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Realization of Lie algebras and classifying spaces of crossed modules

YVES FÉLIX

DANIEL TANRÉ

The category of complete differential graded Lie algebras provides nice algebraic models for the rational
homotopy types of nonsimply connected spaces. In particular, there is a realization functor, h�i, of any
complete differential graded Lie algebra as a simplicial set. In a previous article, we considered the
particular case of a complete graded Lie algebra, L0, concentrated in degree 0 and proved that hL0i is
isomorphic to the usual bar construction on the Maltsev group associated to L0.

Here we consider the case of a complete differential graded Lie algebra, LDL0˚L1, concentrated in
degrees 0 and 1. We establish that the category of such two-stage Lie algebras is equivalent to explicit
subcategories of crossed modules and Lie algebra crossed modules, extending the equivalence between
pronilpotent Lie algebras and Maltsev groups. In particular, there is a crossed module C.L/ associated
to L. We prove that C.L/ is isomorphic to the Whitehead crossed module associated to the simplicial
pair .hLi; hL0i/. Our main result is the identification of hLi with the classifying space of C.L/.

17B55, 55P62; 55U10

Introduction

In this text, we pursue the study of the rational homotopy type of spaces with models in the category cdgl
of complete differential graded Lie algebras, as developed by the authors with Buijs and Murillo [4]. We
emphasize that in this approach, there are no requirements concerning simple connectivity or nilpotency.
In particular, to any finite simplicial complex is associated a cdgl MX whose homology in degree 0 is the
Maltsev completion of �1.X / [4, Theorem 10.5].

One of the main tools in this theory is a cosimplicial cdgl L�D fLngn�0, where L0 is the free Lie algebra
on a Maurer–Cartan element in degree �1, and L1 is the Lawrence–Sullivan interval (see below for more
details). This cosimplicial cdgl plays a role similar to the simplicial algebra of PL–forms on��. It enables
us to construct a realization functor from the category of complete differential graded Lie algebras to the
category of simplicial sets, h�iW cdgl! Sset, defined by

hLi� WD Homcdgl.L�;L/:

If a Lie algebra L is concentrated in degree 0, we proved in [6, Theorem 0.1] that its realization hLi
is isomorphic to the usual bar construction on the group exp L, constructed on the set L with the
Baker–Campbell–Hausdorff product.
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142 Yves Félix and Daniel Tanré

Here we consider the next step: L is a connected cdgl with nontrivial homology only in degrees 0 and 1.
Geometrically, this corresponds to the notion of homotopy 2–types and, by analogy, a connected cdgl
L such that H�L D H0L˚H1L is called a 2–type cdgl. First of all, if L D L�0 and H�2L D 0,
then the Lie subalgebra I D L�2˚ dL2 is an ideal because if a 2 L0 and b 2 L2, then da D 0 and
Œa; d.b/�D d Œa; b�. Moreover I is acyclic, and the quotient map is a quasi-isomorphism,

' W .L; d/ '�! .L=I; Nd/:

Since the realization functor h�i preserves quasi-isomorphisms of connected cdgls [4, Corollary 8.2 and
Remark 8.6], we get a weak homotopy equivalence

h'iW hL; di '�! hL=I; Ndi:

We have thus reduced the problem to considering only cdgls L of the form LDL0˚L1 and denote by
cdgl�1 the corresponding subcategory of cdgl. We associate to such L a natural crossed module C.L/

and denote by CrMod the category of crossed modules. Our main result, which extends [6, Theorem 0.1],
can be formulated as follows.

Theorem 1 If L is a complete differential graded Lie algebra such that LDL0˚L1, then its geometric
realization hLi is naturally isomorphic to the classifying simplicial set BC.L/; ie the diagram

cdgl�1

h�i
//

C
��

Sset

CrMod
B

66

commutes up to natural isomorphisms.

This theorem shows that the functor h�i generalizes many classical constructions.

Geometrically, crossed modules appear in the work of Whitehead [14]. If .X;A/ is a pair of topological
spaces, based in A, Whitehead proved that the boundary map d W �2.X;A/! �1.A/, together with the
action of �1.A/ on �2.X;A/, defines a crossed module. Then, in [11], Mac Lane and Whitehead showed
that the spaces X with �q.X /D 0, for q � 2, are determined by the crossed module of the pair .X;X1/,
where X1 is the 1–dimensional skeleton of X . For any cdgl LDL0˚L1, the geometric realization hLi
is determined by the crossed module associated to the pair .hLi; hL0i/. Our second main result identifies
this crossed module with C.L/.

Theorem 2 The Whitehead crossed module associated to the simplicial pair .hLi; hL0i/ is isomorphic
to the crossed module C.L/ introduced above.

In short, these two theorems unify the geometric realizations of complete differential graded Lie algebras of
the form LDL0˚L1 and of crossed modules. In the last section, we extend the correspondence between
Maltsev groups and pronilpotent Lie algebras to crossed modules. We introduce the categories of Maltsev
crossed modules and of pronilpotent Lie algebra crossed modules and prove an isomorphism of categories.
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Realization of Lie algebras and classifying spaces of crossed modules 143

Theorem 3 The following three categories are isomorphic:

(1) the category of pronilpotent differential graded Lie algebras of the form LDL0˚L1,

(2) the category of pronilpotent Lie algebra crossed modules ,

(3) the category of Maltsev crossed modules.

Moreover , the equivalence between (1) and (3) is given by the functor C.

As a next step for the future, we can consider a connected cdgl L such that H�nC1LD 0 for some n� 1.
Using the ideal J DL�nC1˚dLnC1, the same argument used above gives a weak homotopy equivalence

h'iW hL; di '�! hL=J; Ndi:

We conjecture that the differential d defines an n–cat-group structure on C.L/— in the sense of Loday
in [10] — and that the geometric realization hL=J; Ndi is isomorphic to the realization of this n–cat-group.

Our program is carried out in Sections 1–7 below, whose headings are self-explanatory.

Conventions and notation

In a graded Lie algebra L, the group of elements of degree i is denoted by Li . A Lie algebra differential
decreases the degree by 1, ie dLi �Li�1. If x 2L, we denote by adx the Lie derivation of L defined by
adx.y/D Œx;y�.

If there is no ambiguity, the product of two elements m and m0 of a group M is denoted by mm0.
Sometimes, if several laws are involved, we can use some specific notation, such as m?m0 or m�m0,
to avoid confusion. An action of a group N on a group M is always a left action and is denoted by
.n;m/ 7! nm. We denote then by M Ì N the semidirect product whose multiplication law is defined by

.m; n/.m0; n0/D .m nm0; nn0/:
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1 Background on Lie models

A complete differential graded Lie algebra (henceforth cdgl) is a differential graded Lie algebra L

equipped with a decreasing filtration of differential Lie ideals such that F1 DL, ŒFpL;FqL�� FpCqL

and
LD lim

 ��
n

L=FnL:

If no filtration is specified, it is understood that we consider the lower central series.

Algebraic & Geometric Topology, Volume 24 (2024)



144 Yves Félix and Daniel Tanré

Let V D
L

i2Z Vi be a rational graded vector space. We denote by L.V / the free graded Lie algebra
on V , and by L�n.V / the ideal of L.V / generated by the brackets of length greater than or equal to n.
The completion of L.V / is the inverse limit

yL.V /D lim
 ��

n

L.V /=L�n.V /:

This is a cdgl for the filtration given by the ideals GnDker.yL.V /!L.V /=L>n.V //. The correspondence
V !yL.V / gives a left adjoint to the forgetful functor to graded rational vector spaces [4, Proposition 3.10].
We call yL.V / the free complete graded Lie algebra on V .

If � is a derivation of degree 0 on a cgl L, the exponential map e� is a cgl automorphism of L defined by

e� D
X
i�0

� i

i !
:

In particular, for any x 2L0, eadx is a cgl automorphism of L. Therefore, in any cgl L, the Lie subalgebra
L0 admits a group structure whose multiplication law � is given by the Baker–Campbell–Hausdorff
product [1, Chapter II.6, Proposition 4; 13, Section 3.4] and characterized by

eadx�y D eadx ı eady :

Now we recall the first properties of the cosimplicial cdgl L� [4, Chapter 6]. Denote as usual by �n the
simplicial set in which�n

p is the set of .pC1/–tuples of integers .j0; : : : ; jp/ such that 0�j0�� � ��jp�n.
We also denote by �n the simplicial complex formed by the nonempty subsets of f0; : : : ; ng. The
subcomplex P�n of �n is the simplicial complex containing the proper nonempty subsets of f0; : : : ; ng.

Finally s�1C��
n denotes the desuspension of the simplicial chain complex on �n and s�1C��

n the
desuspension of the complex of simplicial chains on �n, which is isomorphic to s�1N��

n, the complex
of nondegenerate chains on �n. Then, as a graded Lie algebra (without differential), we set

Ln D
yL.s�1C��

n/:

In other words, Ln is the free complete graded Lie algebra on elements ai0:::ik
of degree jai0:::ik

j D k�1,
for all 0� i0 < � � �< ik � n. For instance, we have jai j D �1 and jai0i1

j D 0.

The family �� D f�ngn�0 is a cosimplicial object in the category of simplicial sets. It follows that
the family s�1N��

� is a cosimplicial object in the category of chain complexes. The identification
s�1C��

n Š s�1N��
n makes s�1C��

n a cosimplicial object in the category of chain complexes. The
extension of the cofaces and codegeneracies as morphisms of Lie algebras gives morphisms of complete
graded Lie algebras ıi W Ln! LnC1 and � i W Ln! Ln�1. More precisely,

ıi.aj0:::jp
/D ar0:::rp

with rk D

�
jk if jk < i;

jk C 1 if jk � i;

� i.aj0:::jp
/D ar0:::rp

with rk D

�
jk if jk � i;

jk � 1 if jk > i;

if r0 < � � �< rp. Otherwise, � i.aj0:::jp
/D 0.

Algebraic & Geometric Topology, Volume 24 (2024)



Realization of Lie algebras and classifying spaces of crossed modules 145

Proposition 1.1 [4, Theorem 6.1] Each Ln can be endowed with a differential d satisfying the following
properties.

(i) The linear part d1 of d is given by

d1ai0:::ip D

pX
jD0

.�1/j a
i0:::Oij :::p

:

(ii) The generators ai are Maurer–Cartan elements; ie dai D�1=2Œai ; ai �.

(iii) The cofaces ıi and the codegeneracies � i are cdgl morphisms.

(iv) For n� 2,
da0:::n D Œa0; a0:::n�Cˆ;

with ˆ 2 yL.s�1C� P�
n/.

Thus , in particular , the family L� is a cosimplicial cdgl.

Let us specify the cdgl Ln in low dimensions.

� L0 D .L.a0/; d/ is the free Lie algebra on a Maurer–Cartan element a0.

� L1 D .yL.a0; a1; a01/; d/ is the Lawrence–Sullivan interval — see [9] — with

da01 D Œa01; a1�C
ada01

eada01 � 1
.a1� a0/:

� L2D .yL.a0; a1; a2; a01; a02; a12; a012/; d/ is a model of the triangle — see [4, Proposition 5.14] —
with the differential

(1-1) d.a012/D a01 � a12 � a�1
02 � Œa0; a012�:

The cosimplicial cdgl L� leads naturally to the definition of cdgl models for any simplicial set and to a
geometric realization for any given cdgl; see [4, Chapter 7]. For our purpose, we only need the realization
of a cdgl L, defined as the simplicial set

hLi D Homcdgl.L�;L/;

which satisfies properties of the classical Quillen realization. For instance, for any n� 1, �nhLiDHn�1L,
where the group law of H0L is the BCH product; see [4, Section 4.2] or [1, Chapter II.6.4].

2 Crossed modules and cdgls

For general background on crossed modules, we refer the reader to the historical papers of Whitehead
[11; 14] or to more modern presentations, such as [2; 3; 10]. We recall only the basics we need.

Definition 2.1 A crossed module CD .d WM !N / is a morphism of groups d together with an action
of N on M , given by group automorphisms n 7! .m 7! nm/ satisfying two conditions:

(1) For all m 2M and n 2N , d.nm/D nd.m/n�1.

(2) For all m 2M , m0 2M , d.m/m0 Dmm0m�1.
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146 Yves Félix and Daniel Tanré

If the group N acts on itself by conjugation, the first property means that d is compatible with the N –
action. It also implies that the group d.M / is a normal subgroup of N and that ker d is an N –submodule
of M .

On the other hand, we remark that if d.m/D 1, the second property implies mm0 Dm0m which means
that ker d is included in the center of M . The same property shows that Im d acts trivially on ker d and
induces thus an action of coker d on ker d .

Now let LDL0˚L1 be a cdgl. In what follows L0 is always considered as a group equipped with the
BCH product denoted by �. We will prove that d WL1!L0 is a crossed module. The first step consists
in defining a group structure on L1. This construction was originally carried out in [4, Definition 6.14].

Proposition 2.2 For any cdgl .L; d/ such that LDL0˚L1, L1 admits a natural product ? for which
the differential d W .L1;?/! .L0;�/ is a group morphism. Moreover , a ? b D aC b if a and b are
cycles.

Proof The different possibilities for a definition of this law are described in [4, Section 6.5]. We recall
here the construction for the convenience of the reader, beginning with the “universal” example, the cdgl
L0 D yL.u1;u2; du1; du2/, with ui in degree 1. Since HL0 D 0 there is an element ! in L0

1
such that

(2-1) d! D du1 � du2:

Of course such an element is not unique. If !0 is another element satisfying (2-1), the difference ! �!0

is a boundary since H�1L0 D 0. This shows that the class of ! is well defined in the cdgl quotient
.L0=.L0

�2
˚ dL0

2
/; Nd/. We denote this class by u1 ? u2. By construction, it satisfies

Nd.u1 ? u2/D du1 � du2:

Among all the different possible choices for !, one starts with the Baker–Campbell–Hausdorff series for
du1�du2. Replacing in each term one and only one dui by ui , we get an element ! with d!Ddu1�du2.
This gives

(2-2) ! D u1Cu2C
1
2
Œu1; du2�C

1
12
Œdu1; Œdu1;u2���

1
12
Œdu2; Œdu1;u2��C � � � :

Now, let L be a cdgl with LDL0˚L1, e1; e2 2L1, and f WL0!L the unique cdgl map sending ui

to ei . Then the element e1 ? e2 WD f .u1 ? u2/ is a well-defined element in L1. By construction, if e1

and e2 are cycles, using the image of the formula (2-2) in L, we have e1 ? e2 D e1C e2.

For the associativity of ?, we consider L00 D yL.u1;u2;u3; du1; du2; du3/ and observe that in L00
1
=dL00

2

we have .u1 ? u2/? u3 D u1 ? .u2 ? u3/ because both have the same boundary. The same is thus true
in L1.

With this group structure on L1 we can now prove that LDL0˚L1 is a crossed module.

Proposition 2.3 Let .L;d/ be a connected complete differential graded Lie algebra such that LDL0˚L1.
Then d W .L1;?/! .L0;�/ is a crossed module.
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Realization of Lie algebras and classifying spaces of crossed modules 147

Proof Recall from [4, Definition 12.40] that the group L0 acts on L1 by
xz D eadx .z/; for all x 2L0; z 2L1:

From [4, Corollary 4.12] it follows that, for any x 2L0, y 2L0 and z 2L1,
.x�y/z D eadx�y .z/D eadx .eady z/D x.yz/:

To prove that the function y 7! xy is a group homomorphism, as in Proposition 2.2, we consider a
universal example. Let E D yL.x; z; t; dz; dt/ with x in degree 0, z and t in degree 1, and dx D 0. Since
the injection L.x/!E is a quasi-isomorphism, we have H�1.E/D 0. Observe that in E=.E�2˚dE2/,

d.x.z ? t//D eadx .d.z ? t//D eadx .dz � dt/

D x � dz � dt �x�1

D x � dz �x�1
�x � dt �x�1

D eadx .dz/� eadx .dt/D d.eadx z/� d.eadx t/D d.xz ? xt/:

Thus, in E1=dE2, we get
x.z ? t/D xz ? xt:

The same is therefore also true in L1.

As x is a cycle, by [4, Propositions 4.10 and 4.13],

d.xz/D eadx .dz/D x � dz �x�1;

and property (1) of Definition 2.1 is satisfied. For property (2), we use once again the universal example
L0 D yL.u1;u2; du1; du2/ already considered in the proof of Proposition 2.2. Since in L0

1
=dL0

2
we have

d.du1u2/D du1 � du2 � du�1
1 D d.u1 ? u2 ? u�1

1 /;

we deduce that
du1u2 D u1 ? u2 ? u�1

1 ;

and thus the same is true in L1.

Remark 2.4 By Proposition 2.2, under the hypotheses of Proposition 2.3, we deduce that the group
structures ? and C coincide on H1LD ker d .

We have thus defined a functor C W cdgl�1! CrMod.

3 The crossed module of a realization and Theorem 2

In this section, in the case LDL0˚L1, we establish the isomorphism between C.L/ and the Whitehead
crossed module of .hLi; hL0i/.

Proof of Theorem 2 The realization hLi D Homcdgl.L�;L/ of a cdgl LDL0˚L1 is a Kan complex
[4, Proposition 7.13]. We first compute �1.hL0i/ and �2.hLi; hL0i/, and for that we use the homotopy
relation introduced in [12, Section 3].
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148 Yves Félix and Daniel Tanré

Since L1 D .yL.a0; a1; a01/; d/, the map f 7! f .a01/ induces an isomorphism of sets

hL0i1 D Homcdgl.L1;L0/
Š�!L0:

Since @if D 0, for i D 0; 1, each element of L0 defines an element of �1.hL0i/. Now, two such
1–simplices, g and f , are homotopic in hL0i if there exists a map h W L2 ! L0 such that @1h D g,
@2hD f and @0hD 0. The simplex h is called a homotopy from f to g.

In the particular case g D 0, from the simplicial structure of the realization, we get h.a02/D h.a12/D 0

and h.a01/D f .a01/. Since h.a012/D 0, we have an equivalence

f � 0 () 0D dh.a012/D h.a01 � a12 � a�1
02 /D f .a01/:

Therefore �1hL0i DL0.

To compute the relative homotopy group �2.hLi; hL0i/, we consider the set

K D
˚
f 2 hLi2 D Homcdgl.L2;L/ j @if D 0 for i D 1; 2 and @0f 2 hL0i

	
:

If f 2K, we have @0f .a01/Df .ı
0.a01//Df .a12/Df .da012/Ddf .a012/ and thus the correspondence

K!L1 which maps f to f .a012/ is an isomorphism. By [12, Definitions 3.3 and 3.6], two simplices, f
and g, of K are homotopic rel hL0i if @0f � @0g in hL0i by a homotopy h, and there exists a 3–simplex
! W L3!L such that @0! D h, @2! D f , @3! D g and @1! D 0.

For getting an expression of these conditions at the level of cdgls, we recall [4, Proposition 6.16] the
differential d of L3, which uses the operation ? introduced in the proof of Proposition 2.2,

(3-1) d.a0123/D eada01 a123� .a012 ? a023 ? a�1
013/:

From L�2 D 0, we deduce !.a0123/D 0. By the definition of K, !.a123/D @0!.a012/D h.a012/D 0

since L0 has no element of degree 1. We also have

!.a012/D @3!.a012/D g.a012/; !.a013/D @2!.a012/D f .a012/; !.a023/D @1!.a012/D 0:

Thus, by applying ! to both sides of (3-1), we obtain

0D 0�g.a012/? 0? f .a012/
�1;

ie 0D g.a012/? f .a012/
�1. This implies 0D dg.a012/� df .a012/

�1 and df .a012/D dg.a012/.

It remains to describe g.a012/?f .a012/
�1. From the compatibility of the differential with Lie bracket and

the fact that L1 is an abelian Lie algebra, we get Œg.a012/; dg.a012/�D�
1
2
d Œg.a012/;g.a012/�D0. In the

BCH product df .a012/�dg.a012/, all terms except the linear ones contain a bracket Œdf .a012/; dg.a012/�

which becomes Œdf .a012/;g.a012/�D Œdg.a012/;g.a012/�D 0 in the formula (2-2). We thus obtain

g ? f �1
D g�f:
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We have proven �2.hLi; hL0i/ Š L1 and �1.hL0i/ Š L0. We also showed that the connecting map
@ W �2.hLi; hL0i/! �1.hL0i/, given by Œf � 7! Œ@0f �, corresponds to df .a012/ in the previous isomor-
phisms.

Consider now the action of �1.hL0i/ D L0 on �2.hLi; hL0i/ D L1. Let a 2 L0, b 2 L1 and ab the
element of L1 corresponding to this action. Recall [4, Lemma 4.23] that y D eadab is also an element
of L1 such that dy D a�db �a�1. Both constructions, ab and eadab, are natural, so to prove abD eadab,
we have only to prove it for the cdgl L00 quotient of L0 D yL.a;u; du/, with deg u D 1, by the ideal
L0
�2
˚dL0

2
. The required identification follows from d.au/Dd.eadau/ and the injectivity of d WL00

1
!L00

0
.

We have thus recovered the crossed module C.L/.

4 The classifying space of a crossed module

By definition, the classifying space of a crossed module C is the classifying space of the nerve of the
categorical group associated to C. Let us specify this association.

Recall that a categorical group is a group object in the category of groups (see [10, Section 1.1]),

G
s
//

t
// N;

where N is a subgroup of G, s and t are homomorphisms such that sjN D t jN D idN and Œker s; ker t �D 1.

In [10], J L Loday defines a categorical group associated to a crossed module CD .d W .M;?/! .N;�//

as follows:

� G DM Ì N is the product M �N with the semidirect product given by the action of N on M .
Thus, the product of .m0; n0/ and .m; n/ in G is

.m0; n0/ � .m; n/D .m0 ? n0m; n0 � n/:

� An element .m; n/ of G has for source and target, respectively,

s.m; n/D dm� n and t.m; n/D n:

Thus, the group N is interpreted as the group of objects viewed in G as f1g�N . The group G DM ÌN

is the group of arrows with the morphisms s and t giving the source and the target. Two elements .m0; n0/
and .m; n/ are composable if

n0 D t.m0; n0/D s.m; n/D dm� n:

In this case the composition is defined by

.m0; n0/ ı .m; n/D .m0 ?m; n/:
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150 Yves Félix and Daniel Tanré

We deduce easily from property (1) of Definition 2.1 that s and t are group homomorphisms. We also
verify that the source of a composite is the source of the first factor and the target is the target of the
second factor:

s.m0 ?m; n/D d.m0 ?m/�nD dm0 �dm�nD dm0 �n0 D s.m0; n0/; t.m0 ?m; n/D nD t.m; n/:

Finally, composition is a group homomorphism; see [10, Lemma 2.2].

The usual nerve of a category is a simplicial set. When the category is a categorical group, we obtain
naturally a simplicial group. Let us describe the nerve of the categorical group associated to a crossed
module CD .d W .M;?/! .N;�//. We have

Ner1 DM Ì N
d1
//

d0

// Ner0 DN

with d0.m; n/ D t.m; n/ D n, d1.m; n/ D s.m; n/ D dm � n and s0 W Ner0 ! Ner1 is the canonical
injection N !M Ì N .

An element of Nerk is a sequence .mi ; ni/1�i�k such that

ni D t.mi ; ni/D s.mi�1; ni�1/D dmi�1 � ni�1:

As the ni , for i � 2, are determined by n1 and the family .mi/1�i�k , the sequence .mi ; ni/i�k can be
identified with the sequence

.mk ;mk�1; : : : ;m1; n1/ 2M k
�N:

In particular,

(4-1) Nerk DM k
�N:

Each Nerk is a group, the multiplication being given component wise. With the identification (4-1), this
product is given by

..mi/1�i�k ; n/ � ..m
0
i/1�i�k ; n

0/D ..mi ?
d.?i�1

jD1
mj /�n m0i/1�i�k ; n� n0/:

The boundary and degeneracy maps of Ner� are morphisms of groups defined as usual by

d0.mk ; : : : ;m1; n/D .mk ; : : : ;m2; d.m1/� n/;

di.mk ; : : : ;m1; n/D .mk ; : : : ;miC1 ?mi ; : : : ;m1; n/; 0< i < k;

dk.mk ; : : : ;m1; n/D .mk�1; : : : ;m1; n/;

si.mk ; : : : ;m1; n/D .mk ; : : : ;mi ; 1;mi�1; : : : ;m1; n/; 0� i � k:

The identity ek 2 Nerk is the element .1; : : : ; 1; 1/.

Recall from [5, Definition 3.20] or [7, page 255] the classifying functor W which goes from the category
of simplicial groups to the category of reduced simplicial sets. The classifying space BC of the crossed
module C is the space obtained by composing Ner� with W ,

BCDW .Ner�/:
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By definition of W ,
.BC/k D f.hk�1; : : : ; h0/ j hi 2 Nerig:

The boundaries and degeneracies are given by

d0.hk�1; : : : ; h0/D .hk�2; : : : ; h0/;

di.hk�1; : : : ; h0/D .di�1hk�1; : : : ; d0hk�i � hk�i�1; hk�i�2; : : : ; h0/; 0< i < k;

dk.hk�1; : : : ; h0/D .dk�1hk�1; : : : ; d1h1/;

s0.hk�1; : : : ; h0/D .1; hk�1; : : : ; h0/;

si.hk�1; : : : ; h0/D .si�1hk�1; : : : ; s0hk�i ; 1; hk�i�1; : : : ; h0/; 0< i � k:

In particular, in low dimensions,

BC0 D 1; BC1 DN; BC2 D .M Ì N /�N; BC3 D .M
2 Ì N /� .M Ì N /�N:

5 The classifying space functor W and twisting functions

Let A� be a simplicial set. By [12, Corollary 27.2], there is a bijective correspondence between morphisms
of simplicial sets ' WA�!W ıNer� D BC and twisting functions

� D f�k WAk ! Nerk�1gk�1:

Recall [12, Definition 18.3] that a twisting function � is a family of maps �k WAk ! Nerk�1 satisfying,
for x 2Ak ,

d0�x D �d1x � .�d0x/�1;

di�x D �diC1x; i > 0;

si�x D �siC1x; i � 0;

�s0x D ek 2 Nerk :

The simplicial map 'k WAk ! .BC/k associated to the twisting function � is given by

(5-1) 'kx D .�x; �d0x; : : : ; �dk�1
0 x/:

Conversely [12, page 88], the twisting function � associated to a simplicial morphism ' WA�!W .Ner�/
is defined by

� D �.Ner�/ ı';

where �.Ner�/ is the twisting function associated to the identity on W .Ner�/,

�.Ner�/ WW .Ner�/k ! Nerk�1;

defined by
�.Ner�/.gn�1; : : : ;g0/D gn�1:
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6 Proof of Theorem 1

First we compute the simplicial set hLi� D Homcdgl.L�;L/ in the case LDL0˚L1. By L�2 D 0 and
[4, Corollary 6.5], we have isomorphisms

Homcdgl.Lk ;L/Š Homcdgl..yL..s
�1�k/�2/; d/;L/Š Homcdgl..yL..s

�1ƒk
0/�2/; d/;L/:

Since any morphism of codomain L vanishes on elements of negative degree, we can quotient by the
differential ideal generated by the generators of degree �1. This gives as free cgl

Lk D .yL.aij ; a0st /; d/ with 0� i < j � k and 0< s < t � k:

Finally, in view of the differential in L2, recalled in (1-1), the differential of Lk satisfies

daij D 0 and da0st D a0s � ast � a�1
0t :

In the rest of this text, we will use that, for all k, there exists an isomorphism

hLik D Homcdgl.Lk ;L/D Homcdgl.Lk ;L/:

Proposition 6.1 If LDL0˚L1, then the morphism

‰ W Homcdgl.Lk ;L/!Lk
0 �L

k.k�1/=2
1

given by ‰.f /D
�
.f .ar rC1//0�r<k ; .f .ar;rC1;s//rC1<s�k

�
is an isomorphism.

Proof For the sake of simplicity write for i < j , aji D a�1
ij , and for 0� i < j < r � k,

airj D a�1
ijr ;

arij D
ar i aij r D

a�1
ir aij r ;

ajir D
aj i airj D

a�1
ij a�1

ijr ;

ajri D
aj i aij r D

a�1
ij aij r ;

arji D
ar i airj D

a�1
ir a�1

ijr :

With this notation, when the integers i , j and r are all different from each other and between 0 and k,

daij r D aij � ajr � ari :

Suppose that the elements f .ar;rC1/ and f .ar;rC1;t /, with rC1< t , are defined. Then the other elements,
f .ar;rCs/ and f .ar;rCs;t / with r C s < t , can be derived by induction on s from the formulas

f .ar;rCsC1/D df .ar;rC1;rCsC1/
�1
�f .ar;rC1/�f .arC1;rCsC1/;

f .ar;rCsC1;t /D
f .ar;rC1/

�
f .arC1;r;rCsC1/? f .arC1;rCsC1;t /? f .arC1;t;r /

�
:

This shows that ‰ is injective. The same construction process shows that ‰ is also surjective.
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The isomorphism of our main theorem is based on a family � of maps

�k W Homcdgl.Lk ;L/! Nerk�1; k � 1;

defined by
�kf D .mk�1; : : : ;m1; n/ 2M k�1

�N;

with nD f .a01/, m1D .f .a012//
�1 and mi D .f .a01.iC1///

�1? f .a01i/, for i � 2. In low dimensions,
this gives

�1f D f .a01/ 2N;

�2f D .f .a012/
�1; f .a01// 2M �N;

�3f D .f .a013/
�1
? f .a012/; f .a012/

�1; f .a01// 2M 2
�N:

Proposition 6.2 The family � is a twisting function.

Proof Observe that miC1 ?mi D f .a01.iC2//
�1 ? f .a01i/. Thus, the index i C 1 disappears in the

expression of di�kf and we get di�kf D �k�1diC1f for 0< i < k � 1. A similar argument gives also
the result for dk�1. We have reduced the problem to proving the more subtle equality involving d0. We
use an induction, supposing the result is true for �j , with j < k, and considering �k . Due to the inductive
step, we can concentrate the computations on the left-hand factor. From the definitions,

�k�1d1f D .f .a02k//
�1
? f .a02.k�1//; : : : ; f .a02//;

�k�1d0f D ..f .a12k/
�1
? f .a12.k�1//; : : : ; f .a12//;

d0�kf D ..f .a01k/
�1
? f .a01.k�1//; : : : ; .df .a012//

�1
�f .a01//:

We determine the product of the two last terms,

d0�kf � �k�1d0f D .f .a01k/
�1
? f .a01.k�1//?

 .f .a12k/
�1
? f .a12.k�1///; : : :/;

where  D dmk�2 �dmk�1 � � � � �dm1 �nD f .a0.k�1//� .f .a1.k�1///
�1. To obtain the equality with

�k�1d1f , we consider the computation in Lk ,

d.a�1
01k ? a01.k�1/ ?

a0.k�1/�a
�1
1.k�1/.a�1

12k ? a12.k�1//D a0k � a�1
2k � a2.k�1/ � a�1

0.k�1/

D d.a�1
02k ? a02.k�1//:

Similar computations give the corresponding equalities for degeneracy maps.

Denote by ' the morphism of simplicial sets induced by the previous twisting function � ,

' W Homcdgl.L;L/! BC.L/:

The following result finishes the proof of the theorem.

Proposition 6.3 The morphism ' is an isomorphism of simplicial sets.
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Proof Recall from (5-1) that
'kf D .�f; �d0f; : : : ; �dk�1

0 f /:

Moreover, using d0f D f ı
0, we get �d0f D .m

0
k�2

; : : : ;m0
1
; n0/, with n0 D f .a12/, m0

1
D f .a123/

�1

and for i > 1, m0i D f .a12.iC2//
�1 ? f .a12.iC1//. By iteration from .d0/

`f D f .ı0/`, we deduce
that the image of 'k is the linear subspace generated by the elements f .ar;rC1/, for 0 � r < k, and
f .ar;rC1;s/, for r C 1< s � k. The result thus follows from Proposition 6.1.

7 Maltsev crossed modules and Theorem 3

In this section, we establish an isomorphism of categories between cdgl�1 and a subcategory of crossed
modules. We use the Lie algebra crossed modules introduced by Kassel and Loday in [8]. We begin with
a reminder of [8].

In Definition 2.1, the group action of N on M corresponds to a homomorphism from N in the group of
automorphisms of M . For Lie algebras, n and m, an action of n on m corresponds to a Lie morphism
v W n! Der.m/ in the Lie algebra of derivations of m. The action of n 2 n on m 2m is denoted v.n/:m.
We can now state [8, Définition A.1].

Definition 7.1 A Lie algebra crossed module is a morphism of Lie algebras, u Wm! n, together with an
action v W n! Der.m/, satisfying two conditions:

(1) For all m 2m and n 2 n, u.v.n/:m/D Œn; u.m/�.

(2) For all m 2m, m0 2m, v.u.m//:m0 D Œm;m0�.

We now introduce the “rational” versions of crossed modules. If G is a group, Gk D ŒG;Gk�1� denotes
the lower central series of G.

Definition 7.2 (1) A group G is a Maltsev group (or prounipotent rational group) if each Gk=GkC1

is a Q–vector space, dim G=G2 <1 and G D lim
 ��k

G=Gk .

(2) A crossed module d WM !N is a Maltsev crossed module if M and N are Maltsev groups and
the action of N on M satisfies .nm/m�1 2M kC1 for all m 2M k and n 2N .

If m is a Lie algebra, mk D Œm;mk�1� denotes the lower central series of m.

Definition 7.3 (1) A Lie algebra m is pronilpotent if dimm=m2 <1 and mD lim
 ��k

m=mk .

(2) A Lie algebra crossed module u Wm! n is pronilpotent if m and n are pronilpotent Lie algebras
and the action v W n! Der.m/ satisfies v.n/:mk �mkC1.
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Remark 7.4 The completion of a Lie algebra m satisfying dimm=m2 <1 is the Lie algebra

ymD lim
k

m=mk :

This is a pronilpotent Lie algebra since ymD limk ym=ym
k .

If a Lie algebra m acts on a vector space V , we denote by V k the sequence of subspaces V 0 D V ,
V k Dm:V k�1.

Definition 7.5 The action of m on V is pronilpotent if V D lim
 ��k

V k . In particular, a cdgl LDL0˚L1

is pronilpotent if the Lie algebra L0 is pronilpotent and if the adjoint action of L0 on L1 is pronilpotent.

Proof of Theorem 3 We only define the correspondences for objects, the extension to morphisms being
immediate.

To show that (1) implies (2), we start with a pronilpotent cdgl LDL0˚L1 and we construct a pronilpotent
Lie algebra crossed module u Wm! n with action v W n! Der.m/. We denote d the differential of L and
Œ�;�� its bracket.

We set nDL0, mDL1. The bracket on n is the bracket of L0 and the bracket on m is defined by

Œa; b�0 D Œda; b� for a; b 2L1:

We check that Œ�;��0 is an (ungraded) Lie bracket. Since Œa; b�D 0, the antisymmetry follows from

0D d Œa; b�D Œda; b�C Œdb; a�D Œa; b�0C Œb; a�0:

The proof is similar for the Jacobi identity. The morphism u Wm! n is the differential d ; this is a Lie
algebra morphism,

u.Œa; b�0/D d Œda; b�D Œda; db�D Œu.a/; u.b/� for all a; b 2m:

The action v W n! Der.m/ is given by the adjoint action, v.x/ D adx . The formulas (1) and (2) of
Definition 7.1 also follow immediately: letting a; b 2mDL1 and x 2 nDL0,

u.v.x/:a/D d.adx.a//D d Œx; a�D Œx; da�D Œx; u.a/�; v.u.a//:b D adda.b/D Œda; b�D Œa; b�0:

By definition, since L is pronilpotent the associated Lie algebra crossed module is also pronilpotent.

To show that (2) implies (1), we start with a pronilpotent Lie algebra crossed module u W m! n with
action v W n! Der.m/ and we construct a pronilpotent cdgl LDL0˚L1. We define L0 D n as a Lie
algebra and L1 D m as a vector space. For a 2 L1 and x 2 L0, we set Œx; a�D v.x/:a and d D u. We
check easily that d is a derivation and LDL0˚L1 is pronilpotent.

The associations (1) D) (2) and (2) D) (1) give the desired isomorphism of categories for the two first
points of the statement.
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To show that (2) implies (3), we start with a pronilpotent Lie algebra crossed module u W m! n with
action v W n!Der.m/ and we construct a Maltsev crossed module d WM !N . We define M and N to be
the vector spaces m and n respectively, with the group structure given by the Baker–Campbell–Hausdorff
product, and set d D u. The action v extends in an action by ev: for n 2N D n and m 2M Dm, we set

nmD ev.n/.m/:

As v is a morphism of Lie algebras, we have vŒn; n0� D Œv.n/; v.n0/� for all n; n0 2 N , and so the
Baker–Campbell–Hausdorff formula implies v.n� n0/D v.n/� v.n0/ and

.n�n0/mD ev.n�n
0/.m/D ev.n/.ev.n

0/.m//:

Thus, we have a group action. The two additional properties of Maltsev crossed modules are easily
deduced from the corresponding properties of Lie algebra crossed modules as well as the pronilpotency
conditions.

To show that (3) implies (2), as we do for the cases (1) and (2), the previous process are reversed.
We associate a pronilpotent Lie algebra to a Maltsev group, replacing the exponential by the functor
L 7! log.1CL/. The only significant point is the construction of the Lie algebra action v W n! Der.m/
from the group action � WN ! Aut.M /; this is done by

v.n/:mD log.1C �.n//.m/:

We end with the study of the composition (1) D) (2) D) (3). We start with LDL0˚L1 and in step (2)
we define a bracket on L1 by Œa; b�0 D Œda; b�. Then, in the second implication, we endow L1 with a
group law coming from the Baker–Campbell–Hausdorff formula, a�b D log.eaeb/. This formula can be
written as

a� b D aC bC 1
2
Œa; b�0C 1

12
Œa; Œa; b�0�0� 1

12
b; Œa; b�0�0C � � �

D aC bC 1
2
Œda; b�C 1

12
Œda; Œda; b��� 1

12
db; Œda; b��C � � � :

This is exactly the expression of a ? b given in the formula (2-2). We recover the group law on L1

in C.L/. The rest of the verification is straightforward.
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