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Geometric triangulations of a family of hyperbolic 3–braids

BARBARA NIMERSHIEM

We construct topological triangulations for complements of .�2; 3; n/–pretzel knots
and links with n� 7. Following a procedure outlined by Futer and Guéritaud, we use
a theorem of Casson and Rivin to prove the constructed triangulations are geometric.
Futer, Kalfagianni and Purcell have shown (indirectly) that such braids are hyperbolic.
The new result here is a direct proof.

57K32

1 Introduction

A knot or link in S3 is hyperbolic if its complement admits a complete hyperbolic
structure. A braid on n strands, which is represented by a word in the braid group,
w 2Bn, is hyperbolic if its braid closure, Lw , is. Hyperbolic braids formed from three
strands have been characterized by Futer, Kalfagianni and Purcell [7], a characterization
that depends on their representation in the braid group. B3 has two generators, �1
and �2 shown in Figure 1, and one relation, �1�2�1 D �2�1�2. The square of this
element is commonly denoted by C , which is central. In [7, Theorem 5.5], Futer,
Kalfagianni and Purcell have shown that S3 �Lw is hyperbolic if and only if w is
conjugate to C k�p1

1 �
�q1

2 � � � �
ps

1 �
�qs

2 with k 2 Z and pi , qi , and s positive integers,
and w is not conjugate to �p0

1 �
q0

2 for some integers p0 and q0 (closures of such braids
are either unknots, torus knots, or connected sums of torus knots). The proof is by
contradiction; they show the required hyperbolic structures exist without constructing
associated triangulations. In this paper, we construct geometric triangulations for braids
with k D 2, s D 1, p1 � 1, and q1D 1, thus offering a direct proof of the “if” direction
of their theorem in these cases.

Let Lp be the braid closure of C 2�p1 �
�1
2 with p � 1, which has one component if p is

odd and two if p is even. The complement of Lp is homeomorphic to the complement
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�1 �2

Figure 1: The generators of B3, the braid group on three strands.

of a .�2; 3; pC6/–pretzel (Corollary 5.6), so proving C 2�p1 �
�1
2 is hyperbolic will

cover those pretzel knots and links as well. To show C 2�
p
1 �
�1
2 is hyperbolic, we

will first decompose its complement into ideal tetrahedra whose faces are identified
in pairs (Section 2). These topological triangulations (one for each p) are very much
in the spirit of the canonical decompositions first described for 2–bridge knot and
link complements by Sakuma and Weeks in [19]. It turns out that, as in the 2–bridge
case detailed by Futer in [9, Appendix A], our triangulations are not just topological;
they are also geometric (though not canonical). In other words, each ideal tetrahedron
can be given a hyperbolic shape of positive volume and, when the faces are paired
by hyperbolic isometries, the resulting hyperbolic structure on S3�Lp is metrically
complete.

To prove that our topological triangulations are geometric, we will employ the “Casson–
Rivin program” laid out by Futer and Guéritaud in [5] — their survey of Casson
and Rivin’s technique for finding the hyperbolic structure on a 3–manifold whose
boundary consists of tori. Guéritaud has implemented this program for punctured
torus bundles and 4–punctured sphere bundles [9] and Futer for 2–bridge knots [9,
Appendix A], whereas Guéritaud and Schleimer have applied it to layered solid tori
and Dehn fillings [10] and Ham and Purcell used the same procedure to determine
geometric triangulations on highly twisted links [11].

Geometric triangulations can lead to better understandings of the geometry of finite-
volume hyperbolic 3–manifolds, including simpler proofs. However, it is not known
whether every such 3–manifold admits a geometric triangulation. Currently the list of
infinite families of finite-volume hyperbolic 3–manifolds that have been shown to admit
geometric triangulations is short: punctured torus bundles and 4–punctured sphere
bundles [9], 2–bridge knots and links [9, Appendix A], and certain Dehn fillings of
fully augmented 2–bridge knots and links [11]. The main result of this paper is that the
.�2; 3; n/–pretzel knots and links with n� 7 can be added to the list.

Algebraic & Geometric Topology, Volume 23 (2023)



Geometric triangulations of a family of hyperbolic 3–braids 4311

Organization

After constructing the topological triangulations in Section 2, we offer definitions and
a basic outline of the Casson–Rivin program in Section 3. The first step of the program
is carried out in Section 4, where we show that the space of positive angle structures
for our triangulations (Definition 3.1) is nonempty. The final step — arguing that the
critical point of the volume functional (Definition 3.3) is a positive angle structure —
is presented in Section 5 with some comments about extending the construction in
Section 6.

Acknowledgements

The explicit triangulations appearing here, as well as several more in the infinite family,
were confirmed using the software packages Regina [3] and SnapPy [4] and checked
against the census of veering triangulations created by Giannopolous, Schleimer and
Segerman [8]. See the Regina data file [15] for the triangulations constructed in
Section 2.

To make the graphics more accessible to those with color vision deficiencies, I have
used two of Paul Tol’s qualitative color schemes — bright (Figures 3 and 14) and light
(Figures 4 and 13). His palettes are mathematically designed to appear distinct to
all [21].

David Futer kindly gave feedback on an early draft of the appendix for which I am
grateful. I especially want to thank Bill Dunbar for many helpful conversations. There
is no aspect of this paper — the structure, the notation, the figures, the tables, the
exposition, the results — that has not been improved by his insights, careful reading,
and self-described pickiness. I am also grateful for several useful suggestions offered
by the referee. That said, any remaining errors are mine.

2 Ideal triangulations

Let Xp D S3 �Lp, the complement of the closure of the braid C 2�p1 �
�1
2 . In this

section, we construct a triangulation ofXp . In other words, we decompose the space into
tetrahedra with face pairings. The decomposition will be developed using ideas from
the appendix, which contains a slight revisualization of the geometric triangulations of
2–bridge link complements presented by Futer in [9, Appendix A]. There he uses the
fact that a 2–bridge link can be described as a 4–braid “closed up” with a clasp at each
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�
p
1 �
�1
2 � �

p
1 �
�1
4

Figure 2: The closure of C 2�p1 �
�1
2 is the 6–braid �p1 �

�1
2 — or equivalently

�
p
1 �
�1
4 — “closed up” with a three-stranded full twist on both the top and the

bottom.

end. The 4–braid lives in a product region, S2�I , and its complement in this region is
also a product, S�I , where S is a 4–punctured sphere. In [9, Appendix A], the product
region, S�I , appears between two nested pillowcases and Futer showed that the region
can be triangulated using a sequence of layers of ideal tetrahedra. In the appendix, we
position the product region vertically. As a result, the faces of Futer’s layered tetrahedra
can be easily seen in the braid complement, and the bottom of one layer is identified
to the top of the next according to the half-twist between them. (See, for example,
Figures 12 and 13.) The full link complement can be obtained by identifying the top of
the product region to itself in a way that forms the clasp needed at the top and similarly
for the bottom (Figure 14). These identifications amount to capping off each end of the
S � I with a 3–ball from which the clasp has been removed.

Analogously, we observe that the closure of C 2�p1 �
�1
2 can be formed from a 6–braid

“closed up” with a three-stranded full twist on both the top and the bottom. In this
context, the 6–braid �p1 �

�1
2 can be replaced by �p1 �

�1
4 because ��12 can slide past

the central full twist C on the bottom to become ��14 as indicated in Figure 2. In this
section, we will triangulate the complement, Xp, by placing ideal tetrahedra in the
product region containing the 6–braid �p1 �

�1
4 and identifying the topmost layer to itself

in a way that forms a full twist on three strands and similarly at the bottom. We begin
with the challenge of how to identify a 6–punctured sphere to itself to form a full twist.

2.1 Forming a three-stranded full twist

Let S0 be the top 6–punctured sphere. Label the punctures 0 through 5 and divide S0
into eight triangles as shown in Figure 3(a). Think of the punctures — and the strands
descending from them — as living in the plane of the page, so 4025 is in front of the

Algebraic & Geometric Topology, Volume 23 (2023)
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0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 50 1 2 3 4 5

(a)

(b)

(c)

(d)(e)

Figure 3: Forming a full twist C .

page and 4035 is behind the page. Their shared edge, 05, passes through the point at
infinity. The colors indicate the identifications on S0 that will yield a full twist:

gray 4025 is identified to 4035.

white 4023 is identified to 4523.

yellow 4012 in the front is identified to 4543 in the front.

pink 4012 in the back is identified to 4543 in the back.

To see that identifying S0 to itself in this way is the same as attaching a 3–ball with
a full twist removed, first fold S0 along the 23 edge into a cylindrical pillow shown
in Figure 3(b). As we go step-by-step through the identifications, we will follow the
punctures (their paths are drawn as strands) and see they sweep out a full twist. The
extra markings — cyan on the white triangles and gray on the yellow and pink ones —
will help us follow the triangles through each step.

Algebraic & Geometric Topology, Volume 23 (2023)
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� 4025 is identified to 4035: Figure 3(c) shows the result of bringing the 2 and 3
strands together to identify the gray triangles. Placing this triangle in the plane of the
page means the 23 (blue) edge forms a belt around a new pillow with half in front, as
the 1 and 2 strands are, and half behind as the 3 and 4 strands are. The left side of the
pillow consists of 4023 and both 4012’s (appearing in the front). The right side is
formed by4523 and both4543’s (in the back). This diagram is analogous to the third
step in Figure 14 in the appendix.

� 4023 is identified to 4523: By pushing the 0 and 5 strands into the pillow until
they meet, 4023 can be identified to4523 as shown in Figure 3(d). The 0 strand goes
behind 1 and 2 and the 5 strand passes in front of 3 and 4. The result is not the same
as the final step in Figure 14, because of the presence of the two 4012’s and the two
4543’s. While these triangles themselves are not identified yet, their 02 edges and
53 edges (dark red and green) have come together, and they form a sphere with the
two pink triangles in front and the two yellow in back. The interlocked gray and white
faces meet along the dark red and green longitudes. These faces appear behind the
sphere on the left and in front on the right.

� The 4012’s are identified to the 4543’s: Bringing strands 1 and 4 together and
identifying each 4012 to its corresponding 4543 collapses the sphere. The result,
shown in Figure 3(e), is the desired positive full twist on three strands (read right to left,
the positive direction for the top of the 3–braid with a counterclockwise orientation).

To obtain the triangles for the 6–punctured sphere at the bottom of the product region,
rotate S0 about the horizontal line through the punctures, so now the strands of the
braid go up, and use the same identifications. For example, at the bottom 4023 is in
the front and is identified to 4523 in the back.

Having capped off the ends, we turn our attention to placing ideal tetrahedra in the
product region, determining their face pairings, and thus defining triangulations �p on
the manifolds Xp for all p. We start by constructing a triangulation of X1 upon which
the other triangulations will be built.

2.2 A foundational ideal triangulation

To specify the triangulation of X1, we will place tetrahedra in a product region from
which the 6–braid, �1��14 , has been removed. The left diagram in Figure 4 shows this
region with the braid in the plane of the page, except near the crossings.

Algebraic & Geometric Topology, Volume 23 (2023)
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The method of the appendix suggests using three layers of tetrahedra (one on either
side of the two crossings). Label the top, middle, and bottom layers �t , �m, and �b
(with �t split into �t t and �tb). The six ideal tetrahedra that will triangulate the
complement are shown in Figure 4: t 01 and t 02 in �t , m1 and m2 in �m, and b1 and b02
in �b , where a prime indicates that the tetrahedron is behind the plane of the page; the
labels on the ideal vertices come from the labels on their punctures (0 through 5 when
read left to right); and the “top” faces of a tetrahedron are above the “bottom” faces
relative to the product region.

The edges of the tetrahedra are drawn both in the braid complement on the left and
in flattened versions in the center and on the right. On the left, layers are expanded
by making two copies of the edges where the top of a tetrahedron meets the bottom,
allowing the faces of the tetrahedra and their remaining edges to be seen more easily.
The flattened versions show just one copy of each edge.

The tetrahedra t 01 and t 02 share the face 025, shaded orange on the left, and their flattened
versions are drawn separately. The pair m1 and m2 share only an edge (thickened in
the center diagram), so their interiors do not overlap when flattened, and they can both
be seen when drawn side-by-side. The same is true for b1 and b02.

The left figure contains additional segments that divide the boundaries of each layer into
triangles. These curves appear gray in the diagram and will be useful in determining
the face pairings for this initial triangulation, which we shall refer to as O�1.

When comparing to the appendix, the reader should be concerned that the pairs of
tetrahedra do not fill the entire layer. In �m, for example, the tetrahedra are only in
front of the plane of the page. Nonetheless, if we slide the faces of these six tetrahedra
around the link — up and down the braid and through the full twists at the top and
bottom — they will fill out the entire product region. For example, face 235 on the
bottom of t 01 can slide down the braid through �tb and �m and past the ��14 half-twist
to be identified with the 245 face of b02. We denote such faces and face pairings by

t 01.235/� b
0
2.245/;

taking care that the order of the vertices indicates the correct match. Images of the
intersection of this triangle’s path with each layer’s boundary are shaded pink in the
diagram. They make use of the aforementioned additional gray segments and show
that the back 235 region of �m is indeed covered.

As indicated in Figure 4, t 01 sits on top of t 02 with their 025 faces identified. The
remaining faces on the top of the tetrahedra in �t and those on the bottom of the

Algebraic & Geometric Topology, Volume 23 (2023)
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0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

�b D

�m D

�tb D

�t t D

D

D

D

D

t 01

t 02

m1 m2

b1 b02

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 5

2 3
0 5

1 2

1 2 3 4

0 5 2 5

2 3 2 5

0 5 3 4

Figure 4: A triangulation of the complement of the closure of C 2�1��12 .

tetrahedra in�b are triangles appearing in Section 2.1 and are identified by the full-twist
identifications described there. For example, the face b1.023/ on the bottom of �b is
the triangle 4023, which is identified to 4523, which is the 523 face of b02, another
face on the bottom of �b , so b1.023/� b02.523/. These faces are shaded green.

Sometimes the full-twist identifications will combine with sliding along the braid. To
see such a combination, look at triangles shaded blue, starting with the 125 face of t 02.
After traveling through the half-twist that interchanges 0 and 1, t 02.125/ becomes4025
on the top of �m still in the back. Then it can travel through �m and �b all the way
to 4025 on the bottom of �b in the back. This triangle is identified to 4035 in the
front, ie the 035 face of b1, so t 02.125/� b1.035/.

The remaining face pairings of O�1 are obtained by sliding the remaining faces along
the braid, twisting through half-twists and using full-twist identifications at the top
and bottom as needed. The reader may enjoy tracing the long and twisted journey of
t 02.012/ to its mate, m1.021/. All twelve face pairings of O�1 are listed in Table 1.

For reasons explained in Section 4.1, the triangulation O�1 is not quite what we want for
our triangulation of X1. Instead, we will simplify O�1 by applying Pachner moves — also
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t 01.023/�m2.523/

t 01.025/� t
0
2.025/

t 01.035/�m1.125/

t 01.235/� b
0
2.245/

t 02.015/�m1.105/

t 02.012/�m1.021/

t 02.125/� b1.035/

m1.025/� b1.025/

m2.345/� b
0
2.354/

m2.234/� b
0
2.243/

m2.245/� b1.235/

b1.023/� b
0
2.523/

Table 1: Face pairings for O�1, an initial triangulation of X1.

known as bistellar flips, introduced in [16]. Table 1 shows the following identifications
of the 24 edge of m2:

24 in m2 � 23 in b1 � 23 in b02 �back to 24 in m2:

Whenever three tetrahedra surround an edge, we can perform a 3-2 Pachner move that
replaces them with two tetrahedra sharing a face. Figure 5 shows how to replace m2,
b1, and b02 with Ns on the top and s on the bottom. Label the vertices of s with abcd
(circled in the diagram), where a represents 3 in m2 and 4 in b02; b represents 3 in b1
and b02 and 4 in m2; c represents 5 in m2 and b1; and d represents 0 in b1 and 5 in b02.
The surviving faces of m2, b1, and b02 are renamed as follows: m2.235/ 7! Ns.2ac/,
m2.345/ 7! s.abc/, b1.025/ 7! Ns.d2c/, b1.035/ 7! s.dbc/, b02.245/ 7! Ns.2ad/, and
b02.345/ 7! s.bad/. Making these substitutions and adding Ns.acd/ � s.acd/ yields
the face pairings listed in Figure 5.

s

Ns

m2

b
0
2b

1

a

b

c

d

2

4

4

3

3

4
3

5
5

0 5

t 01.023/� Ns.c2a/

t 01.025/� t
0
2.025/

t 01.035/�m1.125/

t 01.235/� Ns.2ad/

t 02.015/�m1.105/

t 02.012/�m1.021/

t 02.125/� s.dbc/

m1.025/� Ns.d2c/

s.abc/� s.bda/

Ns.acd/� s.acd/

Figure 5: A 3-2 move eliminates the 24 edge of m2, which is also the 23
edge in b1 and b02, and yields the indicated face pairings.
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t 01 Ns

5 d

2 3 2 a

0 c

t 02.015/�m1.105/

t 02.012/�m1.021/

t 02.025/�m1.520/

t 02.125/� s.dbc/

m1.125/� s.cad/

s.abc/� s.bda/

Figure 6: A 2-0 move eliminates t 01 and Ns, stacked as indicated, and yields
face pairings for �1, a triangulation of X1.

Next, observe that the 23 edge of t 01 is identified to the 2a edge of Ns, which is taken
back to the 23 edge of t 01. This very short cycle of edges means t 01 and Ns are identified
across an edge, so we can perform a 2-0 Pachner move to collapse t 01 and Ns. This move
identifies t 01.025/ with Ns.c2d/ and t 01.035/ with Ns.cad/. See Figure 6, which shows
how t 01 and Ns are stacked before they are collapsed and eliminated. The 2-0 move
results in a triangulation of X1 comprising three tetrahedra — t 02, m1, and s— whose
face pairings are in Figure 6. Define �1 to be this triangulation.

2.3 Adding layers to extend to p D 2 and 3

It will be more instructive to first extend the construction of the previous section to
pD 3. To triangulate the complement of the closure of C 2�31�

�1
2 , where there are four

half-twists in the braid, begin with five layers: �t , �m, and �b and two layers inserted
between �t and �m, labeled �w1 and �w2. Place two tetrahedra in each layer as
indicated in Figure 7. Though �t is depicted slightly differently (as one layer with
the shared face of t 01 and t 02, 025, positioned in the middle), all tetrahedra in �t , �m,
and �b are named and situated exactly as in Figure 4. The new tetrahedra, those in
the �wi layers, will be called wi and w0i , where a prime still indicates the tetrahedron
is behind the plane of the page.

The face pairings are determined in the same manner as they were for p D 1, but now
over half of the twenty face pairings result from moving through a half-twist from the
bottom of one layer to the top of the next. These appear in the left column of Table 2.
The middle column contains the face pairings that come directly from Table 1 and
are unaffected by adding the w–layers. The final column contains more complicated
face pairings that do not occur in Table 1 because these triangles hit tetrahedra in
the w–layers before encountering their mates from Table 1. For example, t 01.035/ is

Algebraic & Geometric Topology, Volume 23 (2023)
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0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

�b D

�m D

�w2 D

�w1 D

�t D

t 01 t 02

w1 w01

w2 w02

m1 m2

b1 b02

0 5 0 5

2 3 1 2

1 2 0 5

0 5 1 2

1 2 0 5

0 5 1 2

1 2 3 4

0 5 2 5

2 3 2 5

0 5 3 4

Figure 7: A triangulation of the complement of the closure of C 2�31�
�1
2 , with

�t depicted as one layer with the shared face of t 01 and t 02, 025, positioned in
the middle.

identified to 4025 in the front, which, after passing through the half-twist, becomes
4125, a top face of w1, so t 01.035/ hits w1 before it gets to m1. We will call this
initial triangulation O�3, and, as in the p D 1 case, will perform simplifying Pachner
moves on O�3 to create �3. The shadings in Table 2 will help us determine the resulting
identifications.

Again, three tetrahedra in O�3 surround the 24 edge of m2 (which is identified to the 23
edges of b1 and b02), allowing for the same 3-2 move shown in Figure 5. Thus m2, b1,
and b02 are replaced by Ns and s. As before, we can then perform a 2-0 move collapsing

Algebraic & Geometric Topology, Volume 23 (2023)
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t 02.015/� w1.105/

t 02.125/� w
0
1.025/

w1.025/� w2.125/

w1.012/� w
0
2.102/

w01.015/� w2.105/

w01.125/� w
0
2.025/

w2.025/�m1.125/

w02.015/�m1.105/

m1.025/ � b1.025/

m2.234/ � b
0
2.243/

m2.245/ � b1.235/

t 01.023/ �m2.523/

t 01.025/ � t
0
2.025/

t 01.235/ � b
0
2.245/

t 02.012/�m1.021/

b1.023/ � b
0
2.523/

t 01.035/ � w1.125/

m2.345/ � w
0
1.201/

b1.035/ � w
0
2.125/

b02.345/ � w2.201/

Table 2: Face pairings for O�3, an initial triangulation of X3.

t 01 and Ns because they are identified across the edge 23 D 2a. Again, t 01.025/ and
t 01.035/ are identified with Ns.c2d/ and Ns.cad/ as in Figure 6. Let �3 be the resulting
triangulation of X3, consisting of the seven remaining tetrahedra: t 02, w1, w01, w2, w02,
m1, and s.

The face pairings in the darkest cells in Table 2 involve only the four replaced or
collapsed tetrahedra (m2, b1, b02, t 01), so none of them will survive the Pachner moves
defining �3. The face pairings in the unshaded cells, on the other hand, do not involve
any of these tetrahedra, and are, thus, unaffected by the two Pachner moves.

The remaining face pairings of �3 come from those in the light gray cells in Table 2.
They involve the faces of m2, b1, b02, and t 01 that survive the Pachner moves. In other
words, these faces do appear in �3. They are just relabeled by the Pachner moves.
Consider first m1.025/ � b1.025/. Under the 3-2 move shown in Figure 5, b1.025/
becomes Ns.d2c/, which is identified by the 2-0 move in Figure 6 to t 01.520/. This face
is paired with t 02.520/, so, after the two Pachner moves, m1.025/ is identified with
t 02.520/, which we choose to write as t 02.025/�m1.520/.

The final four faces to be relabeled — t 01.035/, m2.345/, b1.035/, and b02.345/— are
all faces that belong to the new tetrahedra s. More specifically, the 2-0 move identifies
t 01.035/ with Ns.cad/, which is the new face introduced by the 3-2 move, the face shared
by Ns and s. Thus, after the two Pachner moves, t 01.035/ becomes s.cad/. The other three
faces form the rest of s as indicated in Figure 5 and are thus the faces s.abc/, s.dbc/,

Algebraic & Geometric Topology, Volume 23 (2023)
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t 02.015/� w1.105/

t 02.125/� w
0
1.025/

w1.025/� w2.125/

w1.012/� w
0
2.102/

w01.015/� w2.105/

w01.125/� w
0
2.025/

w2.025/�m1.125/

w02.015/�m1.105/

t 02.012/�m1.021/

t 02.025/�m1.520/

s.cad/� w1.125/

s.abc/� w01.201/

s.dbc/� w02.125/

s.bad/� w2.201/

Table 3: Face pairings for �3, a triangulation of X3.

and s.bad/, respectively. Table 3 contains all identifications of �3, where the first
column still lists face pairings that result from moving from the bottom of one layer to
the top of the next and the final column now shows how the new tetrahedron, s, glues in.

The reader likely anticipates that we will create the desired triangulation of Xp in two
steps: first form an initial triangulation, O�p, consisting of the tetrahedra in Figure 4
together with some w–layers between �t and �m, and then perform two Pachner
moves — a correct guess that will be made explicit in the next section. Before moving
on, we make some observations about the pD3 construction and address the pD2 case.

Figure 7 shows that t 02 is situated and labeled in exactly the same way as w01 and w02, so
the labels on the bottom faces of t 02, 015 and 125, are the same as those on w01 and w02.
Furthermore, as the face t 02.015/ slides through the half-twist, it rotates to the front,
matching with w1.105/, just as the 015 face of w01 matches with w2.105/. Similarly,
as the face t 02.125/ slides through the half-twist, it stays in the back, matching with
w01.025/, just as the 125 face of w01 matches with w02.025/. In these identifications, t 02
is acting as a tetrahedron labeled w00 would. A similar analysis at the bottom of the
w–layers shows that the top faces of m1 glue to the bottom faces of w2 in the same
way those in a tetrahedron labeled w3 would.

Using this relabeling, we make several observations about the face pairings in �3.

� By relabeling t 02 as w00 and m1 as w3, the unshaded face pairings in the first column
of Table 2 can be summarized as follows:

w0i .015/� wiC1.105/ for i D 0; 1; 2; w0i .125/� w
0
iC1.025/ for i D 0; 1;

wi .025/� wiC1.125/ for i D 1; 2; wi .012/� w
0
iC1.102/ for i D 1:
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w00.015/� w1.105/

w00.125/� w
0
1.025/

w1.025/� w2.125/

w01.015/� w2.105/

w00.012/� w2.021/

w00.025/� w2.520/

s.cad/� w1.125/

s.abc/� w01.201/

s.dbc/� w01.125/

s.bad/� w1.201/

Table 4: Face pairings for �2, a triangulation of X2.

These inter-w identifications of O�3 are not affected by Pachner moves involving m2, b1,
b02, and t 01, so they are also face pairings of �3, as shown in the first column of Table 3.

� The top faces of w00 are not included in the identifications listed above, and neither
are the bottom faces of w3. These faces are identified to each other. More specifically,
after the Pachner moves, w00.012/� w3.021/ and w00.025/� w3.520/. Both of these
pairings also occur in �1 (see the table in Figure 6) and were, thus, unaffected by the
addition of the w–layers. These face pairings appear in the second column of Table 3.

� The face pairings in the third column of Table 3, those involving s, can be character-
ized as follows: two of the faces of s are identified to top faces in the first w–layer,
w1.125/ and w01.201/, and the other two are identified to bottom faces in the last
w–layer, w2.201/ and w02.125/.

Properly interpreted, these observations also apply when pD 2. Let the triangulation �2
of X2, the complement of the closure of C 2�21�

�1
2 , consist of w00, w1, w01, w2 and s.

Because there is only one w–layer, it is both the first w–layer and the last w–layer,
and the final observation tells us that the faces of s are identified to four faces in �w1.
Harvesting the remaining face pairings from the first two observations, we obtain the
face pairings for �2 given in Table 4.

2.4 An ideal triangulation for any p

Guided by the previous examples along with Figure 7, form an initial triangulation, O�p ,
of Xp , the complement of the closure of C 2�p1 �

�1
2 , that consists of 2pC 4 tetrahedra:

t 01 and w00 (née t 02) in �t ; wp (née m1) and m2 in �m; b1 and b02 in �b; and wi and
w0i in �wi where i D 1; : : : ; p� 1. The face pairings of O�p are determined by sliding
faces along the braid and using the full-twist identifications at the top and bottom
of the product region as described in Sections 2.2 and 2.3. As before, the addition
of the w–layers does not affect identifications amongst m2, b1, b02, and t 01, so the
Pachner moves depicted in Figures 5 and 6 can be applied. Define �p to be the resulting
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w0i .015/� wiC1.105/ for i D 0; : : : ; p� 1

w0i .125/� w
0
iC1.025/ for i D 0; : : : ; p� 2

wi .025/� wiC1.125/ for i D 1; : : : ; p� 1

wi .012/� w
0
iC1.102/ for i D 1; : : : ; p� 2

w00.012/� wp.021/

w00.025/� wp.520/

s.cad/� w1.125/

s.abc/� w01.201/

s.dbc/� w0p�1.125/

s.bad/� wp�1.201/

Table 5: Face pairings for �p , a triangulation of Xp for p > 1.

triangulation. As with �2, the observations about �3 from the previous section apply
to �p , yielding the face pairings listed in Table 5 for p > 1. (For p D 1, see Figure 6.)

The triangulation O�p had 2p C 4 tetrahedra. The 3-2 Pachner move reduced this
number by one and the 2-0 Pachner move further reduced the number of tetrahedra
by two, so �p has 2pC 1 tetrahedra and thus 4pC 2 face pairings. There are exactly
4p C 2 identifications in Table 5 (and six in Figure 6). Thus, the definition of the
triangulation �p is complete.

Note that most of the tetrahedra in �p (all but s) are visible in the complement of the
6–braid �p1 �

�1
4 . Using this visualization can help us quickly deduce relationships

between the tetrahedra. For example, Figure 8 shows how w00, w1, w01, : : : , wp�1,
w0p�1 and wp are situated in the braid complement, and all but six face pairings of �p
can be derived directly from following their faces through the half-twists in the braid.

2.5 Equivalence classes of edges in the triangulation

Knowing the relationships between the edges of �p will prove helpful because their
equivalence classes form the edges of Xp and the (internal) dihedral angles along these
edges will dictate its geometry. In determining equivalence classes, we can use Figure 8
or Table 5, whichever is easier.

As an example, we will determine all edges identified to the 01 edge of w00. In the
braid picture, w00.01/ slides down through the first �1 half-twist to be identified with
w1.10/ and w01.10/, so the equivalence class of w00.01/, Œw

0
0.01/�, contains the 01 edge
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0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

w00

w1 w01

w2 w02 s

wp�1 w0p�1

wp

0 5

1 2

1 2 0 5

0 5 1 2

1 2 0 5 d c

0 5 1 2 a b

1 2 0 5

0 5 1 2

1 2

0 5

Figure 8: The tetrahedra of �p with Œw00.01/� colored red. All but s are
shown in the braid complement on the left. The dashed arrows on the right
indicate that a bottom face of the originating tetrahedron is identified through
a half-twist to a top face of the target tetrahedron. Among faces unpaired by
half-twists, the top faces of w00 are identified to the bottom faces of wp and
s is glued to the top faces of w1 and w01 and the bottom faces of wp�1 and
w0p�1 as in Table 5.

of w1 and of w01. Continuing to move the 01 edge through more half-twists shows
the 01 edges of wi and w0i belong to Œw00.01/� for all i . Two edges of s also appear in
this equivalence class, which can be seen most easily in Table 5: w01.01/� s.bc/ and
wp�1.01/� s.ad/. These edges of s, s.bc/ and s.ad/, are also identified to w0p�1.25/
and w1.25/, respectively, which can themselves be slid along the braid to show that
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the 25 edges of each wi and w0i are in Œw00.01/�. We have not yet considered face
pairings between w00 and wp . The first in Table 5, w00.012/� wp.021/ shows wp.02/
and w00.02/ are also in Œw00.01/�. Based on how the tetrahedra are positioned in the
braid complement, 02 is the top edge in w00 and the bottom edge in wp , which allows
us to describe Œw00.01/� as follows.

Observation 1 The equivalence class Œw00.01/� contains a total of 4pC 4 edges: the
01 edges and 25 edges of each wi and w0i ; s.bc/ and s.ad/; the top edge of w00 and the
bottom edge of wp. These edges are colored red in Figure 8.

Observation 2 A similar analysis shows that Xp has two edges with degree 5. The
edge Œw00.05/� arises from

w00.05/� w1.15/� s.cd/� w
0
p�1.51/� wp.05/�back to w

0
0.05/

and , when p > 1, the edge Œw00.12/� from

w00.12/� w
0
1.02/� s.ba/� wp�1.20/� wp.21/�back to w

0
0.12/:

When pD 1, w01.02/ and wp�1.20/ are undefined and are replaced by s.db/ and s.ac/.

It turns out that the remaining 2p� 2 edges have degree 4.

3 Angle structures and the Casson–Rivin program

We will prove that the triangulation �p of Xp defined in Section 2.4 is geometric by
applying the Casson–Rivin program. This section provides some definitions, useful
results, and a basic outline of the program. For more details and a beautiful exposition,
including an elementary proof of the Casson–Rivin theorem, the reader is encouraged
to read Futer and Guéritaud’s paper [5].

3.1 Angle structures

To move from a topological triangulation to a geometric one, we need a way to impose
a hyperbolic structure on each tetrahedron where the face pairings are hyperbolic
isometries. A start is to assign angles to the edges of the triangulation.

Definition 3.1 An angle structure on an ideal triangulation � of a 3–manifold is
an assignment of angles to the edges of the tetrahedra in � satisfying the following
conditions:
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(1) Angles assigned to opposite edges of a tetrahedron are equal, meaning it is enough
to specify three angles �3i�2, �3i�1, and �3i , for each tetrahedron Ti 2 � .

(2) �3i�2C �3i�1C �3i D � for all i .

(3) The sum of the angles surrounding an edge of the 3–manifold equals 2� .

This paper utilizes both taut angle structures, where �k 2 f0; �g for all k, and positive
angle structures, where �k > 0 for all k. Note that condition (2) of the definition
implies that a positive angle structure must have all angles strictly between 0 and � . In
this case, the three angles that sum to � specify a positively oriented ideal hyperbolic
tetrahedron. The tetrahedron is isometric to one whose vertices are at 0, 1,1, and a
complex number z with Im.z/ > 0, where 0, 1, and z form a Euclidean triangle having
the assigned angles. If Im.z/ D 0, the tetrahedron is said to be degenerate, and, if
Im.z/ < 0, negatively oriented. If an angle structure � assigns the same angles to two
tetrahedra, T1 and T2, then we will say they are isometric with respect to � and write
T1 Š� T2.

We use A.�/ to denote the space of all positive angle structures on a triangulation �
and note that, if � has n tetrahedra, A.�/� .0; �/3n is a convex polytope with compact
closure. As such, the points obtained through coordinate-by-coordinate averaging of
elements of A.�/ are again in A.�/. Also, real-valued functions defined on A.�/ attain
their extreme values. See [5, Proposition 3.2] for more details about the space of angle
structures.

As will be described in Section 3.3, the initial step in the Casson–Rivin program is to
argue that A.�/ is nonempty, ie that the triangulation admits a positive angle structure.
We accomplish this in our case by first showing (in Section 4.1) that �p admits a special
type of taut angle structure — a veering angle structure. The notion of “veering”, first
introduced by Agol [1], has several equivalent formulations. The simplest to apply to
our triangulations is from [12].

Definition 3.2 A veering angle structure on an ideal triangulation � of an oriented
3–manifold M is a taut angle structure meeting an additional condition: The edges of
M can be colored red and blue in such a way that, within each tetrahedron,

� two of the edges with angle 0 are red and two are blue (the color on an angle �
edge can be either red or blue);

� when viewed from any of the four ideal vertices, the �–angled edge is followed
in the counterclockwise direction by a blue edge and then a red edge.
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Figure 9: A tetrahedron in a veering triangulation.

Each tetrahedron in a veering triangulation appears as the one in Figure 9, where
the �–angled edges on the diagonal can be red or blue. If there is also a consistent
“upward” orientation on the four faces (for example out of the page in Figure 9), the
angle structure is transverse taut. A triangulation that admits a veering angle structure
is said to be veering.

Positive angle structures give geometric structures on the tetrahedra in a triangula-
tion. In turn, these structures determine the face-pairing isometries. Condition (3) of
Definition 3.1 guarantees that, under these isometries, the tetrahedra fit together to
fill the space around the edges of the manifold, because the sum of dihedral angles
around any edge is 2� . However, there is no guarantee that the result is metrically
complete. In fact, if a 3–manifold has a complete hyperbolic structure of finite volume,
Mostow–Prasad rigidity ensures that the structure is unique up to isometry [14; 17], so
one should not expect completeness for an arbitrary point in A.�/. It turns out that the
independent work of Casson and Rivin [18], which forms the basis of the Casson–Rivin
program in [5] and outlined in Section 3.3, connects the question of completeness to
the volume associated to an angle structure in A.�/, ie the sum of the volumes of the
corresponding hyperbolic tetrahedra.

3.2 Volumes of angle structures

Recall — see [13], for example — that the volume of an ideal hyperbolic tetrahedron T ,
with dihedral angles �1, �2 and �3, is given by

V.T /DL.�1/CL.�2/CL.�3/;

where the Lobachevsky function, L, is defined as

L.x/D�
Z x

0

log j2 sin t j dt:
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Definition 3.3 For a point � 2A.�/, which specifies angles for the n tetrahedra Ti 2 �
and has all �i 2 .0; �/, define the volume associated to � , V.�/, by

V.�/D
nX
iD1

V.Ti /D

3nX
iD1

L.�i /

and note that V.�/ > 0 for � 2A.�/.

As summarized in [5], L is well-defined and continuous on R. Thus, the definition
of V can be extended to the closure of A.�/, which may include points with coordinates
equal to 0 or � where the integral itself is improper. If � 2A.�/, then V.�/� 0.

Straightforward tetrahedra-by-tetrahedra calculations show that for a positive angle
structure � and a tangent vector Ev 2 T�A.�/,

(1)
@V
@Ev
D

3nX
iD1

�vi log sin �i and
@2V
@Ev 2

< 0:

See for example [5, Lemma 5.3].

Because V is strictly concave down on A.�/, any critical point in A.�/ is unique and
an absolute maximum. In fact, the first and second partials (1) are enough to prove the
same for a maximal point on the boundary.

Proposition 3.1 Whenever A.�/ ¤ ∅, the point at which the volume functional
V WA.�/! Œ0;1/ attains its maximum is unique.

Proof If there is a critical point ˛ in A.�/, the strict concavity of V guarantees that
˛ is unique and that V.˛/ is the maximum volume. If, on the other hand, there is no
critical point on the interior, the compactness of A.�/ ensures that there is a point
˛ 2A.�/�A.�/ with V.˛/ maximal. To show such an angle structure is unique, we
first examine its coordinates. Because ˛ …A.�/, there is at least one tetrahedron in �
with an assigned angle of 0 or � . The maximality of ˛ further constrains the angles of
such a tetrahedron as noted in the following lemma.

Lemma 3.2 When V.˛/ is a maximum , any tetrahedron assigned an angle of 0 or �
must have angles of 0, 0, and � in some order.

Proof By condition (2) of Definition 3.1, the angles in a tetrahedron must sum to � ,
so this statement is obviously true if one angle in a tetrahedron is assigned � or if two
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angles are assigned 0. We now argue, as also noted in [9, Proposition 7.1] and [10,
Proposition 7], that assigning exactly one 0 angle contradicts the maximality of ˛.

Consider, for example, a tetrahedron, T0 2 � , with nonnegative angles 0, �0, and
� � �0. For any 0 < � < 1, define a family of tetrahedra T .t/jt�0 with angles �1 D t ,
�2D �0��t , and �3D � � .tC�0��t/, so T .0/D T0 and, as t increases, the angles
of the tetrahedron change — �1 is increased, while �2 and �3 are decreased. The first
partial in (1) restricted to this family of tetrahedra yields

dV.T .t//

dt

ˇ̌̌̌
tD0C

D

3X
iD1

�
d�i

dt
log sin �i

ˇ̌̌̌
tD0C

DC1:

In other words, increasing the solitary 0 angle by a small amount would increase
T0’s volume (and thus the total volume V) by a much larger amount, violating the
maximality of ˛. Thus, if a maximal angle structure assigns any angles in f0; �g to a
tetrahedron, two of its angles are assigned 0 and one � , thus proving the lemma. We
call a tetrahedron with angles in f0; �g flat and observe that its volume is 0.

Returning to the proof of Proposition 3.1, we will use the constraints Lemma 3.2
imposes on the coordinates of a maximal point ˛ 2 A.�/�A.�/ to prove that ˛ is
unique. Let ˇ be in A.�/�A.�/ with V.ˇ/D V.˛/ and let � 2 Œ0; ��3n be the point
whose coordinates are determined by averaging those of ˛ and ˇ. Then � 2 A.�/,
because the set A.�/ is convex. We will examine the volume of each tetrahedron T
under the angle structure assigned by � and will denote this volume by V.�jT /.

Case 1 If ˛ and ˇ assign the same angles to a tetrahedron T , then their average �
does as well, so V.�jT / is equal to V.˛jT / (and also V.ˇjT /).

Case 2 If ˛ and ˇ assign different angles to a tetrahedron T and both ˛jT and ˇjT
are flat, then, because ˛ and ˇ are maximum points, the angles must be 0, 0, and � (in
different orders), and the coordinates of �jT are 0, �

2
, and �

2
in some order. In this

case, V.�jT / equals 0 just as V.˛jT / and V.ˇjT / do.

Case 3 If ˛ and ˇ assign different angles to a tetrahedron T and at least one of ˛jT or
ˇjT is not flat, we will argue that V.�jT / is strictly greater than the average of V.˛jT /
and V.ˇjT /. Without loss of generality suppose ˛jT is not flat. Define 
.t/ to be the
line segment joining ˛jT and ˇjT ,


.t/D t˛jT C .1� t /ˇjT for t 2 Œ0; 1�:
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Let V.t/ be the volume of the tetrahedron whose angles are given by 
.t/. As a
restriction of V , the function V is continuous on Œ0; 1�. Also, because ˛jT is not flat, 

is in .0; �/3 for 0 < t � 1, so V is differentiable on .0; 1� and by the second partial
in (1), V 00 < 0. Applying the mean value theorem to V yields points c1 2

�
0; 1
2

�
and

c2 2
�
1
2
; 1
�

with

V 0.c1/D 2
�
V
�
1
2

�
�V.0/

�
; V 0.c2/D 2

�
V.1/�V

�
1
2

��
and negative second derivatives, so V 0.c1/ > V 0.c2/, which means1

2V
�
1
2

�
> V.1/CV.0/:

Because V
�
1
2

�
D V.�jT /, V.1/D V.˛jT /, and V.0/D V.ˇjT /, this inequality implies

V.�jT / > 1
2
.V.˛jT /CV.ˇjT //.

In all cases, the volume of a tetrahedron T computed using �, the average of the angle
structures, is greater than or equal to the average of the volumes of T computed using
the angle structures ˛ and ˇ, so summing the individual volumes over all tetrahedra in
� yields

V.�/� 1
2
.V.˛/CV.ˇ//D V.˛/

with equality only when there are no tetrahedra in case 3. But V.˛/ is the maximum
volume, so V.�/ � V.˛/, meaning V.�/ D V.˛/ and there are no case 3 tetrahedra.
The only way ˛ and ˇ can assign different angles to a tetrahedron T is if ˛jT and ˇjT
are both flat (case 2). In this case, V.�/D V.˛/, so � is also maximal, but, as we have
seen, the coordinates of �jT are 0, �

2
, and �

2
, which is not allowed for maximal angle

structures. Therefore, ˛ and ˇ cannot assign different angles to any of the tetrahedra
and ˇ D ˛, which is the unique maximum point.

Positive angle structures that maximize the total volume play an important role in the
Casson–Rivin program.

3.3 The Casson–Rivin program

In their proof of Casson and Rivin’s theorem, Futer and Guéritaud relate the critical
point of the volume (if it exists) and the complete hyperbolic structure (if it exists).
More specifically, they show that the derivative of the volume vanishes in every direction

1If neither ˛jT nor ˇjT is flat, this inequality follows immediately from the strict concavity of V . We
appeal to the mean value theorem, because, in general, strict concavity does not extend to the boundary
of A.�/.

Algebraic & Geometric Topology, Volume 23 (2023)



Geometric triangulations of a family of hyperbolic 3–braids 4331

exactly when Thurston’s system of gluing equations guaranteeing completeness (given
in [20]) is satisfied. In doing so, they prove their main result, a theorem based on
independent work of Rivin and Casson usually cited as [18].

Casson–Rivin theorem [5, Theorem 1.2] Let M be an orientable 3–manifold with
boundary consisting of tori , and let � be an ideal triangulation of M . Then a point
� 2A.�/ corresponds to a complete hyperbolic metric on the interior of M if and only
if � is a critical point of the functional V WA.�/! Œ0;1/.

In our situation, the manifoldM is the complement of an open neighborhood of the braid
closure, Lp . We seek a complete hyperbolic metric on Xp , which is homeomorphic to
the interior of M and is triangulated by �p.

The Casson–Rivin theorem will enable us to conclude �p is geometric as follows. In
Section 4.1, we establish that the space of positive angle structures on our triangulations,
A.�p/, is nonempty. Consequently, the volume functional V W A.�p/! Œ0;1/ will
attain its maximum. Then, in Section 5, we show that the maximum point of V
must belong to A.�p/. Then, by the Casson–Rivin theorem, there is a positive angle
structure on our triangulation �p that yields the complete hyperbolic structure on the link
complement, Xp . Thus, the constructed triangulations are geometric and C 2�p1 �

�1
2 is

hyperbolic for p � 1.

3.4 Symmetries of angle structures

When arguing that the maximum of the volume cannot appear on the boundary of A.�p/,
a certain symmetry of the space of positive angle structures will be helpful.

Definition 3.4 Any symmetry, �, of a triangulation, � , induces a map on the space
of positive angle structures by assigning the angles of T to �.T / for all T 2 � . When
such an assignment results in a positive angle structure for all points in A.�/, we say �
induces a symmetry of the space of positive angle structures, which we will also denote
by �. More specifically, given a symmetry � W � ! � with �.Ti / D Tj , let � 2 A.�/
and define the coordinates of �� by ��3j�2D �3i�2, ��3j�1D �3i�1, and ��3j D �3i .
The angles of �� are positive and meet conditions (1) and (2) of Definition 3.1, so �
induces a symmetry of A.�/ whenever condition (3) is also met.

Observation 3 A symmetry � W A.�/! A.�/ rearranges the angles of � triple by
triple , so V.�/D V.��/.
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4 The space of positive angle structures is nonempty

We now return to the triangulations, �p, defined in Section 2.4. Our immediate goal
is to complete the first step of the Casson–Rivin program by showing that A.�p/ is
nonempty, ie that �p admits a positive angle structure. We will do so by showing that
�p has a veering angle structure, which can be deformed to a positive angle structure
[6; 12]. We then use the veering structure to describe an explicit coordinate system for
A.�p/ and conclude the section by writing the edge equations in these coordinates and
using them to describe a useful symmetry.

4.1 The triangulations are veering

While the initial triangulations O�p were not veering, the Pachner moves eliminated the
obstructions and:

Proposition 4.1 Each triangulation �p is veering.

Proof With the exception of s, the tetrahedra in �p have an upward orientation induced
by the product region containing the 6–braid, which is how the non-s tetrahedra of �p
are flattened in Figure 8. Flatten s as indicated in the same figure. In each tetrahedron,
assign an angle of � to the diagonal edges and an angle of 0 to the others. Use red to
color the 01 and 25 edges of each wi and w0i ; the edges s.bc/ and s.ad/; and the top
diagonal of w00 along with the bottom diagonal of wp. (These are exactly the edges
colored red in Figure 8.) Color the remaining edges blue. We claim this coloring forms
a veering angle structure on �p, which is also transverse taut.

By Observation 1, the edges in the equivalence class Œw00.01/� are exactly the edges
colored red. Thus, the blue edges compose the remaining equivalence classes, and the
colorings are consistent with the face pairings that form M .

Next we show that the assignment of angles forms a taut angle structure. The angle
assignments themselves guarantee conditions (1) and (2) of Definition 3.1 as well as
the requirement that taut angle structures have angles in f0; �g. Only diagonals are
assigned an angle of � , so, if there are exactly two diagonals in each equivalence class,
condition (3) will also be met (the angle sum around each edge is 2�).

The class Œw00.01/�, whose members are listed in Observation 1, contains exactly two
diagonals, w00.02/ and wp.02/. The degree 5 edges of Xp are completely described in
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Observation 2. The edges Œw00.05/� and Œw00.12/� each contain exactly two diagonals:
the top diagonal w1.15/ is matched with the bottom diagonal w0p�1.51/ and similarly
for w01.02/ and wp�1.20/ (or s.db/ and s.ac/ when pD 1, which completes this case).

To check the remaining 2p � 2 edges of Xp for p > 1, ie those of degree 4, we
examine wi�1.02/ and w0i�1.15/, the bottom diagonals of wi�1 and w0i�1 in the braid
complement in Figure 8. The edge wi�1.02/ bounds both wi�1.012/ and wi�1.025/.
After passing through the �1 half-twist, the first of these faces is rotated to the back
and identified with w0i .102/, whereas the second stays in front and is identified with
wi .125/. These faces share the edge 12, which, after another �1 is twisted to the back
and identified to w0iC1.02/. A similar argument applies to w0i�1.15/. Symbolically,

(2)
wi�1.02/� wi .12/D w

0
i .12/� w

0
iC1.02/ for i D 2; : : : ; p� 2;

w0i�1.15/� wi .05/D w
0
i .05/� wiC1.15/ for i D 1; : : : ; p� 1:

The only diagonals are the 02 and 15 edges, so the edge classes, Œwi .12/� and Œwi .05/�,
contain exactly two � angles as required. The remaining degree-4 edges contain
the diagonals of s, s.ac/ and s.bd/. The identifications in Table 5 show that their
equivalence classes contain exactly one other diagonal:

(3)
s.ac/� w01.21/D w1.21/� w

0
2.20/;

s.bd/� w0p�1.21/D wp�1.21/� wp�2.20/:

With exactly two diagonals in each equivalence class, the angle structure is taut. Each
tetrahedron appears as in Figure 9, and the gluings of Table 5 identify bottom faces to
top faces, so the “upward” orientations are consistent, forming a transverse taut angle
structure, which is also layered.

Corollary 4.2 The triangulation �p admits a positive angle structure.

Proof In their main result, [12, Theorem 1.5], Hodgson, Rubinstein, Segerman and
Tillmann prove that veering triangulations admit positive angle structures (which they
call strict angle structures). A constructive proof showing how to deform a veering
angle structure to a positive angle structure has also been given by Futer and Guéritaud
[6, Theorem 1.3].

4.2 Coordinates for the space of positive angle structures

The veering structure on �p allows us to introduce convenient coordinates for a point �
in A.�p/. For T in �p, let �DT denote the angle assigned to the diagonals of T , �RT
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the angle assigned to the red edges, and �BT to the blue edges. Thus, we can write
� 2A.�p/� .0; �/3.2pC1/ as

.�Rw
0
0; �Bw

0
0; �Dw

0
0; : : : ; �Rw

0
p�1; �Bw

0
p�1; �Dw

0
p�1;

�Rw1; �Bw1; �Dw1; : : : ; �Rwp; �Bwp; �Dwp; �Rs; �Bs; �Ds/:

Observation 4 Using this notation , the edge identifications in Observations 1 and 2 and
equations (2) and (3) together with condition (3) of Definition 3.1 yield the following
edge equations:� p�1X
iD0

2�Rw
0
i

�
C

� pX
iD1

2�Rwi

�
C2�RsC�Dw

0
0C�Dwp D 2�;

�Bw
0
0C�Dw1C�BsC�Dw

0
p�1C�Bwp D 2�;

�Bw
0
0C�Dw

0
1C�BsC�Dwp�1C�Bwp D 2�;

�Dwi�1C�BwiC�Bw
0
iC�Dw

0
iC1 D 2� for i D 2; : : : ; p�2;

�Dw
0
i�1C�BwiC�Bw

0
iC�DwiC1 D 2� for i D 1; : : : ; p�1;

�DsC�Bw
0
1C�Bw1C�Dw

0
2 D 2�;

�DsC�Bw
0
p�1C�Bwp�1C�Dwp�2 D 2�:

These equations hold for p > 1 as long as each term is defined. (Recall that there are
no tetrahedra labeled w0 or w0p.)

The first two equations also hold when p D 1, and , after substituting s.db/ and s.ac/
for the undefined terms w01.02/ and wp�1.20/ as in Observation 2, so does the third :

�Bw
0
0C �DsC �BsC �DsC �Bw1 D 2�:

Observation 5 Several pairs of edge equations above share angles coming from the
blue edges. These angles will cancel when one equation is subtracted from the other ,
yielding the following equalities for the diagonals:

�Dw1� �Dw
0
1 D �Dw3� �Dw

0
3 D �Dw5� �Dw

0
5 D � � � ;

�Dw2� �Dw
0
2 D �Dw4� �Dw

0
4 D �Dw6� �Dw

0
6 D � � � :

In addition ,
�Dwp�2� �Dw

0
p�2 D �Dwp � �Ds;

�Ds� �Dw
0
0 D �Dw2� �Dw

0
2;

�Dwp�1� �Dw
0
p�1 D �Dw1� �Dw

0
1:
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These equations hold when p > 1 and each term is defined. The final equation , which
is derived by taking the difference between the equations for the degree-5 edges implies
that , if p is odd (so p� 1 is even), then all of the differences listed above are equal. If
p is even , all differences , �Dwj � �Dw0j , with j even are also equal to �Ds � �Dw00
and �Dwp � �Ds, but not necessarily to �Dw1� �Dw01, etc.

The corresponding equation for p D 1 is

�Ds� �Dw
0
0 D �Dw1� �Ds:

4.3 A symmetry of the space of angle structures

Consider the closure of C 2�p1 �
�1
2 as shown on the right of Figure 2. Moving the

lone half-twist up so that it occurs halfway along the �1 half-twists reveals an order 2
symmetry of Xp — rotate about a horizontal line through the lone half-twist. This
involution induces a symmetry on the triangulation �p — rotate the tetrahedra in Figure 8
about a horizontal line and take s to itself. This symmetry will respect angle structures:

Proposition 4.3 An involution � W�p!�p that fixes s and takesw0i towp�i by matching
up their R, B , and D edges induces a symmetry of A.�p/.

Proof Let � 2A.�p/. According to Definition 3.4, to verify that �� is also in A.�p/,
we need to check that the sum of the dihedral angles at each edge of of Xp is 2� , when
the angle measure is given by �� . Thus, it is enough to verify that �� satisfies the edge
equations listed in Observation 4 where

��?s D �?s; ��?w
0
i D �?wp�i ; ��?wi D �?w

0
p�i

for ?DR;B , and D.

The first equation describes the angle sum around the red edge of Xp, which consists
of all R edges and the red diagonals of w00 and wp. The involution � permutes these
edges, thereby permuting the terms of the sum:� p�1X
iD0

2��Rw
0
i

�
C

� pX
iD1

2��Rwi

�
C 2��RsC ��Dw

0
0C ��Dwp

D

� pX
iD1

2�Rwi

�
C

� p�1X
iD0

2�Rw
0
i

�
C 2�RsC �DwpC �Dw

0
0

D 2�;
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so the first edge equation is satisfied by �� . The terms in the next two sums, those for
the degree-5 edges, are also permuted by �, so those equations are satisfied by �� as
well.

Something a little different happens with the degree-4 edges (only present when p > 1).
To confirm the final equation of Observation 4, for example, we need to examine

��DsC ��Bw
0
p�1C ��Bwp�1C ��Dwp�2;

but this sum is just
�DsC �Bw1C �Bw

0
1C �Dw

0
2;

which equals 2� by the penultimate equation in Observation 4. In this instance, the
involution takes the terms in one sum to the terms in another, effectively permuting the
edge equations themselves. The same happens for the remaining degree-4 equations.

Corollary 4.4 Let � W �p! �p be as in Proposition 4.3 and let k be such that p D 2k
if p is even and p D 2kC 1 if p is odd. Positive angle structures � 2A.�p/ with the
property that �� D � have w0i Š� wp�i and thus satisfy a simpler list of edge equations:� pX

iD1

4�Rwi

�
C 2�RsC 2�Dwp D 2�;(4)

2�BwpC 2�Dw1C �Bs D 2�;(5)

2�BwpC 2�Dwp�1C �Bs D 2�;(6)

�Dwi�1C �Bwi C �Bwp�i C �Dwp�.iC1/ D 2� for i D 2; : : : ; k;(7)

�Dwp�.i�1/C �Bwi C �Bwp�i C �DwiC1 D 2� for i D 1; : : : ; k;(8)

�DsC �Bwp�1C �Bw1C �Dwp�2 D 2�:(9)

In addition ,

(10) �Dwp D �Ds and �Dwi D �Dwp�i for i D 1; : : : ; k:

These equations hold for all p � 1, with one exception. When p D 1, (6) reads:
2�Bw1C 2�DsC �Bs D 2�:

Proof By assumption, ��?w0i D �?w
0
i for ?DR;B , and D, and, by definition, ��?w0i

also equals �?wp�i , so �?w0i D �?wp�i , and the tetrahedra w0i and wp�i have the same
angle assignments under � , so w0i Š� wp�i . This isometry allows us to obtain (4)–(9),
by replacing w0i with wp�i in the edge equations of Observation 4 and eliminating
redundancies.
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To obtain (10) for p D 1, replace w00 with w1 in the p D 1 equation of Observation 5,
which shows

�Ds� �Dw1 D �Dw1� �Ds;

so �Dw1 D �Ds. If p > 1, (5) and (6) imply that �Dw1 equals �Dwp�1, which,
because of the isometry, equals �Dw01, so the difference �Dw1� �Dw01 equals 0 as do
all odd-index differences listed in Observation 5. Replacing w0i with wp�i yields (10)
for odd i . The remaining equations are derived differently depending on the parity
of p. As noted in Observation 5, when p is odd, all differences are equal (in this case,
equal to 0), so, after replacing w0i with wp�i , (10) holds for all i when p is odd. To
see that (10) also holds when p and i are even, note that

�Dwp � �Ds D �Dw2� �Dw
0
2 D �Dwp�2� �Dw

0
p�2 D �Ds� �Dw

0
0 D �Ds� �Dwp

so �Ds D �Dwp . Thus, all differences in Observation 5 with even index are also 0 and
replacing w0i with wp�i results in (10).

5 The maximal volume occurs at a positive angle structure

Corollary 4.2 shows that the space of positive angle structures on each triangulation �p
is nonempty, so we have accomplished the first step of the Casson–Rivin program
described by Futer and Guéritaud in [5] and summarized in Section 3.3. In this section,
we complete the program, proving the main result.

Theorem 5.1 Let Lp be the closure of the 3–braid C 2�p1 �
�1
2 and Xp be its comple-

ment in the 3–sphere. Then there is an ideal triangulation of Xp that is geometric.

Proof Let �p be the triangulation defined in Section 2.4. By Corollary 4.2, A.�p/¤∅,
which means the volume functional V attains its maximum on the compact set A.�p/,
say at the point ˛. A maximal point has two important properties. The first was proved
in Lemma 3.2.

Property 1 If ˛ is maximal and assigns an angle in f0; �g to a tetrahedron , then the
tetrahedron must be flat , ie its angles are 0, 0, and � in some order.

The second important property derives from a symmetry of the coordinates of a maximal
point. Let the involution � W �p! �p be as in Proposition 4.3, so � fixes s and takes w0i
to wp�i . Then � induces a symmetry on A.�p/, which rearranges the coordinates of an
angle structure tetrahedron by tetrahedron, so, just as in Observation 3, V.�˛/D V.˛/.
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Thus, if ˛ is maximal, so is �˛, but maximal points are unique by Proposition 3.1, so
�˛ D ˛, and Corollary 4.4 together with Definition 3.1 guarantee the following:

Property 2 If ˛ is maximal , then the angles assigned by ˛ belong to Œ0; ��, sum to �
within a tetrahedron , and are determined by the angles assigned to w1; w2; : : : ; wp
and s, which must satisfy (4)–(10).

Our goal is to use these properties to show that the maximal point, ˛, is in A.�p/,
not its boundary. Then we can apply the Casson–Rivin theorem from Section 3.3 [5,
Theorem 1.2] and conclude that ˛ corresponds to the complete hyperbolic structure
on Xp, thus proving Theorem 5.1. We will show that ˛ is in A.�p/ by showing that
points in B DA.�p/�A.�p/ will never maximize the volume. We do so by proving
the following:

Proposition 5.2 Any ˇ 2 B satisfying Properties 1 and 2 must have V.ˇ/D 0.

Proof Let ˇ 2 B satisfy both Properties 1 and 2. Because ˇ is in the boundary of the
space of positive angle structures, there is a tetrahedron in �p to which ˇ assigns angles
from the set f0; �g. By Property 1, this tetrahedron is flat (has angles 0, 0, and �).
Using Property 2, we can conclude that ˇ must assign � to at least one of the edges
of w1; w2; : : : ; wp or s. We now explore which edges can have such assignments and
determine the resulting volume.

Observe that, because all angle assignments are nonnegative, assigning an angle measure
of � to any R edge of a w tetrahedron violates (4) of Corollary 4.4 and thus Property 2.
Therefore, no ˇRwi can equal � . We will use this result often, so we record it as a
lemma and follow with another useful lemma.

Lemma 5.3 If ˇ 2 B satisfies both Properties 1 and 2, ˇRwi cannot equal � for
i D 1; : : : ; p.

Lemma 5.4 If ˇ 2 B satisfies both Properties 1 and 2, and either wp or s is flat , then
all tetrahedra are flat , so V.ˇ/D 0.

Proof If a tetrahedron is flat, one of its edges is assigned an angle of � . By Lemma 5.3,
ˇRwp cannot equal � . However, ˇRs could equal � , and, if this is the case, (4) forces
ˇRwi to equal 0 for all i D 1; : : : ; p, so, by Property 1, the non-s tetrahedra are also
flat. Because, ˇDwp also appears in (4), a similar argument shows that if ˇDwp D � ,
all tetrahedra are flat. By (10), ˇDwp D ˇDs, so the same holds if ˇDs D � . Thus, it
only remains to check what happens if the angle at a B edge of wp or s equals � .

Algebraic & Geometric Topology, Volume 23 (2023)



Geometric triangulations of a family of hyperbolic 3–braids 4339

� If ˇBwp D � , (5) implies that ˇBs D 0, so, by Property 1, there is a � angle at
either the R or D edge of s, and, in either case, as observed above, all tetrahedra
are flat.

� If ˇBs D � , then ˇDs D 0, so ˇDwp also equals 0— see (10) — and, by
Property 1, either ˇRwp or ˇBwp equals � . Because of Lemma 5.3, ˇBwp must
be � , so, by the previous case, all tetrahedra are flat.

Therefore, if either wp or s has an assigned angle of � , V.ˇ/D 0.

Returning to the proof of Proposition 5.2, recall that ˇ 2 B must assign � to at least
one of the edges of w1; w2; : : : ; wp or s. Lemmas 5.3 and 5.4 cover the R edges and
the tetrahedra wp and s, so the only edges left to consider are the B and D edges
of w1; w2; : : : ; wp�1. We start with the B edges and first examine the case when
ˇBw1 D � .

If ˇBw1D� , then ˇDw1 equals 0 and, by (10) with iD1, so does ˇDwp�1. Property 1
implies that in wp�1 one of the other angles must be � , but, because of Lemma 5.3, it
cannot be the angle at the R edge. Consequently, ˇBwp�1 equals � and (9) implies
ˇDs must equal 0, so s is flat and, by Lemma 5.4, V.ˇ/D 0.

Having shown that if ˇ assigns the angle � to a B edge of w1, then V.ˇ/ D 0, we
now consider the B edges of wj with 1 < j � k. By repeatedly applying (10) and (7)
together with Property 1 and Lemma 5.3, we will push the flatness of wj all the way
down to w1, allowing us to once again conclude V.ˇ/D 0. In particular, if ˇBwj D � ,
then ˇDwj equals 0 and, by (10) with i D j , so does ˇDwp�j . There is a � angle
in wp�j (Property 1) and it cannot occur at the R edge (Lemma 5.3), so ˇBwp�j ,
will equal � . With both ˇBwj and ˇBwp�j equal to � , (7) with i D j implies that
ˇDwj�1 D 0, so, by (10) with i D j � 1, ˇDwp�.j�1/ D 0 also. Another application
of Property 1 and Lemma 5.3 shows both ˇBwj�1 and ˇBwp�.j�1/ are equal to �
and we can apply (7) with i D j � 1 to conclude ˇDwj�2 D 0. Continuing in this
manner and eventually applying (7) with i D 2 when both ˇBw2 and ˇBwp�2 are
equal to � , allows us to conclude that ˇDw1D 0. Thus (by Property 1 and Lemma 5.3),
ˇBw1 D � , so V.ˇ/D 0.

It remains to examine the B edges of wj where j > k. If ˇBwj equals � , then
ˇDwj D 0, so applying (10) with i D p� j , Property 1, and Lemma 5.3 shows that
ˇBwp�j D � . Because p� j � k, this case has already been covered. Therefore, if
any of the B edges of w1; w2; : : : ; wp�1 have angle equal to � , then V.ˇ/D 0.
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The proof for the D edges is a little simpler, because there is no need to appeal to
Lemma 5.3. If ˇDw1 D � , then, by (10) with i D 1, ˇDwp�1 D � , so both ˇBw1
and ˇBwp�1 are equal to 0. In this situation, applying (9) yields ˇDs D � , so s is
flat and, by Lemma 5.4, V.ˇ/D 0. If j � k and ˇDwj equals � , then, by (10) with
i D j , so does ˇDwp�j , and both ˇB.wj / and ˇB.wp�j / equal 0, so (7) with i D j
implies ˇDwj�1 D � . Continuing in this manner shows that if ˇDwj equals � , so
does ˇDw1, and thus V.ˇ/D 0. If j > k and ˇDwj D� , then, by (10) with i D p� j ,
ˇDwp�j D � with p� j � k, a previous case.

Any point maximizing the volume functional must satisfy Properties 1 and 2. By
proving Proposition 5.2, we have shown that any point, ˇ, on the boundary of A.�p/
satisfying these properties has V.ˇ/D 0. Therefore, the maximal point ˛ must be on the
interior of A.�p/, and, by the Casson–Rivin theorem (Section 3.3 and [5, Theorem 1.2]),
˛ corresponds to the complete hyperbolic structure on Xp. Thus, the triangulation �p
is geometric, which concludes the proof of Theorem 5.1.

Corollary 5.5 In the braid group , C 2�p1 �
�1
2 is not conjugate to �p0

1 �
q0

2 for integers
p0 and q0.

Proof Closures of braids of the form �
p0

1 �
q0

2 are not hyperbolic, but Theorem 5.1
shows that the closure of C 2�p1 �

�1
2 is.

Corollary 5.6 The complements of the .�2; 3; n/–pretzel knots and links admit geo-
metric triangulations for n� 7.

Proof Recall that the braid group has the single relation �1�2�1D �2�1�2 and that C ,
which is this element’s square, is central. Conjugate words in the braid group yield
equivalent braid closures, so, using the relation and the centrality of C , Lp , the closure
of C 2�p1 �

�1
2 with p � 1, is also the closure of

.�2�1�2/.�1�2�1/C�
p
1 �
�1
2 � �2�1�2C�

pC2
1

D �1�2C�
pC3
1

� �2.�1�2�1/.�1�2�1/�
pC4
1

D �1�2�1�1�1�2�
pC5
1

� �31�2�
pC6
1 �2I

here � denotes the equivalence relation of conjugacy.
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pC 6

�

Figure 10: The .�.pC6/; 2;�3/–pretzel is also the closure of the braid
�31�2�

pC6
1 �2. Start at the dashed line and read the braid counterclockwise

(strands numbered from the outside in).

As indicated in Figure 10, the closure of �31�2�
pC6
1 �2 is a pretzel. Using our definitions,

�1 and �2 generate left-handed (negative) twists, so Lp is a pretzel with �.pC 6/, 2,
and �3 half-twists, or equivalently — after rolling the pC 6 half-twists to the right —
Lp is the .2;�3;�.pC6//–pretzel, and Xp is its complement. By Theorem 5.1, Xp
admits a geometric triangulation. But the complement of the .�2; 3; pC6/–pretzel is
homeomorphic (via a reflection) to Xp, so it also has a geometric triangulation.

The braid relation �1�2�1 D �2�1�2 and the centrality of C D .�1�2/3 can also be
used to show that Lp is equivalent to the braid closure of �pC11 .�1�2/

5:

C 2�
p
1 �
�1
2 D �

p
1 .�1�2/

6��12 D �
p
1 .�1�2/

5�1 � �
pC1
1 .�1�2/

5:

In this form, Lp is a T–link as defined by Birman and Kofman in [2], where they show
that T–links are in one-to-one correspondence with Lorenz links.

Corollary 5.7 The complements of the T–links/Lorenz links formed as closures of the
braids �pC11 .�1�2/

5 admit geometric triangulations for p > 1.

6 Extending the construction

Having constructed geometric triangulations for the braid closure of C 2�p1 �
�1
2 , it is

natural to ask whether this construction can be extended to cover more cases. For
example, hyperbolic T–links on three strands must be equivalent to closures of braids
of the form C k�

p
1 �
�1
2 with p > 0 and k � 2, so adding more full twists to the

construction would provide triangulations of all possible hyperbolic T–links on three
strands. However, a useful combinatorial triangulation is not obvious.
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Another possible extension would be to add more ��12 half-twists. The construction
of O�p in Section 2.4 can be extended, without difficulty, to C 2�p1 �

�q
2 for all q > 0,

and, in each case, there is also a sequence of Pachner moves that results in a veering
triangulation. Thus, the first step of the Casson–Rivin program can be carried out.
However, the final push for geometricity (the analog of Proposition 5.2) would require
additional arguments. After completing C 2�p1 �

�q
2 , it may be possible to further extend

the construction to C 2�p1

1 �
�q1

2 � � � �
ps

1 �
�qs

2 , moving closer to the general form in
the Futer–Kalfagianni–Purcell characterization of hyperbolic 3–braids [7] stated in
Section 1.

Appendix Visualizing triangulations of 2–bridge link
complements

Sakuma and Weeks constructed topological triangulations of 2–bridge link complements
in [19], which Futer showed were geometric [9, Appendix A]. Futer’s approach follows
that of Guéritaud, whose development of geometric triangulations of once-punctured
torus bundles and 4–punctured sphere bundles forms the bulk of [9]. This appendix
presents another way to visualize the triangulations of 2–bridge link complements.

Futer’s description of these triangulations is based on the fact that, with the exception of
the unknot and the trivial link with two components, 2–bridge links can be constructed
from certain 4–braids whose ends are connected. More specifically, these 4–braids
run between nested pillowcases; are formed by a sequence of R and L moves on the
strands; and are closed off by adding crossing strands inside the inner pillowcase and
outside the outer one. Please see [9, Appendix A] for the details and a very clear
exposition.

As Futer mentions, his 2–bridge link diagrams can be isotoped so the pillowcases are
horizontal; that is, they are perpendicular to the plane of the page and contain the point
at infinity. The result is a diagram in which the braid strands run vertically between the
bounding pillowcases, constrained to the plane of the page, except near the crossings.
See Figure 11 for a comparison of the defining R and L moves that occur between two
pillowcases.

Just as in Futer [9, Appendix A], the 4–braid lives in a product region, S2 � I , and its
complement in the region is also a product, S � I , where S is a 4–punctured sphere.
As an example (left side of [9, Figure 18]), Futer uses the 2–bridge link K.�/ where

Algebraic & Geometric Topology, Volume 23 (2023)



Geometric triangulations of a family of hyperbolic 3–braids 4343

L L

R R

Figure 11: The actions of R and of L on strands between pillowcases. The
left side is [9, Figure 14]. The right side is a version with vertical strands.

� D R3L2R, so we will too. The left side of Figure 12 shows how to visualize
K.�/— the thickened curves — in a vertical product region. (The thinner curves will
be explained later as will the right side.)

Following Futer’s techniques, we triangulate the product region using a sequence of
layers of ideal tetrahedra where the top of one layer is identified to the bottom of the
next. Adopting his notation, the layers in Figure 12 are labeled �i and they each
contain ideal tetrahedra Ti and T 0i . The layer �i is bounded by 4–punctured spheres,
below by Si and above by SiC1, with SiC1 in�i identified to SiC1 in�iC1 by passing
through a half-twist. Numbering the punctures 0–3 will help in describing the resulting
face pairings.

The right side of Figure 12 shows the tetrahedra forming the complement of K.�/.
These tetrahedra also appear in the left side of the figure. The thin curves are their
edges. To see how this works, examine the bottom layer, redrawn in Figure 13. The
first diagram of Figure 13 (in the top left) shows an expanded version of the tetrahedra
that compose �1, one in which there are two copies of each edge in the plane of the
page. This expansion makes it easier to see the triangles in the bounding punctured
spheres, S1 and S2, and how these triangles — faces of the tetrahedra T1 and T 01 —
live in the link complement. The coloring indicates how the triangles in the lower S2
pillowcase are identified to those in the upper one after passing through the R half-twist
(our version of [9, Figure 15]):

� 4013 in the front (blue) is half twisted to 4023 in the front;

� 4123 in the front (green) is half twisted to 4213 in the back;
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S6

S5

S5

S4

S4

S3

S3

S2

S2

S1

R

L

L

R

R

R

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

1 2 0 3

0 3 1 2

1 2 0 3

0 3 1 2

1 2 0 3

0 3 1 2

1 2 0 3

0 3 1 2

1 2 0 3

0 3 1 2

�5 D

�4 D

�3 D

�2 D

�1 D

T5 T 05

T4 T 04

T3 T 03

T2 T 02

T1 T 01

Figure 12: The link K.�/ where �DR3L2R. Compare the left side to the
left side of [9, Figure 18]. This is also similar to the top of [19, Figure II.3.3].

� 4023 in the back (orange) is half twisted to 4013 in the back; and

� 4012 in the back (pink) is half twisted to 4021 in the front.

The face pairings defined by passing through the L half-twist can be determined in the
same manner, using, for example, the pillowcase S4 in Figure 12.

The second diagram in Figure 13 shows a collapsed version of �1, one consisting of
two tetrahedra identified along the edges 01, 12, 23, and 30, which contains the point at
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S2

S2

S1

�1

R

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 3

1 2

0 3

T 01

T1

T 01

T1

T 01

T1

Figure 13: The layer �1. Compare the first figure to [9, Figure 15] and the
last figure to [9, Figure 16].

infinity. T1 is in front of the page with faces 013 and 123 on top. T 01 is behind the page
with faces 012 and 023 on top. The next two diagrams also show T1 and T 01, using
arrows to indicate edge identifications. The last one is our version of the two tetrahedra
in [9, Figure 16], which can be separated to form the pair of tetrahedra on the bottom
right in Figure 12.

In each layer, the expanded version of the pair of tetrahedra on the left of Figure 12
can be similarly associated with the flattened versions on the right. Thus, the tetrahedra
that triangulate the product region appear in our visualization and the half-twists show
how to obtain the face pairings between them.

All that remains to specify a triangulation of the link complement is to show how to
close off the top and bottom. This amounts to saying how the triangles in the bounding
pillowcases are identified to themselves to form clasps: If � starts with R, identify
bottom layer triangles 4012�4013 and 4023�4123. If � starts with L, identify
bottom layer triangles 4012 � 4312 and 4023 � 4013. The top layer triangles
are identified in the same way. For example, if � ends with R, 4012 � 4013 and
4023�4123.
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S1
0 1 2 3

0 1 2 3

1 2

0 3

0 1 2 3

1

0

0 1 2 3

Figure 14: Forming a clasp. Compare to [9, Figure 17; 19, Figure II.2.7].

It should not be surprising that these identifications yield diagrams looking very much
like [9, Figure 17; 19, Figure II.2.7]. For example, the steps forming the bottom clasp
of K.�/, where �D R3L2R, are shown in Figure 14. While making the specified
identifications, we can follow the punctures (their paths are drawn as strands) and
see that they sweep out a clasp. Folding S1 down along the 12 edge forms a pillow.
Bringing the 2 and 3 strands together identifies the gray triangles, 4012 and 4013.
Placing this triangle in the plane of the page means the blue 23 edge forms a belt around
a new pillow with half in the front, like the 2 strand, and half behind as the 3 strand is.
The top of the pillow is a cone formed by 4123 and the bottom by 4023, the white
triangles with the cyan markings. Pushing the 1 and 0 strands into the pillow flattens
the cones and identifies 4123 to 4023, thus completing the identifications.

Because the strands form a clasp, identifying S1 to itself in such a way is equivalent
to attaching a 3–ball with the needed clasp removed. Doing the same at the top results
in a triangulation of the 2–bridge link complement. This triangulation is the same as
Sakuma and Weeks’ as described by Futer and is one in which the faces of the tetrahedra
are easy to see in the braid diagram, as are the face pairings induced by the half-twists.
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