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A uniformizable spherical CR structure
on a two-cusped hyperbolic 3–manifold

YUEPING JIANG

JIEYAN WANG

BAOHUA XIE

Let hI1; I2; I3i be the complex hyperbolic .4; 4;1/ triangle group. We prove
Schwartz’s conjecture that hI1; I2; I3i is discrete and faithful if and only if I1I3I2I3

is nonelliptic. If I1I3I2I3 is parabolic, we show that the even subgroup hI2I3; I2I1i

is the holonomy representation of a uniformizable spherical CR structure on the
two-cusped hyperbolic 3–manifold s782 in SnapPy notation.

20H10, 22E40, 51M10, 57M50

1 Introduction

Let H2
C be the complex hyperbolic plane and PU.2; 1/ be its holomorphic isometry

group; see Section 2 for more details. It is well known that H2
C is one of the rank-one

symmetric spaces and PU.2; 1/ is a semisimple Lie group. H2
C can be viewed as the

unit ball in C2 equipped with the Bergman metric. Its ideal boundary @H2
C is the

3–sphere S3. We study the geometry of discrete subgroups of PU.2; 1/.

Let M be a 3–manifold. A spherical CR structure on M is a system of coordinate charts
into S3 such that the transition functions are restrictions of elements of PU.2; 1/. Any
spherical CR structure on M determines a pair .�; d/, where � W �1.M /! PU.2; 1/ is
the holonomy and d W zM ! S3 is the developing map. There is a special spherical CR
structure. A uniformizable spherical CR structure on M is a homeomorphism between
M and a quotient space�=� , where � is a discrete subgroup of PU.2; 1/ and��@H2

C

is the discontinuity region of � . An interesting problem in complex hyperbolic geometry
is to find (uniformizable) spherical CR structures on hyperbolic 3–manifolds.

Geometric structures modeled on the boundary of complex hyperbolic space are rather
difficult to construct. The first example of a spherical CR structure existing on a cusped
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hyperbolic 3–manifold was discovered by Schwartz. In [23], Schwartz constructed
a uniformizable spherical CR structure on the Whitehead link complement. He also
constructed a closed hyperbolic 3–manifold that admits a uniformizable spherical CR
structure in [26] at almost the same time.

Let M8 be the complement of the figure eight knot. In [9], Falbel constructed two
different representations �1 and �2 of �1.M8/ in PU.2; 1/, and proved that �1 is the
holonomy of a spherical CR structure on M8. In [11], Falbel and Wang proved that
�2 is also the holonomy of a spherical CR structure on M8. In [7], Deraux and Falbel
constructed a uniformizable spherical CR structure on M8 whose holonomy is �2. In [6],
Deraux proved that there is a 1–parameter family of spherical CR uniformizations of the
figure eight knot complement. This family is in fact a deformation of the uniformization
constructed in [7].

Let us return to the Whitehead link complement. It admits a uniformizable spherical CR
structure which is different from Schwartz’s. In the recent work [22], Parker and Will
also constructed a spherical CR uniformization of the Whitehead link complement. By
applying spherical CR Dehn surgery theorems to the uniformizations of the Whitehead
link complement, one can get infinitely many manifolds which admit uniformizable
spherical CR structures. In [28], Schwartz proved a spherical CR Dehn surgery theorem,
and applied it to the spherical CR uniformization of the Whitehead link complement
constructed in [23] to obtain infinitely many closed hyperbolic 3–manifolds which
admit uniformizable spherical CR structures. In [2], Acosta applied the spherical CR
Dehn surgery theorem he proved in [1] to the spherical CR uniformization of the
Whitehead link complement constructed by Parker and Will in [22] to obtain infinitely
many one-cusped hyperbolic 3–manifolds which admit uniformizable spherical CR
structures. In particular, the spherical CR uniformization of the complement of the
figure eight knot constructed by Deraux and Falbel [7] is contained in this family.

There are some hyperbolic 3–manifolds described in the SnapPy census (see [4])
which admit spherical CR structures. In [5], Deraux proved that the cusped hyperbolic
3–manifold m009 admits a uniformizable spherical CR structure whose holonomy
representation was constructed by Falbel, Koseleff and Rouillier in [10]. In [16; 18], Ma
and Xie proved that the cusped hyperbolic 3–manifolds m038, s090, m295 and 63

1
admit

spherical CR uniformizations. They also gave the second explicit example of a closed
hyperbolic 3–orbifold which admits a uniformizable spherical CR structure in [17].

We show that the two-cusped hyperbolic 3–manifold s782 admits a uniformizable
spherical CR structure. By studying the action of the even subgroup of a discrete
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complex hyperbolic triangle group on H2
C , we prove that the quotient space of its

discontinuity region is homeomorphic to s782. That means the holonomy representation
of the spherical CR uniformization of s782 is a triangle group.

Now let us talk about the complex hyperbolic triangle groups. Let�p;q;r be the abstract
.p; q; r/ reflection triangle group with the presentation

h�1; �2; �3 j �
2
1 D �

2
2 D �

2
3 D .�2�3/

p
D .�3�1/

q
D .�1�2/

r
D idi;

where p, q and r are positive integers, or1 in which case the corresponding relation
disappears. A complex hyperbolic .p; q; r/ triangle group is a representation of �p;q;r

in PU.2; 1/, which maps the generators to complex involutions fixing complex lines
in H2

C . The study of complex hyperbolic triangle groups was begun by Goldman and
Parker, and in [13] they studied the complex hyperbolic .1;1;1/ triangle groups.
They conjectured that a representation of�1;1;1 into PU.2; 1/ is discrete and faithful
if and only if the image of �1�2�3 is nonelliptic. The Goldman–Parker conjecture
was proved by Schwartz in [24] (and with a better proof in [27]). In particular, the
representation with the image of �1�2�3 being parabolic is closely related with the
holonomy of the spherical CR uniformization of the Whitehead link complement
constructed in [23]. In the survey [25], a series of conjectures on complex hyperbolic
triangle groups are put forward.

Conjecture 1.1 (Schwartz [25]) Suppose that p � q � r . Let hI1; I2; I3i be a
complex hyperbolic .p; q; r/ triangle group. Then hI1; I2; I3i is a discrete and faithful
representation of �p;q;r if and only if I1I3I2I3 and I1I2I3 are nonelliptic. Moreover:

� If 3 � p < 10, then hI1; I2; I3i is discrete and faithful if and only if I1I3I2I3

is nonelliptic.

� If p > 13, then hI1; I2; I3i is discrete and faithful if and only if I1I2I3 is
nonelliptic.

In a recent work [22], Parker and Will proved Conjecture 1.1 for complex hyperbolic
.3; 3;1/ groups. They also showed that, when I1I3I2I3 is parabolic, the quotient
of H2

C by the group hI2I3; I2I1i is a complex hyperbolic orbifold whose boundary
is a spherical CR uniformization of the Whitehead link complement. In [21], Parker,
Wang and Xie proved Conjecture 1.1 for complex hyperbolic .3; 3; n/ groups with
n � 4. Furthermore, Acosta [2] showed that when I1I3I2I3 is parabolic the group
hI2I3; I2I1i is the holonomy representation of a uniformizable spherical CR structure
on the Dehn surgery of the Whitehead link complement on one cusp of type .1; n� 3/.
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We give a proof of Conjecture 1.1 for the complex hyperbolic .4; 4;1/ triangle groups
and further analyze the group when I1I3I2I3 is parabolic. Our result is as follows:

Theorem 1.2 Let hI1; I2; I3i be a complex hyperbolic .4; 4;1/ triangle group. Then
hI1; I2; I3i is a discrete and faithful representation of �4;4;1 if and only if I1I3I2I3

is nonelliptic. Moreover , when I1I3I2I3 is parabolic , the quotient of H2
C by the

group hI2I3; I2I1i is a complex hyperbolic orbifold whose boundary is a spherical CR
uniformization of the two-cusped hyperbolic 3–manifold s782 in the SnapPy census.

In [29], Wyss-Gallifent studied the complex hyperbolic .4; 4;1/ triangle groups. He
discovered several discrete groups with I1I3I2I3 being regular elliptic of finite order
and conjectured that there should be countably infinitely many. It would be very
interesting to know what the manifold at infinity is for the group with I1I3I2I3 being
regular elliptic of finite order.

Our method is to construct Ford domains for the triangle groups acting on H2
C . The

space of complex hyperbolic .4; 4;1/ triangle groups hI1; I2; I3i is parametrized by
the angle � 2

�
0; �

2

�
; see Section 3. Let S D I2I3, T D I2I1 and � D hS;T i. Here S

is regular elliptic of order 4, and T is parabolic fixing the point at infinity. For each
group in the parameter space, the Ford domain D is the intersection of the closures
of the exteriors of the isometric spheres for the elements S , S�1, S2, .S�1T /2 and
their conjugations by the powers of T . The combination of D is the same except
when I1I3I2I3 is parabolic, in which case there are additional parabolic fixed points.
D is preserved by the subgroup hT i and is a fundamental domain for the cosets of
hT i in � . Its ideal boundary @1D is the complement of a tubular neighborhood of
the T –invariant R–circle (or horotube defined in [28]). By intersecting @1D with a
fundamental domain for hT i acting on @H2

C , we obtain a fundamental domain for �
acting on its discontinuity region; see Section 4.

When I1I3I2I3 is parabolic, that is � D �
3

, there are four additional parabolic fixed
points fixed by T �1S2, S2T �1, ST �1S and T �1ST �1ST , except the point at
infinity which is the fixed point of T ; see Section 5. By studying the combinatorial
properties of the fundamental domain for � acting on its discontinuity region �.�/,
we prove that the quotient �.�/=� is homeomorphic to the two-cusped hyperbolic
3–manifold s782. Motivated by the work of Acosta [2], we guess that there are similar
structures on its surgeries.

Acknowledgments We thank Jiming Ma for his help in the proof of Theorem 5.22.
Xie also would like to thank Jiming Ma for numerous helpful discussions on complex
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hyperbolic geometry during his visit to Fudan University. We would like to thank
the referee for comments which improved a previous version of this paper. Jiang was
supported by NSFC 12271148. Wang was supported by NSFC 11701165. Xie was
supported by NSFC 11871202 and Hunan Provincial Natural Science Foundation of
China 2018JJ3024.

2 Background

The purpose of this section is to briefly introduce complex hyperbolic geometry. One
can refer to Goldman’s book [12] for more details.

2.1 Complex hyperbolic plane

Let hz;wi D w�Hz be the Hermitian form on C3 associated to H , where H is the
Hermitian matrix

H D

240 0 1

0 1 0

1 0 0

35 :
Then C3 is the union of the negative cone V�, null cone V0 and positive cone VC, where

V� D fz 2C3
�f0g W hz; zi< 0g; V0 D fz 2C3

�f0g W hz; zi D 0g;

and
VC D fz 2C3

�f0g W hz; zi> 0g:

Definition 2.1 Let P WC3�f0g!CP2 be the projectivization map. Then the complex
hyperbolic plane H2

C is defined to be P .V�/, and its boundary @H2
C is defined to be

P .V0/. This is the Siegel domain model of H2
C .

There is another model of H2
C .

Definition 2.2 The ball model of H2
C is the unit ball in C2, which is given by the

Hermitian matrix J D diag.1; 1;�1/. In this model, @H2
C is then the 3–dimensional

sphere S3 �C2. The Cayley transform C is given by

C D
1
p

2

0@1 0 1

0
p

2 0

1 0 �1

1A :
It satisfies C �HC D J and interchanges the Siegel domain model and the ball model
of H2

C .
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Let N DC �R be the Heisenberg group with product

Œz; t � � Œ�; ��D ŒzC �; t C � � 2 Im.Nz�/�:

Then, in the Siegel domain model of H2
C , the boundary of the complex hyperbolic

plane @H2
C can be identified to the union N [fq1g, where q1 is the point at infinity.

The standard lift of q1 and q D Œz; t � 2N in C3 are

(2-1) q1 D

241

0

0

35 and q D

241
2
.�jzj2C i t/

z

1

35 :
The closure of the complex hyperbolic plane H2

C [ @H
2
C can be identified to the union

of N �R�0 and fq1g. Any point q D .z; t;u/ 2N �R�0 has the standard lift

q D

241
2
.�jzj2�uC i t/

z

1

35 :
Here .z; t;u/ is called the horospherical coordinates of H2

C [ @H
2
C . Let d.u; v/ be

the distance between two points u; v 2H2
C . Then the Bergman metric on the complex

hyperbolic plane is given by the distance formula

cosh2
�

1
2
d.u; v/

�
D
hu; vihv;ui

hu;uihv; vi
;

where u; v 2C3 are lifts of u and v.

Definition 2.3 The Cygan metric dCyg on @H2
C �fq1g is defined to be

(2-2) dCyg.p; q/D j2hp; qij
1=2
D
ˇ̌
jz�wj2� i.t � sC 2 Im.z Nw//

ˇ̌1=2
;

where p D Œz; t � and q D Œw; s�.

The Cygan metric satisfies the properties of a distance. The extended Cygan metric on
H2

C is given by the formula

(2-3) dCyg.p; q/D
ˇ̌
jz�wj2Cju� vj � i.t � sC 2 Im.z Nw//

ˇ̌1=2
;

where p D .z; t;u/ and q D .w; s; v/.

The formula dCyg.p; q/D j2hp; qij
1=2 remains valid even if one of p or q lies on @H2

C .
A Cygan sphere is a sphere for the extended Cygan distance.

There are two kinds of 2–dimensional totally real totally geodesic subspaces of H2
C:

complex lines and Lagrangian planes.
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Definition 2.4 Let v? be the orthogonal space of v 2VC with respect to the Hermitian
form. The intersection of the projective line P .v?/ with H2

C is called a complex line.
The vector v is its polar vector.

The ideal boundary of a complex line on @H2
C is called a C–circle. In the Heisenberg

group, C–circles are either vertical lines or ellipses whose projections on the z–plane
are circles.

Let H2
R D f.x1;x2/ 2H2

C W x1;x2 2Rg be the set of real points. H2
R is a Lagrangian

plane. All the Lagrangian planes are the images of H2
R by isometries of H2

C . The
ideal boundary of a Lagrangian plane is called an R–circle. In the Heisenberg group,
R–circles are either straight lines or lemniscate curves whose projections on the z–plane
are the figure eight.

2.2 Isometries

Let SU.2; 1/ be the special unitary matrix preserving the Hermitian form. Then the
projective unitary group PU.2; 1/DSU.2; 1/=fI; !I; !2Ig is the holomorphic isometry
group of H2

C , where ! D 1
2
.�1C i

p
3/ is a primitive cubic root of unity. Note that

complex conjugation also preserves the Bergman distance, and the full isometry group
of H2

C is generated by PU.2; 1/ and complex conjugation; see Section 3.4 of [20].

Definition 2.5 Any isometry g 2 PU.2; 1/ is loxodromic if it has exactly two fixed
points on @H2

C , parabolic if it has exactly one fixed point on @H2
C , and elliptic if it

has at least one fixed point in H2
C .

The types of isometries can be determined by the traces of their matrix realizations; see
Theorem 6.2.4 of Goldman [12]. Now suppose that A 2 SU.2; 1/ has real trace. Then
A is elliptic if �1� tr.A/ < 3. Moreover, A is unipotent if A is not the identity and
tr.A/D 3. In particular, if tr.A/D�1; 0; 1, A is elliptic of order 2, 3 or 4, respectively.

There is a special class of elliptic elements of order two:

Definition 2.6 The complex involution on complex line C with polar vector n is

(2-4) IC .z/D�zC
2hz;ni

hn;ni
n:

It is obvious that IC is a holomorphic isometry fixing the complex line C .

Algebraic & Geometric Topology, Volume 23 (2023)
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There is a special class of unipotent elements in PU.2; 1/:

Definition 2.7 A left Heisenberg translation associated to Œz; t � 2N is given by

(2-5) TŒz;t � D

241 �Nz 1
2
.�jzj2C i t/

0 1 z

0 0 1

35 :
It is obvious that TŒz;t � fixes q1 and maps Œ0; 0� 2N to Œz; t �.

2.3 Isometric spheres and Ford polyhedron

Suppose that g D .gij /
3
i;jD1

2 PU.2; 1/ does not fix q1. Then it is obvious that
g31 ¤ 0. We first recall the definition of isometric spheres and relevant properties; see
for instance [20].

Definition 2.8 The isometric sphere of g, denoted by I.g/, is the set

(2-6) I.g/D fp 2H2
C [ @H

2
C W jhp; q1ij D jhp;g

�1.q1/ijg:

The isometric sphere I.g/ is the Cygan sphere with center

g�1.q1/D Œ Ng32= Ng31; 2 Im. Ng33= Ng31/�

and radius rg D
p

2=jg31j.

The interior of I.g/ is the set

(2-7) fp 2H2
C [ @H

2
C W jhp; q1ij> jhp;g

�1.q1/ijg:

The exterior of I.g/ is the set

(2-8) fp 2H2
C [ @H

2
C W jhp; q1ij< jhp;g

�1.q1/ijg:

The isometric spheres are paired as follows:

Lemma 2.9 [12, Section 5.4.5] Let g be an element in PU.2; 1/ which does not
fix q1. Then g maps I.g/ to I.g�1/ and the exterior of I.g/ to the interior of I.g�1/.
Also , for any unipotent transformation h 2 PU.2; 1/ fixing q1, we have I.g/D I.hg/.

Since isometric spheres are Cygan spheres, we now recall some facts about Cygan
spheres. Let SŒ0;0�.r/ be the Cygan sphere with center Œ0; 0� and radius r > 0. Then

(2-9) SŒ0;0�.r/D f.z; t;u/ 2H2
C [ @H

2
C W .jzj

2
Cu/2C t2

D r4
g:
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The geographical coordinates on the Cygan sphere will play an important role in our
calculation; see Section 2.5 of [22].

Definition 2.10 The point q D q.˛; ˇ;w/ 2 SŒ0;0�.r/ with geographical coordinates
.˛; ˇ;w/ is the point whose lift to C3 is

(2-10) q D q.˛; ˇ;w/D

24 �1
2
r2e�i˛

rwei.�˛=2Cˇ/

1

35 ;
where ˛ 2

�
�
�
2
; �

2

�
, ˇ 2 Œ0; �/ and w 2 Œ�

p
cos.˛/;

p
cos.˛/�. The ideal boundary of

SŒ0;0�.r/ on @H2
C consists of the points with w D˙

p
cos.˛/.

We are interested in the intersection of Cygan spheres.

Proposition 2.11 [22, Proposition 2.10] The intersection of two Cygan spheres is
connected.

Remark 2.12 This intersection is often called a Giraud disk.

The following property should be useful to describe the intersection of Cygan spheres;
see Proposition 2.12 of [22] or Example 5.1.8 of [12].

Proposition 2.13 Let SŒ0;0�.r/ be a Cygan sphere with geographical coordinates
.˛; ˇ;w/.

(1) The level sets of ˛ are complex lines , called slices of SŒ0;0�.r/.

(2) The level sets of ˇ are Lagrangian planes , called meridians of SŒ0;0�.r/.

(3) The set of points with w D 0 is the spine of SŒ0;0�.r/. It is a geodesic contained
in every meridian.

A central part of this paper is constructing a polyhedron for a finitely generated subgroup
of PU.2; 1/.

Definition 2.14 Let G be a discrete subgroup of PU.2; 1/. The Ford polyhedron DG

for G is the set

DG Dfp 2H2
C [ @H

2
C W jhp; q1ij � jhp;g

�1q1ij for all g 2G with g.q1/¤ q1g:

That is to say DG is the intersection of closures of the exteriors of all the isometric
spheres for elements of G which do not fix q1. In fact, the Ford polyhedron is the
limit of Dirichlet polyhedra as the center point goes to q1.
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3 The parameter space of complex hyperbolic .4; 4; 1/

triangle groups

In this section, we give a parameter space of the complex hyperbolic .4; 4;1/ triangle
groups.

Let � 2
�
0; �

2

�
. Let I1, I2 and I3 be the complex involutions on the complex lines

C1, C2 and C3 in complex hyperbolic space H2
C with polar vectors n1, n2 and n3,

respectively. By conjugating elements in PU.2; 1/, one can normalize so that @C3 D

fŒz; 0� 2 N W jzj D
p

2g, @C1 D fŒz1; t � 2 N W t 2 Rg and @C2 D fŒz2; t � 2 N W t 2 Rg.
That is, @C3 is the circle in the z–plane of the Heisenberg group with center the origin
and radius

p
2, and @C1 (resp. @C2) is the vertical line whose projection on the z–plane

of the Heisenberg group is the point z1 (resp. z2). Thus the polar vectors of the complex
lines can be written as

n1 D

24z1

1

0

35 ; n2 D

24z2

1

0

35 and n3 D

241

0

1

35 :
Since tr.I1I3/D tr.I2I3/D 1, we have jz1j D jz2j D 1. Then, up to rotation about the
t–axis of the Heisenberg group, the C–circles @C1 and @C2 can be normalized to be
the sets @C1 D fŒ�e�i� ; t � 2N W t 2Rg and @C2 D fŒe

i� ; t � 2N W t 2Rg.

Note that the C–circles @C1 and @C2 coincide with each other if � D �
2

. According
to (2-4), the complex involutions I1, I2 and I3 on the complex lines are given as

I1 D

24�1 2ei� 2

0 1 2e�i�

0 0 �1

35 ; I2 D

24�1 �2e�i� 2

0 1 �2ei�

0 0 �1

35 ; I3 D

240 0 1

0 �1 0

1 0 0

35 :
Proposition 3.1 Let � 2

�
0; �

2

�
, and I1, I2 and I3 be defined as above. Then

hI1; I2; I3i is a complex hyperbolic .4; 4;1/ triangle group. Furthermore , the element
I1I3I2I3 is nonelliptic if and only if 0� � � �

3
.

Proof By computing the products of two involutions

I2I3 D

24 2 2e�i� �1

�2ei� �1 0

�1 0 0

35 ; I3I1 D

24 0 0 �1

0 �1 �2e�i�

�1 ei� 2

35 ;
Algebraic & Geometric Topology, Volume 23 (2023)
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and

I2I1 D

241 �4 cos.�/ �4.1C e�2i� /

0 1 4 cos.�/
0 0 1

35 :
It is easy to verify that I2I3 and I3I1 are elliptic of order 4 and I2I1 is unipotent.
Thus hI1; I2; I3i is a complex hyperbolic .4; 4;1/ triangle group.

Since the trace of I1I3I2I3 is tr.I1I3I2I3/D 7C 8 cos.2�/, the element I1I3I2I3 is
elliptic if and only if

�1� tr.I1I3I2I3/D 7C 8 cos.2�/ < 32;

that is, �
3
< � � �

2
. Thus I1I3I2I3 is nonelliptic if and only if 0� � � �

3
. Moreover,

when � D �
3

, the element I1I3I2I3 is parabolic.

If � D 0, all entries of I1, I2 and I3 are in the ring of integers Z, and if � D �
3

all
entries of I1, I2 and I3 are in the ring of Eisenstein integers Z

��
�1C i

p
3

2

��
. In both

cases, the group hI1; I2; I3i is arithmetic. Thus, we have the following proposition:

Proposition 3.2 (1) If � D 0, then the group hI1; I2; I3i is discrete and preserves a
Lagrangian plane.

(2) If � D �
3

, then the group hI1; I2; I3i is discrete.

4 The Ford domain

For � 2
�
0; �

3

�
, let S D I2I3 and T D I2I1. Then � D hS;T i is a subgroup of

hI1; I2; I3i of index two. In this section, we will mainly prove that � is discrete. Our
method is to construct a candidate Ford domain D (see Definition 4.12), then apply the
Poincaré polyhedron theorem to show that D is a fundamental domain for the cosets
of hT i in � , and also that � is discrete.

4.1 The isometric spheres

Definition 4.1 For k 2 Z, let

� IC
k

be the isometric sphere I.T kST �k/D T kI.S/ and cC
k

be its center,

� I�
k

be the isometric sphere I.T kS�1T �k/D T kI.S�1/ and c�
k

be its center,

� I?
k

be the isometric sphere I.T kS2T �k/D T kI.S2/ and c?
k

be its center,
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� I˘
k

be the isometric sphere I.T k.S�1T /2T �k/D T kI..S�1T /2/ and c˘
k

be
its center.

Note that S and S�1T both have order 4, so S2 D S�2 and .S�1T /2 D .S�1T /�2.
The centers and radii of the isometric spheres IC

k
, I�

k
, I?

k
and I˘

k
are listed in the

following table:

isometric sphere center radius

IC
k

cC
k
D Œ4k cos.�/; 8k sin.2�/�

p
2

I�
k

c�
k
D Œ4k cos.�/C 2ei� ; 0�

p
2

I?
k

c?
k
D Œ4k cos.�/C ei� ; 4k sin.2�/� 1

I˘
k

c˘
k
D Œ4k cos.�/� e�i� ; 4k sin.2�/� 1

Proposition 4.2 Let k 2 Z.

(1) There is an antiholomorphic involution � such that �.IC
k
/DIC

�k
, �.I�

k
/DI�

�k�1

and �.I?
k
/D I˘

�k
.

(2) The complex involution I2 interchanges I?
k

and I?
�k

, interchanges IC
k

and I�
�k

,
and interchanges I˘

k
and I˘

�kC1
.

Proof (1) Let � WC3!C3 be given by

� W

24z1

z2

z3

35 7!
24 Nz1

�Nz2

Nz3

35 :
Then �2 is the identity. It is easy to see that � fixes the polar vector n3, and interchanges
the polar vectors n1 and n2. Thus � conjugates I3 to itself, I1 to I2 and vice versa. So
� conjugates T to T �1, S to T �1S , S�1 to S�1T and S2 to .T �1S/2 D .S�1T /2.
This implies that �.IC

k
/D IC

�k
, �.I�

k
/D I�

�k�1
and �.I?

k
/D I˘

�k
.

(2) The statement is easily obtained by the facts I2SI2 D S�1 and I2TI2 D T �1.

Before we consider the intersections of two isometric spheres, we would like to give a
useful technical lemma. Suppose that q 2 IC

0
. Then by (2-10) the lift of qD q.˛; ˇ;w/

is given by

(4-1) q D q.˛; ˇ;w/D

24 �e�i˛
p

2wei.�˛=2Cˇ/

1

35 ;
where ˛ 2

�
�
�
2
; �

2

�
, ˇ 2 Œ0; �/ and w 2 Œ�

p
cos.˛/;

p
cos.˛/�.
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Definition 4.3 Let .˛; ˇ;w/ be the geographical coordinates of IC
0

. We define

f ?0 .˛; ˇ;w/D 2w2
C1Ccos.˛/�

p
2w cos

�
�

1
2
˛Cˇ��

�
�2
p

2w cos
�

1
2
˛Cˇ��

�
;

f �0 .˛; ˇ;w/D 2w2
C1Ccos.˛/�

p
2w cos

�
1
2
˛Cˇ��

�
�2
p

2w cos
�
�

1
2
˛Cˇ��

�
;

f �
�1.˛; ˇ;w/D 2w2

C1Ccos.˛/C
p

2w cos
�

1
2
˛CˇC�

�
C2
p

2w cos
�
�

1
2
˛CˇC�

�
:

Lemma 4.4 Suppose that � 2
�
0; �

3

�
. Let f ?

0
.˛; ˇ;w/, f �

0
.˛; ˇ;w/ and f �

�1
.˛; ˇ;w/

be the functions in Definition 4.3. Suppose that q 2 IC
0

. Then

(1) q lies on I?
0

(resp. in its interior or exterior) if and only if f ?
0
.˛; ˇ;w/D 0 (resp.

is negative or positive),

(2) q lies on I�
0

(resp. in its interior or exterior) if and only if f �
0
.˛; ˇ;w/ D 0

(resp. is negative or positive),

(3) q lies on I�
�1

(resp. in its interior or exterior) if and only if f �
�1
.˛; ˇ;w/ D 0

(resp. is negative or positive).

Proof (1) Any point q 2 IC
0

lies on I?
0

(resp. in its interior or exterior) if and only if
the Cygan distance between q and the center of I?

0
is 1 (resp. less than 1 or greater

than 1). Using (4-1), the difference between the Cygan distance from q to the center of
I?

0
and 1 is

dCyg.q; c
?
0 /

4
� 1

D 4j�e�i˛
C
p

2wei.�˛=2Cˇ��/
�

1
2
j
2
� 1

D 4
�
2w2
C 1C cos.˛/�

p
2w cos

�
�

1
2
˛Cˇ� �

�
� 2
p

2w cos
�

1
2
˛Cˇ� �

��
D 4f ?0 .˛; ˇ;w/:

Hence, q lies on I?
0

(resp. in its interior or exterior) if and only if f ?
0
.˛; ˇ;w/ D 0

(resp. negative or positive).

The rest of the proof runs as before.

4.2 The intersection of isometric spheres

Proposition 4.5 Suppose that � 2
�
0; �

3

�
. Then each pair of isometric spheres in

fIC
k
W k 2 Zg is disjoint in H2

C [ @H
2
C .

Proof It suffices to show that IC
0

and IC
k

are disjoint for jkj � 1. Observe that T is a
Heisenberg translation associated with Œ4 cos.�/; 8 sin.2�/�. According to the Cygan
metric given in (2-2), the Cygan distance between the centers of IC

0
and IC

k
is

4
p
jkj cos.�/ � jk cos.�/� i sin.�/j1=2 � 4

p
cos.�/� 2

p
2:
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Thus the Cygan distance between the centers of IC
0

and IC
k

is bigger than the sum of
the radii, except when k D˙1 and � D �

3
. This implies that IC

0
and IC

k
are disjoint

for all jkj � 2.

When k D˙1 and � D �
3

, although the Cygan distance between the centers of IC
0

and
IC
˙1

is the sum of the radii, we claim that they are still disjoint. Using the symmetry
� in Proposition 4.2, we only need to show that IC

0
\ IC

1
D∅. Suppose that q 2 IC

0
.

Using the geographical coordinates of q D q.˛; ˇ;w/ given in (4-1), we can compute
the difference between the Cygan distance of q and the center of IC

1
with its radius.

That is,

dCyg.q; Œ2; 4
p

3�/4� 4

D 4j�e�i˛
C
p

2wei.�˛=2Cˇ��/
� 4ei�=3

j
2
� 4

D 32
�
w2
C

p
2

2
w
�
cos
�

1
2
˛Cˇ

�
C 2 cos

�
1
2
˛�ˇC �

3

��
C cos

�
˛C �

3

�
C 2

�
D 32f .˛; ˇ;w/:

Here f .˛; ˇ;w/ can be seen as a quadratic function of w. Let

B D
p

2
2

�
cos
�

1
2
˛Cˇ

�
C 2 cos

�
1
2
˛�ˇC �

3

��
and C D cos

�
˛C �

3

�
C 2. If B2 � 4C < 0, then it is obvious that f .˛; ˇ;w/ > 0. If

B2� 4C � 0, then B � �2
p

C (which is impossible by numerically computation) or
B � 2

p
C . In this case we have B � 2

p
cos.˛/ � B � 2

p
C � 0 since cos.˛/ � C .

This means that the symmetry axes of f lie on the left side of wD�
p

cos.˛/. Besides,
one can compute numerically that f .˛; ˇ;�

p
cos.˛// > 0 on the range of ˛ and ˇ.

So, we have f .˛; ˇ;w/ > 0. This means that every point on IC
0

lies outside of IC
1

.
Hence IC

0
\ IC

1
D∅.

By a similar argument, we have the following propositions:

Proposition 4.6 Suppose that � 2
�
0; �

3

�
. Then

(1) IC
0

and I�
k

are disjoint in H2
C [ @H

2
C , except possibly when k D�1; 0,

(2) IC
0

and I?
k

are disjoint in H2
C [ @H

2
C , except possibly when k D�1; 0,

(3) IC
0

and I˘
k

are disjoint in H2
C [ @H

2
C , except possibly when k D 0; 1.

Proposition 4.7 Suppose that � 2
�
0; �

3

�
. Then:
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(1) I?
0

and I?
k

are disjoint in H2
C . Furthermore , when � D �

3
the closures of I?

0

and I?
�1

(respectively, I?
1

) are tangent at the parabolic fixed point of T �1S2

(respectively, T .T �1S2/T �1) on @H2
C .

(2) I?
0

and I˘
k

are disjoint in H2
C [ @H

2
C , except possibly when k D 0; 1.

Lemma 4.8 Suppose that � 2
�
0; �

3

�
. Then IC

0
\ I?

0
\ I�
�1
D∅ except when � D �

3
,

in which case the triple intersection is the point Œei2�=3;�
p

3� 2 @H2
C . Moreover , this

point is the parabolic fixed point of T �1S2.

Proof Suppose that q 2 IC
0

. Using Lemma 4.4, the geographical coordinates .˛; ˇ;w/
of q 2 IC

0
\ I?

0
\ I�
�1

should satisfy

2w2
C1C cos.˛/�

p
2w cos

�
�

1
2
˛Cˇ��

�
�2
p

2w cos
�

1
2
˛Cˇ��

�
D 0;(4-2)

2w2
C1C cos.˛/C

p
2w cos

�
1
2
˛CˇC�

�
C2
p

2w cos
�
�

1
2
˛CˇC�

�
D 0:(4-3)

Subtracting (4-2) and (4-3),

2
p

2w cos.ˇ/
�
cos
�

1
2
˛C �

�
C 2 cos

�
1
2
˛� �

��
D 0:

This implies that either w D 0 or ˇ D �
2

, since
�
cos
�

1
2
˛C �

�
C 2 cos

�
1
2
˛ � �

��
¤ 0

for � 2
�
0; �

3

�
. We know that the points with w D 0 lie in the meridian with ˇ D �

2
.

Therefore, a necessary condition for q 2 IC
0
\ I?

0
\ I�
�1

is that ˇ D �
2

.

Substituting ˇ D �
2

into (4-2) and simplifying,

(4-4) 2w2
C 2 cos2

�
1
2
˛
�
C
p

2w
�
sin
�

1
2
˛
�

cos.�/� 3 cos
�

1
2
˛
�

sin.�/
�
D 0:

Let b.˛; �/D sin
�

1
2
˛
�

cos.�/�3 cos
�

1
2
˛
�

sin.�/. It is easy to see that, for every ˛, the
function � 7! b.˛; �/ is decreasing on

�
0; �

3

�
.

The left-hand side of (4-4) can be seen as a quadratic function ofw with positive leading
coefficient. Thus (4-4) has at least one solution only if b2�8 cos2

�
1
2
˛
�
� 0, that is b �

2
p

2 cos
�

1
2
˛
�
, which is impossible since b� b.˛; 0/D sin

�
1
2
˛
�
, or b��2

p
2 cos

�
1
2
˛
�
.

Since
p

cos.˛/� cos
�

1
2
˛
�
, we have bC 2

p
2
p

cos.˛/� bC 2
p

2 cos
�

1
2
˛
�
� 0. This

means that the symmetry axes of the quadratic function lie on the right-hand side of
w D

p
cos.˛/.

Besides, one can compute that

b
p

cos.˛/C
p

2
�
cos.˛/C cos2

�
1
2
˛
��

�
�
sin
�

1
2
˛
�

cos
�
�
3

�
� 3 cos

�
1
2
˛
�

sin
�
�
3

��p
cos.˛/C

p
2
�
cos.˛/C cos2

�
1
2
˛
��

D

p
2

2

�
1
2

p
cos.˛/C

p
2

2
sin
�

1
2
˛
��2
C

3
p

2
2

�p
3

2

p
cos.˛/�

p
2

2
cos
�

1
2
˛
��2
:
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Then b
p

cos.˛/C
p

2
�
cos.˛/C cos2

�
1
2
˛
��
� 0. If it is 0, then ˛ D ��

3
and � D �

3
.

This means that for w 2 Œ�
p

cos.˛/;
p

cos.˛/� equation (4-4) has no solution except
when � D �

3
and ˛ D��

3
, in which case w D

p
cos.˛/D

p
2

2
.

Hence q 2IC
0
\I?

0
\I�
�1

if and only if � D �
3

, ˛D��
3

andwD
p

cos.˛/D
p

2
2

. When
� D �

3
, T �1S2 is unipotent and its fixed point is the eigenvector with eigenvalue 1.

One can compute that its fixed point is Œei2�=3;�
p

3� 2 @H2
C , which equals the point

q
�
�
�
3
; �

2
;
p

2
2

�
.

Proposition 4.9 Suppose that � 2
�
0; �

3

�
. Then:

(1) The intersection I?
0
\ I˘

0
lies in the interior of IC

0
.

(2) The intersection I?
0
\ I�
�1

either is empty or lies in the interior of IC
0

. Further ,
when � D �

3
, there is a unique point on the ideal boundary of I?

0
\I�
�1

on @H2
C ,

which is fixed by T �1S2, lying on the ideal boundary of IC
0

.

Proof (1) Let p D .z; t;u/ 2 I?
0
\ I˘

0
, then p satisfies the equationsˇ̌

jz�ei�
j
2
Cu�i.tC2 Im.ze�i� //

ˇ̌
D 1;

ˇ̌
jzCe�i�

j
2
Cu�i.tC2 Im.�zei� //

ˇ̌
D 1:

Set z D jzjei� . By simplifying, we haveˇ̌
jzj2C 1Cu� 2jzj cos.� � �/� i.t C 2jzj sin.� � �//

ˇ̌
D 1;ˇ̌

jzj2C 1CuC 2jzj cos.�C �/� i.t � 2jzj sin.�C �//
ˇ̌
D 1:

Now set

jzj2C 1Cu� 2jzj cos.� � �/� i.t C 2jzj sin.� � �//D ei˛;(4-5)

jzj2C 1CuC 2jzj cos.�C �/� i.t � 2jzj sin.�C �//D eiˇ:(4-6)

Since

cos˛ D jzj2C 1Cu� 2jzj cos.� � �/D .jzj � cos.� � �//2C sin2.� � �/Cu� 0

and

cosˇ D jzj2C 1CuC 2jzj cos.�C �/D .jzjC cos.�C �//2C sin2.�C �/Cu� 0;

we have ��
2
� ˛ � �

2
and ��

2
� ˇ � �

2
. Thus cos.1

2
ˇ� 1

2
˛/� 0. By computing the

difference of (4-5) and (4-6), we have

(4-7) z D
eiˇ � ei˛

4 cos.�/
D˙

sin
�

1
2
ˇ� 1

2
˛
�

2 cos.�/
ei.˙�=2Cˇ=2C˛=2/:
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Thus � D˙�
2
C

1
2
ˇC 1

2
˛. Therefore,

.jzj2Cu/2C t2

D .cos.˛/�1C2jzj cos.���//2C.sin.˛/C2jzj sin.���//2

D 2C4jzj2�2 cos.˛/�4jzj cos.���/C4jzj cos.����˛/

� 2C4jzj2�2.jzj2C1�2jzj cos.���//�4jzj cos.���/C4jzj cos.����˛/

D 2jzj2C4jzj cos.����˛/D 2jzj2C4jzj cos
�
˙
�
2
��C 1

2
ˇ� 1

2
˛
�

D 2jzj2C4jzj
�
˙ sin.�/ cos

�
1
2
ˇ� 1

2
˛
�
�cos.�/ sin

�
1
2
ˇ� 1

2
˛
��

D
sin2

�
1
2
ˇ� 1

2
˛
�

2 cos2.�/
C tan.�/ sin.ˇ�˛/�2 sin2

�
1
2
ˇ� 1

2
˛
�
:

Since � 2
�
0; �

3

�
, we have that sin2

�
1
2
ˇ � 1

2
˛
�
=.2 cos2.�// � 2 sin2

�
1
2
ˇ � 1

2
˛
�

and
tan.�/ sin.ˇ � ˛/ �

p
3. This implies that .jzj2C u/2C t2 < 4, so the intersection

I?
0
\ I˘

0
lies in the interior of IC

0
.

(2) Suppose that p D .z; t;u/ 2 I?
0
\ I�
�1

. Then p satisfies the equations

1D
ˇ̌
jz� ei�

j
2
Cu� i.t C 2 Im.ze�i� //

ˇ̌
D
ˇ̌
jzj2CuC 1� i t � 2ze�i�

ˇ̌
;

2D
ˇ̌
jzC 2e�i�

j
2
Cu� i.t C 2 Im.�2zei� //

ˇ̌
D
ˇ̌
jzj2CuC 4� i t C 4zei�

ˇ̌
:

Now set

jzj2CuC 1� i t � 2ze�i�
D eiˇ;(4-8)

jzj2CuC 4� i t C 4zei�
D 2ei˛:(4-9)

By computing the difference of (4-8) and (4-9), we have

(4-10) z D
2ei˛ � eiˇ � 3

4ei� C 2e�i�
:

According to (4-8),

uD cos.ˇ/� jze�i�
� 1j2;(4-11)

t D�sin.ˇ/� 2 Im.ze�i� /:(4-12)

Since

cosˇ D uCjze�i�
� 1j2 � 0 and 2 cos˛ D uCjzei�

C 2j2 � 0;

we have ��
2
� ˛ � �

2
and ��

2
� ˇ � �

2
.
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I�
�1

IC0

I?
0

I�
�1

IC
0

I?0

Figure 1: The ideal boundaries of the three spheres IC
0

, I�
�1

and I?
0

on @H2
C .�

On the left is the case when � D 0 and on the right is � D �
3

.
�

Now let us consider the case when � D �
3

. Substituting ˛ D �
6

and ˇ D 0 into (4-10),
(4-11) and (4-12), we obtain the point

p0 D
�

1
3
.�3C

p
3/C i 1

6
.3C
p

3/; 1
6
.3� 7

p
3/; 1

6
.�13C 8

p
3/
�
2 I?0 \ I�

�1:

One can compute that p0 lies in the interior of IC
0

, sinceˇ̌
jzj2Cu� i t

ˇ̌2
D jeiˇ

� 1C 2ze�i�
j
2
D 4jzj2 D 20

3
� 2
p

3< 4:

We know that I?
0
\ I�
�1

is connected from Proposition 2.11. Thus, according to
Lemma 4.8, I?

0
\ I�
�1

lies in the interior of IC
0

except the point Œei2�=3;�
p

3�, which
lies on the ideal boundary of IC

0
; see Figure 1.

Observe that coordinates of the centers of I?
0

and I�
�1

are continuous on � . Thus the
geometric positions of the spheres I?

0
and I�

�1
depend continuously on � . When � D 0,

since the Cygan distance between the centers of I?
0

and I�
�1

is bigger than the sum
of their radii, one can see that I?

0
\ I�
�1
D ∅. When � D �

3
, we have shown that

I?
0
\ I�
�1

lies in the interior of IC
0

. We also have IC
0
\ I?

0
\ I�
�1
D∅ for � 2

�
0; �

3

�
by Lemma 4.8. Hence, the intersection I?

0
\ I�
�1

is either empty or contained in the
interior of IC

0
.

Proposition 4.10 Suppose that � 2
�
0; �

3

�
. For k 2 Z, the three isometric spheres IC

k
,

I�
k

and I?
k

(resp. IC
k

, I�
k�1

and I˘
k

) have the following properties:

� The intersections IC
k
\ I�

k
, I�

k
\ I?

k
and I?

k
\ IC

k
(resp. IC

k
\ I�

k�1
, I�

k�1
\ I˘

k

and I˘
k
\ IC

k
) are discs.

� The intersection IC
k
\I�

k
\I?

k
(resp. IC

k
\I�

k�1
\I˘

k
) is a union of two geodesics

which are crossed at the fixed point of T kST �k (resp. T k.S�1T /T �k) in H2
C
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I?
0

I?
0

IC
0

IC
0

I�
0I�

0

Figure 2: The ideal boundaries of the three spheres IC
0

, I�
0

and I?
0

on @H2
C .

(On the left is the case when � D 0 and on the right is � D �
3

.)

and whose fours endpoints are on @H2
C . Moreover , the four rays from the

fixed point to the four endpoints are cyclically permuted by T kST �k (resp.
T k.S�1T /T �k).

Proof According to Definition 4.1 and Proposition 4.2, it suffices to consider the
isometric spheres IC

0
, I�

0
and I?

0
; see Figure 2.

Let q 2 IC
0

. Consider the geographical coordinates .˛; ˇ;w/ of q in (4-1). By
Lemma 4.4, if q lies on IC

0
\ I�

0
, then ˛, ˇ and w should satisfy the equation

(4-13) 2w2
C 1C cos.˛/�

p
2w cos

�
1
2
˛Cˇ� �

�
� 2
p

2w cos
�
�

1
2
˛Cˇ� �

�
D 0:

Similarly, if q lies on IC
0
\ I?

0
, then ˛, ˇ and w should satisfy the equation

(4-14) 2w2
C 1C cos.˛/�

p
2w cos

�
�

1
2
˛Cˇ� �

�
� 2
p

2w cos
�

1
2
˛Cˇ� �

�
D 0:

Thus IC
0
\I�

0
is the set of solutions of (4-13) and IC

0
\I?

0
is the set of solutions of (4-14).

One can easily verify that the geographical coordinates of the point q
�
0; �;

p
2

2

�
2H2

C

satisfy (4-13) and (4-14), so the intersections IC
0
\ I�

0
and IC

0
\ I?

0
are topological

discs from Proposition 2.11.

The intersection of these two sets gives the triple intersection IC
0
\ I�

0
\ I?

0
. Now let

us solve the system of equations (4-13) and (4-14). Let t D ˇ� � . Subtracting (4-13)
and (4-14) and simplifying, we obtain

2w sin
�

1
2
˛
�

sin.t/D 0:

Thus wD 0 (this is impossible), ˛D 0, or t D 0. If t D 0, then setting ˇD � in (4-13),
we get

2w2
� 3
p

2 cos
�

1
2
˛
�
wC 1C cos.˛/D 2

�
w� 1

2

p
2 cos

�
1
2
˛
���
w�
p

2 cos
�

1
2
˛
��
D 0:
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Note that the solutions of the above equation for w should satisfy w2 � cos.˛/. Thus

w D 1
2

p
2 cos

�
1
2
˛
�

with cos.˛/� 1
3
:

If ˛ D 0, then (4-13) becomes

(4-15) 2w2
� 3
p

2 cos.t/wC 2D 0:

Note that the solutions of (4-15) for w should satisfy w2 � cos.˛/ D 1. Thus the
solutions of (4-15) are

w D
3 cos.t/�

p
9 cos2.t/� 8

2
p

2
with 2

p
2

3
� cos.t/� 1;

and

w D
3 cos.t/C

p
9 cos2.t/� 8

2
p

2
with � 1� cos.t/� �2

p
2

3
:

So the triple intersection IC
0
\ I�

0
\ I?

0
is the union L1[ C1[ C2, where

L1 D
˚
q.˛; tC�;w/ 2 IC

0
W cos.˛/� 1

3
; t D 0 and w D 1

2

p
2 cos

�
1
2
˛
�	
;

C1 D

�
q.0; tC�;w/ 2 IC

0
W

2
p

2

3
� cos.t/� 1 and w D

3 cos.t/�
p

9 cos2.t/�8

2
p

2

�
;

and

C2 D

�
q.0; t C �;w/ 2 IC

0
W �1� cos.t/��2

p
2

3
; w D

3 cos.t/C
p

9 cos2.t/� 8

2
p

2

�
:

Note that L1 lies in a Lagrangian plane of IC
0

, and C1[C2 lies in a complex line of IC
0

.
It is obvious that C1 is an arc. One of its endpoints is q

�
0; �;

p
2

2

�
2H2

C , which is the
fixed point of S . The other one is q

�
0; arccos

�
2
p

2
3

�
C�; 1

�
2 @H2

C . Similarly, C2 is an
arc with endpoints q

�
0; �;

p
2

2

�
and q

�
0; arccos

�
�

2
p

2
3

�
C�;�1

�
2 @H2

C . Thus C1[C2

is connected. The endpoints of L1 are q
�
arccos

�
1
3

�
; �;
p

3
3

�
and q

�
� arccos

�
1
3

�
; �;
p

3
3

�
,

which are on @H2
C . It is easy to see that L1 intersects with C1 [ C2 at the point

q
�
0; �;

p
2

2

�
2H2

C .

Moreover, C1 [ C2 is a geodesic. In fact, the complex line containing C1 [ C2 is
CD f.�1; z/2H2

C[@H
2
C W jzj �

p
2g. This is a disc bounded by the circle with center

the origin and radius
p

2, while C1[C2 lies in the circle with center 3
2
ei� and radius 1

2
,

which is orthogonal to the boundary of the complex line. The Cayley transform given
in Definition 2.2 maps C to the vertical axis f.0; z/ 2H2

C [ @H
2
C W jzj � 1g in the ball
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�1 10

C1

C2

L1

Figure 3: The triple intersection IC
0
\ I�

0
\ I?

0
viewed on the vertical axis in

the ball model of H2
C . The blue curve is C1 and the red one is C2. The black

point on the curve is the projection of L1 on the complex line. The left curve
is the case when � D 0 and the one on the lower left is the case when � D �

3
.

model of H2
C . Thus C is isometric to the Poincaré disc. Then C1 [ C2 is mapped by

the Cayley transform to an arc contained in the circle with center �3ei�=.2
p

2/ and
radius 1=.2

p
2/, which is orthogonal to the unit circle. Hence C1[ C2 is a geodesic;

see Figure 3.

The Cayley transform maps L1 to
˚�
�tan

�
1
2
˛
�
i;�ei�=

p
2
�
2H2

C[@H
2
C W cos.˛/� 1

3

	
.

Thus L1 and C1[ C2 are crossed at the point .0;�ei�=
p

2/ 2H2
C , which is the image

of q
�
0; �;

p
2

2

�
under the Cayley transform.

It is easy to check that S
�
q
�
0; �;

p
2

2

��
D q

�
0; �;

p
2

2

�
, and that the other four points

are cyclically permuted by S :

q
�
0; arccos

�
2
p

2
3

�
C �; 1

� S
// q
�
arccos

�
1
3

�
; �;
p

3
3

�
S
��

q
�
� arccos

�
1
3

�
; �;
p

3
3

�S

OO

q
�
0; arccos

�
�

2
p

2
3

�
C �;�1

�S
oo

Moreover, it is easy to verify that C1[C2DS.L1/, S2.L1/DL1 and S2.C1/DC2. Thus,
the four rays from the fixed point to the four endpoints are cyclically permuted by S .
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By applying powers of T and the symmetries in Proposition 4.2 to Propositions 4.6,
4.7 and 4.9, all pairwise intersections of the isometric spheres can be summarized:

Corollary 4.11 Suppose that � 2
�
0; �

3

�
. Let S D fI˙

k
; I?

k
; I˘

k
W k 2 Zg be the set of

all the isometric spheres. Then for all k 2 Z:

(1) IC
k

is contained in the exterior of all the isometric spheres in S except I�
k

, I�
k�1

,
I?

k
, I?

k�1
, I˘

k
and I˘

kC1
. Moreover , IC

k
\I?

k�1
(resp. IC

k
\I˘

kC1
) is either empty

or contained in the interior of I�
k�1

(resp. I�
k

). When � D �
3

, IC
k
\ I?

k�1
(resp.

IC
k
\ I˘

kC1
) will be tangent with I�

k�1
(resp. I�

k
) on @H2

C at the parabolic fixed
point of T k.S2T /T �k (resp. T k.S�1TS�1/T �k).

(2) I�
k

is contained in the exterior of all the isometric spheres in S except IC
k

, IC
kC1

,
I?

k
, I?

kC1
, I˘

k
and I˘

kC1
. Moreover , I�

k
\ I˘

k
(resp. I�

k
\ I?

kC1
) is either empty

or contained in the interior of IC
k

(resp. IC
kC1

). When � D �
3

, I�
k
\ I˘

k
(resp.

I�
k
\ I?

kC1
) will be tangent with IC

k
(resp. IC

kC1
) on @H2

C at the parabolic fixed
point of T k.ST �1S/T �k (resp. T k.S2T �1/T �k).

(3) I?
k

is contained in the exterior of all the isometric spheres in S except I˙
k

, IC
kC1

,
I�

k�1
, I˘

k
and I˘

kC1
. Moreover , I?

k
\ I˘

k
(resp. I?

k
\ I˘

kC1
) is contained in the

interior of IC
k

(resp. I�
k

). I?
k
\ IC

kC1
is described in (1), and I?

k
\ I�

k�1
is

described in (2). When � D �
3

, I?
k

will be tangent with I?
kC1

(resp. I?
k�1

) on
@H2

C at the parabolic fixed point of T k.S2T �1/T �k (resp. T k.T �1S2/T �k).

(4) I˘
k

is contained in the exterior of all the isometric spheres in S except I˙
k

,
I˙

k�1
, I?

k
and I?

k�1
. Moreover , I˘

k
\ I?

k
and I˘

k
\ I?

k�1
are described in (3).

I˘
k
\ I�

k
is described in (2) and I˘

k
\ IC

k�1
is described in (1). When � D �

3
, I˘

k

will be tangent with I˘
kC1

(resp. I˘
k�1

) on @H2
C at the parabolic fixed point of

T k.T �1S2/T �k (resp. T k.S2T �1/T �k).

4.3 The Ford domain

Definition 4.12 Let D be the intersection of the closures of the exteriors of the
isometric spheres IC

k
, I�

k
, I?

k
and I˘

k
, for k 2 Z.

Definition 4.13 For k 2 Z, let sC
k

(resp. s�
k

, s?
k

and s˘
k

) be the side of D contained in
the isometric sphere IC

k
(resp. I�

k
, I?

k
and I˘

k
).

Definition 4.14 A ridge is defined to be the 2–dimensional connected intersections of
two sides.
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By Corollary 4.11, the ridges are sC
k
\ s�

k
, sC

k
\ s?

k
, sC

k
\ s�

k�1
, sC

k
\ s˘

k
, s�

k
\ s?

k
and

s�
k�1
\ s˘

k
for k 2 Z, and the sides and ridges are related as follows:

� The side sC
k

is bounded by the ridges sC
k
\ s�

k
, sC

k
\ s?

k
, sC

k
\ s�

k�1
and sC

k
\ s˘

k
.

� The side s�
k

is bounded by the ridges sC
k
\s�

k
, s�

k
\s?

k
, s�

k
\sC

kC1
and s�

0
\s˘

kC1
.

� The side s?
k

is bounded by the ridges sC
k
\ s?

k
and s�

k
\ s?

k
.

� The side s˘
k

is bounded by the ridges s˘
k
\ s�

k�1
and sC

k
\ s˘

k
.

Proposition 4.15 The ridges sC
k
\ s�

k
, sC

k
\ s?

k
, sC

k
\ s�

k�1
, sC

k
\ s˘

k
, s�

k
\ s?

k
and

s�
k�1
\ s˘

k
for k 2 Z are all topologically the union of two sectors.

Proof The ridge sC
k
\ s�

k
is contained in IC

k
\ I�

k
. According to Proposition 4.10,

IC
k
\I�

k
is topologically a disc and IC

k
\I�

k
\I?

k
is the union of two crossed geodesics.

The two crossed geodesics divide the disc into four sectors, one opposite pair of which
will lie in the interior of the isometric sphere I?

k
. Thus sC

k
\s�

k
is the other opposite pair

of the four sectors in the disc. More precisely, up to the powers of T , let us consider
sC
0
\ s�

0
. Let � be the disc IC

0
\I�

0
described in (4-13) and the two crossed geodesics

L1 [ C1 [ C2 be as described in Proposition 4.10. By Proposition 4.2, the complex
involution I2 preserves � and L1[ C1[ C2. Recall that I2 fixes the complex line C2

with polar vector n2 described in Section 3. One can compute that the intersection
C2\� is the curve

(4-16) C2\�D
˚
q
�
˛; 1

2
˛C �;

p
2

2

�
2 IC

0
W cos.˛/� 1

3

	
:

Of course C2 \� intersects with L1 [ C1 [ C2 at the fixed point of S , and divides
� into two parts. I2 fixes C2\� and interchanges L1 and C1[ C2. Thus C2\� is
contained in the union of two opposite sectors. By Lemma 4.4, C2 \� lies on the
closure of the exterior of I?

0
, since f ?

0
.˛; 1

2
˛C �;

p
2

2
/D 1� cos.˛/ � 0. Therefore,

the union of two opposite sectors containing C2\� is the ridge sC
0
\ s�

0
. Moreover,

this ridge is preserved by I2. By using the parametrization of the Giraud disk in [8],
we can draw the Giraud disk IC

0
\ I�

0
and the intersection with the isometric spheres

I�
�1

, I?
0

, I?
�1

, I˘
0

and I˘
1

; see Figure 4.

The other ridges can be described by a similar argument.

Proposition 4.16 (1) The side sC
k

(resp. s�
k

) is a topological solid cylinder in
H2

C [ @H
2
C . The intersection of @sC

k
(resp. @s�

k
) with H2

C is the disjoint union
of two topological discs.
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Figure 4: The ridge sC
0
\ s�

0
(the shaded region in the intersection of IC

0
\ I�

0
)

in the plane with spinal coordinates introduced in [8]. The triple intersection
IC

0
\I�

0
\I?

0
is the two mutually perpendicular lines. Compare to [8, Figure 16].

(2) The side s?
k

(resp. s˘
k

) is a topological solid light cone in H2
C [ @H

2
C . The

intersection of @s?
k

(resp. @s˘
k

) with H2
C is the light cone.

Proof (1) The side sC
k

is contained in the isometric sphere IC
k

. By Corollary 4.11,
sC
k

might intersect with the sides contained in the isometric spheres I�
k

, I�
k�1

, I?
k

,
I?

k�1
, I˘

k
and I˘

kC1
.

Let 41 be the union of the ridges sC
k
\ s�

k
and sC

k
\ s?

k
, and 42 be the union of the

ridges sC
k
\s�

k�1
and sC

k
\s˘

k
. By Proposition 4.10,41 contains the cross IC

k
\I�

k
\I?

k
.

By Proposition 4.15, 41 is a union of four sectors which are patched together along
the cross. Hence,41 is topologically either a disc or a light cone. By a straightforward
computation, the ideal boundary of 41 on H2

C is a simple closed curve on the ideal
boundary of IC

k
; see Figure 2. Thus 41 is a topological disc. By a similar argument,

42 is a topological disc.

If � ¤ �
3

then IC
k
\ I?

k
\ I�

k�1
D ∅, so 41 and 42 are disjoint, and if � D �

3
they

intersect at two points on @H2
C; see Figures 9 and 10. Note that isometric spheres are

topological balls and their pairwise intersections are connected. So, sC
k

is a topological
solid cylinder; see Figure 5. A similar argument describes s�

k
.

(2) The side s?
k

is contained in the isometric sphere I?
k

. According to Corollary 4.11,
s?
k

only intersects with sC
k

and s�
k

. Let 43 be the union of sC
k
\ s?

k
and s�

k
\ s?

k
. By
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Figure 5: A schematic view of the side sC
k

(s�
k

).

Propositions 4.10 and 4.15, 43 is a union of four sectors which are patched together
along the cross IC

k
\ I�

k
\ I?

k
. By a computation for the case k D 0, one can see that

the ideal boundary of 43 is a union of two disjoint simple closed curves in the ideal
boundary of I?

k
; see Figure 2. Thus 43 is a light cone. Hence, s?

k
is topologically a

solid light cone; see Figure 6. A similar argument describes s˘
k

.

By applying a Poincaré polyhedron theorem in H2
C as stated for example in [22], [8]

or [19] (see [3] for a version in the hyperbolic plane), we have our main result:

Theorem 4.17 Suppose that � 2
�
0; �

3

�
. Let D be as in Definition 4.12. Then D is a

fundamental domain for the cosets of hT i in � . Moreover , � is discrete and has the
presentation

� D hS;T j S4
D .T �1S/4 D idi:

Proof The sides of D are sC
k

s�
k

, s?
k

and s˘
k

. The ridges of D are sC
k
\ s�

k
, sC

k
\ s?

k
,

sC
k
\ s�

k�1
, sC

k
\ s˘

k
, s�

k
\ s?

k
and s�

k�1
\ s˘

k
. To obtain the side-pairing maps and ridge

cycles, by applying powers of T , it suffices to consider the case where k D 0.

The side-pairing maps The side sC
0

is contained in the isometric sphere I.S/ and
s�
0

in the isometric sphere I.S�1/. The ridge sC
0
\ s�

0
is contained in the disc

I.S/\ I.S�1/, which is defined by the triple equality

jhz; q1ij D jhz;S
�1.q1/ij D jhz;S.q1/ij

Figure 6: A schematic view of the side s?
k

(s˘
k

).
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sC
0
\ s�

0
sC

0
\ s�

0
sC

0
\ s?

0
s�

0
\ s?

0

Figure 7: A schematic view of the ridges sC
0
\ s�

0
, sC

0
\ s?

0
and s�

0
\ s?

0
.

The thick cross is the triple intersection IC0 \ I�0 \ I?0 , that is the union
L1[ C1[ C2 described in Proposition 4.10.

and the ridge s�
0
\ s?

0
is contained in the disc I.S�1/\ I.S2/, which is defined by

the triple equality

jhz; q1ij D jhz;S.q1/ij D jhz;S
�2.q1/ij:

Since S maps q1 to S.q1/, S�1.q1/ to q1 and S.q1/ to S2.q1/D S�2.q1/, S

maps the disc I.S/\ I.S�1/ to the disc I.S�1/\ I.S2/. Note that

I.S/\ I.S�1/\ I.S2/

is the union of two crossed geodesics (see Proposition 4.10) whose four rays are
cyclically permuted by S . Since the ridge sC

0
\ s�

0
lies in the closure of the exterior of

the isometric sphere I.S2/, according to (4-16), the point q
�
�
3
; �

6
C�;

p
2

2

�
is contained

in sC
0
\ s�

0
. One can easily verify that S

�
q
�
�
3
; �

6
C�;

p
2

2

��
lies in the exterior of I.S/.

Thus S
�
q
�
�
3
; �

6
C �;

p
2

2

��
is contained in s�

0
\ s?

0
, which lies in the closure of the

exterior of the isometric sphere I.S/.

Hence S maps the ridge sC
0
\ s�

0
to the ridge s�

0
\ s?

0
. Similarly, S maps sC

0
\ s?

0

to sC
0
\ s�

0
; see Figure 7. Since S maps IC

0
\ I�
�1
\ I˘

0
to I�

0
\ IC

1
\ I˘

1
, a similar

argument shows that S maps sC
0
\ s�
�1

to s�
0
\ s˘

1
and sC

0
\ s˘

0
to s�

0
\ sC

1
.

By a similar argument, s?
0

(resp. s˘
0

) is mapped to itself by the elliptic element of order
two S2 (resp. .T �1S/2 D .S�1T /2), which sends sC

0
\ s?

0
to s�

0
\ s?

0
(resp. s˘

0
\ s�
�1

to sC
0
\ s˘

0
) and vice versa.

Hence, the side-pairing maps are

T kST �k
W sC

k
! s�k ; T kS2T �k

W s?k ! s?k and T k.T �1S/2T �k
W s˘k ! s˘k :
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The cycle transformations According to the side-pairing maps, the ridge cycles are

.sC
k
\ s�k ; s

C

k
; s�k /

T kST �k

������! .s?k \ s�k ; s
?
k ; s
�
k /

T kS2T �k

�������! .sC
k
\ s?k ; s

C

k
; s?k /

T kST �k

������! .sC
k
\ s�k ; s

C

k
; s�k /

and

.sC
k
\ s�k�1; s

C

k
; s�k�1/

T k.T �1S/T �k

�����������! .s˘k \ s�k�1; s
˘
k ; s
�
k�1/

T k.T �1S/2T �k

�����������! .sC
k
\ s˘k ; s

C

k
; s˘k /

T k.T �1S/T �k

�����������! .sC
k
\ s�k�1; s

C

k
; s�k�1/:

Thus the cycle transformations are

T kST �k
�T kS2T �k

�T kST �k
D T kS4T �k

and

T k.T �1S/T �k
�T k.T �1S/2T �k

�T k.T �1S/T �k
D T k.T �1S/4T �k ;

which are equal to the identity map, since S4 D id and .T �1S/4 D id.

The local tessellation There are exactly two copies of D along each side, since the
sides are contained in isometric spheres and the side-pairing maps send the exteriors to
the interiors. Thus there is nothing to verify for the points in the interior of every side.

According to the ridge cycles and cycle transformations, there are exactly three copies
of D along each ridge.

sC
k

\ s�
k

, s?
k

\ s�
k

and sC
k

\ s?
k

These three ridges are in one cycle. Thus, we only
need to consider the ridge sC

k
\ s�

k
. Since the cycle transformation of sC

k
\ s�

k
is

T kST �k
�T kS2T �k

�T kST �k
D id;

the three copies of D along sC
k
\ s�

k
are D, T kS�1T �k.D/ and T kST �k.D/. We

know that sC
k
\ s�

k
is contained in I.T kST �k/\ I.T kS�1T �k/, which is defined

by the triple equality

jhz; q1ij D jhz;T
kS�1T �k.q1/ij D jhz;T

kST �k.q1/ij:

For z in the neighborhoods of sC
k
\ s�

k
in D, jhz; q1ij is the smallest of the three

quantities in the above triple equality.

For z in the neighborhoods of s?
k
\ s�

k
in D, jhz; q1ij is at most jhz;T kST �k.q1/ij

or jhz;T kS�2T �k.q1/ij. Applying T kS�1T �k gives a neighborhood of sC
k
\ s�

k
in
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T kS�1T �k.D/, where jhz;T kS�1T �k.q1/ij is the smallest of the three quantities
in the above triple equality.

For z in the neighborhoods of sC
k
\s?

k
in D, jhz; q1ij is at most jhz;T kS�1T �k.q1/ij

or jhz;T kS�2T �k.q1/ij. Applying T kST �k gives a neighborhood of sC
k
\ s�

k
in

T kST �k.D/, where jhz;T kST �k.q1/ij is the smallest of the three quantities in the
above triple equality.

Thus the union of D, T kS�1T �k.D/ and T kST �k.D/ forms a regular neighborhood
of each point in sC

k
\ s�

k
.

sC
k

\s�
k�1

, s˘
k

\s�
k�1

and sC
k

\s˘
k

We need only consider the ridge sC
k
\s�

k�1
. Since

the cycle transformation of sC
k
\ s�

k�1
is

T k.T �1S/T �k
�T k.T �1S/2T �k

�T k.T �1S/T �k
D id;

the union of D, T k.T �1S/�1T �k.D/ and T k.T �1S/T �k.D/ forms a regular neigh-
borhood of each point in sC

k
\ s�

k�1
by a similar argument as in the previous case.

Consistent system of horoballs When � D �
3

, there are accidental ideal vertices on D.
The sides s?

k
and s?

kC1
will be asymptotic on @H2

C at the fixed point of the parabolic
element T k.S2T �1/T �k , and the sides s˘

k
and s˘

kC1
will be asymptotic on @H2

C at
the fixed point of the parabolic element T k.ST �1S/T �k . To show that there is a
consistent system of horoballs it suffices to show that all the cycle transformations
fixing a given cusp are nonloxodromic.

Let p2 be the fixed point of T �1S2 and q2 be the fixed point of .T �1S/2T (the
coordinates of p2 and q2 are given in Definition 5.1, or see Figure 9). Then all the
accidental ideal vertices fT k.p2/g and fT k.q2/g are related by the side-pairing maps
as follows:

// T �1.q2/

��

// q2

T �1ST

��

.S�1T /2
// T .q2/

S

��

// T 2.q2/

��

//

// T �1.p2/

99

// p2

S
::

S2
// T .p2/

88

// T 2.p2/ //

Thus, up to powers of T , all the cycle transformations are S �S �S�2 D id and

T �1ST � .S�1T /�2
�S D .T �1S2/2 D .I1I3I2I3/

2;

which is parabolic. This means that p2 is fixed by the parabolic element .T �1S2/2.
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Therefore, D is a fundamental domain for the cosets of hT i in � . The side-pairing
maps and T will generate the group � . The reflection relations are

.T kS2T �k/2 D id and .T k.T �1S/2T �k/2 D id:

The cycle relations are

T kS4T �k
D id and T k.T �1S/4T �k

D id:

Thus � is discrete and has the presentation

� D hS;T j S4
D .T �1S/4 D idi:

Since � is a subgroup of hI1; I2; I3i of index 2:

Corollary 4.18 Let hI1; I2; I3i be a complex hyperbolic .4; 4;1/ triangle group as
in Proposition 3.1. Then hI1; I2; I3i is discrete and faithful if and only if I1I3I2I3 is
nonelliptic.

This answers Conjecture 1.1 on the complex hyperbolic .4; 4;1/ triangle group.

5 The manifold at infinity

In this section, we study the group � in the case when � D �
3

. That is, the group
� D hS;T i D hI2I3; I2I1i with T �1S2 D I1I3I2I3 being parabolic.

In this case, the Ford domain D has additional ideal vertices on @H2
C , which are

parabolic fixed points corresponding to the conjugators of T �1S2. By intersecting a
fundamental domain for hT i acting on @H2

C with the ideal boundary of D, we obtain
a fundamental domain for � acting on its discontinuity region �.�/.

Topologically, this fundamental domain is the product of an unknotted cylinder and a
ray; see Proposition 5.13. By cutting and gluing we obtain two polyhedra PC and P�;
see Proposition 5.18. Gluing P� to PC by S�1, we obtain a polyhedron P . By studying
the combinatorial properties of P , we show that the quotient�.�/=� is homeomorphic
to the two-cusped hyperbolic 3–manifold s782.

Let U be the ideal boundary of D on @H2
C . Let QsC

k
(resp. Qs�

k
, Qs?

k
, and Qs˘

k
) be the ideal

boundary of the side of D contained in the ideal boundary of the isometric sphere IC
k

(resp. I�
k

, I?
k

and I˘
k

). Then the union of all the sides fQsC
k
g, fQs�

k
g, fQs?

k
g and fQs˘

k
g for

k 2 Z form the boundary of U .
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5.1 The vertices of U

Definition 5.1 In the Heisenberg coordinates we define the points

q2D
�

1
2
.�3Ci

p
3/;�
p

3
�
; p6D

�
1
6
.2�
p

6Ci.2
p

3C
p

2//;�4
3

p
2
�
;

q3D
�

1
2
.1Ci

p
3/;
p

3
�
; p7D

�
1
6
.2C
p

6Ci.2
p

3�
p

2//; 4
3

p
2
�
;

p2D
�

1
2
.�1Ci

p
3/;�
p

3
�
; p8D

�
1
6
.�2C

p
6Ci.2

p
3C
p

2//; 4
3

p
2
�
;

p3D
�

1
2
.3Ci

p
3/;
p

3
�
; p9D

�
1
6
.�2�

p
6Ci.2

p
3�
p

2//;�4
3

p
2
�
;

p4D
�

1
6
.4C
p

6Ci.4
p

3�
p

2//; 0
�
; p10D

�
1
6
.�4C

p
6Ci.4

p
3C
p

2//; 0
�
;

p5D
�

1
6
.4�
p

6Ci.4
p

3C
p

2//; 0
�
; p11D

�
1
6
.�4�

p
6Ci.4

p
3�
p

2//; 0
�
;

and
p12 D T .p9/; p13 D T .p8/; p14 D T .p11/; p15 D T .p10/:

By Proposition 4.10 and Corollary 4.11, we have the following:

Proposition 5.2 The points in Definition 5.1 satisfy:

� p4, p5, p6 and p7 are the four points on the ideal boundary of IC
0
\ I�

0
\ I?

0
,

which is described in Proposition 4.10.

� p8, p9, p10 and p11 are the four points on the ideal boundary of IC
0
\I�
�1
\I˘

0
.

� p12, p13, p14 and p15 are the four points on the ideal boundary of IC
1
\I�

0
\I˘

1
.

� p2 (resp. p3) is the parabolic fixed point of T �1S2 (resp. S2T �1), which is the
intersection IC

0
\ I�
�1
\ I?

0
\ I?
�1

(resp. IC
1
\ I�

0
\ I?

0
\ I?

1
).

� q3 (resp. q2) is the parabolic fixed point of ST �1S (resp. T �1ST �1ST ),
which is the intersection of the four isometric spheres IC

0
\ I�

0
\ I˘

0
\ I˘

1
(resp.

IC
�1
\ I�
�1
\ I˘

0
\ I˘
�1

).

Proof As described in Proposition 4.10, all of the triple intersections IC
0
\ I�

0
\ I?

0
,

IC
0
\I�
�1
\I˘

0
and IC

1
\I�

0
\I˘

1
have exactly four points lying on @H2

C . When writing
the standard lifts of p4, p5, p6 and p7, one can see that they are the four points in the
proof of Proposition 4.10. Thus the first item is proved.

By Proposition 4.2, the four points of IC
0
\I�
�1
\I˘

0
are the images of p4, p5, p6 and

p7 under the antiholomorphic involution � , which are p11, p10, p8 and p9.

The second item and the fact that IC
1
\ I�

0
\ I˘

1
D T .IC

0
\ I�
�1
\ I˘

0
/ imply the

third item.
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3

2

1

0

�1:5 �1 �0:5 0 0:5 1 1:5

ˇ

˛

p9

p2

p6

p11

p10

p5

p4

p8

q3

p7

Figure 8: Intersections of the isometric spheres I�
0

, I�
�1

, I�
0

, I�
�1

, I˘
0

and I˘
1

with IC
0

in @H2
C , viewed in geographical coordinates. Here ˛ 2

�
�
�
2
; �

2

�
in

the vertical coordinate and ˇ 2 Œ0; �� in the horizontal one. The region exterior
to the six Jordan closed curves has two connect components. One of them is
the topological octagon with vertices p2, p6, p4, p7, q3, p8, p11 and p9. The
other one is a topological quadrilateral with vertices p2, p5, q3 and p10.

We will only prove the statement for p2 in the last two items; the others follow by
similar arguments. By Lemma 4.8, p2 is the parabolic fixed point of T �1S2 and is the
triple intersection IC

0
\I�
�1
\I?

0
. By Corollary 4.11(3), I?

0
is tangent with I?

�1
at p2.

5.2 The sides of U

Now we study the combinatorial properties of the sides; see Figures 8 and 9.

Proposition 5.3 The interior of the side QsC
0

has connected components

� an octagon , denoted by OC
0

, with vertices p2, p6, p4, p7, q3, p8, p11 and p9,

� a quadrilateral , denoted by QC
0

, with vertices p2, p5, q3 and p10.

Algebraic & Geometric Topology, Volume 23 (2023)



4174 Yueping Jiang, Jieyan Wang and Baohua Xie

Proof By Proposition 4.16, when � < �
3

, the side QsC
0

is topologically an annulus
bounded by two disjoint simple closed curves which are the union of the ideal boundaries
of the ridges sC

0
\ s�
�1

and sC
0
\ s˘

0
, respectively sC

0
\ s�

0
and sC

0
\ s?

0
. When � D �

3
,

these two curves intersect at two points, which divide QsC
0

into two parts. That is to say
the interior of the side QsC

0
has two connected components.

By Proposition 5.2, the ideal boundary of the ridge sC
0
\ s�
�1

(resp. sC
0
\ s˘

0
) is a union

of two disjoint Jordan arcs Œp9;p10� and Œp8;p11� (resp. Œp10;p8� and Œp11;p9�), and
the ideal boundary of the ridge sC

0
\s�

0
(resp. sC

0
\s?

0
) is a union of two disjoint Jordan

arcs Œp5;p7� and Œp4;p6� (resp. Œp7;p4� and Œp6;p5�). Since p2 is the intersection of
four isometric spheres IC

0
\I�
�1
\I?

0
\I?
�1

, it lies on Œp9;p10� and Œp6;p5�. Similarly,
q3 lies on Œp5;p7� and Œp10;p8�.

By Proposition 4.2, the antiholomorphic involution � preserves QsC
0

and interchanges its
boundaries. It is easy to check that � interchanges p2 and q3, p5 and p10, p4 and p11,
p6 and p8, and p7 and p9. Thus one part of QsC

0
is a quadrilateral with vertices p2, p5,

q3 and p10, denoted by OC
0

. The other is an octagon with vertices p2, p6, p4, p7, q3,
p8, p11 and p9, denoted by QC

0
. Both of them are preserved by � .

According to the symmetry I2 in Proposition 4.2, which interchanges IC
0

and I�
0

:

Proposition 5.4 The interior of the side Qs�
0

has connected components

� an octagon , denoted by O�
0

, with vertices p5, p6, p4, p3, p15, p13, p14 and q3,

� a quadrilateral , denoted by Q�
0

, with vertices p3, p7, q3 and p12.

Proof Note that side s�
0

is bounded by the ridges s�
0
\sC

1
, s�

0
\s˘

1
, s�

0
\sC

0
and s�

0
\s?

0
.

By Proposition 4.2, the side s�
0

is isometric to sC
0

under the complex involution I2.
Thus its ideal boundary Qs�

0
will be also isometric to QsC

0
. This implies that Qs�

0
has the

same combinatorial properties as QsC
0

. One can check that

I2 W .q3;p5;p2;p10;p8;p11;p9;p6/$ .q3;p7;p3;p12;p14;p13;p15;p4/:

Thus one part of Qs�
0

is an octagon, denoted by O�
0

, whose vertices are p5, p6, p4, p3,
p15, p13, p14 and q3. The other is a quadrilateral, denoted by Q�

0
, whose vertices are

p3, p7, q3 and p12; see Figure 9.

Remark 5.5 The vertex q3 lies on the C–circle associated to I2, that is, the ideal
boundary of the complex line fixed by I2. One can also observe that p2 is fixed by I1.
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T

q2

p9

p11 p8
p10

q3

p12

p14 p13
p15

p2

p5

p6

v0

p4

p7 p3

q2 p11 p8

p10

q3 p14 p13

p15

OC
0

O�0QC
0

Q�0

.T1/
?
0 .T2/

?
0

.T1/
˘
0

.T2/
˘
0

OC
�1

O�
�1QC

�1

v�1

Q�
�1

.T1/
?
�1 .T2/

?
�1

.T1/
˘
�1

.T2/
˘
�1

c�1 c0

Figure 9: A combinatorial picture of @U . The top and bottom curves are
identified. O˙

0
(resp. O˙

�1
) is divided by c0 (resp. c�1) into a quadrilateral

Q0˙0 (resp. Q0˙�1) and a heptagon H˙
0

(resp. H˙
�1

), v0 is the intersection of c0

with the arc Œp4;p6� and v�1 is the intersection of c�1 with the arc
ŒT �1.p4/;T

�1.p6/�.

Proposition 5.6 The interior of side Qs?
0

is a union of two disjoint triangles , denoted by
.T1/

?
0

and .T2/
?
0

, whose vertices are p2, p5 and p6 and p3, p4 and p7, respectively.

Proof By Proposition 4.16, the side Qs?
0

is the union of two disjoint discs, which are
bounded by the ideal boundary of the ridges sC

0
\ s?

0
and s�

0
\ s?

0
.

As stated in Proposition 5.2, the ideal boundary of IC
0
\ I�

0
\ I?

0
contains the four

points p4, p5, p6 and p7. Thus Qs?
0

is the union of two disjoint bigons, one with vertices
p5 and p6, and the other with p4 and p7. Proposition 5.2 also tells us that p2 and p3

lie on different components of the boundaries of the two bigons.

Therefore, both of the components are triangles, denoted by .T1/
?
0

and .T2/
?
0

, whose
vertices are p2, p5 and p6 and p3, p4 and p7, respectively.

According to the symmetry � in Proposition 4.2, the side Qs˘
0

has the same topological
properties as the side Qs?

0
. Thus by a similar argument:

Proposition 5.7 The interior of side Qs˘
0

is a union of two disjoint triangles , denoted by
.T1/

˘
0

and .T2/
˘
0

, whose vectors are q2, p9 and p11, and q3, p8 and p10, respectively.

5.3 A fundamental domain for the subgroup hT i

Proposition 5.8 Let LD
˚�

xC i
p

3
2
;
p

3x
�
2N W x 2R

	
. Then L is a T –invariant

R–circle. Furthermore , L is contained in the complement of D.
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I˘
�1

LI�
�1

I�
0

I?
0

I?�

IC
0

IC
�1

IC
1

Figure 10: A realistic picture of the ideal boundaries of the isometric spheres.
IC

0
, IC

1
and IC

�1
(red), I�

0
and I�

�1
(blue), I?

0
and I?

�1
(pink), I˘

0
, I˘
�1

and
I˘

1
(yellow). The line L is the T –invariant R–circle.

Proof It is obvious that L is an R–circle, since it is the image of the x–axis of N by
a Heisenberg translation along the y–axis. For any point

�
xC i

p
3

2
;
p

3x
�
2 L, we

have T
��

xC i
p

3
2
;
p

3x
��
D
�
.xC 2/C i

p
3

2
;
p

3.xC 2/
�
, which lies in L. Thus L is

a T –invariant R–circle; see Figure 10.

Note that T acts on L as a translation through 2. To show L is contained in the
complement of D, it suffices to show that a segment with length 2 is contained in
the interior of some isometric spheres. By considering the Cygan distance between a
point in L and the center of an isometric sphere, one can compute that the segments˚�

xCi
p

3
2
;
p

3x
�
W �

1
2
� x� 1

2

	
and

˚�
xCi

p
3

2
;
p

3x
�
W

1
2
� x� 3

2

	
lie in the interiors

of IC
0

and I�
0

, respectively.

Definition 5.9 Let

†�1 D
˚�
�

3
2
C iy; t

�
2N W y; t 2R

	
and †0 D

˚�
1
2
C iy; t

�
2N W y; t 2R

	
be two planes in the Heisenberg group.

In fact, the vertical planes †�1 and †0 are boundaries of fans in the sense of [14]. Let
DT be the region between †�1 and †0, that is

DT D
˚
ŒxC iy; t � 2N W �3

2
� x � 1

2

	
:

It is clear that†0DT .†�1/. Thus DT is a fundamental domain for hT i acting on @H2
C .
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†0\ IC
0

†0\ I�0

†0\ I?
0

cC
0

c�
0

q3

v0

Figure 11: The intersection of †0 with IC
0

, I�
0

and I?
0

viewed in †0. Here
c0 D cC0 [ c�0 is a simple closed curve, where cC0 and c�0 are the solid line
parts of †0\ IC0 and †0\ I�0 , respectively.

Proposition 5.10 The intersections of †0 and †�1 with the isometric spheres I˙
k

,
I?

k
and I˘

k
are empty, except :

� †0\ I˙
0

and †0\ I?
0

are circles , and †0\ I˘
0
D†0\ I˘

1
D fq3g.

� †�1\ I˙
�1

and †�1\ I?
�1

are circles , and †�1\ I˘
�1
D†�1\ I˘

0
D fq2g.

Proof Since the isometric spheres are strictly convex, their intersections with a plane
are either a topological circle, a point or empty. Note that †0 D T .†�1/. Thus it
suffices to consider the intersections of †0 with the isometric spheres. By a strait
computation, each one of †0\ I˙

0
and †0\ I?

0
is a circle; see Figure 11.

Lemma 5.11 The plane †0 (resp. †�1) is preserved by I2 (resp. T �1I2T ). The
intersection †0\ @U (resp. †�1\ @U ) is a simple closed curve c0 (resp. c�1) in the
union QsC

0
[Qs�

0
(resp. QsC

�1
[Qs�
�1

), which contains the points q3 and v0D
�

1
2
Ci
p

3
2
;�
p

3
�

(resp. q2 and v�1 D T �1.v0/).

Proof It suffices to consider †0. The C–circle associated to I2, that is, the ideal
boundary of the complex line fixed by I2, is

˚�
1
2
C i
p

3
2
; t
�
2 N W t 2 R

	
, which is

contained in †0. Thus †0 is preserved by I2.

It is obvious that †0 contains q3, which is the tangent point of I˘
0

and I˘
1

. The
intersections †0\ IC

0
, †0\ I�

0
and †0\ I?

0
are circles by Proposition 5.10. One can

compute that the intersection †0\ IC
0
\ I�

0
contains q3, and v0 D

�
1
2
C i
p

3
2
;�
p

3
�
;

see Figure 11. These two points divide the circles on IC
0

and I�
0

into two arcs. Let cC
0
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be the arc with endpoints q3 and v0 on IC
0

lying in the exterior of I�
0

and c�
0

be the
one on I�

0
lying in the exterior of IC

0
. Then c0 D cC

0
[ c�

0
is a simple closed curve.

Observe that †0\ I?
0

lies in the union of the interiors of IC
0

and I�
0

. Thus †0 does
not intersect Qs?

0
. By Proposition 5.10, cC

0
lies on QsC

0
and c�

0
lies on Qs�

0
. Therefore, the

intersection †0\ @U is c0, which is a simple closed curve containing q3 and v0.

5.4 The topology of U

Proposition 5.12 Let U c be the closure of the complement of U in N . Then the
closure of the intersection U c \DT is a solid tube homeomorphic to a 3–ball.

Proof It suffices to show that the boundary of U c \DT is a 2–sphere. Now let us
consider the cell structure of U c \DT ; see Figure 9. According to Lemma 5.11, the
intersection of U c with †0 (resp. †�1) is a topological disc with two vertices, q3 and
v0 (resp. q2 and v�1), and two edges, c˙

0
(resp. c˙

�1
). Also, c0 (resp. c�1) divides O˙

0

(resp. O˙
�1

) into a quadrilateral Q0˙0 (resp. Q0˙�1) and a heptagon H˙
0

(resp. H˙
�1

).

Since p2, p5 and T �1.p4/ are contained in DT , one can see that DT contains Q0�0 ,
Q0C�1, HC

0
and H�

�1
. Besides, DT contains QC

0
, Q�
�1

, .T1/
˘
0

, .T2/
˘
0

, .T1/
?
0

and .T2/
?
�1

.
Thus the boundary of U c \DT consists of 12 faces, 23 edges and 13 vertices; see
the region between c0 and c�1 in Figure 9. Therefore the Euler characteristic of the
boundary of U c \DT is 2. So the boundary of U c \DT is a 2–sphere.

Propositions 5.8 and 5.12 imply the following result:

Proposition 5.13 U \DT is the product of an unknotted cylinder with a ray, which is
homeomorphic to S1 � Œ0; 1��R�0.

Proof As stated in Proposition 5.8, U c contains the line L. Thus U c\DT is a tubular
neighborhood of L\DT . It cannot be knotted. Therefore @U \DT is an unknotted
cylinder homeomorphic to S1�Œ0; 1�. One can see that U \†0 is the product of c0 with
a ray, and U \†�1 is the product of c�1 with a ray. Both of them are homeomorphic
to S1�R�0. Hence U \DT is the product of an unknotted cylinder with a ray, and is
homeomorphic to S1 � Œ0; 1��R�0.

Applying powers of T , Proposition 5.13 immediately implies the following corollary:

Corollary 5.14 U is the product of an unknotted cylinder with a ray homeomorphic
to S1 �R�R�0.
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Remark 5.15 U is the complement of a tubular neighborhood of the T –invariant
R–circle L, that is, a horotube for T . (See [28] for the definition of a horotube.)

5.5 The manifold

Definition 5.16 Suppose that the cylinder S1� Œ0; 1� has a combinatorial cell structure
with finite faces fFig. A canonical subdivision on S1� Œ0; 1��R�0 is a finite union of
3–dimensional pieces f yFig where yFi D Fi �R�0.

Proposition 5.17 There is a canonical subdivision on U \DT .

Proof As described in the proof of Proposition 5.12, the combinatorial cell structure
of @U \DT has 10 faces, Q0�0 , Q0C�1, HC

0
, H�
�1

, QC
0

, Q�
�1

, .T1/
˘
0

, .T2/
˘
0

, .T1/
?
0

and
.T2/

?
�1

. By Proposition 5.13, U \DT is the union of 3–dimensional pieces yQ0�
0

,
yQ0C
�1

, yHC
0

, yH�
�1

, yQC
0

, yQ�
�1

, .yT1/
˘
0

, .yT2/
˘
0

, .yT1/
?
0

and .yT2/
?
�1

. Combinatorially, these
3–dimensional pieces are the cone from q1 to the faces of @U \DT .

Let �.�/ be the discontinuity region of � acting on @H2
C . Then U \DT is obviously

a fundamental domain for � . By cutting and gluing, we can obtain the following
fundamental domain for � acting on �.�/:

Proposition 5.18 Let PC be the union of yHC
0

, .yT1/
˘
0

, .yT2/
˘
0

, T .yQ0C
�1
/, T .yQ�

�1
/ and

T ..yT2/
?
�1
/. Let P� be the union of yQC

0
, .yT1/

?
0

, yQ0�
0

and T .yH�
�1
/. Then PC[P� is a

fundamental domain for � acting on�.�/. Moreover , PC (resp. P�) is combinatorially
an eleven-pyramid (resp. nine-pyramid ) with cone vertex q1 and base

OC
0
[Q�0 [ .T1/

˘
0 [ .T2/

˘
0 [ .T2/

?
0 (resp. O�0 [QC

0
[ .T1/

?
0)/:

Proof Since †0D T .†�1/ and c0D T .c�1/, U \DT and T .U \DT / can be glued
together along c0 �R�0. Note that U \DT is a fundamental domain for � acting on
�.�/ and has a subdivision as described in Proposition 5.17. Therefore PC[P� is
also a fundamental domain.

As described in Proposition 5.12, c0 (resp. c�1) divides O˙
0

(resp. O˙
�1

) into a quadri-
lateral Q0˙0 (resp. Q0˙�1) and a heptagon H˙

0
(resp. H˙

�1
). Note that O˙

0
DT .O˙

�1
/ and

.T2/
?
0
DT ..T2/

?
�1
/. Thus the base of PC (resp. P�) is OC

0
[Q�

0
[.T1/

˘
0
[.T2/

˘
0
[.T2/

?
0

(resp. O�
0
[QC

0
[ .T1/

?
0

), which is combinatorially a hendecagon (resp. an enneagon);
see Figures 9 and 12.
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p11

p8

q3

p7

p4p6

p2

p9

p5

q3

p14
p13

p15

p3

q2 p10

p12

p10

Figure 12: A schematic view of the fundamental domain of � on�.�/. The red
vertices are the parabolic fixed points. The yellow polygon is O�

0
[QC

0
[ .T1/

?
0

.

Definition 5.19 Let p0
2
D S�1.p2/, p1 D S�1.q1/D Œ0; 0� and p0

10
D S�1.p10/.

Lemma 5.20 Let P be the union PC [ S�1.P�1/. Then P is combinatorially a
polyhedron with 8 triangular faces , 4 square faces , 2 pentagonal faces and 2 hexagonal
faces. The faces of P are paired as

T W .q1;p2;p9; q2/ 7! .q1;p3;p12; q3/;

S�1T W .q1; q2;p11;p8;p10/ 7! .p1;p2;p9;p11;p8/;

(S�1T /2 W .q2;p9;p11/ 7! .q3;p8;p10/;

S�1
W .q1;p10; q3/ 7! .p1;p

0
10;p2/;

S�1T �1S W .p1;p8; q3/ 7! .p1;p
0
10;p

0
2/;

S�2
W .q3;p12;p3;p7/ 7! .p02;p

0
10;p2;p6/;

S�1
W .q1;p2;p6;p

0
2;p4;p3/ 7! .p1;p

0
2;p4;p3;p7; q3/;

S�1
W .p6;p

0
2;p4/ 7! .p4;p3;p7/:
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p11 p8

q3

p7

p4p6

p2

p9

p12

p3

q2

p02
p010

p1

p10

Figure 13: The combinatorial picture of P . The red vertices of P are the
parabolic fixed points.

Proof The bases of PC and P�1 are paired as

S WQC
0
!Q�0 ; .p2;p5; q3;p10/ 7! .q3;p7;p3;p12/;

S2
W .T1/

?
0! .T2/

?
0 ; .p2;p5;p6/ 7! .p3;p4;p7/;

.S�1T /2 W .T1/
˘
0 ! .T2/

˘
0 ; .q2;p9;p11/ 7! .q3;p8;p10/;

and

S�1
WO�0 !OC

0
; .p3;p4;p6;p5;q3;q14;p13;p15/ 7! .q3;p7;p4;p6;p2;p9;p11;p8/:

Thus S�1.P�1/ and PC are glued along OC
0

. According to Lemma 2.9, S�1.P�1/ lies
in the interior of IC

0
, since P�1 lies in the exterior of IC

0
. Moreover, p1DS�1.q1/D

Œ0; 0� is the center of the isometric sphere IC
0

; see Figure 13.

Proposition 5.21 Let � be the discontinuity region of � acting on H2
C . Then the

fundamental group of �=� has a presentation

hu; v; w j w�1vu�1v�1wuD v2wuw�3uD idi:
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Proof Let xi for i D 1; 2; 3; 4; 5; 6; 7; 8 be the corresponding gluing maps of P given
in Lemma 5.20. These are the generators of the fundamental group of �=� .

By considering the edge cycles of P under the gluing maps, we have the relations

x�1
7 �x5 �x7 �x1 D id; x�1

2 �x4 �x1 D id; x2 �x
�1
3 �x

�1
4 �x6 �x1 D id;

x�1
3 �x

�1
5 �x6 �x1 D id; x2 �x3 �x2 D id; x�1

4 �x5 �x2 D id;

x7 �x8 �x6 D id; x8 �x7 �x6 D id; x�1
8 �x7 D id:

For example, the edge cycle of Œq1;p2� is

Œq1;p2�
x1
�! Œq1;p3�

x7
�! Œp1; q3�

x5
�! Œp1;p

0
2�

x�1
7
���! Œq1;p2�:

Thus
x�1

7 �x5 �x7 �x1 D id:

This is the first relation. The others can be given by a similar argument.

Simplifying the relations and setting u D x1, v D x2 and w D x7, we obtain the
presentation of the fundamental group of �=� .

Now we are ready to show the following theorem:

Theorem 5.22 Let � be the discontinuity region of � acting on H2
C . Then the

quotient space �=� is homeomorphic to the two-cusped hyperbolic 3–manifold s782

in the SnapPy census.

Proof Let M D�=� . According to Proposition 5.21, the fundamental group of M

has a presentation

�1.M /D hu; v; w j w�1vu�1v�1wuD v2wuw�3uD idi:

The manifold s782 is a two-cusped hyperbolic 3–manifold with finite volume. Its
fundamental group, provided by SnapPy, has a presentation

�1.s782/D ha; b; c j a
2cb4c D abca�1b�1c�1

D idi:

Using Magma, we get an isomorphism ‰ W �1.M /! �1.s782/ given by

‰.u/D c�1b�1; ‰.v/D b�1 and ‰.w/D a:

Therefore M will be the connected sum of s782 and a closed 3–manifold with trivial
fundamental group by the prime decompositions of 3–manifolds [15]. The solution of
the Poincaré conjecture implies that the closed 3–manifold is the 3–sphere. Thus M is
homeomorphic to s782.
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