Download this article
 Download this article For screen
For printing
Recent Issues

Volume 24
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Staircase symmetries in Hirzebruch surfaces

Nicki Magill and Dusa McDuff

Algebraic & Geometric Topology 23 (2023) 4235–4307
Bibliography
1 M Bertozzi, T S Holm, E Maw, D McDuff, G T Mwakyoma, A R Pires, M Weiler, Infinite staircases for Hirzebruch surfaces, from: "Research directions in symplectic and contact geometry and topology" (editors B Acu, C Cannizzo, D McDuff, Z Myer, Y Pan, L Traynor), Assoc. Women Math. Ser. 27, Springer (2021) 47 MR4417715
2 R Casals, R Vianna, Full ellipsoid embeddings and toric mutations, Selecta Math. 28 (2022) MR4414137
3 D Cristofaro-Gardiner, T S Holm, A Mandini, A R Pires, On infinite staircases in toric symplectic four-manifolds, preprint (2020) arXiv:2004.13062
4 D Frenkel, D Müller, Symplectic embeddings of 4–dim ellipsoids into cubes, J. Symplectic Geom. 13 (2015) 765 MR3480057
5 N Magill, D McDuff, M Weiler, Staircase patterns in Hirzebruch surfaces, preprint (2022) arXiv:2203.06453
6 D McDuff, F Schlenk, The embedding capacity of 4–dimensional symplectic ellipsoids, Ann. of Math. 175 (2012) 1191 MR2912705
7 M Usher, Infinite staircases in the symplectic embedding problem for four-dimensional ellipsoids into polydisks, Algebr. Geom. Topol. 19 (2019) 1935 MR3995022