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Staircase symmetries in Hirzebruch surfaces

NICKI MAGILL

DUSA MCDUFF

This paper continues the investigation of staircases in the family of Hirzebruch
surfaces formed by blowing up the projective plane with weight b, that was started by
Bertozzi, Holm Maw, McDuff, Mwakyoma, Pires and Weiler (2021). We explain the
symmetries underlying the structure of the set of b that admit staircases, and show
how the properties of these symmetries arise from a governing Diophantine equation.
We also greatly simplify the techniques needed to show that a family of steps does
form a staircase by using arithmetic properties of the accumulation function. There
should be analogous results about both staircases and mutations for the other rational
toric domains considered, for example, by Cristofaro-Gardiner, Holm, Mandini and
Pires (2020) and by Casals and Vianna (2022).

53D05; 11D99

1 Introduction

1.1 Overview

This paper continues the investigation of the ellipsoidal embedding capacity function
for the family of Hirzebruch surfaces Hb that was begun by Bertozzi, Holm, Maw,
McDuff, Mwakyoma, Pires and Weiler [1]. Here .Hb; !/ is the one-point blowup
CP 2.1/ # CP 2.b/ of the complex projective plane with line class L of size 1 and
exceptional divisor E0 of size b. The capacity function cX W Œ1;1/!R for a general
four-dimensional target manifold (X; �/ is defined by

cX .z/ WD inff� jE.1; z/ s,�! �Xg;

where z � 1 is a real variable, �X WD .X; �!/, an ellipsoid E.c; d/�C2 is the set

E.c; d/D

�
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;

and we write E s,�! �X if there is a symplectic embedding of E into �X .
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4236 Nicki Magill and Dusa McDuff

It is straightforward to see that cHb .z/ is bounded below by the volume constraint
function Vb.z/D

p
z=.1� b2/, where 1� b2 is the appropriately normalized volume

of Hb . Further, the function z 7! cHb .z/ is piecewise linear when not identically equal
to the volume constraint curve. When its graph has infinitely many nonsmooth points
(or steps) lying above the volume curve, we say that cHb has an infinite staircase.

It was proven by Cristofaro-Gardiner, Holm, Mandini and Pires [3] that when b D 1=3,
ie in the case whenHb is monotone, the function cHb admits a staircase with outer steps
at points z D xk=xk�1 that satisfy the recursion xkC1 D 6xk � xk�1 and accumulate
at the fixed point 3C 2

p
2 of this recursion.1 Another key result from this paper is [3,

Theorem 1.8], stating that if cHb has an infinite staircase, then its accumulation point
is at the point z D acc.b/, the unique solution > 1 of the following quadratic equation
involving b:

(1.1.1) z2�

�
.3� b/2

1� b2
� 2

�
zC 1D 0:

Further, if Hb has an infinite staircase, then at z D acc.b/ the ellipsoid embedding
function must equal the volume:

(1.1.2) cHb .acc.b//D

r
acc.b/
1� b2

DW Vb.acc.b//:

We say thatHb is unobstructed if cHb .acc.b//DVb.acc.b//. Thus ifHb has a staircase,
it is unobstructed. However the converse does not hold: [1, Theorem 6] shows that,
although H1=5 is unobstructed, it has no staircase. As shown in Figure 1, the function
b 7!acc.b/ decreases for b2 Œ0; 1=3/, with minimum value amin WDacc.1=3/D3C2

p
2,

and then increases.

It turns out that the nature of the accumulation function plays a crucial role in our
discussion. For example, as shown in Lemma 2.1.1, the properties of the pairs of
rational numbers .b; z/ with z D acc.b/ are a key to the symmetries of the problem.
Other important consequences are collected in Section 2.2. Note also that the case bD 0
(that is, the case of CP 2) was fully analyzed by McDuff and Schlenk [6]. Here there
is a staircase, which is called the Fibonacci stairs because its numerics are governed
by the Fibonacci numbers; see Figure 1. The new staircases that we have found for
general Hb are all analogs of that one. However, as we explain in Example 2.3.7, it is
perhaps better to consider our staircases to be offshoots of the 1=3–staircase.

1This staircase actually consists of three intertwining strands that each satisfy this recursion; for details
see Example 2.3.7. Further, conjecturally b D 1=3 is the only rational value of b at which Hb admits a
staircase.

Algebraic & Geometric Topology, Volume 23 (2023)
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Figure 1: This shows the location of the accumulation point .z; y/ D
.acc.b/; Vb.acc.b/// for 0� b < 1. The blue point with b D 0 is at .�4; �2/
and is the accumulation point for the Fibonacci stairs. The green point with
z D 3C 2

p
2 and b D 1=3 is the accumulation point for the stairs in H1=3,

and is the minimum of the function b 7! acc.b/. The black point with z D 6
and b D 1=5 is the place where Vb.acc.b// takes its minimum.

Obstructions to embedding ellipsoids come from certain exceptional divisors in blowups
of the target manifold. When X DHb , these divisors live in CP 2 # .N C 1/CP 2 and
their homology classes E have the form

dL�mE0�
X

miEi DW .d;m;m/;

where m WD .m1; : : : ; mN / with m1 � m2 � � � � � mN . In the most relevant such
classes, the tuple of coefficients m consists of the (integral) weight expansion of a
center point p=q (see Definition 2.1.5); correspondingly we say that E is perfect and
write E WD .d;m; p; q/. For z near p=q, the embedding obstruction is given by

(1.1.3) �E ;b.z/D

�
qz=.d �mb/ if z � p=q;
p=.d �mb/ if z � p=qI

in particular, it has an outer corner (or step) at z D p=q. Since, as explained in [1,
Section 2.1], cHb .z/ is the maximum over all exceptional classes E of the obstruction
functions �E ;b.z/, given E D .d;m; p; q/ as above, we must have cHb .z/��E ;b.z/

for z � p=q. We say that the function �E ;b is

� obstructive at z if �E ;b.z/ > Vb.z/, and

� live at z if cHb .z/D �E ;b.z/ > Vb.z/.

Further, we call E a center-blocking class if, for one of the two elements b of
acc�1.p=q/, the function z 7! �E ;b.z/ is obstructive at the center z D p=q, since in

Algebraic & Geometric Topology, Volume 23 (2023)



4238 Nicki Magill and Dusa McDuff

this case it follows from (1.1.2) that the corresponding surface Hb has no staircase. As
explained in [1, Lemma 38], it follows by continuity that for every center-blocking
class E there is an open interval JE � Œ0; 1/ that contains the appropriate2 point of
acc�1.p=q/ and is a component of the set of b–values that are blocked by E .

The paper [1] found three families of center-blocking classes, BU
n , BL

n , and BE
n for

n � 0, together with six associated sequences of staircases. Each of these blocking
classes B has an associated maximal blocked interval JB D .ˇB;`; ˇB;u/ � .0; 1/

consisting of points b that cannot admit a staircase because �B;b.acc.b//>Vb.acc.b//.
However, it turns out that there are staircases at both endpoints of these intervals, which
gives three staircase families, SU , SL, and SE , with staircases indexed by n� 0 and `
or u, where the steps of staircases labeled ` (for “lower”) ascend, while those labeled u
(for “upper”) descend. The Fibonacci stairs appear as SL

`;0
.

It was noted in [1, Corollary 60] that the centers p=q of the blocking and step classes for
the family SU are related to those of SL and SE by a fractional linear transformation,
that we denote by either p=q 7! .apCbq/=.cpCdq/ or .p; q/ 7! .apCbq; cpCdq/.
In particular, the two families SU ;SE are related by the shift

(1.1.4) S W .p; q/ 7! .6p� q; p/

that implements the recursion underlying the staircase at 1=3; while the two families
SU and SL are related by the reflection

(1.1.5) R W .p; q/ 7! .6p� 35q; p� 6q/;

which fixes the point 7 and takes1 to 6.

Our main result verifies a conjecture in [1], and can be informally stated as follows.
(For more detail, see Theorems 1.2.4 and 1.2.6.)

Theorem 1.1.1 For each i �1 there are staircase families .S i /].SU / and .S i /].SL/D
.S iR/].SU /, where the i–fold shift S i and reflection R act on the centers of the
blocking classes and staircase steps as above.

Moreover, we will see in Proposition 1.2.2 that each staircase family is generated by its
blocking classes together with two “seed” classes, a fact that makes it much easier to
establish the effect of the symmetries on the staircase families. Note also that although
the action of the symmetries S i and S iR on the centers p=q of the classes is clear, the

2If m=d > 1=3 then this will be the larger element in acc�1.p=q/, while if m=d < 1=3 it will be the
smaller one; see [1, Definition 37]. By Lemma 2.2.13, there is no quasiperfect class with m=d D 1=3. If
there is no possibility of confusion, we often simply call these classes blocking classes.

Algebraic & Geometric Topology, Volume 23 (2023)
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action on the other two coordinates .d;m/ (that we call the degree coordinates) is much
less obvious. In particular, this action is not compatible with composition. However,
we will see in Section 3.4 that the action on degree can be understood because, as we
explain below, the coefficients d and m of all the relevant classes are given in terms of
p and q by a general formula (1.2.4).

Remark 1.1.2 In the setting considered by Usher [7], the target manifold P.1; b/ is
the polydisc B2.1/�B2.b/, or equivalently the product of two spheres of areas 1 and b.
He finds a doubly indexed family of staircases Sn;k D .Ei;n;k/i�0, where i indexes
the staircase steps, n� 0 indexes the intrinsic recursion xiC1;n;k D �nxi;n;k�xi�1;n;k
satisfied by the parameters of the perfect classes Ei;n;k for i � 0 in Sn;k , and k indexes
a symmetry generated by so-called “Brahmagupta moves” that generate infinitely
many families of staircases from a basic family .Sn;0/n�0. More precisely, in [7,
Section 2.2.1], Usher finds a way to encode the parameters of the relevant perfect
classes E by means of a triple .x; ı; "/ of integers that satisfy the Diophantine equation
x2 � 2ı2 D 2 � "2. Here the value of " is related to the recursion variable n, and,
if this is fixed, he shows that a (very!) classically known maneuver that goes from
one solution of x2 � 2ı2 D N to another can be implemented in such a way that it
preserves the set of perfect classes. Usher expressed this maneuver in arithmetic terms
(multiplication by a unit in a number field). However, as we explain in Remark 2.2.6,
when expressed in terms of the coordinates .p; q/, Usher’s basic symmetry is the same
as ours, namely the transformation .p; q/ 7! .6p� q; p/.

Usher’s setting is simpler than ours in that the function b 7! acc.b/ that specifies the
accumulation point of any staircase for P.1; b/ is injective rather than two-to-one.3

Also the symmetry between the two classes Œpt�S2� and ŒS2�pt� allows the arithmetic
properties of a general quasiperfect class to be encoded by means of variables that
satisfy the equation x2� 2ı2 DN , while the corresponding equation in our setting is
x2� 8y2 D k2 (see Lemma 2.1.1). Nevertheless, the two situations are very similar.

The work presented here leads to many interesting questions. Here are some of them.

� The picture developed here seems to make up the first level of an iterative “fractal”
kind of structure for the Hirzebruch surfaces Hb . One might consider the family

3This statement is oversimplified in that one could well argue that the analog of our family Hb for
b 2 Œ0; 1/ is the family P.1; b/ for b > 0 with involution b 7! 1=b. However, P.1; b/ is symplectomorphic
to a rescaling of P.1; 1=b/, so cP.1;b/ is a rescaling of cP.1;1=b/ and acc.b/D acc.1=b/. In our case, if
acc�1.z/D fbC; b�g, the two functions cH

bC
and cHb� can be very different, one with a staircase, and

one without; see Figure 2.
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of blocking classes BU
n , for n � 0, extended by two seeds as in Proposition 1.2.2,

to be the backbone of the first level of this structure. This level also includes the
associated staircase classes. We prove in Proposition 2.2.9 that all the staircase classes
are also center-blocking classes. Further, numerical evidence suggests that there are
staircases whose steps have centers with 4–periodic continued fractions, indeed it
seems with any even period. What seems to be the case is that each pair of adjacent
ascending/descending staircases at level one shares a first step, and that this first step
is a blocking class with associated 4–periodic staircases. Thus the backbone of the
second level should consist of these shared steps, with associated 4–periodic staircases
generated by appropriate seeds at level one. For more details, see Magill, McDuff and
Weiler [5].

� It also would be very interesting to analyze Usher’s results using the current frame-
work, to see if there are analogs of blocking classes, seeds and staircase families. One
might be able to build a bridge between the two cases by thinking of a polydisc as
a degenerate two-point blowup of CP 2, and then looking at the ellipsoidal capacity
function for the family of two-fold blowups of CP 2 that join the two cases. This will
also be the subject of future work.

� The recursive patterns behind the staircases for rational target manifolds X are
related to almost toric structures and the transformations called mutations that appear
for example in [3] and Casals and Vianna [2]. It would be very interesting to know
how the symmetries discussed here appear in those contexts.

Acknowledgements We thank Chao Li for help with Diophantine equations, and
Tara Holm, Peter Sarnak and Morgan Weiler for useful discussions and comments.
We also thank the referee for a very thorough reading that has helped to improve
the accuracy and clarity of several arguments. Magill also thanks Tara Holm in her
capacity as research advisor for introducing her to the subject and for support and
encouragement along the way. Magill was supported by the NSF Graduate Research
Grant DGE-1650441.

1.2 Main results

We now describe our main results in more detail.

In what follows it is important to distinguish purely numerical properties — such as
those in (1.2.1) — from geometric properties that are needed to guarantee that a class E

gives a live obstruction �E ;b.z/ at relevant values of b and z. As above we represent a
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class E D dL�mE0�
P
i miEi , where .m1; m2; : : : / is the weight expansion of p=q,

by the tuple .d;m; p; q/, and say that E is quasiperfect if and only if the Diophantine
conditions

(1.2.1) 3d D pC qCm; d2�m2 D pq� 1

hold. (As explained in [1, Section 2.1], these are equivalent to the conditions c1.E/D 1
and E �E D�1, where c1 is the first Chern class of Hb .) We say that a quasiperfect
class E is perfect if it is represented by an exceptional curve, which holds if and only
if it reduces correctly by Cremona moves (see Lemma 4.1.1). Although a quasiperfect
class is obstructive at its center z D p=q for b Dm=d by [1, Lemmma 15], the fact
that this obstruction is live in a neighborhood of this .b; z/ (and hence coincides with
the capacity function in some range) follows from “positivity of intersections”, namely
the fact that the intersection number of two different exceptional divisors is always
nonnegative; see [1, Proposition 21]. This implies that the obstruction function �E ;b.z/

given by an exceptional class E is strictly larger than all other obstructions for z�p=q
and b �m=d . Hence in order to show that a given surface Hb actually has a staircase,
we need to prove that the relevant staircase classes are exceptional classes. However,
a large part of the following discussion is purely numerical. Notice also that because
quasiperfect classes can be obstructive, it makes sense to consider quasiperfect blocking
classes, ie tuples .d;m; p; q/ such that �B;b.p=q/ > Vb.p=q/ for the appropriate
b 2 acc�1.p=q/.

The coefficients .d� ; m� ; p� ; q�/ of the step classes of the staircases we consider always
satisfy a recursion of the form

(1.2.2) x�C1 D �x� � x��1; � � �0;

for suitable recursion parameter � and initial value �0.4 Hence, given �, each sequence
of parameters .x�/��i (for x D p; q; d;m) is determined by two initial values x�0 and
x�0C1 that are called seeds. It turns out that the relevant classes .d;m; p; q/ can be
extended to tuples

(1.2.3) .d;m; p; q; t; "/; t > 0; " 2 f˙1g;

where the integer t is a function of p and q. Further, the tuple .p; q; t; "/ determines
the degree variables .d;m/ by the formulas

(1.2.4) d WD 1
8
.3.pC q/C "t/; m WD 1

8
..pC q/C 3"t/:

4Not all infinite staircases satisfy this recursion. The b D 1=3 staircase is given by a nonhomogenous
recursion. Further, it is not known that all staircases must be given by some recursion.
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Hence jd � 3mj D t , and " D 1 if and only if m=d > 1=3. This point of view is
explained in Section 2.2.

It is straightforward to check that both S and R preserve t and hence ".d �3m/, while
they both change the sign of ". Further, for classes that give obstructions when b > 1=3
we have "D 1, while "D�1 if the classes are relevant for b < 1=3; see Example 3.4.7.

Our first main result is that all the numerical data of a staircase family such as SU

is determined by a family of quasiperfect classes .Bn/n�0 together with two seeds
E`;seed and Eu;seed. To explain this, we introduce the following language.

� A prestaircase S is a sequence of tuples E� WD ..d� ; m� ; p� ; q� ; t� ; "//��0 that
is defined recursively with recursion parameter �, and that satisfy (1.2.4). Given
such a sequence, the limits a1 WD limp�=q� and b1 WD limm�=d� always exist by
Corollary 3.1.5. We say that S is perfect if all the classes E� are perfect, and that S
is live if the obstructions �E� ;b1 are live near z D p�=q� for all sufficiently large
� and with b equal to the limiting value b1. We will refer to a staircase as a live
prestaircase.5 Thus if S is live, Hb1 has a staircase. This is a slight abuse of notation
as not all staircases follow the recursive structure of a prestaircase, but all staircases
considered in this paper are indeed prestaircases.

� A prestaircase S is said to be associated to a quasiperfect class

B D .dB ; mB ; pB ; qB/

if the following linear relation is satisfied by its step coefficients:

(1.2.5) .3mB � dB/d� D

�
.mB � qB/p� CmBq� if S ascends;
mBp� � .pB �mB/q� if S descends:

If in addition the prestaircase is perfect, then Hb1 is unobstructed, ie cHb .acc.b//D
Vb.acc.b//, and it is shown in [1, Theorem 52] that the limits .b1; a1/ are the
parameters .b; z/ of the appropriate endpoint of the blocked b–interval JB .6 Moreover,
if there is both an ascending and a descending perfect prestaircase associated to B then
B is a perfect blocking class. This means in particular that B is obstructive for the
b–value corresponding to its center.

5We do not insist that the classes in a staircase are perfect; however in all known cases they are perfect.
Indeed the only way that we know of to prove that a staircase is live is first to show that it is perfect and
then to show there are no “overshadowing classes”. See the beginning of Section 4 for more details.
6This follows very easily from the calculation in (2.2.8).
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� A prestaircase family F consists of a family of quasiperfect classes .BF
n /n�0 (called

preblocking classes) together with ascending prestaircases SF
`;n

, for n ¤ 1, and de-
scending prestaircases SF

u;n, for n¤ 0, where SF
�;n is associated with BF

n for �D `; u.
The family F is said to be perfect if all the classes in F are perfect, and live if all the
prestaircases SF

�;n, �D `; u, are live.

� A prestaircase family is called a staircase family if it is live. Then the preblocking
classes are perfect by [1, Theorem 52], and in all cases encountered here the step
classes are also perfect.

Finally, we make the following definition. It follows from the formulas in Theorems 2.3.1
and 2.3.3 that, because S i preserves order, prestaircase families that are obtained from
SU by applying the shift S i have preblocking classes whose centers ascend, while
those that are obtained from SL by applying S i have preblocking classes whose centers
descend. It turns out that in all cases the adjacent preblocking class can be considered
as part of the appropriate staircase; for example in SU the blocking class BU

n�1 can be
considered as a step in the ascending staircase SU

`;n
, while BU

nC1 can be considered as
a step in the descending staircase SU

`;n
. Clearly the numbering of this adjacent blocking

class depends on whether the centers of these classes ascend or descend as n increases.

Definition 1.2.1 A prestaircase family F is said to be generated by the quasiperfect
classes Bn, for n� 0, and seeds E`;seed and Eu;seed if the BnD .dn; mn; pn; qn; tn; "/

are its preblocking classes, and, for all n and � 2 f`; ug, the steps in the prestaircase
SF
�;n have recursion parameter � D tn and seeds

� E`;seed;Bn�1 for �D ` and Eu;seed;BnC1 for �D u, if the Bn ascend;

� E`;seed;BnC1 for �D ` and Eu;seed;Bn�1 for �D u, if the Bn descend.

In Propositions 3.2.2 and 3.2.6, we establish the following compact description of the
numerical information that determines each of our staircase families. This information
will make it much easier to understand the effect of the symmetries.

Proposition 1.2.2 The staircase families SU and SL are generated by their blocking
classes together with two seeds.

Remark 1.2.3 As we explain in Example 2.3.7, all the classes (both blocking classes
and seeds) that generate SU are directly related to the classes that generate the staircase
at b D 1=3. Since the staircase classes in H1=3 satisfy the recursion (1.2.2) with � D 6

Algebraic & Geometric Topology, Volume 23 (2023)
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given by S , one can see that the whole structure of the staircases so far discovered in
the family of manifolds Hb stems from that of the staircase at b D 1=3.

We now explain the action of the family7 of transformations

(1.2.6) G WD fS iRı j ı 2 f0; 1g; i � 0g;

where S is the shift p=q 7! .6p� q/=p and R is the reflection z 7! .6z� 35/=.z� 6/.
The sequence of numbers

v1 D1D
1
0
; v2 D S.v1/D

6
1
; : : : ; vi D S

i�1v1; : : :

has limit amin WD 3C 2
p
2, which is the accumulation point of the b D 1=3 staircase.

With w1 WD 7 and wi D S i�1.w1/, we have the following interleaving family of
numbers:

(1.2.7) v1D1>w1D 7> v2D 6>w2D
41
7
> � � �>vi >wi >viC1 > � � �! amin:

The symmetry S acts as a shift, S.vi /D viC1; S.wi /DwiC1, while R and its composi-
tion with powers of S are reflections. In particular Rvi WD S

i�2RS�iC1 is a reflection
that fixes vi and interchanges wi�1 with wi . As we show in (2.1.3), for each i the
two b–values that correspond to the point z D vi are rational and have simple linear
expressions in terms of the numerator and denominator pi and qi of vi Dpi=qi . Hence
one might expect them to be relevant to the problem. Note that (except for one or two
initial terms) the staircase steps in SU all lie in the interval .7;1/D .w1; v1/, where vi
andwi are as in (1.2.7). Further, S..w1; v1//D .w2; v2/ whileR..w1; v1//D .v2; w1/.
We showed in [1] that R takes the blocking classes and staircase steps of SU to SL

and that S takes SU to SE .

The next theorem gives a numerical description of the image of the staircase families
SU by T 2 G. This extends [1, Corollary 60] where it is shown that S and R take the
centers of the classes in SU to those of SE and SL respectively. This extended action
is illustrated in Figure 2. Note that S preserves the direction (ascending or descending)
of the centers of a family of classes, while R reverses it.

Theorem 1.2.4 For each T 2 G there is a corresponding prestaircase family T ].SU /,
consisting of tuples .d;m; p; q; t; "/ where

� .p; q/ are the image by T of the corresponding tuple in SU ;

� t is unchanged and " transforms by the factor .�1/iCı , where T D S iRı ;

7G is not a semigroup because S iRSj D S i�jR 2 G only if i � j ; see Lemma 2.1.3.
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b > 1
3

b < 1
3

Rv5 Rv3

w5 w4 w3 w2 w1 D 7

v5 v4 v3 v2 D 6 v1 D1

S S S
R

v5 v4 v3 v2 v1 D1

w5 w4 w3 w2 w1

Rv4 Rv2

Figure 2: The centers of the staircase family SU (resp. SL) live in the right-
most red (resp. orange) interval. Connecting these, in green, we have the
reflection R about w1 D 7 which sends the SU to the SL family. The shift S ,
purple, preserves orientation and takes staircase families with b value below
(resp. above) 1=3 to staircases with b value above (resp. below) 1=3. By
applying S iteratively to SU and SL, one obtains staircase families in the
other red or orange half-intervals. In each of these half-intervals, there is a
family of ascending and descending staircases whose accumulation points
converge to some vi . For each i � 1, each interval .wi ; wi�1/ admits a
reflection Rvi that fixes its center point vi and interchanges the staircases in
that interval. Finally, the blue intervals are blocked by a family of principal
blocking classes with centers at the vi .

� .d;m/ are determined by .p; q; t; "/ according to (1.2.4). In particular , ".d�3m/
remains unchanged.

This prestaircase family is generated in the sense of Definition 1.2.1 by the images
under T of the seeds and blocking classes of SU . Further ,

(i) If T D S i for some i > 0, then the centers of the preblocking classes of T ].SU /
increase with n, and the prestaircase steps lie in the interval .wiC1; viC1/ and
have "D .�1/i .

(ii) If T D S iR for some i � 0, then the centers of the preblocking classes de-
crease with n, and the prestaircase steps lie in the interval .viC1; wi / and have
"D .�1/iC1.

In particular , R].SU /D SL while S].SU /D SE .

For the proof see Section 3.3.

Remark 1.2.5 (i) When b > 1=3, the accumulation points of the staircases lie in
the intervals .w2iC1; w2i /, while, for each i , the interval Œw2i ; w2i�1� is blocked by
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the principal blocking class BP
v2i
WD .S2i�2/].BU

0 / with center v2i . Similarly, when
b < 1=3, the accumulation points of the staircases lie in the intervals .w2i ; w2i�1/,
while, for each i , the interval Œw2iC1; w2i � is blocked by the principal blocking class
BP
v2iC1

WD .S2i�1/].BU
0 / with center v2iC1. See Figures 2 and 3 and Corollary 4.1.5.

(ii) As already noted, the action of a general symmetry T D S iRı on the degree
variable .d;m/ of the blocking classes is determined by its action on .p; q/ together
with (1.2.4). We will see in Lemma 3.4.1 that the action of T on the .d;m/ coordinates
of the family of blocking classes BU

n is given by a 2� 2 integral matrix T �
B

. Because,
as noted after (1.2.4), the linear function d � 3m is invariant by T �

B
modulo sign, this

matrix has eigenvector .3; 1/_, with eigenvalue .�1/iCı det.T �
B
/. In general, the other

eigenvector (with eigenvalue .�1/iCı ) has no obvious interpretation.

However, there are two cases in which it does. Indeed if T is the reflection Rvi that
fixes vi , interchanging wi with wi�1, then it has two lifts to an action on degree
depending on whether we take b > 1=3 or b < 1=3. As we show in Section 3.4, it
turns out that only one of these actions on degree has order two, though they both
have clear geometric interpretations. For example, if i D 2, so v2 D 6, then Rv2 D SR
interchanges the centers of the blocking classes and seeds of the staircase families SL

and SE . The lift .Rv2/
�
B

that acts on the degree components of the blocking classes
has order two and eigenvector .5; 1/_, since 1=5D acc�1L .6/ is the limit of the ratio
of the degree components. On the other hand, the matrix .Rv2/

�
P
D .SR/�

B
takes the

blocking classes of the staircase family SU to those of SR.SU /, fixing the shared
principal blocking class BU0 . Thus it has eigenvector .3; 2/_, but, as we calculate in
Example 3.4.7, does not have order two. For more details about the action of a general
element T 2 G on the degree components of the blocking classes, see Proposition 3.4.3.

Our second main result is that all the new staircases are live.

Theorem 1.2.6 For each T 2 G the prestaircase family T ].SU / is live , and hence is a
staircase family.

The proof that all the classes involved are perfect is given in Proposition 4.1.4. It is
greatly eased by the discovery that their .d;m/ components satisfy (1.2.4). The proof
that the classes are live is given in Section 4. Although it is based on the methods
developed in [1] that we explain at the beginning of Section 4, we have significantly
simplified the proof by using new arithmetic arguments. Indeed, in Proposition 4.3.7
we establish a simple, widely applicable criterion for an arbitrary perfect prestaircase
family to be live.
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The paper [1] considered the following subsets of the b–parameter space Œ0; 1/:

Stair WD fb jHb has a staircaseg � Œ0; 1/;

Block WD
[
fJB jB is a blocking classg � Œ0; 1/:

Each blocking class BU
n defines an interval JU;n � .1=3; 1/ of b–values that have no

staircase because �BUn ;b
.acc.b// > Vb.acc.b//. Further, the end points of these inter-

vals lie in Stair. Similarly, the blocking classes in the staircase family SL DR].SU /
define blocked intervals JL;u � .0; 1=3/, whose endpoints lie in Stair.

There is an induced action of the symmetries in G on the b–variable Œ0; 1/. This is
easiest to describe for the shift S since this gives an injection Œamin;1/! Œamin;1/

that fixes amin WD acc.1=3/D 3C 2
p
2. Hence, if we write

accL W Œ1=3; 1/! Œamin;1/; accU W Œ0; 1=3�! Œamin;1/

for the appropriate restriction of the function b 7! acc.b/ in (1.1.1), for each k � 1 we
can define .Sk/� by

(1.2.8) .Sk/�.b/D

�
acc�1L ıS

k ı accL if b � 1=3;
acc�1U ıS

k ı accU if b � 1=3:

Since .Sk/� is conjugate to Sk , the assignment k 7! .Sk/� is a homomorphism; ie
.Sk/� ı .Sm/� D .SkCm/� for k;m� 0.

The reflection symmetries SkR are not defined on the whole z–interval Œamin;1/ and
so do not extend to a global action on b–variable. Instead, in view of Remark 1.2.5(ii),
it is most natural to restrict the reflection Rvi WDS

2i�1R that fixes vi to the appropriate
b–interval corresponding to .viC1; vi�1/� .wi ; wi�1/. Thus we define

(1.2.9) .Rvi /
�.b/D

�
acc�1L ıRvi j.viC1;vi�1/ ı accL if i is even;
acc�1U ıRvi j.viC1;vi�1/ ı accU if i is odd:

The following is an immediate consequence of Theorem 1.2.6 because the endpoints
of the blocked b–intervals, JU;n and JL;n, are taken by the function b 7! acc.b/ to the
accumulation points of the corresponding staircases, upon which G acts geometrically.

Corollary 1.2.7 Let JU;n (resp. JL;n) be the b–interval blocked by BU
n (resp. BL

n ).
For J D JU;n with n � 0, or JL;n with n � 1 and each k � 0, the interval .Sk/�.J /
is a component of Block, and its endpoints are in Stair. Moreover , for each i � 2 the
reflection .Rvi /

� permutes those intervals .Sk/�.J / that lie entirely in .viC1; vi�1/.

Remark 1.2.8 (i) We conjecture that the action of the elements T 2 G described
above preserves the sets Stair and Block. This would hold if, for example, every interval
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in Block was defined by a single blocking class with two associated staircases, and if
these, plus the staircases at 0 and 1=3, were the only staircases. However, the proof of
such a result seems out of reach at present.

(ii) Note that the map .Rvi /
� has order two since it is defined to be the conjugate

of a reflection. The statements in Remark 1.2.5(ii) about the transformations .Rvi /
]

are rather different, since here we are concerned with the action of Rvi on the degree
variables .d;m/ of the relevant blocking classes, and not on the conjugate to its action
on the z–variable.

2 The accumulation function and its symmetries

In this section, we first discuss the arithmetic properties of the symmetries and related
topics. In Section 2.2 we first give an alternative way to understand the coordinates
.d;m; p; q/ of a quasiperfect class, and then show that all such classes are center-
blocking. This second result relies on the particular form of the accumulation function
b 7! acc.b/. Finally, we describe the staircase families SU and SL and the staircase at
b D 1=3 in the language used in [1].

2.1 The fundamental recursion

We have two sets of variables: the z variable on the domain E.1; z/ and the b variable
on the target. They are related by the equation

(2.1.1) z2�

�
.3� b/2

1� b2
� 2

�
zC 1D 0:

Since b 2 Œ0; 1/, one can check that this equation has two positive solutions that we
denote by a and 1=a, where a WD acc.b/ > 1. As illustrated in Figure 1, this function is
in general two-to-one with a unique minimum acc�1.3C2

p
2/D 1=3. We denote by8

acc�1L W
�
3C 2

p
2; 1
2
.7C 3

p
5/
�
!
�
0; 1
3

�
; acc�1U W .3C 2

p
2;1/!

�
1
3
; 1
�

the corresponding inverses to the function b 7! acc.b/. Thus, with

� WD aC
1

a
C 2D

.3� b/2

1� b2
� 8;

we have

acc�1L .a/D
3�
p
�2� 8�

� C 1
; acc�1U .a/D

3C
p
�2� 8�

� C 1
:

8Here and elsewhere, L (or `) denotes “lower” while U (or u) denotes “upper”.
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The minimum � D 8 is attained when b D 1=3. The corresponding equation

z2� 6zC 1D 0

is therefore very special. It arises by taking the limit lim x�C1=x� of the recursion
x�C1 D 6x� � x��1 that seems to play a central role in this staircase problem. For
example, the steps of the staircase at b D 1=3 satisfy this recursion. Moreover, as the
following lemma shows, certain properties of the function b 7! acc.b/ are invariant
with respect to this recursion.

Lemma 2.1.1 (i) If acc.b/D p=q then

(2.1.2) b D
3pq˙ .pC q/

p
�

p2C q2C 3pq
; where � WD .p� 3q/2� 8q2:

In particular , b and acc.b/ are both rational if and only if .p� 3q/2 � 8q2 D k2 for
some integer k � 1.

(ii) The quantity �.p; q/ WD .p� 3q/2� 8q2 D p2C q2� 6pq is invariant under the
transformation .p; q/ 7! .6p� q; p/.

(iii) In particular , because .p; q/D .6; 1/ is a solution of �.p; q/D 1, any successive
pair in the sequence

.y1; y2; y3; y4; : : :/D .1; 6; 35; 204; : : :/

gives another solution. Further , these are the only solutions for � D 1.

(iv) If p D yi and q D yi�1 for some i > 1, we have

(2.1.3) acc�1U

�
p

q

�
D

pC qC 3

3pC 3qC 1
; acc�1L

�
p

q

�
D

pC q� 3

3pC 3q� 1
;

and so

acc�1U .6/D 5
11
; acc�1U

�
35
6

�
D

11
31
; acc�1U

�
204
35

�
D

121
359
; : : :& 1

3

acc�1L .6/D 1
5
; acc�1L

�
35
6

�
D

19
61
; acc�1L

�
204
35

�
D

59
179
; : : :% 1

3
:

Proof Let aD p=q > 1 so that aD acc.b/ where b D .3˙
p
�2� 8�/=.� C 1/, and

� D p=qC q=pC 2. Since

�.� � 8/D
.p2C q2C 2pq/.p2C q2� 6pq/

p2q2
;
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and p2C q2� 6pq D .p� 3q/2� 8q2; this formula for b simplifies to that in (2.1.2).
The rest of (i) is clear. Next, note that (ii) holds because

.6p� q/2Cp2� 6.6p� q/p D p2C q2� 6pq:

To prove (iii), note that given any solution .p; q/ with p > q, one can use the reverse
iteration .p; q/ 7! .q; 6q�p/ to reduce to a solution with p>q>0 and 6q�p�0. But
the only such solution is .6; 1/. Finally, to see that the formula in (iv) for acc�1U .p=q/

is the same as that in (2.1.2) we must check that

.3pqCpCq/.3pC3qC1/D .3pqCp2Cq2/.pCqC3/D .9pqC1/.pCqC3/:

One can check that the third order terms on both sides are the same, and that the rest
of the identity holds because p2Cq2 D 6pqC1. The proof for acc�1L .p=q/ is similar.
Thus acc�1U .yi=yi�1/ decreases with limit 1=3, while acc�1L .yi=yi�1/ increases with
limit 1=3.

Remark 2.1.2 Since �.p; q/D�.q; p/, .p; q/ is a solution of the equation �.p; q/D1
if and only if .q; p/ is. We always assume that p > q so that the entries in the pairs
.p; q/; S.p; q/; S.S.p; q//; : : : increase; with the other convention they would decrease.
Notice also that the Pell numbers 0; 1; 2; 5; 12; 29; 70; : : : that form such a basic element
in the polydisc case considered in [4; 7] are closely related to the sequence 0; 1; 6; 35; : : :
that is fundamental here; indeed the numbers 2yi for i � 0 are precisely the even-placed
Pell numbers.

Let S WD
�
6
1
�1
0

�
be the “shift” matrix that implements the recursion

(2.1.4) x�C1 D 6x� � x��1; S

�
x�
x��1

�
D

�
x�C1
x�

�
;

where the matrix A WD
�
a
c
b
d

�
acts on the z variables by the fractional linear transforma-

tion

(2.1.5) z 7!
azC b

czC d
DW Az

taking (by extension)1 to a=c. Starting with y0 D 0 and y1 D 1, we get the sequence

y0 D 0; y1 D 1; y2 D 6; y3 D 35; y4 D 204; y5 D 1189; y6 D 6930; : : : ;

35
6
D Œ5I 1; 5�; 204

35
D Œ5I 1; 4; 1; 5�; 1189

204
D Œ5I 1; 4; 1; 4; 1; 5�; : : : ;

with general term Œ5I f1; 4gk; 1; 5�; see Lemma 2.1.6. If we define

(2.1.6) R WD

�
6 �35

1 �6

�
D

�
y2 �y3
y1 �y2

�
;
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then R2D id and detRD�1, and we will see that the reflection R and shift S generate
symmetries of our problem.

It is convenient to consider the following decreasing sequences of points in the interval
.3C 2

p
2;1/:

(2.1.7)
v1 WD1; v2 WD 6; v3 WD

35
6
; vj WD

yj

yj�1
;

w1 D 7; w2 WD
41
7
; wk D

ykC1Cyk

ykCyk�1
:

These sequences interweave:

3C 2
p
2 < � � �<wk < vk <wk�1 < � � �<w2 < v2 <w1 < v1 D1:

Lemma 2.1.3 Let vj , wj , S , and R be as above. Then:

(i) The following matrix identities hold :

SRDRS�1; S�1RDRS; R ıRD Id:

(ii) The matrix

Sk D

�
ykC1 �yk
yk �yk�1

�
has determinant 1; ie

(2.1.8) y2k D ykC1yk�1C 1D 6ykC1yk �y
2
kC1C 1 for all k � 1:

(iii) With action as in (2.1.5), S.vj /D vjC1 and S.wj /D wjC1, for j � 1.

(iv) The matrices S and R generate the subgroup of PGL.2;Z/ that fixes the qua-
dratic form p2� 6pqC q2.

Proof The proof of (i)–(iii) is straightforward. In particular the formula for Sk holds
because S implements the recursion, and we also have det.Sk/ D .det.S//k D 1.
Further, one can check that A 2 GL.2;Z/ preserves the form p2 � 6pqC q2 if and
only if

AD

�
a b

c d

�
; where c D�b; d D 6bC a:

Hence, if det.A/D 1 then a2C 6abC b2 D 1, which implies by Lemma 2.1.1(iii) that
when a > �b > 0 we must have .a; b/ D .ykC1;�yk/ for some k, so A D Sk for
some k � 1. It follows similarly that the only other matrices A that preserve the form
and have det.A/D 1 have the form ˙Sk for some k � 0. Further, if det.A/D�1 then
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because the matrix RA has determinant 1 and preserves the quadratic form, we must
have AD˙SkR for some k 2 Z. Thus (iv) holds.

Corollary 2.1.4 (i) For each i � 1, the restriction of

(2.1.9) Rvi WD S
i�2RS�.i�1/ D S2i�3RD

�
y2i�1 �y2i
y2i�2 �y2i�1

�
to the interval .v2i�1; v1/ is a reflection that fixes vi and interchanges the points
wiCk; wi�k�1, and viCk; vi�k , for 0� k � i � 1.

(ii) The restriction of R to the interval .v2; v1/ D .6;1/ is a reflection that fixes
w1 D 7.

We end this subsection with a brief discussion of the weight expansion and continued
fractions.

Definition 2.1.5 The (integral) weight expansion of a rational number p=q � 1 is
a recursively defined, nonincreasing sequence of integers W.p=q/ D .W1; W2; : : : /
defined as follows: W1 D q and Wn �WnC1 for all n, and if Wi >WiC1 D � � � DWn
(where we set W0 WD p), then

WnC1 D

�
WiC1 if WiC1C � � �CWnC1 D .n� i C 1/WiC1 <Wi ;
Wi � .n� i/WiC1 otherwise:

ThusW.p=q/ starts with bp=qc copies of q (where bp=qc is the largest integer�p=q),
and ends with some number � 2 of copies of 1. One can check thatX

i�1

Wi D pC q� 1;
X
i�1

W 2
i D pq:

Using this, it is straightforward to check that equations (1.2.1), for a quasiperfect
tuple .d;m; p; q/, imply that the corresponding class E D dL �mE0 �

P
i WiEi

satisfies the conditions c1.E/D 1 and E �E D�1, as claimed earlier. Moreover, the
multiplicities `0; : : : ; `k of the entries in W.p=q/ are the coefficients of the continued
fraction expansion of p=q. Thus, if the distinct weights areX0 WDq>X1> � � �>XkD1
and we write

W.p=q/D .X
�`0
0 ; X

�`1
1 ; : : : ; 1�`k /;

then
p

q
D Œ`0I `1; : : : ; `k� WD `0C

1

`1C
1

`2C���C1=`k

:
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As we see from Theorems 2.3.1 and 2.3.3 below, the centers of the staircase steps have
very regular continued fraction expansions that, as we now show, behave well under
the symmetries.

Lemma 2.1.6 (i) The shift S D
�
6
1
�1
0

�
has the following effect on continued fraction

expansions , where , for x � 1, CF.x/ denotes the continued fraction of x:

� If z D p=q D Œ5C kICF.x/� for some k � 0; x � 1, then

Sz D
6p� q

p
D Œ5I 1; 4C k; CF.x/�:

In particular , if z > 6 then k � 1 and the third entry in CF.Sz/ is at least 5,
while if z < 6 then k D 0 and x > 1 and we have

S.Œ5ICF.x/�/D Œ5I 1; 4; CF.x/�:

(ii) The reflection RD
�
6
1
�35
�6

�
has the following effect on continued fraction expan-

sions:

� If z D p=q D Œ6C kICF.x/� for some k � 1 and x � 1, then

Rz D
6p� 35q

p� 6q
D Œ6I k; CF.x/�:

Further , R ıRD id.

(iii) The quantity p2� 6pqC q2 is invariant by both S and R.

Proof If z D Œ5C kICF.x/�D 5C kC 1=x D ..5C k/xC 1/=x then

Sz D
.29C 6k/xC 6

.5C k/xC 1
D 5C

.4C k/xC 1

.5C k/xC 1
;

while

Œ5I 1; 4C k; CF.x/�D 5C
1

1C 1=.4C kC 1=x/
D 5C

.4C k/xC 1

.5C k/xC 1
:

This proves (i). The proof of (ii) is similar, and (iii) follows by an easy calculation.

2.2 Quasiperfect classes

We first explain the action of the symmetries on the quasiperfect classes, and then show
in Proposition 2.2.9 that every quasiperfect class with center > amin D 3C 2

p
2 is a

center-blocking class.
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As explained in (1.2.1), a quasiperfect class E D dL�mE0�
P
i miEi is determined

by a tuple .d;m; p; q/ of positive integers (where .m1; m2; : : : / is the weight expansion
of p=q as in Definition 2.1.5) that satisfies the conditions

(2.2.1) 3d D pC qCm; d2�m2 D pq� 1:

We will continue to call these the Diophantine conditions on E as in [1]. If we use the
first equation above to express m as a function of d , p, and q, the second equation is a
quadratic in d ,

(2.2.2) 8d2� 6d.pC q/Cp2C 3pqC q2� 1D 0;

with solution
d D 1

8

�
3.pC q/˙

p
p2� 6pqC q2C 8

�
:

Thus, if we define

(2.2.3) t WD
p
p2� 6pqC q2C 8; " WD ˙1;

the coefficients d and m in E are given by the formulas

(2.2.4) d WD 1
8
.3.pC q/C "t/; m WD 1

8
..pC q/C 3"t/

in (1.2.4). In other words, modulo an appropriate choice of ", we can think of a
quasiperfect class as an integer point on the quadratic surface X defined by (2.2.2),
where we can use either the coordinates .d; p; q/ or .p; q; t/.9 Note, however, that the
fact that p, q, and t are integers does not imply that d and m are also.

We now show that a quasiperfect class .d;m; p; q; t; "/ is uniquely determined by its
center p=q.

Lemma 2.2.1 For each integral solution .p; q; t/ of the equation t2Dp2�6pqCq2C8,
there are integers .d;m/ satisfying

(2.2.5) d D 1
8
.3.pC q/C "t/; mD 1

8
..pC q/C "3t/

for at most one value of " 2 f˙1g.

Proof If this is false there are positive integers p, q, t , d˙, andm˙ such that .dC; mC/
solve (2.2.5) for "DC1, while .d�; m�/ solve it for "D�1. Then

dCC d� D
3
4
.pC q/; dC� d� D

1
4
t

9We are indebted to Peter Sarnak for explaining this point of view to us.
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are integers. Since p and q cannot both be even they may written as 4aC1 and 4b�1
(in some order), and, with t WD 4s,

s2 D a2� 6abC b2C 2a� 2bC 1:

But also we need 8 to divide 3.pC q/C "t , which implies that aC bC s is even. It is
now easy to see that there are no integer solutions.

Corollary 2.2.2 There is at most one quasiperfect class with center p=q. Conversely ,
for given .d;m/ there is at most one quasiperfect class with these degree variables and
p=q > 1.

Proof The first claim follows immediately from Lemma 2.2.1. To prove the second,
notice that d and m determine pCqD 3d �m and pqD d2�m2C1, which uniquely
determines p and q modulo order.

We now discuss the effect of the symmetries on these classes. As always, we write

S D

�
6 �1

1 0

�
; RD

�
6 �35

1 �6

�
;

where S is the shift and R is the reflection that fixes 7. Note that the action of S on p
and q fixes t by Lemma 2.1.1(ii). It is also easy to check that R also fixes t . We now
show that the action of these transformations act on the integer points of X extends to
an action on the tuples .d;m; p; q; t; "/. It follows from Lemma 2.1.3 that any element
of the group generated by S and R can be written S iRı for i 2 Z and ı 2 f0; 1g.

Definition 2.2.3 Let T DS iRı for i 2Z and ı2f0;1g, and suppose that .d;m;p;q; t;"/
is a tuple of integers that satisfy the identities in (2.2.3) and (2.2.4). Then we define

(2.2.6) T ].d;m; p; q; t; "/ WD .d 0; m0; p0; q0; t; "0/D .d 0; m0; T .p; q/; t; .�1/iCı"/

where d 0 and m0 are given by the formulas

d 0 WD 1
8
.3.p0C q0/C "0t /; m0 WD 1

8
..p0C q0/C 3"0t /; "0 WD .�1/iCı":

The next lemma shows that this action of T preserves integrality.

Lemma 2.2.4 For each .d;m; p; q; t; "/ and T D S iRı as above , T ].d;m; p; q; t; "/
is also integral and satisfies the Diophantine conditions (2.2.1). Moreover , for all such
T1 and T2, .T1T2/].d;m; p; q; t; "/D .T1/].T2/].d;m; p; q; t; "/.
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Proof The above construction shows that every integral point .p; q; t/ of X can
be extended to a tuple .d;m; p; q; t; "/ that satisfies the Diophantine conditions. In
particular, since t is invariant under the action of S and T , the tuple .d 0; m0; p0; q0; t; "0/
satisfies these conditions; however we do need to check that it is integral. Because
3.3.p0 C q0/C "0t / � ..p0 C q0/C 3"0t / is divisible by 8, it suffices to check that
.p0Cq0/C3"0t is divisible by 8. Thus it suffices to check that if 8 divides pCqC3"t
for some " 2 f˙1g, and we set .p0; q0/ D S.p; q/ D .6p � q; p/, then 8 divides
p0Cq0�3"tD7p�q�3"t . But this is immediate, since 7p�q�3"tD8p�.pCqC3"t/.
A similar calculation proves that the action of R preserves integrality.

This proves the first claim. The second follows immediately from the fact that the
action of S and R on the coordinates .p; q/ is compatible with composition.

Remark 2.2.5 The tuples .d;m; p; q; t; "/ that correspond to quasiperfect classes have
positive entries with p > q > 0. As we shall see in Example 2.3.7, the classes with
t D 1 belong to the staircase at b D 1=3, while all other classes of interest have t � 3
and hence p=q > amin WD 3C 2

p
2 (so that p2 � 6pqC q2 > 0). Therefore the full

subgroup of PGL.2;Z/ generated by S and R does not act on the staircases. This is
why in Theorem 1.2.4 we only consider the restriction of the action of the elements
S iRı for i � 0 to the classes with centers p=q > 7.

Remark 2.2.6 We now relate our description of the symmetries to that given by Usher
in [7, Section 2.2.1]. He denotes a quasiperfect class E in a blowup of S2 � S2 by
the tuple .a; b; c; d/, where a and b are the coefficients of the two lines (each with
Chern class 2) and .c; d/ WD .p; q/ are the coordinates of its center. Thus the equations
c1.E/D 1 and E �E D�1 become

2.aC b/D pC q; 2ab D pq� 1:

The first equation implies that there are integers x, ı, and " such that

.a; b; p; q/D
�
1
2
.xC "/; 1

2
.x� "/; xC ı; x� ı

�
:

With these variables, the second equation is then

(2.2.7) x2� 2ı2 D 2� "2:

In terms of the element xC ı
p
2 2ZŒ

p
2�, this equation simply says that xC ı

p
2 has

norm 2� "2. He now considers symmetries of the form

xC ı
p
2 7! x0C ı0

p
2 WD .uC v

p
2/.xC ı

p
2/D uxC 2vıC .vxCuı/

p
2;
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where uC v
p
2 2 ZŒ

p
2� is an element of norm 1, ie u2� 2v2 D 1. Then .x0; ı0; "/ is

another solution of (2.2.7). Usher considers the symmetries given by

uC v
p
2DH2kCP2k

p
2

where H2k and P2k are respectively half-Pell and Pell numbers. When k D 1, H2 D 3
and P2 D 2, and we get the unit uC v

p
2 D 3C 2

p
2. Therefore x0 D 3x C 4ı

and ı0 D 2x C 3ı, so .p0; q0/ WD .x0 C ı0; x0 � ı0/ D .5x C 7ı; x C ı/. Substituting
x D 1

2
.pC q/ and ı D 1

2
.p� q/, we obtain the transformation

.p; q/ 7! .p0; q0/D .6p� q; p/:

More generally, Usher states that the transformation has formula

.x; ı/ 7! .H2kxC 2P2kı; P2kxCH2kı/;

which, in terms of the .p; q/ coordinates, translates to

.p; q/ 7!
�
.H2kC

3
2
P2k/p�

1
2
P2kq;

1
2
P2kpC .H2k �

3
2
P2k/q

�
:

To see that this map is the same as .p; q/ 7! Sk.p; q/, notice that by Remark 2.1.2,
the entries yi of Sk have the form 1

2
P2i . Therefore, we have to check a linear identity

between the Pell numbers Pn and their half-companions Hn. But because of the
recursion, such an identity holds if and only if it holds for two distinct values of n, and
when k D 2 we have .H4; P4/D .17; 12/, which gives .p; q/ 7! .35p� 6q; 6p� q/,
as required.

Finally, we observe that Usher’s symmetries preserve " which is related to the recursion
variable for his staircases, and hence plays much the same role as our variable t .

The next lemma, taken from [1, Example 32] is the key to the proof that every quasiper-
fect class is center-blocking.

Lemma 2.2.7 For all b 2 Œ0; 1/ the graph of the function z 7! .1C z/=.3� b/ passes
through the accumulation point .acc.b/; Vb.acc.b///. Moreover , for each b, the line
lies above the volume curve when z > acc.b/.

Proof Let c.b/D .3� b/2=.1� b2/� 2. We have

(2.2.8)
1C acc.b/
3� b

D

r
acc.b/
1� b2

() .1C acc.b//2 D acc.b/
.3� b/2

1� b2
D acc.b/.c.b/C 2/

() acc.b/2� c.b/acc.b/C 1D 0;
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which holds by the definition of acc.b/ in (2.1.1). It follows that the two functions

(2.2.9) b 7! Vb.acc.b//; b 7!
1C acc.b/
3� b

are the same.

It remains to note that for all z � amin > 5, the slope

d

dz

�r
z

1� b2

�
D
1

2

Vb.z/

z
D

1C z

2z.3� b/
; z WD acc.b/

of the volume curve Vb.z/ at z D acc.b/ is smaller than 1=.3� b/ which is the slope
of the line.

Remark 2.2.8 (i) This special property of the function z 7! .1C z/=.3� b/ is the
key reason why the linear relations in (1.2.5) imply that the staircase converges to an
endpoint of the interval blocked by the associated blocking class; see the proof of [1,
Theorem 52].

(ii) By [1, Example 32], when 5 < z < 6 the function z 7! .1Cz/=.3�b/ that occurs
in Lemma 2.2.7 is the obstruction given by the class E D 3L�E0� 2E1�E2:::6. As
noticed by Tara Holm, all the other convex toric domains discussed in [3] seem to have
classes that play a similar role.

Proposition 2.2.9 Every quasiperfect class E WD .d;m; p; q; t; "/ with p=q > amin D

3C 2
p
2 is center-blocking.

Proof Define acc�1" to be acc�1U if "D 1 and acc�1L if "D�1.10 Then we must check
that

�E ;b

�
p

q

�
D

p

d �mb
> Vb

�
p

q

�
D

pC q

q.3� b/
; b WD acc�1"

�
p

q

�
;

where we have used (1.1.3) and (2.2.9). Thus we need

pq.3� b/ > .pC q/.d �mb/;

or equivalently
3pq� d.pC q/ > b.pq�m.pC q//:

By (2.1.2) we have b D .3pqC ".pC q/
p
� /=..pC q/2C pq/, where � C 8 D t2.

Thus we must check that

..pC q/2Cpq/.3pq� d.pC q// > .3pqC ".pC q/
p
� /.pq�m.pC q//:

10By (2.2.4) we have m=d > 1=3 exactly when "D 1. Moreover the condition p=q > amin implies that
p=q D acc.b/ for at least one b so it is in the domain of acc�1" for at least one value of ".
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By deleting the term 3p2q2 from both sides, multiplying by 8 and substituting for d
and m, we obtain the equivalent inequality

24pq.pC q/2� .pC q/..pC q/2Cpq/.3.pC q/C "t/

> �3pq.pC q/.pC qC 3"t/C ".pC q/
p
�.8pq� .pC qC 3"t/.pC q//

D�3pq.pC q/.pC qC 3"t/C ".pC q/
p
�.�� � 3"t.pC q//;

where the last equality uses the identity 8pq� .pCq/2 D�� . If we take all the terms
in this inequality that involve an even power of ", and put them on the left-hand side,
we obtain

24pq.pC q/2� 3.pC q/2..pC q/2Cpq/C 3pq.pC q/2C 3.pC q/2t
p
�

D 3.pC q/2
�
8pq� .pC q/2�pqCpqC � C .t

p
� � �/

�
D 3.t

p
� � �/.pC q/2 DW A > 0;

since � D p2� 6pqC q2 and t2 D � C 8. If we do the same with the coefficient of ",
we obtain

�t .pC q/
�
.pC q/2Cpq

�
C 9t.pC q/pqC .pC q/�

p
�

D t .pC q/.�p2� 3pq� q2C 9pqC �/� .t �
p
�/.pC q/�

D .
p
� � t /.pC q/� DW B:

We need to check that A > jBj, which is equivalent to 3.pC q/ >
p
� . Since this

holds, the required inequality is established.

Remark 2.2.10 Proposition 2.2.9 shows that every class that is defined by a tu-
ple .d;m; p; q; t; "/ with p=q > amin as in (1.2.4) is in fact a center-blocking class.
Thus all our stair steps are center-blocking. However, we have not been able to
resolve the question of whether there is a blocking class B of more general type
that is not center-blocking. In this case, there would be a point b0 2 Œ0; 1/ such that
�B;b0.acc.b0//>Vb0.acc.b0//. However, if I is the largest interval containing acc.b0/
on which �B;b0 is obstructive, and if a 2 I is the corresponding break point — see
[1, Lemma 14] — then �B;b would not block a, ie for both elements b 2 acc�1.a/
we would have �B;b.a/� Vb.a/. (For further discussion of blocking classes, see [1,
Section 2.3].) We bypass this question here by restricting attention to (quasiperfect)
center-blocking classes.

The following fact about blocking classes was pointed out to us by Morgan Weiler.
It is somewhat surprising since we know from [1, Lemmma 15(iii)] that every quasi-
perfect class B D .d;m; p; q/ is obstructive when b Dm=d and z D p=q, ie we have
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�B;m=d .p=q/ > Vm=d .p=q/. Thus it is natural to think that m=d would lie in the
blocked interval JB , which is defined to be the maximal interval containing acc�1" .p=q/

consisting of parameters b such that �B;b.acc.b// > Vb.acc.b//. However, we now
show that this never happens.

Lemma 2.2.11 Every quasiperfect class BD .d;m; p; q; t; "/with "D1 (resp. "D�1)
has the property that m=d > b (resp. m=d < b), for all b in the closure of the blocked
b–interval JB .

Proof We first argue by contradiction to show that m=d … cl.JB/, and then finish the
argument by considering the cases b < 1=3 and b > 1=3 separately.

Thus suppose thatm=d 2 cl.JB/, and let z0 WD acc.m=d/. We first claim that z0>p=q.
To see this note that by (2.1.1) z0 is the unique solution > 1 of the equation

z0C
1

z0
D
.3�m=d/2

1� .m=d/2
� 2;

and the function z 7! zC1=z increases when z > 1. Therefore, z0 >p=q exactly when
z0C 1=z0 > p=qC q=p. But

z0C
1

z0
D

�
.3�m=d/2

1� .m=d/2
� 2

�
D
p2C q2C 2

pq� 1
>
p

q
C
q

p
;

where the second equality uses the identities d2�m2 D pq� 1 and 3d �mD pC q.
Thus z0 > p=q.

Ifm=d 2 cl.JB/ then z0D acc.m=d/2 cl.IB/D acc.cl.JB//, so, by [1, Lemma 38(ii)]
and [1, Lemma 16], �B;m=d .z0/ is given by the formula in (1.1.3). Thus we must have

�B;m=d .z0/D
p

d �m �m=d
� Vm=d .z0/D

1C z0

3�m=d
;

where the first equality holds by (1.1.3) and the fact that z0 >p=q, the inequality holds
because we assume �B;m=d is at least as large as the volume at z0, and the last equality
holds by Lemma 2.2.7 and the fact that z0 D acc.m=d/. Therefore z0 � z1, where z1
satisfies the equation p=.d �m �m=d/D .1C z1/=.3�m=d/.

Next note that, by solving for z1 and using the identities d2 � m2 D pq � 1 and
3d �mD pCq, we obtain z1D .p2C1/=.pq�1/. It is now straightforward to verify
that

z0C
1

z0
D
p2C q2C 2

pq� 1
D z1C

q2C 1

pq� 1
> z1C

pq� 1

p2C 1
D z1C

1

z1
:

But this is impossible since we saw above that z0 � z1. This completes the first step.
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To finish the argument, notice that we proved above that z0 D acc.m=d/ > p=q, while
Proposition 2.2.9 shows that p=q is always blocked by B. Thus if IB WD acc.JB/

denotes the set of blocked z–values, we have acc.m=d/ > p=q where p=q 2 IB .
Therefore acc.m=d/ must be greater than all points in cl.IB/. Since b 7! acc.b/
preserves orientation exactly if b > 1=3, this implies that m=d > b for all b 2 cl.JB/

when m=d > 1=3 and m=d < b for all b 2 cl.JB/ when m=d < 1=3.

We end this subsection with a few remarks about the case b D 1=3, which is the focal
point of the shift S and separates the two regimes, b > 1=3 and b < 1=3. As far as we
know, this is the unique rational value of b with a staircase.11 Example 2.3.7 below
describes the ascending staircase at bD 1=3. Although we have not managed to resolve
the question of whether there is also a descending staircase at b D 1=3, we can make
the following observation. Note that the proof uses the same idea as in Lemma 4.3.3.

Lemma 2.2.12 If there is no descending staircase when bD 1=3, then there is an " > 0
such that c1=3.z/D 3.1C z/=8 for 3C 2

p
2D amin < z < aminC ".

Proof It follows from [1, Example 32] (also see Remark 2.3.8(ii)) that the obstruction
�E1;b given by the class E1 WD 3L�E0�2E1�E2:::6 is precisely z 7! .1Cz/=.3�b/

when 5 < z < 6. Thus for z 2 Œamin; 6� we know that cH1=3.z/ � 3.1C z/=8. If we
do not have equality for z 2 .amin; amin C "/ and there is no staircase, then there
must be a different obstruction curve z 7! .AC Cz/=.d �m=3/ that goes through
the accumulation point .amin; 3

p
amin=8/. Because amin is irrational, the equation

.ACCamin/=.d �m=3/D 3.1Camin/=8 can hold only if ADC . But then the graphs
of the two obstructions are lines of the form z 7! �.1C z/, and hence coincide.

This following observation is also relevant because, for example, dB �3mB appears as
the coefficient of d in the linear staircase relation (1.2.5), so that it would be awkward
if it were ever zero.

Lemma 2.2.13 There is no quasiperfect class E D .d;m; p; q/ with m=d D 1=3.

Proof By (1.2.1), given any such E the positive integers m, p, and q would have to
satisfy 8mD pCq and 8m2D pq�1. Since m 2Z we must have pCq �8 0, so the
second equation gives p2 �8 �1. This is impossible because .4kC 1/2 and .4kC 3/2

are both congruent to 1 mod 8.
11In particular, there should be no staircases at the points b2 acc�1.vi /. This was proved in [1, Theorem 6]
for the case b D 1=5 2 acc�1.6/, but the proof seems too elaborate to be easily generalized.
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2.3 The known staircases

The paper [1] found three different families of blocking classes BU , BE , and BL and
their associated staircases. For our purposes, SU and SL are the essential families, since
applying powers of S to these staircases generate all the staircase families discussed
here.

We now review the theorems in [1, Theorems 56 and 58] that define these two staircase
families. In all cases the staircase steps En;k are quasiperfect classes given by tuples
.dn;k; mn;k; pn;k; qn;k/ that for x D d;m; p; q satisfy the recursion described below.
We call pn;k=qn;k the center of the step, and use the staircase relation12 (together with
the linear Diophantine condition 3d DmCpC q) to determine the entries d and m
from knowledge of p and q.

Theorem 2.3.1 The classes BU
n D .nC3; nC2; 2nC6; 1/, for n� 0, with increasing

centers , are perfect blocking classes , with the following associated staircases SU
`;n

and SUu;n, where �n D .2nC 5/.2nC 1/ and endn D .2nC 4/ or .2nC 5; 2nC 2/:

� For each n�1, SU
`;n

has limit point aU
`;n;1

D Œ2nC5I 2nC1; f2nC5; 2nC1g1�,
and its
– centers Œf2n C 5; 2n C 1gk; endn�, for k � 0, where endn D 2n C 4 or
.2nC 5; 2nC 2/,

– recursion xn;kC1 D .�nC 2/xn;k � xn;k�1,
– relation .2nC 3/dn;k D .nC 1/pn;kC .nC 2/qn;k .

� For each n�0, SUu;n has limit point aUu;n;1D Œ2nC7I f2nC5; 2nC1g
1�, and has

– centers Œ2nC 7I f2nC 5; 2nC 1gk; endn�,
– recursion xn;kC1 D .�nC 2/xn;k � xn;k�1,
– relation .2nC 3/dn;k D .nC 2/pn;k � .nC 4/qn;k .

The limit points aU
�;n;1 form increasing unbounded sequences in .6;1/ D .v2; v1/,

while the corresponding b–values lie in .5=11; 1/, where 5=11D acc�1U .6/, and increase
with limit 1.

Remark 2.3.2 (i) If � is an integer � 3, the recursion xkC1 D �xk � xk�1 has a
unique solution > 1 of the form xk D ˛

k where ˛2 � �˛C 1 D 0. If the recursion
has seeds x0 and x1, the general rational solution can be written X˛kCX N̨k where
N̨ WD 1=˛ is the other solution, X 2QŒ

p
�2� 4�, and for X D aCb

p
�2� 4 we define

X WD a� b
p
�2� 4. Hence, if x� and y� both satisfy this recursion, the ratio x�=y�

12In [1] we did not yet realize the role of the variable t .
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converges to the quantity X=Y . It is thus straightforward to calculate quantities such
as aUu;n;1 from knowledge of the recursion plus its seeds; see Lemma 3.1.4.

(ii) The staircases SU
�;n are described above as having two intertwined strands, one

for each endn. We show in Lemma 3.2.1 that these classes may be combined into a
single family with recursion variable 2nC 3. This simpler description of the staircases
clarifies their essential structure.

(iii) Notice that there is no ascending staircase in this family with n D 0 since the
centers of its steps would be < 6, the center of BU

0 . Of course, there is a staircase of
this kind, but we view it here as the image of SUu;0 by the reflection Rv2 D SR, and so
consider it a member of the staircase family .SR/].SU /.

(iv) Finally, note that staircases that are associated to a blocking class B and labeled
with the subscript ` are always ascending, and converge to the lower end of the z–
interval blocked by B, while those labeled u descend and converge to the upper
endpoint of this z–interval.

There is a corresponding definition of the staircase family SL.

Theorem 2.3.3 The classes BL
n D .5n; n�1; 12nC 1; 2n/, for n� 1, with decreasing

centers , are perfect and center-blocking , and have the following associated staircases
SL
`;n

and SLu;n for n� 1, with �n and endn as in Theorem 2.3.1:

� SL
`;n

is ascending , with limit point aL
`;n;1

D Œ6I 2nC1; f2nC5; 2nC1g1�, and
has

– centers Œ6I 2nC 1; f2nC 5; 2nC 1gk; endn�,

– recursion xn;kC1D .�nC2/xn;k �xn;k�1, where �n WD .2nC1/.2nC5/,

– relation .2nC 3/dn;k D .nC 1/pn;k � .n� 1/qn;k .

� SLu;n is descending , with limit point aLu;n;1D Œ6I2n�1;2nC1;f2nC5;2nC1g
1�

and has

– centers Œ6I 2n� 1; 2nC 1; f2nC 5; 2nC 1gk; endn�,

– recursion xn;kC1 D .�nC 2/xn;k � xn;k�1,

– relation .2nC 3/dn;k D�.n� 1/pn;kC .11nC 2/qn;k .

The limit points aL
�;n;1 (with �D` or u) form a decreasing sequence in .6; 7/D .v2; w1/

with limit 6, while the corresponding b–values lie in
�
0; 1
5

�
and increase with limit 1

5
.

Remark 2.3.4 (i) It follows from Lemma 2.1.6(i)–(ii) that the symmetry R takes the
centers both of the blocking classes and of the staircase steps for the family SU into
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those for SL. Notice that in the case of SU
`;n

it takes the step with label k to the step in
SUu;n with label k � 1. Note that, with this choice of labeling, the image by R of the
step with center Œ2nC 7I 2nC 4� (which appears both as SU

`;nC1;0
and as SUu;n;1) has

no counterpart in the staircase SLu;nC1, though it could be added to it.

(ii) The Fibonacci stairs The Fibonacci stairs are the ascending stairs that should be
associated to BL

0 DR
].BU

0 /. However, such a class would have center at R.6/D1,
and so it does not exist as a geometric obstruction. Nevertheless, if we ignore the first
few steps, the steps of the Fibonacci stairs have precisely the form predicted by putting
nD 0 in the formulas for SL

`;n
; namely, they have

� centers Œ6I 1; f5; 1gk; end0�,

� recursion xkC1 D 5xk � xk�1,

� relation 3dk D pkC qk .

Moreover, although the class E 0 WD 3L.�0E0/�2E1�E2�� � ��E7 is not perfect, its
obstruction�E 0;0.z/ for z 2 .6; 7� is the function z 7! .1Cz/=3, which goes through the
point .a0;1; V0.a0;1// (where a0;1D �4) and equals cH0.z/ for z 2 Œ�4; 7�. Therefore
this class E 0 plays the geometric role of the blocking class, and we consider these stairs
as part of the family SL D R].SU /. As we explain before Lemma 3.2.5, there is a
different tuple with negative entries that plays the numeric role of the missing blocking
class; below we denote this by BL

0 .

Notice that all the other families .S i /].SL/, for i � 1, have an ascending staircase for
nD 0 that is associated with the blocking class .S i /].BL

0 /, which now has positive
entries and so is geometric.

Lemma 2.2.11 shows that for every n� 0 the ratio .nC 2/=.nC 3/ does not lie in the
b–interval JBUn

blocked by BU
n . The next lemma locates this point more precisely.

Lemma 2.3.5 Let .dn; mn/D .nC3; nC2/ and an D 2nC6 be the degree variables
and center of the blocking class BU

n D .nC 3; nC 2; 2nC 6; 1/. Then for all n � 0,
we have acc.mn=dn/ < anC1 and mn=dn 2 JBU

nC1
.

Proof To see that zn WD acc.mn=dn/ < anC1 D 2nC 8, it suffices to check that
znC 1=zn < 2nC 8C 1=.2nC 8/. But (2.1.1) implies that

znC
1

zn
D
.3� .nC 2/=.nC 3//2

1� ..nC 2/=.nC 3//2
� 2D

4n2C 24nC 39

2nC 5

D 2nC 8�
2nC1

2nC5
< 2nC 8C

1

2nC8
:
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A similar argument shows that zn > 2nC 7. Therefore, [1, Lemma 16] implies that
�BU

nC1
;mn=dn

.zn/ is given by the formula (1.1.3), so

�BU
nC1

;mn=dn
.zn/D

zn

dnC1� .mn=dn/mnC1
D
zn

2
:

On the other hand, it follows from [1, Lemma 38] that mn=dn 2 JBU
nC1

exactly when
�BU

nC1
;mn=dn

.zn/ > Vmn=dn.zn/. Since zn D acc.mn=dn/, we have

Vmn=dn.zn/D
1C zn

3�mn=dn
:

Thus we need zn=2 > .1C zn/.nC 3/=.2nC 7/, which holds because zn > 2nC 6.

Remark 2.3.6 We show in Corollary 4.2.6 that for all our staircases, whether ascending
or descending, the ratios .mk=dk/k�1 decrease when mk=dk > 1=3 and increase when
mk=dk < 1=3. (Since the staircase steps are defined recursively, Corollary 3.1.5 shows
that this follows from the structure of the first two steps.) Further, Proposition 3.2.2
shows that the blocking class BU

n can be considered as a step in the ascending stair
SU
`;nC1

associated to BU
nC1. Hence mn=dn is part of a decreasing sequence that limits

on the lower endpoint of JBU
nC1

. Thus, once we have shown that mn=dn < anC1, this
reasoning implies that mn=dn 2 JBU

nC1
. More generally, an analog of Lemma 2.3.5

holds for any prestaircase family.

Example 2.3.7 (the staircase at b D 1=3) This staircase, discovered in [3], behaves
in a different way from all other known staircases in Hb . It has three interwoven
sequences,

Ek;i D .dk;i ; mk;i ; pi;k D gk;i ; qi;k D gk�1;i /; i D 0; 1; 2;

where for each i the numbers gk;i satisfy the recursion

gkC1;i D 6gk;i �gk�1;i

with seeds (ie initial values)

g0;0 D 1; g1;0 D 2; g0;1 D 1; g1;1 D 4; g0;2 D 1; g1;2 D 5:

The centers pi;k=qi;k WD gk;i=gk�1;i have continued fractions Œ5I f1; 4gk; endi �, where
the possible ends are end0 D 2, end1 D .1; 3/ and end2 D∅.

Normally one needs two seeds, say x0 and x1, to fix an iteration of the form xkC1 D

�xk � xk�1. However the variables p and q for the 1=3–staircase have the form xk
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and xk�1, and so are part of a single recursive sequence. Thus we can consider that
each of the three strands of the 1=3–staircase has a single seed Eseed D .d;m; p; q/,
namely

Eseed;0 D .1; 0; 2; 1/; Eseed;1 D .2; 1; 4; 1/; Eseed;2 D .2; 0; 5; 1/;

and that the rest of the staircase comes from the images of the .p; q/ components of
these three classes under the action of S W .p; q/ 7! .6p�q; p/, with .d;m/ determined
by a modification of (2.2.4) as follows. We have

(2.3.1) dk;i D
1
8
.3.gk;i Cgk�1;i /C "k;i ti /; mk;i D

1
8
.gk;i Cgk�1;i C 3"k;i ti /;

where "k;i D .�1/kCi , while ti is constant with respect to k and equal to

ti D
p
g21;i Cg

2
0;i � 6g1;ig0;i C 8D

�
1 if i D 0; 1;
2 if i D 2:

Note that "k;i D 1 if mk;i=dk;i > 1=3 and D�1 otherwise.

Note that, in contrast with the case of SU and SL discussed in Remark 2.3.2(ii) above,
it is not possible to combine these three interwoven sequences into a single recursive
sequence; for example, there is no constant c such that for all k

gk;2 D cgk;1�gk;0:

Further, the relation between the d , p, and q variables in this staircase is significantly
different from the homogenous linear relation satisfied by the other staircases. By [1,
Proposition 49] the latter relation implies that the ratios mk;i=dk;i are monotonic and
converge as k!1 so quickly that the step classes are themselves center-blocking
classes. On the other hand, classes with centers < amin cannot be center-blocking, and
the ratios mk;i=dk;i lie on both sides of 1=3. Another important distinction between
this staircase and the others is the fact that the t–variable is fixed for each strand. The
point here is that in all cases the variable called t is fixed by the shift S . This shift
implements the recursion of the 1=3–staircase, while it takes every other staircase to a
different one.

Finally, we remark that the three seed classes Eseed;i , for iD0; 1; 2, have rather different
natures. The first two have the form of the blocking classes

BU
n WD .nC 3; nC 2; 2nC 6; 1/; n� 0;

and indeed are given by taking nD�2;�1 in this formula. One might consider that
the BU

n , for n� �2, form a single family of classes, that behave differently according
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as to where the center 2nC 6 lies in relation to amin. If the center is < amin then
iteration by S gives a staircase for bD 1=3D acc�1.amin/, while if the center is >amin

then we get a family of blocking classes that block b–intervals that converge to 1=3,
but do not form a staircase since they are not live when b D 1=3. (To see this, note that
t D jd � 3mj is fixed by S , while by [1, Lemma 15] a perfect class E with center p=q
is obstructive at its center for a given value of b if and only if jbd �mj <

p
1� b2.

Hence a class that is live at b D 1=3 must have jt j< 3, while BU
n has t D 2nC 3.)

The third seed Eseed;2D .2; 0; 5; 1/ with .t; "/D .2;�1/ is significantly different. Both
it and Eseed;0D .1; 0; 2; 1/ are steps in the Fibonacci staircase at bD 0, but the iteration
that gives this sequence is not S but rather x�C1 D 3x� � x��1. All the other steps in
the Fibonacci staircase have centers >amin, and are blocking classes by [1, Lemma 41].
On the other hand, because S.1; 1/D .5; 1/, the strand formed by Eseed;2 and its iterates
under S can be extended one place backwards by the tuple

(2.3.2) E�1;2 WD .1; 1; 1; 1/ with .t; "/D .2; 1/:

It turns out that the sequence of classes formed by E�1;2, Eseed;2, and the images of
Eseed;2 by S i have an important role to play in generating the staircase families; see
for example Corollaries 3.2.3 and 3.2.7 and Lemma 3.3.3.

Remark 2.3.8 (the role of low degree classes) (i) The three seeds of the 1=3–
staircase are given by the only exceptional curves inHb with degree at most two. These
classes have centers < aminD 3C2

p
2, while all the other classes of interest here have

centers > amin.

(ii) There is one exceptional divisor of degree three, that gives rise to three potentially
interesting exceptional divisors in Hb that we will label by the coefficient of E0,
namely13

E0 WD 3L�2E1�E2:::7; E1 WD 3L�E0�2E1�E2:::6; E2 WD 3L�2E0�E1:::6:

Each of these classes has a special role to play:

� E0 substitutes geometrically (but not numerically) for the blocking class for the
Fibonacci stairs (see Remark 2.3.4(ii)).

� E1 is a (nonperfect) class with breakpoint 6. This class is discussed extensively
in [1, Example 32]. It is obstructive at z D 6 for

acc�1L .6/D 1
5
< b < 5

11
D acc�1U .6/;

13Here we use the shorthand of [6], where Ei :::j WD
Pj
kDi

Ek .
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and for this range of b we have

�E ;b.z/D
1Cz

3�b
for z 2 .5; 6/; �E ;b.z/D

7

3�b
for z � 6:

The obstruction given by this class is discussed further in Lemma 2.2.7. Its
properties turn out to be a crucial element in our proofs.

� E2 is the perfect blocking class BU
0 with center 6.

3 Structure of the prestaircase families

We begin by explaining the recursion that underlies our staircases. In Section 3.2, we
then describe the staircase families SU and SL in the new language, and show that
they are indeed generated by their blocking classes together with two seeds, as claimed
in Proposition 1.2.2.

In Section 3.3, we prove Theorem 1.2.4. This establishes that for each T D S iRı ,
T ].SU / is a prestaircase family. This entails examining how the seeds and blocking
classes are transformed under S . Furthermore, this implies that each prestaircase in
T ].SU / is associated to a blocking class, an essential feature of a prestaircase family.
In Section 3.4, we compute how S] and R]vi act on the degree coordinates .d;m/ of
the blocking classes.

3.1 The single recursion

The following lemma shows that we can consider each staircase in SU and SL to be
a single family of classes satisfying the recursion x�C1 D .2nC 3/x� � x��1 with
parameter 2nC 3 instead of a double family of classes as in Theorems 2.3.1 and 2.3.3
that each satisfy the recursion xkC1D ..2nC1/.2nC5/C2/xk�xk�1 with parameter
.2nC1/.2nC5/. Note that an increase of k by 1 corresponds to an increase of � by 2.

Lemma 3.1.1 (i) Let m� 1 be any integer , and consider

p1

q1
D ŒmI 2nC4�;

p2

q2
D ŒmI 2nC5; 2nC2�;

p3

q3
D ŒmI 2nC5; 2nC1; 2nC4�;

p4

q4
D ŒmI 2nC5; 2nC1; 2nC5; 2nC2�:

Then for x� D p�; q� we have x�C1 D .2nC 3/x� � x��1 for � D 1; 2.
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(ii) If x� is a sequence such that x�C1 D �x� � x��1 for all �, then

x�C2 D .�
2
� 2/x� � x��2 for all �:

In particular , if � D 2nC 3 then �2� 4D .2nC 1/.2nC 5/.

(iii) If y� and z� satisfy the recursion x�C1 D �x� � x��1, then

y�C2z� � z�C2y� D �.y�C1z� � z�C1y�/:

Proof Item (i) by direct calculation. Item (ii) holds because �x��1 D x� C x��2, so

x�C2D �x�C1�x� D �.�x��x��1/�x� D .�
2
�1/x���x��1D .�

2
�2/x��x��2:

Finally, (iii) holds because

y�C2z� � z�C2y� D det
�
z� y�
z�C2 y�C2

�
D det

�
z� y�

�z�C1 �y�C1

�
:

We next show that this recursion extends naturally to the triples .p� ; q� ; t�/ that param-
etrize quasiperfect classes as in Definition 2.2.3, provided that the initial seeds satisfy
the compatibility condition (3.1.3) that is given below. Further, (3.1.2) below states that
the tuple .p; q; t/ is the coordinate of a point on the surface X defined by (2.2.2). Thus
the next lemma gives compatibility conditions on the seeds .p0; q0; t0/ and .p1; q1; t1/
under which the recursion with parameter � extends to the integral points of X .

It is convenient to use matrix notation with

(3.1.1) A WD

0@�1 3 0

3 �1 0

0 0 1

1A ; x WD

0@pq
t

1A :
Thus the matrix A is symmetric, and X D fx j xTAx D 8g.

Lemma 3.1.2 Suppose that x0 and x1 are integral vectors that satisfy the following
conditions for some integer � > 0:

xTi Axi D 8; i D 0; 1;(3.1.2)

xT1Ax0 D 4�:(3.1.3)

Then the vectors x2 WD �x1�x0;x1 also satisfy these conditions for the given �.

Proof Since A is symmetric,

.�x1�x0/
TA.�x1�x0/D �

2xT1Ax1� 2�xT1Ax0CxT0Ax0 D 8
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exactly when 8�2 D 2�xT1Ax0, which holds by (3.1.3). Further, (3.1.3) holds for
�x1�x0;x1 because, by (3.1.3),

.�x1�x0/
TAx1 D 8� � .x0/

TAx1 D 4�:

Corollary 3.1.3 Any two integral triples xi D .pi ; qi ; ti / for i D 0; 1 that satisfy
(3.1.2) and (3.1.3) for a given � can be extended to a sequence xi for i � 0 using
recursion parameter �, where each successive pair satisfies these conditions. Further ,
for fixed " 2 f˙1g, the corresponding quantities

di D
1
8
.3.pi C qi /C "ti /; mi D

1
8
.pi C qi C 3"ti /

of (2.2.4) also satisfy this recursion and hence are integers , provided that they are
integers for i D 0; 1.

We end this section with some useful formulas about recursively defined sequences.
The following is an adaptation of [1, Lemma 47].

Lemma 3.1.4 Let x� for � � 0 be a sequence of integers that satisfy the recursion

(3.1.4) x�C1 D �x� � x��1; � � 3;

and let
�D 1

2
.�C

p
�/ 2QŒ

p
��

be the larger root of the equation x2� �xC 1D 0, where � D �2� 4 > 1. Then there
is a number X 2QŒ

p
�� such that

(3.1.5) x� DX�
�
CX N�� ;

where aC b
p
� WD .a�b

p
�/, so that � N�D 1. Further , if we write X DX 0CX 00

p
� ,

then

(3.1.6) X 0 D
x0

2
; X 00 D

2x1� �x0

2�
:

Proof If the monomials x�Dc� satisfy the recursion then we must have c2��cC1D0,
so that c D 1

2
.�˙

p
�2� 4/D 1

2
.�˙

p
� /. Let � be the larger solution so that N� is

the smaller one, and we have � N�D 1. Since (3.1.4) has a unique solution once given
the seeds x0 and x1, it follows that for each choice of constants A and B , the numbers

(3.1.7) x� WD A�
�
CB N��

form the unique solution with

x0 D ACB; x1 D A�CB N�:
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Then A;B 2 QŒ
p
��. Notice also that

p
� is irrational since � D �2 � 4 is never a

perfect square when � � 3. It follows easily that x0; x1 2 Q only if we also have
B WD A.

Thus we have

x0 DX CX DX
0
CX 00

p
� CX 0�X 00

p
� D 2X 0;

which gives X 0 D x0=2, and

x1 D .X
0
CX 00

p
� / � 1

2
.�C

p
�/C .X 0�X 00

p
� / � 1

2
.� �
p
�/DX 0�CX 00�;

which gives X 00 D .2x1� �x0/=.2�/, as claimed

Corollary 3.1.5 Let x� and y� , for � � 0, be increasing sequences that both satisfy
(3.1.4) for some � � 3 and are such that x� and y� are positive for � � 1. Suppose
further that at most one of x0 and y0 are zero. Then:

(i) The ratios .x�=y�/��1 form a monotonic sequence that is strictly increasing if
x1y0� x0y1 > 0 and is strictly decreasing if x1y0� x0y1 < 0.

(ii) In all cases , lim�!1 x�=y� exists and equals X=Y , where X and Y are the
constants defined in (3.1.6).

(iii) Provided that x1y0� x0y1 ¤ 0, the limit X=Y is irrational.

Proof Note first that

x�C1y� � x�y�C1 D .6x� � x��1/y� � x�.6y� �y��1/D x�y��1� x��1y�

is independent of �. Hence the sequence x�=y� for � � 1 is monotonic,14 and the
quantity x1y0� x0y1 determines whether it is increasing or decreasing. Part (ii) is an
immediate consequence of the formula in (3.1.7), and the fact that � > 1.

To prove the third claim, suppose first that 2x1 > �x0. Then X D X 0 CX 00
p
� is

irrational since the coefficient X 00 of
p
� does not vanish, and � D �2 � 4 is not a

perfect square. Similarly, if 2y1 > �y0 then Y is irrational. Further,

X

Y
D
.X 0CX 00

p
�/.Y 0�Y 00

p
�/

.Y 0CY 00
p
�/.Y 0�Y 00

p
�/
D
.X 0Y 0�X 00Y 00�/C .X 00Y 0�X 0Y 00/

p
�

.Y 0/2� .�Y 00/2

is irrational unless X 00Y 0�X 0Y 00 D 0. But formula (3.1.6) implies that X 00Y 0�X 0Y 00

is a multiple of x1y0� x0y1 and so is nonzero by hypothesis.

14If x0=y0 � 0, then the sequence is only monotonic for � � 1. This will be the case for the seeds of SUu
computed in Lemma 3.2.1(ii)
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To deal with the possibility that X 00 or Y 00 equals 0, notice that the limit ratio X=Y
does not depend on which pair of terms k0; k0C 1 we take as the initial terms (though
the values of X and Y do depend on this choice). Further, because by hypothesis � � 3
and x0 < x1, we have x2 D �x1 � x0 > �x1=2, so 2x2 > �x1. Similarly, 2y2 > �y1.
Therefore if we define the quantities X and Y as in (3.1.6) but starting with � D 1 then
the above argument shows that the ratio X=Y is irrational.

3.2 Generating the known staircase families

We now prove Proposition 1.2.2; its proof is contained in Corollaries 3.2.3 and 3.2.7. In
all cases considered in this paper, the recursion variable � D 2nC3 for the prestaircase
SF
�;n in a staircase family F is a linear function of n, and we will enumerate the terms
x� in our recursively defined sequences such that the value of x� is a polynomial of
degree � in n. In particular, x0 is a constant. In contrast, the staircase sequences were
enumerated in Theorems 2.3.1 and 2.3.3 via a number k that counted the iterations of
the repeated pair f2nC 5; 2nC 1g in the continued fraction expansion of pk=qk .

Lemma 3.2.1 (i) If .p0; q0; t0/D .1; 1; 2/ and .p1; q1; t1/D .�C 1; 1; � � 2/ for
any � � 3, then the identities in Lemma 3.1.2 hold. Further , with .d0; m0/ D
.1; 1/ and .d1; m1/ D

�
1
2
.� C 1/; 1

2
.� � 1/

�
, the identities in (2.2.4) hold with

"D 1.

(ii) If .p0; q0; t0/D .�5;�1; 2/ and .p1; q1; t1/D .�C 5; 1; �C 2/ for any � � 1,
then the identities in Lemma 3.1.2 hold. Further , with .d0; m0/D .�2; 0/ and
.d1; m1/D

�
1
2
.�C 5/; 1

2
.�C 3/

�
, the identities in (2.2.4) hold with "D 1.

(iii) If we define the triple .p� ; q� ; t�/ by the recursion x�C1D �x��x��1 for � � 1,
then the ratios p�=q� form an increasing sequence in case (i ) and a decreasing
sequence in case (ii ).

Proof The claims in (i) and (ii) hold by an easy computation. To prove (iii), it suffices
by Corollaries 3.1.3 and 3.1.5 to check the first two terms. But in case (i) we have
p1=q1>p0=q0, while in case (ii), p1=q1D �C5>p2=q2D .�2C5�C5/=.�C1/.

Proposition 3.2.2 All the classes involved in the staircase family SU can be extended
to tuples .d;m; p; q; t; "/ with " D 1. Moreover , the staircase SU

�;n has recursion
parameter 2nC 3, which is the t–coefficient in BU

n , and it can be extended to have the
seeds described in Lemma 3.2.1. More precisely:

Algebraic & Geometric Topology, Volume 23 (2023)



Staircase symmetries in Hirzebruch surfaces 4273

� The ascending staircase SU
`;n

for n � 1 has initial step given by the tuple
.d;m; p; q; t/D .1; 1; 1; 1; 2/ and next step (at � D 1) given by the (t–extended )
blocking class

BU
n�1 D .nC 2; nC 1; 2nC 4; 1; 2nC 1/:

� The descending staircase SUu;n for n � 1 has initial step given by the tuple
.d;m; p; q; t/ D .�2; 0;�5;�1; 2/ and next step (at � D 1) given by the (t–
extended ) blocking class

BU
nC1 D .nC 4; nC 3; 2nC 8; 1; 2nC 5/:

Corollary 3.2.3 The family SU is generated in the sense of Definition 1.2.1 by its
blocking classes BU

n D .nC 3; nC 2; 2nC 6; 1; 2nC 3/ together with the seeds

EU
`;seed D .1; 1; 1; 1; 2/; EU

u;seed D .�2; 0;�5;�1; 2/; "D 1:

Moreover , for all staircases in this family , whether ascending or descending , the ratios
m�=d� decrease.

Proof of Proposition 3.2.2 It is straightforward to check that the d and m coordinates
in BU

n WD .nC 3; nC 2; 2nC 6; 1/ for n� 0 are given by the formulas in (2.2.4) with

(3.2.1) .p; q; t/D .2nC 6; 1; 2nC 3/; "D 1:

By Lemma 3.1.1, if for each n � 1 we enumerate the ascending staircase SU
`;n

as a
single staircase that is indexed by the degree � of p� as a function of n, then this
staircase has

� recursion parameter � D 2nC 3,

� initial steps with centers p1=q1 D .2nC 4/=1 and

p2

q2
D Œ2nC 5I 2nC 2�D

.2nC 5/.2nC 2/C 1

2nC 2
;

� linear relation .2nC 3/d� D .nC 1/p� C .nC 2/q� .

The linear relation implies that the d values of the first two steps are d1 D nC 2 and
d2 D .nC 1/.2nC 5/. Note also that the class with center at p1=q1 is precisely BU

n�1.

By the definition of t in (2.2.3), we have that t1 D 2nC 1 D � � 2 and that d1 is
as predicted by (2.2.4) with " D 1. Further if we take .p0; q0; t0/ D .1; 1; 2/ as in
Lemma 3.2.1(i), then

.p2; q2/D .�p1�p0; �q1� q0/:
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Therefore we may think of the tuple .d2; m2; p2; q2; t2/ as given by a recursion with
� D 2nC 3 and "D 1, with initial terms

(3.2.2) .p0; q0; t0/D .1; 1; 2/; .d0; m0/D .1; 1/:

Note that the entries d0, p0, and q0 also satisfy the linear relation

.2nC 3/d� D .nC 1/p� C .nC 2/q� :

Therefore, as in Corollary 3.1.3, all subsequent terms in this staircase must have degree
coefficients .d;m/ given by (2.2.4). Thus, as claimed, for each n this sequence is
generated by the tuple .d;m; p; q; t/ D .1; 1; 1; 1; 2/ together with the appropriate
blocking class.

Similarly, by Lemma 3.1.1, the descending staircase classes for SUu;n with n� 0, when
indexed by � have

� recursion parameter � D 2nC 3,

� initial steps with centers

p2

q2
D Œ2nC 7I 2nC 4�D

.2nC 7/.2nC 4/C 1

2nC 4
;

p3

q3
D Œ2nC 7I 2nC 5; 2nC 2�D

.2nC 7/..2nC 5/.2nC 2/C 1/C 2nC 2

.2nC 5/.2nC 2/C 1
;

� linear relation .2nC 3/d� D .nC 2/p� � .nC 4/q� .

The linear relation implies that the corresponding d values are d2 D 2n2C 11nC 14
and d3 D 4n3C 28n2C 60nC 38. Note that we can add the blocking class BU

nC1 D

.nC 4; nC 3; 2nC 8; 1/ to the staircase as the step for � D 1 because

p1 WD .2nC 3/p2�p3 D 2nC 8; q1 WD .2nC 3/q2� q3 D 1;

and the appropriate linear relation .2nC 3/.nC 4/D .nC 2/.2nC 8/� .nC 4/ holds.

In fact, this staircase has the form of Lemma 3.2.1(ii), with initial tuples

(3.2.3) .p0; q0; t0/D .�5;�1; 2/; .p1; q1; t1/D .2nC 8; 1; 2nC 5/:

The next entry in the recursive sequence is then

.p2; q2; t2/D
�
.2nC 8/.2nC 3/C 5; 2nC 4; .2nC 5/.2nC 3/� 2

�
;

which has the same values for p2 and q2, as does the first staircase step given above.
The formulas in (2.2.4) give

(3.2.4) .d0; m0/D .�2; 0/; .d1; m1/D .nC 4; nC 3/
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with "D 1. Further, the linear relation .2nC 3/d� D .nC 2/p� � .nC 4/q� holds in
both cases. Thus, again, this staircase is generated by the initial tuple .d;m; p; q; t/D
.�2; 0;�5;�1; 2/ together with the appropriate blocking class.

Proof of Corollary 3.2.3 The first claim is an immediate consequence of Proposition
3.2.2. By Corollary 3.1.5 to check the second claim we must check thatm1d0�m0d1<0
for all staircases. For the descending staircases, this is immediate because m0 D 0 and
d0 < 0 while m1 > 0. For the ascending staircases, this holds because m0 D d0 D 1
while m1 < d1.

Remark 3.2.4 (i) The parameters .d;m; p; q/D .1; 1; 1; 1/ of the initial step in the
ascending staircases do correspond to those of an exceptional class in Hb , albeit one
that is not live for the relevant z values (which are all > 3C 2

p
2D amin). Thus its

parameters are both geometrically and numerically meaningful. (See also the discussion
concerning (2.3.2).) On the other hand, the parameters .�2; 0;�5;�1/ of the initial
step in the descending staircases are negative and so, though numerically meaningful,
have no immediate interpretation in terms of a point p=q 2 .1;1/. Instead, they
parametrize the ray f.�5;�1/� j � > 0g in R2. Though we do not do this here, one
could think of the symmetries in terms of their action on these rays; see Remark 3.3.6.

(ii) For each n�1, the ascending staircase SU
`;nC1

with recursion parameter tBD2nC5
has the same second step as the descending staircase SUu;n with tB D 2nC 3. Indeed,
the formulas given above show that this step has center .d;m; p; q; t; 1/ with p and q
given by

p

q
D Œ2nC 7I 2nC 4�D Œ2.nC 1/C 5I 2.nC 1/C 2�

and with t D .2nC 3/.2nC 5/� 2.

There is a similar story for the staircase family SL, except that now there is no geometric
blocking class for nD 0, and the tuple .d;m; p; q; t/D .0;�1; 1; 0; 3/ that replaces it
has no obvious geometric meaning. Nevertheless, we define BL

0 WD .0;�1; 1; 0; 3/ for
the current purposes. (See Remark 2.3.4(ii).)

Here is the appropriate numerical lemma.

Lemma 3.2.5 (i) If .p0; q0; t0/D .5; 1; 2/ and .p1; q1; t1/D .6��5; ��1; �C2/
for any � > 1, then the identities in Lemma 3.1.2 hold. Further , with .d0; m0/D
.2; 0/ and .d1; m1/ D

�
5
2
.� � 1/; 1

2
.� � 3/

�
, the identities in (2.2.4) hold with

"D�1.
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(ii) If .p0; q0; t0/ D .�29;�5; 2/ and .p1; q1; t1/ D .6� � 29; � � 5; � � 2/ for
any � � 3, then the identities in Lemma 3.1.2 hold , Further , with .d0; m0/ D
.�13;�5/ and .d1; m1/ D

�
5
2
.� � 5/; 1

2
.� � 7/

�
, the identities in (2.2.4) hold

with "D�1.

(iii) If we define the triple .p� ; q� ; t�/ by the recursion x�C1D �x��x��1 for � � 1,
then the ratios p�=q� form an increasing sequence in case (i ) and a decreasing
sequence (for � � 2) in case (ii ).

Proof This is left to the reader.

Proposition 3.2.6 All the classes involved in the staircase family SL can be extended
to tuples .d;m; p; q; t; "/ with " D �1. Moreover , the staircase SL

�;n has recursion
parameter 2nC 3, which is the t–coefficient in BL

n , and it can be extended to have the
seeds described in Lemma 3.2.5. More precisely:

� The ascending staircase SL
`;n

for n� 0 has initial step given by .d;m; p; q; t/D
.2; 0; 5; 1; 2/ and with the next step (at � D 1) given by the blocking class BL

nC1

with t D 2nC 5.

� The descending staircase SLu;n for n� 2 has initial step given by .d;m; p; q; t/D
.�13;�5;�29;�5; 2/ and with the next step (at � D 1) given by the blocking
class BL

n�1 with t D 2nC 1. When nD 1 there is the same initial step , and the
step at � D 1 is given by the tuple BL

0 WD .0;�1; 1; 0; 3/.

Corollary 3.2.7 The family SL is generated in the sense of Definition 1.2.1 by its
blocking classes BL

n WD .5n; n� 1; 12nC 1; 2n; 2nC 3/ for n � 1, together with the
seeds

EL
`;seed D .2; 0; 5; 1; 2/; EL

u;seed D .�13;�5;�29;�5; 2/; "D�1;

where in the definition of SLu;1 we take the tuple BL
0 to be .0;�1; 1; 0; 3/. Further ,

for all staircases in the family with n > 0, both ascending and descending , the ratios
m�=d� increase.

Proof of Proposition 3.2.6 The blocking classes BL
n WD .5n; n� 1; 12nC 1; 2n/ for

n� 1 are given by the formulas in (2.2.4), with

(3.2.5) .p; q; t/D .12nC 1; 2n; 2nC 3/; "D�1:

By Lemma 3.1.1, if for each n � 0 we enumerate the ascending staircase SL
`;n

as a
single staircase that is indexed by the degree � of p� as a function of n, then this

Algebraic & Geometric Topology, Volume 23 (2023)



Staircase symmetries in Hirzebruch surfaces 4277

staircase has

� recursion parameter � D 2nC 3,

� initial steps p�=q� with centers

p2

q2
D Œ6I 2nC 1; 2nC 4�D

24n2C 62nC 34

4n2C 10nC 5
;

p3

q3
D Œ6I 2nC 1; 2nC 5; 2nC 2�D

.24n2C 98nC 121/2nC 89

.4n2C 16nC 19/2nC 13
;

� linear relation .2nC 3/d� D .nC 1/p� � .n� 1/q� .

The linear relation implies that .d2; m2/D .10n2C 25nC 13; 2n2C 3n/.

One can easily check that the values .p2; q2/ and .p3; q3/ given above agree with those
in the recursive sequence with � D 2nC 3 and initial terms

.d0; m0; p0; q0; t0/D .2; 0; 5; 1; 2/;

.d1; m1; p1; q1; t1/D .5.nC 1/; n; 12nC 13; 2nC 2; 2nC 5/:

Hence because the tuple for � D 0; 1 satisfies (2.2.4) with "D �1, all classes in the
staircase have this form. This establishes the claims concerning SL

`;n
.

By Lemma 3.1.1, if for each n � 1 we enumerate the descending staircase SLu;n as
a single staircase that is indexed by the degree � of p� as a function of n, then this
staircase has

� recursion parameter � D 2nC 3,

� initial steps with centers

p3

q3
D Œ6I 2n�1; 2nC1; 2nC4�D

48n3C100n2C22n�1

8n3C16n2C2n�1
;

p4

q4
D Œ6I 2n�1; 2nC1; 2nC5; 2nC2�D

96n4C344n3C320n2C50nC1

16n4C56n3C48n2C2n�2
;

� linear relation .2nC 3/d� D�.n� 1/p� C .11nC 2/q� .

Again one can check by direct computation that this sequence is generated by the tuples

.p0; q0; t0/D .�29;�5; 2/;

.p1; q1; t1/D .12n� 11; 2n� 2; 2nC 1/;

.p2; q2; t2/D .24n
2
C 14n� 4; 4n2C 2n� 1; 4n2C 8nC 1/;

which have the form described in Lemma 3.2.5(ii) with � D 2nC3; "D�1. Moreover,
formula (2.2.4) gives the following values for d and m with "D�1:

.d0; m0/D .�13;�5/; .d1; m1/D .5n� 5; n� 2/:
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Proof of Corollary 3.2.7 The first claim is a consequence of Proposition 3.2.6. By
Corollary 3.1.5, to check the second claim we must check that m1d0�m0d1 > 0. For
the descending staircases, we have m0 D�5, d0 D�13, m1 D n�2, d1 D 5n�5 and
n� 1, so m1d0 D�13.n� 2/ > �5.5n� 5/D�25nC 5Dm0d1. For the ascending
staircases with n� 1, this holds because m0 D 0 while m1; d0 > 0.

3.3 Proof of Theorem 1.2.4

We now prove Theorem 1.2.4 stating that each symmetry T 2 G transforms the staircase
family SU into another prestaircase family T ].SU /; in particular T DR interchanges
the families SU and SL.

We know from Definition 2.2.3 and Lemma 2.2.4 how T D S iRı acts on quasiperfect
classes. The corresponding definition for staircase families is as follows.

Definition 3.3.1 Given T D S iRı 2 G, we define T ].SU / to be the collection of
preblocking classes .T ].BU

n //n�0 together with the seeds T ].EU
seed;`/ and T ].EU

seed;u/.

We first prove our earlier claim that the reflectionR takes the family SU to the family SL.
Recall from Propositions 3.2.2 and 3.2.6 that all the classes in SU have "D 1 while all
those in SL have "D�1.

Lemma 3.3.2 (i) The map R] takes the blocking classes and seeds of the staircase
family SU together with all the associated staircase steps to the corresponding
elements in the family SL. Further , EU

u;seed D �EL
`;seed, where for a class

E D .d;m; p; q; t; "/ we define �E WD .�d;�m;�p;�q; t;�"/.

(ii) Moreover , S].EU
`;seed/DEL

`;seed and S].EU
u;seed/DEL

u;seed.

Proof We already noted in [1, Corollary 60] that the reflection R takes the step classes
in SU to those of SL. By Corollaries 3.2.3 and 3.2.7, the seeds of these families are

EU
`;seed;E

U
u;seed W .d;m; p; q; t; "/D .1; 1; 1; 1; 2; 1/; .�2; 0;�5;�1; 2; 1/

EL
`;seed;E

L
u;seed W .d;m; p; q; t; "/D .2; 0; 5; 1; 2;�1/; .�13;�5;�29;�5; 2;�1/

Therefore EU
u;seedD�EL

`;seed as claimed. Moreover, because R.1; 1/D .�29;�5/ and
R.5; 1/D .�5;�1/, we find that

R].EU
`;seed/DEL

u;seed; R].EU
u;seed/DEL

`;seed:

Algebraic & Geometric Topology, Volume 23 (2023)



Staircase symmetries in Hirzebruch surfaces 4279

i �1 0 1 2 3 4 5 6

gi 1 1 5 29 169 985 5741 33 461
mi 1 0 5 24 145 840 4901
di 1 2 13 74 433 2522 14 701

Table 1

Since R is a reflection that interchanges the ascending and descending staircases, this
reversal of seeds is to be expected. Note also that the centers of the blocking classes
BL
n descend rather than ascend, so this reversal is also consistent with Definition 1.2.1

that explains how the blocking classes and seeds generate a staircase. Thus R takes the
full structure of the family SU to that of SL.

The proof of (ii) is straightforward, and is left to the reader.

In order to show that for arbitrary T 2 G the seeds and preblocking classes T ].SU /
define a staircase family, we must show that the appropriate linear relations (1.2.5)
hold. This proof is largely based on analyzing the seed classes.

As already noted, modulo sign, the seeds EU
�;seed and EL

�;seed for the staircase families
SU and SL are classes that appear in the third strand (the one with i D 2) of the
staircase at b D 1=3; see Example 2.3.7. This strand is generated by the recursion S
with action on .d;m/ given by (2.3.1), and hence consists of the classes

(3.3.1)
Ei WD .di ; mi ; gi ; gi�1; 2; .�1/

i /; i � 0;

di D
1
8
.3.gi Cgi�1/C 2.�1/

i /; mi D
1
24
.3.gi Cgi�1/C 18.�1/

i /;

with values given in Table 1. Note that gi DyiC1�yi for all i . Further, the " coordinate
alternates between the value C1 and �1, while t D 2 for all i .

Lemma 3.3.3 For all i � 0, the families .S iC1/].SU / and .S iR/].SU / have the same
lower seeds and the same upper seeds; namely

E
.S iC1/].SU

`
/

`;seed DE
.S iR/].SUu /
`;seed DEiC1; E

.S iC1/].SUu /
u;seed DE

.S iR/].SU
`
/

u;seed D�EiC2;

where Ei is as in (3.3.1). Furthermore , the extended action R]viC2 of the reflection
RviC2 that is defined in (2.2.6) interchanges the lower and upper seeds of these families.

Proof The first statement is an easy consequence of Lemma 3.3.2(ii) and the fact that
S].Ei /DEiC1 for all i .
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For the second statement, note that by Corollary 2.1.4(i),

.RviC2/
]
D .S2iC1R/] D .S iRS�.iC1//]:

The upper seed of SUu is�E1; thus to compute the lower seed of .R]viC2/..S
iC1/].SUu //

we are considering

.S iRS�.iC1//]..S iC1/].�E1//D .S
i /]R].�E1/D .S

i /].E1/DEiC1;

where the first equality follows from Lemma 2.2.4. The upper seed can be computed
similarly.

Recall from the discussion concerning (1.2.5) that, in order for a staircase S with steps
E WD .d;m; p; q; t; "/ to be associated to the preblocking class

B D .dB ; mB ; pB ; qB ; tB ; "/;

we require that for each step the following linear relation holds:

(3.3.2) .3mB � dB/d D

�
.mB � qB/pCmBq if S ascends;
mBp� .pB �mB/q if S descends:

Lemma 3.3.4 (i) The identities in (3.3.2) may be rewritten as

mBmD dBd � qBp if S ascends;(3.3.3)

mBmD dBd �pBq if S descends:(3.3.4)

(ii) Given any two classes E 0 and E 00, (3.3.3) holds for the pair .E ;B/D .E 0;E 00/
if and only if (3.3.4) holds for the pair .E ;B/D .E 00;E 0/.

(iii) Equation (3.3.3) holds for the pair .E ;B/ if and only if (3.3.4) holds for the
pair .S].E/;B/. Further , (3.3.4) holds for the pair .E ;B/ if and only if (3.3.3)
holds for the pair .E ; S].B//.

(iv) If both (3.3.3) and (3.3.4) hold for .E;B/ then they both hold for .S].E/;S].B//.

Proof To prove (i), rewrite the term 3mBd on the left-hand side as mB.pC qCm/

and simplify.

Proving (ii) is also straightforward: if E 0 WD .d 0; m0; p0; q0/ and E 00 WD .d 00; m00; p00; q00/,
then both equations reduce to the claim that m0m00 D d 0d 00�p0q00.

Now consider (iii). Let E D .d;m; p; q; t; "/, so that

S].E/D .d 0; m0; .6p� q/; p; t;�"/;

d 0 D 1
8
.3.7p� q/� "t/; m0 D 1

8
..7p� q/� 3"t/:
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To prove the claim about the pair .S].E/;B/, we want to show that the equation
mB.pC qC 3t"/D dB.3.pC q/C t "/� 8qBp holds if and only if

mB..7p� q/� 3"t/D dB.3.7p� q/� "t/� 8pBp

also holds. But by adding the two equations, we obtain the linear Diophantine identity

mB8p D dB24p� .qB CpB/8p;

which always holds. This proves the first claim in (iii).

The second claim in (iii) now follows from the symmetry relation in (ii). We have

(3.3.4) holds for .E ;B/ () (3.3.3) holds for .B;E/ (by (ii))

() (3.3.4) holds for .S].B/;E/

() (3.3.3) holds for .E ; S].B// (by (ii)):

Thus (iii) holds, and a similar argument proves (iv).

Proof of Theorem 1.2.4 We must show that for each T 2 G the seeds and preblocking
classes in T ].SU / form a prestaircase family in the sense of Definition 1.2.1. Here, we
define the preblocking classes and seeds of T ].SU / to be the images of the preblocking
classes and seeds in SU by the formula in (2.2.6). Lemma 2.2.4 shows that these are
quasiperfect classes. Further, Lemma 3.3.3 shows that the lower and upper seeds of
both families .S iC1/].SU / and .S iR/].SU / are EiC1 and �EiC2.

Therefore, it remains to check that each preblocking class Bn is associated both to the
ascending prestaircase with seeds E`;seed, Bn�1 and recursion parameter tBn , and to the
descending prestaircase with seeds Eu;seed, BnC1 and recursion parameter tBn . Thus
each prestaircase must satisfy the appropriate linear relation (1.2.5). Because the steps
in the staircases of a staircase family F with seeds EF

`;seed, EF
u;seed and preblocking

classes BF
n are defined recursively by Corollary 3.1.3, it suffices to check this in the

cases

.E ;B/D .EF
`;seed;B

F
n /; .B

F
n�1;B

F
n /; n� 1; if steps "; BF

n "

D .EF
u;seed;B

F
n /; .B

F
nC1;B

F
n /; n� 0; if steps #; BF

n ";

.E ;B/D .EF
`;seed;B

F
n /; .B

F
nC1;B

F
n /; n� 1; if steps "; BF

n #

D .EF
u;seed;B

F
n /; .B

F
n�1;B

F
n /; n� 0; if steps #; BF

n # :

It is shown in [1] that the prestaircases in the families SU and SL are staircases, and
their seeds, blocking classes and steps are described in Corollaries 3.2.3 and 3.2.7.
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Therefore the needed identities hold when F D SU (with ascending blocking classes)
and SL (with descending blocking classes). Thus it suffices to show that if F satisfies
the appropriate set of identities, then its image S].F/ does as well.

For clarity, let us first suppose that F has ascending blocking classes, and denote its
seeds by EF

`;seed;E
F
u;seed D�S

].EF
`;seed/ and its preblocking classes by BF

n for n� 0.
Then we know that for all n,

.EF
`;seed;B

F
n / and .BF

n�1;B
F
n / satisfy (3.3.3);

.EF
u;seed;B

F
n / and .BF

nC1;B
F
n / satisfy (3.3.4):

In particular, adjacent blocking classes BF
n and BF

nC1 satisfy both relations (3.3.3)
and (3.3.4). Hence Lemma 3.3.4(iv) shows that their images by S] also satisfy both
relations. Further, since

E` WD S
].EF

`;seed/DE
S].F/
`;seed D�EF

u;seed;

Lemma 3.3.4(iii) shows that the pair

.S].EF
`;seed/; S

].BF
n //D .�EF

u;seed; S
].BF

n //

satisfies (3.3.3) because (3.3.4) holds for .EF
u;seed;B

F
n /: (Note that the � sign in front

of EF
u;seed is immaterial.) In turn, applying Lemma 3.3.4(ii), we find that (3.3.3) for

.EF
u;seed;S

].BF
n // implies (3.3.4) for .S].BF

n /;E
F
u;seed/, and hence, by Lemma 3.3.4(iii),

(3.3.3) for .S].BF
n /; S

].EF
u;seed// and therefore (3.3.4) for .S].EF

u;seed/; S
].BF

n //.
This completes the proof in this case.

The argument when F has descending blocking classes is essentially the same, and is
left to the reader. Finally note that claims (i) and (ii) in the theorem follow from the
known behavior of SU and SL, and the fact that S.vi /D viC1 and S.wi /D wiC1.

Remark 3.3.5 (i) As the elements T 2 G bring the seeds to seeds and the blocking
classes to blocking classes by formula (2.2.6), Lemma 2.2.4(ii) implies composition
behaves nicely on the staircase families, namely T ]1T

]
2 .S

U /D .T1T2/
].SU /. This is

simply because the formulas for T ].p; q; t/ are compatible with composition, and the
degree coordinates .d;m/ are determined by the values of p and q. We will see in
Section 3.4 that while T ] acts linearly on .p; q/ (namely, via products of S andR), there
is no general linear map on the degree coordinates .d;m/ that respects composition.

(ii) The paper [1] established the existence of a third set of staircases, there called
SE , and showed that the centers of its blocking classes and staircase steps are the
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images via S of the centers of the corresponding classes in SU . The interested reader
can check that, just as in the proofs of Propositions 3.2.2 and 3.2.6, SE forms a
staircase family with seeds S].EU

`;seed/, S
].EU

u;seed/ and blocking classes S].EU
n /.

Thus SE D S].SU /, and so has the same seeds as SL by Lemma 3.3.2.

Now theE–family has an ascending family of blocking classes in the interval .w2; v2/D
.41=7; 6/, while theL–family has a descending family of blocking classes in the interval
.v2; w1/. We showed in [1, Corollary 60] that the centers of the blocking classes and
steps in SE are mapped to those in SL by the reflection Rv2 D RS�1 D SR that
fixes v2 and interchanges w2 D 41=7 and w1 D 7. Moreover, by Lemma 3.3.3,
R
]
v2 interchanges the seeds of these two staircase families SE and SL. We show in

Lemma 3.4.5 below that the action of R]v2 on the .d;m; p; q/ components of those
blocking classes of SE and SL with centers in .w2; w1/ decomposes as the product
.Rv2/

�
B
�Rv2 WZ

2�Z2!Z2�Z2 of two matrices of order 2. This is a rather special
situation that, we explain in the discussion before Proposition 3.4.3, does have a nice
geometric interpretation.

Remark 3.3.6 The sequence gi is recursively generated by giC1D 6gi �gi�1 giving
us terms in the sequence as i increases. Rewriting this as gi�1 D 6gi �giC1, we can
solve for terms in the sequence as i decreases. In particular, from the data in Table 1,
we can solve for terms in this sequence with negative indices. Geometrically, we want
to consider the sequence fgi=gi�1g, the center of these classes. Computing a few terms
in these sequences, we get

i �4 �3 �2 �1 0 1 2 3

gi 169 29 5 1 1 5 29 169

gi=gi�1
169
985

29
169

5
29

1
5

1 5 29
5

169
29

Thus the sequence fgig reflects on itself, namely gi D g�.iC1/. Note that both the
centers of Ei and �Ei are elements of this sequence fgi=gi�1g when i � 0. In
particular, only terms with i � 0 appear as centers of the seed classes.

As S implements the recursion by 6, S.gi=gi�1/ D giC1=gi , so S always shifts
this sequence one step to the right. Now, R is the reflection of this sequence about
5D g1=g0; indeed we can compute that R.gi=gi�1/D g2�i=g1�i . (Note: R is not
the reflection about 1 which would map each element to its reciprocal.) Hence, R
takes centers of seeds to terms in the sequence, but not necessarily to valid centers
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since g2�i=g1�i < 1 when i > 2. But applying S will shift g2�i=g1�i to the right. In
particular, the reflection Rvi D S

2i�3R has just the right number of shifts to move the
image under R of the seeds of S i�1.SU / to the seeds of S i�2.SL/. In other words,
this reflection interchanges the lower and upper seeds of these families. As we show in
Lemma 3.4.5 it also interchanges their blocking classes.

3.4 Action of the symmetries on blocking class degree

Although the results in this section are not needed for the proof of our main results, they
throw light on the geometric nature of the symmetries. To simplify the language needed,
we will assume it is already known that all classes in T ].SU / are perfect, a result that
is proved in Proposition 4.1.4. In particular, this means that all the preblocking classes
in T ].SU / are in fact blocking classes, and so we will talk about blocking classes
rather than preblocking classes.

The first step is to derive a formula for the action of T on the degree coordinates .d;m/
of the blocking classes in SU . Because the formula (2.2.4) for d and m in terms of p
and q is affine, we might expect this action to be affine and to depend on the t–variable
(or equivalently on n). However, it turns out to be linear and independent of t and n,
and in fact is given by a 2�2 matrix (with integer entries) that we denote by T �

B
. Note

that T �
B

gives the action on the degree coordinates of blocking classes, and in particular
does not describe the action on the degrees of the staircase steps. For convenience, we
denote the vector with components d and m by .d;m/_.

Lemma 3.4.1 (i) For each T D S iRı 2 G, there is a 2� 2 matrix T �
B

such that
for each blocking class BU

n D .dn; mn; pn; qn; t; 1/ with 4n � 0, in SU, the
corresponding blocking class in T ].BU

n / has degree coefficients T �
B
..dn; mn/

_/.

(ii) In all cases , T �
B

has eigenvector .3; 1/_ with eigenvalue .�1/iCı det.T �
B
/.

Proof Let T ].d;m; p; q; t; 1/D .d 0; m0; p0; q0; t; "0/, where BU
n D .d;m; p; q; t; 1/.

By (2.2.4), 3m0� d 0 D t "0 where t is constant under T ] and

(3.4.1) "0t D .�1/iCı t D .�1/iCı.3m� d/D .�1/iCı.p� 3q/;

where the last equality holds because BU
n D .n C 3; n C 2; 2n C 6; 1; 2n C 3; 1/.

Therefore,

(3.4.2)
d 0 D 1

8
.3.p0C q0/C "0t /D 1

8
.3.p0C q0/C .�1/iCı.p� 3q//;

m0 D 1
8
..p0C q0/C 3"0t /D 1

8
..p0C q0/C 3.�1/iCı.p� 3q//:
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Since p0 and q0 are linear functions of p and q, and the coefficients of the BU
n satisfy

p D 2d and q D d �m, the degree coefficients d 0 and m0 are linear functions of d
and m. This proves (i).

To prove (ii), let A D T �
B
D
�
a
c
b
d

�
. Because the transformation A preserves the

linear function d � 3m modulo the sign factor .�1/iCı , the transpose matrix AT has
eigenvector .1;�3/_ with eigenvalue .�1/iCı . This implies that the transformation
A preserves the subspace orthogonal to .1;�3/_, and hence has eigenvector .3; 1/_

with some eigenvalue �. Further, the matrices A and AT have the same eigenval-
ues, �1 and �2, where �1 C �2 D Tr.A/ D aC d . We know that one eigenvalue,
say �1, is .�1/iCı . If �1 D �D .�1/iCı then the identities A.3; 1/_ D �.3; 1/_ and
AT .1;�3/_ D �.1;�3/_ imply that aC d D 2�. The identity Tr.A/D aC d D 2�
shows that the other eigenvalue is also � D .�1/iCı . Therefore det.A/ D 1 and
� D .�1/iCı det.T �

B
/ as claimed. On the other hand, if � ¤ �1 D .�1/iCı , then

det.T �
B
/D �1�2, so �D �2 D .�1/iCı det.T �

B
/ in this case as well.

Remark 3.4.2 It would be more correct (though also more cumbersome) to denote the
map T �

B
by T �

U;B
since its formula depends on the domain staircase SU via the identity

3m�d D p�3q in (3.4.1) used to express "0t as a function of p and q. Each staircase
family has an analogous, but different, identity of this kind. For example, the blocking
classes .5n; n� 1; 12nC 1; 2n/ satisfy 3m� d D �3pC 17q. Correspondingly, the
assignment T ! T �

B
is not compatible with composition in general, though it is in a

few special cases. For example, even though the reflection R in w1 D 7 has order 2,
R�

B
does not have determinant ˙1 and .R�

B
/2 ¤ id; see Proposition 3.4.3(ii). Further,

we show in Example 3.4.4 that .S4/�
B
¤ ..S2/�

B
/2.

We now show that the formula for T �
B

does have understandable features. Observe that
the blocking classes BU

n have centers at .pn; qn/D .2nC6; 1/ and degree components
.d;m/,

.dn; mn/D .3Cn; 2Cn/D .3; 2/C .1; 1/n; lim
n!1

mn

dn
D 1:

This is no accident: we should expect the limits of the sequences .mn=dn/ and .pn=qn/
to correspond via the function acc�1U . However, this is a degenerate case since both
limits lie on the boundary of the domain of this function. Let us apply the same analysis
to the staircase families SL DR].SU / and SE D S].SU /. As illustrated in Figures 2
and 3, both these families have steps in the interval .w2; w1/D .41=7; 7/. Further, the
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centers of the blocking classes in SE increase with limit v2 D 6, while those of SL

decrease, also with limit v2. Thus, in both cases, the ratios .mn=dn/ of the degree
coefficients of the blocking classes converge to acc�1L .6/D 1=5. Correspondingly, we
show below that in both cases T D R; S the matrix T �

B
takes the vector .1; 1/_ that

gives the coefficient of n in .d;m/ to .5; 1/_. This observation generalizes as follows.

Proposition 3.4.3 (i) The matrix .S i /�
B

has integer entries and is determined by
the following properties:

� .S i /�
B
..3; 2/_/D 1

8

�
3.yiC2CyiC1/C 3.�1/

i ; yiC2CyiC1C 9.�1/
i /_
�
.

� .S i /�
B
..1; 1/_/D ..si ; ri /

_/, where

(3.4.3) si D
1
4
.3yiC1C 3yi C .�1/

i /; ri D
1
4
.yiC1Cyi C 3.�1/

i /:

In particular ri=si D acc�1" .viC1/, where "D .�1/i and we define

acc�1" WD
�

acc�1U if "DC1;
acc�1L if "D�1:

Further , det..S i /�
B
/D .�1/i .yiC1�yi /.

(ii) When T DR we have R�
B
D
�
�10
�3

15
4

�
.

(iii) The matrix .S iR/�
B

has integer entries and is determined by the following
properties:

� .S iR/�
B
..3; 2/_/D 1

8

�
3.yiC1Cyi /� 3.�1/

i ; yiC1Cyi � 9.�1/
i /_
�
.

� .S iR/�
B
..1; 1/_/D ..siC1; riC1/

_/, where siC1 and riC1 are as in (3.4.3).

Further , det..S iR/�
B
/D .�1/i .yiC2�yiC1/.

Proof The matrix .S i /�
B

is obviously determined by the images of the vectors .3; 2/_

and .1; 1/_, and we first check that these images are as stated. Recall the sequence

y0; y1; y2; y3; : : :D 0; 1; 6; 35; : : : ; where S.yi ; yi�1/D .yiC1; yi /;

and write

.pn; qn/
_
D .6; 1/_C 2n.1; 0/_ D .y2; y1/

_
C 2n.y1; y0/

_:

Then

S i ..pn; qn/
_/D .yiC2; yiC1/

_
C 2n.yiC1; yi /

_;
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and because t D 2nC3 is fixed by S , we can derive the formula for .S i /�
B
..3; 2/_/ and

.S i /�
B
..1; 1/_/ by looking at the constant term and coefficient of n in (2.2.6). Thus, if

X is the matrix with columns .3; 2/_ and .1; 1/_, we have .S i /�
B
X D 1

8
A, where

AD

�
3wiC1C 3" 6wi C 2"

wiC1C 9" 2wi C 6"

�
; wi D yiC1Cyi ; " WD .�1/i :

It follows from Lemma 2.2.4 that the entries of .S i /�
B
X are integers. Hence, because

the matrix X with columns .3; 2/_ and .1; 1/_ has determinant C1, the entries of
.S i /�

B
are also integers. Further,

detAD ".18wiC1C 6wi � 54wi � 2wiC1/

D 16".yiC2CyiC1� 3.yiC1Cyi //

D 64".yiC1�yi /;

where the last equality holds because yiC2 D 6yiC1�yi . Therefore det..S i /�
B
/ is as

claimed. This proves (i).

Claim (ii) follows from the fact that R�
B

takes the degree components .4; 3/ and .5; 4/
of BU

1 and BU
2 to the corresponding components .5; 0/ and .10; 1/ of BL

1 and BL
2 ;

see (3.2.5). Note that

R�B

�
3 2

1 1

�
D

�
�10 15

�3 4

��
3 2

1 1

�
D

�
0 5

�1 1

�
:

Finally, (iii) follows by arguing as in (i), noting that R interchanges the pairs .6; 1/D
.y2; y1/ and .1; 0/D .y1; y0/. Therefore

S iR..6; 1/_//D ..yiC1; yi /
_/; S iR..1; 0/_/D ..yiC2; yiC1/

_/;

so, as before, (2.2.6) implies that the action on the corresponding degree coordinates
.3; 2/_ and .1; 1/_ is

.S iR/�B..3; 2/
_/D 1

8

�
.3.yiC1Cyi /C 3.�1/

iC1; yiC1Cyi C 9.�1/
iC1//_

�
;

.S iR/�B..1; 1/
_/D 1

4

�
.3.yiC2CyiC1/C .�1/

iC1; yiC2CyiC1C 3.�1/
iC1//_

�
:

These formulas are consistent with the fact that by Proposition 3.2.6 the blocking
classes BL

0 D R
#.BU

0 / and BL
1 D R

#.BU
1 /, are .0;�1; 1; 0/ and .5; 0; 13; 2/. The

determinant calculation can be checked as before.

Example 3.4.4 As examples of the above formulas, we have

S�B D

�
5 0

2 �1

�
; .S2/�B D

�
28 3

9 2

�
; .S3/�B D

�
164 15

55 4

�
; .S4/�B D

�
955 90

318 31

�
:
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Note that the second column of these matrices coincides with the degree components
of a corresponding principal15 blocking class .S i�2/�.BU

0 /. However, these matrices
do not give the action of S i on the seed classes, even when i is even. For example, the
lower seeds of SU and .S2/].SU / are

EU
`;seed D .1; 1; 1; 1; 2; 1/; E

.S2/].SU /
`;seed D .13; 5; 29; 5; 2; 1/:

Because these matrices .S i /�
B

do not give the action on the seeds, they also do not act
on the degrees of the staircase steps.

We could compute similar matrices .T /�
�;seed that would take the degrees of EU

�;seed

to the degrees of T ].EU
�;seed/. However, as above, .T /�

�;seed would also not respect
composition because there is no analog of the identity t D 3m�d D apCbq in (3.4.1)
for the seeds. (This is easy to check using the fact that t D 2 by (2.3.1).) Thus we only
present the formulas for the degree coordinates generated by the recursion S by (3.3.1);
also see Lemma 3.3.3 and Remark 3.3.6.

By Lemma 2.1.3 and Corollary 2.1.4 we can also write

S i�1RD .S i�1RS�i /S i DRviC1S
i ;

where RviC1 is a reflection that fixes the point viC1 and interchanges the steps of the
two staircase families .S i /].SU / and .S i�1R/].SU / with steps in the short interval
.wiC1; wi / around viC1; see Figure 2. Let us denote by .RviC1/

�
B

the matrix that
takes the blocking class degrees in .S i�1R/].SU / to those of .S i /].SU /; see Figure 3.
Note that to be consistent with our interpretation of R that takes SU to SL we take the
p=q coordinates of the domain staircase family of this reflection to lie above the fixed
point.16 Further, when i is even (resp. odd), .RviC1/

�
B

acts on blocking classes of
staircases with b1 > 1=3 (resp. b1 < 1=3). For example, .Rv2/

�
B

takes the blocking
classes of SL to those of SE D S].SU /.

Lemma 3.4.5 The matrix

.RviC1/
�
B WD .S

i /�B ı ..S
i�1R/�B/

�1

has eigenvectors .si ; ri /_ and .3; 1/_ with corresponding eigenvalues 1 and �1. Thus
it has order two , and hence also takes the degree components of the blocking classes in
.S i /].SU / to those of .S i�1R/].SU /.
15See Lemma 3.4.6; these are well defined for i � 2� 0 and need appropriate interpretation when i D 1.
16This choice is relevant because in general the degree component T �

B
of a reflection T ] does not have

order two; see Lemma 3.4.6.
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Proof Proposition 3.4.3 shows that

.S i�1R/�B..1; 1/
_/D .si ; ri /D .S

i /�B..1; 1/
_/

and det..S i�1R/�/D� det..S i /�/. The result now follows from Lemma 3.4.1(ii).

There turns out to be a second natural action of the reflectionsRvj for j � 0 on blocking
class degree corresponding to its action on the other component of Œ0; 1=3/[ .1=3;1/.
Indeed, as illustrated in Figure 3 and Remark 1.2.5(i), this reflection acts in two ways
on our staircases depending on whether one takes b > 1=3 or b < 1=3. The action
discussed above (with j D i C 2 � 2) interchanges the blocking classes of the two
staircase families .S iC1/].SU / and .S iR/].SU /D .S i /].SL/, the centers of whose
blocking classes converge to viC2 while, as we will see, the second action of RviC2
fixes the center viC2 of the blocking class .S i /].BU

0 / and takes the ascending blocking
classes in .S i /].SU / with centers in ŒwiC1; viC1� to the descending blocking classes
in .S iC1R/].SU /D .S iC1/].SL/ with centers in ŒviC3; wiC2�. Note, when i is odd
(resp. even), the principal blocking class .S i /].BU

0 / blocks a b–region with b < 1=3
(resp. b > 1=3).

We will denote the matrix that gives this second action on degree by .RviC1/
�
P

. It is
again defined by its action on relevant blocking classes, but the family used is different
than before.

Notice that the matrix .RviC1/
�
P

obtained this way does not have order two, so that
it matters that we define it via (2.2.6) applied to its action on the blocking classes in
.S i /].SU /. Besides the eigenvector .3; 1/_, its second eigenvector (with eigenvalue 1)
must be given by the degree components of the class .S i /].BU

0 /. Note also that the
resulting matrix .RviC2/

�
P

is not in general integral.

We call the blocking classes .S i /].BU
0 /; i � 0, principal blocking classes. The next

result spells out their main properties.

Lemma 3.4.6 (i) The principal blocking class .S i /].BU
0 / has components�

3
8
.yiC2CyiC1C .�1/

i /; 1
8
.yiC2CyiC1C 9.�1/

i /; yiC2; yiC1; 3; .�1/
i
�
:

(ii) The transformation .RviC2/
]
P
W .S i /].SU /! .S iC1/].SL/ acts on the degrees

of the blocking classes by the matrix

.RviC2/
�
P WD .S

iC1R/�B..S
i /�B/

�1
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b > 1
3

b < 1
3

.S2/].SU / S].SL/ BU
0 SU

w3 v3 D 35=6 w2 v2 D 6 w1 v1 D1

.S2/].SL/ S].BU
0 / S].SU / SLDR].SU /

v4 w3 v3 w2 v2 w1

Figure 3: Here we illustrate the different actions of the reflection Rv3 that
acts on the z axis by fixing v3. The reflection .Rv3/

], represented by the light
blue arrow, interchanges the upper and lower staircase families of .S2/].SU /
and S].SL/, and the corresponding matrix .Rv3/

�
B

acts as a reflection on the
degrees of the blocking classes associated to these staircases. On the other
hand, on the lower number line, we have the principal blocking class S].BU

0 /

with center v3 blocking the corresponding blue interval with b < 1=3. On
either side of this blocked region live the centers of the blocking classes of
.S2/].SL/ and S].SU /. The matrix .Rv3/

�
P

maps the degree coordinates of
S].SU / to those of .S2/].SL/. This is represented by the green arrow. Note
that this is not a reflection, so the arrow only goes in one direction.

with determinant given by �.yiC3�yiC2/=.yiC2�yiC1/. Its eigenvalues are
det..RviC2/

�
P
/ and 1, with corresponding eigenvectors given by .3; 1/_ and the

degree components of .S i /].BU
0 /.

Proof The formula for the degree components of the principal blocking class B WD

.S i /].BU
0 / follows from (2.2.6). The claim in (ii) follows from Proposition 3.4.3.

Example 3.4.7 The reflection Rv2 that fixes 6 has two extensions to an action on
blocking classes,

(3.4.4) .Rv2/
�
B D

�
4 �15

1 �4

�
; .Rv2/

�
P D

�
�59 90

�20 31

�
:

Here .Rv2/
�
B

, with determinant �1, interchanges the blocking classes of SE D S.SU /
with those of SL. Both of these families have b1 < 1=3 and their accumulation
points limit to v2. On the other hand, .Rv2/

�
P

, with determinant �29, fixes the degree
components .3; 2/ of BU

0 and takes the blocking classes of SU to those of .S2R/].SU /.
Both of these staircases have b1>1=3 and lie on different sides of the interval blocked
by the principal blocking class BU0 ; see Figure 3. Thus .Rv2/

�
B
D .S/�

B
ı ..R/�

B
/�1,

and one can check that .Rv2/
�
P
D .SR/�

B
.
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4 The prestaircases are live

This section completes the proof of Theorem 1.2.6. We first show that the prestaircase
families defined in Section 3 are perfect prestaircase families. Establishing that all
staircase classes are perfect implies that each such class E� D .d� ; m� ; p� ; q� ; t� ; "/ is
live at its center p�=q� when b Dm�=d� . Therefore, by (1.1.3), the capacity function
cHm�=d� takes the value p�d�=.d2� � m

2
�/ at the point p�=q� , and this implies by

continuity17 that the limiting value b1 is unobstructed, ie cHb1 .a1/ D Vb1.a1/,
where a1 D lim.p�=q�/.

What we have to show is that, at least for sufficiently large �, the class E� remains
live at the limiting b value b1 WD limmk=dk . In [1] we established this in two steps,
first showing that if the ratios m�=d� satisfy a bound such as that in (4.2.1) below
then, by the positivity of the intersections of exceptional classes, the degree of any
class E such that �E ;b1.p�=q�/� �E� ;b1.p�=q�/ is bounded above by a constant
that is independent of �. This means that there can be only finitely many such classes.
In particular, there must be one class Eov that dominates infinitely many of the steps.
This is possible only if the obstruction �Eov;b1.z/ given by this class goes through
the accumulation point .a1; Vb1.a1// of the staircase.18 We call such a class an
overshadowing class because its obstruction �Eov;b1.z/ overshadows the staircase
steps so that they cease to be visible at b D b1.

In [1] we were able to find rather good bounds for the degree of a potentially overshad-
owing class, and hence could show that they do not exist by a case by case analysis.
This method is not feasible here since the bounds on the degree of any overshadowing
class of a staircase in the family .S iRı/].SU / increase too rapidly with i . However
it turns out that we can exploit the fact that the obstruction �Eov;b1.z/ goes through
the accumulation point to obtain powerful arithmetic information about the degree
components dov and mov of Eov, which is enough to rule out the existence of such a
class. This argument hinges on the results of Lemma 2.2.7, namely, that the following
two functions are the same:

(4.0.1) b 7! Vb.acc.b//; b 7!
1C acc.b/
3� b

17This holds because, for any quasiperfect class E D .d;m; p; q/, we have that �E ;b.p=q/ �

Vb.p=q/.
p
1C 1=.d2 �m2// and here d� !1; see [1, Lemma 15].

18Indeed, we know that the accumulation point is unobstructed, so Eov cannot be obstructive at this point,
and if (for a descending staircase) the obstruction �Eov;b1 crossed the volume curve to the right of the
accumulation point then it could at best overshadow only a finite number of steps.
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4.1 The prestaircase classes are perfect

We first prove that all the classes in the families T ].SU / are perfect, that is, they are
exceptional classes, and then use this fact in Corollary 4.1.5 to gain information about
the z–intervals that are blocked by the blocking classes.

We use the following recognition principle, which is explained for example in [6,
Proposition 1.2.12].

Lemma 4.1.1 An integral class

E WD dL�

NX
iD1

niEi

in the N–fold blowup CP 2 #NCP 2 represents an exceptional divisor if and only if it
may be reduced to E1 by repeated application of Cremona transformations.

Here, a Cremona transformation is a composition of the transformation

cxyz

�
dL�

X
iD1

niEi

�
D .d C ıxyz/L�

X
i2fx;y;zg

.ni C ıx;y;z/Ei �
X

i…fx;y;zg

niEi ;

where ıxyz D d �nx �ny �nz , and a reordering operation. Writing E in coordinates
.d In1; : : : ; nN /, cxyz adds ıxyz to the coordinates d , nx , ny and nz , and the reordering
can reorder any of the ni . Because Cremona moves are reversible, to verify Ek is
exceptional, we just need to show it reduces to some other Ej that we know to be
exceptional. We say Ek and Ej are Cremona equivalent if one can be reduced to the
other.

Our staircase classes are quasiperfect and hence have the form .d;m;W.p=q// where
W.p=q/D .W1; : : : ; WN / is the integral weight expansion of p=q. We denote such
a class by the tuple .d;m; p; q/, and consider the Cremona moves as acting on the
corresponding sequence .d;m;W1; W2; W3; : : :/. Thus, for example,

c012..d;m;W1; W2; W3; : : : //

D .2d �m�W1�W2; d � .W1CW2/; d � .mCW2/; d � .mCW1/;W3; : : : /:

Here is the key lemma.

Lemma 4.1.2 Suppose .d;m; p; q/ with p=q > 5 satisfies 3d D mC p C q, and
that d and m are defined by (2.2.4). Then .d;m; p; q/ is Cremona equivalent to
S].d;m; p; q/.
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Proof Let S].d;m; p; q; "/ D .D;M;P;Q;�"/. By Lemma 2.1.6, when p=q D
Œ5C k; CF.x/� we have S.p=q/ D Œ5I 1; 4C k; CF.x/�. Thus, the integral weight
expansion of S.p=q/ will always have five more integers than the integral weight
expansion of p=q. As S.p=q/D P=QD .6p� q/=p, we have that

W.P=Q/DW..6p� q/=p/D .p�5; p� q/tW..p� q/=q/

D .Q�5; P � 5Q/tW..p� q/=q/;

where W..p� q/=q/ by definition is W.p=q/ with the first entry q removed. Thus, to
reduce the class .D;M;P;Q/ to the class .d;m; p; q/, it suffices to show that we can
reduce

.D;M;Q�5; P � 5Q/tW..p� q/=q/ to .d;m; q/tW..p� q/=q/:

Note that in this reduction we must get rid of five terms because as mentioned
W.S.p=q// has five more terms than W.p=q/.

Next, observe that

c256c234c016c345c012.DIQ
�5;M;P � 5Q/

D .8D� 3.M CP /I 0�2; 3D�M � 2P C 5Q; 0�3; 3D� 2M �P /:

This can be seen by direct computation, where the zeros come from the linear Dio-
phantine condition 3D�M �P �QD 0. The first three steps give the two zeros in
positions 1 and 2, the fourth step results in the two zeros in positions 4 and 5, and the
fifth step results in one zero in position 6. Furthermore, since P D 6p� q and QD p,
it follows from (2.2.4) that

D D 1
8
.3.7p� q/� "t/; M D 1

8
..7p� q/� 3"t/:

Performing these substitutions, we get

8D� 3.M CP /D 1
8
.3.pC q/C "t/D d;

3D�M � 2P C 5QD q;

3D� 2M �P D 1
8
.pC qC 3"t/Dm:

We conclude that

c256c234c016c345c012.DIQ
�5;M;P � 5Q/D .d I 0�2; q; 0�3; m/:

Thus these five Cremona moves and an appropriate reordering reduces

.D;M;Q�5; P � 5Q/tW..p� q/=q/ to .d;m; q/tW..p� q/=q/:

Hence, the class .D;M;P;Q/ is Cremona equivalent to .d;m; p; q/, as claimed.
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In [1], it was shown that both SU and SL are perfect, so it is enough to show that S]

preserves Cremona equivalence, but there is an equally nice argument that R] preserves
Cremona equivalence.

Lemma 4.1.3 Suppose .d;m; p; q/ are such that d and m are defined by (2.2.4), and
p=q > 7. Then .d;m; p; q/ is Cremona equivalent to R].d;m; p; q/.

Proof Let R].d;m; p; q/D .D;M;P;Q/. Assume p=q D Œ6C kICF.x/� for some
k � 1 and x � 1. Then

W.p=q/D .q6Ck; p� .6C k/q; : : : /:

By Lemma 2.1.6(ii), R.p=q/D .6p� 35q/=.p� 6q/D Œ6; k; CF.x/�, and thus

W.P=Q/D .Q�6;P�6Q�k;Q�k.P�6Q/; : : : /D .p�6q�6;q�k;p�.6Ck/q; : : : /:

Only the first 6 terms of the weight expansions W.P=Q/ and W.p=q/ differ. Thus,
to show that .D;M;P;Q/ is Cremona equivalent to .d;m; p; q/, we need to consider
the degree coordinates and the first 6 terms of the weight sequence for each.

We use the notation 7!ijk to represent applying cijk to the previous tuple. Applying
two Cremona moves to .D;M;P;Q/ gives

(4.1.1)
.D;M;Q�6/ 7!123 .2D� 3Q;M;D� 2Q

�3;Q�3/

7!456 .4D� 9Q;M;D� 2Q
�3; 2D� 5Q�3/:

Applying three Cremona moves to .d;m; p; q/ gives:

.d;m; q�6/ 7!012 .2d�m�2q; d�2q; d�m�q
�2; q�4/

7!034 .3d�2.mC2q/; 2d�m�4q; d�m�q
�4; q�2/

7!156 .5d�3.mC3q/; 2d�m�4q; 3d�2.mC3q/; d�m�q
�3; 2d�m�4q�2/;

which we can reorder to get

(4.1.2) .5d � 3.mC 3q/; 3d � 2.mC 3q/; 2d �m� 4q�3; d �m� q�3/:

We claim this reordered tuple is precisely (4.1.1). To see this, we write each term in
each of the tuples in terms of p and q. We are going to assume that for .d;m; p; q/,
"D 1. By (2.2.4), Lemma 2.1.6(iii), and the definition of R, we can write .d;m; p; q/
and .D;M;P;Q/ completely in terms of p and q,

.d;m; p; q/D
�
1
8
.3.pC q/C t /; 1

8
.pC qC 3t/; p; q

�
;

.D;M;P;Q/D
�
1
8
.21p� 123q� t /; 1

8
.7p� 41q� 3t/; 6p� 35q; p� 6q

�
:
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Now, we expand all of the entries in (4.1.2) and (4.1.1) in terms of p and q to get the
equalities

5d � 3.mC 3q/D 1
2
.3p� 15q� t /D 4D� 9Q;

3d � 2.mC 3q/D 1
8
.7p� 41q� 3t/DM;

2d �m� 4q D 1
8
.5p� 27q� t /DD� 2Q;

d �m� q D 1
4
.p� 3q� t /D 2D� 5Q:

Proposition 4.1.4 For each T 2 G, the classes in the prestaircase family T ].SU / are
perfect , that is , they are exceptional classes.

Proof By [1, Section 3.4], this holds for SU and SL. Hence this is an immediate
consequence of Lemma 4.1.2.

Here is a typical corollary. For simplicity we only consider the principal blocking
classes mentioned in Lemma 3.4.6, but a similar argument applies to all blocking
classes that have associated perfect staircases.

Corollary 4.1.5 For each i � 0, the z–interval blocked by the principal blocking class
.S i /].BU

0 / contains ŒwiC2; wiC1�.

Proof It follows from Remark 2.3.4(i) and Theorem 1.2.4 that the prestaircases
.S iC1R/].SU0 /; .S

i /].SU0 / are associated to B D .S i /].BU
0 /. Because they consist of

perfect classes, we know from [1, Lemma 27 and Theorem 52] that their z–limit points
˛B;` and ˛B;u are unobstructed and that the interval .˛B;`; ˛B;u/ lying between them
is precisely the z–interval blocked by B. Thus it suffices to show that

˛B;` <wiC2 <wiC1 < ˛B;u:

Since S preserves order and takes wi to wiC1 for all i , we only need check this for
i D 0, and this can be done either by direct evaluation or by comparing the continued
fraction expansions of these quantities.

4.2 Recognizing staircases

We proved the following staircase recognition theorem in [1, Theorem 51].

Theorem 4.2.1 Let SD .E�/ be a perfect prestaircase , let � be as in Lemma 3.1.4, and
denote by D, M , P , Q the constants X defined by (3.1.6), where x� D d� ; m� ; p� ; q�
respectively. Suppose in addition that at least one of the following conditions holds:
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(i) There is an r=s > 0 such that M=D < r=s,

m2� � 1

d�m�
<
M

D
<
sCm�.rd� � sm�/

r C d�.rd� � sm�/
for all � � �0;

and there is no overshadowing class at .z; b/ D .P=Q;M=D/ of degree d 0 <
s=.r � sb1/ and with m0=d 0 > r=s.

(ii) There is an r=s > 0 such that M=D > r=s,

m�.sm� � rd�/� s

d�.sm� � rd�/� r
<
M

D
<
m�

d�
for all � � �0;

and there is no overshadowing class at .z; b/ D .P=Q;M=D/ of degree d 0 <
s=.sb1� r/ and with m0�=d

0 < r=s.

Then S is live , and it is a staircase for HM=D that accumulates at P=Q.

The next result states the estimates that we must establish in order to apply the above
theorem.

Lemma 4.2.2 Consider a prestaircase with classes .d� ; m� I q�w.p�=q�//, where the
ratios b� WDm�=d� have limit b1, and let the constants D, D0, D00, M , M 0, M 00 and
� be as in (3.1.6), with x� D d� ; m� respectively.

(i) Suppose that MD�MD ¤ 0. Then the b� are strictly increasing if and only if

MD�MD D 2
p
�.M 00D0�M 0D00/D

m1d0�m0d1
p
�

> 0;

and otherwise they are strictly decreasing.

(ii) If m1d0� d1m0 > 0, b1 < r=s � 1, and

(4.2.1) jm1d0� d1m0j �
p
�
sD� rM

jrD� sM j
;

then there is a �0 such that

m�

d�
� b1 D

M

D
�
sCm�.rd� � sm�/

r C d�.rd� � sm�/
for � � �0:

(iii) If m1d0 � d1m0 < 0, b1 > r=s > 0, and (4.2.1) holds , then there is a �0 such
that

m�.sm� � rd�/� s

d�.sm� � rd�/� r
� b1 D

M

D
�
m�

d�
for � � �0:
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Proof This is a reformulation of [1, Lemma 67] in which (i) incorporates the calculation

M 00D0�M 0D00 D
m1d0� d1m0

2�

that follows from (3.1.6).

In [1, Section 3], an r=s was carefully chosen in order to reduce the number of potential
overshadowing classes that needed to be ruled out. For our purposes, we simply need
to know an r=s exists since we use an arithmetic argument to rule out overshadowing
classes. The following corollary shows that some r=s does indeed exist.

Corollary 4.2.3 There exists r=s such that either condition (ii ) or (iii ) in Lemma 4.2.2
is satisfied.

Proof For condition (ii), assume m1d0 � d1m0 is positive. As r=s approaches b1
from the right,

sD� rM

jrD� sM j
D
1� .r=s/b1

r=s� b1

approaches infinity. Hence, there always exists some b1 < r=s such that condition (ii)
is satisfied. A similar argument applies for condition (iii).

Remark 4.2.4 The statement in Lemma 4.2.2 is not identical to that in [1, Lemma 67]
because we have changed notation, now indexing by � rather than by k. We now
explain the relation between the two statements. In [1, Remark 68(i)], we calculated
that

M 00D0�M 0D00 D
1

2.2nC 3/
p
�
.m1d0�m0d1/:

However, there the staircases were divided into two parts according to the different
endings, and (as in Lemma 3.1.1) the recursion parameter was � C 2, where

� D .2nC 1/.2nC 5/D �2� 4:

This reformulation should not change the limiting values M and D, and hence M 0,
M 00, D0, and D00. However in our current notation mkD1 and dkD1 are denoted by
m�D2 and d�D2, since the staircases in [1] are indexed by k while in the current paper
we combine the two strands and index via �, which is (approximately) 2k. Thus if we
index by � and take 2nC 3D � we have

m2d0�m0d2 D .�m1�m0/d0�m0.�d1� d0/D �.m1d0�m0d1/;

1

2.2nC 3/
p
�
.m2d0�m0d2/D

1

2
p
�
.m1d0�m0d1/;

which is consistent with the identities in Lemma 4.2.2.
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By Corollary 4.2.3, we do not need to estimate r=s by computing m1d0 � d1m0.
However, Lemma 4.2.2(i) shows that the sign of m1d0�d1m0 determines whether the
terms b� Dm�=d� strictly increase or decrease for a prestaircase, which is important
for the overshadowing argument.

While the quantities m� and d� do depend on both i and n, we suppress those indices
for simplicity.

Lemma 4.2.5 (i) For S i .SU
`;n
/,m1d0�m0d1D�".2nyiCyiC1/, where "D .�1/i .

(ii) For S i .SUu;n/, m1d0�m0d1 D�".2nyiC1CyiC2/, where "D .�1/i .

(iii) For S i .SL
`;n
/, m1d0�m0d1 D�".2nyiC1Cyi /, where "D .�1/iC1.

(iv) For S i .SLu;n/, m1d0�m0d1 D�".2nyiC2CyiC1/, where "D .�1/iC1.

Proof Let � be one of .U; `/, .U; u/, .L; `/, or .L; u/. For two seeds .p0; q0; t0; "/
and .p1; q1; t1; "/ of S i .S�;n/, the degree formulas from (2.2.4) imply that

(4.2.2) m1d0�m0d1 D
1
8
"..p0C q0/t1� .p1C q1/t0/:

Denote the seeds of the initial staircase in SU or SL by .p�0; q
�

0; t
�

0/ and .p�1; q
�

1; t
�

1/,
and note that

S i D

�
yiC1 �yi
yi �yi�1

�
;

where yi�1 D 6yi �yiC1. Using the invariance of t�0 and t�1 under S , we obtain that

m1d0�m0d1

D
1
8
"
�
.t�1.p

�

0Cq
�

0/�t
�

0.p
�

1Cq
�

1//yiC1C.t
�

1.p
�

0�q
�

0/�t
�

0.p
�

1�q
�

1/C6.t
�

0q
�

1�t
�

1q
�

0//yi
�
:

Then, by substituting the relevant formulas for the seeds from Lemma 3.2.1 and
Lemma 3.2.5, we get the desired results.

For example, for (ii), we have

(4.2.3) .pU0;u; q
U
0;u; t

U
0;u/D .�5;�1; 2/; .pU1;u; q

U
1;u; t

U
1;u/D .2nC 8; 1; 2nC 5/

giving
m1d0�m0d1 D�"..2nC 6/yiC1�yi /D 2nyiC1CyiC2;

as claimed.

Corollary 4.2.6 For a prestaircase T ].SU /, if b1 > 1=3, then m�=d� strictly de-
creases. If b1 < 1=3, then m�=d� strictly increases.
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Proof Lemma 4.2.5 implies that m1d0�m0d1 always has the opposite sign to ". As
" is positive if and only if b1 > 1=3, it follows that m1d0�m0d1 < 0 if and only if
b1 > 1=3. Now use Lemma 4.2.2(i).

Finally, we prove an estimate that will be useful below.

Lemma 4.2.7 Let S be one of the descending stairs S i .SUu;n/ for all i; n � 0 except
.i; n/D .0; 0/ or one of the stairs S i .SLu;n/ for all i � 0 and n � 1. Denote the steps
of S by .d� ; m� ; p� ; q� ; t� ; "/ for � � 0, and let b1 D limm�=d� . Then there is a �0
such that

(4.2.4)
p�q�

p� C q�
>
d� �m�b1

3� b1
; � � �0:

Proof Since .3d� �m�/p�q� D .p� C q�/.d2� �m
2
� C 1/, we have

p�Cq�

d�
D

�
3�
m�

d�

�
p�q��.p�Cq�/

�
d��

m2�
d�

�
D .3�b1/p�q��.p�Cq�/.d��m�b1/�

�
m�

d�
�b1

�
.p�q��m�.p�Cq�//:

The inequality (4.2.4) is equivalent to the claim that the sum of the first two terms on
the right-hand side is positive. Therefore (4.2.4) will hold provided that

p� C q�

d�
>

�
m�

d�
� b1

�
.m�.p� C q�/�p�q�/; � � �0:

Since
m�.p� C q�/�p�q� Dm�.3d� �m�/� .d

2
� �m

2
� C 1/;

it suffices to show that
3d� �m�

d�
>

�
m�

d�
� b1

�
.m�.3d� �m�/� .d

2
� �m

2
� C 1//; � � �0:

Since by Lemma 3.1.4 we have m� DM��CM��� and d� DD��CD��� for some
� > 1, one easily checks that this will hold if

(4.2.5)
3D�M

j3M �Dj
> jMD�DM j D

jm1d0� d1m0j
p
�

; � D �2� 4;

where � is the recursion parameter of S.

Claim 1 Equation (4.2.5) holds when SD .S i /].SUu;n/ for all i; n� 0 except i DnD 0.

Proof First consider the case S D SUu;n. When X D P;Q; T , Lemma 3.1.4 implies
that X D .1=2

p
�/.2x1 � x0.� �

p
�//, where � D 2nC 3 is the recursion variable,
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and � D �2� 4D .2nC 1/.2nC 5/. The seeds for this staircase are given in (4.2.3).
Since � �

p
� > 0 and the seed class has p0C q0 < 0 while t0 > 0, we have

3D�M

j3M �Dj
D
P CQ

T
D
2.p1C q1/� .p0C q0/.� �

p
�/

2t1� t0.� �
p
�/

>
p1C q1

t1
D
2nC 9

2nC 5

>
m0d1�m1d0
p
�

D
2nC 6p

.2nC 1/.2nC 5/

provided that .2nC9/2.2nC1/>.2nC6/2.2nC5/. But this holds unless nD0; 1; 2; 3.
If nD 1; 2; 3 then one can check by direct calculation that (4.2.5) holds. Moreover,
although it does not hold when nD 0 one can check that in this case we have

(4.2.6)
3D�M

j3M �Dj
>
34

35

m0d1�m1d0
p
�

D
y4

y2y3

6
p
�
:

Now suppose that S D .S i /]
�
SUu;n

�
. Notice that � and � are invariant under the

shift. The quantity j3M �Dj is also invariant under the shift since 3M �D is the
limit of .3m� � d�/��� D "t��

�� . To consider how much the right-hand side of
(4.2.5) increases under iterations of the shift, we again use Lemma 4.2.5. Because
yiC2 < 6yiC1 for all i > 0, we can estimate

2nyiC1CyiC2

2ny1Cy2
D
2nyiC1CyiC2

2nC 6
< yiC1 for all i > 0; n� 0:

Therefore the result will hold in the case n > 0 if we show that when we apply S i

the quantity 3D �M increases by a factor of at least yiC1. But by Lemma 2.1.3,
3D �M D P CQ is taken by S i to .yiC1C yi /P � .yi C yi�1/Q. Therefore we
need .yiC1Cyi /P � .yi Cyi�1/Q > yiC1.P CQ/, or equivalently

yiP > .yiC1Cyi Cyi�1/QD 7yiQ:

But this holds because P=Q is the accumulation point of a staircase in SU and so
satisfies P=Q > 7. Indeed w1 D 7 is blocked by BU

0 by Corollary 4.1.5.

In the case nD0, the right-hand side of (4.2.5) increases by the factor yiC2=6. Therefore
it suffices to show that when we apply S i the quantity 3D�M increases by a factor
of at least .35=34/.yiC2=6/. Since .35=34/.yiC2=6/� yiC1 when i � 2, the previous
argument applies to show that this holds. In the case i D 1, we must check that

7P �Q> 35
34
35
6
.P CQ/;

which holds because P=QD Œ7I f5; 1g1� > Œ7I 6�D 43=6.
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Claim 2 Equation (4.2.5) holds when S D .S i /].SLu;n/, n� 1 and i � 0.

Proof Let S D SLu;n. The initial seeds are now .pL0;u; q
L
0;u; t

L
0;u/ D .�29;�5; 2/

and .pL1;u; q
L
1;u; t

L
1;u/ D .12n � 11; 2n � 2; 2n C 1/. Further � D 2n C 3 so that

� D
p
.2nC 1/.2nC 5/ as before. If we simplify the inequality as before and use the

result in Lemma 4.2.5(iv), it follows that it suffices to check that

p1C q1

t1
>
m1d0�m0d1
p
�

D
2ny2Cy1
p
�

D
12nC 1
p
�

:

But this holds for all n� 4. For the cases nD 1; 2; 3, we directly compute both sides
of (4.2.5) to verify the inequality holds.

Next consider the case i >0. We argue as before, noting that for each n the accumulation
point P=Q is larger than the center of the blocking class BL

n , which is .12nC 1/=2n
by Theorem 2.3.3. By Lemma 4.2.5(iv), when we apply S i the right-hand side of
(4.2.5) grows by the factor

2nyiC2CyiC1

2ny2Cy1
D
2nyiC2CyiC1

12nC 1
; n� 1:

Therefore it suffices to check that

.yiC1Cyi /P � .yi Cyi�1/Q >
2nyiC2CyiC1

12nC 1
.P CQ/

D

�
yiC1�

2n

12nC1
yi

�
.P CQ/:

Because yiC1Cyi Cyi�1 D 7yi , this simplifies to

14nC1

12nC1
yiP > yi

�
7�

2n

12nC1

�
Q:

Thus we need P=Q > .82n C 7/=.14n C 1/. But this holds for all n � 1 since
P=Q > .12nC 1/=2n.

The proof of the lemma is now complete.

4.3 Overshadowing classes

To utilize the staircase recognition Theorem 4.2.1, it remains to show there are no
overshadowing classes. Here, we not only show that there are no overshadowing classes
for S iRı.SU /, but prove a more general result about overshadowing classes. Namely,
given a general perfect prestaircase family with recursion parameter � 3, if b1 < 1=3
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and m�=d� strictly increases (resp. b1 > 1=3 and m�=d� strictly decreases), then the
staircase family is live provided only that the staircase is not overshadowed by the
obstruction from the exceptional class E1 WD 3L�E0 � 2E1 �E2:::6. Recall from
Remark 2.3.8(ii) and Lemma 2.2.7 that when b 2 .1=5; 5=11/ this obstruction is given
by the formula z 7! .1Cz/=.3�b/, and hence always passes through the accumulation
point .acc.b/; Vb.acc.b///. Hence, it could overshadow the descending staircases for
these b. Since the SU staircases have b > 5=11 while the SL staircases have b < 1=5,
we only need be concerned about their images under a shift S i . The next lemma
shows that these staircases are not overshadowed in this way, because the slope of any
overshadowing class must be greater than the slope of the obstruction �E1;b .

Lemma 4.3.1 Let S be any descending prestaircase in one of the families .S iRı/].SU /
where ı 2 f0; 1g and i > 0 or i D 0 and n � 1. Then the slope of an overshadowing
class must be larger than 1=.3� b1/.

Proof The slope of an overshadowing class must be larger than the slope of the line
segments from the accumulation point .z1; b1/ to the outer corners�

p�

q�
;

p�

d� �m�b1

�
of the staircase. Therefore we must check that

p�=.d� �m�b1/� .1C z1/=.3� b1/

p�=q� � z1
>

1

3� b1
:

When we simplify z1 cancels from the inequality, and we get

.3� b1/p�q� > .p� C q�/.d� �m�b1/;

which was proved in Lemma 4.2.7.

We now use an arithmetic argument to rule out the existence of any other overshadowing
classes. The following lemma establishes properties about the common divisors of
.d;m; p; q/ needed for the argument.

Lemma 4.3.2 Given a quasiperfect class .d;m; p; q/, assume there is an integer k such
that km=p and kd=p (resp. km=q and kd=q) are both integers. Then p jk (resp. q jk).

Proof Assume km=p and kd=p are both integers. Since g WD gcd.m; d/ is an integral
combination of m and d , this implies kg=p 2 Z. But because q D 3d �p �m and
gcd.p; q/ D 1, we must have gcd.p; d;m/ D gcd.p; g/ D 1. Therefore p jk and,
similarly, q jk.
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Suppose that at .z1; b1/ there is an overshadowing class Eov D .dov; mov;m/ for
some prestaircase. Recall from Corollary 3.1.5 that the limit points z1 and b1 are
irrational. By [6, Proposition 2.3.2], there are integers A� 0 and C � 0 such that

�Eov;b.z/D
ACCz

dov�movb
; z � z1:

Lemma 4.3.3 Let S be a descending prestaircase with irrational accumulation point
z1 that is associated to a perfect blocking class B D .dB ; mB ; pB ; qB ; tB/. Suppose
that Eov D .dov; mov;m/ is an overshadowing class , and denote by

�Eov;b.z/D
ACCz

dov�movb

the corresponding obstruction. Assume the slope C=.dov�movb1/ of �Eov;b1.z/ is
> 1=.3� b1/. Then there is a positive integer k such that

(i) If b1 > 1=3 and mB=dB > 1=3, then mov=dov < 1=3 and dov� 3mov D ktB .

(ii) If b1 < 1=3 and mB=dB < 1=3, then mov=dov > 1=3 and 3mov� dov D ktB .

Proof Note first that the function �Eov;b1 must obstruct an interval .z1; z1C "/ to
the right of the limit point and hence have break point aov > z1. Further, the condition
on the slope implies that C > A.

Next note that Vb1.z1/ is given by the expressions

1C z1

3� b1
D

pB

dB �mBb1
D

ACCz1

dov�movb1
;

where the first equality holds by (4.0.1) and the second holds by [1, Lemma 16]. The
first equality implies

.1C z1/.dB �mBb1/D pB.3� b1/

D) z1 D
pB.3� b1/� .dB �mBb1/

dB �mBb1
D
b1.mB �pB/C 3pB � dB

dB �mBb1
;

while the second gives

.ACCz1/.dB�mBb1/D pB.dov�movb1/

D) z1 D
pB.dov�b1mov/�A.dB�mBb1/

C.dB�mBb1/
D
b1.AmB�pmov/CpBdov�AdB

C.dB�mBb1/
:

Therefore,

b1.AmB �pBmov/CpBdov�AdB D C.b1.mB �pB/C 3pB � dB/:

Algebraic & Geometric Topology, Volume 23 (2023)



4304 Nicki Magill and Dusa McDuff

All quantities here are integers except for b1 which is irrational because z1 is. There-
fore the coefficients of b1 must be equal. Thus we have

AmB �pBmov D C.mB �pB/; pBdov�AdB D C.3pB � dB/:

We can solve these equations for mov and dov to get

(4.3.1)
mov D

.A�C/mB CCpB

pB

D C C .A�C/mB=pB ;

dov D
3pBC C .A�C/dB

pB

D 3C C .A�C/dB=pB :

As mov and dov are integers, .A�C/mB=pB and .A�C/dB=pB are both integers.
Then, by Lemma 4.3.2, pB j.A�C/. This proves k D .C �A/=pB is an integer.

Since C�A>0, we also have k >0. SincemB=dB >1=3 by assumption, the formulas
in (4.3.1) then imply that 3mov < dov.

We can compute

dov� 3mov D 3C � kdB � 3C C 3kmB D k.3mB � dB/D ktB :

This proves (i). The proof for (ii) follows similarly.

We prove a similar result for ascending staircases.

Lemma 4.3.4 Let S be an ascending prestaircase with irrational accumulation point
z1 that is associated to a perfect blocking class B D .dB ; mB ; pB ; qB ; tB/. Suppose
that Eov D .dov; mov;m/ is an overshadowing class , and denote by

�Eov;b.z/D
ACCz

dov�movb

the corresponding obstruction. Then there is a positive integer k such that

(i) If b1 > 1=3 and mB=dB > 1=3, then mov=dov < 1=3 and dov� 3mov D ktB .

(ii) If b1 < 1=3 and mB=dB < 1=3, then mov=dov > 1=3 and 3mov� dov D ktB .

Proof Notice first that we must have A � C > 0 since if A � C the slope of the
obstruction �Eov;b1 is at least that of the line z 7! .1Cz/=.3�b1/ which is <Vb1.z/
for z < z1, and so is not obstructive for z < z1, while the overshadowing class is
obstructive.
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Next, as in Lemma 4.3.3 we consider the equalities

1C z1

3� b1
D

qBz1

dB �mBb1
D

ACCz1

dov�movb1
;

where the second equality follows from [1, Lemma 16]. This implies

.1Cz1/.dB �mBb1/D qBz1.3�b1/ D) z1D
dB �mBb1

qB.3� b1/� .dB �mBb1/
;

.ACCz1/.dB �mBb1/D qBz1.dov�movb1/

D) z1 D
A.dB �mBb1/

qB.dov�movb1/�C.dB �mBb1/
:

Hence we must have

A.qB.3� b1/� .dB �mBb1//D qB.dov�movb1/�C.dB �mBb1/:

As before, the coefficients of b1 on both sides must agree, which gives

(4.3.2) dov D 3A� .A�C/dB=qB ; mov D A� .A�C/mB=qB :

Since A�C > 0 and dov and mov are integers, Lemma 4.3.2 implies k D .A�C/=qB

is a positive integer.

Furthermore, these formulas prove that if b1>1=3 andmB=dB >1=3 then dov>3mov.
We can again compute

dov� 3mov D k tB :

This proves (i). The proof for (ii) follows similarly.

We use the results of Lemmas 4.3.3 and 4.3.4 to rule out overshadowing classes for a
large set of prestaircases, which implies that none of the prestaircases considered in
this paper have overshadowing classes.

Lemma 4.3.5 Let S be a prestaircase with irrational accumulation point z1 that is
associated to a perfect blocking class B D .dB ; mB ; pB ; qB ; tB/ such that tB � 3.
Suppose that either b1 > 1=3 and mB=dB > 1=3 and the m�=d� strictly decrease or
b1 < 1=3 and mB=dB < 1=3 and the m�=d� strictly increase. Assume further that
if S is descending any overshadowing class must have slope > 1=.3� b1/. Then the
prestaircase S has no overshadowing classes at all.

Proof These conditions, with Lemma 4.3.1, ensure that the conditions in either
Lemma 4.3.3 or Lemma 4.3.4 hold for S. For a class Eov D .dov; mov;mov/ to be
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overshadowing, it must be obstructive for b D b1 at its break point aov. By [1,
Lemma 15] this is possible only if jdovb1�movj< 1. Further, for each staircase there
is a positive integer k such that jdov� 3movj D tBk. Thus we have

3 > 3jb1dov�movj> jdov� 3movj D tBk � 3k;

where the second inequality holds because Lemmas 4.3.3 and 4.3.4 imply that either
mov

dov
<
1

3
< b1 or b1 <

1

3
<
mov

dov
:

As k must be positive, no such dov and mov can exist.

Corollary 4.3.6 For each T 2G, the prestaircase family T ].SU / has no overshadowing
classes.

Proof Because tBD 2nC3 in all cases, the results of Corollary 4.2.6 and Lemma 4.3.1
show that all the staircases in T ].SU / except for SUu;0 satisfy the conditions in Lemma
4.3.5 and hence have no overshadowing classes. The proof for SUu;0 is given in [1,
Example 70].

Now, we establish a straightforward way to check if a perfect prestaircase is live based
on the above overshadowing arguments.

Proposition 4.3.7 Let S be a perfect prestaircase with irrational accumulation point
z1 associated to a blocking class B with recursion parameter tB � 3. Suppose that
either b1 > 1=3 and the m�=d� strictly decrease , or b1 < 1=3 and the m�=d� strictly
increase. Assume further that if S is descending the slope of any overshadowing class
must be > 1=.3� b1/. Then S is a staircase , namely it is perfect and live.

Proof By Corollary 4.2.3 and Lemma 4.3.5, the perfect prestaircase satisfies the
conditions of Theorem 4.2.1 implying that S is live.

A consequence of this proposition is Theorem 1.2.6.

Corollary 4.3.8 For each T 2 G, T ].SU / is live.

Proof For all staircases except SUu;0 (which was shown to be live in [1]), the conditions
of Proposition 4.3.7 are satisfied since tBD2nC3, and Corollary 4.2.6 and Lemma 4.3.1
hold.
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