Download this article
 Download this article For screen
For printing
Recent Issues

Volume 25
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
A connection between cut locus, Thom space and Morse–Bott functions

Somnath Basu and Sachchidanand Prasad

Algebraic & Geometric Topology 23 (2023) 4185–4233
Bibliography
1 A Banyaga, D Hurtubise, Lectures on Morse homology, 29, Kluwer Academic (2004) MR2145196
2 M G Barratt, J Milnor, An example of anomalous singular homology, Proc. Amer. Math. Soc. 13 (1962) 293 MR0137110
3 R L Bishop, R J Crittenden, Geometry of manifolds, XV, Academic (1964) MR169148
4 M A Buchner, Simplicial structure of the real analytic cut locus, Proc. Amer. Math. Soc. 64 (1977) 118 MR0474133
5 H Busemann, The geometry of geodesics, Academic (1955) MR0075623
6 A Daniilidis, R Deville, E Durand-Cartagena, L Rifford, Self-contracted curves in Riemannian manifolds, J. Math. Anal. Appl. 457 (2018) 1333 MR3705356
7 H Gluck, D Singer, Scattering of geodesic fields, I, Ann. of Math. 108 (1978) 347 MR0506991
8 A Gray, Tubes, 221, Birkhäuser (2004) MR2024928
9 J J Hebda, The local homology of cut loci in Riemannian manifolds, Tohoku Math. J. 35 (1983) 45 MR0695658
10 J J Hebda, Cut loci of submanifolds in space forms and in the geometries of Möbius and Lie, Geom. Dedicata 55 (1995) 75 MR1326741
11 N J Higham, Functions of matrices: theory and computation, Society for Industrial and Applied Mathematics (2008) MR2396439
12 M W Hirsch, Differential topology, 33, Springer (1994) MR1336822
13 J i Itoh, S V Sabau, Riemannian and Finslerian spheres with fractal cut loci, Differential Geom. Appl. 49 (2016) 43 MR3573823
14 J i Itoh, C Vîlcu, Orientable cut locus structures on graphs, preprint (2011) arXiv:1103.3136
15 J i Itoh, C Vîlcu, Every graph is a cut locus, J. Math. Soc. Japan 67 (2015) 1227 MR3376586
16 S Kobayashi, On conjugate and cut loci, from: "Studies in global geometry and analysis", Math. Assoc. America (1967) 96 MR0212737
17 Y Li, L Nirenberg, The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton–Jacobi equations, Comm. Pure Appl. Math. 58 (2005) 85 MR2094267
18 C Mantegazza, A C Mennucci, Hamilton–Jacobi equations and distance functions on Riemannian manifolds, Appl. Math. Optim. 47 (2003) 1 MR1941909
19 R J Martin, P Neff, Minimal geodesics on GL(n) for left-invariant, right-O(n)–invariant Riemannian metrics, J. Geom. Mech. 8 (2016) 323 MR3562278
20 S B Myers, Connections between differential geometry and topology, I : Simply connected surfaces, Duke Math. J. 1 (1935) 376 MR1545884
21 H Omori, A class of Riemannian metrics on a manifold, J. Differential Geometry 2 (1968) 233 MR0239625
22 S Plotnick, Embedding homology 3–spheres in S5, Pacific J. Math. 101 (1982) 147 MR0671847
23 H Poincaré, Sur les lignes géodésiques des surfaces convexes, Trans. Amer. Math. Soc. 6 (1905) 237 MR1500710
24 M M Postnikov, Geometry, VI : Riemannian geometry, 91, Springer (2001) MR1824853
25 S V Sabau, M Tanaka, The cut locus and distance function from a closed subset of a Finsler manifold, Houston J. Math. 42 (2016) 1157 MR3609822
26 T Sakai, Riemannian geometry, 149, Amer. Math. Soc. (1996) MR1390760
27 V A Sharafutdinov, Complete open manifolds of nonnegative curvature, Sibirsk. Mat. Zh. 15 (1974) 126 MR343208
28 H Singh, On the cut locus and the focal locus of a submanifold in a Riemannian manifold, II, Publ. Inst. Math. (Beograd) 41(55) (1987) 119 MR0919565
29 F E Wolter, Distance function and cut loci on a complete Riemannian manifold, Arch. Math. (Basel) 32 (1979) 92 MR0532854
30 V A Yakubovich, V M Starzhinskii, Linear differential equations with periodic coefficients, Halsted (1975) MR0364740