p
�p.z/Rg;(2-5)

†ˇi
D f.u; v; z/ 2A2n�1 j z 2 ˇi ;u; v 2

p
�p.z/Rg:(2-6)

There are natural projection maps †˛i
! ˛i and †ˇi

! ˇi . Each interior point of the
arc lifts to a copy of the circle, whereas each endpoint lifts to a single point. Therefore
†˛i

and †ˇi
are copies of S2. With appropriate choice of Kähler form, they are

Lagrangian spheres; see [7, Section 4].

The spheres †˛i
are pairwise disjoint in A2n�1 because their projection arcs ˛i are

pairwise disjoint in C. Similarly, the spheres †ˇi
are also pairwise disjoint. With these

Algebraic & Geometric Topology, Volume 23 (2023)



4064 Zhechi Cheng

spheres, we can build two Lagrangians in Hilbn.A2n�1/ and, in fact, in Yn by

K˛ D†˛1
�†˛2

� � � � �†˛n
;(2-7)

Kˇ D†ˇ1
�†ˇ2

� � � � �†ˇn
:(2-8)

It is worth pointing out that K˛ and Kˇ do not intersect transversely. The intersections
of the spheres †˛i

and †
ǰ

in A2n�1 are points in the fibers of the endpoints of the
˛ arcs and ˇ arcs and circles S1 in the fibers of interior intersections of those arcs.
Thus, we could have some tori in K˛\Kˇ . To deal with this, we can either perturb one
of the Lagrangians (see [7, Section 6.1]), or use Floer theory with clean intersections, as
in [9]. We can use either method when we compute Floer cohomology groups, because
both methods result in isomorphic homology groups.

For example, we can perturb Kˇ as follows. As Kˇ is a product †ˇ1
�†ˇ2

�� � ��†ˇn
,

it will be easier to perturb each †ˇi
in the complex surface A2n�1. Let N be a circle

in the intersection †
j̨
\†ˇi

�A2n�1 and V be a small neighborhood of N such that
V intersects no other Lagrangian spheres. Following Weinstein [14, Theorem 6.5], we
use the standard height function on N to isotope †ˇi

into †0
ˇi

so that †0
ˇi

is identical
to †ˇi

outside of V and †0
ˇi

intersects †ˇi
\V only at the maximum and minimum of

the height function. We repeat this process for all the S1 intersections on †ˇi
and for

all the ˇ Lagrangian spheres †ˇi
. With a slight abuse of notation, we call the resulting

Lagrangian spheres †0
ˇi

and let K0
ˇ
D †0

ˇ1
�†0

ˇ2
� � � � �†0

ˇn
. The resulting Floer

cochain complex CF�.K˛;K0ˇ/ will be quasi-isomorphic to CF�.K˛;Kˇ/.

For simplicity, we treat Kˇ as the original Lagrangian perturbed, unless mentioned
otherwise, so that it intersects transversely with K˛ at isolated points. Each intersection
at the interior of arcs ˛i and ǰ now gives the intersection of †˛i

and †
ǰ

at two points
instead of a circle.

Proposition 2.2 [7, Theorem 1.2; 13, Theorem 4.12] For any bridge diagram D

representing a link L, the Floer cohomology HF�.K˛;Kˇ/ in Yn D Hilbn.A2n�1/nDr

is canonically isomorphic to Seidel and Smith’s symplectic Khovanov homology
Kh�symp.L/.

With Proposition 2.2 in mind, we finally define:

Definition 2.3 The symplectic Khovanov cohomology Kh�symp.D/ of a bridge diagram
D is defined to be HF�.K˛;Kˇ/ in Yn D Hilbn.A2n�1/nDr .

Algebraic & Geometric Topology, Volume 23 (2023)
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Figure 1: A flattened braid diagram for the trefoil.

Remark 2.4 We have not yet given an absolute grading for this definition. In fact,
Proposition 2.2 is proved in the relatively graded case. Manolescu discussed an absolute
grading in [7, Section 6.2], but it only applies in the case of flattened braid diagrams,
where explicit choices can be made on Lagrangians to construct an absolute Maslov
grading. Waldron’s construction in [13] works for any bridge diagram, but only in the
relatively graded case.

In the rest of the paper, whenever we mention Kh�symp.L/, we will always be working
with Definition 2.3 rather than the original definition of Seidel and Smith, unless noted
otherwise.

2.2 An absolute grading for bridge diagrams

In this subsection, we prove Theorem 1.2 by showing that the homological grading
shifted by gr.x0/C rotCw is invariant under isotopy, handlesliding and stabilization.
We reiterate our conventions here that are crucial in defining the absolute grading. Our
link is oriented. At each intersection, the ˇ arc overcrosses the ˛ arc. The distinguished
generator x0 has the coordinates at the starting points of all ˇ arcs.

The idea of this correction term is from Droz and Wagner in [3], in which the authors
considered grid diagrams obtained from deforming flattened braid diagrams. A flattened
braid diagram of a braid b 2 Brn is a special bridge diagram associated to the braid b

whose marked points pi are placed on the real line ordered by their indices, the ˛ arcs
are segments on the real line connecting p2i�1 and p2i , and the ˇ arcs are the images
of ˛ arcs after applying the braid b action on the odd-numbered strands.

Remark 2.5 An interesting example is that if we take a bridge diagram representing a
braid closure, the rotation number is exactly the number of strands (because all Seifert
circles are going counterclockwise), and the writhe of the diagram matches the writhe
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C1

�1

�1

C1

Figure 2: Local picture near the marked points with horizontal tangent lines
and their sign assignments.

of the braid. The distinguished generator has homological grading 0 in any flattened
braid diagram. Thus the correction term gr.x0/C rotCw for the braid closure diagram
agrees with Manolescu’s correction term nCw of the flattened braid diagram, where
these two diagrams are isotopic as link diagrams.

Equipping the Lagrangian Floer homology with an absolute grading requires us to
grade our Lagrangians by choosing some sections of the canonical bundle. In the braid
closure setup, the two Lagrangians are related by some fibered Dehn twists and thus
the choice on the second Lagrangian can be induced from the first one canonically. In
the general bridge diagram case (not a flattened braid diagram), there is no easy way to
assign a choice to the second Lagrangian, so instead, we assign to the generator x0 the
grading 0.

Manolescu in [7, Section 6.2] pointed out a combinatorial method to compute the
relative homological grading. In short, we replace each ˇ arc ǰ with an oriented figure-
eight 
j (and the orientation does not matter) in a small neighborhood of ǰ . We arrange
our diagram so that each ˛ arc is horizontal and each figure-eight is vertical wherever
they intersect. Each intersection of Lagrangian spheres †˛i

and †
ǰ

corresponds to an
intersection of the arc ˛i and the figure-eight 
j . We travel along the figure-eight 
j and
mark the points that have horizontal tangent lines. We assignC1 to those marked points
if the part of the figure-eight near the marked point is locally oriented counterclockwise,
and �1 if clockwise; see Figure 2.

Now, we label each point on 
j with a number, starting with the quantity 0 at the
intersection representing the starting point of ǰ . Note that this is an arbitrary choice,
but we will correct for it later. We move along the figure-eight 
j following its
orientation. We change the quantity we assign only when we move past the marked

Algebraic & Geometric Topology, Volume 23 (2023)
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Figure 3: Two possible bridge diagram isotopies corresponding to Reide-
meister I and II moves.

points with horizontal tangent lines. The new quantity will be the sum of the previous
one and the number we put on the marked points, ie C1 or �1; see Figure 4 for an
illustration of the computation. An easy combinatorial argument implies that the sum of
the numbers on such marked points is 0 and thus we get back to 0 when we reach back
to the starting point. Each of the generators of the Floer cohomology group corresponds
to n intersection points and the sum of the labeled numbers will be its relative grading.
In the construction, we made a choice that the coordinate at each starting point of the
ˇ arc has grading 0, and thus the distinguished generator x0 has grading 0. In other
words, the grading shifted by gr.x0/ will be independent of the grading we assign to
the starting points of the ˇ arc. We now prove the following proposition about the
absolute grading.

Proposition 2.6 HF�Cgr.x0/CrotCw.K˛;Kˇ/ is invariant under bridge diagram isotopy.

Proof An isotopy of a bridge diagram induces Hamiltonian-isotopic Lagrangians
and thus keeps the relatively graded group HF�.K˛;Kˇ/ unchanged. If any crossing
arises, it must come from one of the cases shown in Figure 3, which correspond to a
Reidemeister I move and a Reidemeister II move (whereas the Reidemeister move III
is from a combination of (de-)stabilizations and handleslides).

In the first case (see top row of Figure 3), there are two subcases: the ˛ arc oriented to
the left, and to the right. The easier subcase is the right-going ˛ curve. The crossing is
a positive crossing and the bigon region gives an additional clockwise Seifert circle.
The distinguished generator x0 has no coordinate in this region and thus its grading
does not change. The total change of gr.x0/C rotCw is 0.

The other subcase is more subtle. The crossing is still positive but the Seifert circle is
now counterclockwise, which increases the correction term by 2. The distinguished
generator x0 indeed takes a coordinate at the black dot in the top row of Figure 3.

Algebraic & Geometric Topology, Volume 23 (2023)
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C 0

0

�1 �3
�2

C

�

�

C

0 �1 �2

Figure 4: Isotopy corresponding to Reidemeister I move. We label each
intersection and the endpoint of the figure-eight with its grading and we
abbreviate the˙1 labels on the marked points with horizontal tangent lines
to˙ signs to avoid confusion.

With the illustration of figure-eights in Figure 4, we can see that the relative grading is
changed by 2, which cancels the contribution of the other two terms to gr.x0/CrotCw.
In fact, we can explicitly describe the new cochain complex. The bigon region in
the complex plane lifts to topological disks that have holomorphic representatives
in the complex surface A2n�1 and thus in Yn when multiplied with constant discs,
connecting one of the two generators at the interior intersection to the endpoint. One
of the moduli spaces has dimension one and contributes to differentials which cancel
pairs of generators having identical coordinates except one coordinate in the picture.
At the cochain level, the isotopy created three copies of the original cochain complex
with generators that have a coordinate at the black dot, but two of the three copies are
canceled on the homology level. The surviving copy should have the same grading
as the original cochain. It is not hard to see that the other moduli space of the bigon
region has dimension two; thus, locally changing coordinate from the lower grading
coordinate at the intersection to the black dot decreases the grading by 2. So in the new
diagram, the grading of the distinguished generator decreases by 2 relative to other
generators, which cancels the contribution by the sum of writhe and rotation number.

In the second case which corresponds to a Reidemeister II move, the two new crossings
always have different signs so the writhe remains unchanged regardless of the orientation.
If the two strands are oriented in the same direction, the Seifert surface remains
unchanged and thus the rotation number is also the same. If the two strands are oriented
in the opposite direction, there will be two subcases, whether the two strands are from
the same Seifert circle or not. In the first subcase (the top row of Figure 5), locally one
Seifert circle breaks into three circles, but the middle one is of the opposite direction.
In the second subcase (the bottom row of Figure 5), there are two Seifert circles of the
same direction in each picture. In either case, the rotation number remains the same as
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Figure 5: Two cases for Reidemeister II isotopy when two strands are oriented
in the opposite direction. The first row corresponds to the case when both
strands are oriented in the same direction and the second row corresponds to
the case when strands are oriented in the opposite direction.

well. Apart from the two new intersections in the new diagram, all other generators
are from the diagram before the isotopy and it is not hard to see that the gradings of
such generators remain unchanged. Thus gr.x0/ remains unchanged as well, relative
to other generators.

Proposition 2.7 HF�Cgr.x0/CrotCw.K˛;Kˇ/ is invariant under stabilization.

Proof Stabilizations will not change the writhe or the rotation number of the diagram.
It suffices to show that the grading change of the homology is the same as the grading
change of the distinguished generator x0, when we apply stabilizations. This follows
because Waldron’s proof of invariance of the relative grading under stabilization estab-
lishes an isomorphism on the cochain level; see [13, Lemma 5.19].

Handleslide invariance is the hardest among the three. Before the proof, we make some
topological observations. With isotopy invariance, we should arrange our diagram to
be as simple as possible.

We explicitly describe the process of the handleslide of arc ˛2 over ˛1, as shown in
Figure 6. First, we choose the boundary of a tubular neighborhood of ˛1, so that each
midpoint intersection of any ˇ arc locally intersects the circle exactly twice, and the
ˇ arcs connecting the endpoints of ˛1 locally intersect the circle exactly once. Then
pick any path 
 from ˛2 to the circle that does not intersect any ˛ arc in its interior,
and perform a connected sum of ˛2 and the circle along 
 so that each intersection
between the path and the ˇ arc creates exactly two intersections on the connected sum.

Proposition 2.8 HF�Cgr.x0/CrotCw.K˛;Kˇ/ is invariant under handleslides.
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˛2

˛2



˛1

˛1

Figure 6: Handlesliding ˛2 over ˛1 along the arc 
 . In the diagram after
handlesliding, as shown in the second row, the left (solid) box corresponds to
Figure 7 and the right (dashed) box corresponds to Figure 8.

Proof It is clear that new intersections are created in pairs, and each pair contains
exactly one negative and one positive crossing. Thus, the writhe of the diagram remains
unchanged.

Next, we show that the rotation number remains unchanged as well. The proof breaks
into three steps.

First, we study the intersections created around the path 
 , ie the intersections in the
solid box in Figure 6. Locally, there is a series of parallel ˇ arcs intersecting two ˛ arcs.
The two ˛ arcs are parallel to the path 
 and always oriented in the opposite directions.

Let us label a ˇ arc with positive sign if it goes from bottom to top, and with negative
sign if it goes from top to bottom. For convenience, we order those parallel ˇ arcs
from left to right. We study the local picture with only two adjacent ˇ arcs. There are
four cases in total shown in Figure 7. In the case CC, the Seifert circle containing
the left arc remains unchanged. The Seifert circle containing the right arc goes to the
local picture involving the right ˇ arc and the next one to the right outside the figure.
The Seifert circle will either be unchanged, if the next ˇ arc is also C, or it will be
discussed in the case C� below, if the next ˇ arc is �. In the case ��, the Seifert
circle containing the right arc remains the same and the other Seifert circle will either
be unchanged or will be discussed in the case C� below.

In the case C�, there are two subcases, whether the two ˇ arcs belong to the same
Seifert circle or different ones, similar to the Reidemeister II move argument as shown
in Figure 5. In this case either a clockwise circle is broken into two or two clockwise
circles are merged into one. In either case, the rotation number is reduced by 1.

In the case �C, one counterclockwise circle is created. The other two Seifert circles
are studied already in other cases. Thus, the rotation number is increased by 1.
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� C � �

C C C �

Figure 7: All four possible Seifert circles at the intersections near the path 
 ,
depending on the orientation of ˇ arcs.

To sum this up, each time the sign changes from C to �, the rotation number decreases
by 1, and each time the sign changes from � to C, the rotation number increases
by 1. At the intersection of the path 
 and ˛1, ˛1 is oriented to the right to match the
orientation of the ˛ arcs in the handleslide picture, and the circle will remain the same
if the first ˇ is positive, and decreases the rotation number by 1 if the first ˇ is negative.
Thus, if the last ˇ arc is positive, the rotation number remains the same, and if the last
one is negative, the rotation number is reduced by 1. The last ˇ arc is also related to
the last step of the argument.

The second step is to compute the contribution of new intersections created at the circle
near ˛1, ie the intersections in the dashed box of Figure 6. Without loss of generality,
let us assume ˛1 is oriented from left to right. The part in the dashed box of Figure 8
is exactly the same as the picture before the handleslide. The rest of the region is two
parallel ˛ arcs oriented in the opposite direction, intersecting a series of parallel ˇ arcs.
The study of these new intersections is similar to the first half of the argument and the
conclusion is similar, except now the sign depends on the first ˇ arc. We claim that the
rotation number remains the same if the first arc is positive, and increases by 1 if the
first arc is negative.

Combing the results from the first two steps, the change of the rotation number only
depends on the direction of the last ˇ arc in Figure 7 and the first ˇ arc in Figure 8.
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˛1 ˛1

˛2

Figure 8: Diagrams near ˛1. The left one is before the handleslide and the
right one is after the handleslide.

If both are of the same direction, the total contribution to the rotation number is 0.
If the ˇ from the first half is � and the ˇ from the second half is C, then we have a
counterclockwise Seifert circle while all the other Seifert circles remain unchanged;
see Figure 9. This Seifert circle cancels the effect of the second arc being negative,
ie increases the rotation number by 1. In the symmetric case, the creation of a clockwise
Seifert circle between the two arcs cancels the effect of the first ˇ arc being negative,
ie decreases the rotation number by 1. In any of the cases above, the total change of
rotation number is 0.

Lastly, we need to check the relative grading of the homology remains the same relative
to the distinguished generator x0. First of all, the isomorphism between symplectic
Khovanov homology groups induced by handlesliding is induced by a continuation
map on the cochain level. It is also easy to see that there is an injection from the
generators of the original cochain complex to the ones of the cochain complex after
the handleslide. It is easy to see that the homological gradings of the corresponding
generators are not changed by considering the formulation of the relative grading in
terms of tangencies of figure-eights, because we only changed one of the arcs and
we essentially only applied an isotopy to one of the ˛ arcs if we allow the isotopy to
move across other marked points and ˛ arcs. Moreover, the distinguished generator is
obviously one of the generators that are preserved in the correspondence, and thus the
homological grading relative to the distinguished generator x0 remains the same.

Figure 9: The figure on the left is the region connecting Figures 7 and 8 with
the case �C. The left ˇ arc is the rightmost ˇ arc of Figure 7, the middle
short ˇ arc is the leftmost ˇ arc of Figure 8, and the right ˇ arc is the second
leftmost ˇ arc of Figure 8. The figure on the right is its Seifert circles and
there is a counterclockwise Seifert circle in the middle.
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Combining the propositions in this subsection, we complete a proof for Theorem 1.2,
that we obtain an absolutely graded version of symplectic Khovanov cohomology for
bridge diagrams.

3 Weight grading on Kh�

symp.L/

In this section, we discuss the construction of the weight grading in Section 3.1,
following the idea of Abouzaid and Smith in [1]. We then turn to its behavior under
certain Floer products in Section 3.2. Lastly, we construct a long exact sequence of the
unoriented skein relation for bigraded symplectic Khovanov cohomology groups in
Section 3.3.

3.1 Construction of weight grading

In this subsection, we define the weight grading wt on Kh�symp following the idea of
Abouzaid and Smith in [1, Section 3]. The key point of constructing such a grading is
to build an automorphism, more precisely, the linear term of a noncommutative vector
field, or an nc-vector field [1, Definition 2.3],

(3-1) � W CF�.K˛;Kˇ/! CF�.K˛;Kˇ/;

which preserves the homological grading and commutes with the differential. Thus,
it induces an automorphism ˆ on homology. If x is an eigenvector of eigenvalue �,
we define the weight grading wt.x/D �. Most results of this section hold for fields of
any characteristic but we will restrict our discussion to fields of characteristic zero; see
Remark 3.4 for more detail. In this subsection only, we use L for Lagrangians rather
than links, as we will not use link diagrams in this subsection.

The idea of defining the map � is to study certain moduli spaces of holomorphic maps
in a partially compactified space xYn of Yn. We will begin by introducing the partial
compactification xYn before we set up the moduli spaces. We leave some of the technical
details to [1]. Abouzaid and Smith give a hypothesis under which it is possible to
define an nc-vector field on an exact Fukaya category [1, Hypothesis 3.1], and show
that a certain partial compactification of Yn satisfies their hypothesis [1, Section 6].

Remark 3.1 It is worth noting that for some geometric hypotheses to hold — see
[1, Lemma 6.5], for example — Abouzaid and Smith considered Lagrangians in fibered
position, which are the Lagrangians that are fibered over ˛ or ˇ arcs, throughout their
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papers [1; 2]. This will not hold if we perturb one of the Lagrangians to make the
Lagrangians intersect transversely. As a result, Abouzaid and Smith worked with
Lagrangian Floer theory with clean intersections. From now on, we no longer perturb
our Lagrangians but assume that the Lagrangians intersect cleanly. We do so without
further comment.

Recall that the Milnor fiber A2n�1 admits a Lefschetz fibration structure over C, with
regular fibers cones and singular fibers cylinders. We partially compactify A2n�1

into xA2n�1 by adding two sections so that each regular fiber is compactified to two
2–spheres, while each singular fiber is compactified to a 2–sphere. Then we can
partially compactify Yn as xYn D Hilbn. xA2n�1/nDr , where Dr is defined analogously
to equation (2-4) for the partially compactified surface. Following the notation of
Abouzaid and Smith, we let s0 and s1 be the two sections we add to A2n�1. Let D0

be the divisor of subschemes whose support meets s0[ s1.

Now we turn to the moduli space. Let RkC1
.0;1/

be the moduli space of holomorphic
classes of closed unit discs with the additional data of

� two interior marked points z0 D 0 and z1 2 .0; 1/;

� kC1 boundary punctures at q0D 1, and k others q1; : : : qk placed counterclock-
wise.

Following [1, Section 3.7], we define

(3-2) RkC1
.0;1/

.x0Ixk ; : : : ;x1/

as the moduli space of finite-energy holomorphic maps u WD! xYn such that

(M-1) u�1.Dr /D∅,

(M-2) u�1.D0/D z0,

(M-3) u�1.D0
0
/D z1, where D0

0
is a divisor linearly equivalent to D0 but shares no

irreducible component with D0,

(M-4) the relative homology class satisfies Œu� � ŒD0�D 1,

(M-5) u.qi/D xi ,

(M-6) the boundary segment between qi and qiC1 maps to Li .

This is the moduli space originally used by Seidel and Solomon in [12] for the
q-intersection number, and it was later used by Abouzaid and Smith in [1, Section 3]
for the nc-vector field.
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Now we are ready to introduce our automorphism ˆ, which only involves the case
of k D 1. When k D 1, the virtual dimension of R2

.0;1/
.x;y/ is the difference of the

homological grading gr.x/� gr.y/; see [1, Lemma 3.16]. It makes sense to consider a
map of degree 0 that counts holomorphic discs in R2

.0;1/
.x;y/:

(3-3) b1.x/D
X

y jgr.y/Dgr.x/

#R2
.0;1/.x;y/y:

In fact, b1 is the linear part of a Hochschild cochain b2CC�.F.Yn/;F.Yn// if we allow
multiple inputs instead of one single input. A precise construction of the Hochschild
cochain b can be found at [1, Equation 3.89].

Remark 3.2 The construction of an nc-vector field requires a closed Hochschild
cochain, but the cochain b is not closed; see [1, Proposition 3.20]. However, it can be
made closed by adding some terms involving sphere bubbles; see [1, Equation 3.90]. To
keep this section short, we will not introduce these additional terms here, because the
degenerations involving sphere bubbles can be excluded analogously to the argument
in last three paragraphs of [1, Section 3.9].

We can also denote by bk the part of b with k inputs, which can be defined by counting
discs in RkC1

.0;1/
.x0Ixk ; : : : ;x1/, similarly to the definition of b1. The terms bk for

general k are not needed in this paper, except for the case k D 0, which will only be
used in the definition below about equivariant structures. As we do not intend to expand
the discussion of the equivariant structures, we refer the readers to [1, Section 3.4] for
more details. The term b0 is defined by counting holomorphic discs in R1

.0;1/
.x/ with

one output and no input such that the entire boundary is mapped to some Lagrangian L.
The virtual dimension of R1

.0;1/
.y/ is gr.y/� 1 and thus b0jL 2 CF1.L;L/ for each

Lagrangian submanifold L.

Definition 3.3 An equivariant object is a pair .L; c/, with L 2 Ob.F.M // and c 2

CF0.L;L/, with dc D b0jL.

By definition, given an exact Lagrangian L, the obstruction to the existence of an
equivariant structure c is given by b0jL 2HF1.L;L/ŠH 1.L/, and the set of choices
when this vanishes is an affine space equivalent to H 0.L/. In our case, the Lagrangians
are products of spheres, thus H 1.L/Š f0g and H 0.L/Š k.
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Since we do not assume that b0 vanishes, for a cocycle b 2 CC1.F.M /;F.M // and
equivariant objects .K˛; c˛/ and .Kˇ; cˇ/, the linear term b1 is not always a chain map.
However, we can define a chain map following [1, Equation 2.31],

(3-4) �.x/D b1.x/��2.c˛;x/C�
2.x; cˇ/:

It induces an endomorphism ˆ on HF�.K˛;Kˇ/. If we consider the generalized
eigenspace decomposition, the eigenvalue of the generalized eigenvector x will be its
weight grading, denoted as wt.x/.

Remark 3.4 The construction above applies to fields k of any characteristic. The
weight grading is a priori indexed by elements of the algebraic closure xk. If char.k/D0,
there exist additive subgroups Z of k, and thus of its algebraic closure xk. As for
finite fields, if k D Fp with a prime number p for simplicity, we can then compute
xk D

S
n Fpn! ; it is no longer possible to find an additive subgroup Z of Fp or of its

algebraic closure. As a result, working with a characteristic-zero field will not only
enable us to use the result of Abouzaid and Smith that identifies symplectic Khovanov
cohomology and Khovanov homology, but also make it easier to obtain an integral
weight grading, in contrast to finite fields.

We learn from [1, Lemma 2.12] that since HF0.K;K/ Š k, changing equivariant
structures shifts the overall weight gradings (ie the eigenvalues) by a constant

(3-5) ˆ.K˛;c˛/;.Kˇ;cˇ/ Dˆ.K˛;c˛Cs˛/;.Kˇ;cˇCsˇ/C .s˛ � sˇ/ id :

So we have the following definition of the relative weight grading:

Definition 3.5 Let ˆ be the endomorphism constructed above on HF�.K˛;Kˇ/ and
x be an eigenvector of ˆ. The relative weight grading wt.x/ is defined to be the
eigenvalue of x. This construction relies on auxiliary choices of equivariant structures
on K˛ and Kˇ, but different choices of such structures will only change all gradings
by a fixed number. Thus wt.x/ as a relative grading is independent of choices of
equivariant structures.

Remark 3.6 With given equivariant structures on K˛ and Kˇ, we can compute an
absolute weight grading. But at the time of writing this paper, the author does not know
the choices that would give a correction term independent of the link diagram.

Then we can rephrase Abouzaid and Smith’s purity result as follows.
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Proposition 3.7 [1, Proposition 6.11] Let D be a bridge diagram without any cross-
ings. Then we can choose c˛ on K˛ and cˇ on Kˇ such that for any x 2 HF�.K˛;Kˇ/,
we have wt.x/D gr.x/.

Recall the Khovanov homology of an unlink of k components Uk is

(3-6) Kh�;�.Uk/D

kO
.k.0;1/˚k.0;�1//:

With the choice of the equivariant structures by Abouzaid and Smith, we have

(3-7) Kh�;�symp.Uk/D

kO
.k.1;1/˚k.�1;�1//:

This proposition is a special case of our main theorem with crossing number equal
to 0, if we relate gradings .gr;wt/ on symplectic Khovanov cohomology and .i; j / on
Khovanov homology with the formula

i D gr�wt;(3-8)

j D�wt:(3-9)

3.2 Floer product and weight grading

In [1, Section 3], Abouzaid and Smith pointed out an important fact that the weight
grading is compatible with Floer products, without actually phrasing and proving
the precise statement. Also in [12, Equation 4.9], Seidel and Solomon discussed the
derivation property in a similar setup. We prove the following proposition:

Proposition 3.8 Let K0, K1 and K2 be compact Lagrangians given by crossingless
matchings in Yn. Then for any eigenvector ˛ 2 HF�.K1;K2/ and ˇ 2 HF�.K0;K1/,

(3-10) wt.�2.˛; ˇ//D wt.˛/Cwt.ˇ/:

Proof Consider the boundary strata of the moduli space xR3
.0;1/

.x0Ix1;x2/, where
we have three boundary marked points and two interior marked points. As before,
we exclude sphere bubbles. We can also exclude the cases when two interior marked
points are split into two different components by the assumption (M-4). This is because
both components will have positive intersection with D0 and thus Œu� � ŒD0�� 2, which
contradicts (M-4).
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Figure 10: Six possible boundary bubbles. The incoming arrows are inputs
and the outgoing ones are outputs.

With sphere bubbles excluded as discussed in Remark 3.2, there are still six possible
types of degeneration; see Figure 10. Three degenerations shown in the first row
compute

�.�2.x1;x2//;(3-11)

�2.x1; �.x2//;(3-12)

�2.�.x1/;x2/:(3-13)

The three degenerations shown in the second row compute

�1�2.x1;x2/;(3-14)

�2.�1.x1/;x2/;(3-15)

�2.x1; �
1.x2//:(3-16)

If we pass to homology, those terms with �1 will vanish and thus we have the following
relation by counting all the boundary components of the one-dimensional moduli space
xR2
.0;1/

.x0Ix1;x2/,

(3-17) �.�2.x1;x2//D �
2.x1; �.x2//C�

2.�.x1/;x2/:
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This is equivalent to

(3-18) wt.�2.x1;x2//�
2.x1;x2/D �

2.x1;wt.x2/x2/C�
2.wt.x1/x1;x2/

D .wt.x1/Cwt.x2//�
2.x1;x2/;

which proves the result.

Remark 3.9 By studying a similar setup with more boundary marked points, we can
generalize the result above to higher Floer products. Specifically, when we consider the
product of three elements, we have wt.�3.x1;x2;x3//D wt.x1/Cwt.x2/Cwt.x3/.

3.3 A long exact sequence of Kh�;�
symp.L/

Abouzaid and Smith [2, Equation 7.9] constructed a long exact sequence from an exact
triangle of bimodules over the Fukaya category of Yn,

(3-19) � � � ! Kh�symp.LC/! Kh�symp.L0/! Kh�C2
symp.L1/! � � � ;

where LC is a link diagram with a positive crossing and L0 and L1 are diagrams
given by 0 or 1 resolutions at the positive crossing. The goal of this chapter is to
give an explicit construction of such a long exact sequence within the framework of
bridge diagrams that preserves the weight grading, just like the combinatorial Khovanov
homology.

We use the following local diagrams for the computation: we name the blue curves ˇ,
the green curves 
 and the yellow curves ı, respectively, in Figure 11, and the other
components of 
 and ı are small isotopies of the components of ˇ such that there are no
intersections in the interiors of the arcs. Thus, the Lagrangians Kˇ , K
 and Kı intersect
pairwise transversely. (Here we moved the actual arcs rather than perturbing the
Lagrangians to avoid issues we discussed in Remark 3.2.) Pairing ˛ with ˇ gives LC,
pairing ˛ with 
 gives L0, and pairing ˛ with ı gives L1. We have the following
exact sequence:

Proposition 3.10 [2, Proposition 7.4] If we have ˛, ˇ, 
 and ı curves presented
locally as in Figure 11 and ˇ, 
 and ı are the same apart from in this region , then we
have the following exact sequence

(3-20) � � �
c1
�! HF�.K˛;Kˇ/

c2
�! HF�.K˛;K
 /

c3
�! HF�C2.K˛;Kı/

c1
�! � � � :

In particular , there are elements

c1 2 CF�.Kˇ;Kı/; c2 2 CF�.K
 ;Kˇ/ and c3 2 CF�.Kı;K
 /

such that the maps above are Floer products with the corresponding elements.
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Figure 11: Exact triangle of Lagrangians. The red, blue, green and yellow
curves are ˛, ˇ, 
 and ı curves, respectively.

Proof Abouzaid and Smith proved that there is an exact triangle of bimodules of
the Fukaya category of Yn among the identity bimodule, the cup–cap bimodule and
the bimodule representing a half-twist � . Evaluating these bimodules at K
 as the
second object, we have an exact triangle of one-sided modules between K
 , Kı and a
one-sided module that is equivalent to HF�.�;Kˇ/, such that the maps connecting those
terms are Floer products with some elements c1 2 CF�.Kˇ;Kı/, c2 2 CF�.K
 ;Kˇ/
and c3 2CF�.Kı;K
 /. Evaluating these one-sided modules at K˛ , we have the desired
long exact sequence.

Now we need to show that this long exact sequence preserves the relative weight grading
in the sense that each element summing to ci has the same weight grading so that ci

has a well-defined weight grading, and moreover the weight gradings of c1, c2 and c3

sum to 0. With a closer look into the diagram, we have the following observation:

Lemma 3.11 Each pair of ˇ, 
 and ı forms a bridge diagram for an unlink of n� 1

components without any crossings.

Proof In the region shown in Figure 11, each pair of ˇ, 
 and ı forms a crossingless
unknot. In the other regions not shown in the figure, each pair of arcs forms a crossing-
less unknot component as well. Thus we have one crossingless unknot component in
Figure 11 and n�2 crossingless unknot components outside that figure. Together, each
pair of ˇ, 
 and ı forms a bridge diagram for an unlink of n� 1 components without
any crossings.

From the computations of [1, Proposition 5.12], we have:

Lemma 3.12 With some grading shifts , we compute

(3-21) CF�.Kˇ;K
 /Š CF�.K
 ;Kı/Š CF�.Kı;Kˇ/Š
n�1O

H�.S2/;

and thus all generators are cocycles.
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Now, we prove the following proposition about the weight grading on those groups:

Proposition 3.13 For a fixed choice of equivariant structures on the Lagrangians Kˇ,
K
 and Kı, there are well-defined weight gradings for the elements c1 2 CF�.Kˇ;Kı/,
c2 2 CF�.K
 ;Kˇ/ and c3 2 CF�.Kı;K
 /.

Proof From Lemma 3.12, we know that each of the Floer cochain complexes and the
Floer cohomology groups above can be made so that weight grading equals homological
grading. Together with the observation that choices of equivariant structures will only
apply overall grading shifts to all weight gradings, thus we know the weight grading of
any element in CFn must be the same. If we fix a set of equivariant structures on Kˇ,
K
 and Kı, we have a well-defined weight grading for each ci from its homological
grading plus the effect a grading shift from changing the equivariant structure from the
standard one.

Before we prove wt.c1/Cwt.c2/Cwt.c3/D 0, recall the following lemma from Seidel:

Lemma 3.14 [10, Lemma 3.7] A triple Kˇ, K
 and Kı forms an exact triangle of
Lagrangians if and only if there exist

c1 2 CF1.Kˇ;Kı/; c2 2 CF0.K
 ;Kˇ/; c3 2 CF0.Kı;K
 /;

h1 2 HF0.K
 ;Kˇ/; h2 2 HF0.Kˇ;Kı/; k 2 HF�1.Kˇ;Kˇ/

such that

�1.h1/D �
2.c3; c2/;(3-22)

�1.h2/D��
2.c1; c3/;(3-23)

�1.k/D��2.c1; h1/C�
2.h2; c2/C�

3.c1; c3; c2/� eKˇ ;(3-24)

where eKˇ 2 HF0.Kˇ;Kˇ/ is the identity element of the Floer product

�2
W HF�.Kˇ;K/˝HF�.Kˇ;Kˇ/! HF�.Kˇ;K/:

Lemma 3.15 For any choice of equivariant structures on Lagrangians , the sum of
weight gradings satisfies wt.c1/Cwt.c2/Cwt.c3/D 0.

Proof We know �1 vanishes on all the Floer groups above. If we prove that h1 D 0

and h2 D 0, then the equation (3-23) becomes �3.c1; c3; c2/D eKˇ . Together with the
fact that weight grading is compatible with Floer product, see Remark 3.9, we know
that wt.c1/Cwt.c2/Cwt.c3/ D wt.eKˇ /. From [1, Lemma 4.10], no matter which
equivariant structure we choose on Kˇ, the identity always has the weight grading 0.
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To see that h1 D 0 and h2 D 0, we need to look into the absolute grading. We claim
that HF�.K
 ;Kˇ/ and HF�.Kˇ;Kı/ are supported in odd degrees. This is because
pairing 
 with ˇ gives a flattened braid diagram for a braid � with writhe 1. The
number of strands is even and thus this group is supported in odd degrees. Similarly,
pairing ˇ with ı gives ��1, which also gives an odd-degree supported group. Notice
that the third map c3 should have degree 2 in the absolute grading case, thus the exact
triangle is actually between Kˇ , K
 and Kı Œ2�. But shifting the grading of Floer groups
by 2 does not change the fact that h1 and h2 have even degrees. Thus, they must be 0.

Thus we conclude the following:

Proposition 3.16 The long exact sequence of equation (3-20),

(3-25) � � � c1
�!HF�;wt1.K˛;Kˇ/

c2
�!HF�;wt2.K˛;K
 /

c3
�!HF�C2;wt3.K˛;Kı/

c1
�!� � � ;

decomposes with respect to weight gradings.

Proof From Proposition 3.13, we know that there is a well-defined weight grading
for c1, c2 and c3. If we start with the first group HF�;wt1.K˛;Kˇ/, the only nontrivial
map will be at weight grading wt1Cwt.c2/ because the weight grading is compatible
with Floer products. The same goes for wt3Dwt1Cwt.c3/Cwt.c2/. The next weight
grading should be wt1Cwt.c2/Cwt.c3/Cwt.c1/D wt1, which is exactly where we
started with the first group.

4 Proof of the main theorem via a bigraded isomorphism

In this section, we prove our main theorem, Theorem 1.3, through showing that our
isomorphism is a bigraded refinement of the isomorphism in [2]. We start this section
by rephrasing the main theorem of [2] as follows:

Proposition 4.1 [2, Theorem 7.5] For any bridge diagram L, we have an isomor-
phism H between symplectic Khovanov cohomology and Khovanov homology,

(4-1) H W Kh�symp.L/! Kh�.L/:

In [2], we can only conclude from the original argument of Abouzaid and Smith that
H is canonical for braid closures. With Proposition 2.2, that symplectic Khovanov
cohomology is defined canonically (and the same for combinatorial Khovanov homol-
ogy), we can claim that H is canonical for any link diagram. This is an isomorphism
with only information on the homological grading. But Abouzaid and Smith’s proof
of the isomorphism between symplectic and ordinary Khovanov homology implies
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that the long exact sequence in equation (3-20) commutes with the corresponding long
exact sequence for Khovanov homology, as illustrated in the following lemma.

Lemma 4.2 Fix a link diagram LC and its unoriented resolutions L0 and L1 at one
of the crossings. We represent their corresponding bridge diagrams with .˛; ˇ/, .˛; 
 /
and .˛; ı/ arcs respectively such that ˛, ˇ, 
 and ı are locally shown in Figure 11. The
isomorphism H is compatible with the exact sequence (3-20), ie the following diagram
commutes:

(4-2)

HF�.K˛;K
 / //

H

��

HF�C2.K˛;Kı/ //

H
��

HF�C1.K˛;Kˇ/

H
��

Kh�.L0/ // Kh�C2.L1/ // Kh�C1.LC/

// HF�C1.K˛;K
 / //

H
��

HF�C3.K˛;Kı/

H
��

// Kh�C1.L0/ // Kh�C3.L1/

where the upper row is the exact sequence of equation (3-20), and the lower row is the
exact sequence for combinatorial Khovanov homology with grading i � j .

Proof In the proof of the Abouzaid–Smith isomorphism, they show that the cup
functors of Khovanov and symplectic Khovanov are identified with the isomorphism in
the arc algebra; see [2, Corollary 6.16]. Moreover, we know that the cap functors in
both cases are adjoint to the corresponding cup functors from [2, Proposition 7.4]. The
horizontal maps in the first squares are given by applying the same cap–cup functor in
each case, and thus they commute with the isomorphisms in the first square.

For the other squares, the diagram naturally commutes if we replace the third group
of each row with the mapping cone of the other two, given the fact that the first
square is already commutative. Moreover, in the proof of [2, Theorem 7.6], the
isomorphism H and the long exact sequences are constructed via the mapping cones,
and thus factor through the cones of horizontal maps of the first square. Together with
the fact that the third group of each row is isomorphic to a mapping cone of the other
two (see [2, Proposition 7.4]), we conclude that the second and third squares are also
commutative.

Corollary 4.3 The diagram involving the exact sequences of resolving a negative
crossing is also commutative.
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Recall that we compared the bigradings of two theories at the end of Section 3.1 for
unlinks.

Proposition 4.4 [1, Proposition 6.11] The isomorphism H preserves the weight
grading if D is a crossingless diagram , with grading correspondence grD i � j and
wtD�j .

We are now ready to prove the main theorem.

Proof of Theorem 1.3 We only need to prove that for any fixed Jones grading j0,
H is also an isomorphism with wtD�j0C c with some grading shift c,

(4-3) H W Kh�;�j0
symp .L/! Kh�;j0.L/:

We prove that this statement is true for any link (bridge) diagram by induction on the
number of crossings. The base case for unlinks is proved with Proposition 4.4.

Now we assume that LC is a link diagram with n crossings, whereas its resolutions L0

and L1 have n�1 crossings. Let us assume we are resolving at a positive crossing. If
all crossings are negative, a similar argument can be applied for the exact sequences
induced by resolving at a negative crossing. By the inductive hypothesis, the maps H

are bigraded isomorphisms for L0 and L1. Let us fix a Jones grading j1 on Kh.L0/.
The maps in the long exact sequence will be trivial unless the Jones grading j2 on
Kh.L1/ is j1� 3v� 2, where v is the signed count of crossings between the arc that
ends at the left-most endpoint in Figure 11 and other components, and j3 on Kh.LC/
is j1C 1. Thus we can decompose our commutative diagram with respect to the Jones
grading:

(4-4)

HF�;�j1.K˛;K
 /
c2
//

H
��

HF�C2;�j2.K˛;Kı/
c3
//

H
��

HF�C1;j 0
3.K˛;Kˇ/

H
��

Kh�;j1.L0/ // Kh�C2;j2.L1/ // Kh�C1;j3.LC/

c1
// HF�C1;�j1.K˛;K
 /

c2
//

H
��

HF�C3;�j2.K˛;Kı/

H
��

// Kh�C1;j1.L0/ // Kh�C3;j2.L1/

where the weight grading j 0
3

is given by �j2Cwt.c3/. The first, second, fourth and
fifth columns are all isomorphisms, so by the five lemma, we conclude that the third
column is also an isomorphism and thus we know that the map H is also a bigraded
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isomorphism for LC. As for the grading correspondence, because the ci all have fixed
weight grading after specifying the choice of equivariant structures, if we change j1 by
any number k, we change j3 also by k. As for the first row, if �j1 is changed into
�j1� k, this will result in j 0

3
shifting by �k as well. This is enough to show that the

weight grading recovers the Jones grading as relative gradings.

As a corollary of the theorem above, we also conclude Theorem 1.5, that the relative
weight grading is independent of the choice of link diagrams.

Proof of Theorem 1.5 For any two bridge diagrams D and D0 representing a
link L, relative weight gradings wt and wt0 can be defined on D, and respectively D0.
Theorem 1.3 indicates that both wt and wt0 coincide with �j with as relative gradings.
Thus wt and wt0 are the same as relative gradings.

Lastly, we provide some insight into Question 1.6. At the writing of this paper, the
author cannot provide a pure symplectic proof of Theorem 1.5 without referring to the
invariance of the bigrading on Khovanov homology. Such a proof would consist of the
invariance of weight grading under isotopy, handleslide and stabilization.

Isotopy and handleslide invariance could be potentially proved via Proposition 3.8,
if we look closely enough into the bridge diagrams and the Floer products. Isotopy
and handleslide invariance can also be deduced from Hamiltonian isotopy invari-
ance. But general Hamiltonian isotopy invariance will require virtual perturbations
(see [1, Remark 3.21]) because some of the transversality assumptions will not be
preserved under general isotopies — the Lagrangian might bound some Maslov zero
discs after isotopy, say.

The proof of stabilization invariance will be different from the other two invariance
proofs. It requires some degeneration arguments in the Hilbert scheme setup, relating
holomorphic discs in xYn and discs in xYn�1 so that differentials in the stabilized diagram
can be identified with differentials in the original diagram. One could extend the existing
degeneration arguments for Yn before the partial compactification. In the original
nilpotent slice setup, Seidel and Smith gave such an argument in [11, Section 5.4].
However, the weight grading is defined using Hilbert schemes, but a stabilization
invariance is never fully established in the Hilbert scheme setup. The author expects that
one could potentially adapt the recent work of Mak and Smith [6] into the degeneration
argument (or the so-called neck-stretching argument) of Hendricks, Lipshitz and Sarkar
in [4, Section 7.4.1], fixing the issue mentioned in their correction, and then generalize
the argument to the partial compactification xYn.
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