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Associated to every closed, embedded submanifold N in a connected Riemannian
manifold M, there is the distance function dN which measures the distance of a point
in M from N. We analyze the square of this function and show that it is Morse–Bott
on the complement of the cut locus Cu.N / of N provided M is complete. Moreover,
the gradient flow lines provide a deformation retraction of M � Cu.N / to N. If
M is a closed manifold, then we prove that the Thom space of the normal bundle
of N is homeomorphic to M=Cu.N /. We also discuss several interesting results
which are either applications of these or related observations regarding the theory of
cut locus. These results include, but are not limited to, a computation of the local
homology of singular matrices, a classification of the homotopy type of the cut locus
of a homology sphere inside a sphere, a deformation of the indefinite unitary group
U.p; q/ to U.p/�U.q/ and a geometric deformation of GL.n;R/ to O.n;R/ which
is different from the Gram–Schmidt retraction.
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1 Introduction

On a Riemannian manifold M, the distance function dN . � / WD d.N; � / from a closed
subsetN is fundamental in the study of variational problems. For instance, the viscosity
solution of the Hamilton–Jacobi equation is given by the flow of the gradient vector
of the distance function dN when N is the smooth boundary of a relatively compact
domain in manifolds; see Li and Nirenberg [17] and Mantegazza and Mennucci [18].
Although the distance function dN is not differentiable at N, squaring the function
removes this issue. Associated to N and the distance function dN is a set Cu.N /, the
cut locus of N in M. The cut locus of a point, a notion initiated by Poincaré [23],
has been extensively studied (see Kobayashi [16] for a survey as well as Buchner [4],
Myers [20], Sakai [26] and Wolter [29]). There has been work on the structure of
the cut locus of submanifolds. One may refer to the works of Hebda [9; 10], Sabau
and Tanaka [25] and Singh [28]. Suitable simple examples indicate that M �Cu.N /
topologically deforms to N. One of our main results is the following:

Theorem A (Theorem 3.32) Let N be a closed embedded submanifold of a complete
Riemannian manifold M and dN WM !R denote the distance function with respect
to N . If f D d2N , then its restriction to M �Cu.N / is a Morse–Bott function , with N
as the critical submanifold. Moreover , M �Cu.N / deforms to N via the gradient flow
of f.

It is observed that this deformation takes infinite time. To obtain a strong deformation
retract, one reparametrizes the flow lines to be defined over Œ0; 1�. It can be shown
(Lemma 3.18) that the cut locus Cu.N / is a strong deformation retract of M �N. A
primary motivation for Theorem A came from understanding the cut locus of N D
O.n;R/ inside M D M.n;R/, equipped with the Euclidean metric. We show in
Section 2.2 that the cut locus is the set Sing of singular matrices and the deformation
of its complement is not the Gram–Schmidt deformation but rather the deformation

obtained from the polar decomposition, ie A 2 GL.n;R/ deforms to A
p
ATA

�1
.

Combining this with a result of Hebda [9, Theorem 1.4], we are able to compute the
local homology of Sing (see Lemma 2.15 and Corollary 2.16).

Theorem B For A 2M.n;R/,

Hn2�1�i .Sing;Sing�A/Š zH i .O.n� k;R//;

where A 2 Sing has rank k < n.
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When the cut locus is empty, we deduce thatM is diffeomorphic to the normal bundle �
ofN inM. In particular,M deforms toN. Among applications, we discuss two families
of examples. We reprove the known fact that GL.n;R/ deforms to O.n;R/ for any
choice of left-invariant metric on GL.n;R/ which is right-O.n;R/–invariant. However,
this deformation is not obtained topologically but by Morse–Bott flows. For a natural
choice of such a metric, this deformation (4-2) is not the Gram–Schmidt deformation
but one obtained from the polar decomposition. We also consider U.p; q/, the group
preserving the indefinite form of signature .p; q/ on Cn. We show (Theorem 4.6)
that U.p; q/ deforms to U.p/�U.q/ for the left-invariant metric given by hX; Y i WD
tr.X�Y /. In particular, we show that the exponential map is surjective for U.p; q/
(Corollary 4.8). To our knowledge, this method is different from the standard proof.

For a Riemannian manifold we have the exponential map at p 2M, expp W TpM !M.
Let � denote the normal bundle of N in M. We will modify the exponential map
(see Section 3.2) to define the rescaled exponential eexp W D.�/ ! M, the domain
of which is the unit disk bundle of �. The main result (Theorem 3.16) here is the
observation that there is a connection between the cut locus Cu.N / and Thom space
Th.�/ WDD.�/=S.�/ of �.

Theorem C Let N be an embedded submanifold inside a closed , connected Rie-
mannian manifold M. If � denotes the normal bundle of N in M, then there is a
homeomorphism

eexp WD.�/=S.�/ Š�!M=Cu.N /:

This immediately leads to a long exact sequence in homology (see (3-6))

� � � !Hj .Cu.N // i�
�!Hj .M/

q
�! zHj .Th.�// @

�!Hj�1.Cu.N //! � � � :

This is a useful tool in characterizing the homotopy type of the cut locus. We list a few
applications and related results.

Theorem D Let N be a homology k–sphere embedded in a Riemannian manifold
M d homeomorphic to Sd .

(1) If d � k C 3, then Cu.N / is homotopy equivalent to Sd�k�1. Moreover , if
M and N are real analytic and the embedding is real analytic , then Cu.N / is a
simplicial complex of dimension at most d � 1.

(2) If d D k C 2, then Cu.N / has the homology of S1. There exist homology
3–spheres in S5 for which Cu.N /' S1. However , for nontrivial knots K in S3,
the cut locus is not homotopy equivalent to S1.

Algebraic & Geometric Topology, Volume 23 (2023)
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The above results are a combination of Theorems 3.24 and 3.9 and Example 3.29. In
general, the structure of the cut locus may be wild (see Gluck and Singer [7], Itoh
and Sabau [13] and Itoh and Vîlcu [15]). Myers [20] had shown that, if M is a real
analytic sphere, then Cu.p/ is a finite tree each of whose edges is an analytic curve
with finite length. Buchner [4] later generalized this result to the cut locus of a point
in higher-dimensional manifolds. Theorem 3.9, which states that the cut locus of an
analytic submanifold (in an analytic manifold) is a simplicial complex, is a natural
generalization of Buchner’s result (and its proof). We attribute it to Buchner although it
is not present in the original paper. This analyticity assumption also helps us to compute
the homotopy type of the cut locus of a finite set of points in any closed, orientable,
real analytic surface of genus g (Theorem 3.27). In Example 3.29 we make some
observations about the cut locus of embedded homology spheres of codimension 2.
This includes the case of real analytic knots in the round sphere S3.

We apply our study of gradient of distance-squared function to two families of Lie
groups: GL.n;R/ and U.p; q/. With a particular choice of left-invariant Riemannian
metric which is right-invariant with respect to a maximally compact subgroup K, we
analyze the geodesics and the cut locus of K. In both cases, we obtain that G deforms
to K via Morse–Bott flow (Lemma 4.1 and Theorem 4.6). Although these results are
deducible from classical results of Cartan and Iwasawa, our method is geometric and
specific to suitable choices of Riemannian metrics. It also makes very little use of
structure theory of Lie algebras.

Organization of the paper In Section 2 we first recall basic definitions of Morse–
Bott functions and cut locus of a subset (see Section 2.1). In Section 2.2 we ana-
lyze the distance function from O.n;R/ in M.n;R/. This highlights and motivates
Theorem A as well as allows for computation of local homology of singular matrices
(Theorem B). In Section 3 we first recall some relevant basic definitions from geometry
(see Section 3.1). We make some observations about the differentiability of the distance
function (following Wolter [29]) and show that the cut locus is a simplicial complex
for an analytic pair (following Buchner [4]). In Section 3.2 we prove Theorem C and
discuss some applications, including Theorem D. In Section 3.3 we prove Theorem A.
In Section 4 we discuss two specific examples: we analyze the cut locus of O.n;R/
inside GL.n;R/ in Section 4.1 and the cut locus of U.p/ �U.q/ inside U.p; q/ in
Section 4.2. In Appendix A we prove Proposition 3.14, the continuity of the map s
(see (3-2)). This result is crucial for Section 3.2. In Appendix B we compute the

Algebraic & Geometric Topology, Volume 23 (2023)
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derivative of the square root map for positive-definite matrices (Lemma B.1). We also
analyze the differentiability of the map A 7! tr.

p
ATA / in Lemma B.2.

Acknowledgements Basu acknowledges the support of the SERB MATRICS grant
MTR/2017/000807. Prasad was supported by a UGC (NET)-JRF fellowship.

2 Preliminaries

We recall the notion of Morse function and Morse–Bott function in Section 2.1, keeping
in mind the square of the distance function from a submanifold being a potential Morse–
Bott function, which we will analyze in Section 3.3. We also recall the definition of cut
locus of a subset in a Riemannian manifold. In Example 2.7 we observe that the join of
spheres being a sphere can be observed geometrically via cut locus. In Section 2.2 we
analyze the cut locus of orthogonal matrices and compute the relative homology of the
cut locus (2-8). Along the way, we note that the geometric deformation of GL.n;R/
to O.n;R/, obtained via the distance-squared function, is not the Gram–Schmidt
deformation.

2.1 Background

Given a smooth n–dimensional manifold M, we say that a point p 2M is a critical
point of a smooth function f WM !R if

dfp W TpM ! Tf .p/R

vanishes. In a coordinate neighborhood .� D .x1; x2; : : : ; xn/; U / around p, for all
j D 1; 2; : : : ; n we have

@.f B��1/

@xj
.�.p//D 0:

A critical point p is called nondegenerate if the determinant of the Hessian matrix

Hessp.f / WD
�
@2.f B��1/

@xi@xj
.�.p//

�
is nonzero. Let us denote the set of all critical points of f by Cr.f /. If all the critical
points are nondegenerate, then f is said to be a Morse function. Morse–Bott functions
are generalizations of Morse functions, where we are allowed to have nondegenerate
critical submanifolds.

Algebraic & Geometric Topology, Volume 23 (2023)
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Definition 2.1 (Morse–Bott functions) Let M be a Riemannian manifold. A smooth
submanifold N � M is said to be a nondegenerate critical submanifold of f if
N � Cr.f / and, for any p 2 N, Hessp.f / is nondegenerate in the direction normal
to N at p. The function f is said to be Morse–Bott if the connected components
of Cr.f / are nondegenerate critical submanifolds.

Note that “Hessp.f / is nondegenerate in the direction normal to N at p” means for
any V 2 .TpN/? there exists W 2 .TpN/? such that Hessp.f /.V;W /¤ 0.

Example 2.2 Let M D RnC1 equipped with the Euclidean metric d . If N D Sn is
the unit sphere, then the distance between a point p 2RnC1 and N is given by

d.N;p/ WD inf
q2N

d.q;p/:

We shall denote by d2 the square of the distance. Now consider the function

f WM !R; x 7! d2.N;x/D .kxk� 1/2:

The function f W M � f0g is a Morse–Bott function with N D Sn as the critical
submanifold.

The trace function on SO.n;R/; U.n;C/ and Sp.n;C/ is a Morse–Bott function (see
Banyaga and Hurtubise [1, Exercise 22, page 90]). We refer the interested reader to [1]
for basic results on Morse–Bott theory.

We shall now define the cut locus for a point. The notion of cut locus was first
introduced for convex surfaces by Poincaré [23] in 1905 under the name la ligne de
partage, meaning the dividing line.

Definition 2.3 (cut locus) Let M be a complete Riemannian manifold and p 2M. If
Cu.p/ denotes the cut locus of p, then a point q is in Cu.p/ if there exists a minimal
geodesic joining p to q any extension of which beyond q is not minimal.

Recall that a minimal geodesic joining p and q is a geodesic that realizes the distance
between p and q. The existence of minimal geodesics joining two given points is
implied by completeness of the Riemannian manifold. Therefore, in almost all of the
examples, the manifolds under consideration will be complete Riemannian manifolds.
When M D Sn, ie an n–sphere with the round metric induced from RnC1, for any
p 2 Sn, the cut locus Cu.p/ will be the corresponding antipodal point. Later, in

Algebraic & Geometric Topology, Volume 23 (2023)
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Definition 3.11, we give a slightly different but equivalent definition of cut locus,
following Sakai’s book [26, Section 4.1].

In order to have a definition of the cut locus for a submanifold (or a subset), we need
to generalize the notion of a minimal geodesic.

Definition 2.4 A geodesic 
 is called a distance-minimal geodesic joining N to p
if there exists q 2 N such that 
 is a minimal geodesic joining q to p and `.
/ D
d.N; p/DW dN .p/. We will refer to such geodesics as N –geodesics.

If N is an embedded submanifold, then an N –geodesic is necessarily orthogonal to N.
This follows from the first variational principle. We are ready to define the cut locus
for N �M.

Definition 2.5 (cut locus) Let M be a Riemannian manifold and N be any nonempty
subset of M. If Cu.N / denotes the cut locus of N , then we say that q 2 Cu.N / if and
only if there exists a distance-minimal geodesic joining N to q such that any extension
of it beyond q is not a distance-minimal geodesic.

The cut locus of a sphere (see Example 2.2) is its center. The set Cu.p/ is closed; see
Postnikov [24, Exercise 28.4, page 363]. In general, the cut locus of a subset need not
be closed, as the following example, due to Sabau and Tanaka [25], illustrates.

Example 2.6 (Sabau and Tanaka 2016) Consider R2 with the Euclidean inner product.
Let f�ng, with �1 2 .0; �/, be a decreasing sequence converging to 0. Let B.0; 1/ be
the closed unit ball centered at .0; 0/. Let Bn WDB.qn; 1/ be the open ball with radius 1
and centered at qn. We have chosen qn so that it does not belong to B.0; 1/ and
denotes the center of the circle passing through pn D .cos �n; sin �n/ and pnC1 D
.cos �nC1; sin �nC1/. Define N �R2 by

N WD B.0; 1/ n
1[
nD1

B.qn; 1/:

See Figure 1. Note that N is a closed set and the sequence fqng of cut points of N
converges to the point .2; 0/. However, .2; 0/ is not a cut point of N.

In Theorem 3.30 we will prove that, for a submanifold N, the set Cu.N / is closed,
by showing that it is the closure of the set of all points in M which have at least two
minimal geodesics joining N to p 2M.

Algebraic & Geometric Topology, Volume 23 (2023)
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B1

B2

B3

B4

B5

.1; 0/ q D .2; 0/

N D B.0; 1/ n
S1
nD1 Bn

D pn D .cos �n; sin �n/
D qn

Figure 1: The cut locus need not be closed.

Example 2.7 (join induced by cut locus) Let Ski ,! Sn denote the embedding of
the k–sphere in the first kC 1 coordinates and Sn�k�1

l
denote the embedding of the

.n�k�1/–sphere in the last n� k coordinates. It can be seen that Cu.Ski /D Sn�k�1
l

.
In fact, starting at a point p 2Ski and traveling along a unit-speed geodesic in a direction
normal to TpSki , we obtain a cut point at a distance �

2
from Ski . Moreover, in this case,

Cu.Sn�k�1
l

/ D Ski and the n–sphere Sn can be expressed as the union of geodesic

Figure 2: The cut locus of the equator in S2.
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segments joining Ski to Sn�k�1
l

. This is a geometric variant of the fact that the n–sphere
is the (topological) join of Sk and Sn�k�1. We also observe that Sn�Sn�k�1

l
deforms

to Ski while Sn�Ski deforms to Sn�k�1
l

.

In our example, let �n�ki and �kC1
l

denote the normal bundles of Ski and Sn�k�1
l

,
respectively. We may express Sn as the union of normal disk bundles D.�i / and D.�l/.
These disk bundles are trivial and are glued along their common boundary Ski �Sn�k�1

l

to produce Sn. Moreover, Ski is an analytic submanifold of the real analytic Riemannian
manifold Sn with the round metric. There is a generalization of this phenomenon due
to Omori [21, Lemmas 1.3–1.5 and Theorem 3.1].

Theorem 2.8 (Omori 1968) Let M be a compact , connected , real analytic Riemann-
ian manifold which has an analytic submanifold N such that the cut point of N with
respect to every geodesic which starts from N and whose initial direction is orthogonal
to N has a constant distance � from N. Then N 0 D Cu.N / is an analytic submanifold
and M has a decomposition M DDN [' DN 0, where DN and DN 0 are the normal
disk bundles of N and N 0, respectively, and ' is the gluing map.

2.2 An illuminating example

LetM DM.n;R/, the set of n�nmatrices, andN DO.n;R/, the set of all orthogonal
n � n matrices. Let A;B 2 M.n;R/. We fix the standard flat Euclidean metric on
M.n;R/ by identifying it with Rn

2

. This induces a distance function given by

d.A;B/ WD
p

tr..A�B/T .A�B//:

Consider the distance-squared function

f W GL.n;R/!R; A 7! d2O.n;R/.A/:

Lemma 2.9 The function f can be explicitly expressed as

(2-1) f .A/D nC tr.ATA/� 2 tr.
p
ATA /:

Proof Let A 2 GL.n;R/ be any invertible matrix. Then

(2-2) f .A/D inf
B2O.n;R/

tr..A�B/T .A�B//

D inf
B2O.n;R/

Œtr.ATA/� tr.ATB/� tr.BTA/C tr.BTB/�

D tr.ATA/C inf
B2O.n;R/

Œ�2 tr.ATB/�Cn

D tr.ATA/Cn� 2 sup
B2O.n;R/

tr.ATB/:

Algebraic & Geometric Topology, Volume 23 (2023)
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In order to maximize the function

hA WO.n;R/!R; B 7! tr.ATB/;

for any invertible matrix A, we may first assume that A is a diagonal matrix with
positive entries. Then

jhA.B/j D jtr.ATB/j D
ˇ̌̌̌ nX
iD1

ai ibi i

ˇ̌̌̌
�

nX
iD1

jai ibi i j �

nX
iD1

ai i D tr.AT /D hA.I /:

Thus, one of the maximizers is B D I. For a general nonsingular matrix A, we will
use the singular value decomposition (SVD). Write AD UDV T, where U and V are
n� n orthogonal matrices and D is a diagonal matrix with positive entries. For any
B 2O.n;R/, using the cyclic property of trace, we can see that

tr.ATB/D tr.D.U TBV //:

Since U TBV is an orthogonal matrix, maximizing over B reduces to the earlier
observation that B will be a maximizer if U TBV D I, which implies B D UV T.

Since A is invertible, by the polar decomposition, there exists an orthogonal matrix Q
and a symmetric positive-definite matrix S D

p
ATA such that ADQS. Since S is a

symmetric matrix, we can diagonalize it, ie S D P zDP T, where P 2O.n;R/ and zD
is a diagonal matrix with the eigenvalues of S as its diagonal entries. Thus,

ADQS DQP zDP T :

Set U DQP and V D P to obtain the SVD of A. In particular, the minimizer is given
by

B DQD A
p
ATA

�1

:

Therefore,
f .A/D nC tr.ATA/� 2 tr.

p
ATA /

for invertible matrices.

In order to compute f for a noninvertible matrix A, we note that GL.n;R/ is dense in
M.n;R/ and that

p
ATA is well defined for A 2M.n;R/. The continuity of the map

A 7!
p
ATA on M.n;R/ implies that the same formula (2-1) for f applies to A as

well.

In order to understand the differentiability of f, it suffices to analyze the function
A 7! tr.

p
ATA /.
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Lemma 2.10 The map g W M.n;R/! R, A 7! tr.
p
ATA /, is differentiable if and

only if A is invertible.

The proof of this postponed to the appendix (see Lemma B.2).

Let us define the function

� WM.n;R/!R; A 7! tr.
p
ATA /:

We claim that

(2-3) D�A.H/D tr
�Z 1

0

e�t
p
ATA.ATH CHTA/e�t

p
ATA dt

�
:

The following lemma (see Lemma B.1 for a proof) along with chain rule will prove
our claim:

Lemma 2.11 Let A be a positive-definite matrix and  W A 7!
p
A. Then

D A.H/D

Z 1
0

e�t
p
AHe�t

p
A dt

for any symmetric matrix H.

We may drastically simplify, using basic analysis and linear algebra, the derivative of �
given by (2-3) to obtain

D�A.H/D hA
p
ATA

�1

;H i:

For any A 2 GL.n;R/,

DfA D 2A� 2A
p
ATA

�1

D�2A.
p
ATA

�1

� I /:

Hence, the negative gradient of the function f, restricted to GL.n;R/, is given by

�rf jA D 2A.
p
ATA

�1

� I /:

The critical points are orthogonal matrices. If 
.t/ is an integral curve of�rf initialized
at A, then 
.0/D A and

(2-4) d


dt
D�2
.t/C 2
.t/

p

.t/T 
.t/

�1

D�2
.t/C 2.
.t/T /�1
p

.t/T 
.t/:

Take the test solution of (2-4) given by

(2-5) 
.t/D Ae�2t C .1� e�2t /.AT /�1
p
ATAD Ae�2t C .1� e�2t /A

p
ATA

�1

:

Algebraic & Geometric Topology, Volume 23 (2023)



4196 Somnath Basu and Sachchidanand Prasad

In order to show that 
.t/ satisfies (2-4), we may verify the simplifications


.t/T 
.t/D .
p
ATAe�2t C .1� e�2t /I /2;p


.t/T 
.t/
T

D .
p
ATAA�1
.t//T D 
.t/T .AT /�1

p
ATA:

This implies that

.
.t/T /�1
p

.t/T 
.t/D .AT /�1

p
ATA:

The right-hand side of (2-4), with the test solution, can be simplified to

�2Ae�2t C 2e�2t .AT /�1
p
ATA;

which is the derivative of 
 . Thus, 
.t/, as defined in (2-5), is the required flow line
which deforms GL.n;R/ to O.n;R/. In particular, GLC.n;R/ deforms to SO.n;R/
and the other component of GL.n;R/ deforms to O.n;R/ n SO.n;R/. We note,
however, that this deformation takes infinite time to perform the retraction.

Remark 2.12 A modified curve

(2-6) �.t/D A.1� t /C tA
p
ATA

�1

;

with the same image as 
 , defines an actual deformation retraction of GL.n;R/ to
O.n;R/. Apart from its origin via the distance function, this is a geometric deformation
in the following sense. Given A 2 GL.n;R/, consider its columns as an ordered basis.
This deformation deforms the ordered basis according to the length of the basis vectors
and mutual angles between pairs of basis vectors in a geometrically uniform manner.
This is in sharp contrast with Gram–Schmidt orthogonalization, also a deformation of
GL.n;R/ to O.n;R/, which is asymmetric as it never changes the direction of the first
column, the modified second column only depends on the first two columns, and so on.

We now show that f is Morse–Bott. The tangent space TIO.n;R/ consists of skew-
symmetric matrices while the normal vectors at In are the symmetric matrices. As
left translation by an orthogonal matrix is an isometry of M.n;R/, normal vectors at
A 2O.n;R/ are of the form AW for symmetric matrices W. Since

DfA.H/D 2hA;H i � 2hA
p
ATA

�1

;H i;

the relevant Hessian is

Hess.f /A.H;H 0/D lim
t!0

DfACtH 0.H/�DfA.H/

t
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with H D AW and H 0 D AW 0 for symmetric matrices W and W 0. A standard
computation leads to

Hess.f /A.H;H 0/D 2 tr.HTH 0/D 2hH;H 0i:

Therefore, the Hessian matrix restricted to .TAO.n;R//? is 2In.nC1/=2. This is a
recurring feature of distance-squared functions associated to embedded submanifolds
(see Proposition 3.5).

There is a relationship between the local homology of cut loci and the reduced Čech
cohomology of the link of a point in the cut locus. This is due to Theorem 1.4 of
Hebda [9] and the remark following it.

Definition 2.13 LetN be an embedded submanifold of a complete smooth Riemannian
manifold M. For each q 2 Cu.N /, consider the set ƒ.q;N / of unit tangent vectors
at q such that the associated geodesics realize the distance between q and N. This set
is called the link of q with respect to N.

The set of points in N obtained by the endpoints of the geodesics associated toƒ.q;N /
will be called the equidistant set, denoted by Eq.q;N /, of q with respect to N.

Since the equidistant set Eq.q;N /, consisting of points which realize the distance dN .q/,
is obtained by exponentiating the points in ƒ.q;N /, there is a natural surjection map
from ƒ.q;N / to Eq.q;N /.

Theorem 2.14 (Hebda 1983) Let N be a properly embedded submanifold of a
complete Riemannian manifold M of dimension n. If q 2 Cu.N / and v is an element
of ƒ WDƒ.q;N /, then there is an isomorphism

(2-7) {H i .ƒ; v/ŠHn�1�i .Cu.N /;Cu.N /� q/:

We are interested in computing ƒ.A;O.n;R// for singular matrices A. Note that
geodesics in M.n;R/, initialized at A, are straight lines and any two such geodesics
can never meet other than at A. Therefore, there is a natural identification between the
link and the equidistant set of A.

Lemma 2.15 If A 2M.n;R/ is singular of rank k, then Eq.A;O.n;R// is homeo-
morphic to O.n� k;R/.
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Proof Using the singular value decomposition, we write AD UDV T, where U; V 2
O.n;R/ and D is a diagonal matrix with entries the eigenvalues of

p
ATA. If we

specify that the diagonal entries ofD are arranged in decreasing order, thenD is unique.
Moreover, as A has rank k < n, the first k diagonal entries of D are positive while the
last n� k diagonal entries are zero. In order to find the matrices in O.n;R/ which
realize the distance d.A;O.n;R//, by (2-2), it suffices to find B 2O.n;R/ such that

sup
B2O.n;R/

tr.ATB/D sup
B2O.n;R/

tr.VDU TB/D sup
B2O.n;R/

tr.DU TBV /

is maximized. However, U TBV 2 O.n;R/ has orthonormal rows and the specific
form of D implies that the maximum happens if and only if U TBV has e1; : : : ; ek as
the first k rows, in order. Therefore, U TBV is a block orthogonal matrix, with blocks
of Ik and C 2O.n� k;R/, ie B 2 U.Ik �O.n� k;R//V T.

Corollary 2.16 Let Sing denote the space of singular matrices inM.n;R/. IfA2Sing
is of rank k < n, then there is an isomorphism

(2-8) zH i .O.n� k;R//ŠHn2�1�i .Sing;Sing�A/:

Proof It follows from Lemma 2.15 that ƒ.A;O.n;R// Š O.n � k;R/ if A has
rank k. Since O.n�k;R/ is a manifold, the Čech and singular cohomology groups are
isomorphic. The space Sing is a star-convex set, whence all homotopy and homology
groups are that of a point. Applying (2-7) in our case, we obtain an isomorphism

zH i .O.n� k;R//ŠHn2�1�i .Sing;Sing�A/

between the reduced cohomology and local homology groups. In particular, the local
homology of the cut locus at A detects the rank of A.

Similar computations hold for U.n;C/ and singular n�n complex matrices.

3 Main results

We recall some results about exponential maps and Fermi coordinates in Section 3.1. A
result of Wolter [29] may be generalized to prove (Lemma 3.7) that the distance-squared
function from a submanifold is not differentiable on the separating set. This result may
be well known to experts, but the proof, following Wolter, is elementary. Buchner’s
result [4] may be generalized to prove (Theorem 3.9) that the cut locus is a simplicial
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complex for real analytic pairs. In Section 3.2 we recall the notion of Thom space
and apply it to the normal bundle of an embedded submanifold in a closed, connected
Riemannian manifold. Our first main result, Theorem 3.16, states that the quotient of the
ambient manifold by the cut locus of the submanifold results in the Thom space of the
normal bundle. As a consequence we obtain Theorem 3.24, which says that a homology
k–sphere inside a manifold homeomorphic to Sd has cut locus weakly homotopy
equivalent to Sd�k�1 provided d � k � 3, k > 0 and Hd�1.Cu.N // is torsion-free.
Theorem 3.27 is another consequence about analytic surfaces. In Section 3.3 we prove
(see Theorem 3.30) that the cut locus of a submanifold is closed, essentially following
Wolter’s arguments [29]. This leads us to the other main result, Theorem 3.32, which
proves that the complement of the cut locus Cu.N / deforms to N.

3.1 Basic results

For understanding the geometry in the neighborhood of a submanifold, it is convenient
to use Fermi coordinates, a generalization of normal coordinates. We shall briefly
introduce Fermi coordinates and state some of their relevant properties. Let N be an
embedded submanifold of a Riemannian manifold M. Let � be the normal bundle of
N �M, ie

� WD f.p; v/ W p 2N; v 2 .TpN/
?
g:

In fact, � is a subbundle of the restriction of TM to N. We define the exponential map
of the normal bundle as

(3-1) exp� W �!M; exp�.p; v/ WD expp.v/ for .p; v/ 2 �:

We may write exp�.v/ in short and call this the normal exponential map.

Now we will list some lemmas; for proofs we refer to Gray [8, Sections 2.1 and 2.3].

Lemma 3.1 Let N be a topologically embedded submanifold of a Riemannian mani-
fold M. Then the normal exponential map exp� W �!M maps a neighborhood of N
in � diffeomorphically onto a neighborhood of N in M.

Let ON denote the largest neighborhood of the zero section of � for which exp� is a
diffeomorphism. We shall later be able to describe this neighborhood in terms of a
function s; see (3-2). To define a system of Fermi coordinates, we need an arbitrary
system of coordinates .y1; : : : ; yk/ defined in a neighborhood U �N of p 2N together
with orthogonal sections EkC1; : : : ; En of the restriction of � to U .
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Definition 3.2 (Fermi coordinates) The Fermi coordinates .x1; : : : ; xn/ of N �M
centered at p (relative to a given coordinate system .y1; : : : ; yk/ on N and orthogonal
sections EkC1; : : : ; En of �) are defined by

xl

�
exp�

� nX
jDkC1

tjEj .p
0/

��
D yl.p

0/ for l D 1; : : : ; k;

xi

�
exp�

� nX
jDkC1

tjEj .p
0/

��
D ti for i D kC 1; : : : ; n;

for p0 2 U provided the numbers tkC1; : : : ; tn are small enough that

tkC1EkC1.p
0/C � � �C tnEn.p

0/ 2ON :

Since exp� is a diffeomorphism on ON , .x1; : : : ; xk; xkC1; : : : ; xn/ defines a coor-
dinate system near p. In fact, the restrictions to N of the coordinate vector fields
@=@xkC1; : : : ; @=@xn are orthonormal.

Lemma 3.3 Let 
 be a unit-speed geodesic normal to N with 
.0/ D p 2 N. If
uD 
 0.0/, then there is a system of Fermi coordinates .x1; : : : ; xn/ such that , for small
enough t , ie for .p; tu/ 2ON , we have

@

@xkC1

ˇ̌̌

.t/
D 
 0.t/;

@

@xl

ˇ̌̌
p
2 TpN;

@

@xi

ˇ̌̌
p
2 .TpN/

?

for 1� l � k and kC 1� i � n. Furthermore , for 1� j � n,

.xj B 
/.t/D tıj.kC1/:

Definition 3.4 Let .x1; : : : ; xn/ be a system of Fermi coordinates for N �M. Define
�.x1; : : : ; xn/ to be the nonnegative number satisfying

�2 D

nX
iDkC1

x2i :

It is known that � does not depend on the choice of Fermi coordinates.

Proposition 3.5 Let U be a neighborhood of N such that each point in U admits a
unique unit-speed N–geodesic. If p 2 U, then

�.p/D dN .p/:
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p0


 p

dN .p/D `.
 jŒ0;t0�/

N

Figure 3: Distance via Fermi coordinates.

Proof Since the expression of � is independent of the choice of the Fermi coordinates,
we will make a special choice of the Fermi coordinates .x1; : : : ; xn/. For p 2 U,
choose the unique unit-speed N–geodesic 
 joining p to N. This geodesic meets N
orthogonally at 
.0/D p0. Choose t0 so that 
.t0/D p; see Figure 3. According to
Lemma 3.3, there is a system of Fermi coordinates .x1; : : : ; xn/ centered at p0 such
that xi .
.t//D tıi.kC1/. The sequence of equalities

�.p/D xkC1.
.t0//D t0 D dN .p/

completes the proof.

Corollary 3.6 Consider the distance-squared function with respect to a submanifold
N in M. The Hessian of the distance-squared function at the critical submanifold N is
nondegenerate in the normal direction.

Towards the regularity of the distance-squared function, the following observation will
be useful. It is a routine generalization of [29, Lemma 1].

Lemma 3.7 Let M be a connected , complete Riemannian manifold and N be an
embedded submanifold of M. Suppose two N–geodesics exist joining N to q 2M.
Then d2N WM ! R has no directional derivative at q for vectors in direction of those
two N –geodesics.

Proof Let us assume that all the geodesics are parametrized by arc length. Let

i W Œ0; Ot � ! M for i D 1, 2 be two distinct geodesics with 
1.0/; 
2.0/ 2 N and

1.l/ D q D 
2.l/, where l D dN .q/ and 0 < l < Ot . Let us suppose that the two
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geodesics start at p1 and p2 and so d.p1; q/D l D d.p2; q/. Note that the directional
derivative of d2 at q in the direction of 
 0i .q/ from the left is given by

.d2/0�.q/ WD lim
"!0C

d2N .
i .l//� d
2
N .
i .l � "//

"
D lim
"!0C

l2� .l � "/2

"
D 2l:

Next, we claim that the derivative of the same function from the right is strictly bounded
above by 2l . Let ! 2 .0; �� be the angle between the two geodesics 
1 and 
2 at q.
Define the function

u.�/ WD dN .
1.l � "//C d.
1.l � "/; 
2.� C l//:

By the triangle inequality, we observe that

f .�/ WD .u.�//2 � d2.p1; 
2.� C l//� d
2
N .
2.� C l//;

and equality holds at � D 0 and .u.0//2 D d2N .q/ D l
2. Thus, in order to prove the

claim, it suffices to show that the derivative of f from the right, at � D 0, is bounded
below by 2l . We need to invoke a version of the cosine law for small geodesic triangles.
Although this may be well known to experts, we will use the version that appears in
Sharafutdinov’s work [27] (see also Daniilidis et al [6, Lemma 2.4] for a detailed proof).
In our case, this means that

d2.
1.l � "/; 
2.� C l//D "
2
C �2C 2"� cos!CK.�/"2�2;

where jK.�/j is bounded and the side lengths are sufficiently small. Note that we are
considering geodesic triangles with two vertices constant and the varying vertex being

2.l C �/. It follows from taking a square root and then expanding in powers of � that

d.
1.l � "/; 
2.� C l//D
p
"2C �2C 2"� cos! .1CO.�2//:

It follows that

u.�/D l � "C
p
"2C �2C 2"� cos! .1CO.�2//:

Therefore, u0
C
.0/D cos! D d 0

C
.
1.l � "/; 
2.l//. Observe that

f 0C.�/j�D0

D 2dN .
1.l � "//d
0
C.
1.l � "/; 
2.l//C 2d.
1.l � "/; 
2.l//d

0
C.
1.l � "/; 
2.l//

D 2dN .
1.l � "// cos!C 2d.
1.l � "/; 
2.l// cos!

D 2dN .
1.l// cos! < 2l:

Thus, we have proved the claim and subsequently the result.
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N
p2

p1

q
2.l C �/


1.l � "/
!


1


2

Figure 4: When two N –geodesics meet.

The above lemma prompts us to define the following set, the notation being consistent
with Wolter’s paper [29]:

Definition 3.8 Let N be a subset of a Riemannian manifold M. The set Se.N /, called
the separating set,1 consists of all points q 2M such that at least two distance-minimal
geodesics from N to q exist.

If q 2 Se.N / but q … Cu.N /, then we have Figure 4, ie 
1 is an N –geodesic beyond q
while 
2 is anotherN –geodesic for q. The triangle inequality applied to 
1.0/, qD
1.l/
and 
2.l C �/ implies that

dN .
2.l C �// < l C �;

while, for � small enough, dN .
2.l C �//D l C � as 
2 is an N–geodesic beyond q.
This contradiction establishes the well-known fact Se.N / � Cu.N /. In quite a few
examples, these two sets are equal. In the case of M D Sn with N D fpg, the set
Se.N / consists of �p. There is an infinite family of minimal geodesics joining p
to �p. An appropriate choice of a pair of such minimal geodesics would create a loop,
which is permissible in the definition of Se.N /.

Regarding the question of cut loci being triangulable, we recall the result of Buchner [4]
that the cut locus (of a point) of a real analytic Riemannian manifold (of dimension d )
is a simplicial complex of dimension at most d � 1. It follows, without many changes,
that the result holds for cut loci of submanifolds as well. Hence, we attribute the
following result to Buchner:

1We could not find any name for this set in the literature. This terminology is our own although this
nomenclature is rarely used in the paper.
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Theorem 3.9 (Buchner 1977) Let N be an analytic submanifold of a real analytic
manifold M. If M is of dimension d , then the cut locus Cu.N / is a simplicial complex
of dimension at most d � 1.

The obvious modifications to the proof by Buchner are the following:

(i) Choose " to be such that there is a unique geodesic from p to q if .p; q/ < "
and, if dN .q/ < ", then there is a unique N –geodesic to q.

(ii) Consider the set �N .t0; t1; : : : ; tk/, the space of piecewise broken geodesics
starting at N, and define �N .t0; t1; : : : ; tk/s analogously.

(iii) The map

�N .t0; t1; : : : ; tk/
s
!N �M � � � � �M; ! 7! .!.t0/; !.t1/; : : : ; !.tk//;

determines an analytic structure on �N .t0; t1; : : : ; tk/s .

The remainder of the proof works essentially verbatim.

Remark 3.10 As we have seen in Example 2.7, the dimension of the cut locus of a
k–dimensional submanifold is d � k � 1. However, generically, we may not expect
this to be true. In fact, for real analytic knots (except the unknot) in S3, it is always the
case that the cut locus cannot be homotopic to a (connected) 1–dimensional simplicial
complex (see Example 3.29).

3.2 Thom space via cut locus

Let .M; g/ be a complete Riemannian manifold with distance function d . The expo-
nential map at p,

expp W TpM !M;

is defined on the tangent space. Moreover, there exists a minimal geodesic joining any
two points in M. However, not all geodesics are distance-realizing. Given v 2 TpM
with kvkD 1, let 
v be the geodesic initialized at p with velocity v. Let S.TM/ denote
the unit tangent bundle and let Œ0;1� be the one-point compactification of Œ0;1/.
Define

s W S.TM/! Œ0;1�; s.v/ WD supft 2 Œ0;1/ W 
vjŒ0;t� is minimalg:

Definition 3.11 (cut locus) LetM be a complete, connected Riemannian manifold. If
s.v/ <1 for some v 2 S.TpM/, then expp.s.v/v/ is called a cut point. The collection
of cut points is defined to be the cut locus of p.
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As geodesics are locally distance-realizing, s.v/>0 for any v 2S.TM/. The following
result [26, Proposition 4.1] will be important for the underlying ideas in its proof:

Proposition 3.12 The map s W S.TM/! Œ0;1�, u 7! s.u/, is continuous.

The proof relies on a characterization of s.v/ provided s.v/ <1. A positive real
number T is s.v/ if and only if 
v W Œ0; T �!M is minimal and at least one of the
following holds:

(i) 
v.T / is the first conjugate point of p along 
v.

(ii) There exists u 2 S.TpM/ with u¤ v and 
u.T /D 
v.T /.

Recall that, if 
 W Œ0; a�!M is a geodesic, then q D 
.t0/ is conjugate to p D 
.0/
along 
 if expp is singular at t0 P
.0/, ie .D expp/.t0 P
.0// is not of full rank.

Remark 3.13 If M is compact, then it has bounded diameter, which implies that
s.v/ < 1 for any v 2 S.TM/. The converse is also true: if M is complete and
connected with s.v/ <1 for any v 2 S.TM/, then M has bounded diameter, whence
it is compact.

We shall be concerned with closed Riemannian manifolds in what follows. Let N be
an embedded submanifold inside a closed, ie compact without boundary, manifold M.
Let � denote the normal bundle of N in M with D.�/ denoting the unit disk bundle.
In the context of S.�/, the unit normal bundle and the cut locus of N, distance-minimal
geodesics or N–geodesics are relevant (see Definitions 2.4 and 2.5). We want to
consider

(3-2) s W S.�/! Œ0;1/; s.v/ WD supft 2 Œ0;1/ W 
vjŒ0;t� is an N –geodesicg:

Notice that 0 < s.v/ � s.v/ for any v 2 S.�/. In the special case when N D fpg,
s is simply the restriction of s to TpM. Analogous to Proposition 3.12, we have the
following result:

Proposition 3.14 The map s W S.�/! Œ0;1/, as defined in (3-2), is continuous.

As expected, the proof of Proposition 3.14 relies on a characterization of s.v/ similar
to that of s.v/ (refer to Lemma A.2 and Bishop and Crittenden’s book [3, Exercise 23,
page 241]).

Let us postpone the proofs (see Appendix A) and proceed with some immediate
applications.
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Definition 3.15 (rescaled exponential) The rescaled exponential or s–exponential
map is defined to be

eexp WD.�/!M; .p; v/ 7!

�
expp.s. Ov/v/ if v D kvk Ov ¤ 0;
p if v D 0.

We are now ready to prove the main result of this section.

Theorem 3.16 Let N be an embedded submanifold inside a closed , connected Rie-
mannian manifold M. If � denotes the normal bundle of N in M, then there is a
homeomorphism

eexp WD.�/=S.�/ Š�!M=Cu.N /:

Proof It follows from Proposition 3.14 that the rescaled exponential is continuous.
Moreover, eexp is surjective and eexp.S.�//D Cu.N /. If there exist .p; v/¤ .q; w/ 2
D.�/ such that

eexp.p; v/Deexp.q; w/D p0;

then dN .p0/ can be computed in two ways to obtain

dN .p
0/D s. Ov/kvk D s. yw/kwk:

Thus, T D d.p0; N / is a number such that 
v W Œ0; T �! M is an N–geodesic and

v.T / D 
w.T / D p

0. By Lemma A.2, we conclude that T D s. Ov/ D s. yw/, whence
kvk D kwk D 1. Therefore, eexp is injective on the interior of D.�/.

As Cu.N / is closed and M is a compact metric space, the quotient space M=Cu.N /
is Hausdorff. As the quotient D.�/=S.�/ is compact, standard topological arguments
imply the map induced by the rescaled exponential is a homeomorphism.

Recall that the Thom space Th.E/ of a real vector bundle E ! B of rank k is
D.E/=S.E/, where it is understood that we have chosen a Euclidean metric on E. If
B is compact, then the Thom space Th.E/ is the one-point compactification of E. In
general, we compactify the fibers and then collapse the section at infinity to a point to
obtain Th.E/. Thus, Thom spaces obtained via two different metrics are homeomorphic.
We will now revisit a basic property of Thom space via its connection to the cut locus.
It can be seen that

(3-3) Cu.N1 �N2/D .Cu.N1/�M2/[ .M1 �Cu.N2//
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for an embedding N1�N2 insideM1�M2. If �j is the normal bundle of Nj insideMj ,
then Theorem 3.16 along with (3-3) implies that

Th.�1˚ �2/Š
M1 �M2

.M1 �Cu.N2//[ .Cu.N1/�M2/
Š
M1=Cu.N1/�M2=Cu.N2/
M1=Cu.N1/_M2=Cu.N2/

Š Th.�1/^Th.�2/:

Let N DN1 tN2 be a disjoint union of connected manifolds of the same dimension.
If N ,!M, then let �j denote the normal bundle of Nj in M. If � is the normal bundle
of N in M, then

(3-4) Th.�/Š Th.�1/_Th.�2/:

This implies that
M=Cu.N /ŠM=Cu.N1/_M=Cu.N2/:

Example 3.17 Consider the two circles

N1 D f.cos t; sin t; 0; 0/ j t 2Rg; N2 D f.0; 0; cos t; sin t / j t 2Rg

in S3. The link N WDN1 tN2 has linking number 1. It can be checked that

Cu.N /D
˚
1p
2
.cos s; sin s; cos t; sin t / j s; t 2R

	
is a torus. Note that Cu.N1/DN2 and vice versa as well as

S3=Cu.Nj /Š .S1 �S2/=.S1 �1/;

where S1 � S2 is the fiberwise compactification of the normal bundle of Nj . We
conclude that

S3=Cu.N /Š
�
S1 �S2

S1 �1

�
_

�
S1 �S2

S1 �1

�
:

There are some topological similarities between Cu.N / and M �N.

Lemma 3.18 The cut locus Cu.N / is a strong deformation retract of M � N. In
particular , .M;Cu.N // is a good pair and the number of path components of Cu.N /
equals that of M �N.

Proof Consider the map H W .M �N/ � Œ0; 1�! M �N defined via the normal
exponential map

H.q; t/D

8̂̂<̂
:̂

exp�

��
t � s
�

exp�1� .q/

kexp�1� .q/k

�
C .1� t /kexp�1� .q/k

�
exp�1� .q/

kexp�1� .q/k

�
if q 2M � .Cu.N /[N/;

q if q 2 Cu.N /:
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If q 2M�.Cu.N /[N/, then let 
 be the uniqueN –geodesic joiningN to q. The path
H.q; t/ is the image of this geodesic from q to the first cut point along 
 . The continuity
of s implies that H is continuous. It also satisfies H.q; 0/D q and H.q; 1/ 2 Cu.N /.
The claims about good pair and path components are clear.

Corollary 3.19 If two embeddings f; g WN!M are ambient isotopic , then Cu.f .N //
and Cu.g.N // are homotopy equivalent.

Proof The hypothesis implies that there is a diffeomorphism ' WM !M such that
'.f .N //D g.N /. Thus, M �Cu.f .N // is homeomorphic to M �Cu.g.N // and the
claim follows from the lemma above. Note that, in the smooth category, the notion of
isotopic and ambient isotopic are equivalent (refer to Section 8.1 of Hirsch’s book [12]).
Thus, the same conclusion holds if we assume that the embeddings are isotopic.

Remark 3.20 Without the assumption of M being closed, the above result fails to
be true. One may consider M D S1 �R with the natural product metric and N D S1.
In fact, the universal cover of M is R � R while that of N is R. If we choose a
periodic curve in R2 which is isotopic to the x–axis and has nonempty cut locus in R2,
then we may pass via the covering map to obtain an embedding g of N isotopic to
the embedding f identifying N with S1 � f0g. For this pair, Cu.f .N //D ¿ while
Cu.g.N //¤¿.

Several other identifications between topological invariants can be explored. For
instance, if � WN k ,!M d is, as before, such that M �N is path-connected, then

(3-5) �� W �j .Cu.N // Š�! �j .M/

if 0� j � d �k�2 while �� is a surjection for j D d �k�1. The proof of this relies
on a general position argument, ie being able to find a homotopy of the sphere that
avoids N, followed by Lemma 3.18. Surjectivity of �� if j � d � k� 1 is imposed by
the requirement that a sphere Sj in general position must not intersect N k . Injectivity
of � for j � d�k�2 is imposed by the condition that a homotopy Sj � Œ0; 1� in general
position must not intersect N k . This observation (3-5) generalizes a result of Sakai
[26, Proposition 4.5(1)].

The inclusion i W Cu.N / ,!M induces a long exact sequence in homology

� � � !Hj .Cu.N // i�
�!Hj .M/!Hj .M;Cu.N // @

�!Hj�1.Cu.N //! � � � :

As .M;Cu.N // is a good pair (see Lemma 3.18), we replace the relative homology
of .M;Cu.N // with the reduced homology of M=Cu.N /Š Th.�/. This results in the
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long exact sequence

(3-6) � � � !Hj .Cu.N // i�
�!Hj .M/

q
�! zHj .Th.�// @

�!Hj�1.Cu.N //! � � � :

If N D fpg is a point, then Th.�/D Sd and (3-6) imply isomorphisms

i� WHj .Cu.p// Š�!Hj .M/; i� WH j .M/ Š�!H j .Cu.p//

for j ¤ d; d � 1 (see [26, Proposition 4.5(2)]).

Remark 3.21 The long exact sequence (3-6) can be interpreted as the dual to the
long exact sequence in cohomology of the pair .M;N /. If N D N1 t � � � tNl is a
disjoint union of submanifolds of dimension k1; : : : ; kl , respectively, then the Thom
isomorphism implies that

zHj .Th.�//Š zHj .Th.�1//˚ � � �˚ zHj .Th.�l//

ŠHj�.d�k1/.N1/˚ � � �˚Hj�.d�kl /.Nl/;

where �j is the normal bundle of Nj . Applying Poincaré duality to each Nj , we obtain
isomorphisms

zHj .Th.�//Š
lM
iD1

Hd�j .Ni /DH
d�j .N /:

Poincaré–Lefschetz duality applied to the pair .M;N / provides isomorphisms

(3-7) {H j .M;N /ŠHd�j .M �N/:

As M and N are triangulable, Čech cohomology may be replaced by singular co-
homology. Since M �N deforms to Cu.N / by Lemma 3.18, we have isomorphisms

(3-8) H j .M;N /ŠHd�j .Cu.N //:

Combining all these isomorphisms, we obtain the long exact sequence in cohomology
for .M;N / from (3-6).

Lemma 3.22 Let N be a closed submanifold of M with l components. If M has
dimension d , then Hd�1.Cu.N // is free abelian of rank l � 1 and Hd�j .Cu.N //Š
H j .M/ if j � 2� k, where k is the maximum of the dimensions of the components
of N.

Proof It follows from (3-7) that

Hd�1.Cu.N //ŠH 1.M;N /:
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Consider the long exact sequence associated to the pair .M;N /,

0!H 0.M;N /!H 0.M/ i
�

�!H 0.N /!H 1.M;N /!H 1.M/!H 1.N /!� � � :

If N has l components, ie N D N1 t � � � t Nl , where Nj has dimension kj , then
H 1.M;N / is torsion-free. This follows from the fact that i�.1/ D .1; : : : ; 1/ and
H 1.M/ is free abelian. In particular, if H 1.M/D 0, then Hd�1.Cu.N //Š Zl�1.

The long exact sequence for the pair .M;N / implies that there are isomorphisms

(3-9) Hd�j .Cu.N //ŠH j .M;N / Š�!H j .M/

if j � kC 2, where k Dmaxfk1; : : : ; klg.

Remark 3.23 The cut locus can be very hard to compute. For a general space,
we have the notion of topological dimension. This notion coincides with the usual
notion if the space is triangulable. However, Barratt and Milnor [2] proved that the
singular homology of a space may be nonzero beyond its topological dimension. Čech
(co)homology is better equipped to detect topological dimension and is the reason why
one may prefer it over singular homology due to the generic fractal-like nature of cut
loci (see the remarks following Theorem C in Section 1). Although the topological
dimension of Cu.N / is at most d � 1, it is not apparent that Hd�1.Cu.N // is a free
abelian group.

There are several applications of this discussion.

Theorem 3.24 Let N be a smooth homology k–sphere embedded in a Riemannian
manifold homeomorphic to Sd . If d � kC 3, then the cut locus Cu.N / is homotopy
equivalent to Sd�k�1.

Proof As N has codimension at least 3, its complement is path-connected. It follows
from (3-5) and Lemma 3.18 thatM�N is .d�k�2/–connected. In particular,M�N is
simply connected and, by the Hurewicz isomorphism, Hj .M �N/D 0 if j � d�k�2.
Note that Hd .M �N/D 0 as M �N is a noncompact manifold of dimension d .

If k > 0, then, by Lemma 3.22, Hd�1.M �N/D 0. Moreover, by Poincaré–Lefschetz
duality (3-7), the only nonzero higher homology of M �N is Hd�k�1.M �N/Š Z.
By the Hurewicz theorem, there is an isomorphism �d�k�1.M �N/Š Z. Let

˛ W Sd�k�1!M �N
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be a generator. The map ˛� induces an isomorphism on all homology groups between
two simply connected CW complexes. It follows from Whitehead’s theorem that ˛ is
a homotopy equivalence. Using Lemma 3.18, we obtain our homotopy equivalence
H1 B˛ W S

d�k�1! Cu.N /.

If k D 0, then, by Lemma 3.22, Hd�1.M �N/Š Z. Arguments similar to the k > 0
case now apply to obtain a homotopy equivalence with Sd�1.

The above result was foreshadowed by Example 2.7, where we showed that the cut
locus of N D Ski inside M D Sd is Sd�k�1

l
. It also differs from Poincaré–Lefschetz

duality in that we are able to detect the exact homotopy type of the cut locus. In fact,
when M and N are real analytic and the embedding is also real analytic, then, by
Theorem 3.9, we infer that Cu.N / is a simplicial complex of dimension at most d � 1.
Towards this direction, Theorem 3.24 can be pushed further.

Proposition 3.25 Let N be a real analytic homology k–sphere embedded in a real
analytic homology d–sphere M. If d � kC 3, then the cut locus Cu.N / is a simplicial
complex of dimension at most d � 1, having the homology of the .d�k�1/–sphere
with fundamental group isomorphic to that of M.

The proof of this is a combination of ideas used in the proof of Theorem 3.24. The
homotopy type cannot be deduced here due to the presence of a nontrivial fundamental
group. An intriguing example can be obtained by combining Proposition 3.25 and the
Poincaré homology sphere.

Example 3.26 (cut locus of 0–sphere in the Poincaré sphere) Let QI be the binary
icosahedral group. It is a double cover of I, the icosahedral group, and can be realized
a subgroup of SU.2/. It is known that H1. QI IZ/DH1. QI IZ/D 0, ie it is perfect and
the second homology of the classifying space B QI is zero. A presentation of QI is given
by

QI D hs; t j .st/2 D s3 D t5i:

In fact, if we construct a cell complex X of dimension 2 using the presentation above,
then X has one 0–cell, two 1–cells and two 2–cells. The cellular chain complex, as
computed from the presentation, is given by

0! Z2
�
�1 2
3 �5

�
������! Z2 0

�! Z! 0:

Therefore, H1.X/DH2.X/D 0 while �1.X/D QI.
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In contrast, consider the cut locusC of the 0–sphere in SU.2/= QI , the Poincaré homology
sphere. As SU.2/ is real analytic, so is the homology sphere. By Proposition 3.25,
C is a finite, connected simplicial complex of dimension 2 such that �1.C /Š QI and
H�.C IZ/ ŠH�.S2IZ/. The existence of this space is interesting for the following
reason: although X_S2 has the same topological invariants we are unable to determine
whether X _S2 is homotopy equivalent to C.

In the codimension two case, we have two results.

Theorem 3.27 Let † be a closed , orientable , real analytic surface of genus g and N
a nonempty finite subset. Then Cu.N / is a connected graph , homotopy equivalent to a
wedge product of jN jC 2g� 1 circles.

Proof As M �N is connected, Lemma 3.18 implies that Cu.N / is connected. It
follows from Theorem 3.9 that Cu.N / is a finite 1–dimensional simplicial complex, ie
a finite graph. In this case, Th.�/ is a wedge product of jN j copies of S2 (see (3-4)).
We consider (3-6) with j D 2:

0
i�
�! Z

q
�! zH2._jN jS

2/ @
�!H1.Cu.N // i�

�!H1.†/! 0:

Note that Hd�1.M/ is torsion-free, whence all the groups appearing in the long exact
sequence are free abelian groups. This implies that

dimZH1.Cu.N //D 2gCjN j � 1:

As Cu.N / is a connected finite graph, collapsing a maximal tree T results in a quotient
space Cu.N /=T which is homotopic to Cu.N / as well as being a wedge product of
jN jC 2g� 1 circles.

Remark 3.28 Itoh and Vîlcu [15] proved that every finite, connected graph can be
realized as the cut locus (of a point) of some surface. There remains the question of
orientability of the surface. As noted in the proof of Theorem 3.27, if the surface is
orientable and jN j D 1, then the graph has an even number of generating cycles. If †
is nonorientable, then †Š .RP2/#k has nonorientable genus k and the oriented double
cover of † has genus g D k � 1. Recall that H1.†/ Š Zk�1˚Z2 and H2.†/ D 0.
Looking at (3-6) with j D 2, we obtain

0! Z!H1.Cu.p//! Zk�1˚Z2! 0:
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Thus, H1.Cu.p//ŠZk as homology groups of graphs are free abelian. Let B".Cu.p//
denote the "–neighborhood of Cu.p/ in †. For " sufficiently small, this is a surface
such that B".Cu.p// has one boundary component. The compact surface B".Cu.p//
is reminiscent of ribbon graphs. The surface † can be obtained as the connect-sum of
a disk centered at p and the closure of B".Cu.p//. Therefore, nonorientability of †
is equivalent to nonorientability of B".Cu.p//. A similar observation appears in the
unpublished work of Itoh and Vîlcu [14, Theorem 3.7].

Example 3.29 (homology spheres of codimension two) In continuation of Theorem
3.24, let N ,! SkC2 be a homology sphere of dimension k � 1. Since N has co-
dimension two, SkC2�N is path-connected and so is Cu.N /. We are not assuming
that the metric on SkC2 is real analytic. Using (3-8) and the long exact sequence
in cohomology of .M;N /, we infer that H1.Cu.N // Š Z and all higher homology
groups vanish. However, the Hurewicz theorem cannot be used here to establish that
�1.Cu.N //Š Z.

In particular cases, we may conclude that Cu.N / is homotopic to a circle. It was proved
by Plotnick [22] that certain homology 3–spheres N, obtained by a Dehn surgery of
type 1=2a on a knot, smoothly embed in S5 with complement a homotopy circle. Since
M �N deforms to Cu.N /, it follows that there is a map ˛ W S1! Cu.N / inducing
isomorphisms on homotopy and homology groups.

If k D 1, then a homology 1–sphere is just a knot K in S3. Since S3�K deforms to
Cu.K/, the fundamental group of the cut locus is the knot group. Moreover, in the case
of real analytic knots in S3, the cut locus is a finite simplicial complex of dimension at
most 2 (see Theorem 3.9). Except for the unknot, the knot group is never a free group,
while the fundamental group of a connected, finite graph is free. This observation
establishes that Cu.K/ is always a 2–dimensional simplicial complex whenever K is a
nontrivial (real analytic) knot in S3.

3.3 Morse–Bott function associated to distance function

We first prove that the closure of Se.N / is the cut locus, closely following the proof
given in [29] for the case of a point.

Theorem 3.30 Let Cu.N / be the cut locus of a compact submanifoldN of a complete
Riemannian manifold M. The subset Se.N / of Cu.N / is dense in Cu.N /.

Proof Let q2Cu.N / but not in Se.N /. Choose anN –geodesic 
 , joiningN to q, such
that any extension of 
 is not an N –geodesic. This geodesic 
 is unique as q … Se.N /.
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Figure 5: Co.x0; ı/.

We may write 
.t/ D exp�.tx/, where 
.0/ D p 2 N and 
 0.0/ D x0 2 S.�p/. It
follows from the definition of s that q D exp�.s.x0/x0/. We need to show that every
neighborhood of q in Cu.N / must intersect Se.N /. Suppose it is false. Let ı > 0 and
consider B.x0; ı/, the closed ball with center x0 and radius ı. Define the cone

Co.x0; ı/ WD ftx W 0� t � 1; x 2 B.x0; ı/\S.�/gI

see Figure 5. Since B.x0; ı/ \ S.�/ is homeomorphic to a closed .n�1/–ball for
sufficiently small ı, the cone will be homeomorphic to a closed Euclidean n–ball.
Similarly, define another cone

Co?.x0; ı/ WD
�

s
�
x

kxk

�
x
ˇ̌̌
x 2 Co.x0; ı/; x ¤ 0

�
[f0g:

Note that s.x0/ is finite. As s is continuous, due to Proposition 3.14, for sufficiently
small ı the term s.x=kxk/ is still finite, whence Co?.x0; ı/ is well defined. We claim
that Co?.x0; ı/ is also homeomorphic to a closed Euclidean .n�k/–ball. Indeed, a
nonzero x 2 Co.x0; ı/ implies x D � Ox for some � 2 .0; 1� and Ox 2 B.x0; ı/\ S.�/.
Since s. Ox/x D �s. Ox/ Ox, it follows that Co?.x0; ı/ is the cone of the set

fs. Ox/ Ox j Ox 2 B.x0; ı/\S.�/g;

which is homeomorphic to B.x0; ı/\S.�/. Now we have a dichotomy:

(a) for a fixed small ı > 0, the restriction of exp� to Co?.x0; ı/ is a homeomorphism
to its image because it is injective, or

(b) for any ı > 0, the restriction of exp� to Co?.x0; ı/ is not injective.

If (b) holds, choose vn ¤ wn 2 Co?.x0; 1=n/ such that these map to qn under exp� .
Thus, qn 2 Se.N / and compactness of S.�/ ensures that qn converges to q. If (a) holds,
then let B.q; "/ denote the open ball in M centered at q with radius " > 0. We claim
that it intersects the complement of exp�.Co?.x0; ı// in M. But it is true as s.x0/x0
lies on the boundary of Co?.x0; ı/ and hence it has a neighborhood in Co?.x0; ı/
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which is homeomorphic to a closed n–dimensional Euclidean half plane. Since exp�
restricted to Co?.x0; ı/ is a homeomorphism, the open ball B.q; "/ must intersect the
points outside the image of exp�.Co?.x0; ı//.

Now take "D 1=n. For each n, there exists qn 2B.q; 1=n/ with qn … exp�.Co?.x0; ı//.
Since M is complete, for each point qn let 
n be an N –geodesic joining pn 2N to qn.
We may invoke the following result from Busemann’s book [5, Theorem 5.16, page 24].
Let f
ng be a sequence of rectifiable curves in a finitely compact set X such that the
lengths `.
n/ are bounded. If the initial points pn of 
n form a bounded set, then f
ng
contains a subsequence 
nk

which converges uniformly to a rectifiable curve z
 inX and

`.z
/� lim inf `.
nk
/:

Since fpng lie in the compact set N, we obtain a rectifiable curve z
 such that

`.z
/� lim inf `.
nk
/D lim

k
`.
nk

/D lim
k
dN .qnk

/D dN .q/:

Thus, z
 is actually an N–geodesic joining p0 D limk pnk
to q and the unit tangent

vectors xnk
D 
 0nk

.0/ at pnk
converges to the unit tangent vector QxD z
 0.0/ at p0. Since

x0 is an interior point of the set B.x0; ı/\S.�/, any sequence in S.�/ converging to x0
must eventually lie in Co.x0; ı/. According to our choice, qnk

… exp�.Co?.x0; ı// and
the xnk

all lie outside of Co.x0; ı/. Hence, x0 ¤ Qx and 
 ¤ z
 . Thus, there are two
distinct N–geodesics 
 and z
 joining N to q, a contradiction to q … Se.N /.

We have seen (in Lemma 3.7) that d2N is smooth away from the cut locus. It follows
from Theorem 3.30 that the cut locus is the closure of the singularity of d2N . The
following example suggests that d2N can be differentiable at points in Cu.N /�Se.N /
but not twice differentiable:

Example 3.31 (cut locus of an ellipse) We discuss the regularity of the distance-
squared function from an ellipse x2=a2 C y2=b2 D 1 (with a > b > 0) in R2. For
a discussion of the cut locus for ellipses inside S2 and ellipsoids, see Hebda [10,
pages 90–91]. Let .x0; y0/ be a point inside the ellipse lying in the first quadrant. The
point closest to .x0; y0/ and lying on the ellipse is given by

x D
a2x0

t C a2
; y D

b2y0

t C b2
;

where t is the unique root of the quartic�
ax0

t C a2

�2
C

�
by0

t C b2

�2
D 1
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P0

P"

Q"

Q0

Figure 6: Cut locus of an ellipse.

in the interval .�b2;1/. Given .˛; ˇ/ with ˇ > 0, we set

P".˛; ˇ/D
�
a2�b2

a
C "˛; "ˇ

�
I

this defines a straight line passing through P0.˛; ˇ/ in the direction of .˛; ˇ/. For
" > 0, P".˛; ˇ/ lies in the first quadrant and we denote by t D t ."/ the unique relevant
root of the quartic �

a..a2� b2/=aC "˛/

t C a2

�2
C

�
b"ˇ

t C b2

�2
D 1:

Simplifying this after dividing by " and taking a limit "! 0C, we obtain

2a˛

a2� b2
D lim
"!0C

��
2

a2� b2

�
t C b2

"
� b2ˇ2

"

.t C b2/2

�
:

On the other hand, the point Q".˛; ˇ/ on the ellipse closest to P".˛; ˇ/ is given by

x" D
a2..a2� b2/=aC "˛/

t C a2
; y" D

b2"ˇ

t C b2
:

It follows that

(3-10) d2" .˛; ˇ/ WD d
2.P";Q"/D

t2

a2

�
a2� b2C a"˛

t C a2

�2
C
t2

b2

�
b"ˇ

t C b2

�2
:

Using t .0/D�b2, simplifications lead us to

lim
"!0C

d2" �d
2
0

"
D

2ab4˛

a2.a2�b2/
� lim
"!0C

�
.tCb2/.a2b2�a2tC2b2t /

".tCa2/2
�ˇ2

t2"

.tCb2/2

�
D

2ab4˛

a2.a2�b2/
�

2b2

a2�b2
lim
"!0

tCb2

"
Cˇ2b4 lim

"!0

"

.tCb2/2

D
2ab4˛

a2.a2�b2/
�
2ab2˛

a2�b2
D�

2b2˛

a
:
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On the other hand, for "<0, the pointP".˛; ˇ/ lies in the fourth quadrant. By symmetry,
the distance between P".˛; ˇ/ and Q".˛; ˇ/ is the same as that between P�".�˛; ˇ/
and Q�".�˛; ˇ/. However, it is seen that

d2.P�".�˛; ˇ/;Q�".�˛; ˇ//D d
2
�".�˛; ˇ/;

as defined in (3-10). Therefore,

lim
"!0�

d2.P".˛; ˇ/;Q".˛; ˇ//� d
2.P0.˛; ˇ/;Q0.˛; ˇ//

"

D lim
"!0�

d2�".�˛; ˇ/� d
2
0 .�˛; ˇ/

"

D� lim
�"!0C

d2�".�˛; ˇ/� d
2
0 .�˛; ˇ/

�"

D�
2b2˛

a
;

where the last equality follows from the right-hand derivative of d2, as computed
previously.

When ˇ D 0, we would like to compute d2" .˛; 0/. If " > 0, then

(3-11) d2" .˛; 0/D .b
2=a� "˛/2 D

b4

a2
�
2b2˛"

a
C˛2"2:

On the other hand, if " < 0 is sufficiently small, then there are two points on the ellipse
closest to P".˛; 0/ D ..a2 � b2/=aC "˛; 0/, with exactly one on the first quadrant,
say Q". Since the segment P"Q" must be orthogonal to the tangent to the ellipse at Q",
we obtain the coordinates for Q":

x" D
a2..a2� b2/=aC "˛/

a2� b2
; y2" D b

2

�
1�

x2"
a2

�
; y" > 0:

We may compute the distance

(3-12) d2" .˛; 0/ WD d
2.P";Q"/D

b4

a2
�
2b2˛"

a
�
b2˛2"2

a2� b2
;

where "<0. Combining (3-11) and (3-12), we conclude that d2 is differentiable atP0D
..a2�b2/=a; 0/, a point in Cu.N / but not in Se.N /. However, comparing the quadratic
part of d2 in (3-11)–(3-12), we conclude that d2 is not twice differentiable at P0.

Theorem 3.32 Let N be a closed embedded submanifold of a complete Riemannian
manifold M. Let dN WM !R be the distance function with respect to N. If f D d2N ,
then its restriction to M � Cu.N / is a Morse–Bott function , with N as the critical
submanifold. Moreover , the gradient flow of f deforms M �Cu.N / to N.
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Proof It follows from Lemma A.2 that the map exp�1� WM�.Cu.N /[N/! ��f0g is
an (into) diffeomorphism and dN .q/D kexp�1� .q/k and hence the distance function is
of class C1 at q 2M � .Cu.N /[N/. Using Fermi coordinates (see Proposition 3.5),
we have seen that the distance-squared function is smooth around N and therefore
it is smooth on M �Cu.N /. By Corollary 3.6, the Hessian of this function at N is
nondegenerate in the normal direction. It is well known [26, Proposition 4.8] that
krd.q/k D 1 if dN is differentiable at q 2M. Thus, for q 2M � .Cu.N /[N/, we
have

(3-13) krf .q/k D 2dN .q/krdN .q/k D 2dN .q/:

Let 
 be the unique unit-speed N–geodesic that joins N to q, ie


 W Œ0; dN .q/�!M; 
.0/D p; 
.dN .q//D q; k

0
k D 1:

We may write rf .q/D �
 0.dN .q//Cw, where w is orthogonal to 
 0.dN .q//. But

hrf jq; 

0.dN .q//i D

d

dt
f
�

.dN .q/C t /

�ˇ̌̌
tD0
D
d

dt
.dN .q/

2
C 2dN .q/t C t

2/
ˇ̌̌
tD0

D 2dN .q/:

Thus, �D 2d.q/ and, combined with (3-13), we conclude that

rf .q/D 2dN .q/

0.dN .q//:

Therefore, the negative gradient flow line initialized at q 2M �Cu.N / is given by

�.t/D 
.dN .q/e
�2t /:

These flow lines define a flow which deforms M �Cu.N / to N in infinite time.

The reader may choose to revisit the example of GL.n;R/ discussed in Section 2.2
and treat it as a concrete illustration of the theorem above.

4 Applications to Lie groups

Due to classical results of Cartan, Iwasawa and others, we know that any connected
Lie group G is diffeomorphic to the product of a maximally compact subgroup K
and an Euclidean space. In particular, G deforms to K. For semisimple groups, this
decomposition is stronger and is attributed to Iwasawa. The Killing form on the Lie
algebra g is nondegenerate and negative-definite for compact semisimple Lie algebras.
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For such a Lie group G, consider the Levi-Civita connection associated to the bi-
invariant metric obtained from the negative of the Killing form. This connection
coincides with the Cartan connection.

We consider two examples, both of which are noncompact and nonsemisimple. We
prove that these Lie groups G deformation retract to maximally compact subgroups K
via gradient flows of appropriate Morse–Bott functions. This requires a choice of a
left-invariant metric which is right-K–invariant and a careful analysis of the geodesics
associated with the metric. In particular, we provide a possibly new proof of the
surjectivity of the exponential map for U.p; q/.

4.1 Invertible matrices with positive determinant

Let g be a left-invariant metric on GL.n;R/, the set of invertible matrices. Recall that
a left-invariant metric g on a Lie group is determined by its restriction at the identity.
For A 2 GL.n;R/, consider the left multiplication map lA W GL.n;R/! GL.n;R/,
B 7! AB. This extends to a linear isomorphism from M.n;R/ to itself. Thus, the
differential .DlA/I W TIGL.n;R/! TAGL.n;R/ is an isomorphism and given by lA
itself. For X; Y 2 TIGL.n;R/,

gI .X; Y /D gA..DlA/IX; .DlA/IY /D gA.AX;AY /:

We choose the left-invariant metric on GL.n;R/ generated by the Euclidean metric
at I. Therefore,

gA�1.X; Y /D hAX;AY iI WD tr..AX/TAY /D tr.XTATAY /:

Note that this metric is right-O.n;R/–invariant. We are interested in the distance
between an invertible matrix A (with det.A/ > 0) and SO.n;R/. Since SO.n;R/ is
compact, there exists B 2 SO.n;R/ such that d.A;B/D dSO.n;R/.A/.

Lemma 4.1 If D is a diagonal matrix with positive diagonal entries �1; : : : ; �n, then

dSO.n;R/.D/D d.D; I /:

Moreover , I is the unique minimizer and the associated minimal geodesic is given by

.t/D et logD .

Proof Choose B 2 SO.n;R/ satisfying d.A;B/D dSO.n;R.A//. Since, with respect
to the left-invariant metric, GLC.n;R/ is complete, there exists a minimal geodesic

 W Œ0; 1�! GLC.n;R/ joining B to D, ie


.0/D B; 
.1/DD and `.
/D d.D;B/:
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The first variational principle implies that 
 0.0/ is orthogonal to TBSO.n;R/. It
follows from Martin and Neff [19, Section 2.1] that �.t/ D etW is a geodesic if W
is a symmetric matrix. Moreover, �0.0/ D W is orthogonal to TISO.n;R/. As left
translation is an isometry and isometry preserves geodesic, it follows that 
.t/DBetW

is a geodesic with 
 0.0/ orthogonal to TBSO.n;R/. By the defining properties of 
 ,
D D 
.1/ D BeW. Since eW is symmetric positive-definite, we obtain two polar
decompositions of D, ie D D ID and D D BeW. By the uniqueness of the polar
decomposition for invertible matrices, B D I and D D eW.

In order to compute d.I;D/, note that

eW DD D elogD;

where logD denotes the diagonal matrix with entries log�1; : : : ; log�n. As W and
logD are symmetric, and matrix exponential is injective on the space of symmetric
matrices, we conclude that W D logD. The geodesic is given by 
.t/D et logD and

(4-1) dSO.n;R.D//D k

0.0/kI D klogDkI D

� nX
iD1

.log�i /2
�1=2

:

Thus, the distance-squared function will be given by
Pn
iD1.log�i /2.

Now, for any A 2 GLC.n;R/, we can apply the SVD decomposition, ie AD UDV T

with
p
ATAD VDV T and log

p
ATAD V.logD/V T. Note that U; V 2 SO.n;R/ and

D is a diagonal matrix with positive entries. The left-invariant metric is right-invariant
with respect to orthogonal matrices. Thus,

dSO.n;R/.A/D dSO.n;R/.D/D klogDkI ;

where the last equality follows from the lemma (see (4-1)). As

klogDkI D kV.logD/V T kI D klog
p
ATAkI ;

It follows from the arguments of the lemma and the metric being bi-O.n;R/–invariant
that


.t/D Uet logDV T

is a minimal geodesic joining UV T to A, realizing dSO.n;R/.A/. As the minimizer
UV T is unique, Se.SO.n;R// is empty, implying that Cu.SO.n;R// is empty as well.
In fact, UV T D A

p
ATA

�1
and

(4-2) 
.t/D Uet logDV T D UV T Vet logDV T D A
p
ATA

�1

et log
p
ATA:
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If we compare (2-6) — the deformation of GL.n;R/ to O.n;R/ inside M.n;R/—
with (4-2), then, in both cases, an invertible matrix A deforms to A

p
ATA

�1
. Finally,

observe that the normal bundle of SO.n;R/ is diffeomorphic to GLC.n;R/.

4.2 Indefinite unitary groups

Let n be a positive integer with nD pCq. Consider the inner product on Cn given by

h.w1; : : : ; wn/; .z1; : : : ; zn/i D z1 xw1C � � �C zp xwp � zpC1 xwpC1� � � � � zn xwn:

This is given by the matrix Ip;q as

hw; zi D xwtIp;qzD
�
xw1 � � � xwn

� �Ip 0

0 �Iq

�0@z1:::
zn

1A :
Let U.p; q/ denote the subgroup of GL.n;C/ preserving this indefinite form, ie A 2
U.p; q/ if and only if A�Ip;qA D Ip;q . In particular, detA is a complex number of
unit length. By convention, In;0 D In and I0;n D�In, both of which correspond to
U.n; 0/D U.n/D U.0; n/, the unitary group. In all other cases, the inner product is
indefinite.

The group U.1; 1/ is given by matrices of the form

AD
�
˛ ˇ

� x̌ �x̨

�
with � 2 S1 and j˛j2� jˇj2 D 1:

More generally, we shall use

AD
�
A B

C D

�
to denote an element of U.p; q/. It follows from the definition that A 2 U.p; q/ if and
only if

A�A�C �C D Ip; A�B �C �DD 0p�q; B�B �D�D D�Iq:

Observe that, if Av D 0, then

0D A�Av D C �CvC v;

which implies that C �C, a positive semidefinite matrix, has �1 as an eigenvalue unless
v D 0. Therefore, A is invertible and the same argument works for D.

Lemma 4.2 The intersection of U.pCq/ with U.p; q/ is U.p/�U.q/. Moreover , if
A 2 U.p; q/, then A�;

p
A�A 2 U.p; q/.
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Proof If A 2 U.p/�U.q/, then

A�ACC �C D Ip; B�BCD�D D Iq:

This implies that both B and C are zero matrices. If A 2 U.p; q/, then A� D
Ip;qA�1Ip;q and

.A�A/�Ip;q.A�A/D .A�A/Ip;q.A�A/D Ip;qA�1Ip;qAIp;qIp;qA�1Ip;qA

D Ip;q DA�Ip;qA:

This also implies that AIp;qA� D Ip;q .

All the eigenvalues of A�A are positive. Moreover, if � is an eigenvalue of A�A with
eigenvector vD .v1; : : : ; vp; vpC1; : : : ; vn/, then

Ip;qvDA�AIp;qA�AvD �.A�AIp;qv/;

which implies that ��1 is also an eigenvalue with eigenvector

v0 D .v1; : : : ; vp;�vpC1; : : : ;�vn/:

If fv1; : : : ; vng is an eigenbasis of A�A with (possibly repeated) eigenvalues �1; : : : ; �n,
then

p
A�AIp;q

p
A�Avj D

p
A�AIp;q

p
�jvj D

p
�j
p
A�Av0j D v0j D Ip;qvj :

Thus,
p
A�A satisfies the defining relation for a matrix to be in U.p; q/.

We may use the polar decomposition (for matrices in GL.n;C/) to write

AD U jAj; where U DA
p
A�A

�1
and jAj D

p
A�A;

where U; jAj 2 U.p; q/. For U.1; 1/, this decomposition takes the form�
˛ ˇ

� x̌ �x̨

�
D

�
˛=j˛j 0

0 �x̨=j˛j

��
j˛j j˛jˇ=˛

j˛j x̌=x̨ j˛j

�
:

The Lie algebra up;q is given by matrices X 2Mn.C/ such that

X�Ip;qC Ip;qX D 0:

This is a real Lie subalgebra of MpCq.C/. It contains the subalgebras up and uq as
Lie algebras of the subgroups U.p/� Iq and Ip �U.q/. Consider the inner product

h � ; � iW up;q � up;q!R; hX; Y i WD tr.X�Y /:

Algebraic & Geometric Topology, Volume 23 (2023)



A connection between cut locus, Thom space and Morse–Bott functions 4223

Lemma 4.3 The inner product is symmetric and positive-definite.

Proof Note that

hX; Y i D tr.�Ip;qXIp;qY /D tr.�Ip;qYIp;qX/D hY;Xi:

Since hX; Y i D hY;Xi due to the invariance of trace under transpose, we conclude that
the inner product is real and symmetric. It is positive-definite as hX;XiD tr.X�X/� 0
and equality holds if and only if X is the zero matrix.

The Riemannian metric obtained by left translations of h � ; � i will also be denoted by
h � ; � i. We shall analyze the geodesics for this metric. The Lie algebra up ˚ uq of
U.p/�U.q/ consists of matrices�

A 0

0 D

�
with ACA� D 0 and DCD� D 0:

Let n denote the orthogonal complement of up˚ uq inside up;q . As n is of (complex)
dimension pq and ��

0 B

B� 0

� ˇ̌̌
B 2Mp;q.C/

�
is contained in n, this is all of it. We may verify that��

A 0

0 D

�
;

�
0 B

B� 0

��
D

�
0 AB �BD

DB��B�A 0

�
2 n;��

0 B

B� 0

�
;

�
0 C

C � 0

��
D

�
BC ��CB� 0

0 B�C �C �B

�
2 up˚ uq:

Lemma 4.4 Let 
 be the integral curve , initialized at e, for a left-invariant vector
field Y. This curve is a geodesic if Y.e/ belongs either to n or to up˚ uq .

Proof The Levi-Civita connection r is given by the Koszul formula

2hX;rZY iDZhX; Y iCY hX;Zi�XhY;ZiChZ; ŒX; Y �iChY; ŒX;Z�i�hX; ŒY;Z�i:

Putting Z D Y and Z DX, two left-invariant vector fields, in the above, we obtain

hX;rY Y i D hY; ŒX; Y �i:

To prove our claim, it suffices to show that rY Y D 0, ie hY; ŒX; Y �i D 0 for any X. Let
us assume that Y.e/ 2 n. If X.e/ 2 n, then ŒX.e/; Y.e/� 2 up˚ uq , which implies that
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hY.e/; ŒX.e/; Y.e/�i D 0. If X.e/ 2 up˚ uq , then

hY; ŒX; Y �i D

��
0 B

B� 0

�
;

�
0 AB �BD

DB��B�A 0

��
D tr

�
B.DB��B�A/ 0

0 B�.AB �BD/

�
D tr.BDB��BB�A/C tr.B�AB �B�BD/

D 0

by the cyclic property of trace. Thus, rY Y D 0 if Y.e/ 2 n; a similar proof works if
Y.e/ 2 up˚ uq .

Remark 4.5 An integral curve of a left-invariant vector field (also called one-parameter
subgroups) need not be a geodesic in U.p; q/. For instance, if XCY is a left-invariant
vector field given by X.e/ 2 up ˚ uq and Y.e/ 2 n, then rXCY .X C Y / D 0 if and
only if rXY D 1

2
ŒX; Y � and rYX D 1

2
ŒY; X�. This happens if and only if the metric is

bi-invariant, ie
hŒX;Z�; Y i D hX; ŒZ; Y �i:

This is not true; for instance, forX.e/2up˚uq and linearly independent Y.e/; Z.e/2n,
we get hŒX;Z�; Y i � hX; ŒZ; Y �i ¤ 0.

Consider the matrix
Y D

�
0 B

B� 0

�
2 n:

Let B D U
p
B�B and B� D

p
B�BU � be polar decompositions, where U and U �

are partial isometries. It follows from direct computation that

eY D

 
IpC

1
2Š
BB�C 1

4Š
.BB�/2C� � � BC 1

3Š
B.B�B/C 1

5Š
B.B�B/2C� � �

B�C 1
3Š
.B�B/B�C 1

5Š
.B�B/2B�C� � � IqC

1
2Š
B�BC 1

4Š
.B�B/2C� � �

!

D

�
cosh.

p
BB� / U sinh.

p
B�B /

sinh.
p
B�B /U � cosh.

p
B�B /

�
:

It can be checked that
en\ .U.p/�U.q//D fIng:

It is known that the nonzero eigenvalues of Y are the nonzero eigenvalues of
p
BB�

and their negatives.
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Theorem 4.6 For any element A 2 U.p; q/, the associated matrix
p
A�A can be

expressed uniquely as eY for Y 2 n. Moreover , there is a unique way to express A
as a product of a unitary matrix and an element of en, and it is given by the polar
decomposition.

In order to prove the result, we discuss some preliminaries on logarithms of complex
matrices. In general, there is no unique logarithm. However, the Gregory series

logAD�
1X
mD0

2

2mC1
Œ.I �A/.I CA/�1�2mC1

converges if all the eigenvalues of A 2Mn.C/ have positive real part; see Higham [11,
Section 11.3, page 273]. In particular, logA is well defined for Hermitian positive-
definite matrices. This is often called the principal logarithm of A. This logarithm
satisfies elogA D A. There is an integral form of the logarithm that applies to matrices
without real or zero eigenvalues; it is given by

logAD .A� I /
Z 1

0

Œs.A� I /C I ��1 ds:

Lemma 4.7 The inverse of A�AC In for A 2 U.p; q/ is given by

ŒA�AC In��1 D
1

2

�
Ip �A�1B

�B�.A�/�1 Iq

�
:

Proof Since A�A has only positive eigenvalues, A�ACIn has no kernel. We note that

A�AC In D
�
2C �C C 2Ip 2A�B

2B�A 2B�BC 2Iq

�
D

�
2A�A 2A�B

2B�A 2D�D

�
:

The inverse matrix satisfies�
2A�A 2A�B

2B�A 2D�D

��
E F

F � G

�
D

�
Ip 0

0 Iq

�
:

As the matrices are Hermitian, the three constraints that E, F and G must satisfy (and
are uniquely determined by) are

E D 1
2
.A�A/�1�A�1BF �; GD 1

2
.D�D/�1�D�1CF; F D�A�1BG:

We note that E D 1
2
Ip , G D 1

2
Iq and F D�1

2
A�1B satisfy the above equations. For

instance,
1
2
.A�A/�1�A�1BF � D 1

2
.A�A/�1C 1

2
A�1BB�.A�/�1

D
1
2
.A�A/�1C 1

2
A�1.AA�� Ip/.A

�/�1 D 1
2
Ip;
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where BB� D AA�� Ip is a consequence of A� 2 U.p; q/. Yet another consequence
is AC � D BD�, which is equivalent to

A�1B D .D�1C/�:

In a similar vein,
1
2
.D�D/�1�D�1CF D 1

2
.D�D/�1C 1

2
D�1CC �.D�/�1

D
1
2
.D�D/�1C 1

2
D�1.DD�� Iq/.D

�/�1 D 1
2
Iq;

where CC � DDD�� Iq is due to A� 2 U.p; q/.

Proof of Theorem 4.6 We use Gregory series expansion for computing the principal
logarithm of A�A along with Lemma 4.7:

log.A�A/D
1X
mD0

2

2mC1

�
2

�
A�A�Ip A�B

B�A D�D�Iq

�
1

2

�
Ip �A�1B

�B�.A�/�1 Iq

��2mC1
D

1X
mD0

2

2mC1

�
0 A�1B

B�.A�/�1 0

�2mC1
:

We set Y D 1
2

log.A�A/. It is clear that Y 2 n and eY D
p
A�A. It is known that the

exponential map is injective on Hermitian matrices. This implies the uniqueness of Y.

If U1eY1 DU2e
Y2 are two decompositions of A 2U.p; q/ with Ui 2U.p/�U.q/ and

Yi 2 n, then
e2Y1 D eY1U �1 U1e

Y1 D eY2U �2 U2e
Y2 D e2Y2 :

By the injectivity of the exponential map (on Hermitian matrices), we obtain Y1 D Y2,
which implies that U1 D U2.

We infer the following result (see Yakubovich and Starzhinskii [30, Lemma 1, page 211]
for a different proof):

Corollary 4.8 The exponential map exp W up;q! U.p; q/ is surjective.

Proof Using the polar decomposition and Theorem 4.6,

ADA
p
A�A

�1p
A�ADA

p
A�A

�1
eY :

Since the matrix exponential is surjective for U.p/�U.q/, choose Z 2 up˚ uq such
that eZ DA

p
A�A�1. By the Baker–Campbell–Hausdorff formula, we may express

eZeY as the exponential of an element in up;q .
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The distance from any matrix A 2 U.p; q/ to U.p/�U.q/ is given by the length of
the curve


.t/DA
p
A�A

�1
etY ;

which can be computed (and simplified via left-invariance) as

`.
/D

Z 1

0

k
 0.t/k
.t/ dt D

Z 1

0

kY k dt D kY k:

Note that
kY k2 D tr.Y �Y /D tr

�
1
4
.log.A�A//2

�
:

Thus, the distance-squared function is given by

d2U.p/�U.q/ W U.p; q/!R; A 7! 1
4

trŒ.log.A�A//2�:

Appendix A The continuity of the map (3-2)

Recall the statement of Proposition 3.14:

Proposition A.1 The map s W S.�/! Œ0;1/, as defined in (3-2), is continuous.

The proof relies on a characterization of s.v/.

Lemma A.2 Let u 2 Sp.�/. A positive real number T is s.u/ if and only if

u W Œ0; T �!M is an N –geodesic and at least one of the following holds:

(i) 
u.T / is the first focal point of N along 
u.

(ii) There exists v 2 S.�/ with v ¤ u such that 
v.T /D 
u.T /.

Note that 
u.T / being a focal point of N along 
u means that .D exp�/.uT / is not
of full rank, where exp� is the normal exponential, as defined in (3-1). When N is a
point, this notion of focal points reduces to that of conjugate points.

In order to prove the lemma, we need the following observations:

Observation A [26, Lemma 2.11, page 96] Let N be a submanifold of M and

 W Œa;1/!M a geodesic emanating perpendicularly from N. If 
.b/ is the first focal
point of N along 
 , then , for t > b, 
 jŒa;t� cannot be an N–geodesic , ie `.
 jŒa;t�/ >
dN .
.t//.

Recall that a sequence f
ng of geodesics, defined on closed intervals, is said to converge
to a geodesic 
 if 
n.0/! 
.0/ and 
 0n.0/! 
 0.0/. It follows from the continuity of
the exponential map that, if tn! t , then 
n.tn/! 
.t/.
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Observation B Let 
n be unit-speed N –geodesics joining pnD 
n.0/ to qnD 
n.tn/.
If 
n converges to a geodesic 
 and tn! l , then 
 is a unit-speed N –geodesic joining
p D limn pn to q WD 
.l/D limn 
n.tn/.

Proof The unit normal bundle S.�/ is closed. Since 
 0n.0/! 
 0.0/, it follows that

 0.0/ 2 S.�/. Note that

dN .q/D lim
n!1

dN .qn/D lim
n!1

d.pn; qn/D lim
n!1

tn D l D `.
 jŒ0;l�/

implies that 
 is an N–geodesic.

Proof of Lemma A.2 If 
u.t/ is the first focal point ofN along 
u, then Observation A
implies that 
u cannot be minimal beyond this value. If (ii) holds, then we need to
show that, for sufficiently small " > 0, 
ujŒ0;TC"� is not minimal. Suppose, on the
contrary, that 
u is minimal beyond T. Take a minimal geodesic ˇ joining 
v.T � "/
to 
u.T C "/. Observe that

2"D d.
u.T C "/; 
u.T //C d.
v.T /; 
v.T � "// > d.
u.T C "/; 
v.T � "//:

If p; q; r 2M are such that d.p; q/Cd.q; r/D d.p; r/ and there exist shortest normal
geodesics 
1 and 
2 joining p to q and q to r , respectively, then 
1[
2 is smooth at q
and defines a shortest normal geodesic joining p to r . Therefore, we have

`.
vjŒ0;T�"�[ˇ/D T � "C d.
v.T � "/; 
u.T C "// < T C "D `.
ujŒ0;TC"�/:

This contradiction establishes that 
ujŒ0;TC"� is not minimal.

For the converse, set T D s.u/ and observe that 
ujŒ0;T � is an N –geodesic. Assuming
that q WD 
u.T / is not the first focal point of N along 
u, we will prove that (ii)
holds. Let p D 
u.0/ and choose a neighborhood zU of T u in � such that exp� j zU
is a diffeomorphism. For sufficiently large n, qn WD 
u.T C 1=n/ 2 exp�. zU/. Take
N–geodesics 
n parametrized by arc length joining pn to qn and set un WD P
n.0/ 2
S..Tpn

N/?/. Since S..Tpn
N/?/ is compact, by passing to a subsequence, we may

assume that un converges to v 2 S.Np/. By Observation B,


v.T /D lim
n!1


un

�
T C

1

n

�
D 
u.T /:

If v D u, then, for sufficiently large n, d.p; qn/un 2 zU , whence�
T C

1

n

�
uD d.p; qn/un:

Taking absolute values on both sides implies T C 1=n > d.p; qn/. This contradiction
implies v ¤ u.
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Proof of Proposition A.1 We will prove that s.un/! s.u/ whenever .pn; un/!
.p; u/ in the unit normal bundle S.�/. Let T be any accumulation point of the sequence
fs.un/g including1. By Observation B, 
ujŒ0;T � is anN –geodesic and hence T � s.u/.
If T DC1, we are done. So let us assume that T <C1. From Lemma A.2, at least
one of the following holds for infinitely many n:

(i) s.un/ is the first focal point of N along 
un
.

(ii) There exist vn 2 S.Npn
/ with vn ¤ un and 
un

.s.un//D 
vn
.s.un//.

If (i) is true for infinitely many n, then choose infinitely many unit vectors fwng
which belong to the kernel ker

�
D exp�.s.un/un/

�
and are contained in a compact

subset of S.�/. Choose a convergent subsequence whose limit w is contained in
ker.D exp� .T u//. Since w ¤ 0, the rank of D exp� .T u/ is less than dimM. Thus,

u.T / is the first focal point of N along 
u and T D s.u/.

If (ii) is true for infinitely many n, then we may assume that vn! v 2 S.�/. If v ¤ u,
then Lemma A.2(ii) holds for T, whence T D s.u/. If v D u, we claim that 
u.T / is
the first focal point of N along 
u. If not, then the map exp� is regular at T u 2 � and
hence the map

ˆ W �!M �M; .p; u/ 7! .p; exp�.p; u//;

is regular at T u. Therefore,ˆ is a diffeomorphism if restricted to an open neighborhood
zU of T u in �. Since v D u, which implies, for sufficiently large n, .pn; s.un/un/
and .pn; s.un/vn/ belong to zU and are different. On the other hand, by assumption,
ˆ.s.un/un/Dˆ.s.un/vn/, which is a contradiction. Therefore, 
u.T / is the first focal
point and T D s.u/.

Appendix B Derivative of the square root map

Lemma B.1 Let A be a positive-definite matrix and  W A 7!
p
A. Then

D A.H/D

Z 1
0

e�t
p
AHe�t

p
A dt

for any symmetric matrix H.

Proof As  .A/ � .A/D A, differentiating at A, we obtain

(B-1) D A.H/ .A/C .A/D A.H/DH:

(i) Given a positive-definite matrix A and a symmetric matrix H, we need to show
that the equation

B
p
AC
p
AB DH
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has a unique solution. For that, we will prove that the map

f W Symmn! Symmn; B 7! B
p
AC
p
AB;

is bijective, where Symmn denotes the set of all n�n symmetric matrices. Equivalently,
we will show that f is injective. Without loss of generality, we assume that

p
A is a

diagonal matrix with positive entries t1; t2; : : : ; tn. Note that

ker.f /D fB 2 Symmn W B
p
AC
p
AB D 0g:

Consider

B
p
AC
p
AB D 0 D) B diag.t1; : : : ; tn/C diag.t1; : : : ; tn/B D 0

D) tj bij C tibij D 0 for 1� i; j � n:

Since ti > 0 for 1� i � n, we see bij D 0. Therefore, f is injective.

(ii) For any positive-definite matrix X and for any symmetric matrix Y, the integral

(B-2)
Z 1
0

e�tXYe�tX dt

converges. We note that the eigenvalues of e�tX are e�t�j , where �j are the eigenvalues
of X. Since X is a positive-definite matrix, each of the �j is positive. Without loss of
generality, we assume that �D �1 is the smallest eigenvalue of X. Then we have

e�t�j � e�t� D) ke�tXk D e�t�;

where k � k is the operator norm. Therefore, the operator norm of the integrand in (B-2)
is bounded by 2e�t�kY k, which is an integrable function. Hence, the integral given
by (B-2) converges.

(iii) D A.H/ satisfies (B-1). Observe that�Z 1
0

e�t
p
A
�H � e�t

p
A dt

�
p
AC
p
A

�Z 1
0

e�t
p
A
�H � e�t

p
A dt

�
D

Z 1
0

.e�t
p
A
�H � e�t

p
A
p
AC
p
Ae�t

p
A
�H � e�t

p
A/ dt

D

Z 1
0

.e�t
p
AHe�t

p
A/0 dt DH:

From (i), (ii) and the uniqueness of the derivative, the lemma is proved.

Lemma B.2 The map g WM.n;R/!R, A 7! tr.
p
ATA /, is differentiable if and only

if A is invertible.
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Proof Let A be an invertible matrix. We will prove that the function g is differentiable
at A. Let P be the set of all positive-definite matrices, which is an open subset of the
set of all symmetric matrices S. We will prove that the map

r W P! P; A 7!
p
A;

is differentiable. Define a function

s W P! P; A 7! A2:

We will show that s is a diffeomorphism and, from the inverse function theorem, r will
be differentiable. In order to show that s is a diffeomorphism, we claim that, for A 2P ,
DsA W TAP ! TA2P is injective. Note that P is an open subset of a vector space S
and, therefore, TAP Š S Š TA2P . So take B 2 S such that DsA.B/ D 0. We will
show that B D 0. Recall that DsA.B/DABCBA. Now choose an orthonormal basis
fv1; v2; : : : ; vng of the eigenspace of A and let Avi D �ivi (�i > 0). Then,

A.Bvi /D�BAvi D�B�ivi D��i.Bvi /;

which implies Bvi is also an eigenvector of A with eigenvalue ��i < 0. Hence,
Bvi D 0, which implies B D 0.

For the converse, we will show that, if A is a singular matrix, then the map g is
not directional differentiable. Let A be a singular matrix. Using the singular value
decomposition, we write

AD U

�
D 0

0 0k

�
V T ;

where D is an .n� k/� .n� k/ diagonal matrix with positive entries. If

B D U

�
0n�k 0

0 Ik

�
;

then we claim that g is not differentiable in the direction of B. Sincep
.AC tB/T .AC tB/D V

�
D 0

0 Ikjt j

�
V T ;

the limit

lim
t!0

g.AC tB/�g.A/

t
D lim
t!0

1

t

 
tr
�
V

�
D 0

0 Ikjt j

�
V T

�
� tr

�
V

�
D 0

0 0k

�
V T

�!

D k lim
t!0

jt j

t

does not exist and hence the function g is not differentiable.
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