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Building upon Hovey’s work on Smith ideals for monoids, we develop a homotopy theory of Smith ideals
for general operads in a symmetric monoidal category. For a sufficiently nice stable monoidal model
category and an operad satisfying a cofibrancy condition, we show that there is a Quillen equivalence
between a model structure on Smith ideals and a model structure on algebra morphisms induced by the
cokernel and the kernel. For symmetric spectra, this applies to the commutative operad and all ¥—cofibrant
operads. For chain complexes over a field of characteristic zero and the stable module category, this
Quillen equivalence holds for all operads. We end with a comparison between the semi-model category
approach and the co—category approach to encoding the homotopy theory of algebras over X—cofibrant
operads that are not necessarily admissible.
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1 Introduction

A major part of stable homotopy theory is the study of structured ring spectra. These include strict ring
spectra, commutative ring spectra, Aso—ring spectra, Eoo—ring spectra, E,-ring spectra, and so forth.
Based on an unpublished talk by Jeff Smith, Hovey [2014] developed a homotopy theory of Smith ideals
for ring spectra and monoids in more general symmetric monoidal model categories.

Let us briefly recall Hovey’s work. For a symmetric monoidal closed category M, its arrow category M is
the category whose objects are morphisms in M and whose morphisms are commutative squares in M. It
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342 David White and Donald Yau

has two symmetric monoidal closed structures, namely the tensor product monoidal structure M® and the
pushout product monoidal structure ME. A monoid in MP is a Smith ideal, and a monoid in M® is a
monoid morphism. If M is a model category, then M® has the injective model structure W’, where weak
equivalences and cofibrations are defined entrywise, and the category of monoid morphisms inherits a
model structure from M®. Likewise, MC has the projective model structure MD, where weak equivalences
and fibrations are defined entrywise, and the category of Smith ideals inherits a model structure from MO
Surprisingly, when M is pointed (resp. stable), the cokernel and the kernel form a Quillen adjunction
(resp. Quillen equivalence) between M and M® and also between Smith ideals and monoid morphisms.

Since monoids are algebras over the associative operad, a natural question is whether there is a satisfactory
theory of Smith ideals for algebras over other operads. For the commutative operad, White [2017] showed
that commutative Smith ideals in symmetric spectra, equipped with either the positive flat (stable) or the
positive (stable) model structure, inherit a model structure. The purpose of this paper is to generalize
Hovey’s work to Smith ideals for general operads in monoidal model categories. For an operad O, we
define a Smith O—ideal as an algebra over an associated operad 09 in the arrow category ME. We will
prove a precise version of the following result in Theorem 4.4.1:

Theorem A Suppose M is a sufficiently nice stable monoidal model category, and O is a €—colored
operad in M such that cofibrant Smith O—ideals are also entrywise cofibrant in the arrow category of M

with the projective model structure. Then there is a Quillen equivalence

k
{Smith O—ideals} <L_er> {O—algebra maps}
ker

induced by the cokernel and the kernel.

For example, this theorem holds in the following situations:

(1) ©is an arbitrary €—colored operad, and M is the category Ch(R) of bounded or unbounded chain
complexes over a semisimple ring containing Q (Corollary 5.2.4); the stable module category of
k[G]-modules for some field k and finite group G (Corollary 6.2.5); or the category of classical,
equivariant or motivic symmetric spectra with the positive or positive flat stable model structure
(Example 4.4.2).

(2) O is the commutative operad, and M is any of the examples above or equivariant orthogonal spectra,
Hausmann’s G—symmetric spectra [2017], or Schwede’s global equivariant spectra [2018] with
positive flat model structures (Section 5.1).

(3) 0O is Xg—cofibrant (eg the associative operad, Aoo—o0perads, Es—operads, and E,—operads), and
M is any of the examples above, or Ch(R) for a commutative ring R; StMod(k[G]), where k
is a principal ideal domain; an injective or projective model structure on spectra; S—modules
[Elmendorf et al. 1997]; Mandell’s equivariant symmetric spectra [2004]; or a Lydakis-style model
structure on enriched functors (Corollary 5.2.3 and Examples 5.2.5 and 5.2.6).
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Smith ideals of operadic algebras in monoidal model categories 343

The rest of this paper is organized as follows. In Section 2 we recall some basic facts about model
categories and arrow categories. In Section 3 we define Smith ideals for an operad and prove that, when
M is pointed, there is an adjunction between Smith O—ideals and O—algebra morphisms given by the
cokernel and the kernel. In Section 4 we define the model structures on Smith O—ideals and O—algebra
morphisms and prove the theorem above. We also include a discussion of what happens when there
are only semi-model structures on Smith O—ideals and O—algebra morphisms. In Section 5 we apply
the theorem to the commutative operad and X g—cofibrant operads. In Section 6 we apply the theorem
to entrywise cofibrant operads. In Section 7 we include a comparison between various approaches to
encoding the homotopy theory of operad algebras, including model categories, semi-model categories and
oo—categories. This discussion holds in general, beyond the situation of Smith O—ideals and O—algebra
morphisms.
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2 Model structures on the arrow category

In this section we recall a few facts about monoidal model categories and arrow categories. Our main
references for model categories are [Hirschhorn 2003; Hovey 1999; Schwede and Shipley 2000]. In
this paper, (M, ®, 1, Hom) will usually be a bicomplete symmetric monoidal closed category [Mac Lane
1998, VIL.7] with monoidal unit 1, internal hom Hom, initial object & and terminal object *. Since M is
closed, @ ® X = @ for any X.

2.1 Monoidal model categories

A model category is cofibrantly generated if there are sets I of cofibrations and J of trivial cofibrations
(that is, morphisms that are both cofibrations and weak equivalences) that permit the small object argument
(with respect to some cardinal ), and a morphism is a fibration (resp. trivial fibration) if and only if it
satisfies the right lifting property with respect to all morphisms in J (resp. ).

Let I—cell denote the class of transfinite compositions of pushouts of morphisms in /, and let /—cof
denote retracts of such [Hovey 1999, 2.1.9]. In order to run the small object argument, we will assume the
domains K of the morphisms in / (and J') are k—small relative to /—cell (resp. J—cell). In other words,

Algebraic € Geometric Topology, Volume 24 (2024)



344 David White and Donald Yau

given a regular cardinal A > k and any A—sequence Xo — X1 — --- formed of morphisms Xg — Xg

in /—cell, the map of sets
colimM(K, Xg) — M(K, colim X
olimM(K. Xg) — M(K. colim Xp)

is a bijection. An object is small if there is some « for which it is k—small. We will say that a model
category is strongly cofibrantly generated if the domains and codomains of / and J are small with respect
to the entire category.

In Section 4, we will produce homotopy theories for operad algebras valued in arrow categories equipped
with some model structure. Depending on the colored operad and properties of M, sometimes we will
only have a semi-model structure on a category of algebras. However, as shown in Section 7, it still
encodes the correct oo—category. A semi-model category satisfies axioms similar to those of a model
category, but one only knows that morphisms with cofibrant domain admit a factorization into a trivial
cofibration followed by a fibration, and one only knows that trivial cofibrations with cofibrant domain lift
against fibrations. To the authors’ knowledge, every result about model categories has a corresponding
result for semi-model categories, often obtained by first cofibrantly replacing everything in sight (see for
example [Batanin and White 2024]).

Definition 2.1.1 [Batanin and White 2024, Definition 2.1] A semi-model structure on a category M
consists of classes of weak equivalences W, fibrations F and cofibrations Q satisfying the following
axioms:

(M1) Fibrations are closed under pullback.
(M2) The class W is closed under the two-out-of-three property.
(M3) W, F and Q are all closed under retracts.

(M4) (1) Cofibrations have the left lifting property with respect to trivial fibrations.

(i) Trivial cofibrations whose domain is cofibrant have the left lifting property with respect to
fibrations.

(M5) (1) Every morphism in M can be functorially factored into a cofibration followed by a trivial
fibration.
(i) Every morphism whose domain is cofibrant can be functorially factored into a trivial cofibration
followed by a fibration.

If, in addition, M is bicomplete, then we call M a semi-model category. M is said to be cofibrantly
generated if there are sets of morphisms / and J in M such that the class of fibrations (resp. trivial
fibrations) is characterized by the right lifting property with respect to J (resp. 1), the domains of [ are
small relative to /—cell, and the domains of J are small relative to morphisms in J—cell whose domain is
cofibrant.

An adjunction with left adjoint L and right adjoint R is denoted by L - R.
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Definition 2.1.2 Suppose L: M 2 N : R is an adjunction between (semi-)model categories.

(1) We call L 1 R a Quillen adjunction if the right adjoint R preserves fibrations and trivial fibrations.
In this case, we call L a left Quillen functor and R a right Quillen functor.

(2) We call a Quillen adjunction L 4 R a Quillen equivalence if, for each morphism f:LX — Y €N
with X cofibrant in M and Y fibrant in N, f is a weak equivalence in N if and only if its adjoint
f#: X — RY is a weak equivalence in M.
Definition 2.1.3 Suppose M is a category with pushouts and pullbacks.

(1) Given a solid-arrow commutative diagram

BxpC —— C

N

in M in which the square is a pullback, the unique dotted induced morphism is denoted by f N g

and called the pullback corner morphism of f and g.

(2) Given a solid-arrow commutative diagram

in M in which the square is a pushout, the unique dotted induced morphism is denoted by f ® g
and called the pushout corner morphism of f and g.

In the next definition, we follow simplicial notation 0 — 1 so the reader can distinguish source and target
at a glance.

Definition 2.1.4 Suppose (M, ®, 1) is a monoidal category with pushouts. Suppose f: Xo — X1 and
g: Yo — Y are morphisms in M. The pushout corner morphism

®1
Xo ® Yo / ' X1 ® Yo

Jie I

Xo®Y1T — (Xo® Y1) Ux,ey, (X1 ® Yo)
w}
fe1

of f ®1 and 1 ® g is denoted by f O g and called the pushout product of f and g.

X191
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346 David White and Donald Yau

Definition 2.1.5 A symmetric monoidal closed category M equipped with a model structure is called a
monoidal model category if it satisfies the following pushout product axiom [Schwede and Shipley 2000,
Definition 3.1]:

¢ Given any cofibrations f: X9 — X; and g: Yy — Y1, the pushout product morphism
m|
(Xo® Y1) Ux,ey, (X1 ® Yo) 08 ¥, 91,

is a cofibration. If, in addition, either f or g is a weak equivalence, then f [ g is a trivial
cofibration.

Additionally, in order to guarantee that the unit 1 descends to the unit in the homotopy category, it is
sometimes convenient to assume the unit axiom [Hovey 1999, 4.2.6]: if Q1 — 1 is a cofibrant replacement,
then, for any cofibrant object X, the induced morphism Q1 ® X — 1 ® X =~ X is a weak equivalence.
Since (—) ® X is a left Quillen functor, if the unit axiom holds for one cofibrant replacement of 1, then it
holds for any cofibrant replacement of 1.

2.2 Arrow categories

Definition 2.2.1 A lax monoidal functor F: M — N between two monoidal categories is a functor
equipped with structure morphisms

Fgy N FO M
FXQRFY =5 FX®Y), 1"—FI

for X and Y in M that are associative and unital in a suitable sense, as discussed in [Mac Lane 1998, XI1.2],
where this notion is referred to simply as a monoidal functor. If, furthermore, M and N are symmetric
monoidal categories and F? is compatible with the symmetry isomorphisms, then F is called a lax
symmetric monoidal functor. If the structure morphisms F2 and F° are isomorphisms (resp. identity
morphisms), then F is called a strong monoidal functor (resp. strict monoidal functor).

We now recall the two monoidal structures on the arrow category from [Hovey 2014].

Definition 2.2.2 Suppose (M, ®, 1) is a symmetric monoidal category with pushouts.

(1) The arrow category M is the category whose objects are morphisms in M, in which a morphism

o: f — g is a commutative square N
0
Xo—— Yo

2.2.3) fl l g

X]L)Yl

in M. We will also write Evg f = Xo, Evy f = X1, Evpa = «p and Evy « = «1. The definition
of M does not require a monoidal structure on M.

(2) The tensor product monoidal structure on M is given by the monoidal product

Xo® Yo L2% X101,
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for f: Xo — X1 and g: Yy — Y;. The arrow category equipped with this monoidal structure is
denoted by M®. The monoidal unit is Id: 1 — 1.

(3) The pushout product monoidal structure on M is given by the pushout product
O
(Xo® Y1) Ux,ey, (X1 ® Yo) RARCN XN

for f: Xo — X and g: Yy — Y;. The arrow category equipped with this monoidal structure is
denoted by ME. The monoidal unit is @ — 1.

(4) Defining Lo(X) =({d: X - X) and L;(X) = (& — X) for X € M, there are adjunctions

Lo _, L, _,
(2.2.4) M—M® M—MU
Evo Evy

with left adjoints on top and all functors strict symmetric monoidal.

2.3 Injective model structure

Theorem 2.3.1 [Hovey 2014, 2.1 and 2.2] Suppose M is a model category.

(1) There is a model structure on M, called the injective model structure, in which a morphism
a: f — g asin(2.2.3) is a weak equivalence (resp. cofibration) if and only if oo and oy are weak
equivalences (resp. cofibrations) in M. A morphism « is a (trivial) fibration if and only if «; and
the pullback corner morphism

X()%Xl XY] Yo

are (trivial) fibrations in M. Note that this implies that og is also a (trivial) fibration. The arrow
category equipped with the injective model structure is denoted by M.

(2) If M is cofibrantly generated, then so is M.

(3) If M is a monoidal model category, then M® equipped with the injective model structure is a
monoidal model category, denoted by M®.

(4) If M satisfies the unit axiom, then so does M®.

Proof This model structure is a special case of the injective model structure on a diagram category
[Barwick 2010, 2.16]. Since the indexing category ® — e is so simple, we can directly write down the
generating (trivial) cofibrations and hence avoid the need to assume M is combinatorial, as in [White
2017, 5.5.1]. The generating cofibrations are of the form Li (where i € I) and unit morphisms
a;:i — Uy Evyi, where U is the right adjoint of Ev; given by U;(X) = lx. The generating trivial
cofibrations are analogous, with j € J instead of i € I. A morphism 8: f — g has the right lifting
property with respect to L;i if and only if Ev; 8 has the right lifting property with respect to i, and
has the right lifting property with respect to ¢; if and only if Evg f — Evy f Xgy, g Evo g has the right
lifting property with respect to i. Thus, these sets generate the injective model structure. The pushout

product axiom and the unit axiom on m% follows from the same on M [Barwick 2010, 4.51]. O

Algebraic € Geometric Topology, Volume 24 (2024)
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2.4 Projective model structure

Theorem 2.4.1 [Hovey 2014, 3.1] Suppose M is a model category.

(1) There is a model structure on M, called the projective model structure, in which a morphism
o: f — g asin (2.2.3) is a weak equivalence (resp. fibration) if and only if g and «y are weak
equivalences (resp. fibrations) in M. A morphism « is a (trivial) cofibration if and only if «¢ and
the pushout corner morphism

Xy Ly, Yo 225 v,
are (trivial) cofibrations in M. Note that this implies that oy is also a (tg'vial ) cofibration. The arrow
category equipped with the projective model structure is denoted by M.
(2) If M is cofibrantly generated, then so is M.
(3) If M is a monoidal model category, then MmO equipped with the projective model structure is a
monoidal model category, denoted by Y=}

(4) If M satisfies the unit axiom, then so does V=3

Proof (1) and (2) follow from [Hirschhorn 2003, 11.6.1]. For (3), Hovey [2014, 3.1] had the additional
assumption that M be cofibrantly generated. However, White and Yau [2019a] proved that, if M is a
monoidal model category, then so is Vi=8 Lastly, for (4), note that a cofibrant replacement for the unit
@ —1is L1(Q1): @ — Q1. If f is cofibrant in IT/IEOj (equivalently, a cofibration bitween cofibrant
objects), then L1(Q1) 0 f — f is the same as Q1® f — f. Thus, the unit axiom on M5 follows from

the unit axiom on M. O

For a category M with all small limits and colimits, recall from [Hovey 1999, Sections 1.1 and 6.1] that M
is pointed if the unique morphism & — * is an isomorphism. In such a category, we define the cokernel
of a morphism f: X¢o — X to be the morphism coker f: X; — Z defined by the pushout:

Xo L X1
l lk ;
* —— 72
Dually, the kernel of f: Xo — X is the morphism ker f: A — X defined by the pullback:
A— %
N
Xo L) X4
For the left adjoints Lo and L in (2.2.4), we note the equalities, for each object X,
ker(Lo(X)) =ker(Id: X — X) = (@ — X) = L1(X),

(2.4.2)
coker(L1(X)) =coker(@ - X) =(Id: X - X) = Lo(X).
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Most of the observations in Proposition 2.4.3 are from [Hovey 2014, 1.4, 4.1 and 4.3]. We provide proofs
here for completeness.

Proposition 2.4.3 Suppose M is a pointed symmetric monoidal category with all small limits and colimits.
(1) The cokernel is a strictly unital strong symmetric monoidal functor from MO to M® whose right
adjoint is the kernel.

(2) The strong symmetric monoidality of the cokernel induces a strictly unital lax symmetric monoidal
structure on the kernel such that the adjunction (coker, ker) is monoidal.

(3) If M is also a model category, then (coker, ker) is a Quillen adjunction.

(4) If M is a stable model category [Hovey 1999, Chapter 7], then (coker, ker) is a Quillen equivalence.

Proof For (1), first note that coker preserves the units since the cokernel of @ — 1 is Idy. Next, it is
strong monoidal because, given f: Xo — X; and g: Yo — Y1 we can form the commutative diagram:
X1QY1 +— Xo®Y] —— %

I

X1QYg+—— Xo® Yy —— *

|

X1Yg——X1® Yy —— *

Vertical pushouts yield a span whose pushout is coker( f [0 g). Horizontal pushouts yield a span whose
pushout is coker f ® coker g. Since pushouts commute, we obtain the natural isomorphism

kerZ
2.4.4) (coker f) ® (coker g) % coker(f O g).

We take this isomorphism as the ( f, g) component of the monoidal constraint for coker. Using similar
reasoning and the universal property of pushouts, one can show that the symmetric monoidal coherence
diagrams commute.

For the statement that coker is left adjoint to ker, note that a morphism « from coker f to g is given by
the diagram:
S )
X 0o—— X 1—— Y()

l [t s

* Z Yl

o1

These data are equivalent to a morphism from f to ker g, since A is a pullback and Z is a pushout:

Xo—— A— %

I

Xla_0>YOT>Y1
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For (2), first note that ker: M® — MU preserves the monoidal units because the kernel of Id: 1 — 1 is
@ — 1. The monoidal constraint of the kernel at a pair of morphisms f and g,

kerj%’g: (ker f) O (ker g) — ker(f ® g).,

is adjoint to the following composite, with coker? the monoidal constraint in (2.4.4) and &: cokeroker — Id

the counit of the adjunction:
coker((ker /) O (ker g))

(2.4.5) (Cokerz)_llg
£rQeg
coker(ker /) ®coker(kerg) —— f®g
The lax symmetric monoidal axioms for the kernel follow from those for the cokernel and the adjunction.

The assertion that the adjunction (coker, ker) is monoidal means that its unit and counit are monoidal
natural transformations [Mac Lane 1998, XI.2]. To prove this, first note that, by the above description
of the adjunction, its unit and counit are the identity morphisms of the monoidal units in M and M@’,
respectively.

To prove that the unit 7: Id — ker o coker is a monoidal natural transformation, it remains to show that
the following diagram commutes for each pair of morphisms f and g:

fOg » ker(coker(f 0 g))

ny Dngl Tker(g)

ker(coker f) Oker(coker g) ke—r2> ker(coker f ® coker g)

Uranrs

This diagram commutes because the adjoint of each composite is the identity morphism of coker( f 1 g).
For the long composite, this uses the naturality of (coker?)~! and one of the triangle identities for the
adjunction (coker, ker) [ibid., IV.1, Theorem 1].

To prove that the counit ¢: coker o ker — Id is a monoidal natural transformation, it remains to show that
the following diagram commutes:

coker(ker ) ® coker(ker g) o ®ee > f®g

coker2l/’=v 5 Tef ®g
coker(ker 7 g)

coker(ker f Ckerg) ——— = coker(ker(f ® g))

This diagram commutes because, starting from the lower left corner to f ® g, each composite is adjoint
2
to kerﬁ .

For (3), let « be a (trivial) cofibration and note that coker « is the colimit of a morphism of pushout
diagrams. That morphism of pushout diagrams is a Reedy (trivial) cofibration. The colimit functor is left
Quillen as a functor from the Reedy model structure to the underlying category [Hovey 1999, Section 5.2].
Hence, coker « is again a (trivial) cofibration, so coker is a left Quillen functor. See Lemma 6.1.8 for an
analogous proof.
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For (4), we must prove that, if f is cofibrant in MmO (so a cofibration of cofibrant objects) and g is fibrant
in M® (so a fibration of fibrant objects), then «: coker f — g is a weak equivalence if and only if its
adjoint B: f — ker g is a weak equivalence [ibid., 1.3.12]. We display both morphisms:

x, &2 Xo —L X,
aol lal ﬂol lﬂl =00
Yo r— Y A Therg Yo

In the homotopy category, these data give rise to fiber and cofiber sequences. Since M is stable, every
fiber sequence is canonically isomorphic to a cofiber sequence [ibid., Chapter 7]. We can extend to the
right and realize & and § as giving a morphism of cofiber sequences in the homotopy category:

f coker f

Xo X1 y4 > Xo
ﬂol lﬁ1=ao lal lﬁﬁo
A g Yo z Y; YA

If either o or B is a weak equivalence, then so is the other, by the two-out-of-three property. Hence, coker
and ker form a Quillen equivalence. a

Proposition 2.4.6 Suppose M is a cofibrantly generated model category in which the domains and the
codomains of all the generating cofibrations and the generating trivial cofibrations are small in M. Then
Mmj and Mpmj are both strongly cofibrantly generated model categories.

Proof The generating (trivial) cofibrations in Mmj are the morphisms L7 and the morphisms

A—4 B
I
B:B

fori € I (resp.i € J) [Hovey 2014, 2.2]. The generating (trivial) cofibrations in Mpmj are the morphisms
Lol UL1I (resp. LoJ UL1J). So the smallness of the domains and codomains of the generating (trivial)
cofibrations in Minj and Mpmj follows from our assumption on the domains and the codomains in I and J,
since a morphism in the arrow category from f into a transfinite composition is determined by morphisms
from Evg f and Ev; f into transfinite compositions in M. a

3 Smith ideals for operads

Suppose (M, ®, 1) is a cocomplete symmetric monoidal category in which the monoidal product commutes
with colimits on both sides, which is automatically true if M is a closed symmetric monoidal category.
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In this section we define Smith ideals for an arbitrary colored operad O in M. When M is pointed, we
observe in Theorem 3.4.2 that the cokernel and the kernel induce an adjunction between the categories of
Smith O-ideals and of O—algebra morphisms. This will set the stage for the study of the homotopy theory
of Smith O—ideals in the next several sections.

3.1 Operads, algebras and bimodules

The following material on profiles and colored symmetric sequences is from [Yau and Johnson 2015].
For colored operads our references are [Yau 2016; White and Yau 2018a].

Definition 3.1.1 Suppose € is a set, whose elements will be called colors.

(1) A €-—profile is a finite, possibly empty sequence ¢ = (cy, ..., cy) with each ¢; € €.

(2) When permutations act on C—profiles from the left (resp. right), the resulting groupoid is denoted
by X¢ (resp. E(ép).

(3) The category of €—colored symmetric sequences in M is the diagram category MZe € For a ¢
colored symmetric sequence X, we think of E‘ép (resp. €) as parametrizing the inputs (resp. outputs). For
(c:d) € TP x €, the corresponding entry of a €—colored symmetric sequence X is denoted by X (‘é)
(4) A €—colored operad (0, y, 1) in M consists of

¢ a C—colored symmetric sequence O in M;

¢ a structure morphism y: 0o O — O, where o is the circle product of O in [White and Yau 2018a,

o(£)e @) ()

inMforalld € €, ¢ =(cy,...,¢n) € g and b; € T for 1 <i <n, where b = (by,...,by) is
the concatenation of the b;; and

Definition 3.2.3], explicitly

e colored units 1.: 1 — O(¢) for c € €.

These data are required to satisfy the associativity, unity and equivariant conditions in [ Yau 2016, Definition
11.2.1].

(5) For a €—colored operad O in M, an O-algebra (A, A) consists of
e objects A, € M for ¢ € €, and

e structure morphisms 0o A — A, explicitly

@(ZZ)QMC1 ® - ® Ag, 2> Ag

inMforalld € €and ¢ = (c1,...,¢n) € Z¢.
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These data are required to satisfy the associativity, unity and equivariant conditions in [ibid., Definition
13.2.3]. Morphisms of O-algebras are required to preserve the structure morphisms as in [ibid., Definition
13.2.8]. The category of O-algebras in M is denoted by Alg(0; M). The forgetful functor is denoted by
U: Alg(0; M) — M<.

(6) Suppose (A4, ) is an O-algebra for some €—colored operad O in M. An A-bimodule (X, 8) consists of

¢ objects X, € M for ¢ € €, and

e structure morphisms
d
@(C) ® Ac, ®"'®Acz‘—1 ®X0i ®A0i+1 ®-® A, i>Xd

inMforalll <i <nwithn>1,deCandc=(c1,...,¢n) € Z¢.

These data are required to satisfy associativity, unity and equivariant conditions similar to those of an
O-algebra but with one input entry A and the output entry replaced by X. A morphism of A-bimodules
is required to preserve the structure morphisms.

(7) For a €—colored operad O in M, we write
(3.1.2) 0% =Lo0 and 069 =L1,0

for the €—colored operads in M® and IT/ID, respectively, where Lo: M — M® and Li:M— MC are the
strict monoidal functors in (2.2.4).

As a consequence of (2.4.2) and (3.1.2), we have

3.1.3) ker 6® = ker(Lo0) = L0 = 69, coker G = coker(L10) = Lo0 = 0°®.

Definition 3.1.4 Suppose, moreover, that M is a cofibrantly generated model category. We say that M is
operadically cofibrantly generated if the domains and codomains of I (resp. J) are small with respect
to a class of morphisms containing U(COol)—cell (resp. U(OoJ)—cell) for each € and each €—colored
operad 0. More explicitly, 0 o —: M® — Alg(0; M) is a left adjoint of the forgetful functor U [White and
Yau 2018a, 4.1.11]. To form O o I and O o J, we first embed M into the c—colored entry of M¢ for some
¢ € ¢, with 1 in all other entries, and then apply O o — to the images of I and J in M%. The condition
for operadically cofibrantly generated is assumed to hold for each ¢ € €.

Example 3.1.5 Every strongly cofibrantly generated model category is operadically cofibrantly generated.
The category of compactly generated topological spaces is not strongly cofibrantly generated. However,
it is operadically cofibrantly generated. Indeed, the domains and codomains of / U J are small relative
to inclusions [Hovey 1999, 2.4.1], and the morphisms in U(Oo/)—cell and U(COoJ )—cell are inclusions
[White and Yau 2020, 5.10].
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3.2 Arrow category of operadic algebras

Definition 3.2.1 For each €—colored operad O in M, the arrow category, in the sense of Definition 2.2.2,
—
of the category Alg(0; M) is denoted by Alg(0; M).

. . . . % . . . . % . .
Explicitly, an object in Alg(0; M) is an O—algebra morphism. A morphism in Alg(0; M) is a commutative
square in Alg(0; M) as in (2.2.3), with each arrow an O—algebra morphism.

Proposition 3.2.2 Suppose O is a €—colored operad in M. Then Alg(6®; M®) is canonically isomorphic
-
(0 Alg(0; M).

Proof An 6®—algebra f ={fc: Xc = Y.} consists of morphisms f. € M for ¢ € € and structure

morphisms \
©®(g> ®®fci = fa
i=1
in M® for all d € ¢ and ¢=(c1,...,cn) € Xg. This structure morphism is equivalent to the commutative
square

A
G(Z) ® ®?=1 XCz‘ ° > X4

AR fc’l de
Al

©(Z) ® ®?=1 YCi -+ Yq

in M. The associativity, unity, and equivariance of A translate into those of A¢ and A1, making (X, Ag) and

(Y, A1) into O—algebras in M. The commutativity of the previous square means that f: (X, A9) = (¥, A1)
— —> —_—

is a morphism of O—algebras. The identification of morphisms in Alg(0®; M®) and Alg(0; M) is similar. O

Remark 3.2.3 For the associative operad As, whose algebras are monoids, the identification of KZ‘X’—
algebras (that is, monoids in W) with monoid morphisms in M is [Hovey 2014, 1.5].

3.3 Operadic Smith ideals

Definition 3.3.1 Suppose O is a €—colored operad in M. The category of Smith O—ideals in M is defined
as the category AIg((T)“)D; MD).

Propositions 3.3.3 and 3.3.11 below unpack Definition 3.3.1. They should be compared with Proposition

3.2.2. For objects or morphisms A, ..., A¢, with s <¢, we use the abbreviation
t
(3.3.2) Acy, =) Ay
k=s
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Proposition 3.3.3 Suppose O is a €—colored operad in M. A Smith O—ideal in M consists of precisely
e an O-algebra (A, A1) in M,
e an A-bimodule (X, Ag) in M, and
e an A-bimodule morphism f: (X, A¢) — (A, A1)

such that, for 1 <i < j <n, the diagram

d d® fc; ®1d d
©(g)®Acl.i—1 ® X ®A0i+1._i—1 ®XC_;' ®A0_i+1.n I @(g)®AC1.i—1 ® X ®A0i+1.n
(3.34 148 fe; ®Idl l A
d o
G(g)®Acl.j—l RXe; ®Acjyy, Xa

in M is commutative.

Proof An 6D—algebra (fiA)in MC consists of

e morphisms f.: X, — A in M for ¢ € €, and

e structure morphisms J
6)D(C)Dfm O---0 fe, 25 fa
in MO foralld e €and ¢ = (c1,...,¢n) € Z¢

that are associative, unital and equivariant. Since = (’j) is the morphism @ — O (i), when n = 0, the

structure morphism A is simply the morphism A1 : @(g) — Ay in M for d € €. For n > 1, the structure
morphism A is equivalent to the commutative diagram

A
0(¢) ®dom(fe, O---0 fo,,) — Xg
(3.3.5) 14® f*l lfd
A
()@ Ac, ®-+® A,y —— Ag

in M, where f is induced by the morphisms f,. The bottom horizontal morphism A; in (3.3.5) together
with the morphisms A : @(g) — Ay for d € € give A the structure of an O—algebra.

The domain of the iterated pushout product f., O---0O f, is the colimit

(3.3.6) dom(fe, O---0O f¢,) = colim)fel ®:® fe,

€1,...,€p
in which (e1,...,€,) € {0, 1}" \ {(1,..., 1)} and f, = X, (resp. A¢,) if ¢, = 0 (resp. ¢; = 1). The
morphisms that define the colimit are given by the f,;. For each n—tuple of indices € = (e1,...,€,) €
{0, 1"\ {(1, ..., 1)}, we denote by
(3.3.7) Je ®--® fe, i"iom(fm O---0 fe,)
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the morphism that comes with the colimit. For each i € {1,...,n}, we denote by
€ =(,...,0,....,1)€{0,1}"
the n—tuple with 0 in the i™ entry and 1 in every other entry.

The top horizontal morphism A¢ in (3.3.5) precomposed with Id ® ¢, as in

O(Z) ® ACl.i—l ® XCi ® ACi+1.n

(3.3.8) Id®l€il N{g

A
0(¢) @dom(fe, O---0 fo,,) —— Xa

for 1 <i <n, gives X the structure of an A-bimodule. The commutative diagram (3.3.5), precomposed
with Id® ¢, asin (3.3.8), implies that f: (X, A9) = (4, A1) is an A-bimodule morphism. The morphism
AL in (3.3.4) is A§ in (3.3.8).

The diagram (3.3.4) is the boundary of the following diagram, where D = dom( f¢, O0---0O f¢,):

ld®f¢j ®Id

@(‘gl)®Acl,i—1 ®Xci ®‘Aci%—l,j—l ®ch ®‘ch+l,n ©(g)®Acl,i—l ®Xci ®‘Aci—|—l,n

Afl
V
)LEJ \

( )®Acl Jj—1 ®ch ®Ac/+l n

3.3.9) d® fe; ®Id

The upper left quadrilateral is commutative because D is the colimit in (3.3.6). The other two triangles
are commutative by the definition of /\gl and ASJ in (3.3.8).

The argument above can be reversed. In particular, to see that the commutative diagram (3.3.4), which is
the boundary of (3.3.9), yields the top horizontal morphism A¢ in (3.3.5), observe that the full subcategory
of the punctured n—cube {0, 1} \ {(1, ..., 1)} consisting of (€1, ..., €,) with at most two 0’s is a final
subcategory [Mac Lane 1998, IX.3]. Thus, the diagram (3.3.9) ensures that A exists. O

Remark 3.3.10 The special case of Proposition 3.3.3 for O = As is [Hovey 2014, 1.7].

Proposition 3.3.11 In the context of Proposition 3.3.3, a morphism of Smith O—ideals
(X, ho) L5 (4.20)) 2 (X 20) L5 (4. 2))
consists of precisely
e amorphismh': A — A’ of O-algebras, and
o amorphism h®: X — X' of A-bimodules, where X' becomes an A—bimodule via the restriction

along h',
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such that the square

K ,
(3.3.12) fcl l Y

hl ,

1s commutative for each ¢ € €.

Proof Following the proof of Proposition 3.3.3, we unravel the given morphism A: (f,A) — (f’,A’) of
6D—algebras. The underlying datum of /4 is a morphism f — f’ in ME. Thus, & consists of, for each
¢ € €, morphisms

(3.3.13) he: X.— X! and hl:A.— A,
in M such that the square (3.3.12) commutes.

The compatibility of & with the 6D—algebra structure means the following diagram commutes in M for
alld,cq1,...,cp €C:

= A
6O 0 foy OO fo, —— S
(3.3.14) 100he, Du-Dhcnl lhd
— d A/
080808, —— f;
If n =0, then (3.3.14) is the commutative diagram:
A
0(3) —— Aa
(3.3.15) H lh;
d M
0(g) —— 44
For n > 1, using the abbreviation
D =dom(fe, O---0 f¢,,) and D'=dom(f;, O---Of; ).

the diagram (3.3.14) becomes the commutative cube:

0(9)® D Ao y Xy

c p

s y N
14® /i o(%)®p" —= > X/,

(3.3.16) de
o) ® Ac,, — Aa |
14® £ 4

m% Iy \

o) ® 4L, ! > A
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The six commutative faces of (3.3.16) are as follows:

(1) The back face is (3.3.5) for (f, A), expressing the 6D—algebra structure A on f.
(2) The front face is (3.3.5) for (f’, A’), expressing the 6D—algebra structure A" on f".
(3) The right face is the square (3.3.12) for d € €.

(4) The bottom face and the n = 0 case (3.3.15) together express the fact that h': (4, 11) — (4, A)
is an O-algebra morphism.

(5) The left face imposes no extra condition because D is the colimit in (3.3.6) and similarly for D’.
In more detail, for each n—tuple (e1,...,€,) € {0, 1} \ {(1,..., 1)}, the square

hx
o ® @ fo, —— [, ®® f,
(3.3.17) f*l lﬂ;
h
Ac, ®-® Ag, —>A/cl®"'®A/cn

is commutative because it is a tensor product of » commutative squares corresponding to the n
tensor factors of the upper left corner.

e For a tensor factor with ¢; = 0, by definition f.; = X, and fe’i =X C’i. In this case, we have
the commutative square (3.3.12) for ¢; € €.

* For a tensor factor with ¢; = 1, by definition f¢; = Ac; and f;, = A,. Both fi and f are
given by the identity in the respective tensor factors, while both /1, and /] are given by éi.

Precomposing the top face of the commutative cube (3.3.16) with the morphism Id ® ¢.; in (3.3.8) yields
the commutative diagram:

i

d A%
@(g) ® ACl.i—l ® Xci ® ACi+1.n — X4
@AY, ®Idl
(3.3.18) 0() ® Acys_, ® XL, ® Ae, ., 1,

1 1
d®he, ; ®Id®hci+l.nl

e
Xy

Ci+1.n

o) @A, , ®X, 4

This commutative diagram expresses the fact that #%: X — X' is a morphism of A-bimodules, where X’
becomes an A-bimodule via the restriction along A!.

Finally, we observe that the top face of the cube (3.3.16) is actually equivalent to the commutative diagram
(3.3.18). To see this, consider an n—tuple € = (€1, ..., €,) € {0, 1}" with at least two entries equal to 0.
Then the morphism ¢, in (3.3.7) factors as follows for each index i € {1, ...,n} with ¢; = 0, and similarly
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f€1® ®fgn7

ACl.i—l & XCz‘ ® ACi-H,n

for f:

Thus, precomposing the top face of (3.3.16) with the morphism Id ® ¢ yields a diagram that factors
into two subdiagrams, one of which is (3.3.18). The other subdiagram commutes and imposes no extra
condition by the same argument above for (3.3.17). O

The description of Smith O—ideals and their morphisms in Propositions 3.3.3 and 3.3.11 imply the
following result:

Proposition 3.3.19 Suppose O is a €—colored operad in M. Then there exists a (€LU&)—colored operad 0°
in M such that there is a canonical isomorphism of categories

Alg(65; M) =~ Alg(0%; M).

Proof Denote the first and the second copies of € in € LI ¢ by ¢° and ¢!, respectively. For an element
¢ € €, we write ¢¢ € €€ for the same element for € € {0, 1}. The entries of 0° are defined as, for
d,c1,...,cne€Candeyq,..., e, €{0,1},

p dl d s do @(d) if at least one ¢; = 0,
P T
Ci,e-sCp ¢ Ci e Cpy %) otherwise.

The operad structure morphisms of O° are either those of O or the unique morphism from the initial
object @.

An 0%-algebra in M consists of, first of all, a (COUCI)—colored object in M, that is, a ¢9—colored object
X ={X.},cq0 and a €'—colored object 4 = {A} cq1.-

e The 0°-algebra structure morphism

dl

(3.3.20) (1 ¢ L) ®Aq @@, > Ay
Loel

corresponds to the O—algebra structure morphism A1 on A4 in (3.3.5).

e The O°-algebra structure morphism

d°
a3z o (aa G » 1) @ Aeriy ®Xei ® ey, 2> X
s b1 i LI

corresponds to the A—bimodule structure morphism )Lf)i on X in (3.3.8).
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¢ The composite
Xa Ag

(3.3.22) zl TA
1,®1d d dl
18X, ———0(%)® Xy =0°(%) ® X4

corresponds to the morphism f; in (3.3.5).

The identification of 0°—algebra morphisms and Smith O-ideal morphisms follows similarly from
Proposition 3.3.11. More explicitly, a morphism & of O%—algebras consists of a (¢°L1¢!)—colored morphism
in M. So & consists of component morphisms 42: X, — X/ and hl: A. — Al asin (3.3.13). To see that
these component morphisms make the diagram (3.3.12) commute, we use the fact that the components
of f are the composites in (3.3.22) and similarly for f”. The desired diagram (3.3.12) is the boundary of

the diagram:

Xe —= 5 10X, —<2% 05(%) @ Xe —2— A,

hgl Id®h‘c’l Id®h2l lh 1

X, S 1@ X, = 0 () ® XL —2 4

¢ The left square commutes by the naturality of the left unit isomorphism in the monoidal category M.

¢ The middle square commutes by the functoriality of ®.

¢ The right square commutes because & respects 0°—algebra structures.
This shows that the diagram (3.3.12) is commutative.
The other two conditions in Proposition 3.3.11 are the following:
(i) h': A — A’is an O-algebra morphism.
(i) h°: X — X’ is an A-bimodule morphism.

Condition (i) consists of the n = 0 case (3.3.15) and the bottom face of the cube (3.3.16). These are obtained
from the compatibility of 4 with the 0°—algebra structure morphism (3.3.20). Condition (ii) is the diagram
(3.3.18). This is obtained from the compatibility of 4 with the 0°—algebra structure morphism (3.3.21). O

The colored operad O° is somewhat similar to the two-colored operad for monoid morphisms in [Yau
2016, Section 14.3].

3.4 Operadic Smith ideals and morphisms of operadic algebras

In Proposition 2.4.3 we observe that, if M is a pointed symmetric monoidal category with all small limits
and colimits, then there is an adjunction

— ker _,
(34.1) MO <k:> M®
er
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with cokernel as the left adjoint and kernel as the right adjoint. Since cokernel is a strictly unital strong
symmetric monoidal functor, the kernel is a strictly unital lax symmetric monoidal functor, and the
adjunction is monoidal. If M is a pointed model category, then (coker, ker) is a Quillen adjunction. If M
is a stable model category, then (coker, ker) is a Quillen equivalence.

Theorem 3.4.2 Suppose M is a complete and cocomplete symmetric monoidal pointed category in which
the monoidal product commutes with colimits on both sides. Suppose O is a €—colored operad in M. Then
the adjunction (3.4.1) induces an adjunction

— — coker — -
(3.4.3) Alg(0E; ME) <k:>A|g(©®; M®)
er
in which the left adjoint, the right adjoint, the unit and the counit are defined entrywise.
Proof To simplify the notation, in this proof we write C = coker and K = ker. First we lift the functors
C and K. Then we lift the unit and the counit for the adjunction.

Step 1: lifting the kernel and the cokernel to algebra categories The functors in (3.4.1) lifts entrywise
to the functors in (3.4.3) for the following reasons:

¢ The functor
Alg(65; MP) £ Alg(6%; M®)
exists because K: M® — M5 is a lax symmetric monoidal functor and KG® = G- by (3.1.3).
¢ The functor
Alg(0F: MP) 55 Alg(0®: M®)
exists because C: M5 — M® is a strong symmetric monoidal functor and c69 =¢6%® by (3.1.3).

More explicitly, suppose ( f, 1) is an 6D—algebra as in Proposition 3.3.3. Then C f becomes an 0®-
algebra with structure morphism A# given by the following composite for all d,c1,...,c, € €, with
C2 = coker? the monoidal constraint of the cokernel in (2.4.4):

0°(%) ® Q' Cfey Yl
(3.4.4) H TCA

C@D(g) ® Qi=1Cles o C((@)D(g) O fe B0 fe)

The 6®—algebra axioms for (C £, A*¥) follow from the 6D—algebra axiom for ( f, 1) and the symmetric
monoidal axioms for the cokernel. The same reasoning also applies to the kernel.

Thus, there is a diagram of functors

— — C — —
Alg(05; ME) ——= Alg(0®; M®)

(3.4.5) Ul “ lU
(ME)¢ # (M®)¢
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with both U forgetful functors and
UK =KU.

To see that this equality holds, suppose (f, A) is an 6®—algebra as in the proof of Proposition 3.2.2. As
in (3.4.4), the 6D—algebra K(f.A) is given by (K f, /), where the 6D—algebra structure morphism A’ is
constructed from the monoidal constraint K? and KA. Since each U forgets the operad algebra structure
morphism, we obtain the equalities

UK(f, 1) = UKFA) = Kf =KU(L ).

The equality UK = KU holds on 6®—algebra morphisms because both K apply entrywise to morphisms,
and both U do not change the morphisms.

Next we show that the unit and the counit,
n:Id - KC and ¢:CK—1Id,
of the bottom adjunction C - K in (3.4.5) lift to the top between algebra categories.

Step 2: lifting the unit To show that n defines a natural transformation for the top functors in (3.4.5),
first we need to show that, for each 6D—algebra (f. A), the unit component morphism 7z : f — KCf
in M¢ is an 6D—algebra morphism. So we must show that the diagram

@00, ff —— ta
dOO; r]il
(3.4.6) KG®(¢) O O, KCf, a

KZ\L
s d KA‘# hd
K(©®(g) ® ®zr'l=1 CfCi) —> KCfq
in M is commutative for d, ¢y, ..., c, € €, with A* as in 34.4),n = N, s 00 =KG® by (3.1.3), and
K2 = ker? the monoidal constraint defined in (2.4.5).

To see that (3.4.6) is commutative, we consider the adjoint of each composite, which yields the boundary
of the following diagram in M:

c(6@odi, £,) & > C(fa)
NZ)—] TA#
(3.4.7) cadod; n) c62(?) ® Q= Cfe, (%) ® ®f—; Cfe;

[d®Q); CN /55:@(2{) Q) ecre;

C(K6® (%) O Oj_, KCfe,) —a CKG®(Y) ® 'y CKC £,
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The three subregions in (3.4.7) are commutative for the following reasons:
o The left triangle is commutative by naturality of the monoidal constraint C> = coker? of the cokernel.
 The upper right region is commutative by the definition of A* in (3.4.4).
¢ To see that the lower right triangle is commutative, first note that the counit component morphism
—o(d —~o(d
. ® ®
(3.4.8) g CKO (g)—>@ (g)
is the identity, since
CKG® = Cco™ = 0%,
by (3.1.3). For each of the other n tensor factors in the lower right triangle, the composite & fe; © Cn;

is the identity morphism by one of the triangle identities for the adjunction C 4 K [Mac Lane 1998,
IV.1, Theorem 1].

This proves that n¢: f — KCf is an (_@)D—algebra morphism. Moreover, 7 is natural with respect to
6D—algebra morphisms because a diagram in Al g(@m; MD) is commutative if and only if its underlying
diagram in M€ is commutative. Thus, the unit n: Id — KC is a natural transformation for the top horizontal
functors in (3.4.5) between algebra categories.

Step 3: lifting the counit Next we show that the counit &: CK — Id of the bottom adjunction C 4 K
in (3.4.5) lifts to the top between algebra categories. First we need to show that, for each 6®—algebra
(g, A), the counit component morphism g : CKg — g in MC is an 6®—algebra morphism. Denote by

(Kg, 1) = K(g, 4)
the 6D—algebra obtained by applying the top functor K in (3.4.5). The (_@)D—algebra structure morphism A
is the analogue of (3.4.4) for the kernel. In other words, it is the composite

(3.4.9) A = (KA) o K2
with K2 = ker? the monoidal constraint (24.5).

As noted in (3.4.8), each component eg® (4) is the identity. With (—)* as in (3.4.4), £g 18 an 6®—algebra
morphism if and only if the boundary of the diagram

— A#
@®(Z) ® ®ji=1 CKg; > CKgy
N2 CcA
—d CKA
C(07(c) O Oio Kee,)
(3.4.10) Id®®i & C(Kz) cey
AR d
CK(©®(g) ® ®7=1 ng)
/
R (d A
@®(g)®®?=l 8ci > 8d
in M commutes for d,c1,...,cp €€, withg; = Egc;» 0® = COU and 6° = KG® by (3.1.3).
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The four subregions in (3.4.10) are commutative for the following reasons:

e The top triangle is commutative by the definition of (—)* in (3.4.4).

¢ The triangle to its lower right is commutative by the definition of A in (3.4.9) and the functoriality
of C.

¢ The lower right quadrilateral is commutative by the naturality of the counit ¢: CK — Id.

Using the inverse of C% = coker?, the left triangle in (3.4.10) is equivalent to the diagram:

C(K?)
C(KO®(Z) O Ooi Keey) — CK(G2 () ® Bl 8e:)
(3.4.11) (€)1 ls
e®Q); &
CK©®( ) ® Q=i CKge, ————— @®(Z) ® Q=1 &;
The diagram (3.4.11) is commutative because the adjoint of each composite is K? = ker? defined in (2.4.5).
This shows that (3.4.10) is commutative, and &g is an 6®—algebra morphism.

Moreover, ¢ is natural with respect to 6®—algebra morphisms because a diagram in Alg(6®; M‘X’) is
commutative if and only if its underlying diagram in M€ is commutative. Thus, the counit ¢: CK — Id is
a natural transformation for the top horizontal functors in (3.4.5) between algebra categories.

Finally, the lifted natural transformations 7 and ¢ satisfy the triangle identities for an adjunction [Mac Lane
1998, 1V.1, Theorem 1] because diagrams in Alg((@)':'; MD) and Alg(6®; W) are commutative if and
only if their underlying diagrams in M€ are commutative. This proves that the top horizontal functors
(C,K) in (3.4.5) form an adjunction with the lifted unit and counit. |

4 Homotopy theory of Smith ideals for operads

In this section, we study the homotopy theory of Smith ideals for an operad O. Under suitable conditions
on the underlying monoidal model category M, in Definition 4.2.3 we define model structures on the
categories of Smith O-ideals and of O—algebra morphisms. When M is pointed, the cokernel and the
kernel yield a Quillen adjunction between these model categories. Furthermore, in Theorem 4.4.1 we
show that if M is stable and if cofibrant Smith O—ideals are entrywise cofibrant in MO, then the cokernel
and the kernel yield a Quillen equivalence between the categories of Smith O—ideals and of O—algebra
morphisms.

Definition 4.0.1 We say that a €—colored operad O is admissible if Alg(0; M) admits a transferred model
structure, with weak equivalences and fibrations defined entrywise in M¢.

4.1 Admissibility of operads

Theorem 4.1.1 [White and Yau 2018a, 6.1.1 and 6.1.3] Suppose M is an operadically cofibrantly
generated (Definition 3.1.4) monoidal model category satisfying the following condition:
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(®) Foreachn > 1 and for each object X € MEZP, the function
X®z, (0T M->M

takes trivial cofibrations into some subclass of weak equivalences that is closed under transfinite
composition and pushout.

Then each €—colored operad O in M is admissible in the sense of Definition 4.0.1.

Example 4.1.2 Strongly cofibrantly generated monoidal model categories that satisfy (¢) include

(1) pointed or unpointed simplicial sets [Quillen 1967] and all of their left Bousfield localizations
[Hirschhorn 2003];

(2) bounded or unbounded chain complexes over a commutative ring containing the rationals Q
[Quillen 1967];

(3) symmetric spectra built on either simplicial sets or compactly generated topological spaces, motivic
symmetric spectra, and G—equivariant symmetric spectra with either the positive stable model
structure or the positive flat stable model structure [Pavlov and Scholbach 2018];

(4) the category of small categories with the folk model structure [Rezk 2000];
(5) simplicial modules over a field of characteristic zero [Quillen 1967];

(6) the stable module category of k[G]-modules [Hovey 1999, 2.2], where k is a field and G is a finite
group (we recall that the homotopy category of this example is trivial unless the characteristic of k

divides the order of Gs, the setting for modular representation theory).

The condition (¢) for (1)—(2) is proved in [White and Yau 2018a, Section 8], which also handles symmetric
spectra built on simplicial sets, and (4)—(5) can be proved using similar arguments. The condition (¢) for
the stable module category is proved by the argument in [White and Yau 2020, 12.2]. For symmetric
spectra built on topological spaces, motivic symmetric spectra and equivariant symmetric spectra, we refer
to [Pavlov and Scholbach 2018, Section 2], starting with € = Top, sSet®, Top%, and the Al—localization
of simplicial presheaves with the injective model structure.

In each of these examples except those built from Top, the domains and the codomains of the generating
(trivial) cofibrations are small with respect to the entire category. So Proposition 2.4.6 applies to show
that, in each case, the arrow category with either the injective or the projective model structure is strongly
cofibrantly generated. The category of (equivariant) symmetric spectra built on topological spaces is
operadically cofibrantly generated by an argument analogous to that of Example 3.1.5, as are the arrow
categories, by the remark below.

Remark 4.1.3 In [White and Yau 2018a, 6.1.1 and 6.1.3], M is assumed to be strongly cofibrantly
generated, but actually operadically cofibrantly generated suffices for the proof. The smallness hypothesis
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is required in order to run the small object argument, and O o I (resp. O o J) are the generating (trivial)
cofibrations. We have previously pointed out that operadically cofibrantly generated is a sufficient
smallness hypothesis in [White and Yau 2020, 5.7]. The proof of Proposition 2.4.6 also proves that, if M
is operadically cofibrantly generated, then so are MZ and M®.

Even if () is not satisfied, sometimes the classes of morphisms defined in Theorem 4.1.1 in Alg(0; M)
define a semi-model structure [White and Yau 2018a, 6.2.3 and 6.3.1]. We therefore phrase our arguments
in this section to only rely on the semi-model category axioms in categories of algebras. In Section 7, we
include a comparison to the co—categorical approach to encoding the homotopy theory of operad algebras.

4.2 Admissibility of operads in the arrow category

Recall the injective model structure on the arrow category, which is a monoidal model category if M is,
by Theorem 2.3.1.

Theorem 4.2.1 If M is a monoidal model category satisfying (§), then so is M®. Therefore, if M is also

cofibrantly generated in which the domains and the codomains of all the generating (trivial) cofibrations
®

inj 1 admissible.

are small in M, then every €—colored operad on M

Proof Suppose M satisfies (¢) with respect to a subclass 6 of weak equivalences that is closed under

®

inj such

transfinite composition and pushout. We write €’ for the subclass of weak equivalences f in M
that Bo, B1 € 6. Then 4’ is closed under transfinite composition and pushout.

Suppose fx: Xo — X is an object in (W)EZ" and a: fy — fw,

Vo L) W()

4.2.2) fvl lfw

v, —2 W

is a trivial cofibration in M®. We will show that fx ®x, aP” belongs to €’ The morphism fx ®x, o

. - . .
in M® is the commutative square

X0®2na(|):|"

Xo ®x,, dom(a§™) Xo ®5x, W"
fX®>:,,f*l lfx®2nf1§n
X ®x, "

X; ®s, dom(aPn) 1, ¥y @5, W

in M, where f, is induced by fy and fi. Since o and o are trivial cofibrations in M and since
Xo, X1 € ME"p, the condition (¢) in M implies that the two horizontal morphisms in the previous diagram
are both in . This shows that M®

inj satisfies (@) with respect to the subclass 6’ of weak equivalences.

The second assertion is now a consequence of Proposition 2.4.6, Example 3.1.5 and Theorem 4.1.1. O
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Definition 4.2.3 Suppose M is a cofibrantly generated monoidal model category satisfying (¢) in which
the domains and the codomains of the generating (trivial) cofibrations are small with respect to the entire
category. Suppose O is a €—colored operad in M.

(1) Equip the category of Smith O-ideals AIg(@D; MD) with the model structure given by Proposition
3.3.19 and Theorem 4.1.1. In other words, a morphism « of Smith O—ideals is a weak equivalence
(resp. fibration) if and only if ¢ and o1 are colorwise weak equivalences (resp. fibrations) in M.

(2) Equip the category Alg(6®; W) with the model structure given by Theorem 4.2.1. In other words,
a morphism « in Alg(G®; M®) is a weak equivalence (resp. fibration) if and only if a¢ (= the
c—colored entry of «) is a weak equivalence (resp. fibration) in M?gj foreach ¢ € €.

When (@) is not satisfied but the classes of morphisms above still define semi-model structures (eg
Remark 5.1.6, Corollary 5.2.3 and Theorem 6.2.1), we still denote those semi-model structures by
Alg(65; M) and Alg(G®; M®).

Remark 4.2.4 Recall diagram (3.4.5). In Definition 4.2.3 the (semi-)model structure on Smith 0—
ideals is induced by the forgetful functor to M®-¢, so its weak equivalences and fibrations are defined
entrywise in M, or equivalently in ME. On the other hand, the model structure on O—algebra morphisms
Alg(6®; W’) is induced by the forgetful functor to (M{%)Q. The (trivial) fibrations in Alg((T)“)@; M®) are,
in particular, entrywise (trivial) fibrations in M. However, they are not defined entrywise in M, since
(trivial) fibrations in M?;J are not defined entrywise in M, as explained in Theorem 2.3.1.

Suppose K € M is a subclass of morphisms in a category M with a chosen initial object and € is a set
with ¢ € €. We denote by
K. cM®

the subclass of morphisms in which the morphisms in K are concentrated in the c—entry with all other
entries the initial object. The following observation will be used in the proof of Theorem 6.2.1 below:

Proposition 4.2.5 In the context of Definition 4.2.3, the (semi-)model structure on Smith O—ideals is
cofibrantly generated with generating cofibrations 696 (Lol U L11), and generating trivial cofibrations
6% (LoJ UL J), forc € €, where I and J are the sets of generating cofibrations and generating trivial
cofibrations in M.

Proof The category Alg((@)D; MD) already has a (semi-)model structure, namely the one in Definition
4.2.3(1), with weak equivalences and fibrations defined via the forgetful functor U in the free—forgetful
adjunction
— 6‘30— — —
Oy — — 0. \p8
since the weak equivalences and fibrations in Mpmj are defined in M. To see that Alg((@)D; MD) has a
cofibrantly generated model structure with weak equivalences and fibrations defined entrywise in Mproj
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and with generating (trivial) cofibrations as stated above, we refer to the computations of [Johnson and
Yau 2009, Lemma 3.3], which produces the sets I and J, proves the requisite smallness, and proves that
fibrations and trivial fibrations are characterized by lifting with respect to / and J. Hence, this proof
works just as well for semi-model categories. Since a (semi-)model structure is uniquely determined by
the classes of weak equivalences and fibrations, this second model structure on Alg((@)':'; MD) must be
the same as the one in Definition 4.2.3(1). O

4.3 Quillen adjunction between operadic Smith ideals and algebra morphisms

Proposition 4.3.1 Suppose M is a pointed cofibrantly generated monoidal model category, in which
the domains and the codomains of the generating (trivial) cofibrations are small with respect to the
entire category. Suppose O is a €—colored operad in M such that Alg((@)':'; MD) and Alg(6®; M®) admit
transferred semi-model structures as in Definition 4.2.3. Then the adjunction

NN cok -0 —
4.3.2) Alg(65: M) <_k—> Alg(G®: M®)
er
in (3.4.3) is a Quillen adjunction.

Proof Suppose « is a (trivial) fibration in Alg(6®; M‘X’). We must show that ker « is a (trivial) fibration

in Alg(@:‘; MD), that is, an entrywise (trivial) fibration in M. Since (trivial) fibrations in Mgoj are defined

entrywise in M, it suffices to show that U ker« is a (trivial) fibration in (MEO]-)C. Since there is an
equality —see (3.4.5) —

Ukera =kerUa
and since ker: (MZ)® — (MC) )€ is a right Quillen functor by Proposition 2.4.3(3), we finish the proof by
observing that Ux € (Mfgj)@ is a (trivial) fibration. a

Recall that a pointed (semi-)model category is stable if its homotopy category is a triangulated category
[Hovey 1999, 7.1.1].

Proposition 4.3.3 In the setting of Proposition 4.3.1, suppose M is also a stable (semi-)model category.
Then the right Quillen functor ker in (4.3.2) reflects weak equivalences between fibrant objects.

Proof Suppose « is a morphism in Alg(6®; W) between fibrant objects such that ker o € Alg(é)':'; MD)
O e
kera & (W15,)

is a weak equivalence. We must show that « is a weak equivalence, that is, that Ua € (M?gj)€ is a weak

is a weak equivalence. So ker « is entrywise a weak equivalence in M, or equivalently U kera € (M

equivalence. The morphism U is still a morphism between fibrant objects, and
kerUa = U kera

is a weak equivalence in (Mgoj)? Since ker: (M?};j)C — (Mgoj)¢ is a right Quillen equivalence by
Proposition 2.4.3(4), it reflects weak equivalences between fibrant objects by [Hovey 1999, 1.3.16]. So

Ua is a weak equivalence. O
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4.4 Quillen equivalence between operadic Smith ideals and algebra morphisms

The following result says that, under suitable conditions, Smith O—ideals and O—algebra morphisms have
equivalent homotopy theories:

Theorem 4.4.1 Suppose M is a cofibrantly generated stable monoidal model category, and Alg((_@ﬁ; MD)
and Alg((@)@; M®) admit transferred (semi-)model structures as in Definition 4.2.3. Suppose O is a €—
colored operad in M such that cofibrant ﬁu—algebras are also underlying cofibrant in (Mgoj)Q. Then the
Quillen adjunction

— — coker — —
Alg(05; M7) =—= Alg(0®: M®)
er
is a Quillen equivalence.

Proof Using Proposition 4.3.3 and [Hovey 1999, 1.3.16] (or [White 2017, Remark 4.3] for the semi-
model category case), it remains to show that for each cofibrant object fy € Alg((@)':'; MD), the derived
unit

fx = ker R coker fx
is a weak equivalence in Alg((@)D; MD), where Rg is a fibrant replacement functor in Alg((@)@; M‘g). In

other words, we must show that U is a weak equivalence in the model category (Mgoj)?

Suppose R is a fibrant replacement functor in (M?gj)? Consider the solid-arrow commutative diagram

U coker fy ——— URg coker fx

RU coker fX —»0

in (M?;j)? Here the left vertical morphism is a trivial cofibration and is a fibrant replacement of U coker fy.
The top horizontal morphism is a weak equivalence and is U applied to a fibrant replacement of coker fy.
The other two morphisms are fibrations. So there is a dotted morphism « that makes the whole diagram
commutative. By the two-out-of-three property, « is a weak equivalence between fibrant objects in (Mfgj)@.
Since ker: (M®)¢ — (ME )€ is a right Quillen functor, by Ken Brown’s lemma [Hovey 1999, 1.1.12]

inj proj N
. . . D c
ker o is a weak equivalence in (Mproj) .

We now have a commutative diagram

U
Ufx ! U ker Rg coker fy
sl
ker R coker Ufy ker RU coker fx ke—ia> ker URg coker fx

in (MD )¢, where ¢ is the derived unit of Ufy. To show that Un is a weak equivalence, it suffices to show

proj =
that ¢ is a weak equivalence. By assumption Ufy is a cofibrant object in (Mgoj)c. Since (coker, ker)
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is a Quillen equivalence between (Mgojf and (Mi?;j)ﬁ the derived unit ¢ is a weak equivalence by

[ibid., 1.3.16]. |

Example 4.4.2 Among the model categories in Example 4.1.2,

(1) the categories of bounded or unbounded chain complexes over a semisimple ring that contains the
rational numbers,

(2) the stable module category of k[G]-modules,

(3) the categories of symmetric spectra, G—equivariant symmetric spectra built on simplicial sets for a
finite group G and motivic symmetric spectra, with either the positive or the positive flat stable
model structure

satisfy the conclusion of Theorem 4.4.1 for every operad 0. Admissibility is proven in [White and Yau
2018a, 6.1.1; 2020, 5.15]. Stability is discussed in [Hovey 1999, Chapter 7; White and Yau 2018a,
8.3; Pavlov and Scholbach 2018, Section 2]. All are strongly cofibrantly generated because they are
combinatorial model categories [White and Yau 2020, Sections 11 and 12; Pavlov and Scholbach 2018,
Section 2]. So all satisfy the conditions of Theorem 4.4.1 except that the condition about cofibrant Smith
O-ideals being colorwise cofibrant in Mgoj is more subtle. We will consider this issue in the next two
sections, proving this condition for (1) in Corollary 5.2.4 and for (2) in Corollary 6.2.5.

For classical, equivariant or motivic symmetric spectra, we must tweak the proof of Theorem 4.4.1. Let
( M Emj)€ refer to the projective model structure on the arrow category where M is the injective stable model
structure on the relevant category of symmetric spectra. Since the weak equivalences of the injective
stable model structure coincide with those of the positive (flat) stable model structure, in the last paragraph
of the proof, it is enough to prove that € is a weak equivalence with respect to the injective stable model
structure on spectra. Hence, it suffices for Ufy to be a cofibrant object in (Mgoj)ﬁ, which follows from
the proof of [White and Yau 2018a, 8.3.3], using our filtrations and the fact that the cofibrations of the

injective stable model structure are the monomorphisms.

We note that we cannot add the injective stable model structure on symmetric spectra to the list in
Example 4.4.2 because it is not true that every operad is admissible. A famous obstruction due to Gaunce
Lewis prevents the Com operad from being admissible, for example.

5 Smith ideals for commutative and X —cofibrant operads

In this section we apply Theorem 4.4.1 and consider Smith ideals for the commutative operad and
Y ¢—cofibrant operads (Definition 5.2.1). In particular, in Corollary 5.2.3 we will show that Theorem 4.4.1
is applicable to all Xg—cofibrant operads. On the other hand, the commutative operad is usually not
Y—cofibrant. However, as we will see in Example 5.1.3, Theorem 4.4.1 is applicable to the commutative
operad in symmetric spectra with the positive flat stable model structure.
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5.1 Commutative Smith ideals

For the commutative operad, which is entrywise the monoidal unit and whose algebras are commutative
monoids, we use the following definition from [White 2017, 3.4]. The notation ?/3, means taking the
3. ,—coinvariants.

Definition 5.1.1 A monoidal model category M is said to satisfy the strong commutative monoid axiom
if, whenever f: K — L is a (trivial) cofibration, then so is f5"/%,, where f5” is the n—fold pushout
product (which can be viewed as the unique morphism from the colimit Q, of a punctured n—dimensional
cube to L®"), and the ¥, —action is given by permuting the vertices of the cube.

The following result says that, under suitable conditions, commutative Smith ideals and commutative
monoid morphisms have equivalent homotopy theories:

Corollary 5.1.2 Suppose M is a cofibrantly generated stable monoidal model category that satisfies the
—
strong commutative monoid axiom, the monoid axiom, and in which cofibrant ComP—-algebras are also

underlying cofibrant in ME

proj (this occurs, for example, if the monoidal unit is cofibrant). Then there is a

Quillen equivalence .
—_— — coker —_— —
Alg(Com™; MP) —— Alg(Com®; M®)
ker

in which Com is the commutative operad in M.

Proof First, [White 2017, 5.12 and 5.14] ensures that M® and MO satisfy the strong commutative
monoid axiom, and [Hovey 2014, 2.2 and 3.2] (also Theorems 2.3.1 and 2.4.1) ensures that they satisfy
the monoid axiom. Hence, by [White 2017, 3.2], A|g(63%‘3; MD) and Alg(a%@’; M@’) carry transferred
model structures.

For the commutative operad, it is proved in [ibid., 3.6 and 5.14] that, with the strong commutative monoid
-_— —

axiom and a cofibrant monoidal unit, cofibrant Com™—algebras are also underlying cofibrant in M=. So

Theorem 4.4.1 applies. |

Example 5.1.3 (commutative Smith ideals in symmetric spectra) Example 4.4.2 shows that the category
of symmetric spectra with the positive flat stable model structure satisfies the hypotheses in Theorem 4.4.1.
It also satisfies the strong commutative monoid axiom [ibid., 5.7] and the monoid axiom [Schwede and
Shipley 2000]. While the monoidal unit is not cofibrant, nevertheless, White [2017, 5.15] shows that
cofibrant commutative Smith ideals forget to cofibrant objects of MO Therefore, Corollary 5.1.2 applies
to the commutative operad Com in symmetric spectra with the positive flat stable model structure.

Example 5.1.4 (commutative Smith ideals in algebraic settings) Let R be a commutative ring containing
the ring of rational numbers Q. Corollary 5.2.4 shows that the category of (bounded or unbounded)
chain complexes of R—modules satisfies the conditions of Theorem 4.4.1. They also satisfy the strong
commutative monoid axiom and the monoid axiom [ibid., Lemma 5.1]. Hence, Corollary 5.1.2 applies, to
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give a homotopy theory of ideals of CDGAs. The same is true of the stable module category of R = k[G],
where k is a field and G is a finite group, using Corollary 6.2.5. The result is a homotopy theory of ideals
of commutative R—algebras.

Example 5.1.5 (commutative Smith ideals in (equivariant) orthogonal/symmetric spectra) Let G be a
compact Lie group. The positive flat stable model structure on G—equivariant orthogonal spectra satisfies
the strong commutative monoid axiom [ibid., 5.10], the monoid axiom [White 2022, Section 5.8] and the
property that cofibrant commutative Smith ideals forget to cofibrant objects of mC [White 2017, 5.15].
The same is true for Hausmann’s G—symmetric spectra built on either simplicial sets or topological spaces
for a finite group G by [Hausmann 2017, 6.4, 6.16 and 6.22], and for Schwede’s positive flat model
structure for global equivariant homotopy theory (where commutative monoids are ultracommutative ring
spectra) [Schwede 2018, 4.3.28, 5.4.1 and 5.4.3]. Hence, Corollary 5.1.2 applies in all three settings.

Of course, taking G trivial in Example 5.1.5, one obtains that Corollary 5.1.2 applies to orthogonal spectra
with the positive flat stable model structure [White 2022, Section 5.8].

Remark 5.1.6 If, in Corollary 5.1.2, M fails to satisfy the monoid axiom, then we still have semi-model
>0, 0 > ®. O : :
structures on Alg(Com—; M=) and Alg(Com®; M®) by [White 2017, 3.8]. In this case, Theorem 4.4.1
. . -0 . . =0 . .
still applies, as long as cofibrant Com—-algebras are also underlying cofibrant in Mro; (€8 if the monoidal
unit is cofibrant, by [ibid., 3.6]).

5.2 Smith ideals for X —cofibrant operads

For a cofibrantly generated model category M and a small category %, recall that the diagram category M¥
inherits a projective model structure with weak equivalences and fibrations defined entrywise in M
[Hirschhorn 2003, 11.6.1]. We use this below when & = Z;p x € is the groupoid in Definition 3.1.1. In
this case, the category M? is the category of ¢—colored symmetric sequences.

Definition 5.2.1 For a cofibrantly generated model category M, a €—colored operad in M is said to be
Y ¢—cofibrant if its underlying €—colored symmetric sequence is cofibrant. If € is the one-point set, then
we say Y—cofibrant instead of X, ,—cofibrant

Proposition 5.2.2 Suppose M is a cofibrantly generated model category and 9 is a small category. If
X € M? is cofibrant, then L1 X € (I\7ID )? and LoX € (W)@ are cofibrant. In particular, if O is a

proj/ inj _
Y.¢—cofibrant €—colored operad in M, then oH = L0 is a ¥g—cofibrant €—colored operad in Mll):r'oj and
0®isa Y ¢—cofibrant €—colored operad in M®.

Proof The Quillen adjunction L1: M & Mp‘jmj :Ev; lifts to a Quillen adjunction of Y¥—diagram categories

L,
MQD = (mDro)@
<—Ev] proj

by [ibid., 11.6.5(1)], and similarly for (Lo, Evp). If X € M? is cofibrant, then L; X and LoX are cofibrant
since L1 and L are left Quillen functors. O
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The following result says that, under suitable conditions, for a X ¢—cofibrant €—colored operad O, Smith

O-ideals and O-algebra morphisms have equivalent homotopy theories:

Corollary 5.2.3 Suppose M is as in Theorem 4.4.1 and O is a ¥ ¢—cofibrant €—colored operad in M. Then
AIg(@D; MD) and Alg(6®; W’) have transtferred semi-model structures, where cofibrant 6D—algebras
v )€

are also underlying cofibrant in (MpIOJ

Hence, there is a Quillen equivalence
— — coker N N
Alg(0E; MY) <_k—> Alg(0®: M®).
er

Proof The arrow categories MprOJ and Mf% are cofibrantly generated monoidal model categories by
Theorems 2.3.1 and 2.4.1. By Proposition 5.2.2, the €—colored operads 69 in M':| and 0% in Mﬁ
are X¢—cofibrant. Theorem 6.3.1 in [White and Yau 2018a], applied to MprOJ and M® now gives the
transferred semi-model structures and says that every cofibrant @D—algebra is underlying cofibrant in

(MpDrOJ)C So Theorem 4.4.1 applies. m|

The following provides one source of applications of Corollary 5.2.3, and answers a question Pavel

Safranov asked the first author. This result generalizes [White 2017, Lemma 5.1; White and Yau 2018a,
8.1], as it applies in particular to fields of characteristic zero.

Corollary 5.2.4 Suppose R is a commutative ring with unit and M is the category of bounded or
unbounded chain complexes of R—modules, with the projective model structure. The following are

equivalent:

(1) R is a semisimple ring containing the rational numbers Q.

(2) Every symmetric sequence is projectively cofibrant.

In particular, for such rings R, every €—colored operad in M is X¢—cofibrant, so Corollary 5.2.3 is
applicable for all colored operads in M. If R contains Q (but is not necessarily semisimple), then every

entrywise cofibrant €—colored operad in M is X ¢—cofibrant and admissible.

Proof Assume (1). Maschke’s theorem [Polcino Milies and Sehgal 2002, 3.4.7] guarantees that each
group ring R[X,] is semisimple (since 1/n! exists in R, making n! invertible). This means every module
M over R[%,] is projective. In particular, M is a direct summand of a module induced from the trivial
subgroup, and has a free X, —action. Hence, (2) follows.

Conversely, if (2) is true, then it implies that, for every n, every module in R[X,] is projective. This means
each R[X,] is a semisimple ring. By [loc. cit.], this implies that R is semisimple and n! is invertible in R

for every n. It follows that QQ is contained in R.

For such R, the projective model structure on (bounded or unbounded) chain complexes of R—modules has
every object cofibrant (so, automatically, cofibrant operad algebras forget to cofibrant chain complexes).
Hence, any €—colored operad is entrywise cofibrant and hence ¥¢—cofibrant. Furthermore, Theorem 4.1.1
implies that all operads are admissible, since every X € ME7 is Y, —projectively cofibrant.
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If R contains QQ but is not semisimple, then there can be nonprojective R—modules, but the argument
of [loc. cit.] shows that an R[X,]-module that is projective as an R—module is projective as an R[X,]-
module. It follows that Corollary 5.2.3 holds for entrywise cofibrant operads, including the operad Com.
Indeed, all operads are admissible thanks to Theorem 4.1.1, since, for any trivial cofibration f and any
X e MEr, maps of the form X ®x, f O are trivial h—cofibrations and this class of morphisms is closed
under pushout and transfinite composition [White 2022, Section 5.8]. O

Example 5.2.5 Suppose M is as in Theorem 4.4.1, that is, cofibrantly generated, stable, monoidal and
with (co)domains of 7 U J small. Many examples of such M are provided in Examples 4.4.2 and 5.2.6
and in [White 2017; 2022; White and Yau 2018a; 2018b; 2019a; 2019b; 2020; Gutiérrez and White 2018;
Hovey and White 2020]. Here are some examples of X—cofibrant operads, for which Corollary 5.2.3 is
applicable:

Smith ideals The associative operad As, which has As(n) = [ [y 1 as the n'™ entry and which has
monoids as algebras, is X—cofibrant. In this case, Corollary 5.2.3 is [Hovey 2014, Corollary 4.4(1)].

Smith A —ideals Any As—operad, defined as a £—cofibrant resolution of As, is X—cofibrant. In this
case, Corollary 5.2.3 says that Smith Ao—ideals and Aso—algebra morphisms have equivalent homotopy
theories. For instance, one can take the standard differential graded Aoo—operad [Markl 1996] and, for
symmetric spectra, the Stasheff associahedra operad [1963a; 1963b].

Smith E—ideals Any E,,—operad, defined as a ¥—cofibrant resolution of the commutative operad
Com, is X—cofibrant. In this case, Corollary 5.2.3 says that Smith E,—ideals and E,—algebra morphisms
have equivalent homotopy theories. For example, for symmetric spectra, one can take the Barratt—Eccles
E—operad EXy [1974]. An elementary discussion of the Barratt—Eccles operad is in [Johnson and Yau
2021, Section 11.4].

Smith E,-ideals For each n > 1, the little n—cubes operad %,, [Boardman and Vogt 1973; May 1972]
is X—cofibrant and is an E,—operad by definition [Fresse 2017, 4.1.13]. In this case, with M being
symmetric spectra with the positive (flat) stable model structure, Corollary 5.2.3 says that Smith €,,—ideals
and 6,—algebra morphisms have equivalent homotopy theories. One may also use other X—cofibrant
E,—operads [Fiedorowicz 1998], such as the Fulton—-MacPherson operad [Getzler and Jones 1994; Fresse
2017, 4.3], which is actually a cofibrant E,—operad. An elementary discussion of a categorical E,—operad
is in [Johnson and Yau 2021, Chapter 13].

Example 5.2.6 The power of restricting attention to the class of X¢—cofibrant colored operads is that
Theorem 4.4.1 holds for a larger class of model categories. In particular, the following model categories
satisfy the conditions of Theorem 4.4.1 for the class of X ¢—cofibrant colored operads, as do all examples
listed in Section 5.1:

(1) S-modules with the model structure from [Elmendorf et al. 1997].
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(2) The projective, injective, positive or positive flat stable model structures [White 2022, 5.59 and 5.61]
on symmetric spectra, G—equivariant orthogonal spectra (for a compact Lie group G) and motivic
symmetric spectra.

(3) Mandell’s model structure on G—equivariant symmetric spectra built on simplicial sets or topological
spaces, where G is a finite group in the former case and a compact Lie group in the latter case
[Mandell 2004].

(4) Model structures for (equivariant) stable homotopy theory based on Lydakis’s theory of enriched
functors [Dundas et al. 2003]. For example, this includes the model category of G—enriched
functors from finite G—simplicial sets to G—simplicial sets, where G is a finite group, from [ibid.,
Theorem 2].

(5) Any model structure M on symmetric spectra built on (6, G) where €6 is a model category and G
is an endofunctor, as long as M is an operadically cofibrantly generated, monoidal, stable model
structure. For example, taking € to be the canonical model structure on small categories, and using
the suspension discussed in [White and Yau 2020, Section 13], one obtains by [Hovey 2001, 7.3]
a combinatorial, stable, monoidal model structure on symmetric spectra of small categories with
applications to Goodwillie calculus. Using [Pavlov and Scholbach 2018, Section 2], one may obtain
positive and positive flat variants. Another example is taking € to be the /—spaces or J—spaces of
Sagave and Schlichtkrull, and building projective, positive or positive flat spectra on them as in
[loc. cit.].

(6) The projective model structure on bounded or unbounded chain complexes over a commutative
ring R [White and Yau 2020, Section 11].

(7) The stable module category of k[G], where G is a finite group and k is a principal ideal domain
[ibid., Section 12].

All of these examples are stable monoidal model categories, so Corollary 5.2.3 applies, once the requisite
smallness hypothesis for the generating (trivial) cofibrations is checked. Symmetric spectra, motivic
symmetric spectra, examples (6) and (7), and Mandell’s model (3) of G—equivariant symmetric spectra
built on simplicial sets are all combinatorial, as is the model structure on enriched functors (4) in simplicial
contexts. Symmetric spectra as in (5) are combinatorial if € is combinatorial. S—modules, G—equivariant
orthogonal spectra, Mandell’s model (3) in topological contexts, and symmetric spectra built on topological
spaces (another example of (5)) are operadically cofibrantly generated just as in Example 3.1.5, since
they are built from compactly generated spaces. We recall that spaces are small relative to inclusions, and
the morphisms in (Oo(/ UJ))—cell are inclusions [ibid., 5.10].

6 Smith ideals for entrywise cofibrant operads

In this section we apply Theorem 4.4.1 to operads that are not necessarily X¢—cofibrant. To do that, we
need to redistribute some of the cofibrancy assumptions — that cofibrant Smith O—ideals are underlying
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cofibrant in the arrow category — from the colored operad to the underlying category. We will show
in Theorem 6.2.1 that Theorem 4.4.1 is applicable to all entrywise cofibrant operads provided that M
satisfies the cofibrancy condition (Q) below. This implies that, over the stable module category [Hovey
1999, 2.2], Theorem 4.4.1 is always applicable.

6.1 Cofibrancy assumptions

Definition 6.1.1 Suppose M is a cofibrantly generated monoidal model category. Define the following
conditions in M:

(®) For each n > 1 and each morphism f € M=% that is an underlying cofibration between cofibrant

objects in M, the function

f Oz, (5):M¥ > M
takes each morphism in M that is an underlying cofibration in M to a cofibration in M. More
explicitly, this condition asks that, for each morphism g € M*» that is an underlying cofibration
in M, the morphism

fOs,g=(f08)/%n
is a cofibration in M.

(&)cot For each n > 1 and each object X € M=% that is underlying cofibrant in M, the function
X®s, (0P M->M
preserves cofibrations.

(®)t.cot For each n > 1 and each object X € MZ% that is underlying cofibrant in M, the function
X®s, (9T M->M

preserves trivial cofibrations.

Remark 6.1.2 The condition (Q) implies (&)cof, since (& — X) O (—) = X ® (—). The condition ()cof
was introduced in [White and Yau 2018a, 6.2.1], where the authors proved that, if M satisfies ()cof
and (&)¢.cof, then there exist transferred semi-model structures on algebras over entrywise cofibrant (but
not necessarily X g—cofibrant) colored operads. It is, therefore, no surprise that we consider (&) and
its variant (Q) here in order to use Theorem 4.4.1 for operads that are not necessarily X¢—cofibrant. Of
course, (@) implies (&);.cof> SO (@)t.cof holds in all the model categories in Example 4.1.2.

Proposition 6.1.3 The condition (Q) holds in the categories of
(1) simplicial sets with either the Quillen model structure or the Joyal model structure [Lurie 2009],
where cofibrations are the monomorphisms;

(2) bounded or unbounded chain complexes over a field k of characteristic zero, where cofibrations
are degreewise monomorphisms [Hovey 1999, 2.3.9] since every monomorphism of k—modules
splits and every chain complex is cofibrant (see Corollary 5.2.4);
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(3) small categories with the folk model structure where cofibrations are injective on objects [Rezk
2000];

(4) the stable module category of k[G]-modules with the characteristic of k dividing the order of G,
where cofibrations are injections [Hovey 1999, 2.2.12]; and

(5) the injective model structure on symmetric spectra, G—equivariant symmetric spectra and motivic
symmetric spectra, where the cofibrations are the monomorphisms [Hovey 2001].

Proof For simplicial sets with either model structure, a cofibration is precisely an injection, and the
pushout product of two injections is again an injection. Dividing an injection by a ¥,—action is still an
injection. The other cases are proved similarly. a

Proposition 6.1.4 If () holds in M, then it also holds in any left Bousfield localization of M.

Proof The condition (Q) only refers to cofibrations, which remain the same in any left Bousfield
localization. d

The next observation is the key that connects the cofibrancy condition (Q) in M to the arrow category.

Theorem 6.1.5 Suppose M is a cofibrantly generated monoidal model category satisfying (). Then the

arrow category Mgoj satisfies (&)cof.

Proof Suppose fy: Xo — X is an object in (Mgoj)sz that is underlying cofibrant in MO This means

that fx is a morphism in MZ7 that is an underlying cofibration between cofibrant objects in M. The

condition (&)cof for Mgoj asks that the function

Can . O hy1n
fX Dzn (-) 2 Mproj - Mproj

preserve cofibrations, where [ and [, are the pushout products in M and MD, respectively. Whenn =1
the condition (&)cof for Mgoj is a special case of the pushout product axiom in MD, which is true by
[White and Yau 2019a, Theorem A].

Next suppose n > 2 and «: fy — fw is a morphism in M as in (4.2.2). The iterated pushout product

5
a2 ¢ (M2 is the commutative square

7z iy
(6.1.6) é’ol l W
aDn

Yo -, wen

in M for some object Z with &; = Evg(a™2"). Note that ¢ is not an iterated pushout product because

Oon

Evp and O, do not commute. Applying fx Oy, (—), the morphism fy Oy, o is the commutative
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square
(4
[(X1®2Z) Ux,z (Xo® Yo)ls, — [(X1 ® Y1) Ux,er, (Xo® W2")]5x,

(6.1.7) fxOs, ;ol ‘fxljzn i

X1 ®aHM)s,
(X1 ®Yo)s, ‘ (X1 @ WEM)g,

in M. Suppose « is a cofibration in MO, This means that the morphism «q: Vo — Wy and the pushout
corner morphism o1 ® fw: Vi Ly, Wy — Wj are cofibrations in M. We must show that fy Oy, oH2n

is a cofibration in MZ. In other words, we must show that, in (6.1.7):

(1) ¢ =Evo(fy Ox, «™2") is a cofibration in M.

Oon

(2) The pushout corner morphism of fy Oy, o is a cofibration in M.

We will prove (1) and (2) in Lemmas 6.1.8 and 6.1.10, respectively. O
Lemma 6.1.8 The morphism ¢ in (6.1.7) is a cofibration in M.

Proof Taking X,—coinvariants and taking pushouts commute by the commutation of colimits. So ¢
is also the induced morphism from the pushout of the top row to the pushout of the bottom row in the
commutative diagram

(fx®2)s, (Xo®%0)=),
X1®2)g, +—— Xo®Z)y, ——— (Xo®Yo)3x,
(6.1.9) (X1®§1)Enl (X0®L’])):nl J/(XO‘X’O‘ID”)Zn
(X1® Y1)z, (Xo® Y1)y, —————— (Xo @ W23,

(fx®YDs, (Xo® [ 5

in M. Here the left square is commutative by definition, and the right square is Xo ®x,, (—) applied to
a2 in (6.1.6).

We consider the Reedy category D with three objects {—1,0, 1}, a morphism 0 — —1 that lowers the
degree, a morphism 0 — 1 that raises the degree, and no other nonidentity morphisms. Using the Quillen
adjunction [Hovey 1999, proof of 5.2.6],
colim
MP ——— M
constant

to show that ¢ is a cofibration in M, it is enough to show that (6.1.9) is a Reedy cofibration in MP. So we
must show that, in (6.1.9):

(1) The left and the middle vertical arrows are cofibrations in M.

(2) The pushout corner morphism of the right square is a cofibration in M.

The objects Xo and X in MZ" are cofibrant in M. The morphism ¢; = Evo(a™2") € M is an

O

underlying cofibration in M. Indeed, since @ € Mpmj

is a cofibration, so is the iterated pushout product
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aM2" by the pushout product axiom [White and Yau 2019a]. In particular, Evo(a™2") is a cofibration
in M. The condition (Q) in M (for the morphism @ — X;) now implies that the left and the middle
vertical morphisms X; ®sx, {1 in (6.1.9) are cofibrations in M.

. . op . . . = .
Finally, since Xo € M is cofibrant in M and since the pushout corner morphism of «H2" € (Mgoj)zn is

a cofibration in M, the condition (Q) in M again implies the pushout corner morphism of the right square
Xo ®x, «=2" in (6.1.9) is a cofibration in M. m

Lemma 6.1.10 The pushout corner morphism of fx Oy, a2 in (6.1.7) is a cofibration in M.
Proof The pushout corner morphism of fx Oy, aH2" is the morphism fy Ox, (aID” ® fwl;”). This is
taking the X,—coinvariants of the pushout product in the diagram

Id®(aDﬂ®fDrl)
Xo® (Yo LIz Y1) LW Xo ® W2"

fx® ldJ, pushout l
X1®(YoUz Y1) — [X1® (Yo Uz YD)] Uix e, 1)) (Xo ® W)

\
fXD«xF"@fE%
Xl ® Wl®n

e @ ® £,77)

in MZ7 with af” ® qu,'" the pushout corner morphism of «H2" € (Mgoj)zn in (6.1.6). Since a@2" is a
cofibration in MY, its pushout corner morphism ocID” ® fug” is a cofibration in M. So the condition (Q)

in M implies that fy Oy, (ozID” ® fwg") is a cofibration in M. a
6.2 Underlying cofibrancy of cofibrant Smith ideals for entrywise cofibrant operads

Theorem 6.2.1 Suppose M is a cofibrantly generated monoidal model category satistying (0) and (&)1.cof,
in which the domains and the codomains of the generating (trivial) cofibrations are small with respect
to the entire category. Suppose O is an entrywise cofibrant €—colored operad in M. Then Alg(@:‘; MD)
and Alg(6®; M®) admit transferred semi-model structures, and cofibrant Smith O—ideals are underlying

cofibrant in (Mgoj)ﬁ. In particular, if M is also stable, then there is a Quillen equivalence

N s coker — —
Alg(0H: ME) <—k—> Alg(0®; M®).
er

Proof If O is entrywise cofibrant in M, then o0 = L0 is entrywise cofibrant in MD, and O® = LyO is

®
inj

by the exact same proof as in Theorem 4.2.1 (but now X and X are cofibrant in M, and we appeal to

entrywise cofibrant in M by Proposition 5.2.2. Furthermore, because M satisfies (&);.cof, SO does W,

(®)t.cof in M instead of (®)). Thus, we have transferred semi-model structures
* Alg(G®: M®) by [White and Yau 20184, 6.2.3] applied to M, and

J AIg(@D; MD) by [loc. cit.] applied to the colored operad 0° in M in Proposition 3.3.19.
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Using Theorem 4.4.1, it is enough to prove the assertion that cofibrant Smith O—ideals are underlying
cofibrant in (Mpm])€ Writing 2% for the initial 6D—algebra, first we claim that @° is underlying
cofibrant in (M‘:I )¢, Indeed, for each color d € €, the d—colored entry of the initial ﬁm—algebra is the

o =(3) = o(2)

in MZ, where @M is the initial object in M and the symbol @ in ( ) is the empty C-profile. Since O

object

is assumed entrywise cofibrant, it follows that each entry of the initial @D—algebra @G is underlying
cofibrant in ME. Indeed, the pushout corner morphism of

gM 5 gM

L

oM —— 0(3)
is the cofibration oM — @(g) in M, so, by Theorem 2.4.1(1), @ED is cofibrant in MZ,

By Proposition 4.2.5, the semi-model structure on Alg((_ﬁq:'; MD) is right-induced by the forgetful functor
U to (MD )% and is cofibrantly generated by G0 (Lol ULqI), and 696 (LoJ ULy J), forc e €,

0]
where [ pand J are the generating (trivial) cofibrations in M. Suppose A is a cofibrant @D—algebra.
We must show that A is underlying cofibrant in (MDmJ)C By [Hirschhorn 2003, 11. 2 2] the cofibrant
0 E]—algebra A is the retract of the colimit of a transﬁnlte composmon starting with & o , of pushouts of
morphisms in 6% (Lol UL;I), for ¢ € €. Since Q@ is underlying cofibrant in MpmJ and since the

class of cofibrations in a model category, such as (M][)Droj)C is closed under transfinite compositions [ibid.,

10.3.4], the following lemma will finish the proof. O
The proof of Lemma 6.2.3 below uses the next definition, from [White and Yau 2018a, 4.3.5]:

Definition 6.2.2 (04 for O-algebras) For a €—colored operad O in M and A € Alg(0; M), define the
¢—colored symmetric sequence O4 as follows. For d € € and orbit [c] € ¢, define the component

0a( ) € MEEx

as the reflexive coequalizer of the diagram, in M Zie) {d}

N

K_\

d d;

The three arrows in this diagram are as follows:

¢ dy is induced by the composition of O.
e d; is induced by the O-algebra structure on A.

¢ The common section s is induced by the unit A — 0o A.
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Lemma 6.2.3 Under the hypotheses of Theorem 6.2.1, suppose «: f — g is a morphism in (Lol UL 1),
for some color ¢ € €, and

690 f— By
6DoaJ( lj
Yo g — B
is a pushout in Alg(@':| MD) with By cofibrant and UBy € (Mproj)€ cofibrant. Then Uj is a cofibration
in (MIEOJ)Q: In particular, B is also cofibrant and UB, € (MIEOJ)C is cofibrant.

Proof By the filtration in [White and Yau 2018a, 4.3.16] and the fact that cofibrations are closed under

pushouts, to show that Uj € (ME J)€ is a cofibration, it is enough to show that, for each n > 1 and each
color d € €, the morphism
— d
O Oon
(6.2.4) 05 (nc) O, o
in MprOJ is a cofibration, where nc = (c,...,c) is the C—profile with n copies of the color ¢. The

object @E is as in Definition 6.2.2 for 62 and Bo, and aP2” is the n—fold pushout product of . Recall
that ME| satisfies (&)cof by Theorem 6.1.5 and that 09 is entrywise cofibrant in ME| because O is
entryw1se cofibrant in M. The cofibrancy of By € AIg(@E| MD) and [1b1d 6.2.4] apphed to 62 now

imply that @ 1s entrywise cofibrant in Y= By the condition (&)cof in ME - once again, we can conclude

*proj
that the morphlsm (6.2.4) is a cofibration because « is a cofibration in MO, O

Corollary 6.2.5 Suppose M is the stable module category of k[G|-modules for some field k whose
characteristic divides the order of G. Then, for each €—colored operad O in M, there is a Quillen
equivalence
s s coker N _
Alg(0E; MY) <k:> Alg(0®; M®).
er

Proof The stable module category is a stable model category that satisfies the hypotheses of Theorem 6.2.1
in which every object is cofibrant [Hovey 1999, 2.2.12; White and Yau 2020, Section 12]. a

There are several more examples where Theorem 4.4.1 likely applies to all entrywise cofibrant operads,
but where (Q) has not been checked. For example, the positive flat stable model structure on symmetric
spectra built on compactly generated spaces have the property that, for any entrywise cofibrant colored
operad O, cofibrant O—algebras forget to cofibrant spectra [Pavlov and Scholbach 2018, Section 2], but
the authors do not know a reference proving the same for Y=

Conjecture 6.2.6 The positive flat stable model structure on symmetric spectra built on compactly
generated spaces satisfies the conclusion of Theorem 6.2.1.

Similarly, by analogy with the positive flat model structure on symmetric spectra, one would expect the
positive flat model structure on G—equivariant orthogonal spectra to satisfy this property.
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Conjecture 6.2.7 If M = GSpy is the positive flat stable model structure on G—equivariant orthogonal
spectra, then it satisfies the property that, if O is an entrywise cofibrant €—colored operad and A is a
cofibrant O—algebra, then UA is cofibrant in M%. Furthermore, M satisfies the conclusion of Theorem 6.2.1
for any compact Lie group G.

Recent work of Hill, Hopkins and Ravenel has illustrated that the positive (flat) model structure on GSpo
is not quite right. One also needs an equifibrancy condition, also known as completeness. There is a
positive complete model structure on GSpg, and it satisfies the commutative monoid axiom [Gutiérrez
and White 2018, Section 5]. However, the authors do not know if a positive, complete, flat variant has
been worked out.

Problem 6.2.8 Let G be a compact Lie group.
(1) Work out a positive complete flat stable model structure on GSpg.
(2) Prove that it satisfies the condition that all colored operads are admissible.
(3) Prove that cofibrant operad algebras forget to cofibrant underlying objects.

(4) Prove that this model structure satisfies the conclusion of Theorem 6.2.1.
In a related vein, we have the following problem:

Problem 6.2.9 Let My (resp. M;") denote Schwede’s global positive (flat) model structure [2018] and let
My, (resp. M;{) denote Hausmann'’s positive (flat) model structure for G—symmetric spectra [2017].
(1) Prove that all colored operads are admissible in My, M;", My, and M;{.

(2) Prove that, if O is entrywise cofibrant, then cofibrant O—algebras forget to underlying cofibrant
objects in M and M;{ in each color.

(3) Prove that M and M;{ satisfy the conclusion of Theorem 6.2.1.

Lastly, injective model structures on various categories of spectra have the property that all objects are
cofibrant, so the condition about the forgetful functor preserving cofibrancy is trivial. However, not all
operads are admissible. A likely remedy is to develop positive injective model structures (by requiring
cofibrations to be isomorphisms in level zero), which would automatically be Quillen equivalent to
existing stable model structures on spectra, but the authors do not know a reference where this is done.

Problem 6.2.10 Let M denote the category of symmetric spectra.

(1) Prove that the positive injective stable model structure MiJr is a monoidal model category.

(2) Prove that all operads are admissible in Ml.+. If so, then automatically cofibrant O—algebras forget
to cofibrant underlying objects.

(3) Prove that M;" satisfies the conclusion of Theorem 6.2.1.

(4) Do the same for symmetric spectra valued in a general base model category ‘6, where stabilization
is with respect to an endofunctor G.
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(5) Do the same for orthogonal spectra and equivariant orthogonal spectra, possibly restricting to
A-generated spaces, as is done in [White 2022, Section 5.8].

(6) Produce a model structure on the category of S—modules, Quillen equivalent to the one in [Elmendorf
et al. 1997], with the property that cofibrant commutative ring spectra are underlying cofibrant.
Do the same for general entrywise cofibrant colored operads, and prove that the conclusion of
Theorem 6.2.1 holds in this setting.

7 Semi-model categories and oco—categories for operad algebras

In this paper, we often transferred model structures, using (¢), or semi-model structures, using Definition
6.1.1 or using X¢—cofibrant operads O, to categories of O—algebras. The language of co—categories could
also be used to study the homotopy theory of O—algebras. We work in the model of quasicategories, ie
everywhere we write co—category we mean quasicategory. The main results of this section, Theorems 7.3.1
and 7.3.3, show that the two approaches — namely, semi-model categories and oco—categories — are
equivalent in a suitable sense for X¢—cofibrant €—colored operads that are not necessarily admissible.

7.1 Preliminaries on co—operads

As detailed in [Lurie 2017, 4.5.4.7 and 4.5.4.12], the crucial property needed to compare a model structure
on O-algebras with the corresponding co—category structure is that the forgetful functor

U: Alg(0; M) — M¢

preserves and reflects homotopy sifted colimits, that is, N (¢)—indexed homotopy colimits, where €6 is a
small category such that the nerve N(%) is sifted [Lurie 2009, 5.5.8.1].

Lurie [2017, 4.5.4.12] proves this property for the Com—operad and a restrictive class of model categories M,
namely combinatorial and freely powered (4.5.4.2) monoidal model categories. Lurie then deduces [ibid.,
4.5.4.7] that the underlying co—category N(CAIg(M)c)[WC_Orln of the model category CAlg(M) — where
(—)¢ refers to taking cofibrant objects and W, is the class of weak equivalences of Com—algebras —
is equivalent as an co—category to CAlg(N(M¢)[W 1)), obtained as the co—category of commutative
monoids valued in the symmetric monoidal co—category N(M¢)[W ~!] associated to M. Here N(M¢)
denotes the homotopy coherent nerve of the simplicial category M€, and the notation (—)[W ~!] refers
to the co—categorical meaning of inverting the class W [ibid., 1.3.4.1]. To be precise, the co—category
N(M€)[W 1] can be constructed via a fibrant replacement of the pair (M€, W) in the category of marked
simplicial sets [loc. cit.].

Following the model of Lurie’s proof, it is possible to prove that, whenever M is a simplicial monoidal
model category and O is an admissible X ¢—cofibrant simplicial colored operad (Theorems 4.1.1 and 5.2.1),
then the forgetful functor preserves and reflects homotopy sifted colimits, and the co—category obtained
from the model category of O—algebras is equivalent as an co—category to the co—category obtained from
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N ®0-algebras in the co—category associated to M [Pavlov and Scholbach 2018, 7.9 and 7.11]. Here
N®0 is the operadic nerve of O [Lurie 2017, 2.1.1.23], ie Lurie’s model for the co—operad associated to
the simplicial colored operad 0. Consequently, for admissible 3 ¢—cofibrant colored simplicial operads,
the homotopy theory obtained via the model category route matches the homotopy theory obtained via
the co—category route.

We extend this result in two ways. First, we will show that it holds when O is only semiadmissible instead
of admissible (ie Alg(0; M) has a transferred semi-model structure). Second, we will show the same
thing for the setting of enriched co—operads. For the latter, we work in a monoidal model category M
(not necessarily simplicial) and consider a colored operad O valued in M. Note that, if M is a ¥"—model
category for some monoidal model category ¥ and O is a colored operad valued in %, then there is a
colored operad 0’ valued in M with the same algebras (obtained by tensoring the levels of O with the
unit of M), so we focus on the case when O is valued in M. In this case, there is an associated enriched
oo—operad [Chu and Haugseng 2020] as we now describe. First, we must restate [Haugseng 2019, 4.1]:

Definition 7.1.1 Let M be a monoidal model category. A subcategory of flat objects is a full symmetric
monoidal subcategory M (which implies the unit is flat) that satisfies the following two conditions:

(1) All cofibrant objects are flat (that is, are in MP).
(2) If X is flat and f is a weak equivalence in M, then X ® f is a weak equivalence.

If the unit of M is cofibrant, then the subcategory of cofibrant objects is a subcategory of flat objects
[Haugseng 2019, 4.2], by Ken Brown’s lemma. We note that, if the unit of M is cofibrant, then the same
is true for both IT/IEOJ. and M®. The purpose of the definition above is to avoid assuming the monoidal
unit is cofibrant, as this would rule out positive (flat) model structures on spectra (which do admit a
subcategory of flat objects, namely the cofibrant objects of the flat model structure, by [ibid., 4.11]). White
[2017; 2022] gives many examples of model categories with a subcategory of flat objects (namely, the
subcategory of cofibrant objects), including spaces, simplicial sets, chain complexes, diagram categories,
simplicial presheaves and various categories of spectra.

With Definition 7.1.1 in hand, we are ready to describe the enriched co—operad associated to a colored
operad O valued in M, following [Haugseng 2019, Section 4]. First, the inclusions M¢ < MP <> M induce
equivalences of localizations when all three are localized with respect to their subcategories of weak
equivalences. Next, the symmetric monoidal localization M? — MP[W ~1] ~ M[W ~1] of [Lurie 2017,
4.1.7.4] gives a functor from co—operads enriched in MP to oo—operads enriched in M[W ~1]. But, because
M is a I—category, the former are simply strict colored operads in MP. The following is a combination of
[Chu and Haugseng 2020, 1.1.3; Haugseng 2019, 4.4]:

Proposition 7.1.2 Let M be a symmetric monoidal model category and MP a subcategory of flat objects.
Then the co—category of co—operads enriched in M[W ~1] is equivalent to the co—category of enriched
colored operads in M, with the Dwyer—Kan equivalences inverted.
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With these preliminary results and definitions in hand, we are ready to prove the main results of the section.

7.2 Homotopy sifted colimits

Following the model of [Lurie 2017, 4.5.4.7 and 4.5.4.12], we must first prove that the forgetful functor
U: Alg(0; M) — M¢

preserves and reflects homotopy sifted colimits, even when Alg(0; M) is only a semi-model category. It
suffices to prove this in the case where O is a colored operad in M, as the case where O is a simplicial
colored operad and M is a simplicial model category follows from our discussion above regarding ¥'—model
categories.

It is known that, for every cofibrantly generated monoidal model category M, every X¢—cofibrant colored
operad O in M is semiadmissible. In other words, there is a transferred semi-model structure on O—algebras
[White and Yau 2018a, 6.3.1]. An alternative approach assumes M satisfies (&) and appeals to [ibid.,
6.2.3] for such a semi-model structure. It is also known that there are X¢—cofibrant colored operads O
whose category of O—algebras do not admit a full model structure [Batanin and White 2021, 2.9]. Hence,
the results in this section really do apply to previously unknown examples, and complete the study of
semi-model structures on operad algebras set out in [White and Yau 2018a; 2019b; 2020; 2023]. For
completeness, we handle the case of both symmetric and nonsymmetric colored operads [Muro 2011],
noting that, for the nonsymmetric case, being ¥ g—cofibrant is the same as being entrywise cofibrant.

Proposition 7.2.1 Suppose M is a cofibrantly generated monoidal model category and O is a X ¢—cofibrant
(symmetric) €—colored operad valued in M. Then the forgetful functor U : Alg(0; M) — M preserves and
reflects homotopy sifted colimits.

Proof We follow the proof from [Pavlov and Scholbach 2018, 7.9], which is itself based on the proof
of [Lurie 2017, 4.5.4.12]. First, as pointed out in [Lurie 2017], the reflection property is implied by the
preservation property, and it is sufficient to prove that U preserves homotopy colimits indexed by a small
category 9 such that the nerve N (%) is homotopy sifted.

Consider the projective model structure (M%), the projective semi-model structure Alg(0; M)? guaranteed
by [Barwick 2010, 3.4] and the forgetful functor

U?: Alg(0; M)? — (M9,
Let
F:(M%? 5> M® and  Fag): Alg(0; M)? — Alg(0; M)

denote the colimit functors with respect to %. The proof in [Lurie 2017, 4.5.4.12] reduces us to proving
that the canonical isomorphism of functors

a: FoU? = U o Fpge): Alg(0; M)? — M®
persists after everything is derived.
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Let LF and L Fpg (o) denote the left derived functors of F' and Fjg(c), obtained via cofibrant replacement
in (M%) and Alg(0; M)?, respectively. Since U and U? preserve weak equivalences, as in [loc. cit.],
we are reduced to proving that the induced natural transformation &@: LF o U® — U o LF, Alg(0) 18 an
isomorphism in the homotopy category. This means that, for every cofibrant 4 in Alg(0; M)?, we must
show that

@: LE(U? A) — U(L Fago)(4))

is a weak equivalence.

The right-hand side is canonically weakly equivalent to U(Fg(0)(A)) because A is projectively cofibrant,
and this is weakly equivalent to F(U? A) via . At this point, the proof in [loc. cit.] requires a detailed
analysis of so-called “good” objects and morphisms in (M%)?. However, when O is X g—cofibrant, the
situation is much simpler, because U takes cofibrant algebras to cofibrant objects of M® [White and Yau
2018a, 6.3.1] (and [Muro 2011, 9.5] for the nonsymmetric case).

Furthermore, the %—constant operad 02, taking value O at every a € 9, is X¢—cofibrant in Alg(0; I\/I)QD.
This can be seen directly, as X ¢—cofibrancy for an operad P valued in M? is the condition that, for
each a € % and each (c; d) € E(ép x €, the object P, (‘CZ) (= @(f) in our case) is projectively cofibrant
in MZ¢ x¢, Hence, by [White and Yau 2018a, 6.3.1] (a}ld [Mur(; 2011, 9.5] for the nonsymmetric case),
the functor U? also preserves cofibrancy, since the projective semi-model structure transferred from the
semi-model structure on Alg(0; M) is the same as the transferred semi-model structure on 0“—algebras in
the projective model structure (M%)®. Hence, U? 4 is cofibrant in (M%)?, and so LF(U?A) ~ F(U? A),

as required. a

Remark 7.2.2 Following the model of [Lurie 2017] (or [Pavlov and Scholbach 2018]), after establishing
Proposition 7.2.1, the next step should be to prove that the semi-model category Alg(0; M) describes
the co—category of N ®0-algebras in the co—category associated to M, as discussed above. However,
when Alg(0; M) is only a semi-model structure, an additional step is needed. We need to know that
homotopy colimits (given by colimits of projectively cofibrant objects in Alg(0; M)?) agree with co—
categorical colimits. In the case of full model structures, one knows that the projective model structure on
Alg(0; M)? describes the co—category of functors, and that a Quillen adjunction gives rise to an adjunction
of co—categories. For the case of semi-model categories, we invoke [Monaco 2021, A.10] for the latter.

Remark 7.2.3 We conjecture that Proposition 7.2.1 remains true for entrywise cofibrant colored operads O
if M satisfies (&) and we replace appeals to [White and Yau 2018a, 6.3.1] above by appeals to [ibid.,
6.2.3]. However, the proof of this would require a detailed analysis of “good” objects and would take us
too far afield.

7.3 Semi-model categories and co—categories of operad algebras

With the previous proposition in hand, we are ready for the main result of this section. The slogan for
this result is that, for any Y ¢—free (symmetric) colored operad O and any reasonable monoidal model
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category M, the semi-model category of O—algebras in M describes the corresponding co—category of
O-algebras in the symmetric monoidal co—category described by M. This is true of both

(1) the unenriched case, where M is a simplicial monoidal model category, O is a simplicial colored
operad and the co—operad associated to O is the operadic nerve N®0 of O [Lurie 2017, 2.1.1.23];

(2) the enriched case, where M is a monoidal model category, O is a colored operad valued in M and
we use the theory of enriched co—operads to define the co—category of O—algebras (as recalled in
Section 7.1 and spelled out in [Chu and Haugseng 2020; Haugseng 2019]).

For both cases, we handle the cases where O is a symmetric colored operad and where O is a nonsymmetric
colored operad simultaneously. We handle the enriched case first.

Theorem 7.3.1 Suppose M is a cofibrantly generated monoidal model category that admits a subcategory
of flat objects MP and O is a Y¢—cofibrant (symmetric) €—colored operad valued in MP.

o Let Alg(0; M)¢ [W@_l] be the oo—category obtained from the semi-model category Alg(0; M) by first
passing to the subcategory of cofibrant objects, and then inverting the weak equivalences between
O-algebras.

o Let Alg(0; M[W™1]) be the co—category obtained by first passing from M to the (symmetric)
monoidal category M[W ~1] and then passing to O-algebras, where O is viewed as a colored operad
in M[W~1 >~ MP[W—1].

Then the natural comparison functor
Alg(0: M) [W '] — Alg(0: MW 1))

is an equivalence of co—categories.

Proof The proof of [Haugseng 2019, 4.10] goes through directly by replacing the appeal to [Pavlov and
Scholbach 2018, 7.8] with an appeal to Proposition 7.2.1. That is, we consider the forgetful functors
from both categories to the co—category associated to M%, and appeal to the Barr—Beck theorem for
oo—categories [Lurie 2017, 4.7.3.16] to see that these forgetful functors are monadic right adjoints (this is
where Proposition 7.2.1 is needed). We appeal to [Haugseng 2019, 3.8], which occurs entirely on the
oo—category level, for the usual formula for free O—algebras and the observation that the two associated
monads on M® have equivalent underlying endofunctors. This proof works for both symmetric and
nonsymmetric colored operads 0, as both are known to inherit transferred semi-model structures from M¢,
and as Proposition 7.2.1 applies in both settings. |

Remark 7.3.2 The proof of [ibid., 4.10] relies on the observation that a Quillen adjunction F:M 2 N:G
induces an adjunction between the underlying co—categories. We appeal to [Monaco 2021, A.10] for the
semi-model category analogue of this fact.
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‘We turn now to the unenriched case.

Theorem 7.3.3 Suppose M is a cofibrantly generated simplicial monoidal model category and O is a
Y¢—cofibrant (symmetric) simplicial €—colored operad.

o Let N(Alg(0; M) )[WA_lgl(@)] be the co—category obtained from the semi-model category Alg(0; M)
by first passing to the subcategory of cofibrant objects, then taking the nerve and then inverting the
weak equivalences.

o Let Alg(N®0; N(M®)[W™1]) be the co—category of N ®0-algebras valued in the co—category
N(M)[W 1] associated to M.

Then the natural comparison functor
N(Alg(0; M)*)[Wa )] = Alg(N 20; N(M)[W 1)

is an equivalence of co—categories.

Proof We deliberately phrased the proof of Theorem 7.3.1 so that word for word it proves this result
as well (again with the critical step hinging on an appeal to Proposition 7.2.1). We only stated the two
theorems separately to highlight the difference between enriched and unenriched co—operads, and the
connection to where the colored operad O is valued. |

Remark 7.3.4 One can show that Theorems 7.3.1 and 7.3.3 are false in general in the symmetric case if
the X ¢—cofibrancy of O is dropped. Well-known counterexamples include the operad Com and M = Ch(IF,).
However, every €—colored operad O admits a ¥ ¢—cofibrant replacement Q0. If O is semiadmissible and
admits rectification with Q0 (meaning there is a Quillen equivalence of semi-model categories between
Alg(0; M) and Alg(Q0; M)), then Theorems 7.3.1 and 7.3.3 do apply to O, since the weak equivalence
Q0 — 0 induces an equivalence N® Q0 — N®0, and hence we can use the two-out-of-three property
to deduce the statement for O from the statement for Q0. Conditions on M under which rectification
hold are provided in [White 2017] (for Com rectifying to E~,) and [White and Yau 2019b] (for general
colored operads), among other places.

Remark 7.3.5 Theorem 7.3.1 answers positively the question raised in [Haugseng 2019, 4.13] about
extending [ibid., 4.10] to X—cofibrant operads and semi-model category structure on Alg(0; M). As
pointed out by Haugseng, the assumptions on M and O are much weaker than those required to get
a full model structure on O-algebras. In particular, Theorem 7.3.1 applies not only to the examples
listed by Haugseng — namely, spaces, simplicial sets, chain complexes and symmetric spectra— but
also to equivariant spaces, equivariant orthogonal spectra, motivic symmetric spectra, the stable module
category, chain complexes over a field of nonzero characteristic, simplicial presheaves, the projective
model structure on small functors [Chorny and White 2018], the folk model structure on the category of
small categories (or groupoids), various abelian model structures arising from the theory of cotorsion
pairs, and left Bousfield localizations of these categories.

Algebraic € Geometric Topology, Volume 24 (2024)



Smith ideals of operadic algebras in monoidal model categories 389

These examples are detailed in [White 2017; 2022; White and Yau 2018a; 2020]. In several of these
examples (eg chain complexes over a field of nonzero characteristic, examples arising from cotorsion
pairs, and algebras over left Bousfield localizations L¢M), categories of algebras are known to have
transferred semi-model structures but are not known to have transferred model structures. For chain
complexes over I, there is even an explicit example of a category of O—algebras that has a transferred
semi-model structure that is not a model structure [Batanin and White 2021, 2.9]. For algebras over a
left Bousfield localization L¢M, many examples are discussed in [White and Batanin 2015; Batanin and
White 2022; 2024; White 2021].

In most of the examples listed above, the unit is cofibrant and cofibrant objects are flat, so the category of
cofibrant objects is our MP (note that left Bousfield localization does not change the class of cofibrant
objects). For the positive (flat) model structure on equivariant orthogonal spectra (resp. motivic symmetric
spectra), one can use the cofibrant objects of the flat model structure, just as Haugseng [2019] does for
symmetric spectra, as discussed in [Hovey and White 2020] (resp. [Pavlov and Scholbach 2018], building
on work of Hornbostel).

We conclude with a specialization of Theorem 7.3.1 to the main examples of interest in the present paper.

Lemma 7.3.6 Suppose M is a monoidal model category that admits a subcategory of flat objects, MP.
Then M®

inj also admits a subcategory of flat objects.

Proof In W, we take the full subcategory consisting of arrows f: X1 — X», where X; and X are
in MP. This is a symmetric monoidal subcategory of M®, as the monoidal unit Id: 1 — 1 is flat and the
tensor product of two flat arrows is flat. Condition (1) of Definition 7.1.1 holds because cofibrations are
entrywise, and (2) holds because the tensor product and weak equivalences are entrywise. a

Corollary 7.3.7 Suppose M is a cofibrantly generated monoidal model category that admits a subcategory
of flat objects MP. Suppose 0 is a X¢—cofibrant €—colored operad valued in MP. Then the transferred
semi-model structures of Corollary 5.2.3 on Alg(6®; M@’) and Alg((@)D; MD) describe the corresponding
oo—categories, in the sense of Theorem 7.3.1. If, in addition, M is stable, then the Quillen equivalence of
Corollary 5.2.3 yields an equivalence of co—categories.

Proof This follows from Theorem 7.3.1, applied to

J m% and the colored operad 6‘8’, appealing to Lemma 7.3.6 for the subcategory of flat objects and
to Proposition 5.2.2 for the ¥¢—cofibrancy; and

¢ M and the colored operad 0%, with the assumed subcategory of flat objects on M — as Proposition
3.3.19 shows, 0% is X g—cofibrant, and the transferred semi-model structure on O°-algebras
coincides with the transferred semi-model structure on AIg(@D; MD).

The statement about Quillen equivalences follows from [Monaco 2021, A.11]. O
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We note that, in the examples mentioned after Definition 7.1.1, we could take MP to be the subcategory of
cofibrant objects of M. In these examples, every X¢—cofibrant €—colored operad is already entrywise
cofibrant. Hence, it is no loss of generality to assume O is valued in MP instead of in M for these examples.

References

[Barratt and Eccles 1974] M G Barratt, P J Eccles, I' T —structures, I: A free group functor for stable homotopy
theory, Topology 13 (1974) 25-45 MR Zbl

[Barwick 2010] C Barwick, On left and right model categories and left and right Bousfield localizations, Homology
Homotopy Appl. 12 (2010) 245-320 MR Zbl

[Batanin and White 2021] M Batanin, D White, Left Bousfield localization and Eilenberg—Moore categories,
Homology Homotopy Appl. 23 (2021) 299-323 MR Zbl

[Batanin and White 2022] M Batanin, D White, Homotopy theory of algebras of substitudes and their localisation,
Trans. Amer. Math. Soc. 375 (2022) 3569-3640 MR Zbl

[Batanin and White 2024] M Batanin, D White, Left Bousfield localization without left properness, J. Pure Appl.
Algebra 228 (2024) art. id. 107570 MR Zbl

[Boardman and Vogt 1973] JM Boardman, RM Vogt, Homotopy invariant algebraic structures on topological
spaces, Lecture Notes in Math. 347, Springer (1973) MR Zbl

[Chorny and White 2018] B Chorny, D White, A variant of a Dwyer—Kan theorem for model categories, preprint
(2018) arXiv 1805.05378 To appear in Algebr. Geom. Topol.

[Chu and Haugseng 2020] H Chu, R Haugseng, Enriched co—operads, Adv. Math. 361 (2020) art. id. 106913
MR Zbl

[Dundas et al. 2003] BI Dundas, O Rondigs, P A @stveer, Enriched functors and stable homotopy theory, Doc.
Math. 8 (2003) 409488 MR Zbl

[Elmendorf et al. 1997] A D Elmendorf, I Kriz, M A Mandell, J P May, Rings, modules, and algebras in stable
homotopy theory, Math. Surv. Monogr. 47, Amer. Math. Soc., Providence, RI (1997) MR Zbl

[Fiedorowicz 1998] Z Fiedorowicz, Constructions of E, operads, preprint (1998) arXiv math/9808089

[Fresse 2017] B Fresse, Homotopy of operads and Grothendieck—Teichmiiller groups, I: The algebraic theory and
its topological background, Math. Surv. Monogr. 217, Amer. Math. Soc., Providence, RI (2017) MR Zbl

[Getzler and Jones 1994] E Getzler, JD S Jones, Operads, homotopy algebra and iterated integrals for double
loop spaces, preprint (1994) arXiv hep-th/9403055

[Gutiérrez and White 2018] JJ Gutiérrez, D White, Encoding equivariant commutativity via operads, Algebr.
Geom. Topol. 18 (2018) 2919-2962 MR Zbl

[Haugseng 2019] R Haugseng, Algebras for enriched co—operads, preprint (2019) arXiv 1909.10042

[Hausmann 2017] M Hausmann, G—symmetric spectra, semistability and the multiplicative norm, J. Pure Appl.
Algebra 221 (2017) 2582-2632 MR Zbl

[Hirschhorn 2003] P S Hirschhorn, Model categories and their localizations, Math. Surv. Monogr. 99, Amer.
Math. Soc., Providence, RI (2003) MR Zbl

[Hovey 1999] M Hovey, Model categories, Math. Surv. Monogr. 63, Amer. Math. Soc., Providence, RI (1999)
MR Zbl

Algebraic € Geometric Topology, Volume 24 (2024)


http://dx.doi.org/10.1016/0040-9383(74)90036-6
http://dx.doi.org/10.1016/0040-9383(74)90036-6
http://msp.org/idx/mr/348737
http://msp.org/idx/zbl/0292.55010
http://dx.doi.org/10.4310/HHA.2010.v12.n2.a9
http://msp.org/idx/mr/2771591
http://msp.org/idx/zbl/1243.18025
http://dx.doi.org/10.4310/hha.2021.v23.n2.a16
http://msp.org/idx/mr/4317572
http://msp.org/idx/zbl/1476.18004
http://dx.doi.org/10.1090/tran/8600
http://msp.org/idx/mr/4402670
http://msp.org/idx/zbl/1486.18015
http://dx.doi.org/10.1016/j.jpaa.2023.107570
http://msp.org/idx/mr/4670515
http://msp.org/idx/zbl/1476.18004
http://dx.doi.org/10.1007/BFb0068547
http://dx.doi.org/10.1007/BFb0068547
http://msp.org/idx/mr/420609
http://msp.org/idx/zbl/0285.55012
http://msp.org/idx/arx/1805.05378
http://dx.doi.org/10.1016/j.aim.2019.106913
http://msp.org/idx/mr/4038556
http://msp.org/idx/zbl/1475.18032
http://dx.doi.org/10.4171/dm/147
http://msp.org/idx/mr/2029170
http://msp.org/idx/zbl/1040.55002
http://dx.doi.org/10.1090/surv/047
http://dx.doi.org/10.1090/surv/047
http://msp.org/idx/mr/1417719
http://msp.org/idx/zbl/0894.55001
http://msp.org/idx/arx/math/9808089
http://dx.doi.org/10.1090/surv/217.1
http://dx.doi.org/10.1090/surv/217.1
http://msp.org/idx/mr/3643404
http://msp.org/idx/zbl/1373.55014
http://msp.org/idx/arx/hep-th/9403055
http://dx.doi.org/10.2140/agt.2018.18.2919
http://msp.org/idx/mr/3848404
http://msp.org/idx/zbl/1406.55002
http://msp.org/idx/arx/1909.10042
http://dx.doi.org/10.1016/j.jpaa.2017.01.004
http://msp.org/idx/mr/3646319
http://msp.org/idx/zbl/1420.55023
http://dx.doi.org/10.1090/surv/099
http://msp.org/idx/mr/1944041
http://msp.org/idx/zbl/1017.55001
http://msp.org/idx/mr/1650134
http://msp.org/idx/zbl/0909.55001

Smith ideals of operadic algebras in monoidal model categories 391

[Hovey 2001] M Hovey, Spectra and symmetric spectra in general model categories, J. Pure Appl. Algebra 165
(2001) 63-127 MR Zbl

[Hovey 2014] M Hovey, Smith ideals of structured ring spectra, preprint (2014) arXiv 1401.2850

[Hovey and White 2020] M Hovey, D White, An alternative approach to equivariant stable homotopy theory,
Tbilisi Math. J. 2020 special issue (2020) 51-69

[Johnson and Yau 2009] MW Johnson, D Yau, On homotopy invariance for algebras over colored PROPs, J.
Homotopy Relat. Struct. 4 (2009) 275-315 MR Zbl

[Johnson and Yau 2021] N Johnson, D Yau, Bimonoidal categories, E,—monoidal categories, and algebraic
K—theory, I1I, preprint (2021) To appear under AMS Math. Surveys Monogr. https://nilesjohnson.net/
En-monoidal

[Lurie 2009] J Lurie, Higher topos theory, Ann. of Math. Stud. 170, Princeton Univ. Press (2009) MR Zbl
[Lurie 2017] J Lurie, Higher algebra, book project (2017) https://url.msp.org/Lurie-HA

[Mac Lane 1998] S Mac Lane, Categories for the working mathematician, 2nd edition, Graduate Texts in Math. 5,
Springer (1998) MR Zbl

[Mandell 2004] M A Mandell, Equivariant symmetric spectra, from “Homotopy theory: relations with algebraic
geometry, group cohomology, and algebraic K—theory” (P Goerss, S Priddy, editors), Contemp. Math. 346, Amer.
Math. Soc., Providence, RI (2004) 399-452 MR Zbl

[Markl 1996] M Markl, Models for operads, Comm. Algebra 24 (1996) 1471-1500 MR Zbl
[May 1972] JP May, The geometry of iterated loop spaces, Lecture Notes in Math. 271, Springer (1972) MR Zbl
[Monaco 2021] G L Monaco, Vopénka’s principle in oo—categories, preprint (2021) arXiv 2105.04251

[Muro 2011] F Muro, Homotopy theory of nonsymmetric operads, Algebr. Geom. Topol. 11 (2011) 1541-1599
MR Zbl

[Pavlov and Scholbach 2018] D Pavlov, J Scholbach, Admissibility and rectification of colored symmetric operads,
J. Topol. 11 (2018) 559-601 MR Zbl

[Polcino Milies and Sehgal 2002] C Polcino Milies, S K Sehgal, An introduction to group rings, Algebra Appl. 1,
Kluwer, Dordrecht (2002) MR Zbl

[Quillen 1967] D G Quillen, Homotopical algebra, Lecture Notes in Math. 43, Springer (1967) MR Zbl

[Rezk 2000] C Rezk, A model category for categories, preprint (2000) https://rezk.web.illinois.edu/
papers.html

[Schwede 2018] S Schwede, Global homotopy theory, New Math. Monogr. 34, Cambridge Univ. Press (2018)
MR Zbl

[Schwede and Shipley 2000] S Schwede, B E Shipley, Algebras and modules in monoidal model categories, Proc.
Lond. Math. Soc. 80 (2000) 491-511 MR Zbl

[Stasheff 1963a] JD Stasheff, Homotopy associativity of H—spaces, I, Trans. Amer. Math. Soc. 108 (1963)
275-292 Zbl

[Stasheff 1963b] JD Stasheff, Homotopy associativity of H-spaces, II, Trans. Amer. Math. Soc. 108 (1963)
293-312 MR Zbl

[White 2017] D White, Model structures on commutative monoids in general model categories, J. Pure Appl.
Algebra 221 (2017) 3124-3168 MR Zbl

Algebraic € Geometric Topology, Volume 24 (2024)


http://dx.doi.org/10.1016/S0022-4049(00)00172-9
http://msp.org/idx/mr/1860878
http://msp.org/idx/zbl/1008.55006
http://msp.org/idx/arx/1401.2850
http://tcms.org.ge/Journals/ASETMJ/Special%20issue/6/PDF/tmj_HomotTheory-2020_4.pdf
https://tcms.org.ge/Journals/JHRS/xvolumes/2009/n1a14/v4n1a14hl.pdf
http://msp.org/idx/mr/2559644
http://msp.org/idx/zbl/1188.18007
https://nilesjohnson.net/En-monoidal
https://nilesjohnson.net/En-monoidal
http://dx.doi.org/10.1515/9781400830558
http://msp.org/idx/mr/2522659
http://msp.org/idx/zbl/1175.18001
https://url.msp.org/Lurie-HA
http://dx.doi.org/10.1007/978-1-4757-4721-8
http://msp.org/idx/mr/1712872
http://msp.org/idx/zbl/0906.18001
http://dx.doi.org/10.1090/conm/346/06297
http://msp.org/idx/mr/2066508
http://msp.org/idx/zbl/1074.55003
http://dx.doi.org/10.1080/00927879608825647
http://msp.org/idx/mr/1380606
http://msp.org/idx/zbl/0848.18003
http://dx.doi.org/10.1007/BFb0067491
http://msp.org/idx/mr/420610
http://msp.org/idx/zbl/0244.55009
http://msp.org/idx/arx/2105.04251
http://dx.doi.org/10.2140/agt.2011.11.1541
http://msp.org/idx/mr/2821434
http://msp.org/idx/zbl/1228.18006
http://dx.doi.org/10.1112/topo.12008
http://msp.org/idx/mr/3830876
http://msp.org/idx/zbl/1405.18016
https://link.springer.com/book/9781402002380
http://msp.org/idx/mr/1896125
http://msp.org/idx/zbl/0997.20003
http://dx.doi.org/10.1007/BFb0097438
http://msp.org/idx/mr/223432
http://msp.org/idx/zbl/0168.20903
https://rezk.web.illinois.edu/papers.html
https://rezk.web.illinois.edu/papers.html
http://dx.doi.org/10.1017/9781108349161
http://msp.org/idx/mr/3838307
http://msp.org/idx/zbl/1451.55001
http://dx.doi.org/10.1112/S002461150001220X
http://msp.org/idx/mr/1734325
http://msp.org/idx/zbl/1026.18004
https://www.jstor.org/stable/1993608
http://msp.org/idx/zbl/0114.39402
http://dx.doi.org/10.1090/s0002-9947-1963-0158400-5
http://msp.org/idx/mr/158400
http://msp.org/idx/zbl/0114.39402
http://dx.doi.org/10.1016/j.jpaa.2017.03.001
http://msp.org/idx/mr/3666740
http://msp.org/idx/zbl/1387.18016

392 David White and Donald Yau

[White 2021] D White, Substitudes, Bousfield localization, higher braided operads, and Baez—Dolan stabilization,
Oberwolfach Rep. 46 (2021) 56-60 Part of the conference report “Homotopical algebra and higher structures”

[White 2022] D White, Monoidal Bousfield localizations and algebras over operads, from “Equivariant topology
and derived algebra” (S Balchin, D Barnes, M Kedziorek, M Szymik, editors), Lond. Math. Soc. Lect. Note Ser.
474, Cambridge Univ. Press (2022) 180-240 MR Zbl

[White and Batanin 2015] D White, M Batanin, Baez—Dolan stabilization via (semi-)model categories of operads,
from “Interactions between representation theory, algebraic topology and commutative algebra” (D Herbera, W
Pitsch, S Zarzuela, editors), Trends Math. 5, Birkhduser, Cham (2015) 175-179

[White and Yau 2018a] D White, D Yau, Bousfield localization and algebras over colored operads, Appl. Categ.
Structures 26 (2018) 153-203 MR Zbl

[White and Yau 2018b] D White, D Yau, Comonadic coalgebras and Bousfield localization, preprint (2018)
arXiv 1805.11536

[White and Yau 2019a] D White, D Yau, Arrow categories of monoidal model categories, Math. Scand. 125
(2019) 185-198 MR Zbl

[White and Yau 2019b] D White, D Yau, Homotopical adjoint lifting theorem, Appl. Categ. Structures 27 (2019)
385-426 MR Zbl

[White and Yau 2020] D White, D Yau, Right Bousfield localization and operadic algebras, Tbilisi Math. J. 2020
special issue (2020) 71-118

[White and Yau 2023] D White, D Yau, Right Bousfield localization and Eilenberg—Moore categories, High.
Struct. 7 (2023) 22-39 MR Zbl

[Yau 2016] D Yau, Colored operads, Graduate Studies in Math. 170, Amer. Math. Soc., Providence, RI (2016)
MR Zbl

[Yau and Johnson 2015] D Yau, M W Johnson, A foundation for PROPs, algebras, and modules, Math. Surv.
Monogr. 203, Amer. Math. Soc., Providence, RI (2015) MR Zbl

Department of Mathematics and Computer Science, Denison University
Granville, OH, United States

Department of Mathematics, The Ohio State University at Newark
Newark, OH, United States

david.white@denison.edu, yau.22Q@osu.edu

Received: 12 September 2021 Revised: 28 August 2022

:'msp

Geometry & Topology Publications, an imprint of mathematical sciences publishers


https://doi.org/10.14760/OWR-2021-46
http://dx.doi.org/10.1017/9781108942874.007
http://msp.org/idx/mr/4327101
http://msp.org/idx/zbl/1486.18034
http://dx.doi.org/10.1007/978-3-319-45441-2_31
http://dx.doi.org/10.1007/s10485-017-9489-8
http://msp.org/idx/mr/3749666
http://msp.org/idx/zbl/1397.18023
http://msp.org/idx/arx/1805.11536
http://dx.doi.org/10.7146/math.scand.a-114968
http://msp.org/idx/mr/4031046
http://msp.org/idx/zbl/1428.18027
http://dx.doi.org/10.1007/s10485-019-09560-2
http://msp.org/idx/mr/3975894
http://msp.org/idx/zbl/1428.18034
https://tcms.org.ge/Journals/ASETMJ/Special%20issue/6/PDF/tmj_HomotTheory-2020_5.pdf
http://dx.doi.org/10.3724/sp.j.1461.2023.01001
http://msp.org/idx/mr/4600456
http://msp.org/idx/zbl/7806738
http://dx.doi.org/10.1090/gsm/170
http://msp.org/idx/mr/3444662
http://msp.org/idx/zbl/1348.18014
http://dx.doi.org/10.1090/surv/203
http://msp.org/idx/mr/3329226
http://msp.org/idx/zbl/1328.18014
mailto:david.white@denison.edu
mailto:yau.22@osu.edu
http://msp.org
http://msp.org

ALGEBRAIC & GEOMETRIC TOPOLOGY
msp.org/agt

EDITORS

PRINCIPAL ACADEMIC EDITORS

John Etnyre
etnyre @math.gatech.edu
Georgia Institute of Technology

Kathryn Hess
kathryn.hess @epfl.ch
Ecole Polytechnique Fédérale de Lausanne

BOARD OF EDITORS

Julie Bergner

Steven Boyer

Tara E Brendle

Indira Chatterji
Alexander Dranishnikov
Tobias Ekholm

Mario Eudave-Mufioz
David Futer

John Greenlees

Tan Hambleton
Matthew Hedden
Hans-Werner Henn
Daniel Isaksen
Thomas Koberda

Christine Lescop

University of Virginia
jeb2md@eservices.virginia.edu
Université du Québec a Montréal
cohf @math.rochester.edu
University of Glasgow
tara.brendle @ glasgow.ac.uk
CNRS & Univ. Cote d’ Azur (Nice)
indira.chatterji @math.cnrs.fr
University of Florida
dranish@math.ufl.edu

Uppsala University, Sweden
tobias.ekholm @math.uu.se
Univ. Nacional Auténoma de México
mario @matem.unam.mx

Temple University

dfuter @temple.edu

University of Warwick
john.greenlees @warwick.ac.uk
McMaster University
ian@math.mcmaster.ca
Michigan State University
mhedden @math.msu.edu
Université Louis Pasteur
henn@math.u-strasbg.fr

Wayne State University

isaksen @math.wayne.edu
University of Virginia
thomas.koberda@virginia.edu
Université Joseph Fourier

lescop @ujf-grenoble.fr

Robert Lipshitz
Norihiko Minami
Andrés Navas
Thomas Nikolaus
Robert Oliver
Jessica S Purcell
Birgit Richter
Jéréme Scherer
Vesna Stojanoska
Zoltan Szabo
Maggy Tomova
Nathalie Wahl
Chris Wendl

Daniel T Wise

University of Oregon
lipshitz@uoregon.edu

Nagoya Institute of Technology
nori @nitech.ac.jp

Universidad de Santiago de Chile
andres.navas @usach.cl
University of Miinster

nikolaus @uni-muenster.de
Université Paris 13

bobol @math.univ-paris13.fr
Monash University
jessica.purcell@monash.edu
Universitit Hamburg
birgit.richter @uni-hamburg.de
Ecole Polytech. Féd. de Lausanne
jerome.scherer@epfl.ch

Univ. of Illinois at Urbana-Champaign
vesna@illinois.edu

Princeton University

szabo @math.princeton.edu
University of Towa
maggy-tomova@uiowa.edu
University of Copenhagen
wahl@math.ku.dk
Humboldt-Universitit zu Berlin
wendl@math.hu-berlin.de
McGill University, Canada
daniel.wise @mcgill.ca

See inside back cover or msp.org/agt for submission instructions.

The subscription price for 2024 is US $705/year for the electronic version, and $1040/year (4-$70, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Algebraic & Geometric Topology is
indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Algebraic & Geometric Topology (ISSN 1472-2747 printed, 1472-2739 electronic) is published 9 times per year and continuously online, by
Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.
Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical
Sciences Publishers, c¢/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.

AGT peer review and production are managed by EditFlow® from MSP.
PUBLISHED BY
:I mathematical sciences publishers
nonprofit scientific publishing

https://msp.org/
© 2024 Mathematical Sciences Publishers


http://dx.doi.org/10.2140/agt
mailto:etnyre@math.gatech.edu
mailto:kathryn.hess@epfl.ch
mailto:jeb2md@eservices.virginia.edu
mailto:cohf@math.rochester.edu
mailto:tara.brendle@glasgow.ac.uk
mailto:indira.chatterji@math.cnrs.fr
mailto:dranish@math.ufl.edu
mailto:tobias.ekholm@math.uu.se
mailto:mario@matem.unam.mx
mailto:dfuter@temple.edu
mailto:john.greenlees@warwick.ac.uk
mailto:ian@math.mcmaster.ca
mailto:mhedden@math.msu.edu
mailto:henn@math.u-strasbg.fr
mailto:isaksen@math.wayne.edu
mailto:thomas.koberda@virginia.edu
mailto:lescop@ujf-grenoble.fr
mailto:lipshitz@uoregon.edu
mailto:nori@nitech.ac.jp
mailto:andres.navas@usach.cl
mailto:nikolaus@uni-muenster.de
mailto:bobol@math.univ-paris13.fr
mailto:jessica.purcell@monash.edu
mailto:birgit.richter@uni-hamburg.de
mailto:jerome.scherer@epfl.ch
mailto:vesna@illinois.edu
mailto:szabo@math.princeton.edu
mailto:maggy-tomova@uiowa.edu
mailto:wahl@math.ku.dk
mailto:wendl@math.hu-berlin.de
mailto:daniel.wise@mcgill.ca
http://dx.doi.org/10.2140/agt
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
https://msp.org/
https://msp.org/

ALGEBRAIC & G

Volume 24 Issue 1 (p

Chow—Witt rings of Grassmannians
MATTHIAS WENDT

Higher chromatic Thom spectra via unstable homotopy theory
SANATH K DEVALAPURKAR

The deformation space of nonorientable hyperbolic 3—manifolds
JUAN LUIS DURAN BATALLA and JOAN PORTI

Realization of Lie algebras and classifying spaces of crossed mo
YVES FELIX and DANIEL TANRE

Knot Floer homology, link Floer homology and link detection
FRASER BINNS and GAGE MARTIN

Models for knot spaces and Atiyah duality
SYUNIJI MORIYA

Automorphismes du groupe des automorphismes d’un groupe de
YASSINE GUERCH

The RO(C4) cohomology of the infinite real projective space
NICK GEORGAKOPOULOS

Annular Khovanov homology and augmented links
HONGIIAN YANG

Smith ideals of operadic algebras in monoidal model categories
DAVID WHITE and DONALD YAU

The persistent topology of optimal transport based metric thicke:
HENRY ADAMS, FACUNDO MEMOLI, MICHAEL MOY ani

A generalization of moment-angle manifolds with noncontractib
LiYu

Equivariant Seiberg—Witten—Floer cohomology
DAVID BARAGLIA and PEDRAM HEKMATI

Constructions stemming from nonseparating planar graphs and
ANDREI PAVELESCU and ELENA PAVELESCU

Census L—space knots are braid positive, except for one that is n
KENNETH L BAKER and MARC KEGEL

Branched covers and rational homology balls

CHARLES LIVINGSTON



http://dx.doi.org/10.2140/agt.2024.24.1
http://dx.doi.org/10.2140/agt.2024.24.49
http://dx.doi.org/10.2140/agt.2024.24.109
http://dx.doi.org/10.2140/agt.2024.24.141
http://dx.doi.org/10.2140/agt.2024.24.159
http://dx.doi.org/10.2140/agt.2024.24.183
http://dx.doi.org/10.2140/agt.2024.24.251
http://dx.doi.org/10.2140/agt.2024.24.277
http://dx.doi.org/10.2140/agt.2024.24.325
http://dx.doi.org/10.2140/agt.2024.24.341
http://dx.doi.org/10.2140/agt.2024.24.393
http://dx.doi.org/10.2140/agt.2024.24.449
http://dx.doi.org/10.2140/agt.2024.24.493
http://dx.doi.org/10.2140/agt.2024.24.555
http://dx.doi.org/10.2140/agt.2024.24.569
http://dx.doi.org/10.2140/agt.2024.24.587

	1. Introduction
	Acknowledgments

	2. Model structures on the arrow category
	2.1. Monoidal model categories
	2.2. Arrow categories
	2.3. Injective model structure
	2.4. Projective model structure

	3. Smith ideals for operads
	3.1. Operads, algebras and bimodules
	3.2. Arrow category of operadic algebras
	3.3. Operadic Smith ideals
	3.4. Operadic Smith ideals and morphisms of operadic algebras

	4. Homotopy theory of Smith ideals for operads
	4.1. Admissibility of operads
	4.2. Admissibility of operads in the arrow category
	4.3. Quillen adjunction between operadic Smith ideals and algebra morphisms
	4.4. Quillen equivalence between operadic Smith ideals and algebra morphisms

	5. Smith ideals for commutative and Sigma–cofibrant operads
	5.1. Commutative Smith ideals
	5.2. Smith ideals for Sigma–cofibrant operads

	6. Smith ideals for entrywise cofibrant operads
	6.1. Cofibrancy assumptions
	6.2. Underlying cofibrancy of cofibrant Smith ideals for entrywise cofibrant operads

	7. Semi-model categories and infinity-categories for operad algebras
	7.1. Preliminaries on infinity-operads
	7.2. Homotopy sifted colimits
	7.3. Semi-model categories and infinity-categories of operad algebras

	References
	
	

