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Given a 3–manifold M fibering over the circle, we investigate how the asymptotic
translation lengths of pseudo-Anosov monodromies in the arc complex vary as we
vary the fibration. We formalize this problem by defining normalized asymptotic
translation length functions �d for every integer d � 1 on the rational points of a
fibered face of the unit ball of the Thurston norm on H 1.M IR/. We show that, even
though the functions �d themselves are typically nowhere continuous, the sets of
accumulation points of their graphs on d–dimensional slices of the fibered face are
rather nice and in a way reminiscent of Fried’s convex and continuous normalized
entropy function. We also show that these sets of accumulation points depend only on
the shape of the corresponding slice. We obtain a particularly concrete description of
these sets when the slice is a simplex. We also compute �1 at infinitely many points
for the mapping torus of the simplest pseudo-Anosov braid to show that the values
of �1 are rather arbitrary. This suggests that giving a formula for the functions �d
seems very difficult even in the simplest cases.
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1 Introduction

To every fibration M ! S1 of a 3–manifold M over the circle, there is an associated
element of H 1.M IZ/, the pullback of a generator of H 1.S1IZ/Š Z. The integral
cohomology classes that correspond to fibrations of M are organized by the faces of
the unit ball of the Thurston norm k � k on H 1.M IR/ [16]: a face F can be fibered,
in which case every integral point in the interior of the cone RCF corresponds to
a fibration, or not fibered, in which case no integral point in RCF corresponds to a
fibration.

An element � 2 H 1.M IZ/ is primitive if it cannot be written in the form k�0 for
some �0 2H 1.M IZ/ and integer k � 2. If an element � 2H 1.M IZ/ corresponds
to a fibration, then it is primitive if and only if the fibers are connected. For any
� 2H 1.M IQ/, denote by x� 2H 1.M IZ/ the unique primitive integral point on the
ray RC�.

We can now state a classical result of Fried from 1982, which was the main motivation
for this work. If M admits a complete finite-volume hyperbolic metric, then the
monodromies of the fibrations are pseudo-Anosov mapping classes by Thurston’s
hyperbolization theorem; see Otal [13]. For a fibered face F ofM, define the normalized
entropy function

� W int.F/\H 1.M IQ/!RC

by the formula

(1-1) �.�/D kx�k � log�.x�/;

where �.x�/ denotes the stretch factor of the pseudo-Anosov monodromy corresponding
to x�. Fried [5, Theorem E] proves that the function � extends to a convex, continuous
function to the interior of F and �.�/!1 as �! @F. The goal of this paper is to
investigate analogous functions on the rational points of the fibered faces that are defined
not in terms of the stretch factor but via another numerical invariant of pseudo-Anosov
maps, the asymptotic translation length in the arc complex.

The arc complex A.S/ of a connected punctured surface S is a simplicial complex
whose vertices are isotopy classes of properly embedded essential arcs in S and whose
simplices correspond to collections of disjoint arcs. For two vertices ˛ and ˇ of A.S/,
their distance dA.˛; ˇ/ is defined as the minimal number of edges of a path in the
1–skeleton of A.S/ that starts at ˛ and ends at ˇ. The asymptotic translation length of
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Fibrations of 3–manifolds and asymptotic translation length in the arc complex 4089

a mapping class f in the arc complex is defined as

`A.f /D lim inf
n!1

dA.˛; f
n.˛//

n
;

where ˛ is any arc. The number `A.f / is a natural invariant encoding geometric
information about the 3–manifold M : Futer and Schleimer [7] showed that it is
proportional to the height and area of the boundary of the maximal cusp in M.

Based on work of Baik, Shin and Wu [3], we define the d–adic normalized asymptotic
translation length function

�d W int.F/\H 1.M IQ/!RC

by the formula

(1-2) �d .�/D kx�k
1C1=d

� `A.x�/;

where `A.x�/ is defined as `A.f /, where f is the monodromy of the connected fiber
corresponding to x�. In order for �d to be defined, the fibers ofM have to be punctured,
so M has to be a cusped 3–manifold. We will work under the stronger hypothesis that
the fibered face F is fully punctured, meaning that the singular set of every pseudo-
Anosov monodromy in RCF is contained in the set of punctures of the fiber. (If this
condition holds for one monodromy in RCF, then it holds for all.)

A d–dimensional slice of a fibered face F is an intersection F \†, where † is a
.dC1/–dimensional linear subspace of H 1.M IR/ intersecting the interior of F. The
slice is rational if †\H 1.M IQ/ is dense in †.

Theorem 1.1 Let M be a connected cusped 3–manifold that admits a complete finite-
volume hyperbolic metric. Let F be a fully punctured fibered face of the unit ball of
the Thurston norm on H 1.M IR/. Suppose that 1� d � dim.H 1.M IR//� 1 and let
� be a rational d–dimensional slice of F. Consider Graph.�d j�/���R, the graph
of the normalized asymptotic translation length function �d restricted to �.

There is a continuous function g W int.�/!RC such that g.�/!1 as �! @� and
the set of accumulation points of Graph.�d j�/ is

f.!; g.!// W ! 2 int.�/g

if d D 1 and

f.!; r/ W ! 2 int.�/; 0� r � g.!/g[ .@�� Œ0;1//

if d � 2.

Algebraic & Geometric Topology, Volume 23 (2023)



4090 Balázs Strenner

In words, the set of accumulation points is the graph of g if d D 1 and the closure of
the region under the graph of g if d � 2.

As an immediate corollary, we have:

Corollary 1.2 If M, F, d � 2 and � are as in Theorem 1.1, then �d j� is a nowhere-
continuous function.

In this sense, the functions �d are therefore very different from Fried’s function �,
which is always continuous. Nevertheless, the properties of continuity and blowing up
at the boundary still make an appearance in Theorem 1.1 for the bounding function g.

We derive a formula for g in Theorem 6.1. However, it is not clear from this formula
whether g is always convex.

Question 1.3 Is the function g in Theorem 1.1 convex?

When � is a simplex, we are able to describe the function g explicitly. We will show
in Lemma 6.2 that convexity holds in this case.

Theorem 1.4 Let M, F, d , � and g be as in Theorem 1.1. Suppose � is a simplex
with vertices !1; : : : ; !dC1 and define the reparametrization

g�.˛1; : : : ; ˛dC1/D g

� dC1X
iD1

˛i!i

�
of the function g by �

.˛1; : : : ; ˛dC1/
ˇ̌̌
˛i > 0;

dC1X
iD1

˛i D 1

�
;

the interior of the standard simplex. Let † be the subspace spanned by �, let ƒ D
†\H 1.M IZ/ be the integral lattice in † and let volƒ be the translation-invariant
volume form on † with respect to which ƒ has covolume 1. Then

g�.˛1; : : : ; ˛dC1/D d

s
1

Od � dŠ � volƒ.†=h!1; : : : ; !dC1iZ/ �
QdC1
iD1 ˛i

;

where Od is a constant depending only on d .

In the case d D 1, we have O1 D 1; therefore ,

g�.˛; 1�˛/D
1

volƒ.†=h!1; !2iZ/ �˛.1�˛/
:

Algebraic & Geometric Topology, Volume 23 (2023)
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�1 �2

Figure 1: The half-twists �1 and �2.

The constant Od has a concrete interpretation: it is the smallest possible volume for a
d–dimensional simplex � in Rd with the property that each larger scaled and translated
copy of � (a� C b with a; b 2 R and a > 1) contains a point of Zd in its interior.
Although determining the value of Od for d � 2 seems to be an elementary lattice
geometry question, we do not even know the value of O2.

Question 1.5 What is the value of the constant Od for d � 2?

To shed some light on the exact values of the functions �d in addition to the accumula-
tion points of their graphs, we compute �1 at infinitely many points for the mapping
torus of the simplest hyperbolic braid. Both the answer and the proof are rather ad hoc,
suggesting that it is very difficult to elegantly describe �d even in the simplest cases.

Theorem 1.6 Let M be the mapping torus of the pseudo-Anosov braid f D �1��12
(read in either order) on three strands; see Figure 1. The fibered face F containing f
is 1–dimensional and f corresponds to the midpoint of F. By choosing a linear
identification of F with Œ�1; 1�, we have �1.0/D 8

3
and

�1.t/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

8
3

if t D˙1
2
;

4 if t D˙1
3
;

64
13

if t D˙1
4
;

8=.1Cjt j/2 if t D˙1=k when k � 5 is odd ,
8=.1C 2jt j � t2/ if t D˙1=k when k � 6 is even:

Moreover ,
lim

Q3u!t
�1.u/D

8

1� t2

for all t 2 .�1; 1/. Therefore ,

�1.t/ < lim
Q3u!t

�1.u/

for t D 0 and all t D˙1=k with k 2 Z and k � 2, and �1 is discontinuous at all of
these points.

Algebraic & Geometric Topology, Volume 23 (2023)



4092 Balázs Strenner

In other words, the function�1 defined on the 1–dimensional fibered face in Theorem 1.6
is discontinuous at every point where we have computed its value. We wonder if �1 is
discontinuous at every rational point of every 1–dimensional slice. More generally:

Question 1.7 Suppose M, F, d , � and g W int.�/!RC are as in Theorem 1.1. Does

�d .x/ < g.x/

hold for every rational point x in the interior of �?

It would be interesting to generalize Theorem 1.1 in various directions. For example,
one could try to drop the hypothesis that the fibered face F is fully punctured. Instead of
the arc complex, one could also consider the curve complex and define the normalized
asymptotic translation length functions analogously. Our proof has two key ingredients
that are specific to the arc complex:

� Agol’s veering triangulation of 3–manifolds [1], and

� a theorem of Minsky and Taylor stating that there is a 1–Lipschitz retraction
from the arc complex A.S/ to the edges of the veering triangulation [12].

Generalizing Theorem 1.1 to other cases would require replacing these technical tools
with tools suitable in the other cases. Of Sections 3, 4, 5 and 6, containing the proof of
Theorem 1.1, only Section 3 relies crucially on veering triangulations. We use veering
triangulations also for proving Proposition 4.5, but, as we remark there, alternative
approaches to analogous results already exist. The remaining parts of Sections 4, 5
and 6 should generalize to other cases essentially without modifications.

Dependence only on shape

One interesting property of the functions �d is that, up to a constant factor, their
bounding function g on any d–dimensional slice � only depends on the shape of �.
This is in sharp contrast to Fried’s normalized entropy function �, which can take
different forms even on 1–dimensional fibered faces.

Theorem 1.8 For i D 1; 2, let Mi be 3–manifolds as in Theorem 1.1. Suppose
Fi �H 1.Mi IR/ are fibered faces of Mi and �i � Fi are d–dimensional slices for
some integer d � 1. Let †i be the span of �i in H 1.Mi IR/ and consider the lattice
ƒi D †i \H

1.Mi IZ/ in †i . Let gi W int.�i /! RC be the bounding functions for
the functions �Fi

d
j�i

as in Theorem 1.1.

Algebraic & Geometric Topology, Volume 23 (2023)
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If there is a linear isomorphism i W†1!†2 such that i.�1/D�2, then

g2.i.�1//D �
1=dg1.�1/

holds for all �1 2 int.�1/ for

� D
vol.†2=ƒ2/

vol.†2=i.ƒ1//
;

where vol is any translation-invariant volume form on †2.

Related results

Kin and Shin [10] have shown that the function �C
1, defined analogously to �1 using the

curve complex instead of the arc complex, is bounded from above on infinite subsets of
slices arising from projecting an arithmetic progression in H 1.M IZ/ onto F. Using
this, they improved the upper bound of a result of Gadre and Tsai [8], stating that
the minimal asymptotic translation length in the curve complex for pseudo-Anosov
maps on the closed surface Sg of genus g is between C1=g2 and C2=g2 for some C1
and C2. Using the bounds on �C

1, Kin and Shin [10] also provided upper bounds for the
minimal asymptotic translation length in the curve complex for certain sequences of
punctured surfaces (for this, see also Valdivia [17]), handlebody groups and hyperelliptic
handlebody groups. It would be interesting to investigate the implications of our more
explicit description of the function �1 on similar questions.

Baik, Shin and Wu [3] have studied the function �C
d

, defined analogously to �d using
the curve complex instead of the arc complex. They proved that the function �C

d
is

bounded from above on compact d–dimensional polytopes contained in the interior
of F. In Conjecture 1 of their paper, they conjecture that their bound is sharp in the
sense that, for each d � 2, there existM, F and� such that the function �C

d
is bounded

away from 0 on an infinite subset of �. Although in the arc complex instead of the
curve complex, our Theorem 1.1 verifies the stronger statement that �d is bounded
away from zero on an infinite subset of � for all choices of M, F and �. Moreover, in
addition to showing that the values are bounded away from zero, Theorem 1.1 precisely
specifies the values �d can approach along accumulating sequences in �.

For more related results involving the curve complex instead of the arc complex, see
Baik, Kin, Shin and Wu [2].

Acknowledgements
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2 Background

2.1 Fibrations over the circle

Let � W M ! S1 be a fibering of M over the circle with fiber S D ��1.0/. Let
� 2H 1.M/ be the pullback of one of the two generators of H 1.S1/ŠZ. There is an
infinite cyclic cover S �R!M corresponding to the homomorphism � W �1.M/!Z.
Let h W S �R! S �R be the element of the deck group that maps S � f1g to S � f0g.
The composition

S � f0g ! S � f1g h
�! S � f0g;

where the first map is the isotopy map .x; 0/ 7! .x; 1/ in the product S �R, yields a
homeomorphism of S. The mapping class of this homeomorphism is the monodromy f
of the fibration. The monodromy depends on which of the two generators we pick
for S1.

In other words, we can present the 3–manifold M as the quotient

M D .S �R/=h.x; t/� . .x/; t � 1/i

for any homeomorphism  W S ! S representing the mapping class f.

The map ..x; t/; s/ 7! .x; t C s/ defines a flow .S �R/ �R! S �R which is h–
equivariant; therefore, it descends to a map M �R!M, defining the suspension flow
on M.

Finally, we will use the following conventions to make the discussions more intuitive.
We picture the product S �R so that the R–coordinate axis is vertical and where1 is
up and �1 is down. So, if t1 < t2, then we will say that the slice S � ft2g is above
S � ft1g and S � ft1g is below S � ft2g.

2.2 Pseudo-Anosov monodromies

When � WM ! S1 is a fibration and M is hyperbolic, the monodromy f is pseudo-
Anosov by Thurston’s hyperbolization theorem. Let �˙ � S be the invariant singular
(unmeasured) foliations of f. We will refer to the foliation whose leaves are expanded
by f as the horizontal foliation and the foliation whose leaves are contracted as the
vertical foliation.

Since �˙ are invariant under the monodromy, their orbits under the suspension flow
are singular 2–dimensional foliations ƒ˙ in M, transverse to the fibers, whose singular
set is the suspension of the singular points of �˙. Conversely, the foliations �˙ can be
obtained from ƒ˙ by taking the intersection of ƒ˙ with the fibers.

Algebraic & Geometric Topology, Volume 23 (2023)
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2.3 Fully punctured fibered faces

Let M be a hyperbolic 3–manifold and let F be a fibered face of the Thurston norm
ball of H 1.M IR/. Every integral cohomology class in the interior of the cone RCF
corresponds to a fibration of M over the circle.

Fried [5] (see also McMullen [11, Corollary 3.2]) showed that the suspension foliations
ƒ˙ constructed from any two fibrations in this fibered cone are the same (up to isotopy)
when the singular points of �˙ are all at punctures of the fiber for some fibration. It
follows that in this case ƒ˙ do not have any singular points and therefore the singular
points of �˙ are all at punctures of the fiber for all fibrations in this fibered cone. Such
a fibered face F is called fully punctured.

2.4 Relating different fibrations

From now on, suppose that F is a fully punctured fibered face. The maximal abelian
cover �M of M is the cover corresponding to the natural homomorphism

�1.M/!G DH1.M IZ/=torsion:

The foliations ƒ˙ in M lift to foliations zƒ˙ in �M. The suspension flow on M also
lifts to a flow on �M, leaving invariant the foliations zƒ˙. The leaf space of this flow is
homeomorphic to a surface zS and the foliations zƒ˙ define foliations z�˙ on zS.

Every fiber of every fibration in the cone RCF is a quotient of the foliated surface
. zS; z�˙/ by a covering map. One can see this as follows. Let � 2RCF be a primitive
integral point with monodromy f and fiber S with stable and unstable foliations �˙.
The covering �M !M factors through the infinite cyclic covering S �R!M induced
by � W�1.M/!Z. The lift of S to S�R is an infinite collection of parallel copies of S.
Under the covering �M ! S �R, each copy lifts to a surface intersecting every flowline
of �M exactly once. This gives rise to a foliation-preserving covering . zS; z�˙/! .S; �˙/

whose deck group is the kernel of the homomorphism G! Z induced by �.

2.5 Veering triangulations

This section recalls some facts about veering triangulations of hyperbolic 3–manifolds
defined by Agol [1], refined by Guéritaud [9] and further studied by Minsky and
Taylor [12].

Algebraic & Geometric Topology, Volume 23 (2023)
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When the foliations �˙ for some fibration are endowed with the measure invariant
under the pseudo-Anosov monodromy and this measure is lifted to z�˙, the measured
foliations z�˙ endow the surface zS with a singular Euclidean metric. Denote the metric
completion of zS by yS. Each completion point in yS � zS is an isolated point whose small
neighborhood minus the completion point covers the neighborhood of a puncture in
any fiber S. The metric on zS depends on the fibration chosen in the construction, but
the topology of yS does not. In the future, we will ignore the metric and consider yS
together with the unmeasured foliations y�˙ obtained from z�˙ by extending to the
completion points.

A singularity-free rectangle in . yS; y�˙/ is an immersion Œ0; 1�2 ! yS such that the
vertical and horizontal foliations of Œ0; 1�2 map to y�˙ and the interior of the rectangle
does not contain any completion point of yS � zS. By the interior of the rectangle, we
mean the image of .0; 1/2 under the immersion. Similarly, by the boundary of the
rectangle, we mean the image of the boundary of Œ0; 1�2 under the immersion.

A singularity-free rectangle is maximal if all four sides of Œ0; 1�2 contain the preimage
of a completion point in their interior under the immersion map. (Each side may contain
only one completion point, since the horizontal and vertical foliations, being invariant
foliations of a pseudo-Anosov map, cannot have saddle connections.) By connecting
each pair of the four points with an arc inside Œ0; 1�2 and considering the image under
the immersion map, we obtain six arcs in yS, forming a flattened tetrahedron in yS.

These arcs are defined only up to isotopy. To make the choice of the arcs canonical,
we choose a fibration in our fibered cone and — as we have seen above — this choice
endows yS with a singular Euclidean metric. We choose the arcs to be the unique
geodesics in their isotopy class in this metric.

We think of the arc connecting the horizontal sides to be above the arc connecting the
vertical sides. So the two triangles containing the arc connecting the vertical sides are
the two bottom triangles and the remaining two triangles are the two top triangles of
the tetrahedron.

Consider all maximal singularity-free rectangles in yS and all the arcs, triangles and
tetrahedra they define through this process. For each triangle the smallest singularity-
free rectangle containing it can be enlarged in two ways to a maximal singularity-free
rectangle: we can enlarge the rectangle horizontally or vertically. In the former case,
we obtain a tetrahedron that contains our triangle as one of the two top triangles. In the
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latter case, we obtain a tetrahedron that contains our triangle as one of the two bottom
triangles. Therefore the tetrahedra glue together in a layered fashion.

The links of the triangulation around the vertices are not spheres. Instead we glue up
the ideal tetrahedra that do not include the vertices. With more work (see [9]), one
can check that the links of the edges are circles, so the ideal tetrahedra glue up to a
3–manifold. Moreover, this 3–manifold is homeomorphic to �M Š zS �R and the ideal
triangulation is called the veering triangulation of �M. The veering triangulation is
invariant under the G–action, and the quotient is the veering triangulation of M.

We conclude by comparing the conventions regarding above and below introduced in
this section versus the conventions introduced earlier. Recall from Section 2.1 that, for
any fibration in our fibered cone, the deck transformation h W S �R! S �R satisfies
h.x; t/D . .x/; t � 1/, where  is a pseudo-Anosov homeomorphism representing
the monodromy mapping class. Recall also that our convention is that  expands
horizontally and contracts vertically. Therefore the tetrahedra and the corresponding
maximal singularity-free rectangles become wider and shorter as we go down in the
product zS � R. This is consistent with the convention that the top edge of each
tetrahedron, connecting the horizontal sides of the corresponding rectangle, has larger
slope than the bottom edge, connecting the vertical sides.

3 Asymptotic translation length via cycles in graphs

3.1 Intersecting edges of the veering triangulation

Given an edge of the veering triangulation of �M Š zS �R, its projection onto zS is an
arc in zS. We say that two edges intersect if their projections intersect in zS. Otherwise
we say that the two edges are disjoint. Recall that we have chosen these arcs to be
geodesics in a singular Euclidean metric, so the arcs are automatically in minimal
position and we do not need to be concerned about isotopies. Recall also that the edges
do not have endpoints, so, if they intersect, they have to intersect in their interiors.

For our applications, it will be important to keep track of which pairs of edges of the
veering triangulation of �M intersect and which two are disjoint. We can organize this
information as follows.

Let E be the set of edges of the veering triangulation of M. The set E is finite, which
follows from Agol’s construction of the veering triangulations by periodic train track

Algebraic & Geometric Topology, Volume 23 (2023)
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sequences [1]. For each edge e 2E, choose a lift Qe in the veering triangulation of �M.
Denote the set of these lifts by zE. Each edge of the veering triangulation of �M can be
uniquely written in the form g Qe for some g 2G and Qe 2 zE.

When two edges g Qe and g0 Qe0 intersect, one of the edges is above the other with
respect to the pseudo-Anosov flow. If g Qe is above g0 Qe0, we write g Qe > g0 Qe0. By our
conventions, g Qe is above g0 Qe0 if they intersect and the smallest singularity-free rectangle
containing g0 Qe0 is wider and shorter than the smallest rectangle containing g Qe.

Definition 3.1 (stashing set) For any e; e0 2E, introduce the notation

Stash.e; e0/D fg 2G W Qe > g Qe0g:

In words, Stash.e; e0/ is the set of deck transformations in G that send (or stash) Qe0

below Qe; hence, we call Stash.e; e0/ the stashing set of Qe0 with respect to Qe.

The knowledge of the sets Stash.e; e0/ for all pairs e; e0 2E contains all disjointness
information, since g Qe > g0 Qe0 if and only if g�1g0 2 Stash.e; e0/.

3.2 Frobenius numbers

We define the Frobenius number of a function ˇ W A! Z as

(3-1) Frob.ˇ/Dmax.Z�ˇ.A//

if the maximum exists.

We remark that this notion is closely related to the Frobenius coin problem [15],
which, given relatively prime positive integers a1; : : : ; an, asks for the largest integer
that cannot be written as a linear combination of a1; : : : ; an with nonnegative integer
coefficients. Indeed, let H be the free commutative monoid generated by x1; : : : ; xn
and let ˇ WH ! Z be a homomorphism such that ˇ.x1/; : : : ; ˇ.xn/ are positive. Then
the Frobenius number of ˇ, as defined in (3-1), is the largest integer that cannot be
written as a nonnegative integral linear combination of ˇ.x1/; : : : ; ˇ.xn/.

3.3 Translation length in the arc complex via graphs

To every primitive integral class � in the interior of RCF, we associate a weighted
directed graph W.�/ on the vertex set E. There is an edge from e to e0 if and only if
there is at least one integer that is not contained in the subset

��.Stash.e; e0//[�.Stash.e0; e//
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of Z. Here � stands for the surjective linear functional G ! Z associated to �. If
there is an edge from e to e0, then its weight w.ee0/ is defined as the largest integer not
contained in the subset ��.Stash.e; e0// of Z. Alternatively,

(3-2) w.ee0/D Frob.�j�Stash.e;e0//:

In Corollary 3.4, we will see that this largest integer always exists and therefore w.ee0/
is always well defined.

Lemma 3.3 below will explain the information contained by the weighted graph W.�/.
First we need the following lemma:

Lemma 3.2 Any element of ��.Stash.e; e0// is larger than any one of �.Stash.e0; e//.
In addition , if ��.Stash.e; e0//[ �.Stash.e0; e// is not all of Z, then the difference
between the smallest element of ��.Stash.e; e0// and the largest one of �.Stash.e0; e//
is at least 2.

Proof To prove the first statement, let g1; g2 2G be such that Qe > g1 Qe0 and Qe0 > g2 Qe.
Since the relation > is transitive, we have Qe0 > g1g2 Qe0. One should think of � as a
height function: since g1g2 Qe0 is below Qe0, we have �.g1g2/D �.g1/C�.g2/ < 0. So
��.g1/ is indeed larger than �.g2/.

Assume that the difference is between the smallest element of ��.Stash.e; e0// and
the largest element of �.Stash.e0; e// is 1. Then there are g1; g2 such that Qe > g1 Qe0

and Qe0 > g2 Qe and �.g1g2/D�1. As before, we have Qe0 > g1g2 Qe0. So

Qe > g1 Qe
0 > g1.g1g2/ Qe

0 > g1.g1g2/
2
Qe0 > � � � ;

which means that every integer at least ��.g1/ is contained in ��.Stash.e; e0//. Simi-
larly, we obtain that every integer at most �.g2/ is contained in �.Stash.e0; e//. Since
the gap between��.g1/ and �.g2/ is 1, we have��.Stash.e; e0//[�.Stash.e0; e//DZ.
This proves the second statement.

In the following lemma, S is the fiber of the fibration corresponding to �, f is the
monodromy and p� is the composition �M Š zS �R! zS ! S.

Lemma 3.3 There is an edge from e to e0 in W.�/ if and only if there exists an
integer k such that p�. Qe/ and f k.p�. Qe0// are disjoint in S. Moreover , if there is an
edge from e to e0, then its weight w.ee0/ is the largest integer k such that p�. Qe/ and
f k.p�. Qe

0// are disjoint in S.
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Proof One can check step by step that following are equivalent for any integer k:

(1) The arcs p�. Qe/ and f k.p�. Qe0// are disjoint in S.

(2) The edge Qe is disjoint from all lifts of f k.p�. Qe0// to zS.

(3) The edge Qe is disjoint from g Qe0 for all g 2G with �.g/D�k.

(4) Qe 6> g Qe0 and Qe 6< g Qe0 for all g 2G with �.g/D�k.

(5) g … Stash.e; e0/ and g�1 … Stash.e0; e/ for all g 2G with �.g/D�k.

(6) �k … �.Stash.e; e0// and k … �.Stash.e0; e//.

(7) k … ��.Stash.e; e0//[�.Stash.e0; e//.

By definition, there is an edge from e to e0 in W.�/ if an integer k satisfying the last
statement exists. The first statement of the lemma follows.

Using the equivalences again, the largest integer k such that p�. Qe/ and f k.p�. Qe0//
are disjoint in S is the largest k that is not contained in either ��.Stash.e; e0// or
�.Stash.e0; e//. But, if there exists such a k, then by Lemma 3.2 it is the largest k
that is not contained in ��.Stash.e; e0//. The second statement now follows from the
definition of w.ee0/.

Corollary 3.4 For any pair e; e0 2 E and primitive integral class � in the interior
of RCF, there exists some integer N such that n 2 ��.Stash.e; e0// for all n > N.

Proof We will show that there exists some N such that, for all n > N, the arcs p�. Qe/
and f n.p�. Qe0// are not disjoint. Using the equivalences in the proof of Lemma 3.3,
the statement will follow.

Let R and R0 be the rectangles with horizontal and vertical sides whose diagonals
are p�. Qe/ and p�. Qe0/, respectively. Let s0 be a horizontal side of R0. The side s0

is a starting segment of a horizontal separatrix emanating from a singularity. For
any n, the segment f n.s0/ is the starting segment of a horizontal separatrix. There are
finitely many horizontal separatrices and each such separatrix is dense in the surface.
The map f stretches the surface horizontally by the stretch factor, so, if n is large
enough, then f n.s0/ intersects the interior of R and consequently both horizontal sides
of f n.R0/ intersect the interior ofR and therefore f n.p�. Qe0//, the diagonal of f n.R0/,
intersects p�. Qe/, the diagonal of R.

We define the average weight of a cycle 
 D e1 : : : ene1 in W.�/ as

xw.
/D
w.e1e2/C � � �Cw.en�1en/Cw.ene1/

n
:
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Proposition 3.5 (asymptotic translation length via weighted graphs) For any primitive
integral class � in the interior of the cone RCF, the asymptotic translation length in the
arc complex of the pseudo-Anosov monodromy corresponding to � is

`A.�/D
1

maxf xw.
/ W 
 is a cycle in W.�/g
:

Proof First note that the maximum is indeed realized, since any cycle decomposes
to minimal cycles and the average weight of the cycle is at most the average weight
of the minimal cycle with the largest weight. The fact that there is at least one cycle
in W.�/ will follow from the rest of the proof.

For any cycle 
 D e1 : : : ede1, extend the sequence ei for i � dC1 such that eiCd D ei
for each integer i � 1. Consider the sequence

p�. Qe1/; f
w.e1e2/.p�. Qe2//; f

w.e1e2/Cw.e2e3/.p�. Qe3//; : : :

of arcs in S. By Lemma 3.3, consecutive arcs are disjoint. Therefore, we have

dA
�
p�. Qe1/; f

Pnd
iD1w.eieiC1/.p�. Qe1//

�
� nd

for any integer n� 1. This demonstrates that

`A.�/D lim
n!1

dA
�
p�. Qe1/; f

Pnd
iD1w.eieiC1/.p�. Qe1//

�Pnd
iD1w.eieiC1/

� lim
n!1

ndPnd
iD1w.eieiC1/

D
1

xw.
/
:

Since this inequality holds for any cycle 
 , it follows that the left-hand side in the
proposition is bounded from above by the right-hand side.

A key ingredient for the inequality in the reverse direction is a result of Minsky and
Taylor [12, Theorem 1.4], which states that there is a 1–Lipschitz retraction from the
arc complex A.S/ to the set of arcs that are projections of the edges of the veering
triangulation of �M under p� . In particular, any two arcs f k.p�. Qe// and f k

0

.p�. Qe
0//

in S are joined by a geodesic in the arc complex A.S/ whose vertices are all of the
form f k

00

.p�. Qe
00//.

Fix Qe1 2 zE and let n be a positive integer. Denote the distance dA
�
p�. Qe1/; f

n.p�. Qe1//
�

by dn; then there is a sequence of arcs

f k1.p�. Qe1//; f
k2.p�. Qe2//; : : : ; f

kdnC1.p�. QednC1//
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such that consecutive arcs are disjoint in S, QednC1 D Qe1, the ki are integers and
kdnC1�k1D n. By Lemma 3.3, there is an edge from ei to eiC1 in W.�/ and we have
kiC1� ki � w.eieiC1/ for all i D 1; : : : ; dn. Summing these inequalities, we obtain
n�

Pdn

iD1w.eieiC1/. After dividing both sides by dn and taking reciprocals, we have

dn

n
�

1

xw.
n/
;

where 
n denotes the cycle e1 : : : edn
e1. In particular, this shows that there is at least

one cycle in W.�/.

Note that

`A.�/D lim
n!1

dA
�
p�. Qe1/; f

n.p�. Qe1//
�

n
D lim
n!1

dn

n
� lim inf

n!1

1

xw.
n/
:

The right-hand side in the proposition is a lower bound for 1= xw.
/ for any cycle 

in W.�/; therefore, it is also a lower bound for `A.�/. This completes the proof of the
reverse inequality.

3.4 The graph�

In this section, we introduce a digraph � that serves as a model for the veering
triangulation. We will use this graph to compute the weighted graphs W.�/ discussed
in the previous section.

The vertices and edges of � correspond to the tetrahedra and the triangles, respectively,
of the veering triangulation of M. The edge corresponding to a triangle t starts at the
tetrahedron that has t as one of its two bottom triangles and ends at the tetrahedron that
has t as one of its two top triangles. Note that every vertex has exactly two outgoing
and two incoming edges.

There is a one-to-one correspondence from the tetrahedra to the edges of the veering
triangulation that assigns to each tetrahedron its bottom edge. Using this correspondence,
we can alternatively think about the vertices of � as edges of the veering triangulation.
For an edge e 2E, Figure 2 illustrates the two other edges e1; e2 2E such that there
is an edge of � from ei to e. We can describe e1 and e2 as follows. Expand the
smallest singularity-free rectangle containing e vertically as far as possible — the four
singularities on the boundary of the resulting rectangle R define the tetrahedron T
whose bottom edge is e. The edges e1 and e2 are the two edges of this tetrahedron
that are neither the top nor the bottom edges such that the interiors of the rectangles
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e

e1

e2

R2

R1

R

Figure 2: The edges e1 and e2 representing the vertices of � such that there
is an edge from those vertices to the vertex represented by e.

R1 and R2 obtained by expanding the smallest singularity-free rectangle containing
e1 and e2 vertically cover the interior of R. This is because e1 and e2 are the bottom
edges of tetrahedra T1 and T2 determined by R1 and R2, respectively, and both T1
and T2 have a bottom triangle that is a top triangle of T.

We also label each edge of � by an element of G, called the drift of the edge. To
do this, choose a lift Qt of the triangle t corresponding to an edge of � in the veering
triangulation of �M. If the bottom edges of the tetrahedra right above and right below Qt
are g Qe and g0 Qe0, respectively, then the drift of the edge of � corresponding to t is g�1g0.
The drift measures how much the coefficient of the edge g Qe changes as we proceed to
the other edge g0 Qe0. Note that this definition is independent of the choice of the lift Qt .

Recall that a digraph is strongly connected if there is a path from any vertex to any
other vertex. We will need the following lemma later:

Lemma 3.6 The graph � is strongly connected.

Proof Since pseudo-Anosov homeomorphisms of surfaces have dense orbits [14],
there is a dense flowline in M. A dense flowline visits every tetrahedron of the veering
triangulation infinitely often. Associated to this flowline is a bi-infinite path in �
visiting every vertex infinitely often. This shows that � is strongly connected.

3.5 The extended graph��

We also define a graph ��, obtained by adding some more labeled edges to �, one for
each tetrahedron of the veering triangulation of M. For each tetrahedron T, we create
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an edge from the top edge to the bottom edge of T. To define the label of this edge,
choose a lift of T in the veering triangulation of �M. If the bottom and top edges of the
lift are g1 Qe1 and g2 Qe2, then our edge points from e2 to e1 and has drift g�12 g1. This
definition is also independent of the choice of the lift.

To distinguish between the edges of � and the edges of �� that are not in �, we will
call the two types of edges triangle edges and tetrahedron edges, respectively, as a
reminder that they correspond to triangles and tetrahedra of the veering triangulation.

3.6 Computing the stashing sets

In this section we explain how the stashing sets Stash.e; e0/ can be computed from the
digraph ��. We begin with a few definitions.

A path in the digraph �� is a sequence of edges "1; "2; : : : ; "n of �� with n� 1 such
that the endpoint of "i is the same as the starting point of "iC1 for all i D 1; : : : ; n� 1.
We caution the reader that we cannot refer to edges of �� simply by their endpoints,
since there might be multiple edges between vertices; see Figure 11, for example.

The drift of a path is the product of the drifts of the edges of the path. Formally, the
drift of the path "1"2 : : : "n is

nY
iD1

drift."i / 2G;

where drift."i / 2G denotes the drift of the edge "i .

A good path is a path whose first edge is a tetrahedron edge and whose remaining
edges are triangle edges.

Proposition 3.7 (stashing sets via good paths) We have

Stash.e; e0/D fdrift.
/ W 
 is a good path from e to e0 in ��g:

Proof First we show that the right-hand side contains the left-hand side. Suppose
g0 2 Stash.e; e0/, which means that Qe > g0 Qe0. Let p be the intersection of the images of
Qe and g0 Qe0 in zS under the projection �M ! zS by collapsing the flowlines. The preimage
of p is a flowline that intersects Qe and g0 Qe0. Consider the subinterval I of this flowline
between Qe and g0 Qe0.

If I does not intersect an edge of the veering triangulation aside from its endpoints,
then it passes through a sequence of tetrahedra in a way that it enters each subsequent
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R1

R2

R3

R4

Figure 3: The edges of the veering triangulation of �M corresponding to a
good path in ��. Every edge after the first one (the blue edge with the largest
slope) is below the first edge.

tetrahedron through the interior of a face. Denote the bottom edges of these tetrahedra
by g1 Qe1; : : : ; gk Qek , where g1 Qe1 is the bottom edge of the tetrahedron whose top edge
is Qe and gk Qek D g0 Qe0. Then there is a tetrahedron edge in �� from e to e1 with drift g1
and a triangle edge from ei to eiC1 for all i D 1; : : : ; k� 1 with drift g�1i giC1. Hence
there is indeed a good path in �� from e to ek D e0 with drift gk D g0.

If I does intersect an edge of the veering triangulation aside from its endpoints, then
we can perturb I slightly so that it passes from one tetrahedron to the next through the
interior of a face. From this sequence of tetrahedra, we obtain a good path with drift g
just like in the previous case. The good path we get depends on how the perturbation
is done, but any of them works for our purposes.

For the other direction, let "1"2 : : : "n be a good path in��. Let ek be the endpoint of "k
for all kD 1; : : : ; n and let e0 be the starting point of "1. For all kD 1; : : : ; n, let Rk be
the maximal singularity-free rectangle obtained by expanding the smallest singularity-
free rectangle containing drift."1 : : : "k/ Qek vertically as far as possible. Note that Qe0
and drift."1/ Qe1 are the top and bottom edges of the tetrahedron corresponding to R1.
In particular, Qe0 intersects R1 at its two horizontal sides. Each RkC1 is shorter and
wider than Rk , so, by induction, we see that Qe0 also intersects Rn at its two horizontal
sides (Figure 3). Therefore, drift."1 : : : "n/ Qen, being the arc connecting the vertical
sides of Rn, is indeed below Qe0. Hence, drift."1 : : : "n/ 2 Stash.e0; en/.
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The drift of a path in �� is independent of the order of edges of a path. So it will often
be useful to think of a path in �� as a nonnegative integer-valued function on the edges
of ��, where the value on each edge is the number of times that edge appears in the
path. This viewpoint allows us to define the sum of two paths by taking the sum of the
corresponding functions.

By a cycle in the digraph ��, we mean a path "1 : : : "n consisting of triangle edges
such that the starting point of "1 coincides with the endpoint of "n. A minimal cycle is
a cycle that traverses every vertex at most once. A minimal good path in �� is a good
path "1 : : : "n such that the endpoints of "i are pairwise distinct for i D 1; : : : ; n. It is
allowed, however, that the starting point of "1 coincides with one of the other vertices
traversed. There are finitely many minimal cycles and minimal good paths in ��.

Let 
 D "1 : : : "n be a good path traversing the vertices e0; : : : ; en and let 
1; : : : ; 
k
be cycles in ��. We call the collection of paths 
; 
1; : : : ; 
k connected if

(1) the triangle edges appearing in these paths (that is, every edge other than "1)
form a connected subgraph of �� when the orientations of the edges are ignored,
and

(2) at least one cycle 
i traverses the vertex e1 when nD 1.

We have the following decomposition lemma of good paths:

Lemma 3.8 (decompositions of good paths) The sum of a connected collection
of a minimal good path and a finite number of minimal cycles in �� is a good path.
Conversely, every good path in �� can be written as such a sum.

Proof To prove the first statement, we build up the sum step by step, adding one
minimal cycle at a time. Denote by �0 the minimal good path of the collection. There
must be a minimal cycle from the collection that forms a connected union together
with �0. Their sum �1 is a good path. Then there must be another minimal good cycle
from the collection that forms a connected union with �1. Their sum is a good path �2.
Repeating this process until all cycles are added, we obtain the first statement.

For the second statement, let 
 D "1 : : : ; "n be a good path in ��. If it is minimal, we
are done. If it is not minimal, then there are 1� i < j � n such that the endpoints of
"i and "j agree. Moreover, we can choose i and j so that j � i is as small as possible.
Then the subpath "iC1 : : : "j is a minimal cycle and 
 can be written as a sum of this
minimal cycle and a good path shorter than 
 . We can repeat this process of removing
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minimal cycles until the remaining good path is minimal. It is straightforward to verify
that the collection of summands is connected. Hence, we obtain the second statement.

An immediate corollary of Proposition 3.7 and Lemma 3.8 is the following:

Corollary 3.9 Denote by Pe;e0 � G the set of drifts of minimal good paths from e

to e0 and by B �G the set of drifts of the minimal cycles of ��. The set Stash.e; e0/ is
the set of products pb˛1

1 : : : b
˛k

k
, where p 2 Pe;e0 , k � 0 is an integer , b1; : : : ; bk 2 B,

˛1; : : : ; ˛k are positive integers and p; b1; : : : ; bk are drifts of a minimal good path and
minimal cycles that form a connected collection.

We will use Corollary 3.9 to compute exact values of the asymptotic translation length in
the arc complex in Section 7. For the proof of Theorem 1.1, the following approximation
of the stashing sets will be more convenient:

Corollary 3.10 Denote by Pe;e0 � G the set of drifts of minimal good paths from
e to e0 and by B � G the set of drifts of the minimal cycles of ��. Furthermore , let
P 0e;e0 D Pe;e0

Q
b2B b. Then

P 0e;e0hBiZ�0
� Stash.e; e0/� Pe;e0hBiZ�0

;

where hBiZ�0
denotes the monoid generated by B.

By the product of two sets X and Y, we mean

XY D fxy W x 2X; y 2 Y g:

Proof The second containment is a trivial consequence of Corollary 3.9. The first
containment follows from Corollary 3.9 and the fact the union of any minimal good
path from e to e0 with all the minimal cycles is always a connected collection. This is
because, by Lemma 3.6, the graph of triangle edges is strongly connected, so the union
of all cycles or, equivalently, the union of all minimal cycles is a strongly connected
graph containing all vertices.

4 Estimating the stashing sets

4.1 Monoids and cones

We begin this section by proving some general lemmas. We will use these lemmas to
estimate the stashing sets at the end of the section.
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For any B �Rn and E �R, we introduce the notation

hBiE D
� kX
iD1

�ibi W bi 2 B; �i 2 E
�

for the set generated by B with coefficients in E. (The empty sum is allowed in the
definition and it is defined to be zero.) For example, hBiR�0

is the cone generated by B
and hBiZ�0

is the monoid generated by B.

Lemma 4.1 Let B � Zn be a finite set and let C D hBiR�0
be the cone generated

by B in Rn. Then there exists some x� 2 Zn such that

hBiZ�0
\ .x�CC/D hBiZ\ .x�CC/:

In words, the lemma says that the sets hBiZ�0
and hBiZ are equal inside the translated

cone x�CC. From this viewpoint, it is clear that the lemma also holds for any element
of the cone x�CC instead of x�.

Proof The left-hand side is clearly contained in the right-hand side for any x� 2 Zn.
We will find some x� 2 Zn such that the reverse containment also holds. Let B D
fb1; : : : ; bmg and consider the compact subset K D

˚Pm
iD1 �ibi W 0 � �i � 1

	
of C.

Each element of K \hBiZ can be represented in the form
Pm
iD1 �ibi with �i 2 Z. By

choosing such an expression for each element, we may choose a positive integer �� so
that all �i that appear in these finitely many representations satisfy ��� � �i .

We claim that the reverse containment in the lemma holds for x� D ��
Pm
iD1 bi . To

see this, let x 2 hBiZ \ .x�C C/. Since x 2 x�C C, we have x D
Pm
iD1 ˛ibi for

˛i 2R and ˛i � ��. We can rewrite this representation of x as

x D

mX
iD1

Œ˛i �bi C

mX
iD1

f˛igbi ;

where Œ˛i � and f˛ig denote the integer and fractional parts of ˛i . The first of the two
terms on the right is in hBiZ and so is x, therefore the second term on the right is also
in hBiZ. It is also in K; therefore, we can replace it by

Pm
iD1 �ibi , where �i 2 Z and

�i � ��
�. Since Œ˛i � � ��, we obtain a representation of x as a sum of the bi with

nonnegative integer coefficients. Therefore, x 2 hBiZ�0
and the right-hand side in the

lemma is indeed contained in the left-hand side.
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Lemma 4.2 Let n� 2 and let B � Zn be a finite set. Let D � Hom.Rn;R/ such that
the cone hDiR�0

has nonempty interior in the n–dimensional vector space Hom.Rn;R/.
Assume that Frob.�jhBiZ�0

/ <1 for every primitive integral point � in hDiR�0
. Then

the following statements hold :

(i) hBiZ D Zn.

(ii) The cone hBiR�0
has nonempty interior.

(iii) There exists x 2 Zn such that Zn\ .xChBiR�0
/� hBiZ�0

.

Proof We begin by proving (i). If hBiZ was a proper subgroup of Zn, then there
would exist a surjective homomorphism � W Zn! Z such that �.hBiZ/ is not all of Z.
Since � is surjective, it is a primitive integral point in Hom.Rn;R/.

Let �0 be any primitive integral point in the interior of hDiR�0
that is not a scalar

multiple of �. For a large enough positive integerN,N�0C� is in the interior of hDiR�0
.

We may choose a basis for the 2–dimensional lattice obtained as the intersection of
Hom.Zn;Z/ with the 2–dimensional subspace spanned by �0 and � in Hom.Rn;R/
such that �0 has coordinates .0; 1/. Let .q; r/ be the coordinates of �. Note that q ¤ 0
and q and r are relatively prime. From this, we see that, for any integer N, the point
 N DNq�0C� is primitive since it has coordinates .q; rCNq/. Since �.hBiZ/ is not
all of Z, there is some integer d � 2 that divides every element of this image. Choosing
N D ad for some large positive integer a, we can see that all elements of  ad .hBiZ/
are divisible by d . But this contradicts the fact that Frob. ad jhBiZ�0

/ <1.

The statement (ii) is a straightforward corollary of (i).

By Lemma 4.1, there is some x 2 Zn such that

hBiZ�0
\ .xChBiR�0

/D hBiZ\ .xChBiR�0
/:

Using that hBiZ D Zn from (i) and that the left-hand side is contained in hBiZ�0
, we

obtain (iii).

Lemma 4.3 For all e 2E, we have Stash.e; e/� hBiZ�0
.

Proof Observe that, for any tetrahedron edge of �� from e to e0, there is a path of
triangle edges from e to e0 with the same drift. To see this, choose a flowline close
to e that does not intersect any edges of the veering triangulation. This flowline has a
subarc that starts at the tetrahedron whose bottom edge is e and ends at the tetrahedron
whose bottom edge is e0 and whose top edge is e. Between the two tetrahedra, the
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flowline intersects a sequence of tetrahedra. This sequence defines a path from e to e0

with the required properties. As a consequence, for any good path in �� starting and
ending at the same vertex, there is a cycle in � with the same drift. So the statement
follows by Proposition 3.7.

We are now equipped with the tools to prove the following statement, describing the
structure of the stashing sets:

Proposition 4.4 Let B �G be the set of drifts of the minimal cycles of ��. Then the
cone hBiR�0

has nonempty interior and there exists g 2G such that

G \ghBiR�0
� hBiZ�0

:

Moreover , for every e; e0 2E, there exist g1; g2 2G such that

G \g1hBiR�0
� Stash.e; e0/�G \g2hBiR�0

:

Proof By Corollary 3.4,

(4-1) Frob.�jStash.e;e// <1

for every primitive integral point � in �RCF. If we replace Stash.e; e/ with the
set hBiZ�0

(which is larger by Lemma 4.3) in (4-1), the statement remains true.
Therefore, we may use Lemma 4.2 with G Š Zn and any generator set D for the
cone �RCF to obtain that hBiR�0

has nonempty interior and that there exists g 2G
such that

(4-2) G \ghBiR�0
� hBiZ�0

:

Moreover, we obtain that there are g1; g2 2G such that

G \g1hBiR�0
� P 0e;e0hBiZ�0

� Stash.e; e0/� Pe;e0hBiZ�0
�G \g2hBiR�0

;

where the first containment follows from (4-2), the second and third containments were
shown in Corollary 3.10, and the last containment follows from the simple observation
that g2 can be chosen so that g�12 Pe;e0�hBiR�0

since hBiR�0
has nonempty interior.

4.2 Duality of cones

The goal of this section is to prove Proposition 4.5 below, which states that the cone over
the fibered face consists of precisely those cohomology classes that take nonpositive
values on the cone hBiR�0

.
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Proposition 4.5 Let B �G be the set of drifts of the minimal cycles of ��. Then the
interior of the cone RCF �H 1.M IR/ can be described as

f� 2H 1.M IR/ W �.x/ < 0 for all x 2 hBiR�0
g:

We remark that an analogous statement was proven by Fried [6, Theorem D]. In that
paper, Fried defined the set of homology directions of a flow on an n–dimensional
closed manifold and showed that the integral cohomology classes that correspond
to a fibration of the manifold over the circle are exactly the ones that take positive
values on the set of homology directions. Unfortunately, Fried’s proof assumes that
the manifold is closed, so the theorem cannot be directly applied in our case. In the
end of the introduction, Fried mentions that under appropriate hypotheses the results
carry over also to compact manifolds by doubling the manifold along the boundary, but
details are not given. In order to make the proof of Proposition 4.5 as transparent as
possible, instead of extending Fried’s theorem to the nonclosed case and relating the set
of homology directions to our cone hBiR�0

, we give a direct proof of Proposition 4.5,
following Fried’s strategy but in the combinatorial spirit of this paper.

Before giving the proof of Proposition 4.5, we prove a few brief lemmas.

Given any nonzero � 2H 1.M IZ/, not necessarily in the fibered cone, consider the
infinite cyclic covering M�!M corresponding to �. This covering induces an infinite
cyclic covering ��!� of the graph � modeling the veering triangulation of M. We
define the drift of each edge of �� as the drift of the its projection in �.

Define an integer-valued function on the vertices of �� as follows. By associating
to each tetrahedron of the veering triangulation its bottom edge, each tetrahedron in
the veering triangulation of �M can be referred to as g Qe for some g 2 G and e 2 E.
Since M� is a quotient of �M, where two edges g1 Qe and g2 Qe have the same image if
and only if �.g1/D �.g2/, the integer �.g/ is a well-defined invariant of the image of
any edge g Qe in M� . This way we obtain an integer associated to each vertex v of �� ,
which we will denote by �.v/.

Lemma 4.6 For any nonzero � 2H 1.M IZ/, there exists some Q> 0 such that , if 

is a path in �� starting at v and ending at v0, then

�.v0/��.v/D qC

kX
iD1

�.bi /

for some q 2 Z with jqj �Q and some k � 0 and bi 2 B.
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Proof It is straightforward to verify from the definition of �.v/ and �.v0/ that

�.v0/��.v/D �.drift.
//D �
�
drift.�.
//

�
;

where �.
/ is the projection of 
 in the graph � with finitely many vertices. As in
Lemma 3.8, we can decompose �.
/ as a sum of minimal cycles and a path that does
not contain a cycle. By setting

QDmaxfj�.drift.ı//j W ı is a path in � containing no cyclesg;

we obtain the statement of the lemma.

Lemma 4.7 Let � 2H 1.M IZ/ such that �.b/ < 0 for all b 2 B. If : : : v�1v0v1 : : :
is a bi-infinite path in �� , then limn!1 �.vn/D�1 and limn!�1 �.vn/D1.

Proof Using Lemma 4.6 and its notation, we have

lim
n!1

�.vn/��.v0/D lim
n!1

qnC

knX
iD1

�.bi;n/;

where qn 2 Z with jqnj �Q and bi;n 2 B. Since the �.bi;n/ are negative integers and
limn!1 kn D1, we have limn!1 �.vn/D�1. The proof of the limit as n!�1
is analogous.

Lemma 4.8 Let � 2 H 1.M IZ/ be such that �.b/ < 0 for all b 2 B. Let v0 be a
vertex of �� and let VC be the set of vertices (including v0) that are endpoints of a
path starting at v0. Then there exist N1; N2 2 Z such that

fv 2�� W �.v/�N1g � VC � fv 2�� W �.v/�N2g:

Proof If v 2 VC, then, by Lemma 4.6, we have

�.v0/D �.v0/C qC

kX
iD1

�.bi /;

where q 2 Z with jqj �Q and bi 2 B. Hence, the second containment in the lemma
holds with N2 D �.v0/CQ. For the first containment, observe that there is some
N1<0 such that every integer less thanN1 can be written in the form

Pk
iD1 �.bi /. This

follows from the fact that the cone hBiR�0
has nonempty interior and that the monoid

hBiZ�0 contains every integral point in some translate of hBiR�0
(Proposition 4.4).
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Proof of Proposition 4.5 First we will show that, if � is a primitive integral point
in the interior of RCF, then �.g/ < 0 for all g 2 hBiR�0

. It suffices to show this
for all g 2 B. Let 
 be a cycle in � with drift g. Corresponding to the cycle 
 is a
sequence of tetrahedra T0; : : : ; Tm in the veering triangulation of �M such that, for each
i D 1; : : : ; m, the tetrahedra Ti�1 and Ti share a face and Ti is below Ti�1. Moreover,
Tm D gT0. Therefore, multiplication by g translates T0 to a tetrahedron below it.

By convention (see Section 2.1), the cohomology class � evaluates to positive integers
on loops of M whose lift “goes up” (the endpoint of the lift is higher than the starting
point) in the infinite cyclic cover S �R!M corresponding to �. As we see from
the tetrahedron sequence, loops representing g lift to paths that “go down” in S �R.
Therefore, �.g/ < 0 indeed.

Consider the (open) cone

D D f� 2H 1.M IR/ W �.g/ < 0 for all g 2 hBiR�0
g �H 1.M IR/:

What we have just proved implies that the interior of RCF is contained in D. To
prove the proposition, we need to prove that, conversely, D is contained in the interior
of RCF. If this was not true, then D would contain a primitive integral class on the
boundary of RCF. (The boundary faces of the cone RCF are defined by rational
equations, so primitive integral points are projectively dense on the boundary of RCF.)
Since primitive integral classes on the boundary of RCF are known not to correspond
to fibrations, it suffices to show that if � 2D is a primitive integral class, then � is
dual to a fibration.

A cut of�� is a way of dividing the vertices of�� into two disjoint nonempty sets V�1
and V1 that are closed under “going forward” and “going backward”, respectively.
More precisely, if there is an edge from v1 to v2 in �� , then v1 2 V�1 implies
v2 2 V�1 and v2 2 V1 implies v1 2 V1.

To see that cuts exists, let v be a vertex of �� and let V�1 be the set of vertices
(including v) that are endpoints of a path starting at v and let V1 be the set of the
remaining vertices. It is clear that V�1 and V1 are closed under going forward and
going backward, respectively. It follows from Lemmas 4.7 and 4.8 that both V�1
and V1 are nonempty.

Next, we associate an embedded surface in M� to each cut. Given a cut V�1[V1,
let † be the union of triangles of the veering triangulation corresponding to the edges
starting at a point of V1 and ending at a point of V�1. To show that † is a surface,
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T T 0

Figure 4: The immersed subgraph �e in � whose vertices correspond to the
tetrahedra adjacent to e.

we need to prove that there are two triangles meeting at every edge. (We are gluing
together ideal triangles — their vertices are not part of the 3–manifold — therefore, we
do not need to check that the links of the vertices are circles.) Let e be an edge of the
veering triangulation of M� and let T and T 0 be the tetrahedra whose bottom and top
edges are e, respectively. The tetrahedra adjacent to e define an immersed subgraph �e
of �� with the structure shown in Figure 4.

Observe that either

(1) all vertices of �e are in V�1,

(2) all vertices of �e are in V1, or

(3) T 2 V1, T 0 2 V�1 and exactly two edges of �e start in V1 and end in V�1,
with one edge on each of the two paths from T to T 0 in �e.

Hence there are indeed either zero or two triangles meeting at every edge and † is an
embedded surface.

Next, observe that each flowline inM� intersects† at exactly one point. This is because
the tetrahedra intersected by the flowline give rise to a bi-infinite path : : : v�1v0v1 : : :
in �� . By Lemmas 4.7 and 4.8, there exists some i0 2 Z such that vi 2 V�1 if i � i0
and vi 2 V1 otherwise. Therefore, the flowline intersects exactly one triangle of †:
the one corresponding to the edge from vi0�1 to vi0 . When the flowline intersects some
edges of the veering triangulation, the corresponding bi-infinite path is not unique, but
it is straightforward to verify that such flowlines also intersect † in one point.

As a corollary, we obtain a homeomorphism †�R!M� defined by the formula
.x; t/ 7! gt .x/, where gt denotes the flow on M� .

Let h WM�!M� be the generator of the deck group of the covering M�!M such
that �.h.v//D �.v/� 1 for every vertex v of �� . Our final step is to replace † with
a homotopic surface †0 in M� such that h.†0/ is disjoint from and homotopic to †0.
This will show that the covering M�!M comes from a fibration.
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Every surface †0 in M� intersecting every flowline once can be represented by a
continuous function u W†! R such that †0 D fgu.x/.x/ W x 2†g. For example, the
function corresponding to † is the constant zero function.

Let n be a positive integer and consider the surfaces†, h.†/, . . . , hn.†/, which all corre-
spond to cuts of�� , and therefore intersect every flowline once. Let u0; : : : ; un W†!R

be the corresponding functions. Let u0 D .u0 C � � � C un�1/=n and let †0 be the
corresponding surface. The function corresponding to h.†0/ is .u1 C � � � C un/=n,
which is strictly larger than u0 at every point of † if n is large enough, since un > u0
if n is large enough. Therefore, †0 is an embedded surface intersecting every flowline
exactly once such that h.†0/ is homotopic to and disjoint from †0. Hence, M�!M

comes from a fibration, and that is what we wanted to show.

5 Lemmas on cones, lattices and volumes

This section contains various lemmas on cones, lattices and volumes in Euclidean
spaces that will be used to prove the main theorems. All results in this section are
self-contained and independent of 3–manifold theory.

5.1 Occupancy coefficients

Let V be an n–dimensional real vector space, letK�V be a compact set with nonempty
interior and let ƒ � V be a lattice. The occupancy coefficient occ.ƒ;K/ of K with
respect to the lattice ƒ is the ratio

(5-1) occ.ƒ;K/D
vol.K 0/

vol.V=ƒ/
;

where K 0D aCbK with a; b 2R, is a set of maximal volume that is obtained from K

by dilatation and translation and does not contain any point of ƒ in its interior.

It seems difficult to compute occupancy coefficients in general, but some basic facts
can easily be deduced.

Lemma 5.1 The occupancy coefficient of a connected set in a 1–dimensional vector
space equals 1.

Proof Identifying V with R, we have ƒD aZ for some a > 0. Our connected set K
is an interval. The longest interval K 0 that does not contain a point of ƒ in its interior
has length a. By (5-1), we have occ.ƒ;K/D a=aD 1.
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Lemma 5.2 The occupancy coefficient is always at least 1.

Proof If a set K � V has volume less than vol.V=ƒ/, then its image in the n–
torus V=ƒ is not everything; therefore, there is a translate of K that is disjoint from ƒ.
So vol.K 0/�vol.V=ƒ/ for the setK 0 with maximal volume and therefore the occupancy
coefficient is at least 1.

5.2 Occupancy coefficients as the lattice is varied

For any compact set K � V with nonempty interior, introduce the notation

min occ.K/D inf
ƒ�V

occ.ƒ;K/;

where ƒ ranges over the lattices in V. By Lemma 5.2, min occ.K/� 1 holds for all K.

Lemma 5.3 Let K � V be a compact connected set with nonempty interior in an
n–dimensional vector space V. Consider the set

(5-2) occs.K/D focc.ƒ;K/ Wƒ� V is a latticeg:

If nD 1, then occs.K/D f1g. If n� 2, then occs.K/ is a half-infinite interval whose
left endpoint is min occ.K/.

Proof The nD 1 case follows from Lemma 5.1.

The space of lattices is connected and the occupancy coefficient is a continuous function,
so occs.K/ is an interval. It is clear that the left endpoint of this interval is min occ.K/.
It remains to show thatƒ can be chosen so that occ.ƒ;K/ is arbitrarily large when n�2.

Let e1; : : : ; en be a basis for V and consider the sequence of lattices generated by
ce1; ce2; : : : ; cen�1; en as c! 0. The covolumes of these lattices go to zero. However,
a dilated and translated copy of K that lies between the hyperplanes † and enC†,
where † is the hyperplane spanned by e1; : : : ; en�1, is disjoint from all these lattices;
hence, vol.K 0/ in (5-1) is bounded from below as c!1. So, indeed, the occupancy
coefficient can be arbitrarily large.

5.3 The main technical lemma on Frobenius numbers

The following technical lemma is at the heart of the proof of Theorem 1.1:
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Lemma 5.4 Let ƒ be a lattice in an n–dimensional real vector space V. Let C D
hBiR�0

be a cone with nonempty interior , generated by a finite set B � V. Let e0 be
a point in the interior of C and let x1; x2 2 V be arbitrary. Then there is a constant
K DK.ƒ;C; e0; x1; x2/ > 0 such that the following holds.

Let ƒ0 �ƒ be such that

(5-3) ƒ\ .x1CC/�ƒ
0
�ƒ\ .x2CC/:

Let ˇ W V !R be a linear function with ˇ.e0/D 1 that takes rational values on ƒ and
positive values on C �f0g. Let x̌ be the unique positive scalar multiple of the ˇ such
that x̌.ƒ/D Z. Let P be a polytope that is the intersection of the hyperplane ˇ�1.0/
and y �C for some y 2 V with ˇ.y/ > 0. Thenˇ̌̌̌

Frob. x̌jƒ0/� n�1

s
occ.ƒ\ˇ�1.0/; P / � vol.Rn=ƒ/

n vol
�
C \ˇ�1.Œ0; 1�/

� x̌.e0/
1C1=.n�1/

ˇ̌̌̌
�K x̌.e0/:

Proof Let P0 be a polytope in the hyperplane ˇ�1.0/, obtained from P by a dilatation
and translation whose interior does not contain any point of ƒ and whose .n�1/–
dimensional volume is maximal with respect to this property. Let y0 2 V be such that
P0Dˇ

�1.0/\.y0�C/. Letƒ0Dˇ�1.0/\ƒ be the lattice in the hyperplane ˇ�1.0/.

Step 1 (upper bound on the Frobenius number) The following inequalities hold:

(5-4) Frob. x̌jƒ0/� Frob. x̌jƒ\.x1CC//

D Frob. x̌jƒ\.x1Cƒ0CC//

� Frob. x̌jƒ\fz2RnWˇ.z/�ˇ.x1Cy0/g/

< x̌.x1Cy0/:

The first inequality follows from the containmentƒ\.x1CC/�ƒ0. The equality holds
because x̌.ƒ0/D 0. For the second inequality, note that, if z satisfies ˇ.z/ > ˇ.y0/,
then z 2 C Cƒ0. This is because the polytope ˇ�1.0/\ .z�C/ is a scaled-up copy
of P0, so it contains some x� 2ƒ0 in its interior and therefore z 2 x�CC �ƒ0CC.
So, if ˇ.z/ > ˇ.y0C x1/, then z 2 x1Cƒ0CC. Finally, the last inequality simply
follows from the definition of the Frobenius number.

Step 2 (lower bound on the Frobenius number) Let Q be the polytope that is the
intersection of C and e0 �C (see Figure 5). Let mDm.C; e0; ƒ/ > 0 be a number
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0

1D .1; 1/

ˇ�1.0/
U

T1 y

Figure 5

such that any translate of mQ contains some point of the lattice ƒ in its interior. We
claim that

(5-5) Frob. x̌jƒ0/� Frob. x̌jƒ\.x2CC// >
x̌.y0C x2/�m x̌.e0/:

The first inequality is a consequence of the containment ƒ0 �ƒ\ .x2CC/. For the
second inequality, consider the polytope U D ˇ�1

�
Œˇ.y0/�m;ˇ.y0/�

�
\ .y0 �C/

that contains the polytope y0�mQ.

The translate x2CU of U contains a point p 2ƒ in its interior. The side of x2CU
opposite to x2 C y0 is contained in the level set ˇ�1.ˇ.x2 C y0/�m/. Therefore,
ˇ.p/ > ˇ.y0C x2/�m and

x̌.p/ > x̌.y0C x2/�m x̌.e0/:

The second inequality in (5-5) now follows from putting this together with the inequality
Frob. x̌jƒ\.CCx2//�

x̌.p/, which holds because the elements of ƒ on which x̌ takes
the value x̌.p/ are exactly the points of pCƒ0, none of which are contained in CCx2,
since the set U Cƒ0 is disjoint from C C x2. (Figure 5 shows the case x2 D 0.)

Let Yy0
be the pyramid .y0�C/\ˇ�1.Œ0;1//.

Step 3 (expressing the volume of the pyramid Yy0
, first way) We claim that

(5-6) vol.Yy0
/D

1

n
x̌.y0/ occ.ƒ0; P / vol.Rn=ƒ/:

One can see this by comparing the pyramid Yy0
with a pyramid Y whose base is a

parallelepiped spanned by a basis of the lattice ƒ0 in the hyperplane ˇ�1.0/ and whose
tip is some v 2ƒ with x̌.v/D 1. Note that a parallelepiped Z that contains the base
of Y as a face and e0 as a vertex is a fundamental domain for ƒ, since it is spanned by
n linearly independent elements of ƒ and it only contains elements of ƒ at its vertices,
since x̌ is a primitive integral class with x̌.e0/D 1. So vol.Z/D vol.Rn=ƒ/.
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Recall that the volume formulas for a pyramid and a parallelepided are .1=n/bh and bh,
respectively, where b is the .n�1/–dimensional area of the base and h is the height.
Since Y and Z have the same base and same height, but Y is a pyramid and Z is a
parallelepiped, we have

(5-7) vol.Y /D 1

n
vol.Z/D 1

n
vol.Rn=ƒ/:

Both Yy0
and Y are pyramids with a base on the hyperplane ˇ�1.0/. To compare

the volumes, we need to compare their heights and the areas of their bases. The base
of Yy0

is P0 and the base of Y is a fundamental domain for ƒ0. Therefore, the ratio
of the areas of the bases is the occupancy coefficient vol.P0/=vol.ˇ�1.0/=ƒ0/ D
occ.ƒ0; P0/ D occ.ƒ0; P /. The tips of Yy0

and Y are at the level sets x̌�1. x̌.y0//
and x̌�1.1/, respectively; therefore, the height of Yy0

is x̌.y0/ times the height of Y.
The formula (5-6) follows from (5-7) and the comparisons between the bases and the
heights.

Step 4 (expressing the volume of the pyramid Yy0
, second way) Let Ye0

be the
pyramid .e0 � C/ \ ˇ�1.Œ0;1//. Using the similarity between the polytopes Yy0

and Ye0
, we have

(5-8) vol.Yy0
/D
x̌.y0/

n

x̌.e0/n
vol.Ye0

/:

Step 5 (expressing x̌.y0/) Using the equality between the right-hand sides of (5-6)
and (5-8) and solving for x̌.y0/, we obtain

(5-9) x̌.y0/D
n�1

s
occ.ƒ0; P / vol.Rn=ƒ/

n vol.Ye0
/

x̌.e0/
1C1=.n�1/:

Step 6 (conclusion) The pyramid Ye0
is isometric to the pyramid C \ˇ�1.Œ0; 1�/

The statement of the lemma now follows from (5-9), the upper and lower bounds
(5-4)–(5-5) on the Frobenius number and the fact that all the error terms ( x̌.x1/, x̌.x2/
and m x̌.e0/) are constant multiples of x̌.e0/, where the constant depends only on x1,
x2, C, ƒ and e0.

Remark 5.5 For a given C, e0 and ƒ as in Lemma 5.4 and any K > 0, there are only
finitely many linear functions x̌W V !R taking positive values on C �f0g and integer
values onƒ such that x̌.e0/<K. To see this, let v1; : : : ; vn 2C form a basis forƒ such
that e0 is in the interior of the cone generated by the vi . That is, e0 D c1v1C : : : cnvn
with ci > 0 for i D 1; : : : ; n. Then x̌.e0/D c1 x̌.v1/C� � �C cn x̌.vn/, where the x̌.vi /

Algebraic & Geometric Topology, Volume 23 (2023)



4120 Balázs Strenner

are positive integers. From this, we see that there are only finitely many choices for
the x̌.vi / that make this sum less than K. Since the x̌.vi / determine x̌, we obtain that
there are indeed finitely many possibilities for x̌.

From Lemma 5.4 and Remark 5.5, we obtain the following:

Corollary 5.6 Let V , C, e0, ƒ and ƒ0 be as in Lemma 5.4. Consider a sequence of
pairwise distinct linear functions fˇkgk2N and associated polytopes fPkgk2N as in
Lemma 5.4. Then

lim
k!1

Frob. x̌kjƒ0/
x̌
k.e0/

1C1=.n�1/
�

n�1

vuutocc.ƒ\ˇ�1
k
.0/; Pk/ � vol.V=ƒ/

n vol
�
C \ˇ�1

k
.Œ0; 1�/

� D 0:

5.4 Cones with a tetrahedron base

In the following lemmas, �i WRn!R denotes the projection to the i th coordinate.

Lemma 5.7 Let n�1 be an integer and let ˛D .˛1; : : : ; ˛n/ be such that
Pn
iD1 ˛iD1

and ˛i > 0 for each i . Let ˇ˛ D
Pn
iD1 ˛i�i and denote by T˛ the tetrahedron

Rn
�0\ˇ

�1
˛ .Œ0; 1�/. Then

vol.T˛/D
1

nŠ

nY
iD1

1

˛i
:

Proof One vertex of T˛ is the origin; the other n vertices are the intersections of the
hyperplane ˇ�1˛ .1/ with the coordinate axes. For example, the intersection with the
first axis is the point .x1; 0; : : : ; 0/ that satisfies

1D ˇ˛.x1; 0; : : : ; 0/D ˛1x1;

which yields x1 D 1=˛1. Similarly, we obtain that the only nonzero coordinates of
the other intersection points are 1=˛i . The parallelepided spanned by the intersection
points has volume

Qn
iD1 1=˛i and the tetrahedron spanned by them has volume 1=nŠ

times that.

5.5 Projective convergence of lattices

The occupancy coefficient term in Corollary 5.6 is not very well behaved, since the
lattices ƒ\ˇ�1

k
.0/ may vary wildly even when the linear functions ˇk converge. It
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will be useful to single out subsequences where the lattices are stable in a sense. This
section introduces some lemmas and terminology for this.

Lemma 5.8 If a1; : : : ; an2Z and v1; : : : ; vn2RnC1 are the columns of the .nC1/�n
matrix

(5-10)

0BBBBBBBBB@

a1 1 0 0 � � � 0

0 a2 1 0 � � � 0

0 0 a3 1
: : : 0

:::
:::
: : :

: : :
: : :

0 0 0
: : : an�1 1

0 0 0 � � � 0 an
1 0 0 � � � 0 0

1CCCCCCCCCA
;

then hv1; : : : ; vniZ D hv1; : : : ; vniR\ZnC1.

Proof The group hv1; : : : ; vniZ is a finite-index subgroup of hv1; : : : ; vniR\ZnC1.
To show that they are equal, it suffices to show that there is some vnC1 2 ZnC1 such
that v1; : : : ; vnC1 form a basis for ZnC1. The vector vnC1 D .0; : : : ; 0; 1; 0/T has this
property, since, by adding this vector as the last column of the matrix above, we obtain
a matrix whose determinant is ˙1.

If ƒ and fƒkgk2N are discrete subgroups of rank r in a vector space V ŠRn, then we
say thatƒk!ƒ projectively if there is a basis fv1; : : : ; vrg ofƒ, a positive constant ck
and a basis fv1

k
; : : : ; vr

k
g of ƒk for every k 2N such that limk!1 ckvik D v

i for every
i D 1; : : : ; r .

Lemma 5.9 Let ƒ be a lattice in an n–dimensional vector space V. Let † be a
hyperplane in V and let ƒ0 be any lattice in †. Then there exists a sequence f†kgk2N

of hyperplanes in V such that †k \ƒ is a lattice in †k for all k and †k \ƒ!ƒ0

projectively.

Proof First we prove the statement in a special case and then we use this special case
to prove the general case.

In the special case, we assume that †\ƒ is a lattice in †. In this case, we can choose
an isomorphism � W V !Rn that identifies ƒ with Zn and the hyperplane † with the
orthogonal complement of .0; : : : ; 0; 1/T. In this special case, we further assume that
ƒ0 is rational; that is, there is a positive constant c such that cƒ0 �ƒ. Then we may
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choose the isomorphism � so that the columns of the n� .n� 1/ matrix0BBBBB@
b1 0 � � � 0

0 b2
: : : 0

:::
: : :

: : :
:::

0 0 � � � bn�1
0 0 � � � 0

1CCCCCA
form a basis for �.cƒ0/ for some b1; : : : ; bn�1 2 Z. Applying Lemma 5.8 with
a
.k/
i D kbi for i D 1; : : : ; n � 1 and all k 2 N yields a sequence of hyperplanes

(spanned by the columns of the matrix (5-10)) whose pullbacks by � satisfy the required
properties.

To prove the general case, we take a sequence of hyperplanes †m converging to †0
such that †m\ƒ is a lattice in †m for all m and, for each m, we take a rational lattice
ƒ
.m/
0 in †m so that the lattices ƒ.m/0 converge to ƒ0 projectively. As we have already

shown, we can construct sequences of lattices of the required properties converging
projectively to eachƒ.m/0 . From this, the statement of the lemma follows also forƒ0.

5.6 Projection of cones

The following lemma will be used for projections of the cone dual to the cone RCF.
Such projections naturally correspond to slices of the fibered face F.

Lemma 5.10 Let C D hBiR�0
�Rn be the cone generated by some subset B �Rn.

Suppose C has nonempty interior and let p WRn!Rk be a linear map such that p.Zn/
is a lattice in Rk . Then there exists x 2Rk such that p.Zn/\.xCp.C //�p.Zn\C/.

Proof Since p.Zn/ is a lattice in Rk , the subset A D p�1.0/ \ Zn is a lattice in
the .n�k/–dimensional kernel p�1.0/. Let K > 0 be large enough that B.y;K/, the
ball of radius K centered at y, contains some a 2 A for all y 2 p�1.0/. Since the
cone C has nonempty interior, there is some c0 2 C such that B.c0; K/� C. But then
B.c;K/� C for all c 2 c0CC.

We claim that any point b2p.Zn/ that lies in p.c0CC/Dp.c0/Cp.C / is the image of
some point of Zn that lies in C. This will prove the lemma with xD p.c0/. To see this,
let c 2 c0CC be such that p.c/Db. We know thatB.c;K/�C, and the ballB.c;K/ is
centered around a point of the translate p�1.0/C c of the subspace p�1.0/. Moreover,
this translated subspace p�1.0/C c, being a preimage of b, contains some point in Zn

and hence contains a translate of A. As a consequence, .p�1.0/C c/\B.c;K/\Zn

is nonempty and any element of it is a point of Zn that lies in C and maps to b.
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6 Proof of the main theorem

We are now ready to prove our main theorem.

In the statement of the theorem, we use the following notions of duality. Let V be a
vector space, let C D hBiR�0

be a cone with nonempty interior, generated by some
subset B � V, and let ƒ� V be a lattice. Then the dual of the triple .V; C;ƒ/ is the
triple .V �; C �; ƒ�/, where V � is the dual vector space of V, the cone C � � V � is
the set of linear functions V !R that take nonnegative values on C, and ƒ� � V � is
the lattice consisting of linear functions that take integer values on ƒ. Note that, if
� W V !R is a linear function that takes positive values on C, then � 2 int.C �/.

Theorem 1.1 is a direct corollary of the following theorem, which additionally describes
the bounding function g:

Theorem 6.1 Let M be a connected 3–manifold that admits a complete finite-volume
hyperbolic metric. Let F be a fully punctured fibered face of the unit ball of the
Thurston norm on H 1.M IR/. Let 1 � d � dim.H 1.M IR//� 1, let � be a rational
d–dimensional slice of F cut out by the .dC1/–dimensional subspace †, let C be the
cone h�iR�0

in † and consider the lattice ƒ D †\H 1.M IZ/ in †. Consider the
dual triple .†�; C �; ƒ�/ of the triple .†; C;ƒ/.

Let Graph.�d j�/���R be the graph of the normalized asymptotic translation length
function �d , restricted to �. Let g W int.�/ ! RC be the function defined by the
formula

(6-1) g.�/D d

vuut.d C 1/ volƒ�
�
C �\ˇ�1� .Œ0; 1�/

�
min occ.C �\ˇ�1� .1//

;

where volƒ� is the translation-invariant volume form on †� with respect to which ƒ�

has covolume 1 and ˇ� denotes the linear function †� ! R corresponding to the
element � 2† in the dual space of †�.

Then the set of accumulation points of the graph Graph.�d j�/ is

f.!; g.!// W ! 2 int.�/g

if d D 1 and

f.!; r/ W ! 2 int.�/; 0� r � g.!/g[ .@�� Œ0;1//

if d � 2. Moreover , the function g is continuous and g.�/!1 as �! @�.
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Proof Once again, we break the proof into several steps.

Step 1 (asymptotic behavior of the weighted graphs W.�/) Every element of
H1.M IR/ defines a linear functionH 1.M IR/!R and this linear function restricts to
a linear function†!R. This way we obtain a natural linear map p WH1.M IR/!†�.
It is easy to see that p.G/Dƒ�.

By Proposition 4.5, the elements of the cone C take nonpositive values on the cone
hBiR�0

; therefore, p.hBiR�0
/��C �. Conversely, every element of �C � is a linear

function †!R that takes nonpositive values on C and every such linear function is a
restriction of a linear functionH 1.M IR/!R that takes nonpositive values on the cone
RCF over the fibered face. By the other direction of Proposition 4.5, this last linear
function corresponds to an element of hBiR�0

. Hence, we have p.hBiR�0
/D�C �.

Fix some e; e0 2E. By Proposition 4.4, there are g1; g2 2G such that

G \g1hBiR�0
� Stash.e; e0/�G \g2hBiR�0

:

We claim that it follows that there are some v1; v2 2†� such that

ƒ�\ .v1CC
�/��p.Stash.e; e0//�ƒ�\ .v2CC �/;

using additive notation in the vector space †�. The existence of v1 follows from
Lemma 5.10. The existence of v2 is simply a consequence of the identity p.A\B/�
p.A/\p.B/.

Let e0 W†! R be the linear function that takes the value 1 on �. Note that e0 is in
the interior of C �.

We now wish to apply Corollary 5.6 with V D †�, C D C �, e0, ƒD ƒ� and ƒ0 D
�p.Stash.e; e0// to conclude that

(6-2) lim
�!�0

Frob. x̌� jƒ0/
x̌
�.e0/1C1=d

�
d

vuutocc.ƒ�\ˇ�1� .0/; P�/ � vol.†�=ƒ�/

.d C 1/ vol
�
C �\ˇ�1� .Œ0; 1�/

� D 0;

where P� D ˇ�1� .0/\ .y �C �/ for some y 2 int.C �/ and vol. � / is any translation-
invariant volume form on †�. The cohomology classes � are rational points of the
interior of � and �0 is an arbitrary element of �.

It is straightforward to check that the hypotheses of Corollary 5.6 are satisfied. For
example, the classes ˇ� take positive values on C �, since � is assumed to be in the
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interior of � and hence in the interior of C. The equality ˇ�.e0/D 1 holds because
e0 takes the value 1 on � and � is in �. The rest of the hypotheses are also satisfied;
therefore, Corollary 5.6 applies and (6-2) holds.

Denote by w�.ee0/ the weight of the edge ee0 in the weighted graph W.�/. Using the
definition (3-2), we have

w�.ee
0/D Frob.x�j�Stash.e;e0//D Frob. x̌� jƒ0/:

To see that the second equality holds, first note that ˇ�.p.x// D �.x/ for all x 2
H1.M IR/. So �.G/�Q is the same discrete subgroup as ˇ�.ƒ�/Dˇ�.p.G//�Q, so
x�D c� and x̌� D cˇ� hold with the same constant c > 0. Therefore, x�.x/D x̌�.p.x//
for all x 2H1.M IR/.

Finally, we have ˇ�.e0/D 1Dk�k whenever � 2�. After multiplying by c, we obtain
x̌
�.e0/D kx�k. Applying these substitutions to (6-2) yields

(6-3) lim
�!�0

w�.ee
0/

kx�k1C1=d
�

d

vuutocc.ƒ�\ˇ�1� .0/; P�/ � vol.†�=ƒ�/

.d C 1/ vol
�
C �\ˇ�1� .Œ0; 1�/

� D 0:

Step 2 (accumulation points in int.�/�R) Assume that �0 is in the interior of �.
Let us apply Lemma 5.9 with V D †�, ƒ D ƒ�, † D ˇ�1�0

.0/ and for a lattice ƒ0
in † such that occ.ƒ0; P�0

/D ˛ for some ˛ 2 occs.P�0
/. Such a lattice ƒ0 exists by

the definition of the set occs.P�0
/ in (5-2). Lemma 5.9 guarantees that there exists a

sequence �k! �0 such that

lim
k!1

occ.ƒ�\ˇ�1�k
.0/; P�k

/D occ.ƒ0; P�0
/D ˛

and therefore

(6-4) lim
k!1

w�k
.ee0/

kx�kk
1C1=d

D d

s
˛ vol.†�=ƒ�/

.d C 1/ vol
�
C �\ˇ�1�0

.Œ0; 1�/
�

for each edge ee0. Since �0 is in the interior of �, the set C �\ˇ�1�0
.Œ0; 1�/ is a pyramid

of finite volume.

Now recall from (1-2) that �d .�/D kx�k1C1=d`A.x�/. Moreover, by Proposition 3.5,
`A.x�/ equals the reciprocal of the maximal average cycle weight in the graph W.�/.
By (6-4), the weight of each edge has the same asymptotics for the sequence �k;
therefore, the average weight of every cycle also has the same asymptotics. So we can
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replace w�k
.ee0/ by 1=`A.x�k/ in (6-4) and the limit still holds. Taking the reciprocal

of both sides, we obtain

lim
k!1

�d .�k/D
d

s
.d C 1/ vol

�
C �\ˇ�1�0

.Œ0; 1�/
�

˛ vol.†�=ƒ�/

D
d

s
.d C 1/ volƒ�

�
C �\ˇ�1�0

.Œ0; 1�/
�

˛
:

Such a sequence �k ! � exists for every ˛ 2 occs.P�0
/. Using Lemma 5.3 and the

fact that the polytope P�0
in the hyperplane ˇ�1�0

.0/ and the polytope C � \ ˇ�1�0
.1/

in the hyperplane ˇ�1�0
.1/ are homothetic, we obtain that the accumulation points of

Graph.�d j�/ in int.�/�R are as specified in the theorem.

Step 3 (accumulation points in @��R) If �!�0, then the pyramid C �\ˇ�1� .Œ0; 1�/

converges to the set C �\ˇ�1�0
.Œ0; 1�/. If �0 2 @� and hence �0 2 @C, then this limit

set is unbounded and has infinite volume. By Lemma 5.1, the occupancy coefficient
is 1 if d D 1; therefore, the expression under the root in (6-3) goes to 0. Hence,
lim�!�0

w�.ee
0/=kx�k1C1=d D 0 and lim�!�0

�d .�/D1 when �0 2 @� and d D 1.
Therefore, Graph.�d j�/ does not have any accumulation point in @��R when d D 1.

Similarly, the limit of the pyramids C � \ ˇ�1� .Œ0; 1�/ in the definition of g is an
unbounded set when �! @�. This shows that g.�/!1 whenever �! @�. It is
clear that g is continuous.

It is now automatic that the set of accumulation points of Graph.�d j�/ in @��R is
@�� Œ0;1/ when d � 2, since g goes to infinity at @� and the set of accumulation
points is closed.

Next, we prove Theorem 1.4.

Proof of Theorem 1.4 Choose !1, . . . , !dC1, the vertices of the simplex �, as the
basis for †. This choice of basis naturally defines coordinates on † and the dual
space †�. With these coordinates, we have C ŠRdC1

�0 Š C
�.

By Theorem 6.1, the function g takes the form

g.�/D d

vuut.d C 1/ volƒ�
�
RdC1
�0 \ˇ

�1
� .Œ0; 1�/

�
min occ.RdC1

�0 \ˇ
�1
� .1//

:
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Using the definition of g� in the theorem and denoting ˇ� for � D
PdC1
iD1 ˛i!i by ˇ˛,

where ˛D .˛1; : : : ; ˛dC1/, we can rewrite this as

(6-5) g�.˛/D d

vuut.d C 1/ volƒ�
�
RdC1
�0 \ˇ

�1
˛ .Œ0; 1�/

�
min occ.RdC1

�0 \ˇ
�1
˛ .1//

:

Note that RdC1
�0 \ˇ

�1
˛ .1/ is a d–dimensional simplex for all ˛. All d–dimensional

simplices have the same minimal occupancy coefficient, since they differ only by a
linear transformation. Therefore, the denominator is a constant Od , depending only
on d . (It is straightforward to check that this definition of Od is equivalent to the
definition provided in the introduction after Theorem 1.4.)

The volume in the numerator can be written as

(6-6) volƒ�
�
RdC1
�0 \ˇ

�1
˛ .Œ0; 1�/

�
D

vol
�
RdC1
�0 \ˇ

�1
˛ .Œ0; 1�/

�
vol.RdC1=ƒ�/

;

where vol. � / denotes the standard volume form on RdC1. Note that ˇ˛D
PdC1
iD1 ˛i�i ,

where �i WRdC1!R is the projection to the i th coordinate. So we can apply Lemma 5.7
to obtain that

(6-7) vol
�
RdC1
�0 \ˇ

�1
˛ .Œ0; 1�/

�
D

1

.d C 1/Š

dC1Y
iD1

1

˛i
:

Finally, the covolume of ƒ� equals the reciprocal of the covolume of ƒ. By our choice
of basis, the volume form on †Š RdC1 is the one with respect to which the lattice
� D h!1; : : : ; !dC1iZ has covolume 1. So

(6-8) vol.RdC1=ƒ�/D
1

vol.RdC1=ƒ/
D

1

vol�.†=ƒ/
D volƒ.†=�/:

Putting together (6-5), (6-6), (6-7) and (6-8), we obtain that

g�.˛/D
d

s
.1=dŠ/

QdC1
iD1 1=˛i

Od volƒ.†=�/
:

This is what we wanted to prove. The fact that Od D 1 follows from Lemma 5.1.

Using Theorem 6.1, we can also prove Theorem 1.8.

Proof of Theorem 1.8 The isomorphism i W †1! †2 induces a dual isomorphism
i� W†�2!†�1 of the dual spaces. By indexing the objects in the statement of Theorem 6.1
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by 1 and 2, corresponding to the manifolds M1 and M2, respectively, the isomorphism
i� identifies C �2 with C �1 . From

� D
vol.†2=ƒ2/

vol.†2=i.ƒ1//
;

we obtain that
� D

vol.†1=ƒ�1/
vol.†1=i�.ƒ2//

and therefore voli�.ƒ2/ D � volƒ�1 . The functions ˇ� are also identified in the sense
that, for �1 2�1, we have ˇi.�1/.x/D ˇ�1

.i�.x// for all x 2†2. So

g2.i.�1//D
d

vuut.d C 1/ volƒ�2
�
C �2 \ˇ

�1
i.�1/

.Œ0; 1�/
�

min occ.C �2 \ˇ
�1
i.�1/

.1//

D
d

vuut.d C 1/ voli�.ƒ�2/
�
C �1 \ˇ

�1
�1
.Œ0; 1�/

�
min occ.C �1 \ˇ

�1
�1
.1//

D
d

vuut.d C 1/� volƒ�1
�
C �1 \ˇ

�1
�1
.Œ0; 1�/

�
min occ.C �1 \ˇ

�1
�1
.1//

D �1=dg1.�1/

by Theorem 6.1.

Finally, we show that the bounding function g in Theorem 1.4 is convex.

Lemma 6.2 For any ı > 0 and integer n� 1, the function

f .˛1; : : : ; ˛n/D

nY
iD1

˛�ıi

is convex on its natural domain f.˛1; : : : ; ˛n/ W ˛i > 0 for i D 1; : : : ng.

Proof The Hessian of logf is a diagonal matrix with diagonal entries ı=˛2i . This
matrix is positive definite; therefore, f is logarithmically convex. Every logarithmically
convex function is also convex, since a composition of a convex function with the
increasing convex function ex is also convex. Hence, f is indeed convex.

7 An example

In this section, we consider the simplest pseudo-Anosov braid on three strands, describe
the veering triangulation of its mapping torus, and compute the asymptotic translation
length in the arc complex for infinitely many fibrations of this 3–manifold. The purpose
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P

P1 P2 P3

�1 �2

Figure 6: The half-twists �1 and �2.

of this computation is two-fold: to illustrate the methods of Section 3 on a concrete
example and to show that it seems very difficult to find an explicit formula for the
normalized asymptotic translation length functions �d defined in (1-2).

A good reference for the pseudo-Anosov theory appearing in this section (invariant
train tracks, measured foliations and translation surfaces) is [4, Chapters 14 and 15].

Let S be the sphere punctured at four points P1, P2, P3 and P. Let �1 and �2 be the
half-twists illustrated in Figure 6.

Invariant train tracks

The train track � on the left of Figure 7 is invariant under f D �1��12 (read from left
to right) and the train track ��1 on the right is invariant under f �1. On each train
track, measures are parametrized by measures on two of the branches. The action
of f and f �1 on the measures are .x1; x2/ 7! .x2C 2x1; x1C x2/ and .y1; y2/ 7!
.y2C 2y1; y1C y2/. In other words, both maps are described by the matrix

�
2 1
1 1

�
,

whose eigenvalues are '2 and '�2, where ' is the golden ratio, the largest root of
x2 � x � 1. The eigenvector corresponding to '2 is .'; 1/. Therefore the unstable
foliation Fu is represented by the measure .x1; x2/D .'; 1/ on � and the stable foliation
Fs is represented by .y1; y2/D .1; '�1/ on ��1. (The invariant measured foliations are
well defined only up to scaling. We choose the scaling in a way that will be convenient
later on.)

x1 x2
y2 y1

Figure 7: The invariant train tracks � and ��1.
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P2

.'2; 1/

P

P1

.'; '/

P3

.1; '2/

.1; '2/ .'; '/

.'2; 1/

Figure 8: The measures of the edges with respect to Fu (second coordinate)
and Fs (first coordinate).

The half-translation surface

Our next goal is to draw a picture of the half-translation surface whose horizontal folia-
tion is Fu and whose vertical foliation is Fs . For this, consider the ideal triangulation
of S consisting of four triangles, shown in Figure 8. The measures of the edges with
respect to Fu and Fs can be obtained from the measured train tracks. These measures
on the edges provide the widths and heights of the edges in the half-translation surface.
Using these coordinates for the edges, we obtain the upper left picture in Figure 9
showing the half-translation surface defined by Fu and Fs .

P

P1

P2

P3
P

P3

P2

P1

P P1

P2
P3

Figure 9: The half-translation surface defined by Fu and Fs . Pairs of bound-
ary edges are identified by 180ı rotations.
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The veering triangulation

We can now use Guéritaud’s construction to find the veering triangulation of the mapping
torus M. Flipping the edges P1P2 and PP3 yields the upper right triangulation in
Figure 9. Then flipping P2P3 and PP1 yields the third triangulation in Figure 9. This
triangulation is the image of the initial triangulation under f (stretched horizontally
by '2 and compressed vertically by '�2). So the veering triangulation � is obtained by
gluing two tetrahedra below the initial triangulation, then two tetrahedra under that, and
finally mapping the top (initial) triangulation to the bottom (final) triangulation by f.

Therefore, � consists of four tetrahedra, four edges and eight faces. The four edges
are colored by blue, red, purple and green. Note that the top and bottom edges of the
tetrahedra and either blue and red or green and purple. For each tetrahedra, the other
four edges are colored by four different colors.

The infinite cyclic cover of S

The homology of S is generated by the loops c1, c2 and c3 around the punctures P1, P2
andP3, respectively. We have f .c1/Dc3, f .c2/Dc1 and f .c3/Dc2. Therefore the f –
invariant cohomology isH 1.S IZ/f Dh˛i, where ˛.c1/D˛.c2/D˛.c3/D1. Let t be
a generator forH DHom.H 1.S IZ/f ;Z/ŠZ. By evaluating elements ofH 1.S IZ/f

on loops, we obtain a surjective homomorphism �1.S/!H. Corresponding to this
homomorphism is an infinite cyclic covering zS! S. For more details about the theory,
see [11, Section 3].

To construct zS explicitly, cut the upper left surface in Figure 9 along the edges PP1,
PP2 and PP3, take infinitely many copies of this cut-up surface, and reglue the edges
according to the labeling in the left column of Figure 10 to obtain a surface zS. (Ignore
the meaning of the labels for now; we will elaborate on that later.) The action of the
deck transformation t is translating each triangle to the triangle below it. To check
that this is the right infinite cyclic covering, all we need to check is that the loops c1,
c2 and c3, oriented clockwise, all lift to paths in zS connecting some point x to tx;
therefore, c1, c2 and c3 all map to t under the homomorphism �1.S/!H.

The maximal abelian cover ofM

To construct the maximal abelian cover �M of M and its veering triangulation, we start
with the triangulated surface in the left column of Figure 10 and we build down by
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Figure 10: Part of the 2–skeleton of the veering triangulation on the maximal
abelian cover �M ofM. The picture continues in all four directions indefinitely.
The deck transformation t acts by translating down by one triangle. The deck
transformation u acts by translating to the right by two columns, rotating each
triangle by 180ı, and stretching horizontally by '2 and vertically by 1='2.

gluing tetrahedra below it in the same way as we did for the construction of the veering
triangulation of M.

First, we glue tetrahedra to all quadrilaterals whose diagonals are lifts of the edges
P1P2 and PP3. The bottom of the resulting cell complex is triangulated as shown in
the second column (after some rearranging of the triangles to make the second column

Algebraic & Geometric Topology, Volume 23 (2023)



Fibrations of 3–manifolds and asymptotic translation length in the arc complex 4133

look similar to the first column). Then we glue another round of tetrahedra to the bottom
again obtain a cell complex whose bottom is triangulated as shown in the third column.

Take infinitely many copies of this cell complex, indexed by Z. Choose a lift Qf of f
identifying the triangulated surface in the first column with the triangulated surface in
the third column, and use this to glue together the top of copy i with the bottom of copy
iC1. There is an isomorphism u of the resulting cell complex that maps copy iC1 to
copy i . (One should think of copy i C 1 to be above copy i in the flow. Therefore, u
shifts downward.) Our 3–manifold M is the quotient of this cell complex by the group
generated by t and u.

Labeling the edges by G

The labeling of the edges in Figure 10 can be found as follows. First, for each color,
label exactly one edge in the left column by 1. These edges are the chosen lifts of the
four edges of the veering triangulation of M. For simplicity, we have chosen all four
lifts in the upper left triangle.

Using the t–action, the translates of the four edges in the middle left and bottom left
triangle should get the labels t and t2, respectively. Using the identification of the
boundary edges, we can label all edges in the left column except one red and two purple
edges in each triangle.

Now, using the u–action, we can label all edges in the right column except one red and
two purple edges in each triangle.

The second column is obtained from the first column by flipping two edges for each
triangle, and the third column is obtained from the second column analogously. This
yields identifications between certain edges in the first and second columns and also in
the second and third columns. In fact, the one purple and two red edges in each triangle
in the first column are present in the third column, where they are already labeled.
Copying this labeling to the first column yields a complete labeling of edges there.

Now, using the u–action, we obtain a complete labeling of the third column as well.
Finally, using the identifications between the first and second and the second and third
columns, respectively, it is possible to fully label the second column as well.

7.1 The graph��

Using Figure 10, it is straightforward to construct the graph �� defined in Section 3.5.
See Figure 11.
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t�1u
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u t

t2u

t�2

t�1u

t�1u2
tu

tu2

Figure 11: The graph �� corresponding to the fibered face containing the
pseudo-Anosov braid f D �1��12 . The black edges are the triangle edges
and the red edges are the tetrahedron edges. Therefore the graph � is the
subgraph consisting of black edges.

7.2 Minimal cycles and minimal good paths

The minimal cycles are listed in Table 1 with their drift. Denoting the set of drifts of
minimal cycles by B as in Section 3.6, we have

B D ft�1u; u; tu; t�2u2; t2u2g
and

hBiR�0
D ftaub W jaj � bg:

The minimal good paths are listed in Table 2.

7.3 Determining the stashing sets Stash.e; e0/

For a minimal good path 
 , denote by Stash.
/ the set of drifts of good paths that
decompose as the union of 
 with minimal cycles (see Lemma 3.8).

Proposition 7.1 If 
 is a minimal good path in��, then Stash.
/D drift.
/ �D, where

D D

8<:
hBiZ�0

�ftug if 
 D RB;BR;RBR;BRB;
hBiZ�0

�ft�1ug if 
 D GP;PG;GPG;PGP;
hBiZ�0

otherwise.

cycle RBR RGR BPB GPG RBPGR RGPBR
drift t�1u u u tu t2u2 t�2u2

Table 1: The drifts of minimal cycles.
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path RB RBR RBP RBRG RBPG RBRGP RBPGR
drift t�1u t�2u2 tu2 t�1u2 t2u2 t�1u3 tu3

path BR BRB BRG BRBP BRGP BRBPG BRGPB
drift t�1u2 t�1u2 u2 tu3 u3 t2u3 t�2u3

path GP GPG GPB GPGR GPBR GPGRB GPBRG
drift tu2 t2u2 t�1u2 tu3 t�2u3 tu3 t�1u3

path PG PGP PGR PGPB PGRB PGPBR PGRBP
drift tu tu2 u2 t�1u2 u2 t�2u3 t2u3

Table 2: The drifts of minimal good paths.

Proof If 
 consists of three or four edges, then it forms a connected collection with
all minimal cycles. So, in these cases, we have D D hBiZ�0

.

If 
 D RBP, then the only minimal cycle 
 does not form a connected collection with
is RGR. But the drift of the cycle BPB is the same as the drift of the cycle RGR, so we
still have DD hBiZ�0

. We obtain DD hBiZ�0
similarly for 
 D BRG, GPB and PGB.

For the remaining four possibilities for 
 starting with R or B (namely RB, BR, RBR
and BRB), the cycles RBR, RBPGR and RGPBR form a connected collection with 
 ,
so t�1u; t2u2; t�2u2 2 D. Also, at least one of RGR and BPB forms a connected
collection with 
 , so u 2 D. However, the cycle GPG does not form a connected
collection with 
 , so tu …D.

It remains to show that all elements of hBiZ�0
�ftug that are not nonnegative integral

linear combinations of u, t�1u and t2u2 are in D. This follows from the fact that, once
we add to 
 a minimal cycle with drift u or t2u2, we can now add the cycle GPG to
obtain a connected collection. So the translated cones uhBiZ�0

and t2u2hBiZ�0
are

contained in D. This completes the proof in the case that 
 starts with R or B.

The proof is analogous if 
 starts with G or P.

Proposition 7.1 allows us to determine the stashing set Stash.e; e0/ for every pair
e; e0 2 fB;R;G;P g using the formula

Stash.e; e0/D
[
fStash.
/ W 
 is a minimal good path from e to e0g:

For example,

Stash.R;R/D Stash.RBR/[Stash.RBPGR/

D t�2u2.hBiZ�0
�ftug/[ tu3hBiZ�0

;
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since drift.RBR/D t�2u2 and drift.RBPGR/D tu3. We can visualize that computation
as follows.

Draw the cone ht�1u; u; tuiZ�0
as in Figure 12. The horizontal axis is the t–axis and

the vertical axis is the u–axis. Mark the point t�2u2 with a “left tick” and the point tu3

with a cross, indicating the coloring of the sets t�2u2.hBiZ�0
�ftug/ and tu3hBiZ�0

.
The union of these two sets forms Stash.R;R/. Figure 12 illustrates the computation
for all Stash.e; e0/.

7.4 The fibered face

Denote by �a;b the element of H 1.M/ such that �a;b.t/D a and �a;b.u/D b.

Lemma 7.2 The monodromy f D �1��12 corresponds to �0;�1.

Proof The homology class t can be represented by loops in M that are in the fiber
dual to f, and loops representing u wind around the fibration dual to f once in the
opposite direction of the flow.

Let F be the fibered face such that the cone RCF contains �0;�1.

Lemma 7.3 RCF D f�a;b W jaj � �b; b < 0g:

Proof By Proposition 4.5, the cone RCF contains precisely those cohomology classes
that take nonpositive values on hBiR�0

D ht�1u; tuiR�0
.

Lemma 7.4 k�0;�1k D 2:

Proof The fiber dual to f is a four-punctured sphere and has Euler characteristic �2.

Lemma 7.5 We have k�a;bk D �2b whenever �a;b 2RCF.

Proof This follows from Lemma 7.4 and the fact that the Thurston norm on the
cone RCF has the symmetry k�a;bk D k��a;bk. This symmetry can be seen from
the following symmetry ı of the veering triangulation of M. The symmetry ı maps
the upper left triangulation in Figure 9 to the upper right triangulation by vertical
reflection and a horizontal stretch. This map extends to a symmetry of the whole
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Stash.R;R/ Stash.G;G/

Stash.R;B/ Stash.G; P /

Stash.R;G/ Stash.G;R/

Stash.R; P / Stash.G;B/

Stash.B;R/ Stash.P;G/

Stash.B;B/ Stash.P; P /

Stash.B; P / Stash.P;B/

Stash.B;G/ Stash.P;R/

Figure 12: The sets Stash.e; e0/ for all pairs e; e0 2 fR;B;G;P g.
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veering triangulation and exchanges the red edge with the green edge and the blue edge
with the purple edge. The symmetry ı WM !M maps the fiber S to a homotopic fiber
by an orientation-reversing map, but preserves the orientation of the flow. Therefore,
the action on homology is ı�.u/Du and ı�.t/D�t . So, in the cone RCF, two integral
points ��a;b and �a;b are dual to homeomorphic fibers and hence their Thurston norms
are equal.

Corollary 7.6 F D
˚
�a;�1=2 W jaj �

1
2

	
:

7.5 Accumulation points of the graph of �1

We will apply Theorem 1.4 to the fibered face F to find the accumulation points of the
graph of the function �1. According to the theorem, the set of accumulation points is
the graph of a continuous function g W int.F/!RC.

Proposition 7.7 g.�a;�1=2/D
2�

1
2
� a

��
1
2
C a

� :
Proof By Theorem 1.4, we have

g.˛!1C .1�˛/!2/D g
�.˛; 1�˛/D

1

volƒ.†=h!1; !2iZ/ �˛.1�˛/
;

where !1 D ��1=2;�1=2 and !2 D �1=2;�1=2, † D H 1.M IR/ and ƒ D H 1.M IZ/.
Since

det

 
�
1
2

1
2

�
1
2
�
1
2

!
D

1
2
;

the covolume in the denominator is 1
2

. So

g.��˛=2C.1�˛/=2;�1=2/D
2

˛.1�˛/

and, by substituting aD 1
2
�˛, we obtain the desired formula.

7.6 Exact values of the function �1

Proposition 7.8 For the primitive integral cohomology classes � listed in Table 3, the
asymptotic translation length `A.�/ of the monodromy corresponding to � is as shown
in the table.

For each fibration , the table also shows the cycles of �� with maximal average weight.
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� `A.�/ maximal cycles

�0;�1
2
3

BPB, RGR

�1;�2
1
6

BB

�1;�3
1
9

BB, RR

�1;�4
1
13

RR

�1;�k (k � 5 odd) 2=.kC 1/2 BB

�1;�k (k � 6 even) 2=.k2C 2k� 1/ BPB

Table 3

We remark that these cycles correspond to bi-infinite geodesics in the arc complex of
the fiber that are invariant under some power of the monodromy.

Proof Using the stashing sets Stash.e; e0/ shown in Figure 12, we can determine the
weighted graphs W.�/ using the definition (3-2).

Case 1 (�0;�1, �1;�2, �1;�3 and �1;�4) In these cases, we find the graphs W.�/
shown in Figure 13 by a case-by-case inspection of each set in Figure 12. The maximum
averages are 3

2
, 6, 9 and 13; therefore, the asymptotic translation lengths are 2

3
, 1
6

, 1
9

and 1
13

, respectively, by Proposition 3.5.

Case 2 (k � 5 is odd) Note that t .k�1/=2u.kC3/=2 and t�.kC1/=2u.kC1/=2 are not
in Stash.B;B/, and both evaluate to �1

2
.k C 1/2 by �1;�k . Hence, 1

2
.k C 1/2 …

��1;�k.Stash.B;B//. One easily verifies that 1
2
.kC 1/2 is in fact the largest integer

that is not contained in ��1;�k.Stash.B;B//. Since Stash.B;R/D Stash.B;B/, it is
also the largest integer not contained in ��1;�k.Stash.B;R//.

The set
Zk D

˚
taub W �1

2
.k� 1/� a � 1

2
.k� 1/; b � 1

2
.kC 3/

	
is contained in Stash.R;R/, Stash.R;B/, Stash.R;G/, Stash.R; P /, Stash.B;G/,
Stash.G;G/, Stash.G;R/, Stash.G;B/, Stash.P;G/, Stash.P;B/ and Stash.P;R/,
so the weights of the corresponding edges are less than

k � 1
2
.kC 3/� 1

2
.k� 1/D 1

2
.k2C 2kC 1/D 1

2
.kC 1/2:

The set tZk is contained in Stash.G; P /D Stash.P; P /, so the weights of the corre-
sponding edges are strictly less than 1

2
.kC1/2�1. For the only remaining pair, .B; P /,

one can check that w.B;P /D 1
2
.kC 1/2� 1.

Algebraic & Geometric Topology, Volume 23 (2023)



4140 Balázs Strenner

1

1 1

1

0 1

2

1

1 0

2

1

1

11

1

6

4 1

2

4 6

4

1

2 0

4

3

4

32

3

9

9 5

6

6 9

9

5

6 3

7

5

6

56

7

12

13 11

12

8 12

13

8

12 8

13

10

10

99

10

Figure 13: The graphs W.�0;�1/ (top left), W.�1;�2/ (top right), W.�1;�3/
(bottom left) and W.�1;�4/ (bottom right).

Therefore, w.B;B/D w.B;R/D 1
2
.kC 1/2 and the weights of the other edges are

strictly smaller. Therefore, the largest average cycle weight is 1
2
.kC 1/2, realized only

by the loop on the blue vertex.

Case 3 (k � 6 is even) The set

Wk D
˚
taub W �1

2
k � a � 1

2
.k� 2/; b � 1

2
.kC 2/

	
�ft .k�2/=2u.kC2/=2g

is contained in Stash.R;R/, Stash.R;B/, Stash.R;G/, Stash.B;R/, Stash.B;B/,
Stash.G;R/ and Stash.G;B/; therefore, the weights of the corresponding edges are at
most

Xk D k �
1
2
.kC 2/� 1

2
.k� 2/D 1

2
.k2C kC 2/:

The set tWk is contained in Stash.R; P /, Stash.B;G/, Stash.G;G/, Stash.P;G/,
Stash.P;B/ and Stash.P;R/; therefore, the weights of the corresponding edges are at
most Xk � 1.

The set t2Wk is contained in Stash.G; P /, Stash.P; P /, therefore the weights of the
corresponding edges are at most Xk � 2.

Algebraic & Geometric Topology, Volume 23 (2023)



Fibrations of 3–manifolds and asymptotic translation length in the arc complex 4141

There is one remaining edge: BP. Neither t�.k�2/=2u.kC2/=2 nor t .kC2/=2u.kC4/=2 is
in Stash.B; P / and both expressions evaluate to 1

2
.k2C 3k � 2/, so one can verify

that w.B;P /D 1
2
.k2C 3k � 2/. One can also check that w.P;B/ is in fact exactly

Xk�1; therefore, the cycle BPB has average weight 1
2
.k2C2k�1/. Since this weight

is larger than Xk , no other cycle can have the same of larger average weight.

Finally, we give the proof of Theorem 1.6.

Proof of Theorem 1.6 Parametrize the fibered face F with the interval Œ�1; 1�, using
the map �a;b 7! a=b.

Using Lemma 7.5, we have k�0;�1k2 D 4 and k�˙1;�kk2 D 4k2 for every integer
k � 2. Together with Proposition 7.8, we obtain the values of �1.t/ in Theorem 1.6 for
t � 0. By the symmetry discussed in the proof of Lemma 7.5, we have �1.t/D�1.�t /
for all t 2 .�1; 1/, which yields the claimed values of �1.t/ when t > 0.

Using the substitution t D a=
�
�
1
2

�
, whence a D �1

2
t , in Proposition 7.7, we obtain

that the set of accumulation points of the graph of �1.t/ is the graph of

2�
1
2
C
1
2
t
��
1
2
�
1
2
t
� D 8

1� t2
;

as claimed. Finally, it is straightforward to check that �1.t/ < 8=.1� t2/ for all values
of t for which we have determined �1.t/.
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