
ATG

Algebraic & Geometric
Topology

msp

Volume 24 (2024)

Equivariant Seiberg–Witten–Floer cohomology

DAVID BARAGLIA

PEDRAM HEKMATI





msp
Algebraic & Geometric Topology 24:1 (2024) 493–554

DOI: 10.2140/agt.2024.24.493
Published: 18 March 2024

Equivariant Seiberg–Witten–Floer cohomology

DAVID BARAGLIA

PEDRAM HEKMATI

We develop an equivariant version of Seiberg–Witten–Floer cohomology for finite group actions on
rational homology 3–spheres. Our construction is based on an equivariant version of the Seiberg–Witten–
Floer stable homotopy type, as constructed by Manolescu. We use these equivariant cohomology groups
to define a series of d–invariants dG;c.Y; s/ which are indexed by the group cohomology of G. These
invariants satisfy a Frøyshov-type inequality under equivariant cobordisms. Lastly, we consider a variety
of applications of these d–invariants: concordance invariants of knots via branched covers, obstructions
to extending group actions over bounding 4–manifolds, Nielsen realisation problems for 4–manifolds
with boundary and obstructions to equivariant embeddings of 3–manifolds in 4–manifolds.

57K31; 57K10, 57K41

1 Introduction

In this paper we develop an equivariant version of Seiberg–Witten–Floer cohomology for rational homology
3–spheres equipped with the action of a finite group. Our approach is modelled on the construction of a
Seiberg–Witten–Floer stable homotopy type due to Manolescu [49], which we now briefly recall. Let Y be
a rational homology 3–sphere and s a spinc–structure on Y . Given a metric g on Y , the construction of [49]
yields an S1–equivariant stable homotopy type SWF.Y; s; g/. The Seiberg–Witten–Floer cohomology of
.Y; s/ is then given (up to a degree shift) by the S1–equivariant cohomology of SWF.Y; s; g/:

HSW �.Y; s/D zH
�C2n.Y;s;g/

S1
.SWF.Y; s; g//;

where n.Y; s; g/ is a rational number given by a certain combination of eta invariants.

The stable homotopy type SWF.Y; s; g/ depends on the choice of metric, but only up to a suspension.
Given two metrics, g0 and g1, one obtains a canonical homotopy equivalence

(1-1) SWF.Y; s; g1/Š†
SF .fDsg/CSWF.Y; s; g0/;

where SF.fDsg/ denotes the spectral flow for the family of Dirac operators fDsg determined by a path
of metrics fgsg from g0 to g1. The rational numbers n.Y; s; g/ are defined in such a way that they split
the spectral flow in the sense that

(1-2) SF.fDsg/D n.Y; s; g1/�n.Y; s; g0/:
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494 David Baraglia and Pedram Hekmati

Hence we obtain a canonical isomorphism

zH
�C2n.Y;s;g1/

S1
.SWF.Y; s; g1//Š zH

�C2n.Y;s;g0/

S1
.SWF.Y; s; g0//:

This shows that the Seiberg–Witten–Floer cohomology HSW �.Y; s/ does not depend on the choice of
metric g.

By working in an appropriately defined S1–equivariant Spanier–Whitehead category in which suspension
by fractional amounts of C is allowed, Manolescu defined the Seiberg–Witten–Floer homotopy type of
.Y; s/ to be

SW.Y; s/D†�n.Y;s;g/CSWF.Y; s; g/:

This is independent of the choice of g by (1-1) and (1-2).

Now suppose that a finite group G acts on Y by orientation-preserving diffeomorphisms which preserve
the isomorphism class of s. Let g be a G–invariant metric on Y . Lifting the action of G to the associated
spinor bundle determines an S1 extension

1! S1!Gs!G! 1:

Manolescu’s construction of the stable homotopy type SWF.Y; s; g/ can be carried out Gs–equivariantly,
so that SWF.Y; s; g/may be promoted to aGs–equivariant stable homotopy type. This is analogous to the
construction in [50] of the Pin.2/–equivariant Seiberg–Witten–Floer stable homotopy type of .Y; s/ where
s is a spin–structure on Y . The main difference is that in our construction, the additional symmetries that
comprise the group Gs come from symmetries of Y rather than internal symmetries of the Seiberg–Witten
equations.

We define the G–equivariant Seiberg–Witten–Floer cohomology of .Y; s/ to be

HSW �G.Y; s/D
zH
�C2n.Y;s;g/
Gs

.SWF.Y; s; g//:

The right-hand side is independent of the choice of metric g by much the same argument as in the
S1–equivariant case.

We make some remarks concerning this construction.

(1) Throughout this paper we have chosen to work with cohomology instead of homology. This is simply
a matter of preference and we could just as well work with Seiberg–Witten–Floer homology groups.

(2) Instead of Borel equivariant cohomology, we could take co-Borel cohomology or Tate cohomology,
which correspond to the different versions of Heegaard Floer cohomology; see Lidman and Manolescu [45,
Corollary 1.2.4].

(3) In a similar fashion we can also define the G–equivariant Seiberg–Witten–Floer K–theory

KSW �G.Y; s/D
zK
�C2n.Y;s;g/
Gs

.SWF.Y; s; g//:

More generally we could use any generalised equivariant cohomology theory in which the Thom isomor-
phism holds.
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Equivariant Seiberg–Witten–Floer cohomology 495

(4) We have not attempted to construct a metric independent Gs–equivariant stable homotopy type. To
do this one would need to split the equivariant spectral flow SFGs.fDsg/ in the same way that n.Y; s; g/
splits the nonequivariant spectral flow, as in (1-2).

1.1 Main results

Throughout we work with cohomology with coefficients in a field F . To avoid the necessity of local
systems we assume that either F DZ=2Z, or that the order of G is odd (see Section 3.1). We now outline
the main properties of equivariant Seiberg–Witten–Floer cohomology.

Module structure HSW �G.Y; s/ is a graded module over H�Gs
(where for a group K we write H�K for

H�K.pt/). In particular if Gs is the trivial extension then HSW �G.Y; s/ is a graded module over H�G ŒU �,
where deg.U /D 2.

Theorem 1.1 (spectral sequence) There is a spectral sequence Ep;qr abutting to HSW �G.Y; s/ whose
second page is given by

E
p;q
2 DHp.BGIHSW q.Y; s//:

Theorem 1.2 (localisation) Suppose the extension Gs is trivial and choose a trivialisation Gs Š S
1�G.

Then H�Gs
Š H�G ŒU � and the localisation U�1HSW �G.Y; s/ of HSW �G.Y; s/ with respect to U is a free

H�G ŒU; U
�1�–module of rank 1.

L–spaces We say that Y is an L–space with respect to s and F if HSW �.Y; s/ is isomorphic to a free
F ŒU �–module of rank 1.

Theorem 1.3 Suppose that Gs is a split extension. If Y is an L–space with respect to s and F , then the
spectral sequence given in Theorem 1.1 degenerates at E2. Moreover ,

HSW �G.Y; s/ŠHSW
�.Y; s/˝F H

�
G :

Correction terms Suppose that Gs is a split extension. For each nonzero c 2H�G we obtain an invariant

dG;c.Y; s/ 2Q

which may be thought of as a generalisation to the equivariant setting of the d–invariant d.Y; s/. We also
set dG;0.Y; s/D�1.

Theorem 1.4 The equivariant d–invariants satisfy the following properties:

(1) dG;1.Y; s/� d.Y; s/, where 1 is the generator of H 0
G.pt/;

(2) dG;c1Cc2.Y; s/�maxfdG;c1.Y; s/; dG;c2.Y; s/g;

(3) dG;c1c2.Y; s/�minfdG;c1.Y; s/; dG;c2.Y; s/g;

(4) dG;c1.Y; s/C dG;c2.Y ; s/� 0 whenever c1c2 ¤ 0;
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(5) if Y is an L–space with respect to s and F , then dG;c.Y; s/D d.Y; s/ for all c ¤ 0;

(6) dG;c.Y; s/ is invariant under equivariant rational homology cobordism.

We find it convenient to also define corresponding equivariant ı–invariants by setting

ıG;c.Y; s/D
1
2
dG;c.Y; s/:

Our primary motivation for considering the equivariant d–invariants is that they are necessary for the
formulation of our equivariant generalisation of Frøyshov’s inequality described below.

Cobordism maps Suppose that .W; s/ is a G–equivariant cobordism from .Y1; s1/ to .Y2; s2/ (see
Section 4.3 for the precise statement). Then W induces a morphism of graded H�Gs

–modules

SWG.W; s/ WHSW
�
G.Y2; s2/!HSW

�CbC.W /�2ı.W;s/
G .Y1; s1/

where ı.W; s/D 1
8
.c1.s/

2� �.W //.

Theorem 1.5 (equivariant Frøyshov inequality) Let W be a smooth , compact , oriented 4–manifold
with boundary and with b1.W /D 0. Suppose that G acts smoothly on W preserving the orientation and
a spinc–structure s. Suppose that the extension Gs is trivial. Suppose each component of @W is a rational
homology 3–sphere and that G sends each component of @W to itself. Let e 2H bC.W /

G be the image in
H�G.ptIF/ of the Euler class of any G–invariant maximal positive definite subspace of H 2.W IR/. Let
c 2H�G and suppose that ce ¤ 0.

(1) If @W D Y is connected , then

ı.W; s/� ıG;c.Y; sjY / and ıG;ce.Y ; sjY /� ı.W ; s/:

(2) If @W D Y1[Y2 has two connected components , then

ıG;ce.Y1; sjY1/C ı.W; s/� ıG;c.Y2; sjY2/:

Knot concordance invariants Let K be a knot in S3 and let Y D†2.K/ be the double cover of S3

branched over K. Then Y has an action of G D Z2 generated by the covering involution. Further, Y has
a spinc–structure t0 uniquely determined by the condition that it arises from a spin–structure. Set F DZ2.
Then H�G Š F ŒQ�, where deg.Q/D 1. For each j � 0, we define an invariant ıj .K/ 2 Z by setting

ıj .K/D 4ıZ2;Qj .†2.K/; t0/:

Let �.K/ and g4.K/ denote the signature and smooth 4–genus of K.

Theorem 1.6 The invariants ıj .K/ have the following properties:

(1) ıj .K/ is a knot concordance invariant ;

(2) ı0.K/� ı.K/, where ı.K/ is the Manolescu–Owens invariant [51];

(3) ıjC1.K/� ıj .K/ for all j � 0;
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(4) ıj .K/� �
1
2
�.K/ for all j � 0 and ıj .K/D�12�.K/ for j � g4.K/� 1

2
�.K/;

(5) ıj .�K/�
1
2
�.K/ for all j � 0 and ıj .�K/D 1

2
�.K/ for j � g4.K/C 1

2
�.K/;

(6) if †2.K/ is an L–space , then ıj .K/D ı.K/D�12�.K/ and ıj .�K/D ı.�K/D 1
2
�.K/ for all

j � 0.

In particular, if K is quasialternating, then †2.K/ is an L–space; see Ozsváth and Szabó [57]. So we
recover the main result of Lisca and Owens [47] that ı.K/D�1

2
�.K/ for quasialternating knots.

The concordance invariants ıj .K/ can also be used to strengthen the inequality g4.K/� 1
2
j�.K/j; see

Murasugi [52].

Theorem 1.7 For a knot K, let jC.K/ be the smallest positive integer such that ıj .K/D�12�.K/ and
j�.K/ the smallest positive integer such that ıj .�K/D 1

2
�.K/. Then

g4.K/�max
˚
�
1
2
�.K/C j�.K/;

1
2
�.K/C jC.K/

	
:

Corollary 1.8 If ı.K/ > �1
2
�.K/ and �.K/� 0, then

g4.K/�
1
2
j�.K/jC 1

Proof If ı.K/ > �1
2
�.K/, then ı0.K/� ı.K/ > �12�.K/, and thus jC.K/� 1. Hence

g4.K/�
1
2
�.K/C 1D 1

2
j�.K/jC 1:

One can obtain even more knot concordance invariants by considering higher order cyclic branched
covers; see Remark 6.7.

1.2 Applications

We outline here some of the applications of equivariant Seiberg–Witten–Floer cohomology. These are
considered in more detail in Section 7.

1.2.1 Nonextendable actions (Section 7.2) Let Y be a rational homology 3–sphere equipped with an
orientation-preserving action of G and let W be a smooth 4–manifold which bounds Y . The equivariant
d–invariants give obstructions to extending the action of G over W .

Example 1.9 The Brieskorn homology sphere Y D†.p; q; r/ where p, q and r are pairwise coprime is
the branched cyclic p–fold cover of the torus knot Tq;r . Let � W Y ! Y be a generator of the Zp–action
determined by this covering. For certain values of p, q and r it can be shown that Y bounds a contractible
4–manifold. For example, †.2; 3; 13/ bounds a contractible 4–manifold; see Akbulut and Kirby [2]. It
can be shown that � is smoothly isotopic to the identity; hence it follows that � can be extended as a
diffeomorphism over any 4–manifold bounded by Y . On the other hand we show in Proposition 7.2
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that if p is prime then ıZp;1.Y; s/D��.Y / is minus the Casson invariant of Y (where s is the unique
spinc–structure on Y ), which is nonzero. We further show that the nonvanishing of ıZp;1.Y; s/ implies
that � cannot be extended as a smooth Zp–action to any contractible 4–manifold bounded by Y . This
partially recovers the nonextendability results of Anvari and Hambleton [6; 7] for Brieskorn homology
3–spheres bounded by contractible 4–manifolds.

On the other hand, our nonextendability result also holds in situations not covered by Anvari and
Hambleton. Suppose now that Y D †.p; q; r/ bounds a rational homology 4–ball W . For example,
Fintushel and Stern showed that †.2; 3; 7/ bounds a rational homology 4–ball, although it does not bound
an integral homology 4–ball [26]. More examples can be found in Akbulut and Larson [4] and Şavk [21].
We show in Section 7.2 that the nonvanishing of ıZp;1.†.p; q; r//, where p is prime, implies that the
Zp–action cannot be extended to any rational homology 4–ball W bounded by Y , provided that p does
not divide the order of H 2.W IZ/.

1.2.2 Realisation problems (Section 7.3) Let W be a smooth 4–manifold with boundary an integral
homology sphere Y . Suppose that a finite groupG acts onH 2.W IZ/ preserving the intersection form. We
say that the action of G on H 2.W IZ/ can be realised by diffeomorphisms if there is a smooth orientation-
preserving action of G on W inducing the given action on H 2.W IZ/. The equivariant d–invariants give
obstructions to realising such actions by diffeomorphism. This extends the nonrealisation results of the
first author [10; 11] for closed 4–manifolds to the case of 4–manifolds with nonempty boundary.

Example 1.10 Suppose that b1.W /D 0 and that H 2.W IZ/ has no 2–torsion and even intersection form.
Suppose that Y is an L–space. Suppose that an action of G D Zp on H 2.W IZ/ is given, where p is
prime and that the subspace of H 2.W IR/ fixed by G is negative definite. If 1

8
�.W / < �ı.Y; s/ (where

s is the unique spinc–structure on Y ) then the action of Zp on H 2.W IZ/ is not realisable by a smooth
Zp–action on W . Note that we are not making any assumptions about the action of Zp on the boundary.

1.2.3 Equivariant embeddings of 3–manifolds in 4–manifolds (Section 7.4) Let Y be a rational
homology 3–sphere equipped with an orientation-preserving action of G. By an equivariant embedding of
Y into a 4–manifold X , we mean an embedding Y !X such that the action of G on Y extends over X .

Example 1.11 Let Y D†.2; 2s� 1; 2sC 1/ where s is odd, equipped with the involution � obtained
from viewing Y as the branched double cover †2.T2s�1;2sC1/. Then Y embeds in S4; see Budney
and Burton [13, Theorem 2.13]. On the other hand, ıj .Y; s/ ¤ 0 for some j . We will show that the
nonvanishing of this invariant implies that Y cannot be equivariantly embedded in S4.

It is known that every 3–manifold Y embeds in the connected sum #n.S2 �S2/ of n copies of S2 �S2

for some sufficiently large n [1, Theorem 2.1]. Aceto, Golla and Larson define the embedding number
".Y / of Y to be the smallest n for which Y embeds in #n.S2 �S2/. Here we consider an equivariant
version of the embedding number. To obtain interesting results we need to make an assumption on the
kinds of group actions allowed.
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Definition 1.12 Let G D Zp D h�i where p is a prime number. We say that a smooth, orientation-
preserving action of G on X D #n.S2 �S2/ is admissible if H 2.X IZ/� D 0, where

H 2.X IZ/� D fx 2H 2.X IZ/ j �.x/D xg:

We define the equivariant embedding number ".Y; �/ of .Y; �/ to be the smallest n for which Y embeds
equivariantly in #n.S2 �S2/ for some admissible Zp–action on #n.S2 �S2/, if such an embedding
exists. We set ".Y; �/D1 if there is no such embedding.

Example 1.13 Let Y D †.2; 3; 6nC 1/D †2.T3;6nC1/ and equip Y with the covering involution � .
We show that

2n� ".†.2; 3; 6nC 1/; �/� 12n:

Suppose that n is odd. Then from [1, Proposition 3.5], the (nonequivariant) embedding number of
†.2; 3; 6nC 1/ is 10. In particular, we see that ".†.2; 3; 6nC 1/; �/ > ".†.2; 3; 6nC 1// for all odd
n > 5. We also show that

".†.2; 3; 7/; �/D 12;

whereas ".†.2; 3; 7//D 10.

1.3 Comparison with other works

In [30], Hendricks, Lipshitz and Sarkar introduce equivariant versions of several types of Floer homology,
mostly focusing on the case that the group is Z2. In particular they define a Z2–equivariant version
ofHF�, which is a module overH�

S1�Z2
.ptIZ2/DZ2ŒU;Q�. This construction shares many similarities

with the equivariant Seiberg–Witten–Floer cohomology constructed in this paper, such as a localisation
isomorphism and a spectral sequence relating the equivariant and ordinary Floer homologies. In fact, it
seems reasonable to conjecture that our constructions are isomorphic.

In [5], Alfieri, Kang and Stipsicz consider a Z2–equivariant Heegaard Floer homology HFB�.K/ for a
branched double cover Y D†2.K/ of a knot K, constructed in a manner similar to involutive Heegaard
Floer homology — see Hendricks and Manolescu [31] — except that the involution arises from the covering
involution on Y . These groups are modules over the ring Z2ŒU;Q�=.Q2/. From this group they obtain
knot concordance invariants Nı.K/; ı.K/. A similar approach was taken by Dai, Hedden and Mallick [22]
to obtain �–complexes — see Hendricks, Manolescu and Zemke [32, Definition 8.1] — associated to
involutions on Y . Since Z2ŒU;Q�=.Q2/DH�S1�Z

.pt IZ2/, we suspect that the group HFB�.K/ may
be isomorphic to the Z–equivariant Seiberg–Witten–Floer homology of †2.K/.

In [46, Remark 3.1], Lidman and Manolescu define equivariant Seiberg–Witten–Floer homology in the
special case that G acts freely on Y . Their construction coincides with ours in such cases.

1.4 Structure of the paper

In Section 2 we recall the construction of Seiberg–Witten–Floer spectra using finite-dimensional approx-
imation and the Conley index. In Section 3 we extend this construction to the G–equivariant setting,
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arriving at the construction of the G–equivariant Seiberg–Witten–Floer cohomology in Section 3.4. In
the remainder of Section 3 we introduce the equivariant d–invariants and establish their basic properties.
Section 4 is concerned with the behaviour of equivariant Seiberg–Witten–Floer cohomology and the
d–invariants under equivariant cobordism. In Section 5 we specialise to the case that G is a cyclic
group of prime order. In Section 6 we consider the case of branched double covers of knots with their
natural involution to obtain knot concordance invariants. Finally in Section 7 we carry out some explicit
computations of d–invariants and consider various applications.

2 Seiberg–Witten–Floer spectra

2.1 Seiberg–Witten trajectories

Throughout we let Y be a rational homology 3–sphere, ie Y is a compact, oriented, smooth 3–manifold
with b1.Y /D 0. References for the material in this section are [45; 49].

Let g be a Riemannian metric on Y and let s be a spinc–structure with associated spinor bundle S . Let
� W T Y ! End.S/ denote Clifford multiplication, satisfying �.v/�.w/C �.w/�.v/ D �2g.v;w/. The
spinor bundle S is equipped with a Hermitian metric h � ; � i which we take to be antilinear in the first
variable. Let su.S/ be the Lie algebra bundle of trace-free skew-adjoint endomorphisms of S and sl.S/

the Lie algebra bundle of trace-free endomorphisms of S . Then � induces an isomorphism � WT Y ! su.S/

which extends by complexification to an isomorphism � W T YC! sl.S/ satisfying �. Nv/D��.v/�. Using
the metric g to identify T Y and T �Y we will also view � as a map � W T �Y ! su.S/. We extend � to
2–forms by the rule �.v^w/D 1

2
Œ�.v/; �.w/�. It follows that �.�/D��.��/ for any 2–form �. Define

a Hermitian inner product on su.S/ by ha; bi D 1
2

tr.a�b/. Then for any tangent vectors u and v, we
have h�.u/; �.v/i D g. Nu; v/. Define a map

� W S �S ! T �YC

by setting
�.�;  /D ��1.�˝ �/0;

where .�˝ �/0 is the trace-free part of �˝ �. That is, if � is any spinor, then

.�˝ �/.�/D �h ; �i � 1
2
h ; �i�:

Then it follows that
�. ; �/D��.�;  /; �.a ; b�/D a Nb�. ; �/:

In particular, �.�; �/ is imaginary and �.c�; c�/D jcj2�.�; �/. We also have the identity

h�.�; �/; vi D 1
2
h�; �.v/�i

for all spinors � and vectors v.
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Let LD det.S/ be the determinant line bundle of S . Let �.L/ denote the space of U.1/–connections
on L, which is an affine space over i�1.Y /. We will write such a connection as 2A. Then 2A determines
a spinc.3/–connection on S whose u.1/ part is A and whose spin.3/ part is the Levi-Civita connection.
Abusing terminology, we will refer to A as a spinc–connection.

Given a spinc–connection A, we let DA denote the associated Dirac operator on S . Fix a reference
spinc–connection A0. Then we may write AD A0C a for some a 2 i�1.Y /. It follows that

DA. /DDA0Ca. /DDA0. /C �.a/ :

Since b1.Y / D 0, it follows that L admits a flat connection. We will assume that A0 defines a flat
connection on L.

We define the configuration space of Y to be

C.Y /D �.L/��.S/:

C.Y / depends on g and s but we omit this from the notation. C.Y / is an affine space modelled on
i�1.Y /˚�.S/. In particular, the tangent space T.A;�/C.Y / to any point .A; �/ 2 C.Y / can naturally
be identified with i�1.Y /˚�.S/. There is a natural metric on i�1.Y /˚�.S/, the L2–metric

h.a1; �1/; .a2; �2/iL2 D�

Z
Y

a1 ^�a2C

Z
Y

Reh�1; �2i dvolY :

This defines a (constant) Riemannian metric on C.Y /. We will need to work with Sobolev completions.
Given a flat reference spinc–connection A0, Sobolev norms are defined using A0 and g. Fix an integer
k � 4. Later we will work with the L2

kC1
–completion of C.Y / and L2

kC2
–gauge transformations.

Having fixed a reference connection A0, we identify C.Y / with i�1.Y /˚ �.S/. Thus an element
.A; �/ 2C.Y / will be identified with .a; �/ 2 i�1.Y /˚�.S/, where ADA0Ca. To simplify notation,
we will write Da in place of DA0Ca.

The Chern–Simons–Dirac functional L W C.Y /!R (with respect to A0) is defined as

L.a; �/D
1

2

�Z
Y

h�;Da�i dvolY �
Z
Y

a^ da

�
:

The gauge group GD C1.Y; S1/ acts on C.Y / by

u � .a; �/D .a�u�1du; u ��/:

Observe that Da�u�1du.u�/D uDa�, so

hu�;Da�u�1du.u�/i D hu�; uDa�i D h�;Da�i:

It follows that L is gauge invariant and we can regard L as a function on the quotient space C.Y /=G. The
goal of Seiberg–Witten–Floer theory is to construct some sensible notion of Morse homology of L on
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C.Y /=G. Consider the formal L2–gradient of L; that is, the function grad.L/ W C.Y /! i�1.Y /˚�.S/

such that
hgrad.L/.a; �/; .a0; �0/iL2 D

d

dt

ˇ̌̌
tD0

�
L.a; �/C t .a0; �0/

�
for all .a; �/ 2 C.Y / and all .a0; �0/ 2 i�1.Y /˚�.S/. A short calculation gives

grad.L/D .�daC �.�; �/;Da�/:

A critical point of L is a point where grad.L/ vanishes. So .a; �/ is a critical point if and only if it
satisfies

�daC �.�; �/D 0; Da� D 0:

These are the 3–dimensional Seiberg–Witten equations.

A trajectory for the downwards gradient flow is a differentiable map x WR! L2
kC1

.C.Y // such that

d

dt
x.t/D�grad.L/.x.t//:

If x.t/D .a.t/; �.t// 2 L2
kC1

.Y; iT �Y ˚S/, then

d

dt
a.t/D��da.t/� �.�.t/; �.t//;

d

dt
�.t/D�Da.t/�.t/:

A key observation is that such trajectories can be reinterpreted as solutions of the 4–dimensional Seiberg–
Witten equations on the cylinder X DR�Y .

Definition 2.1 A Seiberg–Witten trajectory x.t/D .a.t/; �.t// is said to be of finite type if both L.x.t//

and k�.t/kC0 are bounded functions of t .

2.2 Restriction to the global Coulomb slice

Define the global Coulomb slice (with respect to A0) to be the subspace

V D Ker.d�/˚�.S/� C.Y /:

Given .a; �/ 2 C.Y /, there exists an element of V which is gauge equivalent to .a; �/, namely

.a� df; ef �/

where d�.a� df / D 0, so �f D d�.a/. If we impose the condition
R
Y f dvolY D 0, then there is a

unique solution to these equations given by f DGd�a, where G is the Green’s operator for the Laplacian
�D dd� on functions.

We have a globally defined map … W C.Y /! V , called the global Coulomb projection,

….a; �/D .a� df; ef �/

where �f D d�.a/ and
R
Y f dvolD 0.
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Restricting to the global Coulomb slice V uses up all of the gauge symmetry except for the S1 subgroup
of constant gauge transformations. Instead of working on C.Y / with full gauge symmetry, we work on V
with S1 symmetry.

As b1.Y / D 0, every map u W Y ! S1 can be written as u D ef for some f W Y ! iR. Moreover,
f is unique up to addition of an integer multiple of 2�i . We define G0 to be the subgroup of gauge
transformations of the form u D ef for some f W Y ! iR with

R
Y f dvol D 0. It is easy to see that

GD G0 �S
1.

We have that G0 acts freely on C.Y / and the quotient space can be identified with V . This determines a
metric Qg on V as follows. Take the restriction of the L2–metric on C.Y / to the subbundle of the tangent
bundle orthogonal to the gauge orbits. This construction is G0–invariant and descends to a metric Qg on V .

The Chern–Simons–Dirac functional L is gauge invariant; hence the gradient grad.L/ is orthogonal to
the gauge orbits. It follows that the projection of grad.L/ to V coincides with taking the gradient of LjV

with respect to Qg. So the trajectories of grad.L/ on C.Y / project to the trajectories of LjV , where the
gradient of LjV is taken using the metric Qg. Thus the trajectories on V have the form

d

dt
.a.t/; �.t//D .�� da� �.�; �/;�Da�/� .�df; f �/

for a function f W Y ! iR. The function f is uniquely determined by the conditions that
R
Y f dvolY D 0

and that �daC �.�; �/� df is in the kernel of d�. Hence df D .1��/�.�; �/, where � denotes the
L2 orthogonal projection to Ker.d�/. We have that

d

dt
.a.t/; �.t//D .�� da���.�; �/;�Da� �f �/D�.l C c/.a; �/;

where
l.a; �/D .�da;D�/

is the linear part and
c.a; �/D .��.�; �/; �.a/�Cf �/

is given by the nonlinear terms.

Let � denote the gradient of LjV with respect to Qg. Then �D l C c extends to a map

�D l C c W VkC1! Vk;

where Vk denotes the L2
k

–Sobolev completion of V . The map l is a linear Fredholm operator. Using
Sobolev multiplication and an estimate on the unique solution to df D .1��/�.�; �/,

R
Y f dvolY D 0,

it follows that c viewed as a map VkC1! VkC1 is continuous. Hence c W VkC1! Vk is compact. The
flow lines of � on V will be called Seiberg–Witten trajectories in the Coulomb gauge. We say that such
a trajectory x.t/D .a.t/; �.t// is of finite type if L.x.t// and k�.t/kC0 are bounded independent of t .
Clearly the finite type Seiberg–Witten trajectories in the Coulomb gauge are precisely the projection to V
of the Seiberg–Witten trajectories in C.Y / of finite type.
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2.3 Finite-dimensional approximation

Let V �
�

denote the direct sum of all eigenspaces of l in the range .�; �� and let Qp�
�

be the L2–orthogonal
projection from V to V �

�
. Note that V �

�
is a finite-dimensional subspace of V . For technical reasons we

replace the projections Qp�
�

with smoothed out versions

p
�

�
D

Z 1

0

�.�/ Qp
���

�C�
d�

where � W R! R is smooth, nonnegative, nonzero precisely on .0; 1/ and
R

R �.�/d� D 1. This is to
make p�

�
vary continuously with � and �. The reason for doing this is to show that the Conley index is

independent of the choices of � and �, up to a suspension. This is achieved by continuously increasing
or decreasing � and � to get a continuous family of flows and using homotopy invariance of the Conley
index under continuous deformation of the flow.

Consider the gradient flow equation

d

dt
x.t/D�.l Cp

�

�
c/x.t/;

where x WR! V
�

�
. We call this an approximate Seiberg–Witten trajectory.

Let B.R/ denote the open ball of radius R in L2
kC1

.V /. Using the a priori estimates for the Seiberg–
Witten equations, it can be shown that there exists an R>0 such that all the finite type trajectories of lCc
are in B.R/ [49, Proposition 1]. This boundedness property does not necessarily hold for approximate
trajectories, since the crucial estimates that hold for the Seiberg–Witten equations do not apply to the
approximate trajectories. However, we have the following result which acts as a kind of substitute:

Proposition 2.2 [49, Proposition 3] For any �� and � sufficiently large , if an approximate trajectory
x WR! L2

kC1
.V

�

�
/ satisfies x.t/ 2 B.2R/ for all t , then in fact x.t/ 2 B.R/ for all t .

This result will allow us to construct the Seiberg–Witten–Floer homotopy type of .Y; s/ using Conley
indices.

2.4 The Conley index

Suppose we have a 1–parameter group f'tg of diffeomorphisms of an n–dimensional manifold M (not
necessarily compact). The example to keep in mind is the gradient flow of a Morse function. Given a
compact subset N �M , the invariant set of N is

Inv.N; '/D fx 2N j 't .x/ 2N for all t 2Rg:

A compact subsetN �M is called an isolating neighbourhood if Inv.N; '/� intN . An isolated invariant
set is a subset S �M such that S D Inv.N; '/ for some isolating neighbourhood. Note that S must be
compact since it is a closed subset of N and N is required to be compact.
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Definition 2.3 Let S be an isolated invariant set. An index pair .N;L/ for S is a pair of compact sets
L�N �M such that

� Inv.N �L; '/D S � int.N �L/;

� L is an exit set for N , that is, for all x 2N , if there exists t > 0 such that 't .x/ is not in N , then
there exists � with 0� � < t with '� .x/ 2 L;

� L is positively invariant in N , that is, if x 2L and t > 0 and such that 's.x/ 2N for all 0� s � t ,
then 's.x/ 2 L for all 0� s � t .

Any isolated invariant set S admits an index pair .N;L/. The Conley index of S is the based homotopy
type

I.S/D .N=L; ŒL�/:

The Conley index is independent of the choice of index pair .N;L/ in a strong way. Namely for any
two pairs .N1; L1/ and .N2; L2/, there is a canonical homotopy equivalence N1=L1 Š N2=L2. The
composition of two such canonical homotopy equivalences N1=L1 Š N2=L2 and N2=L2 Š N3=L3
coincides up to homotopy with the canonical homotopy equivalence N1=L1 ŠN3=L3 (one says that the
collection of Conley indices N=L forms a connected simple system). By abuse of terminology, if .N;L/
is an index pair for S we say that I DN=L is “the” Conley index of S .

Example 2.4 Consider a Morse function with critical point of index p, say

f .x1; : : : ; xn/D
1
2
.�x21 � � � � � x

2
p C x

2
pC1C � � �C x

2
n/:

The negative gradient of f using the Euclidean metric is

�grad.f /.x/D .x1; : : : ; xp;�xpC1; : : : ;�xn/:

It follows that the downwards gradient flow is given by

't .x/D .e
tx1; : : : ; e

txp; e
�txpC1; : : : ; e

�txn/:

Let S D f0g be the critical point. This is an isolated invariant set. In fact, the only invariant point of ' is
the origin, so we could take N DDp �Dn�p as an isolating neighbourhood (where Dj is the closed
j–dimensional unit disc). Then L D Sp�1 �Dn�p is an exit set for N . It is easy to see that .N;L/
satisfies the condition for an index pair for S . The Conley index is I.S/DDp�Dn�p=.Sp�1�Dn�p/,
which is homotopy equivalent to Sp, a p–dimensional sphere.

Example 2.5 If M is a compact manifold and ' is a Morse–Smale gradient flow on M , then the set S
of all critical points and all flow lines between them is an isolated invariant set. The reduced homology of
I.S/ is known to be isomorphic to the homology of M .

On the other hand, if M is noncompact, then we cannot take S to be all critical points of M and all flow
lines starting or terminating at a critical point, because there could be flow lines going off to �1 or
coming in from C1 and then S would not be compact.
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We also need the equivariant Conley index. Let G be a compact Lie group acting smoothly on M ,
preserving a flow ' and an isolated invariant set S . It turns out that one can find a G–invariant index
pair .N;L/ for S and one can define the G–equivariant Conley index to be the pointed G–equivariant
homotopy type

IG.S/D .N=L; ŒL�/:

It can be shown that this is well defined, up to G–equivariant homotopy equivalence. Moreover IG.S/
has the based homotopy type of a finite G–CW complex.

Example 2.6 Consider again the example of the Morse function on Rn given by

f .x1; : : : ; xn/D
1
2
.�x21 � � � � � x

2
p C x

2
pC1C � � �C x

2
n/:

Now suppose that G is a compact Lie group which acts linearly on Rn preserving f . Note that f defines
an O.n�p; p/–structure on Rn and the fact that G preserves f just means that the action of G on Rn

factors through a homomorphism G!O.n�p; p/. As G is compact, we may as well assume (after a
linear change of coordinates) that G maps to the maximal compact subgroup O.n�p/�O.p/. So we
can decompose Rn as

Rn D VC˚V�;

where VC and V� are real orthogonal representations of G of dimensions n�p and p respectively. Once
again, take S D f0g as our isolated invariant set. As our Conley index, we can take N DD.V�/�D.VC/
and LD S.V�/�D.VC/; hence

IG.S/DD.V�/�D.VC/=S.V�/�D.VC/ŠD.V�/=S.V�/Š .V�/
C;

where .V�/C is the one-point compactification of V�. We see that the action of G on the Conley index is
determined by the representation of G on the subspace of the tangent space at the critical point in the
direction of the negative eigenvalues of the Hessian of f .

Let G and H be compact Lie groups and suppose that G�H acts smoothly on M . Suppose that f'tg is a
G�H–invariant flow. Then G acts smoothly on the submanifold MH and the restriction of f'tg defines
a G–invariant flow on MH . In such a situation we can consider the relation between G�H–equivariant
Conley indices for the flow on M and G–equivariant Conley indices for the restriction of the flow to MH .

Proposition 2.7 Let G �H act smoothly on M , preserving a flow f'tg, and let .N;L/ be a G�H–
equivariant index pair for an isolated invariant set S D Inv.A/. Then .NH ; LH / is a G–equivariant index
pair for the isolated invariant set SH D Inv.AH /. Moreover , .N=L/H ŠNH=LH .

Proof First note that AH is compact because A is compact. Moreover,

Inv.AH /D fa 2 AH j 't .a/ 2 AH for all tg D Inv.A/\AH D S \AH D SH :
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Let M be a topological space and let P;Q �M be subspaces. Give Q the induced topology. Then

intM .P /\QD
� [
U�P open inM

U

�
\QD

[
U�P open inM

.U \Q/� intQ.P \Q/:

Applying this to P D A and QDMH , we get

intM .A/\MH
� intMH .AH /:

Then since S � intM .A/ by the assumption that A is an isolating neighbourhood, it follows that

SH � intM .A/\MH
� intMH .AH /:

So AH is an isolating neighbourhood in MH for SH .

Now let .N;L/ be an index pair for S . So N and L are compact and L�N . This implies that NH and
LH are compact and LH �NH . Next, since

Inv.N �L/D S � intM .N �L/;

it follows that

Inv.NH
�LH /D SH D S \MH

� intM .N �L/\MH

� intMH ..N �L/\MH /D intMH .NH
�LH /:

We verify that LH is an exit set for NH . Let x 2NH and suppose 't .x/ …NH for some t > 0. Then
it follows that 't .x/ … N , for if 't .x/ 2 N , then it would imply that 't .x/ 2 N \MH D NH , since
't preserves MH . But L is an exit set for N , so there exists � 2 Œ0; t/ with '� .x/ 2 L. It follows that
'� .x/ 2 L\M

H D LH . Hence LH is an exit set for NH .

We check that LH is positively invariant in NH . Suppose x 2 LH and there exists a t > 0 for which
's.x/ 2N

H for all s 2 Œ0; t �. Then since L is positively invariant in N , it follows that 's.x/ 2 L for all
s 2 Œ0; t �. Hence 's.x/ 2 L\MH D LH for all s 2 Œ0; t �.

We have verified that .NH ; LH / is an index pair for SH . Moreover it is straightforward to check that
.N=L/H DNH=LH .

2.5 Equivariant Spanier–Whitehead category

In this section we recall the construction of the category C from [49], which is an S1–equivariant version
of the Spanier–Whitehead category. In Section 3.3 we will modify this construction to accommodate a
finite group action on Y .

We work with pointed topological spaces with a basepoint-preserving action of S1. The objects of C are
triples .X;m; n/, where X is a pointed topological space with S1–action, and m; n 2 Z.1 We further

1In [49] n is allowed to take on rational values. This is needed to construct a Seiberg–Witten–Floer spectrum which does not
depend on the choice of metric. For our purposes it suffices to consider only integral values of n.
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require that X has the S1–homotopy type of an S1–CW complex, which holds for Conley indices on
manifolds. The set of morphisms between two objects .X;m; n/ to .X 0; m0; n0/ will be denoted by
f.X;m; n/; .X 0; m0; n0/gS1 and is defined to be

f.X;m; n/; .X 0; m0; n0/gS1 D colimŒ.Rk˚Cl/C ^X; .RkCm�m
0

˚ClCn�n0/C ^X 0�S1 ;

where Œ � ; � �S1 denotes the set of S1–equivariant homotopy classes and the colimit is taken over all k and
l such that k �m0�m and l � n0�n. The maps that define the colimit are given by suspensions where
we smash on the left and for any topological space Z, we let ZC denote the one-point compactification
with its obvious basepoint.

Any pointed space X with S1–action defines an object of C, namely .X; 0; 0/. We often simply write
this as X . For any finite-dimensional representation E of S1, we let †E denote the reduced suspension
operation

†EX DEC ^X:

This operation extends to C by taking †E .X;m; n/D .†EX;m; n/. We are mainly interested in the case
that E is a real vector space with trivial S1–action, or E is a complex vector space with S1 acting by
scalar multiplication. If E is a real vector space with trivial action, then one finds that

†E .X;m; n/Š .X;m� dimR.E/; n/:

The isomorphism depends on a choice of isomorphism E ŠRdimR.E/. Up to homotopy there are two
choices since GL.E;R/ has two components. If E is a complex vector space and S1 acts by scalar
multiplication, then

†E .X;m; n/Š .X;m; n� dimC.E//:

The isomorphism is unique up to homotopy as GL.E;C/ is connected. We can define desuspension by a
real vector space E with trivial S1–action as

†�E .X;m; n/D ..E/C ^X;mC 2 dimR.E/; n/:

Then†�E†EZŠZ by an isomorphism which is canonical up to homotopy. We can define desuspension
by a complex vector space E with S1 acting by scalar multiplication by

†�E .X;m; n/D .X;m; nC dimC.E//:

Then †�E†EZ ŠZ by an isomorphism which is canonical up to homotopy.

For Z D .X;m; n/ 2 C, we define the reduced equivariant cohomology of Z to be

zH
j

S1
.Z/D zH

jCmC2n

S1
.X/:

The cohomology is well defined as a consequence of the Thom isomorphism.
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2.6 Seiberg–Witten–Floer cohomology

Consider as before a rational homology 3–sphere Y and a spinc–structure s. Let R > 0, � and � be as
in Proposition 2.2. We want to take the Conley index of the set of all critical points in B.R/ and flow
lines between them which lie in B.R/ for all time for the approximate Seiberg–Witten flow l C p

�

�
c.

The problem is that there could be trajectories that go to infinity in a finite amount of time. Hence we
do not have a flow f'tg in the sense of a 1–parameter group of diffeomorphisms. To get around this
issue, let u�

�
be a compactly supported smooth cutoff function which is identically 1 on B.3R/. For

consistency purposes we assume that u�
�
D u

�0

�0
jV �
�

for �0 � � and �0 � �. One way of doing this is to
take u�

�
.v/D �.kvk/, where � is smooth, compactly supported and �.t/D 1 for t < 3.

For each � and �, the vector field u�
�
.l Cp

�

�
c/ is compactly supported, so it generates a well-defined

flow '
�

�;t
on V �

�
. Since u�

�
D 1 on B.2R/, Proposition 2.2 still applies to the trajectories of u�

�
.lCp

�

�
c/.

It follows that

Inv.V �
�
\B.2R//D S

�

�
;

where S�
�

is the set of critical points and flow lines between critical points for the approximate Seiberg–
Witten flow lCp

�

�
c which lie in B.R/. Therefore S�

�
is an isolated invariant set. Moreover, S1 preserves

the approximate flow; hence we may take the S1–equivariant Conley index

I
�

�
D IS1.S

�

�
/:

This is an S1–equivariant homotopy type. However it is not quite an invariant of .Y; s/ because it depends
on the choice of metric g as well as the values of �, � and R. Note that it is independent of the choice of
u
�

�
because of the assumption that u�

�
D 1 on B.3R/. To get a genuine invariant we must understand

how I
�

�
changes as we vary these parameters.

Let �� and �� satisfy Proposition 2.2. Suppose that �0 � �� �� and �0 � �� ��. We wish to compare
the Conley indices I�

�
, I�

0

�
and I�

�0
. In other words, what happens if we increase either � or ��, staying

in the range where � and �� are sufficiently large.

We use the following invariance property of the Conley index: Suppose we have a family f't .s/g of flows
depending continuously on s 2 Œ0; 1�. Suppose that a fixed compact set A is an isolating neighbourhood
for all s 2 Œ0; 1� and let S.s/D Inv.A; 't .s//. Then I.S0; 't .0//Š I.S1; 't .1// by a canonical homotopy
equivalence.

Consider increasing � to �0. The finite energy trajectories of l Cp�
�
cp
�

�
in V �

0

�
must actually lie in V �

�
.

Therefore AD B.2R/\V �
0

�
is an isolating neighbourhood for S�

�
in V �

0

�
. Let �.s/D .1� s/�C s�0

for s 2 Œ0; 1� and let z'�.s/
�

denote the flow of u�.s/
�

.l Cp�.s/
�

cp�.s/
�

/ on V �
0

�
. Then for each s 2 Œ0; 1�,

A is an isolating neighbourhood for S�.s/
�

in V �
0

�
with respect to the flow z'�.s/

�
. Hence

Inv.z'�
�
; A/Š Inv.z'�

0

�
; A/D I

�0

�
:
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But z'� is easily seen to be homotopic to the product of the flow of u�
�
.lCp

�

�
c/ on V �

�
with a linear flow

on W generated by l jW , where W is the orthogonal complement of V �
�

in V �
0

�
. The Conley index of a

product of flows is just the smash product of Conley indices. Combined with Example 2.6, we see that

Inv.z'�
�
; A/Š I

�

�
^W C� ;

where W� is the part of W spanned by negative eigenvalues of l . But W is contained in the positive
eigenvalues of l , so W� D 0 and hence

I
�0

�
Š I

�

�
:

Now consider decreasing � to �0. An identical argument to the one above gives

I
�

�0
Š I

�

�
^W C� ;

where W is the orthogonal complement of V �
�

in V �
�0

. In this case W is spanned by negative eigenspaces
of l , so W� DW D V ��0 and

I
�

�0
Š I

�

�
^ .V ��0/

C:

This implies that
†�V

0
� I

�

�

does not depend on the values of � and � (provided � and �� are sufficiently large).

Definition 2.8 Given .Y; s/ and a metric g, we set

SWF.Y; s; g/D†�V
0
�
.g/I

�

�
.g/

for suitably chosen �, � and R.

We have established that the homotopy type of SWF.Y; s; g/ does not depend on the choices of � and �,
or more precisely, any two choices of � and � are related by a canonical homotopy equivalence. One
also checks that it does not depend on the choice of R. So up to homotopy, SWF.Y; s; g/ depends only
on Y , s and g.

Next we consider varying the metric g. Consider a smooth homotopy gs for s 2 Œ0; 1� joining two metrics
g0 and g1, which is constant near s D 0. Assuming that the gs are all sufficiently close to each other in a
suitable topology, we can arrange that there exists R, �� and �� such that Proposition 2.2 is true for all
s 2 Œ0; 1� and all � and � with �� �� and �� ��. This suffices, as compactness of Œ0; 1� implies that
any smooth path gs can be broken up into finitely many subpaths over which this assumption holds.

We assume that there exists some � < �� and � > �� such that � and � are not eigenvalues of ls for
any s 2 Œ0; 1�. This property will hold for all sufficiently small paths. The spaces .V �

�
/s then form a

smooth vector bundle over Œ0; 1�. We can trivialise this vector bundle and identify all these spaces with a
single V �

�
. Further, we assume that B.R/s1 �B.2R/s2 for each s1; s2 2 Œ0; 1�. Here we think of the balls

as subsets of the same space V �
�

. Once again, this property will hold for all small enough paths. Then\
s2Œ0;1�

B.2R/s
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is a compact isolating neighbourhood for S�
�

in any metric gs with the flow .'
�

�
/s . The Conley index

will be independent of s and hence
.I
�

�
/0 Š .I

�

�
/1:

However, we do not have that †�.V
0
�
/0.I

�

�
/0 equals †�.V

0
�
/1.I

�

�
/1. The reason is that some eigenvalues

in .�; �/ may change sign. On the other hand, any eigenvalue greater than � or less than � cannot
change sign, by our assumption that � and � are not eigenvalues of ls for any s 2 Œ0; 1�. Hence the
difference between .V 0

�
/0 and .V 0

�
/1 is given in terms of the spectral flow of the family of operators flsg

for s 2 Œ0; 1�.

The operator l can be split into real and complex components. The real part has no spectral flow, so we
only need to consider the complex part, which is the Dirac operatorDs . The spectral flow can be expressed
using the Atiyah–Patodi–Singer (APS) index theorem on the cylinder X D Œ0; 1�� Y ; see [8; 9]. Let
Og be the metric on X given by gs in the vertical direction and .ds/2 in the horizontal direction. Let
Ss denote the spinor bundle associated to .s; gs/. The bundles Ss can all be identified with S D S0,
but with varying Clifford multiplication. The spinc–structure s lifts to a spinc–structure on X . Let S˙

denote the spinor bundles of this spinc–structure. Then S˙ can be identified with the pullback of S to X .
Suppose for each s we have chosen a flat reference connection As . Since we have identified Ss with S
for all s, we get an induced identification of Ls D det.Ss/ with LD L0. Then As D A0C i˛s for some
closed real 1–form ˛s . The path of spinc–connections fAsg fit together to form a spinc–connection yA
on the determinant line L pulled back to X . Let yD be the Dirac operator determined by Og and yA. Then
yD. /D @s CDs . After a possible reparametrisation we can assume that .gs; As/ is constant near

the boundary. Applying the APS index theorem to the Dirac operator yD on the cylinder Œ0; 1��Y , one
can write the spectral flow SF.fDsg/ as

SF.fDsg/D
1
2
.�.D1/� k.D1//�

1
2
.�.D0/� k.D0//C

Z
Œ0;1��Y

�
�
1
24
p1. Og/C

1
8
c1. yA/

2
�
;

where �.D/ is the eta invariant of D, k.D/D dimC.Ker.D//, p1. Og/ is the first Pontryagin form of Og,
and c1. yA/ is the Chern form .i=2�/F

2 yA
, where F

2 yA
is the curvature of the induced connection 2 yA on L.

Now since ˛s is closed for each s, we get F
2 yA
D ds ^ 2i@s˛s and hence c1. yA/2 D 0. So

(2-1) SF.fDsg/D
1
2
.�.D1/� k.D1//�

1
2
.�.D0/� k.D0//�

1

24

Z
Œ0;1��Y

p1. Og/:

Let �sign.gs/ denote the eta invariant of the signature operator on Y defined by gs . Then from the APS
index theorem for the signature operator together with the fact that the signature operator has no spectral
flow, we find

(2-2) �sign.g1/� �sign.g0/D
1

3

Z
Œ0;1��Y

p1. Og/:

Combining (2-1) and (2-2), we see that

SF.fDsg/D
1
2
.�.D1/� k.D1//�

1
2
.�.D0/� k.D0//�

1
8
.�sign.g1/� �sign.g0//;
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and hence
SF.fDsg/D n.Y; s; g0/�n.Y; s; g1/;

where we have defined
n.Y; s; g/D 1

2
�.D/� 1

2
k.D/� 1

8
�sign.g/:

We will show that n.Y; s; g/ is a rational number. Let .W; sW / be a spinc 4–manifold bounding .Y; s/.
This always exists because �spinc

3 D 0. Extend the Dirac operator D on Y to a Dirac operator yD in
the same way as we did for the cylinder Œ0; 1��Y . The APS index theorem for the Dirac operator and
signature operator on W combined give

indAPS. yD/D
1
8
.c1.sW /

2
� �.W //C 1

2
.�dir� k/�

1
8
�sign

and thus

(2-3) n.Y; s; g/D indAPS. yD/� ı.W; s/;

where we set
ı.W; s/D 1

8
.c1.sW /

2
� �.W //:

This shows that n.Y; s; g/ is a rational number since indAPS. yD/ is an integer and ı.W; s/ is a rational
number.

Definition 2.9 The Seiberg–Witten–Floer cohomology of .Y; s; g/ is defined as

HSW j .Y; s/D zH
jC2n.Y;s;g/

S1
.SWF.Y; s; g//;

where j 2Q and as usual the coefficient group F has been omitted from the notation.

Below we will show that HSW �.Y; s/ is independent of the choice of metric g (and other auxiliary
choices); hence it is a well defined topological invariant of the pair .Y; s/.

Notice that because of the grading shift by 2n.Y; s; g/ the cohomology groups HSW �.Y; s/ are concen-
trated in rational degrees. It was shown by Lidman and Manolescu [45] that HSW �.Y; s/ is isomorphic
to the Seiberg–Witten monopole Floer cohomology as defined by Kronheimer and Mrowka [39]. Together
with the equivalence of monopole Floer homology and Heegaard Floer homology due to the work of
Kutluhan, Lee and Taubes [40; 41; 42; 43; 44], Colin, Ghiggini and Honda [16; 17; 15] and Taubes [60;
61; 62; 63; 64], we have isomorphisms

HSW �.Y; s/ŠHF���.Y ; s/ŠHF
�
C.Y; s/;

where HF�� denotes the minus version of Heegaard Floer homology and HF �
C

denotes the plus version
of Heegaard Floer cohomology (taken with respect to the same coefficient group F). Here we use a
grading convention for HF� such that HF�.S3/ starts in degree 0. Through the work of [20; 33; 58],
the isomorphism is known to preserve the absolute gradings. Using co-Borel, Tate or nonequivariant
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cohomologies gives similar isomorphisms to the other versions of Heegaard Floer homology; see [45,
Corollary 1.2.4] for the precise statement.

If we have two metrics g0 and g1, then the spectral flow of a path joining them satisfies

SF.fDsg/D n.Y; s; g1/�n.Y; s; g0/:

On the other hand, from the definition of spectral flow,

SF.fDsg/D dim.V 0� .g0//� dim.V 0� .g1//:

It follows that

SWF.Y; s; g1/Š†
SF .fDsg/SWF.Y; s; g0/;

and hence
zH
jC2SF .fDsg/

S1
.SWF.Y; s; g1//Š zH

j

S1
.SWF.Y; s; g0//

by the Thom isomorphism. Replacing j by j C 2n.Y; s; g0/, we have

zH
jC2n.Y;s;g1/

S1
.SWF.Y; s; g1//Š zH

jC2n.Y;s;g0/

S1
.SWF.Y; s; g0//:

Hence the Seiberg–Witten–Floer cohomology zH jC2n.Y;s;g/

S1
.SWF.Y; s; g// is independent of the metric.

The above isomorphism is canonical in the sense that it does not depend on the choice of path from g0

to g1. This follows from the fact that the space of all metrics on Y is contractible, so any two paths with
the same endpoints are homotopic.

2.7 Duality

Definition 2.10 Let V be a finite-dimensional representation of a compact Lie group G. Two pointed,
finite G–CW complexes X and X 0 are equivariantly V –dual if there exists a G–map

" WX ^X 0! V C

such that for any subgroup H �G, the fixed-point map

"H WXH ^ .X 0/H ! .V H /C

induces a nonequivariant duality between XH and .X 0/H , in the sense of nonequivariant Spanier–
Whitehead duality.

Consider the Conley index I�
�

associated to .Y; s; g/ for suitably chosen R, � and �. One finds that
reversing orientation of Y has the effect of reversing the Chern–Simons–Dirac flow. From [19], it follows
that I�

�
.Y / and I��.Y / are V �

�
–dual, so there exists a duality map

" W I
�

�
.Y /^ I��.Y /! .V

�

�
/C:
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Notice that dim.V 0
�
.Y //C dim.V 0��.Y //� 2k.D/D dim.V �

�
.Y //, where k.D/ is the dimension of the

kernel of D. Desuspending, we obtain a duality map

" W SWF.Y; s; g/^SWF.Y ; s; g/! S�k.D/C:

We also have

(2-4) n.Y; s; g/Cn.Y ; s; g/D�k.D/:

2.8 Fixed points

Definition 2.11 Let s � 0 be an integer. We say that a finite pointed S1–CW complex X is of type SWF
at level s if

� the S1–fixed-point set XS
1

is homotopy equivalent to the sphere .Rs/C;

� the action of S1 is free on the complement X �XS
1

.

Proposition 2.12 Given .Y; s; g/, let R, � and � be as in Proposition 2.2. Then B.2R/ \ V �
�

is an
isolating neighbourhood for S�

�
D Inv.B.2R/\V �

�
/. Let I�

�
D IS1.S

�

�
/ be the Conley index. Then I�

�

is of type SWF at level s D dim.V 0
�
.R//, where V 0

�
.R/ denotes the S1–invariant part of V 0

�
.

Proof Let .N;L/ be an index pair for S�
�

so that I�
�
DN=L. Then by Proposition 2.7, .I�

�
/S
1

DN S1=LS
1

is the Conley index of .S�
�
/S
1

. Further, we have that B.2R/\V �
�
.R/ is an isolating neighbourhood for

.S
�

�
/S
1

, where V �
�
.R/ denotes the S1–invariant part of V �

�
. It is easy to see that c D 0 on V �

�
.R/, where

c is the nonlinear part of the Seiberg–Witten flow. Thus the restriction of the approximate Seiberg–Witten
flow u

�

�
.l Cp

�

�
c/ to V �

�
.R/ is the flow u

�

�
l . Restricted to B.3R/ this is just the linear flow associated

to l . The real part of l has zero kernel, because b1.Y /D 0. It follows that the Conley index of .S�
�
/S
1

is the Conley index of f0g in V �
�
.R/ with respect to the linear flow of l . This is .V 0

�
.R//C. Thus we

have shown that the S1–fixed-point set of I�
�

is homotopy equivalent to .V 0
�
.R//C. Furthermore, S1

acts freely on V �
�
�V

�

�
.R/; hence S1 acts freely on N �N S1 and therefore also on .I�

�
/� .I

�

�
/S
1

.

Using the identities

(2-5) .RC ^X/S
1

DRC ^XS
1

; .CC ^X/S
1

DXS
1

;

we see that

� if X is of type SWF at level s, then RC ^X is of type SWF at level sC 1;

� if X is of type SWF at level s, then CC ^X is of type SWF at level s.

Now let ZD .X;m; n/ belong to the equivariant Spanier–Whitehead category C. We say that Z is of type
SWF at level s if X is of type SWF of level sCm. The above remarks shows that this is a well-defined
notion.
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We have shown that the Conley index I�
�

is of type SWF at level s D dim.V 0
�
.R//, where

V 0� D V
0
� .R/˚V

0
� .C/

denotes the decomposition of V 0
�

into copies of R and C. Now we recall that

SWF.Y; s; g/D†�V
0
� I

�

�
:

It follows that SWF.Y; s; g/ is of type SWF at level 0.

Let X be a space of type SWF at level s. Let � W XS
1

! X denote the inclusion of the fixed-point set.
Using the localisation theorem in equivariant cohomology [23, III (3.8)], it follows that the pullback map
�� W zH�

S1
.X/! zH�

S1
.XS

1

/ is not identically zero. Therefore, we may define the d–invariant d.X/ of X
by

d.X/Dminfj j x 2 Im.��/ for some x 2 zH j

S1
.XS

1

/ with x ¤ 0g:

Note that d.X/ could potentially depend on the choice of coefficient group, so we may write the invariant
as d.X IF/ if we wish to indicate the dependence on F .

We also define the ı–invariant of X by ı.X/D 1
2
d.X/. Using (2-5) and the Thom isomorphism, one

finds
d.RC ^X/D d.X/C 1; d.CC ^X/D d.X/C 2:

Now if Z D .X;m; n/ is of type SWF, we define the d–invariant d.Z/ of Z to be

d.Z/D d.X/�m� 2n 2 Z:

From [45, Corollary 1.2.3], it follows that the d–invariant d.Y; s/ as defined by Heegaard Floer homology
(with coefficient group F ) is given in terms of SWF.Y; s; g/ by

d.Y; s/D d.SWF.Y; s; g//� 2n.Y; s; g/:

For notational convenience we also define ı.Y; s/D 1
2
d.Y; s/.

3 Equivariant Seiberg–Witten–Floer cohomology

3.1 Assumption on G and F

Throughout this paper we will assume that one of the two following conditions hold:

(1) G is an arbitrary finite group and F D Z=2Z, or

(2) F is an arbitrary field and the order of G is odd.

Condition (1) ensures that we do not need to concern ourselves with questions of orientability. Condition (2)
ensures that any S1–central extension zG acts orientation-preservingly on all of its finite-dimensional
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representations. Hence under either condition, the Thom isomorphism holds without requiring local
coefficients,

zH�
zG
.X/Š zH

�CdimR.V /

zG
.V C ^X/:

Here X is any zG–space and V is any finite-dimensional representation of zG.

3.2 Lifting G–actions

Recall that Y denotes a rational homology 3–sphere. Suppose that a finite groupG acts on Y by orientation-
preserving diffeomorphisms and suppose G preserves the isomorphism class of a spinc–structure s. We
will construct a G–equivariant version of the Seiberg–Witten–Floer cohomology of .Y; s/.

Choose a G–invariant metric g on Y and a reference spinc–connection A0 such that the connection on
the determinant line L is flat. Let g 2G and choose a lift Og W S ! S of g to the spinor bundle S , which
is possible since G preserves the isomorphism class of s. Then Og�1A0 OgDA0Ca for some a 2 i�1.Y /.
Since A0 and Og�1A0 Og are flat, we must have da D 0. Moreover, b1.Y / D 0 implies that a D df for
some f W Y ! iR. Setting Qg D e�f Og, it follows that Qg is a lift of g which preserves A0. Any other lift
of g that preserves A0 is of the form c Qg with c 2 U.1/ a constant. Let Gs denote the set of all possible
lifts of elements of G which preserve A0. Then Gs is a group and we have a central extension

1! S1!Gs!G! 1:

Now we carry out the construction of the Conley index of a finite-dimensional approximation of the
Chern–Simons–Dirac flow Gs–equivariantly, instead of just S1–equivariantly.

3.3 Gs–equivariant Spanier–Whitehead category

In this section zG denotes any S1 central extension of G. We will construct a category C. zG/, the
zG–equivariant version of C.

Recall from Section 2.5 that the category C was constructed so that there exists a desuspension functor†�V

for any real vector space V with trivial S1–action or any complex vector space where S1 acts by scalar
multiplication. We now construct a category C. zG/ in which we can desuspend by real representations
of zG, where S1 acts trivially, and by complex representations, where S1 acts by scalar multiplication.
We are lead to consider the following two types of finite-dimensional representations of zG:

Type (1) V is a real representation of zG and S1 acts trivially.

Type (2) V is a complex representation zG and S1 acts on V by scalar multiplication.

Type (1) representations correspond canonically to real representations of G.

Type (2) representations correspond to projective unitary representations of G such that the pullback
to G of the central extension S1! U.n/! PU.n/ gives an extension isomorphic to zG. If zG is split,
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then type (2) representations are in bijection with complex representations of G. However, the bijection
depends on a choice of splitting of zG.

To define stable homotopy groups, we need to consider suspensions with explicitly chosen representations.
In other words, we need to work at the level of representations and not just isomorphism classes. Let
V1; : : : ; Vp be a complete set of irreducible representations of type (1), and W1; : : : ; Wq a complete set of
irreducible representations of type (2). Any representation of type (1) is isomorphic to a direct sum of
copies of V1; : : : ; Vp and likewise any representation of type (2) is a direct sum of copies of W1; : : : ; Wq .

IfmD .m1; : : : ; mp/;m0D .m01; : : : ; m
0
p/2Zp , we saym�m0 ifmi �m0i for each i . Ifm2Zp satisfies

m� 0, then we set
V.m/D V

˚m1
1 ˚ � � �˚V

˚mp
p :

Similarly, if nD .n1; : : : ; nq/ 2 Zq satisfies n� 0, then we set

W.n/DW
˚n1
1 ˚ � � �˚W

˚nq
q :

The category C. zG/ has as objects triples .X;m; n/, where

� X is a pointed topological space with a basepoint-preserving zG–action and the homotopy type of a
zG–CW complex;

� m 2 Zp;

� n 2 Zq .

Let .X;m; n/ and .X 0; m0; n0/ be two objects of C. zG/. The set of morphisms from .X;m; n/ to .X 0; m0; n0/,
denoted by f.X;m; n/; .X 0; m0; n0/g zG , is defined to be

colim
k;l

�
.V .k//C ^ .W.l//C ^X; .V .kCm�m0//C ^ .W.l Cn�n0//C ^X 0

� zG
:

The colimit is taken over all k 2 Np and l 2 Nq such that k � m0 �m and l � n0 � n. The maps that
define the colimit are given by suspensions where we smash on the left.

Let Y be any pointed zG–space. We obtain a functor Y^W C. zG/! C. zG/ which is defined on objects
by Y ^ .X;m; n/ D .Y ^ X;m; n/ and on morphisms in the evident way. In particular, if V is any
finite-dimensional representation of zG, we define the reduced suspension

†VZ D V C ^Z:

We define desuspension by a representation V of type (1) as

†�V .X;m; n/D ..V /C ^X;mC 2ŒV �; n/;

where ŒV � D .v1; : : : ; vp/ and vi is the multiplicity of Vi in V . Then †�V†VZ Š Z, where the
isomorphism is canonical up to homotopy. For any representation W of type (2) we define

†�W .X;m; n/D .X;m; nC ŒW �/;
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where ŒW �D .w1; : : : ; wq/ and wi is the multiplicity of Wi in W . We have that †�W†WZ ŠZ by an
isomorphism which is canonical up to homotopy. In fact, such an isomorphism is induced by a choice
of isomorphism W Š W.ŒW �/. But for any pair of isomorphic complex representations, the space of
isomorphism is connected (by Schur’s lemma it is a torsor for a product of complex general linear groups).
Therefore the isomorphism W ŠW.ŒW �/ is unique up to homotopy.

For Z D .X;m; n/ 2 C. zG/, we define the reduced equivariant cohomology of Z to be

zH
j

zG
.Z/D zH

jCjmjC2jnj

zG
.X/;

where jmj and jnj are defined as

jmj D

pX
iD1

mi dimR.Vi / for mD .m1; : : : ; mp/; jnj D

qX
iD1

ni dimC.Wi / for nD .n1; : : : ; nq/:

The cohomology is well defined as a consequence of the Thom isomorphism.

3.4 G–equivariant Seiberg–Witten–Floer cohomology

Let Y be a rational homology 3–sphere and G a finite group acting on Y preserving the isomorphism
class of a spinc–structure s. Let Gs be the S1–central extension of G obtained by lifting G to the spinor
bundle corresponding to s. We repeat the construction of the Conley index I�

�
.g/ from Section 2.6,

except that now we carry out the construction Gs–equivariantly. Restricting to the subgroup S1 � Gs,
I
�

�
.g/ agrees with the S1–equivariant Conley index as previously constructed.

We need to understand how I
�

�
.g/ depends on �, �, the choice of G–invariant metric g, and the

constant R. As in the S1 case, first consider variations of � and �. Carrying out a similar argument but
Gs–equivariantly, we see that I�

�
.g/ simply changes by suspension. Analogous to the nonequivariant

case we define
SWF.Y; s; g/D†�V

0
�
.g/I

�

�
.g/ 2 C.Gs/;

where V 0
�
.g/ is defined as before, but now carries a Gs–action. Note that V 0� .g/ is the sum of a

representation of type (1) and a representation of type (2), so the desuspension †�V
0
�
.g/ is defined. Then

up to canonical isomorphisms SWF.Y; s; g/ depends only on the triple .Y; s; g/.

We consider the dependence of SWF.Y; s; g/ on the metric g. The argument is much the same as before
except done Gs–equivariantly. Let g0 and g1 be two G–invariant metrics. The space of such metrics
is contractible, so we may choose a path fgsg from g0 to g1. Then as in the nonequivariant case, the
signature operator has no spectral flow and we have

SWF.Y; s; g1/D†
SFGs .fDsg/SWF.Y; s; g0/;

where now SFGs.fDsg/ is the equivariant spectral flow of fDsg. Thus SFGs.fDsg/ is to be understood as
a virtual representation of Gs [25, Section 2]. Since the S1 subgroup of Gs acts by scalar multiplication
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on spinors, it follows that SFGs.fDsg/ is a type (2) virtual representation. From the Thom isomorphism
and the fact that the underlying rank of SFGs.fDsg/ is SF.fDsg/D n.Y; s; g1/�n.Y; s; g0/, we obtain
a canonical isomorphism

zH
jC2n.Y;s;g1/
Gs

.SWF.Y; s; g1//Š zH
jC2n.Y;s;g0/
Gs

.SWF.Y; s; g0//:

This motivates the following definition:

Definition 3.1 The G–equivariant Seiberg–Witten–Floer cohomology of .Y; s; g/ is defined as

HSW
j
G .Y; s/D

zH
jC2n.Y;s;g/
Gs

.SWF.Y; s; g//:

By the argument above, the HSW �G.Y; s/ depends only on .Y; s/ and the G–action.

For a group K we write H�K for H�K.pt/. Since HSW �.Y; s/ is defined using equivariant cohomology, it
is a graded module over the ring H�

S1
D F ŒU �, where deg.U /D 2. Similarly HSW �G.Y; s/ is a graded

module over H�Gs
. Restricting from Gs to S1, we obtain forgetful maps

HSW �G.Y; s/!HSW �.Y; s/; H�Gs
!H�

S1

compatible with the module structures.

Observe that since S1 is the identity component of Gs, the action of Gs on HSW �.Y; s/ descends to an
action of G. So we may regard HSW �.Y; s/ as a G–module.

Theorem 3.2 There is a spectral sequence Ep;qr abutting to HSW �G.Y; s/ whose second page is given by

E
p;q
2 DHp.BGIHSW q.Y; s//:

Proof For a Gs–space M , let MGs denote the Borel model for the Gs–action and MS1 the Borel model
for the S1–action obtained by restriction. The composition MGs ! BGs ! BG is a fibration with
fibre MS1 . Applying the Leray–Serre spectral sequence, we get a spectral sequence which abuts to
zH�Gs

.M/ and has Ep;q2 D Hp.BGI zH
q

S1
.M//. More generally if M is the formal desuspension of a

Gs–space, then via an application of the Thom isomorphism a similar spectral sequence exists. Applying
this to HSW �G.Y; s/ gives the theorem.

Definition 3.3 Let Y be a rational homology 3–sphere and s a spinc–structure. We say that Y is an L–
space (with respect to s and F ) if the action of U on HSW �.Y; s/ is injective. Equivalently HSW �.Y; s/
is a free F ŒU �–module of rank 1.

Remark 3.4 The usual definition of an L–space is that HFCred.Y; s/ D 0 for all spinc–structures and
where the coefficient group is Z. From the universal coefficient theorem it follows that an L–space in
this sense is an L–space with respect to any spinc–structure s and any coefficient group F .

Suppose that the extension Gs is split. A choice of splitting induces an isomorphism Gs Š S
1 �G and

an isomorphism H�Gs
ŠH�G ŒU �. We stress that these isomorphisms depend on the choice of splitting.
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Theorem 3.5 Suppose that Gs is a split extension. If Y is an L–space (with respect to s and F ), then
the spectral sequence given in Theorem 3.2 degenerates at E2. Moreover ,

HSW �G.Y; s/ŠHSW
�.Y; s/˝F H

�
G ŠH

�
G ŒU ��;

where � has degree d.Y; s/.

Proof If Y is an L–space (with respect to s and F ) then

HSW �.Y; s/Š F ŒU ��;

where � has degree d.Y; s/. We claim that G acts trivially on HSW �.Y; s/. This can be seen as follows.
First, since HSW �.Y; s/ is up to a degree shift the S1–equivariant cohomology of the Conley index
I D I

�

�
, it suffices to prove the result for I . Let � W IS

1

! I be the inclusion of the S1 fixed-point set.
Since Y is an L–space, U acts injectively on HSW �.Y; s/. Together with the localisation theorem in
equivariant cohomology, this implies that �� is injective. Hence it suffices to show that G acts trivially on
zH�
S1
.IS

1

/. But IS
1

has the homotopy type of a sphere, so if � is a generator of zH�
S1
.IS

1

/ and g 2G,
then g�.�/D˙� according to whether or not g acts orientation-preservingly. Our assumptions on G
and F (see Section 3.1) ensures that g�.�/D � for all g 2G. This proves the claim.

Letting Ep;qr denote the spectral sequence for HSW �G.Y; s/, it follows easily that

E
p;q
2 ŠH�.BGIF ŒU ��/ŠH�G ŒU �� ŠHSW

�.Y; s/˝F H
�
G :

It remains to show that the differentials d2; d3; : : : are all zero. In fact since � has the lowest q–degree of
any term in Ep;q2 , it follows that dj .�/D 0 for all j � 2. Then since the differentials commute with the
H�Gs
ŠH�G ŒU �–module structure, it follows that d2; d3; : : : all vanish.

3.5 Spaces of type G–SWF

We introduce a G–equivariant analogue of spaces of type SWF. We then define a G–equivariant analogue
of the d–invariant.

Let zG be an extension of G by S1. If zG acts on a space X , then we get an induced action of G D zG=S1

on the fixed-point set XS
1

. We write G D S1 �G for the trivial extension of G.

Definition 3.6 Let s � 0 be an integer. We say that a finite pointed zG–CW complex X is of type G–SWF
at level s if

� the S1–fixed-point set XS
1

is G–homotopy equivalent to a sphere .V /C, where V is a real
representation of G of dimension s;

� the action of S1 is free on the complement X �XS
1

.

More generally, let V be a finite-dimensional representation which is the direct sum of representations of
type (1) and (2). An equivariant spectrum Z D†�VX 2 C. zG/ is said to be of type G–SWF at level s if
X is G–SWF at level sC dim.V S

1

/.
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Assume that zG is split and choose a splitting zG ŠG. Let X be a space of type G–SWF at level s. Let
� W XS

1

! X denote the inclusion of the fixed-point set. Recall that H�
S1
Š F ŒU �, where deg.U /D 2.

Similarly H�
G
ŠH�G ŒU �. The localisation theorem in equivariant cohomology implies that

�� W U�1 zH�
G
.X/! U�1 zH�

G
.XS

1

/

is an isomorphism. Note XS
1

Š .V /C, where V is s–dimensional, so

zH�
G
.XS

1

/ŠH�G ŒU ��;

where deg.�/D s. Therefore it also follows that

U�1 zH�
G
.XS

1

/ŠH�G ŒU; U
�1��:

Then for each c 2 H�G , it follows that there exists an x 2 zH�
G
.X/ for which ��.x/ D cU k� , for some

k � 0. Set ƒG.X/ D zH�
G
.XS

1

/. Then ƒG.X/ is a free H�G ŒU �–module of rank 1 and � W XS
1

! X

induces a map
�� W zH�

G
.X/!ƒG.X/

of H�G ŒU �–modules. Introduce a filtration

ƒG.X/D F0 � F1 � F2 � � � �

on ƒG.X/ by setting
Fj DH

��j
G ƒG.X/;

where H��jG D
L
k�j H

k
G . This is the filtration induced by the fibration

XS
1

�G BG! BG:

Let � denote the generator of ƒG.X/. Then for j � 0 we have obvious identifications

Fj =FjC1 ŠH
j
G ŒU ��:

Now let c be a nonzero element in H�G of degree jcj D deg.c/. By the discussion above we know that
cU k� is in the image of �� for some k � 0. Hence we may define:

Definition 3.7 Let c be a nonzero element in H�G of degree jcj D deg.c/. We define dG;c.X/ 2 Z by

dG;c.X/Dminf2kC s j ��.x/ 2 Fjcj and ��.x/D cU k� mod FjcjC1 for some x 2 zH sC2kCjcj

G
.X/g:

For convenience we set dG;0.X/D�1. Then if c is an element of H�G , we write c D c0C c1C� � �C cr ,
where ci 2H i

G and set
dG;c.X/DmaxfdG;c0.X/; : : : ; dG;cr .X/g:

Note that dG;ac.X/D dG;c.X/ for any a 2 F�.
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In concrete terms, the condition that ��.x/ 2 Fjcj and ��.x/D cU k� mod FjcjC1 means that ��.x/ is of
the form

��.x/D cU k� C c1U
k�1� C � � �C crU

k�r�

for some r � 0 and some c1; : : : cr 2H
��.jcjC1/
G .

Remark 3.8 Let X be a space of type G–SWF. The definition of dG;c.X/ does not depend on a
choice of splitting of S1 ! zG ! G. Indeed, two splittings differ by a homomorphism � W G ! S1.
Let ˛ D ��.U / 2 H 2

G . The change of splitting acts on H�G ŒU � by sending U to U C ˛. Then since
.U C ˛/k D U k C � � � , where � � � denotes terms involving lower powers of U , it follows that dG;c.X/
does not depend on the choice of splitting of zG.

Proposition 3.9 Let X be a space of type G–SWF for the trivial extension. Then for all c1; c2 2H�G ,

dG;c1Cc2.X/�maxfdG;c1.X/; dG;c2.X/g; dG;c1c2.X/�minfdG;c1.X/; dG;c2.X/g:

Proof Let s be the level of X . First consider the case that c1 and c2 are homogeneous, that is, c1 2H
jc1j
G

and c2 2H
jc2j
G for some jc1j and jc2j. Then by Definition 3.7, there exist x1 2 zHdG;c1 .X/Cjc1j

G
.X/ and

x2 2 zH
dG;c2 .X/Cjc2j

G
.X/ such that

��.x1/D c1U
k1� C � � � ; ��.x2/D c2U

k2� C � � � ;

where � � � denotes terms that are in the next stage of the filtration and ki D 1
2
.dG;ci .X/� s/ for i D 1; 2.

Note that if c1 or c2 are zero then we take x1 or x2 to be zero.

If jc1j ¤ jc2j, then by Definition 3.7, we have dG;c1Cc2.X/DmaxfdG;c1.X/; dG;c2.X/g. Now suppose
that jc1j D jc2j. Let k Dmaxfk1; k2g and set x D U k�k1x1CU k�k2x2 2 zH

2kCsCjc1j

G
.X/. Then

��.x/D .c1C c2/U
k� C � � �

and hence, from the definition of dG;c1Cc2.X/,

dG;c1Cc2.X/� 2kC s Dmaxf2k1C s; 2k2C sg DmaxfdG;c1.X/; dG;c2.X/g:

Next we observe that c2x1 2 zH
dG;c1 .X/Cjc1jCjc2j

G
.X/ and

��.c2x1/D .c1c2/U
k1�;

and so it follows that dG;c1c2.X/ � dG;c1.X/. Exchanging the roles of x1; x2 and c1; c2, we similarly
find that dG;c1c2.X/� dG;c1.X/; hence

dG;c1c2.X/�minfdG;c1.X/; dG;c2.X/g:

Now suppose that c1 and c2 are not necessarily homogeneous. We may write c1 D a0C a1C � � �C ar
and c2 D b0C b1C � � �C br , for some r � 0, where ai ; bi 2H i

G . By Definition 3.7,

dG;c1.X/Dmax
i
fdG;ai .X/g; dG;c2.X/Dmax

i
fdG;bi .X/g:
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Then since c1C c2 D .a0C b0/C .a1C b1/C � � �C .ar C br/,

dG;c1Cc2.X/Dmax
i
fdG;aiCbi .X/g

�max
i

˚
maxfdG;ai .X/; dG;bi .X/g

	
Dmax

˚
max
i
fdG;ai .X/g;max

i
fdG;bi .X/g

	
DmaxfdG;c1.X/; dG;c2.X/g:

Next, we have c1c2 D
P
i;j aibj and hence

dG;c1c2.X/�max
i;j
fdG;aibj .X/g �max

i;j
fdG;ai .X/g Dmax

i
fdG;ai .X/g D dG;c1.X/;

where we used dG;aibj .X/� dG;ai .X/. Similarly we get dG;c1c2.X/� dG;c2.X/, and hence

dG;c1c2.X/�minfdG;c1.X/; dG;c2.X/g:

Recall that the ordinary (nonequivariant) d–invariant of X , d.X/, is defined by

d.X/Dminfj j ��.x/¤ 0 for some x 2 zH j

S1
.X/g:

It is not hard to see that d.X/D dfeg;1.X/, where feg denotes the trivial group and 1 is the generator
of H 0.pt/.

Proposition 3.10 Let X be a space of type G–SWF for the trivial extension. Then

dG;1.X/� d.X/:

Proof By the definition of dG;1.X/, there exists x 2 zHdG;1.X/

G
.X/ such that ��.x/D U k� C� � � , where

k D 1
2
.dG;1.X/� s/ and s is the level of X . Let y 2 zHdG;1.X/

S1
.X/ be the image of x under the map

induced by S1!G. Then it follows that ��.y/D U k� 2 zHdG;1.X/

S1
.XS

1

/. In particular, ��.y/¤ 0, and
hence dG;1.X/� d.X/ by the definition of d.X/.

Let S1 act trivially on R and act by scalar multiplication on C. Let V be a real representation of G. Then
VR DR˝R V and VC DC˝R V may be regarded as representations of G D S1�G, where S1 acts on
the first factor and G on the second.

Proposition 3.11 Let X be a space of type G–SWF for the trivial extension and let V be a finite-
dimensional representation of G of type (1) or (2), as in Section 3.3. Then for any c 2H�G ,

dG;c.V
C
^X/D dG;c.X/C dimR.V /:

Proof This result follows easily from the Thom isomorphism, together with the fact that in the type (2)
case, the G–equivariant Euler class of V has the form

eG.V /D U
dim.V /

C cG;1.V /U
dim.V /�1

C � � �C cG;dim.V /.V /;

where cG;j .V / 2H
2j
G denotes the j th G–equivariant Chern class of V .
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If Z D†�VX 2 C.G/ is an equivariant spectrum of type G–SWF, we define the dG;c–invariant dG;c.Z/
of Z to be

dG;c.Z/D dG;c.X/� dimR.V /:

This is well defined by Proposition 3.11. We also define a corresponding ı–invariant by setting
ıG;c.Z/D

1
2
dG;c.Z/.

Definition 3.12 Let X and Y be spaces of type G–SWF for the trivial extension of G, where X has
level s and Y has level t . Let f WX ! Y be an S1�G–equivariant map. Consider the restriction

f S
1

WXS
1

! Y S
1

of f to the fixed-point set. Note that zH�G.X
S1/ is a freeH�G–module starting in degree s. Let �

XS
1 denote

a generator. Then �
XS

1 is unique up to an element of F�. Similarly zH�G.Y
S1/ is a free H�G–module

starting in degree t and we let �
Y S

1 denote a generator. Then there exists a uniquely determined �2H t�s
G

such that
.f S

1

/�.�
Y S

1 /D ��
XS

1 :

We call �D deg.f S
1

/ the degree of f S
1

. If we choose different generators for zH�G.X
S1/ or zH�G.Y

S1/,
then deg.f S

1

/ changes by an element of F�; hence deg.f S
1

/ is well defined up to multiplication by
elements of F�. If t < s, then deg.f S

1

/D 0.

Note that suspension does not change the degree of f S
1

. Hence we can more generally speak of the
degree of f S

1

when f is a stable map between spectra of type G–SWF.

Proposition 3.13 Let f W X ! Y be a G–equivariant map of spaces of type G–SWF for the trivial
extension , where X has level s and Y has level t . Let �D deg.f S

1

/ 2H t�s
G be the degree of f S

1

. Then
for any nonzero c 2H�G ,

dG;c�.X/� s � dG;c.Y /� t:

Proof We prove the result when c 2H jcjG is homogeneous. The general case follows easily from this.
The inclusion of the fixed-point sets gives a commutative diagram

X
f

// Y

XS
1

�

OO

f S
1

// Y S
1

�

OO

Consider the induced commutative diagram in equivariant cohomology

zH�
G
.Y /

��

��

f �
// zH�

G
.X/

��

��

zH�
G
.Y S

1

/
.f S

1
/�
// zH�

G
.XS

1

/
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From the definition of dG;c.Y /, there exists some x 2 zHdG;c.Y /Cjcj

G
.Y / such that

��.x/D cU k�
Y S

1 C � � � ;

where k D 1
2
.dG;c.Y /� t /. Then by commutativity of the diagram,

��.f �.x//D .f S
1

/�.��.x//D .f S
1

/�.cU k�
Y S

1 C � � � /D c�U k�
XS

1 C � � � :

It follows that

dG;c�.X/� dG;c.Y /Cjcj � jc�j D dG;c.Y /� j�j D dG;c.Y /� t C s:

Hence

dG;c�.X/� s � dG;c.Y /� t:

3.6 Alternative characterisation of dG;c

In this section we will give an alternative characterisation of dG;c which does not directly refer to �� and
is sometimes more convenient for computations.

Let X be a space of type G–SWF for the trivial extension G. Set ƒ�G D zH
�

G
.XS

1

/. The inclusion

of the fixed points � W XS
1

! X induces a map �� W zH�
G
.X/! ƒ�G . Recall that ƒ�G is a free H�G ŒU �

module of rank 1. Let � denote a generator of ƒ�G , so ƒ�G ŠH
�
G ŒU �� . Recall that we have a filtration

Fj on ƒ�G given by Fj DH
��j
G ƒ�G . Similarly, there is a filtration on zH�

G
.X/ which comes from the

spectral sequence for equivariant cohomology. We will denote this filtration by Fj . Then ��.Fj /� Fj
because the inclusion � induces a map between spectral sequences.

Let c 2H�G be a nonzero element of degree jcj. Recall that the invariant dG;c.X/ is defined by

dG;c.X/Dminfi j ��.x/D cU k� mod FjcjC1 for some x 2 zH i

G
.X/ and k � 0g� jcj:

The localisation theorem in equivariant cohomology implies that upon localising with respect to U , ��

becomes an isomorphism

�� W U�1 zH�
G
.X/! U�1ƒG ŠH

�
G ŒU; U

�1��:

In particular, there exists an element � 2 zH 2kCdeg.�/
G

.X/ such that ��.�/D U l� for some l � 0. Fix a
choice of such a � . The localisation isomorphism implies that ��.x/D 0 if and only if U kx D 0 for some
k � 0.

Proposition 3.14 Let c 2H�G be a nonzero element of degree jcj. Then

dG;c.X/Dminfi j U nx D cU k� mod FjcjC1 for some x 2 zH i

G
.X/ and n; k � 0g� jcj:
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Proof Let

aG;c.X/Dminfi j U nx D cU k� mod FjcjC1 for some x 2 zH i

G
.X/ and n; k � 0g� jcj:

Then we need to show that dG;c.X/D aG;c.X/. Suppose x 2 zHaG;c.X/Cjcj

G
.X/ satisfies U nx D cU k�

mod FjcjC1 for some n; k � 0. Then

U n��.x/D cU k��.�/D cU kCl� mod FjcjC1:

Since U is injective on ƒG we must have kC l � n and we can cancel U n from both sides to get

��.x/D cU kCl�n� mod FjcjC1:

Hence dG;c.X/� deg.x/� jcj D aG;c.X/. Conversely, let x 2 zHdG;c.X/Cjcj

G
.X/ satisfy ��.x/D cU k�

mod FjcjC1 for some k � 0. Then

��.x/D cU k� C c1U
k�1� C c2U

k�2� C � � �C ck�;

where ci 2H
jcjC2i
G . Since ��.�/D U l� , it follows that

��.U lx/D ��.cU k� C c1U
k�1� C � � �C ck�/:

Next recall that �� is an isomorphism after localising with respect to U . Hence if ��.y1/D ��.y2/, then
U ny1 D U

ny2 for some n� 0 and we have

U nClx D cU nCk� C c1U
nCk�1� C � � �C ckU

n� D cU nCk� mod FjcjC1:

From the definition of aG;c.X/, it follows that aG;c.X/ � deg.x/� jcj D dG;c.X/. We have shown
dG;c.X/� aG;c.X/ and aG;c.X/� dG;c.X/; hence dG;c.X/D aG;c.X/.

3.7 Equivariant d–invariants for rational homology 3–spheres

We return to the setting that Y is a rational homology 3–sphere, G is a finite group acting on Y preserving
the isomorphism class of a spinc–structure s. Choose a G–invariant metric g and let Gs be the S1–central
extension of G obtained by lifting G to the spinor bundle corresponding to s. Now suppose that Gs is a
trivial extension; hence Gs ŠG. From the construction of the Conley index, one finds that SWF.Y; s; g/
is of type G–SWF at level 0.

Definition 3.15 LetG act on Y and let s be aG–invariant spinc–structure. Suppose that the corresponding
S1–extension Gs is trivial and choose an isomorphism of extensions Gs ŠG. For any c 2H�G we define
the invariant dG;c.Y; s/ by

dG;c.Y; s/D dG;c.SWF.Y; s; g//� 2n.Y; s; g/:

We also set ıG;c.Y; s/D 1
2
dG;c.Y; s/.
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The definition of dG;c.Y; s/ does not depend on the choice of isomorphism Gs ŠG by Remark 3.8. The
definition also does not depend on the choice of metric g as a consequence of the relation

SWF.Y; s; g1/D†
SFGs .fDsg/SWF.Y; s; g0/

and the Thom isomorphism.

We only define the invariants dG;c.Y; s/ in the case that Gs is a trivial extension. This is because the
definition of dG;c.Y; s/ uses localisation by U , but U 2H�

S1
does not necessarily extend to a class inH�Gs

,
unless Gs is a trivial extension.

The inclusion � W .V 0
�
.R//C ! I

�

�
of the S1–fixed points of the Conley index desuspends to a map

� W†�V
0
�
.C/S0! SWF.Y; s; g/; hence we get a homomorphism

�� WHSW �G.Y; s/!ƒ�G.Y; s/;

where we have set ƒ�G.Y; s/D zH
�C2n.Y;s;g/

G
.†�V

0
�
.C/S0/. This is a free H�G ŒU �–module and we let �

denote a generator. As in Section 3.5 we filterƒ�G.Y; s/ by setting Fj DH
��j
G ƒ�G.Y; s/. The construction

of �� and ƒ�G.Y; s/ depend on the choice of metric g, but the construction for any two metrics are related
by a canonical homomorphism. The d–invariants of .Y; s/ are given by

dG;c.Y; s/Dminf2kCj j ��.x/2Fjcj and ��.x/DcU k� mod FjcjC1 for some x2SWF jC2kCjcjG .Y; s/g:

Recall that d.Y ; s/ D �d.Y; s/. On the other hand, the behaviour of the invariants dG;c.Y; s/ under
orientation reversal is not so straightforward. For example, it follows from Proposition 3.10 that

(3-1) �dG;1.Y ; s/� d.Y; s/� dG;1.Y; s/:

In particular, dG;1.Y ; s/D�dG;1.Y; s/ can only occur if dG;1.Y; s/D d.Y; s/ and dG;1.Y ; s/D d.Y ; s/.
From (3-1), we also get that

dG;1.Y; s/C dG;1.Y ; s/� 0:

We will show in Theorem 4.4 that the invariants dG;c satisfy a stronger positivity condition.

Proposition 3.16 Let G act on Y and let s be a G–invariant spinc–structure. Suppose that the corre-
sponding extension Gs is trivial. If Y is an L–space (with respect to s and F/, then for all nonzero
c 2H�G ,

dG;c.Y; s/D d.Y; s/:

Proof If Y is an L–space (with respect to s and F ) then

HSW �.Y; s/Š F ŒU ��;

where � has degree d.Y; s/. From Theorem 3.5, there exists a class O� 2HSW �G.Y; s/ which maps to �
under the forgetful map HSW �G.Y; s/!HSW �.Y; s/ and we have that HSW �G.Y; s/ is a free H�G ŒU �–
module generated by O� . We must also have that ��. O�/ D U k� mod F1 for some k � 0, where � is a
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generator of ƒG.Y; s/. This holds because F1 is the kernel of the forgetful map ƒG.Y; s/!ƒf1g.Y; s/.
So for any nonzero c 2H j

G we have that ��.c O�/D c��. O�/D cU k� mod F1Cjcj; hence

dG;c.Y; s/� deg.c O�/� j D deg. O�/D d.Y; s/:

That is, dG;c.Y; s/� d.Y; s/ for all nonzero homogeneous c. On the other hand it is clear that there is
no class of lower degree in HSW �G.Y; s/ which maps under �� to a class of the form cU k

0

� mod F1Cjcj.
Hence dG;c.Y; s/D d.Y; s/ for all nonzero homogeneous c. Clearly the result extends to all nonzero c.

4 Behaviour under cobordisms

We show that equivariant cobordisms of rational homology 3–spheres induce maps on equivariant Seiberg–
Witten–Floer cohomology. We follow the construction of Manolescu [49], incorporating the corrections
due to Khandhawit [37]. Since our construction is a straightforward extension of that of Manolescu and
Khandhawit, differing only in the replacement of S1 by the larger group Gs, we will be brief.

4.1 Finite-dimensional approximation

Let W be a compact, oriented smooth 4–manifold with boundary Y D @W a disjoint union of rational
homology spheres Y D

S
j Yj . Assume further that b1.W / D 0 and that W is connected. If s is a

spinc–structure on W , then the restriction of s to Y determines a spinc–structure sjY on Y . Since the
boundary of W is a union of rational homology 3–spheres, we have H 2.W; @W IR/ŠH 2.W IR/ and by
Poincaré–Lefschetz duality we obtain a nondegenerate intersection form on H 2.W IR/. Given a metric
g on W which is isometric to a product metric in a collar neighbourhood of @W , we let HC.W / denote
the space of self-dual L2–harmonic 2–forms on the cylindrical end manifold yW obtained from W by
attaching half-infinite cylinders Œ0;1/�Y to W . It follows from [8, Proposition 4.9] that the natural map
HC.W /!H 2.W IR/ is injective and identifies HC.W / with a maximal positive definite subspace of
H 2.W IR/.

Suppose now that G acts smoothly and orientation-preservingly on W and that this action sends each
connected component of @W to itself. Hence by restriction G acts on each Yi by orientation-preserving
diffeomorphisms. Assume further that G preserves the isomorphism class of a spinc–structure s on W .
Set si D sjYi . Then the action of G on Yi preserves si . Similar to Section 3.2 we obtain an S1–extension
Gs of G. Restricting to Yi , we obtain an isomorphism of extensions GsŠGsi . Hence if Gs is split, then it
follows that each of the extensions Gsi is also split. Moreover a splitting of Gs determines corresponding
splittings of each Gsi .

Choose a G–invariant metric g on W which is isometric to a product .��; 0�� Y in some equivariant
collar neighbourhood of Y (see [34, Theorem 3.5] for existence of equivariant collar neighbourhoods).
To see that such a metric exists, first choose a G–invariant metric gY on Y . Then choose an arbitrary

Algebraic & Geometric Topology, Volume 24 (2024)



Equivariant Seiberg–Witten–Floer cohomology 529

metric g0 on W which equals .dt/2CgY in some equivariant collar neighbourhood .��; 0��Y . Then
let g be obtained from g0 by averaging over G. Let S˙ denote the spinor bundles on W corresponding
to s. We note here that under these assumptions G preserves the subspace HC.W / of H 2.W IR/ defined
by g. Let �1g.W / denote the space of 1–forms on W in double Coulomb gauge with respect to Y [37,
Definition 1]. This space is easily seen to be preserved by the action of G on 1–forms. The double
Coulomb gauge condition ensures that if a 2�1g.W / and � 2 �.SC/, then .a; �/jYj lies in the global
Coulomb slice corresponding to Yj . Let us temporarily assume that Y D @W is connected. Let yA be a
spinc–connection on W such that in a collar neighbourhood of Y it equals the pullback of A0. Using the
same argument as in Section 3.2, we can assume that yA is Gs–invariant. Then using yA as a reference
connection, we obtain a map which may be thought of as the Seiberg–Witten equations on W together
with boundary conditions,

SW �
W i�1g.W /˚�.S

C/! i�2C.W /˚�.S
�/˚V ��1;

.a; �/ 7! .FC
yACa
� �.�; �/;D yACa.�/; p

�.a; �/jY /;

where p� is the orthogonal projection from V to V ��1. Taking a finite-dimensional approximation as
described in [37; 49], one obtains a map

‰�;�;U;U 0 W .U
0/C! .UC/^ I

�

�
;

where U 0� i�1g.W /˚�.S
C/ and U � i�2

C
.W /˚�.S�/ are finite-dimensional G–invariant subspaces

which satisfy

(4-1) U ˚V 0� ˚Ker.L0/Š U 0˚Coker.L0/

and L0 is a Fredholm linear operator defined in [49, Section 9]. Since SWF.Y; s; g/D†�V
0
� I

�

�
, we can

rewrite the map ‰�;�;U;U 0 as

‰�;�;U;U 0 W .U
0/C! .U /C ^ .V 0� /

C
^SWF.Y; s; g/:

Taking the smash product with Ker.L0/ and using (4-1), we see that ‰�;�;U;U 0 is stably equivalent to a
map

f W Ker.L0/C! Coker.L0/C ^SWF.Y; s; g/:

The real part of L0 has zero kernel and cokernel isomorphic to HC.W /. The complex part of L0 can be
identified with the Dirac operator D yA with Atiyah–Patodi–Singer (APS) boundary conditions. Thus

Ker.L0/Š KerAPS.D
C

yA
/; Coker.L0/ŠHC.W /˚CokerAPS.D

C

yA
/;

where KerAPS.D
C

yA
/ and CokerAPS.D

C

yA
/ denote the kernel and cokernel of DC

yA
with APS boundary

conditions. Hence we obtain a Gs–equivariant map

f W KerAPS.D
C

yA
/C! .HC.W //C ^CokerAPS.D

C

yA
/C ^SWF.Y; s; g/:

Note that f is only a map in the stable sense; that is, f is a morphism in the category C.Gs/.
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Recall that the S1–fixed-point set of I�
�

is V 0
�
.R/C. The inclusion .V 0

�
.R//! I

�

�
of the S1–fixed points

desuspends to a map � W S0! SWF.Y; s; g/. By restricting to S1–fixed points we obtain a commutative
diagram

KerAPS.D
C

yA
/C

f
// .HC.W //C ^CokerAPS.D

C

yA
/C ^SWF.Y; s; g/

S0

OO

f S
1

// .HC.W //C

OO

Using that the Seiberg–Witten equations reduce to linear equations on the S1–fixed-point set, one finds
that f S

1

W S0! .HC.W //C is the obvious map given by the one-point compactification of the inclusion
f0g !HC.W /. Thus according to Definition 3.12, f S

1

has degree equal to e.HC.W //, the image of
the equivariant Euler class of HC.W / in H�G.ptIF/. For instance, if F D Z=2Z then e.HC.W // is the
bC.W /

th equivariant Stiefel–Whitney class. We will refer to e.HC.W // as the F–Euler class ofHC.W /.

So far we have restricted to the case that the boundary @W is connected. More generally, if @W D
S
j Yj

is a union of rational homology 3–spheres then much the same construction applies. The Conley index
I
�

�
is now given by the smash product of the Conley indices of each component; hence f is now a map

of the form

f W KerAPS.D
C

yA
/C! .HC.W //C ^CokerAPS.D

C

yA
/C ^

^
j

SWF.Yj ; sj ; gj /:

We still have that the degree of f S
1

is e.HC.W //.

4.2 Equivariant Frøyshov inequality

In this section we prove an equivariant generalisation of Frøyshov’s inequality [28].

Theorem 4.1 Let W be a smooth , compact , oriented 4–manifold with boundary and with b1.W /D 0.
Suppose that G acts smoothly on W preserving the orientation and a spinc–structure s. Suppose that
the extension Gs is trivial. Suppose each component of @W is a rational homology 3–sphere and that G
sends each component of @W to itself. Let e 2H bC.W /

G be the F–Euler class of any G–invariant maximal
positive definite subspace of H 2.W IR/. Let c 2H�G and suppose that ce ¤ 0.

(1) If @W D Y is connected , then

ı.W; s/� ıG;c.Y; sjY / and ıG;ce.Y ; sjY /� ı.W ; s/;

where we have defined
ı.W; s/D 1

8
.c1.s/

2
� �.W //:

(2) If @W D Y1[Y2 has two connected components , then

ıG;ce.Y1; sjY1/C ı.W; s/� ıG;c.Y2; sjY2/:
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Proof We will give the proof in the case that W is connected. The general case follows easily from this
by applying the theorem to each component of W . To simplify notation we will write s instead of sjY
and write g instead of gjY . In case (1), @W D Y is connected.

As in Section 4.1, choosing suitable metrics and reference connections we obtain a stable map

f W KerAPS.D
C

yA
/C! .HC.W //C ^CokerAPS.D

C

yA
/C ^SWF.Y; s; g/

such that the degree of f S
1

is e. Applying Proposition 3.13 to f , we obtain

2 dimC.KerAPS.D
C

yA
//C bC.W /� bC.W /C 2 dimC.CokerAPS.D

C

yA
//C dc.Y; s/C 2n.Y; s; g/

which simplifies to

indAPS.D
C

yA
/� 1

2
dc.Y; s/Cn.Y; s; g/D ıc.Y; s/Cn.Y; s; g/:

Combined with (2-3) we get ı.W; s/� ıc.Y; s/.

Next recall from Section 2.7 the duality map

" W SWF.Y; s; g/^SWF.Y ; s; g/! S�k.D/C

where k.D/D dimC.Ker.D//. By the definition of equivariant duality,

"S
1

W SWF.Y; s; g/S
1

^SWF.Y ; s; g/S
1

! S0

is a nonequivariant duality. It follows that "S
1

has degree 1. Taking the map f , suspending by
SWF.Y ; s; g/ and composing with ", we obtain a stable map

h W KerAPS.D
C

yA
/C ^SWF.Y ; s; g/! .HC.W //C ^CokerAPS.D

C

yA
/C ^S�k.D/C

such that the degree of hS
1

is e. Applying Proposition 3.13 to h, we obtain

2 dimC.KerAPS.D
C

yA
/C dG;ce.Y ; s; g/C 2n.Y ; s; g/C bC.W /

� bC.W /C 2 dimC.CokerAPS.D
C

yA
/� 2k.D/

which simplifies to
indAPS.D

C

yA
/C ıG;ce.Y ; s; g/Cn.Y ; s; g/� �k.D/:

Using (2-3) and (2-4), we obtain ı.W; s/� �ıG;ce.Y ; s/, or equivalently ıG;ce.Y ; sjY /� ı.W ; s/.

The proof of case (2) is similar. We start with the map

f W KerAPS.D
C

yA
/C! .HC.W //C ^CokerAPS.D

C

yA
/C ^SWF.Y1; s; g/^SWF.Y2; s; g/:

Suspending by SWF.Y1; s; g/ and applying the duality map corresponding to Y1 we obtain a map

h W KerAPS.D
C

yA
/C ^SWF.Y1; s; g/! .HC.W //C ^CokerAPS.D

C

yA
/C ^SWF.Y2; s; g/^S

�k.D1/C;

where k.D1/ is the dimension of the kernel of the Dirac operator on Y1. Applying Proposition 3.13 to
this map and simplifying, we obtain the inequality ıG;ce.Y1; sjY1/C ı.W; s/� ıG;c.Y2; sjY2/.
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Definition 4.2 Let .Y1; s1/ and .Y2; s2/ be rational homology 3–spheres equipped with spinc–structures.
Suppose that G acts orientation-preservingly on Y1 and Y2 and preserves the spinc–structures s1 and s2.
A G–equivariant rational homology cobordism from .Y1; s1/ to .Y2; s2/ is a rational homology cobordism
W from Y1 to Y2 such that the G–action and spinc–structure s1[ s2 on @W extend over W . We say that
.Y1; s1/ and .Y2; s2/ are G–equivariantly rational homology cobordant if there exists a G–equivariant
rational homology cobordism from .Y1; s1/ to .Y2; s2/.

Similarly we define the notion of a G–equivariant integral homology cobordism and say that two integral
homology 3–spheres Y1 and Y2 on which G acts are G–equivariantly integral homology cobordant if
there is a G–equivariant integral homology cobordism from Y1 to Y2. Note that since Y1 and Y2 are
integral homology 3–spheres, they have unique spinc–structures which are automatically G–invariant
and any G–equivariant integral homology cobordism from Y1 to Y2 has a unique spinc–structure which
restricts on the boundary to the unique spinc–structures on Y1 and Y2.

Corollary 4.3 The G–equivariant ı–invariants ıG;c.Y; s/ are invariant under G–equivariant rational
homology cobordism; that is , if .W; s/ is a G–equivariant rational homology cobordism from .Y1; s1/ to
.Y2; s2/ and if the extensions Gs1 and Gs2 are trivial , then ıG;c.Y1; s1/D ıG;c.Y2; s2/ for all c 2H�G .

Proof Since W is a rational homology cobordism, we have H 2.W IR/ D 0. So ı.W; s/ D 0 and
e D e.HC.W //D 1. Therefore Theorem 4.1 gives

ıG;c.Y1; s1/� ıG;c.Y2; s2/:

Similarly, viewing W as a G–equivariant rational homology cobordism from Y2 to Y1, we get

ıG;c.Y2; s2/� ıG;c.Y1; s1/:

Hence ıG;c.Y1; s1/D ıG;c.Y2; s2/.

Theorem 4.4 Let Y be a rational homology 3–sphere ,G a finite group acting on Y preserving orientation
and the isomorphism class of a spinc–structure s and suppose that Gs is a trivial extension. Then for any
c1; c2 2H

�
G with c1c2 ¤ 0,

ıc1.Y /C ıc2.Y /� 0:

Proof The proof is similar to that of Theorem 4.1. Let W D Œ0; 1��Y be the trivial cobordism from Y

to itself. Choosing suitable metrics and reference connections we obtain a stable map

f W KerAPS.D
C

yA
/C! CokerAPS.D

C

yA
/C ^SWF.Y ; s; g/^SWF.Y; s; g/:

Note that HC.W /D f0g and hence e.HC.W //D 1. Applying Proposition 3.13 to this map we see that
for any c1; c2 2H�G with c1c2 ¤ 0,

indAPS.D
C

yA
/� ıG;c1c2.SWF.Y ; s; g/^SWF.Y; s; g//:
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From the definition of the ı–invariant it is clear that

ıG;c1c2.SWF.Y ; s; g/^SWF.Y; s; g//� ıG;c1.SWF.Y ; s; g//C ıG;c2.SWF.Y; s; g//;

and hence
indAPS.D

C

yA
/� ıG;c1.Y ; s/C ıG;c2.Y; s/Cn.Y ; s; g/Cn.Y; s; g/:

On the other hand, for W D Œ0; 1��Y , equation (2-3) reduces to

indAPS.D
C

yA
/D n.Y ; s; g/Cn.Y; s; g/:

Hence we obtain 0� ıG;c1.Y ; s/C ıG;c2.Y; s/.

4.3 Induced cobordism maps

In this section we show that equivariant cobordisms induce maps on equivariant Seiberg–Witten–Floer
cohomology.

Theorem 4.5 Let W be a smooth , compact , oriented 4–manifold with boundary and with b1.W /D 0.
Suppose that G acts smoothly on W preserving the orientation and a spinc–structure s. Suppose that
@W D Y1[Y2 where Y1 and Y2 are rational homology 3–spheres and set si D sjYi . Suppose G sends Yi
to itself. Then there is a morphism of graded H�Gs

–modules

SWG.W; s/ WHSW
�
G.Y2; s2/!HSW

�CbC.W /�2ı.W;s/
G .Y1; s1/

such that the diagram

HSW �G.Y2; s2/
SWG.W;s/

//

��

HSW
�CbC.W /�2ı.W;s/
G .Y1; s1/

��

HSW �.Y2; s2/
SW.W;s/

// HSW �CbC.W /�2ı.W;s/.Y1; s1/

commutes , where the vertical arrows are the forgetful maps to nonequivariant Seiberg–Witten–Floer
cohomology and SW.W; s/ is the morphism of Seiberg–Witten–Floer cohomology groups induced
by .W; s/.

Proof We give the proof in the case W is connected. The general case follows by a similar argument. As
in the proof of Theorem 4.1, choosing suitable metrics and reference connections, we obtain a stable map

h W S
indAPS.D

C

yA
/
^SWF.Y1; s1; g1/! .HC.W //C ^SWF.Y2; s2; g2/^S

�k.D1/C;

where k.D1/ is the dimension of the kernel of the Dirac operator on Y1. The induced map in equivariant
cohomology takes the form

h� W zH
j
Gs
..HC.W //C ^SWF.Y2; s2; g2/^S

�k.D1/C/! zH
j
Gs
.S

indAPS.D
C

yA
/
^SWF.Y1; s1; g1//:
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Using the Thom isomorphism, this is equivalent to

h� W zH
j�bC.W /C2k.D1/

Gs
.SWF.Y2; s2; g2//! zH

j�2indAPS.D
C

yA
/

Gs
.SWF.Y1; s1; g1//:

By (2-3), indAPS D ı.W; s/Cn.Y2; s2; g2/Cn.Y1; s1; g1/ and by (2-4), n.Y1; s1; g1/Cn.Y1; s1; g1/D
�k.D1/. Replacing j by j C bC.W /� 2k.D1/C 2n.Y2; s2; g2/, we see that h� takes the form

h� W zH
jC2n.Y2;s2;g2/
Gs

.SWF.Y2; s2; g2//! zH
jCbC.W /�2ı.W;s/C2n.Y1;s1;g1/
Gs

.SWF.Y1; s1; g1//:

Then since HSW �G.Yi ; si /D zH
�C2n.Yi ;si ;gi /
Gs

.SWF.Yi ; si ; gi //, we see that h� is equivalent to a map

SWG.W; s/ WHSW
�
G.Y2; s2/!HSW

�CbC.W /�2ı.W;s/
G .Y1; s1/:

Since this is a map of equivariant cohomologies induced by an equivariant map of spaces, it follows that
SWG.W; s/ is a morphism of graded H�Gs

–modules. Restricting to the subgroup S1!Gs, we obtain the
commutative diagram in the statement of the theorem.

5 The case G D Zp

In this section we specialise to the case G D Zp and F D Zp, where p is a prime number. Then
for p D 2 we have H�G Š F ŒQ�, where deg.Q/ D 1, and if p is odd we have H�G Š F ŒR; S�=.R2/,
where deg.R/D 1 and deg.S/D 2. Suppose G D h�i acts smoothly and orientation-preservingly on a
rational homology 3–sphere Y , preserving a spinc–structure s. The action of G is equivalent to giving an
orientation-preserving diffeomorphism � W Y ! Y such that �p D id and ��.s/D s. Choose a lift � 0 2Gs

of � . Then .� 0/p D � for some � 2 S1. Replacing � 0 by Q� D ��1=p� 0, where �1=p is a pth root of �, we
see that Q�p D id. Hence Gs is a trivial extension.

5.1 ı–invariants

Definition 5.1 If p D 2, then for any integer j � 0, we define dj .Y; s; �; 2/ D dZ2;Qj .Y; s/. If p is
odd, then for any integer j � 0, we define dj .Y; s; �; p/ D dZp;Sj .Y; s/. We also set ıj .Y; s; �; p/ D
1
2
dj .Y; s; �; p/. When p and � are understood we will omit them from the notation and simply write
dj .Y; s/ and ıj .Y; s/.

In the case p is odd, one may also consider the invariants dZp;RSj .Y; s/. For simplicity we will not
consider these invariants.

Theorem 5.2 We have the following properties:

(1) ı0.Y; s/� ı.Y; s/;

(2) ıjC1.Y; s/� ıj .Y; s/ for all j � 0;

(3) the sequence fıj .Y; s/gj�0 is eventually constant ;
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(4) ıj .Y; s/C ıj .Y ; s/� 0 for all j � 0;

(5) if Y is an L–space , then ıj .Y; s/D ı.Y; s/ for all j � 0.

Proof Item (1) is a restatement of Proposition 3.10. Item (2) follows from Proposition 3.9, taking
c1 D Q

j and c2 D Q in the case p D 2, and c1 D Sj and c2 D S in the case p is odd. Item (4) is
a special case of Theorem 4.4. For (3), first note that the difference ıj .Y; s/ � ıjC1.Y; s/ is always
an integer because ıG;c.Y; s/C n.Y; s; g/ 2 Z for any metric g. From (2) and (4) and the fact that
n.Y; s; g/Cn.Y ; s; g/ 2Z, it follows that ıj .Y; s/Cıj .Y ; s/ is a nonnegative, decreasing, integer-valued
function. Hence the value of ıj .Y; s/C ıj .Y ; s/ must eventually be constant. Using (2) again, it follows
that ıj .Y; s/ and ıj .Y ; s/ are eventually constant. Item (5) is a restatement of Proposition 3.16.

Next, we specialise Theorem 4.1 to the case G D Zp.

Theorem 5.3 Let W be a smooth , compact , oriented 4–manifold with boundary and with b1.W /D 0.
Suppose that � WW !W is an orientation-preserving diffeomorphism of order p and s is a spinc–structure
preserved by � . Suppose each component of @W is a rational homology 3–sphere and that � sends each
component of @W to itself. Suppose that the subspace of H 2.W IR/ fixed by � is negative definite. Then
for all j � 0:

(1) If @W D Y is connected , then

ı.W; s/� ıj .Y; sjY / and ı.W ; s/�

�
ıjCbC.W /.Y ; sjY / if p D 2;
ıjCbC.W /=2.Y ; sjY / if p is odd:

(2) If @W D Y1[Y2 has two connected components , then

ıj .Y2; sjY2/�

�
ıjCbC.W /.Y1; sjY1/C ı.W; s/ if p D 2;
ıjCbC.W /=2.Y1; sjY1/C ı.W; s/ if p is odd:

Proof LetHC.W / denote a �–invariant maximal positive definite subspace ofH 2.W IR/ (which always
exists because G D h�i is finite) and let e denote the image of the Euler class of HC.W / in H�Zp . To
deduce the result from Theorem 4.1, we just need to check that eQj ¤ 0 for all j � 0 if p D 2, and
eSj ¤ 0 for all j � 0 if p is odd.

In the case p D 2, e is the top Stiefel–Whitney class of HC.W /, which is easily seen to be QbC.W /

because our assumption that the subspace of H 2.W IR/ fixed by � is negative definite implies that � acts
as �1 on HC.W /. Then clearly eQj ¤ 0 for all j � 0.

Now suppose p is odd. Let Li be the complex 1–dimensional representation on which � acts as
multiplication by �i , � D e2�i=p. Any finite-dimensional real representation of G is the direct sum of a
trivial representation and copies of the underlying real representations of the Li for 1� i � p� 1. The
hypothesis that the subspace of H 2.W IR/ fixed by � is negative definite means that as a representation
of G, HC.W / contains no trivial summand. Hence HC.W / admits a complex structure such that
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HC.W /Š
Lp�1
iD1 L

mi
i for some integers mi � 0. The Euler class of HC.W / is equal to its top Chern

class. Under the map H 2.ZpIZ/!H 2.ZpIZp/ one finds that c1.Li / gets sent to iS . Hence

e D

p�1Y
iD1

.iS/mi ;

from which it is clear that eSj ¤ 0 for all j � 0.

Remark 5.4 Suppose that p is odd. Then as in the proof of Theorem 5.3, HC.V / admits a complex
structure. So if p is odd and the assumptions of Theorem 5.3 hold, then bC.W / must be even.

To keep notation simple, we will henceforth set b0
˙
.W /D b˙.W / if p D 2 and b0

˙
.W /D 1

2
b˙.W / if p

is odd. Then (1) and (2) of Theorem 5.3 can be written more uniformly as

ı.W; s/� ıj .Y; sjY / and ıjCb0
C
.W /.Y ; sjY /� ı.W ; s/;

and
ıjCb0

C
.W /.Y1; sjY1/C ı.W; s/� ıj .Y2; sjY2/:

Corollary 5.5 Let W be a smooth , compact , oriented 4–manifold with boundary and with b1.W /D 0.
Suppose that � WW !W is an orientation-preserving diffeomorphism of order p and s is a spinc–structure
preserved by � . Suppose that Y D @W is a rational homology 3–sphere. Suppose that the subspace of
H 2.W IR/ fixed by � is zero. Then

(1) ıj .Y; sjY /� �
1
8
�.W / for all j � 0 and ıj .Y; sjY /D�18�.W / for j � b0�.W /;

(2) ıj .Y ; sjY /�
1
8
�.W / for all j � 0 and ıj .Y ; sjY /D 1

8
�.W / for j � b0

C
.W /.

Proof It suffices to prove (1) since (2) follows by reversing orientation onW and Y . Since Zp preserves s,
it follows that the image of c1.s/ in real cohomology lies in the subspace of H 2.W IR/ fixed by Zp.
By assumption this space is zero; hence c1.s/ D 0 in real cohomology and hence c1.s/2 D 0. So
ı.W; s/D �1

8
�.W /. Then from Theorem 5.3(1), we get ıj .Y; s/ � �18�.W / for all j � 0. Reversing

orientation on W and Y an applying Theorem 5.3(1), we also get that ıjCb0�.W /.Y; s/ � �
1
8
�.W / for

all j � 0, or equivalently, ıj .Y; s/� �18�.W / for all j � b0�.W /. Combining inequalities, we see that
ıj .Y; s/D�

1
8
�.W / for j � b0�.W /.

5.2 Some algebraic results

In this section we collect some algebraic results which will be useful for computing ı invariants.

Let Y be a rational homology 3–sphere, � W Y ! Y an orientation-preserving diffeomorphism of prime
order p and s a spinc–structure preserved by � . Take G D Zp D h�i and F D Zp. Let fEp;qr ; drgr�2

denote the spectral sequence relating equivariant and nonequivariant Seiberg–Witten–Floer cohomologies.
Then

E
p;q
2 DHp.Zp;HSW

q.Y; s//;
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where Zp acts on HSW q.Y; s/ via the action induced by � . To simplify notation we will write H q

for HSW q.Y; s/ and d for d.Y; s/. So Ep;q2 DHp.Zp;H q/. For fixed q, H q is a finite-dimensional
representation of Zp over F . Moreover, for all sufficiently large k,

(5-1) HdC2k
D F ; HdC2kC1

D 0:

Recall that H�G is isomorphic to F ŒQ� for p D 2 and to F ŒR; S�=.R2/ for odd p. In the case p D 2 we
will set S DQ2, so in all cases S 2H 2

G .

Lemma 5.6 If V is a finite-dimensional representation of Zp over F D Zp, then

S WH i .ZpIV /!H iC1.ZpIV /

is surjective for all i � 0 and an isomorphism for all i � 1. Furthermore , dimF .H
i .ZpIV //� dimF .V /.

Proof Since Zp acts freely on S1, it follows from [12, page 114] that there is an element � 2H 2.ZpIZ/

(independent of V ) such that the cup product � W H i .ZpIV /! H iC2.ZpIV / is an isomorphism for
i > 0 and surjective for i D 0. Since V is a representation of Zp over F , the same statement holds if
we replace � by its image in H 2.ZpIF/, which must have the form aS for some a 2 F . Moreover,
a¤ 0 follows by considering the case that V D Zp is the trivial representation. Hence the cup product
S WH i .ZpIV /!H iC2.ZpIV / is an isomorphism for i >0 and surjective for iD0. We have by induction
that dimF .H

i .ZpIV //� dimF .H
0.ZpIV // if i is even and dimF .H

i .ZpIV //� dimF .H
1.ZpIV // if

i is odd. Then since H 0.ZpIV / and H 1.ZpIV / can both be expressed as certain subquotients of V , it
follows that dimF .H

i .ZpIV //� dimF .V / for all i .

Lemma 5.7 For each r � 2, the map S WEp;qr !E
pC2;q
r is surjective for all p � 0 and an isomorphism

for all p � r � 1.

Proof Recall that Ep;q2 D Hp.Zp;H q/. Hence S W Ep;q2 ! E
pC2;q
2 is surjective for all p and an

isomorphism for all p � 1, by Lemma 5.6. This proves the case r D 2. Now we proceed by induction. Let
r > 2 and suppose that S WEp;qr�1!E

pC2;q
r�1 is surjective for all p� 0 and an isomorphism for all p� r�1.

Let x 2 EpC2;qr . Then x D Œy� for some y 2 EpC2;qr�1 with dr�1.y/D 0. By the inductive hypothesis
y D Sz for some z 2 Ep;qr�1. Then Sdr�1.z/ D dr�1.Sz/ D dr�1.y/ D 0. That is, Sdr�1.z/ D 0.
However, dr�1.z/ 2 E

pCr�1;qC2�r
r�1 and pC r � 1 � r � 2, so S W EpCr�1;qC2�rr�1 ! E

pCrC1;qC2�r
r�1

is an isomorphism by the inductive hypothesis. Hence Sdr�1.z/ D 0 implies that dr�1.z/ D 0. So z
defines a class w D Œz� 2Ep;qr . Then Sw D ŒSz�D Œy�D x. Hence S WEp;qr !E

pC2;q
r is surjective for

all p � 0.

Now suppose that p � r �1 and consider x 2Ep;qr satisfying Sx D 0. Write x D Œy� for some y 2Ep;qr�1
satisfying dr�1.y/D 0. Then 0DSxDSŒy�D ŒSy�. Hence SyD dr�1.z/ for some z 2Ep�rC3;qCr�2r�1 .
By the inductive hypothesis and since p� r C 3� .r � 1/� r C 3D 2, we have that z D Sw for some
w 2 E

p�rC1;qCr�2
r�1 . Hence Sy D dr�1.z/ D dr�1.Sw/ D Sdr�1.w/. By the inductive hypothesis,
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S WE
p;q
r�1!E

pC2;q
r�1 is injective; hence yDdr�1.w/ and xD Œy�D Œdr�1.w/�D0. So S WEp;qr !E

pC2;q
r

is injective for p � r � 1.

From the above lemma, we see that Ep;qr does not depend on p, provided p� r�1. Let M q
r denote Ep;qr

for p� r�1. Moreover, since the differentials fdrg for the spectral sequence Ep;qr commute with S , they
induce differentials dr WM

q
r !M

qC1�r
r for which MrC1 is the cohomology of dr WMr !Mr . Thus

MrC1 is a subquotient of Mr .

For any module V over F ŒU �, we define

Vred D fx 2 V j U
kx D 0 for some k � 0g and V1 D V=Vred:

Lemma 5.8 For each r � 2, the image of the differential dr is contained in .E�;�r /red.

Proof By (5-1) there exists a k0 such that HdC2k D F and HdC2kC1 D 0 for all k � k0. Hence the
action of � is trivial in these degrees and we have

E
p;dC2k
2 D F ; E

p;dC2kC1
2 D 0

for all k � k0. Since SWF.Y; s; g/ is a space of type Zp–SWF, the localisation theorem in equivariant
cohomology implies that there exists a k1 � k0 such that the generator x 2 E0;dC2k12 D F satisfies
dr.x/D 0 for all r � 2. Then if y 2Ep;q2 with q � d C 2k1, it follows that y is of the form y D cU ax

for some a � 0, where c 2Hp
G . Hence dr.y/D 0 for all r � 2. Now let y 2 Ep;qr where p and q are

arbitrary. Then there exists some a � 0 such that qC 2a � d C 2k1; hence U adr.y/D dr.U ay/D 0.
Therefore dr.y/ 2 .E

�;�
r /red.

Recall that H1 is a free F ŒU �–module of rank 1 with generator in degree d . Hence we may write
H1 D F ŒU �� where deg.�/D d . Next, observe that E0;�2 is the �–invariant part of H�, hence may be
regarded as an F ŒU �–submodule of H�. Similarly, since E0;�rC1 is the kernel of dr restricted to E0;�r , it
follows that E0;�rC1 can be identified with an F ŒU �–submodule of E0;�r . Hence fE0;�r g may be regarded as
a decreasing sequence of F ŒU �–submodules of H�. Let Sr denote the image of E0;�r under the quotient
map H�!H1 DH�=Hred. The localisation theorem in equivariant cohomology implies that Sr is
nonzero and that the sequence Sr eventually stabilises. Then since Sr is a nonzero graded submodule
of H1 D F ŒU �� , it follows that Sr D F ŒU �Umr� for some nonnegative integer mr . Note also that the
sequence fmrg is increasing and is eventually constant.

Lemma 5.9 For each r � 2,

mrC1�mr � dimF ..Mr/red/� dimF ..MrC1/red/:

Proof The classes U jCmr� with 0 � j < mrC1 � mr form a basis for Sr=SrC1. Choose a lift
xr 2 E

0;dC2mr
r of Umr� 2 Sr . Then dr.U jxr/¤ 0 for 0 � j < mrC1 �mr , for if dr.U jxr/D 0 for
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some 0 � j < mrC1 �mr , then we would have U jCmr� 2 SrC1. Observe that dr.U jxr/ 2 E
r;�
r . By

Lemma 5.7 and the definition of Mr , we see that dr.U jxr/ can be identified with a nonzero element
of Mr . Moreover, dr.U jxr/ 2 .Mr/red, by Lemma 5.8. Now since the dr.U jxr/ are nonzero and have
distinct degrees, they span a subspace of .Mr/red of dimension mrC1�mr . Furthermore, this subspace
lies in the image of dr ; hence mrC1�mr � dimF ..Mr/red/� dimF ..MrC1/red/.

Proposition 5.10 Suppose that � acts trivially on HSW �.Y; s/. Then

ı1.Y; s/� ı.Y; s/� dimF .HSWred.Y; s//:

Proof Recall that d D d.Y; s/. Hence ı.Y; s/ D 1
2
d . From the definition of the invariant ı1.Y; s/, it

follows that for all sufficiently large r ,

ı1.Y; s/Dmr C ı.Y; s/:

By Lemma 5.9, for each r � 2,

mrC1�mr � dimF ..Mr/red/� dimF ..MrC1/red/;

and summing from 2 to r � 1, we get

mr �m2 � dimF ..M2/red/:

However since � acts trivially on HSW �.Y; s/, we have that Ep;�2 DHSW �.Y; s/ for all p � 0. Hence
m2 D 0, M2 DHSW

�.Y; s/ and .M2/red DHSWred.Y; s/. Taking r sufficiently large,

ı1.Y; s/� ı.Y; s/Dmr Dmr �m2 � dimF .HSWred/:

6 Branched double covers of knots

6.1 Concordance invariants

Let K � S3 be a knot in S3. Let Y D†2.K/ be the branched double cover of S3, branched over K. Let
� W Y ! S3 denote the covering map. One finds that b1.Y /D 0. Manolescu and Owens [51] define a
knot invariant

ı.K/D 2d.†2.K/; t0/D 4ı.†2.K/; t0/;

where t0 is the spinc–structure induced from the unique spin–structure on †2.K/ (see [51, Section 2] for
an explanation of this). It is shown in [51] that ı.K/ is always integer-valued and descends to a surjective
group homomorphism ı W C! Z, where C is the smooth concordance group of knots in S3.

The covering involution on Y determines an action of G D Z2 on Y preserving t0 (by uniqueness of the
underlying spin–structure). Hence, for each j � 0, we may define the knot invariant

ıj .K/D 2dj .†2.K/; t0/D 4ıj .†2.K/; t0/:
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Since dj .†2.K/; t0/ � d.†2.K/; t0/ 2 2Z, it follows that ıj .K/ � ı.K/ 2 4Z. Then, since ı.K/ is
integer-valued, it follows that the ıj .K/ are also integer-valued and moreover ıj .K/D ı.K/ mod 4.

Proposition 6.1 For each j � 0, ıj .K/ depends only on the concordance class of K; hence ıj descends
to a concordance invariant ıj W C! Z.

Proof For an oriented knot K, recall that �K denotes the knot obtained by reversing orientation on
S3 and K. It follows that †2.�K/D†2.K/. A concordance of oriented knots K1 and K2 is a smooth
embedding of † D Œ0; 1�� S1 in Œ0; 1�� S3 having boundary �K1 [K2. Taking the double cover of
Œ0; 1��S3 branched along † gives a Z2–equivariant cobordism W from †2.K1/ to †.K2/. From the
calculations in [36, Section 3], one sees that W is a rational homology cobordism. We claim that W is
spin. To see this, choose a smoothly embedded surface † in D4 whose boundary is K1. Let W 0 be the
double cover of D4[ Œ0; 1��S3 ŠD4 branched over †[ Œ0; 1��S1. From [35] we see that W 0 is spin.
Since W is embedded in W 0, it follows that W 0 is spin as well. Any spin–structure t on W will restrict
on each component of the boundary to the unique spin–structure on the branched double cover †2.Ki /.
The result now follows by applying Corollary 4.3 to .W; t/.

We note that the ıj are not group homomorphisms.

Let �.K/ denote the signature of K and g4.K/ the smooth 4–genus. Set � 0.K/D �1
2
�.K/. We also

define bC.K/D g4.K/� � 0.K/ and b�.K/D g4.K/C � 0.K/.

Proposition 6.2 The knot concordance invariants ıj have the properties

(1) ı0.K/� ı.K/;

(2) ıjC1.K/� ıj .K/ for all j � 0;

(3) ıj .K/� �
0.K/ for all j � 0 and ıj .K/D � 0.K/ for j � b�.K/;

(4) ıj .�K/� ��
0.K/ for all j � 0 and ıj .�K/D�� 0.K/ for j � bC.K/;

(5) if †2.K/ is an L–space , then ıj .K/D ı.K/ and ıj .�K/D ı.�K/ for all j � 0.

Proof Items (1), (2) and (5) follow from (1), (2) and (5) of Theorem 5.2. For (3) and (4), choose a
smooth embedded surface †�D4 in the 4–ball of genus g4.K/ which bounds K. Let W be the double
cover of D4 branched along †. From [35] it follows that W is spin. Let t be any spin–structure on W .
Then tj†2.K/ D t0 by uniqueness of t0. Next, observe that H 2.W IR/Z2 DH 2.D4IR/D 0. Then (3)
and (4) follow by applying Corollary 5.5 to .W; t/.

Corollary 6.3 If K is a knot such that †2.K/ is an L–space , then ı.K/D � 0.K/.

Proof This follows by (3) and (5) of Proposition 6.2

Remark 6.4 In particular, if K is quasialternating, then †2.K/ is an L–space [57]. This recovers the
main result of [47] that ı.K/D � 0.K/ for quasialternating knots.
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Theorem 6.5 For a knot K, let jC.K/ be the smallest positive integer such that ıj .K/ D � 0.K/ and
j�.K/ the smallest positive integer such that ıj .�K/D�� 0.K/. Then

g4.K/�maxf� 0.K/C j�.K/;�� 0.K/C jC.K/g:

Remark 6.6 Observe that the right-hand side of this inequality is at least 1
2
j�.K/j. Hence we have

obtained a strengthening of the well-known inequality g4.K/� 1
2
j�.K/j [52].

Proof From Proposition 6.2 we have that ıj .K/D� 0.K/ for j �g4.K/C� 0.K/ and ıj .�K/D�� 0.K/
for j � g4.K/� � 0.K/. Hence jC.K/� g4.K/C � 0.K/ and j�.K/� g4.K/� � 0.K/.

Remark 6.7 In this section we have used branched double covers †2.K/ of knots equipped with their
natural Z2–action to obtain a sequence of concordance invariants. Similarly, for any odd prime p we may
consider the cyclic branched cover †p.K/ with its natural Zp–action. Once again there is a canonical
spinc–structure t0 [29] and so we may define a sequence of invariants

ı.p/;j .K/D 2dZp;Sj .†p.K/; t0/

depending on a prime p and an integer j � 0. By similar arguments to the p D 2 case one finds that
these are integer-valued knot concordance invariants of K.

7 Computations and applications

7.1 Brieskorn homology spheres

Let p, q and r be pairwise coprime positive integers and let Y D†.p; q; r/ be the corresponding Brieskorn
integral homology 3–sphere. Then Y has a unique spinc–structure and so when speaking of the Floer
homology of Y we omit the mention of the spinc–structure.

Recall that †.p; q; r/ can be realised as the p–fold cyclic cover of S3 branched along the torus knot Tq;r .
In particular, this construction defines an action of Zp on Y . Let � W Y ! Y denote the generator of this
action. Recall that †.p; q; r/ is obtained by taking the link of the singularity

f.x; y; z/ 2C3
j xpCyqC zr D 0g:

Then � is given by .x; y; z/ 7! .e2�i=px; y; z/. This map is isotopic to the identity through the homo-
topy .x; y; z/ 7! .e2�iqrtx; e2�iprty; e2�ipqtz/ for t 2 Œ0; .qr/��, where 0 < .qr/� < p denotes the
multiplicative inverse of qr mod p. It follows that � acts trivially on HFC.Y /.

Henceforth we will assume that p is a prime number. Set F D Zp and recall that H�Zp Š F ŒQ�

where deg.Q/ D 1 if p D 2, and H�Zp Š F ŒR; S�=.R2/ where deg.R/ D 1 and deg.S/ D 2 if p
is odd. Let s denote the unique spinc–structure on Y . As in Section 5, we let ıj .Y; s; �; p/ denote
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ıZp;Qp .Y; s/ for p D 2 or ıZp;Sp .Y; s/ for odd p. We will further abbreviate this to ıj .Y; �/. When
pD2, ıj .Y; �/D 1

4
ıj .Tq;r/, where ıj .K/ denotes the knot concordance invariant introduced in Section 6.1.

More generally, ıj .Y; �/D 1
4
ı.p/;j .Tq;r/, where ı.p/;j .K/ is the knot concordance invariant defined in

Remark 6.7.

Example 7.1 Let .p; q; r/D .2; 3; 5/. Then Y D†.2; 3; 5/ is the Poincaré homology 3–sphere. Since
†.2; 3; 5/ has spherical geometry, it is an L–space [56, Proposition 2.3]. Therefore

ıj .T3;5/D ı.T3;5/D �
0.T3;5/D 4 for all j � 0:

The property of being an L–space does not depend on the choice of orientation, so we also have

ıj .�T3;5/D ı.�T3;5/D�4 for all j � 0:

The same argument applied to p D 3 or 5 gives

ı.3/;j .T2;5/D ı.5/;j .T2;3/D 4 for all j � 0

and
ı.3/;j .�T2;5/D ı.5/;j .�T2;3/D�4 for all j � 0:

Proposition 7.2 Let p, q and r be positive , pairwise coprime integers and assume that p is prime.
Then ıj .†.p; q; r/; �/ D ��.†.p; q; r// for all j � 0, where �.†.p; q; r// is the Casson invariant of
†.p; q; r/. Furthermore ,

ı.p/;j .Tq;r/D�
1

2

p�1X
jD1

�j=p.Tq;r/ for all j � 0;

where �˛.K/ is the Tristram–Levine signature of K.

Proof Recall that Y D†.p; q; r/ is the boundary of a negative definite plumbing [53] whose plumbing
graph has only one bad vertex in the terminology of [55]. Then it follows from [55, Corollary 1.4] that
HFC.Y / is concentrated in even degrees. Consequently, HFCred.Y / is concentrated in odd degrees. (Note
that [55] uses Z coefficients, but it is shown there that HFCred.Y IZ/ has no torsion and hence by the
universal coefficient theorem, [55, Corollary 1.4] also holds for Zp coefficients.) Therefore,

(7-1) �.HFCred.Y //D dimF .HF
C
red;even.Y //� dimF .HF

C
red;odd.Y //D� dimF .HF

C
red.Y //:

By [54, Theorem 1.3], �.HFCred.Y // is related to the Casson invariant �.Y / via the formula

(7-2) �.HFCred.Y //D �.Y /C ı.Y /:

Hence

(7-3) dimF .HF
C
red.Y //D��.Y /� ı.Y /:
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Moreover, from [18; 27],

�.†.p; q; r//D
1

8

p�1X
jD1

�j=p.Tq;r/D
1
8
�.M.p; q; r//;

where M.p; q; r/ is the Milnor fibre

M.p; q; r/D f.x; y; z/ 2C3
j xpCyqC zr D ıg\D6

(where ı is a sufficiently small nonzero complex number). Recall that M.p; q; r/ is a compact smooth
4–manifold with boundary diffeomorphic to †.p; q; r/. Moreover, M.p; q; r/ has the homotopy type of a
wedge of 2–spheres, so b1.M.p; q; r//D 0. Further, M.p; q; r/ is a p–fold cyclic cover of D4 branched
along a surface bounding Tq;r . Hence the action of Zp D h�i on Y extends to M.p; q; r/. From [29,
Lemma 2.1] it follows that there is a Zp invariant spin–structure t0 on M.p; q; r/. Since M.p; q; r/ is a
cyclic p–fold cover of D4, it follows that the subspace of H 2.M.p; q; r/IR/ fixed by � is zero. Hence
Corollary 5.5 may be applied, giving

ıj .Y; �/� �
1
8
�.M.p; q; r//D��.Y / for all j � 0:

Since � acts trivially on HFC.Y /, Proposition 5.10 implies that

ı0.Y; �/� ı.Y /� dimF .HF
C
red.Y //D��.Y /� ı.Y /:

Hence ı0.Y; �/ � ��.Y /. On the other hand, ı0.Y; �/ � ıj .Y; �/ � ��.Y / for any j � 0. Hence
ıj .Y; �/D��.Y / for all j � 0. Therefore we also have

ı.p/;j .Tq;r/D 4ıj .Y; �/D�4�.Y /D�
1

2

p�1X
jD1

�j=p.Tq;r/

for all j � 0.

The above result shows that the values of ı.p/;j .Tq;r/ do not depend on j . In contrast, the values of
ı.p/;j .�Tq;r/ usually do depend on j , as the following propositions illustrate.

Proposition 7.3 Let .a; b/D .3; 6n� 1/ for n� 1. Then

ı.�T3;6n�1/D�4; � 0.�T3;6n�1/D�4n

and
ıj .�T3;6n�1/D

�
�4
��
1
2
j
˘
C 1

�
if 0� j � 2n� 3;

�4n if j � 2n� 2:

Proof The case nD 1 is already covered in Example 7.1, so we assume n� 2. Set Ya;b D†2.Ta;b/D
†.2; a; b/ and let � be the covering involution. Then ıj .�T3;6n�1/ D 4ıj .Y3;6n�1/. From the com-
putations in [54, Section 8] we find that d.Y3;6n�1/ D �2, SWF �red.Y3;6n�1/ D .F�2/

n�1, where the
subscript indicates degree. To simplify notation we let V D SWF �red.Y3;6n�1/D .F�2/

n�1. Then

E
�;�
2 Š F ŒU;Q�� ˚V ŒQ�;
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where the bidegree is given as follows: � and all elements of V have bidegree .0;�2/, U has bidegree
.0; 2/ and Q has bidegree .1; 0/. Then Ep;q2 D 0 for q < �2. It follows that all the differentials in the
spectral sequence are zero on � and on V , since dr sends Ep;�2r to EpCr;�1�rr and �1� r < �2 for
r � 2. Hence dr is zero on all of Er and E�;�1 ŠE

�;�
2 . Let Fj denote the filtration on HSW �Z2.Y3;6n�1/

corresponding to the spectral sequence, so Fj =FjC1ŠE
j;�
1 . In particular, F1=F2ŠF ŒU ��˚V . Choose

lifts of � and V to F1. We lift U j � by taking the lift of � and applying U j . Hence we obtain a short
exact sequence of F ŒU;Q�–modules

0! F ŒU �˚V !HSW �Z2.Y3;6n�1/! F2! 0:

Next, for each j � 0, Q induces an isomorphism Q W Fj =FjC1! FjC1=FjC2; hence by applying Q
repeatedly to F ŒU �� ˚V , we obtain a splitting of the filtration fFj g as F ŒQ�–modules. The splittings
give an isomorphism of F ŒQ�–modules

HSW �Z2.Y3;6n�1/Š F ŒU;Q�� ˚V ŒQ�:

However, this is not necessarily an isomorphism of F ŒU;Q�–modules. Under this isomorphism, U
corresponds to an endomorphism of the form

yU D U2CQU1CQ
2U0CQ

3U�1C � � � ;

where Uj WHSW �.Y3;6n�1/!HSW �Cj .Y3;6n�1/ and U2DU . SinceHSW �.Y3;6n�1/ is concentrated
in even degrees, Uj D 0 for odd j . Moreover, our construction is such that Uj � D 0 for j ¤ 2. It follows
that Uj D 0 for j < 0, as V is concentrated in a single degree. So we get

yU D U CQ2U0

for some U0 W V !HSW 0.Y3;6n�1/.

To simplify notation set dj Ddj .Y3;6n�1/. Using Proposition 3.14 we obtain the following characterisation
of dj :

dj Dmin
˚
i j yU rx D UmQj � modQjC1 for some x 2HSW i

Z2
.Y3;6n�1/ and r;m� 0

	
� j:

Recall that ıj .�T3;6n�1/D� 0.�T3;6n�1/D�4n for sufficiently large j . Hence dj D�2n for sufficiently
large j . Choose such a j . From the above characterisation of j there exists x 2HSW j�2n

Z2
.Y3;6n�1/

such that yU rx D UmQj � C � � � where � � � denotes terms of higher order in Q. We have that x DQay
for some a � j . Then yU rQay D UmQj � C � � � . Since Q is injective we may cancel, giving yU ry D
UmQj�a�C� � � . If aD j , then yU ry DUm�C� � � . But yU DU CQ2U0, so yU ry DU ryC� � � ; hence
U ryDUm�C� � � . From the definition of the usual d–invariant we must have deg.y/�d.Y3;6n�1/D�2.
Hence j � 2n D deg.x/ D aC deg.y/ D j � 2, which is a contradiction since we have assumed that
n > 1. It follows that a < j . We must have y 2 V for if y D U b� mod V , then we would have
yU rx D U rCbQa� C � � � , which contradicts yU rx D UmQj � C � � � as a < j . Therefore y 2 V . In
particular deg.y/D�2 and j � 2nD deg.x/D a� 2.

Algebraic & Geometric Topology, Volume 24 (2024)



Equivariant Seiberg–Witten–Floer cohomology 545

Let b be the smallest positive integer such that U b0 y … V . Such a b exists since

yU ry D .U CQ2U0/
ry D UmQj�a� C � � �

and U is zero on V . Then it follows that r � b and

yU ry D .U CQ2U0/
ry D U r�bQ2b.U b0 y/C � � � D U

mQj�a� C � � � :

Hence 2b D j �a. So we have shown that j D aC 2b and j � 2nD a� 2. Hence b D n� 1. But since
dimF .V /D n� 1D b, it follows that there exists a v 2 V such that v; U0v; U 20 v; : : : ; U

n�2
0 v is a basis

for V and U n�10 v D � mod V . Now it is straightforward to see that the sequence fdj g must have the
form �2;�2;�4;�4;�6;�6; : : : ; for j � 2n� 3 and dj D�2n for j � 2n� 2.

Proposition 7.4 Let .a; b/D .3; 6nC 1/ for n� 1. Then

ı.�T3;6nC1/D 0; � 0.�T3;6nC1/D�4n

and
ıj .�T3;6nC1/D

�
�4
�
1
2
j
˘

if 0� j � 2n� 1;
�4n if j � 2n:

Proof By [54, Section 8], d.Y3;6nC1/D 0, SWF �red.Y3;6nC1/D .F0/
n and � 0.�T3;6nC1/D 4n. From

here essentially the same argument as in Proposition 7.3 gives the result.

Remark 7.5 We can use Theorem 6.5 and the computations in Propositions 7.3 and 7.4 to obtain a lower
bound for the 4–genus. From Proposition 7.3, we see that � 0.T3;6n�1/D 4n and j�.T3;6n�1/D 2n� 2;
hence g4.T3;6n�1/� 2n� 2C 4nD 6n� 2. On the other hand, from the positive solution to the Milnor
conjecture [38], we know that g4.Ta;b/D 1

2
.a� 1/.b� 1/. In particular, g4.T3;6n�1/D 6n� 2. Hence

the above estimate for g4.T3;6n�1/ is actually sharp.

Similarly, by Proposition 7.4, � 0.T3;6nC1/ D 4n and j�.T3;6nC1/ D 2n. So we obtain an estimate
g4.T3;6nC1/� 6n. Once again, this estimate is sharp since g4.T3;6nC1/D 1

2
.3� 1/.6nC 1� 1/D 6n.

7.2 Nonextendable actions

Let Y be a rational homology 3–sphere equipped with an orientation-preserving action of G. Let W be
a smooth 4–manifold with boundary Y . In this section we are concerned with the question of whether
the G–action can be extended to W . In particular we are interested in finding obstructions to such an
extension.

Proposition 7.6 Let Y be an integral homology 3–sphere and s the unique spinc–structure on Y . Let G
act orientation-preservingly on Y and suppose the extension Gs is trivial. Suppose that Y is the boundary
of a contractible 4–manifold W . If the action of G extends over W then ıG;c.Y; s/D ıG;c.Y ; s/D 0 for
every nonzero c 2H�G .
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Proof Suppose that theG–action extends toW . SinceW is contractible, there is a unique spinc–structure
t onW . By uniqueness it isG–invariant and tjY D s. Theorem 4.1 gives ıG;c.Y; s/� 0 and ıG;c.Y; s/� 0;
hence ıG;c.Y; s/D 0. Reversing orientations, we also find that ıG;c.Y s/D 0.

Example 7.7 Akbulut–Kirby constructed examples of contractible 4–manifolds bounding integral ho-
mology spheres, in particular †.2; 5; 7/, †.3; 4; 5/ and †.2; 3; 13/ bound contractible 4–manifolds [2,
Theorem 2]. Further examples were given by Casson and Harer, in particular †.2; 2s � 1; 2sC 1/ for
odd s bounds a contractible 4–manifold [14].

Now let Y D†.2; 3; 13/ and let � be the involution obtained by viewing Y as the branched double cover
†2.T3;13/. Then ı2.Y /D�1 by Proposition 7.4. Then it follows from Proposition 7.6 that � does not
extend to an involution on any contractible 4–manifold W bounded by Y . On the other hand, since � is
isotopic to the identity, � does extend to a diffeomorphism on W .

Similarly if we let Y D†.2; 2s�1; 2sC1/D†2.T2s�1;2sC1/, where s is odd, and let � be the covering
involution, then Y bounds a contractible 4–manifold W but � does not extend to an involution on W
because ıj .Y /D�18�.T2s�1;2sC1/D

1
2
.s2� 1/¤ 0 for all j � 0.

More generally, let Y D†.p; q; r/ where p, q and r are pairwise coprime positive integers. Assume that
p is prime and let Zp D h�i act on Y by realising Y as the p–fold cyclic branched cover †p.Tq;r/. Then
ı0.Y; �/D��.†.p; q; r//. From [59, Chapter 19], it can be seen that �.†.p; q; r// < 0 and hence the
Zp–action on Y D†.p; q; r/ is nonextendable over contractible 4–manifolds bounded by Y . We have
thus recovered a special case of the nonextendability results of Anvari and Hambleton [6; 7].

If we relax the condition that W is contractible to being a rational homology 4–ball, then we get a similar
result, except that we have to make an assumption on the order of H 2.W IZ/.

Proposition 7.8 Let Y be an integral homology 3–sphere and s the unique spinc–structure on Y .
Let G D Zp for a prime p act orientation-preservingly on Y , and suppose that the extension Gs is
trivial. Suppose that Y is the boundary of a compact , oriented , smooth rational homology 4–ball W
and assume that p does not divide the order of H 2.W IZ/. If the action of G extends over W then
ıG;c.Y; s/D ıG;c.Y ; s/D 0 for every nonzero c 2H�G .

Proof The set of spinc–structures on W has cardinality jH 2.W IZ/j and G D Zp acts on this set. By
assumption, p does not divide this number and hence there must exist a spinc–structure t whose stabiliser
group is not trivial. Since p is prime, this means t is fixed by all of G. From here, the rest of the proof is
the same as for Proposition 7.6.

Example 7.9 Let Y D†.p; q; r/ where p, q and r are relatively prime and assume that p is prime. Let
Zp act on Y as described in Section 7.1. Recall from Proposition 7.2 that ıZp;1.Y; s/D��.†.p; q; r//.
As in Example 7.7, �.†.p; q; r// < 0 and hence ıZp;1.Y; s/ > 0.
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Therefore, by Proposition 7.8, if W is a compact, oriented, smooth rational homology 4–ball bounded by
Y and if p does not divide the order of H 2.W IZ/, then the action of G does not extend over W . Thus
we have obtained a partial extension of the results of Anvari–Hambleton to the case of rational homology
4–balls.

Fintushel and Stern [26] showed that †.2; 3; 7/ bounds a rational homology 4–ball, although it does not
bound an integral 4–ball. Akbulut and Larson [4] showed that, for n odd, †.2; 4nC 1; 12nC 5/ and
†.3; 3nC1; 12nC5/ bound rational 4–balls but not integral 4–balls. More examples,†.2; 4nC3; 12nC7/
and †.3; 3nC 2; 12nC 7/ for even n, were constructed by Şavk [21]. Taking p D 2 or 3, the above
Brieskorn spheres admit Zp–actions with nonzero delta invariants, as in Example 7.7. Hence the Zp–
action does not extend to any oriented rational homology 4–ball W with boundary Y , provided the order
of H 2.W IZ/ is coprime to p. However, it does not seem straightforward to determine whether the above
examples are bounded by rational 4–balls satisfying this coprimality condition.

Proposition 7.10 Let Y be an integral homology 3–sphere and s the unique spinc–structure on Y . Let
G act orientation-preservingly on Y and suppose that the extension Gs is trivial. Suppose that Y is the
boundary of a smooth , compact , oriented 4–manifold with b1.W /D 0 and suppose that H 2.W IZ/ has
no 2–torsion.

� If H 2.W IR/ is positive definite and ıG;1.Y; s/ > 0, then the G–action on Y cannot be extended to
a smooth G–action on W acting trivially on H 2.W IZ/.

� If H 2.W IR/ is negative definite and ıG;c.Y; s/ < 0 for some c 2 H�G , then the G–action on Y
cannot be extended to a smooth G–action on W acting trivially on H 2.W IZ/.

Proof Suppose the G–action on Y extends to a smooth G–action on W acting trivially on H 2.W IZ/.
Since H 2.W IZ/ has no 2–torsion, a spinc–structure t on W is determined uniquely by c1.t/. Since G
acts trivially on H 2.W IZ/, it follows that G preserves every spinc–structure. Furthermore, tjY D s for
any spinc–structure on W by uniqueness of t.

If H 2.W IR/ is negative definite, then Theorem 4.1 may be applied to any spinc–structure t on W , giving

ı.W; t/� ıG;c.Y; s/

for all t and all c 2 H�G . Since Y is an integral homology sphere, the intersection form on the
H 2.W IZ/=torsion is unimodular. By the main theorem of [24], there exists a spinc–structure t such that
ı.W; t/� 0. Hence ıG;c.Y; s/� 0. The proof in the case that H 2.W IR/ is positive definite is similarly
obtained.

Example 7.11 Consider again Y D†.p; q; r/ with the same Zp–action. Recall from Proposition 7.2
that ıZp;1.Y; s/D��.†.p; q; r//. As in Example 7.9, ıZp;1.Y; s/> 0. So by Proposition 7.10, the action
of Zp on Y cannot be extended to any smooth, compact, oriented 4–manifold W such that b1.W /D 0,
H 2.W IZ/ has no 2–torsion and with Zp acting trivially on H 2.W IZ/.
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7.3 Realisation problems

In this section we are concerned with the following realisation problem. Let W be a smooth 4–manifold
with boundary an integral homology sphere Y . Suppose that a finite groupG acts onH 2.W IZ/ preserving
the intersection form. We say that the action of G on H 2.W IZ/ can be realised by diffeomorphisms if
there is a smooth orientation-preserving action of G on W inducing the given action on H 2.W IZ/.

For simplicity we will assume that G D Zp for a prime p so that all extensions Gs are trivial.

Proposition 7.12 Let W be a smooth , compact , oriented 4–manifold with b1.W /D 0 and with boundary
Y D @W an L–space integral homology sphere. Suppose that an action of GDZp onH 2.W IZ/ is given
and suppose that H 2.W IZ/ has no 2–torsion. Suppose that the subspace of H 2.W IR/ fixed by G is
negative definite. If the action of G on H 2.W IZ/ can be realised by diffeomorphisms , then

ı.W; s/� ı.Y; sjY /

for every spinc–structure s on W for which c1.s/ is invariant.

Proof This is essentially a special case of Theorem 5.3. Note that since H 2.W IZ/ is assumed to have
no 2–torsion, any spinc–structure s for which c1.s/ is invariant is preserved by G. So if G is realisable
by diffeomorphisms, then Theorem 5.3 gives ı.W; s/� ıG;1.Y; sjY /. But we have assumed that Y is an
L–space, so ıG;1.Y; sjY /D ı.Y; sjY /.

Example 7.13 We consider a specialisation of Proposition 7.12 as follows. Take G D Zp. Assume
Y is an L–space integral homology 3–sphere and let s be the unique spinc–structure. Suppose that W
is a smooth, compact, oriented 4–manifold with b1.W / D 0 and with boundary Y . Suppose that the
intersection form on H 2.W IZ/ is even and that H 2.W IZ/ has no 2–torsion. Then W is spin and it has
a unique spin–structure t. By uniqueness, the restriction of t to the boundary equals s. Suppose that an
action of G D Zp on H 2.W IZ/ is given and that the subspace of H 2.W IR/ fixed by G is negative
definite. Then applying Proposition 7.12 to .W; t/, we find that ı.W; t/D�1

8
�.W /� ı.Y; s/. Therefore,

if 1
8
�.W / <�ı.Y; s/ then the action of Zp on H 2.W IZ/ is not realisable by a smooth Zp–action on W .

For example, if W D K3 #W0 is the connected sum of a K3 surface with W0, the negative definite
plumbing of the E8 graph, then @W D Y D†.2; 3; 5/ is the Poincaré homology 3–sphere which is an
L–space. Then W satisfies all the above conditions and 1

8
�.W /D �3 < ı.Y; s/D �1. Hence for any

prime p, any Zp–action on H 2.W IZ/ such that the invariant subspace of H 2.W IR/ is negative definite
cannot be realised by a smooth Zp–action on W .

Corollary 7.14 Let W be a smooth , compact , oriented 4–manifold with b1.W /D 0 and with boundary
Y D @W an L–space integral homology sphere. Suppose that W is spin and that H 2.W IZ/ has no
2–torsion. If there is a smooth involution on W which acts as �1 onH 2.W IR/, then ı.Y; s/D�1

8
�.W /.

Proof Since W is spin, there is a spinc–structure s for which c1.s/D 0. Proposition 7.12 then implies
that �1

8
�.W /� ı.Y; s/. The same argument applied to W gives 1

8
�.W /� ı.Y; s/.
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7.4 Equivariant embeddings of 3–manifolds in 4–manifolds

Let Y be a rational homology 3–sphere equipped with an orientation-preserving action of G. By an
equivariant embedding of Y into a 4–manifold X , we mean an embedding Y !X such that the action of
G on Y extends over X . We consider some existence and nonexistence results for equivariant embeddings.

Proposition 7.15 Suppose that Y is an integral homology 3–sphere. Let s be the unique spinc–structure
on Y and assume that Gs is a trivial extension. If Y can be equivariantly embedded in S4, then
ıG;c.Y; s/D ıG;c.Y ; s/D 0 for every nonzero c 2H�G .

Proof If Y embeds equivariantly in S4, then we obtain an equivariant decomposition S4 DWC[Y W�.
Mayer–Vietoris and Poincaré–Lefschetz imply that W˙ are integral homology 4–balls, hence are con-
tractible by Whitehead’s theorem. The result now follows from Proposition 7.6.

Example 7.16 Let Y D †.2; 3; 13/, equipped with the involution � obtained from viewing Y as the
branched double cover †2.T3;13/. Then Y embeds in S4 [13, Theorem 2.13]. On the other hand,
ı2.Y ; s/D�1 by Proposition 7.4. Hence Y cannot be equivariantly embedded in S4.

It is known that every 3–manifold Y embeds in the connected sum #n.S2 �S2/ of n copies of S2 �S2

for some sufficiently large n [1, Theorem 2.1]. Aceto, Golla and Larson define the embedding number
".Y / of Y to be the smallest n for which Y embeds in #n.S2 �S2/. Here we consider an equivariant
version of the embedding number. To obtain interesting results we need to make an assumption on the
kinds of group actions allowed.

Definition 7.17 Let G D Zp D h�i, where p is a prime number. We say that a smooth, orientation-
preserving action of G on X D #n.S2 �S2/ is admissible if H 2.X IZ/� D 0, where

H 2.X IZ/� D fx 2H 2.X IZ/ j �.x/D xg:

One way of constructing admissible actions is as follows. LetX be the p–fold cyclic cover of S4, branched
over an unknotted embedded surface †� S4 of genus g. Then X is diffeomorphic to #g.p�1/.S2�S2/
[3, Corollary 4.3] and the action of Zp on X as a cyclic branched cover is admissible — as can be seen
from the proof of Theorem 9.3 in [11].

Let Zp D h�i act on a rational homology 3–sphere Y . We define the equivariant embedding number
".Y; �/ of .Y; �/ to be the smallest n for which Y embeds equivariantly in #n.S2 � S2/ for some
admissible Zp–action on #n.S2 �S2/, if such an embedding exists. We set ".Y; �/D1 if there is no
such embedding.

Recall that the double slice genus [48, Section 5] gds.K/ of a knot K in S3 is defined as the minimal
genus of an unknotted compact oriented surface S embedded in S4 whose intersection with the equator
S3 is K. From the definition, it follows that 2g4.K/� gds.K/� 2g3.K/, where g3.K/ is the 3–genus
of K.
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Proposition 7.18 Let Y D†2.K/ be the branched double cover of a knot K and let � be the covering
involution on Y . Then ".Y; �/� gds.K/.

Proof Let S be an unknotted embedded surface in S4 of genus gds.K/ intersecting the equator in K.
Let W be the double cover of S4 branched along S . Then by [3, Corollary 4.3], W is diffeomorphic
to #gds.K/.S2 �S2/. The covering involution on W is admissible since W is a branched double cover
of S4. Clearly Y D†2.K/D @W embeds equivariantly in W and so ".Y; �/� gds.K/.

Proposition 7.19 Let Zp D h�i act orientation-preservingly on an integral homology 3–sphere Y . Let
j.Y; �/ be the smallest positive integer such that ıj .Y; s; �; p/C ıj .Y ; s; �; p/ D 0, or j.Y; �/ D 1
if no such j exists. Here s is the unique spinc–structure on Y . Then ".Y; �/ � j.Y; �/ if p D 2 and
".Y; �/� 2j.Y; �/ if p is odd.

Proof To simplify notation we write ıj .Y / for ıj .Y; s; �; p/. Suppose that Y embeds equivariantly in
X D #n.S2�S2/, for an admissible action of � . Then we obtain an equivariant splitting X DXC[Y X�.
Let t be the unique spin–structure on X . By uniqueness, t is �–invariant and tjY D s. Corollary 5.5
applied to XC gives ıj .Y /D �18�.XC/ for j � b0�.XC/ and ıj .Y /D 1

8
�.XC/ for j � b0

C
.XC/. Let

n0 D n if p D 2 or 1
2
n if p is odd. Since b0

˙
.XC/ � b

0
˙
.X/ D n0, we see that ıj .Y /C ıj .Y / D 0 for

j � n0. Hence j.Y; �/� n0. Therefore ".Y; �/� j.Y; �/ if p D 2 and ".Y; �/� 2j.Y; �/ if p is odd.

Example 7.20 Let Y D †.2; 3; 6nC 1/D †2.T3;6nC1/ and equip Y with the covering involution � .
Then g3.T3;6nC1/ D 6n; hence ".Y; �/ � 12n, by Proposition 7.18. By Proposition 7.4, we see that
j.Y; �/D 2n and so ".Y; �/� 2n. So we have an estimate on the equivariant embedding number of the
form

2n� ".†.2; 3; 6nC 1/; �/� 12n:

Suppose that n is odd. Then by [1, Proposition 3.5], the (nonequivariant) embedding number of
†.2; 3; 6nC1/ is given by ".†.2; 3; 6nC1//D10. In particular, ".†.2; 3; 6nC1/; �/>".†.2; 3; 6nC1//
for all odd n > 5. Also, since we obviously have ".Y; �/� ".Y /, we see that

10� ".†.2; 3; 7/; �/� 12:

In fact, we will now prove that ".†.2; 3; 7/; �/D 12. Suppose that Y D†.2; 3; 7/ embeds equivariantly
in X D #n.S2 � S2/ for some admissible involution, where n � 12. Then we obtain an equivariant
splitting X D XC [Y X�. Since Y is an integral homology sphere, the intersection forms on X˙ are
unimodular. They are also even, since X is spin. Moreover the Rochlin invariant of Y is 1. So the
intersection forms of X˙ must contain at least one E8 or �E8 summand. Proposition 7.2 implies that
ıj .Y /D 1 for all j � 0 and Proposition 7.4 implies that ıj .Y /D 0 for j D 0; 1 and ıj .Y /D�1 for j � 2.
Since n� 12, Corollary 5.5 applied to X˙ then implies that the intersection form of XC must be of the
form ˛H ˚ .�E8/ for some ˛ � 2 (where H is the hyperbolic lattice) and similarly the intersection form
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of X� must be of the form ˛0H˚.E8/ for some ˛0� 2. The intersection form of X is then .˛C˛0C8/H
and so nD ˛C˛0C 8� 2C 2C 8D 12. This proves that

".†.2; 3; 7/; �/D 12:

Example 7.21 Let Y D †.2; 3; 5/ D †2.T3;5/ and equip Y with the covering involution � . Then
g3.T3;5/D 4; hence ".Y; �/� 8, by Proposition 7.18. On the other hand, ".Y; �/� ".Y / and ".Y /D 8
by [1, Proposition 3.4], so ".†.2; 3; 5/; �/D 8.
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