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Census L–space knots are braid positive, except for one that is not

KENNETH L BAKER

MARC KEGEL

We exhibit braid positive presentations for all L–space knots in the SnapPy census except one, which is
not braid positive. The normalized HOMFLY polynomial of o9_30634, when suitably normalized, is not
positive, failing a condition of Ito for braid positive knots.

We generalize this knot to a 1–parameter family of hyperbolic L–space knots that may not be braid positive.
Nevertheless, as pointed out by Teragaito, this family yields the first examples of hyperbolic L–space
knots whose formal semigroups are actual semigroups, answering a question of Wang. Further, the roots
of the Alexander polynomials of these knots are all roots of unity, disproving a conjecture of Li and Ni.

57K10; 57M12, 57R65

1 Introduction

Based on observation, most L–space knots are braid positive. Here L–space knots are knots in S3 with
a positive Dehn surgery to an L–space (see Ozsváth and Szabó [26]), and a knot that is the closure of
a positive braid is braid positive. The L–space torus knots are the positive torus knots, and hence they
are braid positive. Notably however, the .2; 3/–cable of the .2; 3/–torus knot is an L–space knot (see
Hedden [16]) that is not braid positive; see eg Dunfield [12, Table 8] and Anderson, Baker, Gao, Kegel, Le,
Miller, Onaran, Sangston, Tripp, Wood, and Wright [1, Example 1]. It stands to reason that there probably
are other cable L–space knots which are not braid positive. Nevertheless, it was questioned if every
hyperbolic L–space knot is braid positive; see eg Hom, Lipschitz, and Ruberman [19, Problem 31(2)].

Dunfield showed that there are exactly 1267 complements of knots in S3 in the SnapPy census of 1–cusped
hyperbolic manifolds that can be triangulated with at most nine ideal tetrahedra [11]. He further determined
that (up to mirroring) 635 are not L–space knots, 630 are L–space knots, and left two as undetermined [12].
These last two have been shown to have quasialternating surgeries (see Baker, Kegel, and McCoy [3]) and
hence they are L–space knots as well. Thus there are exactly 632 L–space knots in the SnapPy census.

Theorem 1.1 Every L–space knot in the SnapPy census of up to nine tetrahedra is braid positive except
for o9_30634, which is not.

The knot o9_30634 is nearly braid positive in the sense that it has a braid presentation that is braid
positive except for one strongly quasipositive crossing that jumps over only one strand. We do not know
if o9_30634 admits a positive diagram.
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570 Kenneth L Baker and Marc Kegel

Question 1.2 Is every hyperbolic L–space knot nearly braid positive?

Proof of Theorem 1.1 In [3] we obtained braid words for every census L–space knot by automating the
process from [1]. (An alternative approach is taken by Dunfield, Obeidin, and Rudd [13].) Here, utilizing
the braid and simplification methods in SnapPy [10] and Sage [27], we managed to cajole braid positive
presentations for all of the knots except for one, o9_30634. The L–space census knots and positive braids
with them as closures are detailed in the online supplement and verified in [2].

As one may check, the knot K D o9_30634 is the closure of the 4–braid

ˇ D Œ2; 1; 3; 2; 2; 1; 3; 2; 2; 1; 3; 2;�1; 2; 1; 1; 2�:

Here the list of nonzero integers represents a braid word by letting the integer k stand for the standard
generator �k or its inverse ��1

k
, depending on whether k is positive or negative.

Ito gives new constraints on a suitably normalized version of the HOMFLY polynomial for positive
braids [20]. The Ito-normalized HOMFLY polynomial zPK .˛; z/D

P
hij˛

iz2j of K D Ǒ is represented
by the matrix H D .hij / of coefficients

H D

0BB@
13 69 133 121 55 12 1

17 66 83 45 11 1 0

4 10 6 1 0 0 0

�1 �1 0 0 0 0 0

1CCA ;
where the indexing starts at 00, so that h00 D 13. One may calculate this with Sage (or the knot theory
package [21] for Mathematica) from the braid word, using the built-in HOMFLY polynomial and adjusting
it to achieve Ito’s normalization. The computations can be found at [2].

According to [20, Theorem 2], if a link K is braid positive then the Ito-normalized HOMFLY polynomial
should only have nonnegative coefficients. As one observes, the coefficients h30 and h31 are negative.
Hence o9_30634 is not braid positive.

In Section 2, we generalize the knot o9_30634 to an infinite family of hyperbolic L–space knots that
are nearly braid positive but for which Ito’s constraints fail to obstruct braid positivity, at least for the
examples we managed to calculate. In Section 3, we further extend this family to a doubly infinite family
of knots Kn;m in hopes of providing more potential examples. While that doesn’t quite work out, we
highlight several properties of these knots in Proposition 3.1. Notably, we

� show that all but K�1;m and six other exceptional cases of these knots are hyperbolic,

� identify a small Seifert fibered space surgery for each,

� determine that when n� 0 they are L–space knots if and only if m� 0,

� compute their Alexander polynomials, and

� examine their structures as positive braids and strongly quasipositive braids.

Algebraic & Geometric Topology, Volume 24 (2024)
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Census L–space knots are braid positive, except for one that is not 571

Lastly, in Section 4 we observe that our infinite family of hyperbolic L–space knots of Section 2 have
Alexander polynomials that

� induce formal semigroups that are actually semigroups (which Teragaito pointed out to us), and

� have all their roots on the unit circle, disproving Li and Ni’s Conjecture 1.3 in [22].

2 A family of hyperbolic L–space knots that might not be braid positive

Let fKng be the family of knots that are the closures of the braids

ˇn D Œ.2; 1; 3; 2/
2nC1;�1; 2; 1; 1; 2�

and includes our knot o9_30634 as K1; see Figure 1, bottom right. Observe that ˇn gives a strongly
quasipositive braid presentation for these knots that is almost braid positive — it is braid positive except
for one negative crossing.

Proposition 2.1 For n� 1, the knots Kn are hyperbolic L–space knots.

Proof This follows from Lemmas 2.2 and 2.3.

Lemma 2.2 For n� 1, the knots Kn are L–space knots. In particular , the .8nC6/–surgery on Kn gives
the Seifert fibered L–space M

�
�1I 1

2
; .2nC 1/=.4nC 4/; 2=.4nC 5/

�
.

Proof Figure 2 shows how a strongly invertible surgery description of the knot Kn along with its .8nC6/–
surgery may be obtained. Figure 3 demonstrates how one may take the quotient and perform rational tangle
replacements associated to the surgeries to produce a link whose double branched cover is .8nC6/–surgery

ˇ

2nC 1

ˇn

Figure 1: Top left: the braid ˇ is positive except for one strongly quasipositive crossing. Its closure
Ǒ is the hyperbolic L–space knot o9_30634, which we show is not braid positive. Bottom left:

dragging the base of the strongly quasipositive band of ˇ into the position shown exhibits Ǒ as a
positive Hopf basket. Top right: this braid has the .2; 3/–cable of the .2; 3/–torus knot as its closure.
Bottom right: the closures of the braids ˇn are L–space knots that may also fail to be braid positive.
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1
nC1

�1
nC1

1
nC1

1

2

1
2nC3

�1
nC1

2

2nC 1

8nC 6

1
2nC3

�1
nC1

2

Figure 2: Top left: the braid ˇn with a surgery coefficient of 8nC 6 for its closure knot Kn.
Bottom left and top right: twists in the braid are expressed and collected into surgeries on unknots.
The surgery coefficient on the closure knot is adjusted accordingly. Bottom right: after closure
and isotopy, we obtain a surgery description for .8nC6/–surgery on Kn.

on Kn. We observe this link to be the Montesinos link M
�
2=.4nC 5/; 1

2
;�.2nC 3/=.4nC 4/

�
. Hence

its double branched cover is the Seifert fibered space Mn

�
0I 2=.4nC 5/; 1

2
;�.2nC 3/=.4nC 4/

�
. Here

we use the notation of Lisca and Stipsicz [24] where the Seifert fibered space M.e0I r1; r2; : : : ; rk/ is
obtained by e0–surgery on an unknot with k meridians having .�1=ri/–surgery on the i th one.

These Seifert fibered spaces are determined to be L–spaces via [24, Theorem 1]. More specifically,
Lisca and Stipsicz [24, Theorem 1] show that the Seifert fibered space M DM.e0I r1; r2; r3/— with
1� r1 � r2 � r3 � 0 — is an L–space if and only if either M or �M does not carry a positive transverse
contact structure. Then by Lisca and Matić [23], such a Seifert fibered space M carries no positive
transverse contact structure if and only if either e0 � 0 or e0 D�1 and there exists no coprime integers a

and m such that mr1 < a<m.1� r2/ and mr3 < 1.

Rewriting to apply [24, Theorem 1], we obtain that Mn DM
�
�1I 1

2
; .2nC 1/=.4nC 4/; 2=.4nC 5/

�
.

Then, since 1� r2 D .2nC 3/=.4nC 4/, we assume for contradiction that there are coprime integers a

and m such that m1
2
< a<m.2nC 3/=.4nC 4/ and m2=.4nC 5/ < 1. The first gives

0< 2a�m<
m

2nC2
:

The second implies m< 2nC 2C 1
2

, so that m� 2nC 2 and

m

2nC2
� 1:

Together they yield 0< 2a�m< 1. However, since 2a�m is an integer, there are no pairs of integers
.a;m/ that satisfy this equation. This is a contradiction.

Algebraic & Geometric Topology, Volume 24 (2024)
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1
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�1
nC1
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1
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1
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nC1

0

(c)
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(d)
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(e)
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�2n�3 nC1

(h)

Figure 3: (a) The surgery description from Figure 2, bottom right, is strongly invertible. (b)–(c) The
quotient of the surgery description followed by some isotopy to straighten the arcs. (d) Rational
tangle replacements along the arcs produce a link whose double branched cover is .8nC4/–
surgery on Kn. (e)–(h) A sequence of isotopies shows that this link is the Montesinos link
M.Œ0;�2n� 3;�2�; Œ0;�2�; Œ0; 1;�1; nC 1; 2�/DM

�
2=.4nC 5/; 1

2
;�.2nC 3/=.4nC 4/

�
.

Therefore Mn does not carry a positive transverse contact structure, and thus it is an L–space. Hence Kn

is an L–space knot for each n� 1.

Lemma 2.3 For n� 1, the knots Kn are hyperbolic.

Proof We check that L12n1739.1; 2nC 2/.0; 0/.�1; nC 1/ has the same exterior as Kn. Via SnapPy
we verify that L12n1739 is hyperbolic and compute its short slopes of length less than 2� as

Œ.1; 0/; .�2; 1/; .�1; 1/; .0; 1/; .1; 1/; .�1; 2/; .1; 2/; .�1; 3/�;

Œ.1; 0/; .�5; 1/; .�4; 1/; .�3; 1/; .�2; 1/; .�1; 1/; .0; 1/; .1; 1/; .�5; 2/; .�3; 2/�;

Œ.1; 0/; .�2; 1/; .�1; 1/; .0; 1/; .1; 1/; .2; 1/; .�1; 2/; .1; 2/�:

Algebraic & Geometric Topology, Volume 24 (2024)
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Thus for n > 1 we fill with slopes longer than 2� and therefore directly get hyperbolic manifolds by
Gromov and Thurston’s 2� theorem; see for example [7, Theorem 9].

Teragaito (personal communication, 2022) suggested an alternative approach to this lemma that does not
use SnapPy or any computer calculation. The referee also proposed a similar approach. Since it is more
“hands-on”, we include a proof along the lines of their suggestions here:

Another proof of Lemma 2.3 As knots in S3 are either torus knots, satellite knots, or hyperbolic knots
by [29], we must show that Kn is neither a torus knot nor a satellite knot.

In the proof of Theorem 4.4 the Alexander polynomial of Kn DKn;0 is presented as

�Kn;0

:
D
.t4nC5C 1/.t4nC2C 1/

.t C 1/.t2C 1/
:

As this is not equivalent to the Alexander polynomial of a torus knot, Kn cannot be a torus knot. (Also,
the formal semigroup of Kn has rank 3 as noted in Remark 4.3, whereas the formal semigroup of a torus
knot has rank 2.)

So now suppose Kn is a satellite knot. Observe that an unknotting tunnel put at the unique negative
crossing for Kn D

Ǒ
n in Figure 1, bottom right, shows that Kn has tunnel number 1. Since the bridge

index of Kn is at most 4, Morimoto and Sakuma’s classification of tunnel number 1 satellite knots [25]
tells us that Kn has the 2–bridge torus knot T .2; q/ as a companion knot for some odd q and a pattern of
wrapping number 2. As Kn is an L–space knot by Lemma 2.2, this pattern must be a braided pattern by
[4, Lemma 1.17]. Hence the pattern must be a 2–cable. Thus if Kn is a satellite knot, then it is a 2–cable
knot of T .2; q/. Indeed, the Alexander polynomial of Kn shown above implies that Kn must be the
.2; 4nC5/–cable of the T .2; 2nC1/ torus knot. However, the distance of the cabling slope 8nC 10 and
the slope 8nC 6 of the Seifert fibered surgery on Kn is �.8nC 10; 8nC 6/D 4> 1. Thus the cabling
torus remains incompressible after surgery; see eg [15, Lemma 7.2]. This contradicts that .8nC6/–surgery
on Kn produces a small Seifert fibered space. Thus Kn cannot be a satellite knot.

However, the constraints of Ito on HOMFLY polynomials appear to not obstruct Kn from being braid
positive when n � 2. Using Sage for computations, we see that Ito’s constraints on the HOMFLY
polynomials of Kn for nD 2; : : : ; 10 do not obstruct braid positivity for these knots. Furthermore, we
have been unsuccessful in finding a braid positive presentation for these knots.

Question 2.4 Are the knots Kn for n� 2 braid positive?

3 A doubly infinite family of knots

From our description of the family of knots Kn in Figure 2, one finds a natural 2–parameter family
generalization. While one may initially hope this family yields further examples of hyperbolic L–space
knots that fail to be braid positive, we show this is not the case.

Algebraic & Geometric Topology, Volume 24 (2024)
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2nC 1 2mC 1

ˇn;m

(a) �4mC 8nC 6

�4mC 8nC 6

�4mC 8nC 6

2nC 2 2mC 2

(b)

2nC 2 2mC 2C 4nC 4

(c)

1
mC2nC3

�1
nC1

2

1
mC2nC3

�1
nC1

2

(d)

(e)

Figure 4: (a) The braid ˇn;m with a surgery coefficient of �4mC8nC6 for its closure knot Kn;m.
(b)–(d) Twists in the braid are expressed and collected into surgeries on unknots. The surgery
coefficient on the closure knot is adjusted accordingly. (e) After closure and isotopy, we obtain a
surgery description for .�4mC8nC6/–surgery on Kn;m.

Proposition 3.1 Let ˇn;m be the braid indicated in Figure 4(a), and let Kn;m D
Ǒ
n;m be its closure.

(1) Kn;m is a hyperbolic knot for all .n;m/ 2 Z2, except for the pairs

.n;m/ 2 f.�1; k/ j k 2 Zg[ f.0; 0/; .0;�1/; .0;�2/; .�2; 1/; .�2; 0/; .�2;�1/g:

For each of these pairs , Kn;m is a torus knot.

(2) .8nC6�4m/–surgery on Kn;m gives the Seifert fibered space

M
�
�1I

1

2
;
2nC1

4nC4
;

2

4nC5C2m

�
:

(3) The Alexander polynomial of Kn;m is�
tm�1

nX
iD0

.t�4i�1
� t�4i/

�
C

�
.�1/m

mX
jD�m

.�t/j
�
C

�
t1�m

nX
kD0

.t4kC1
� t4k/

�
:

(4) Assume n� 0. Then Kn;m is an L–space knot if and only if m� 0.

(5) If n � 0 and m < 0, then ˇn;m is a positive braid and Kn;m is a braid positive knot of genus
jmjC 4nC 3

(6) If 2nC 1�m� 0, then ˇn;m is conjugate to a strongly quasipositive braid and Kn;m is a strongly
quasipositive knot of genus 4n�mC 2.

Algebraic & Geometric Topology, Volume 24 (2024)
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(a) If 2n � m � 0, then Kn;m is a fibered strongly quasipositive knot. Moreover it is a Hopf
plumbing basket.

(b) If 2nC 1Dm> 0, then Kn;m is a nonfibered strongly quasipositive knot.

Proof (1) Since the surgery description of Kn;m given in Figure 4(e) is on a hyperbolic link, using the
2� theorem a couple of times yields a finite list of pairs .n;m/ for which Kn;m might not be hyperbolic.
A further check in SnapPy confirms that all but five of them are hyperbolic. These remaining five are
readily confirmed to be torus knots. The computations are displayed at [2].

(2) Figure 4 shows how to obtain a surgery description on a 3–component link for .�4mC8nC6/–
surgery on Kn;m. Figure 5 uses the Montesinos trick to exhibit the result of this surgery description as

1
mC2nC3

�1
nC1

2(a)

1
mC2nC3

�1
nC1 0(b)

�1
nC1

1
mC2nC3

(c)

�m�2n�3

nC1
(d)

�m�2n�3

nC1
(e)

�m�2n�3

nC1

(f)

�m�2n�3

nC1

(g)

�m�2n�3 nC1

(h)

Figure 5: (a) The surgery description from Figure 4(e) is strongly invertible. (b)–(c) The quotient
of the surgery description followed by some isotopy to straighten the arcs. (d) Rational tangle
replacements along the arcs produce a link whose double branched cover is .�4mC8nC4/–
surgery on Kn;m. (e)–(h) A sequence of isotopies shows this link is the Montesinos link
M.Œ0;�m�2n�3;�2�; Œ0;�2�; Œ0; 1;�1; nC1; 2�/DM

�
2=.2mC4nC5/; 1

2
;�.2nC3/=.4nC4/

�
.
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m2nC 1�m

D

m2n�m

Figure 6: The proof of Proposition 3.1(6).

the double branched cover of the Montesinos link M.Œ0;�2;�m� 2n� 3�; Œ0;�2�; Œ0; 1;�1; nC 1; 2�/.
This double branched cover is the Seifert fibered space M

�
1
2
;�.2nC 3/=.4nC 4/; 2=.4nC 5C 2m/

�
,

which is equivalent to M
�
�1I 1

2
; .2nC 1/=.4nC 4/; 2=.4nC 5C 2m/

�
.

(5) When n � 0 and m < 0, the braid ˇn;m as described in Figure 4(a) is expressly a positive braid.
One counts that it is a braid of index 4 and 4.2nC 1/C .1� 2m/C 4 crossings. Hence �.Kn;m/ D

�.2jmjC 8nC 5/ and g.Kn;m/D jmjC 4nC 3.

(6) When 0�m� 2nC 1, through braid isotopy and braid conjugacy, we may isotope in pairs 2m of
the 2mC 1 negative crossings over to m of the 2nC 1 copies of the “2–cabled” positive crossing that
appear in ˇn;m so that they appear as in the left-hand side of Figure 6, top. Hence by a further braid
isotopy as indicated by Figure 6, each of these 2m negative crossings contributes to an SQP band. The
final negative crossing also contributes to an SQP band towards the end of the braid, ultimately giving us
the strongly quasipositive braid, shown in Figure 6, middle, to which ˇn;m is conjugate. One counts that
the braid index is 4 and there are 2mC 1 SQP bands and 4.2nC 1�m/C 2 regular crossings. Hence
�.Kn;m/D�.8n� 2mC 3/ and g.Kn;m/D 4n�mC 2.

Furthermore, when 0�m� 2n so that 2n�m� 0, we may instead perform braid isotopy and conjugation
to arrive at the strongly quasipositive braid shown in Figure 6, bottom. This braid however contains the
“dual Garside element” ı D �3�2�1. Hence, as Banfield points out [5], the closure of such an SQP braid
is fibered and a Hopf basket.

Algebraic & Geometric Topology, Volume 24 (2024)
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When mD 2nC 1, the braid ˇn;2nC1 is conjugate to an SQP braid but its closure Kn;2nC1 might not be
fibered. Indeed, we find that the Alexander polynomial of Kn;2nC1 is not monic, so the closure is not
fibered. Explicitly, from our computations of �Kn;m

for (3) below, we have

�Kn;2nC1
.t/D

t � 1

.t4� 1/.t2� 1/
t.t2
� 1/.2� t C t2

C t4nC3
� t4nC4

C 2t4nC5/

D t
.2t4nC6� 2t2/� .3t4nC5� 3t/C .2t4nC4� 2/� .t4nC3� t3/

t4� 1

:
D
.2� 3t C 2t2/.t4.nC1/� 1/� t3.t4n� 1/

t4� 1

D
.2� 3t C 2t2/.t4.nC1/� t4nC t4n� 1/� t3.t4n� 1/

t4� 1

D .2� 3t C 2t2/t4n
C .2� 3t C 2t2

� t3/
t4n� 1

t4� 1
;

which has leading coefficient 2.

(3) View the surgery description for Kn;m as the link LDK[ c[ c0 where we do .�1=.nC1//–surgery
on c and .1=.mC2nC3//–surgery on c0. Observe that c[ c0 is the trivial 2–component link, and we may
orient the link so that lk.K; c/D 4 and lk.K; c0/D 2.

Let E be the exterior of LDK [ c [ c0. Then H1.E/D hŒ�K �; Œ�c �; Œ�c0 �i Š Z3 where �K , �c , and
�c0 are oriented meridians of K, c, and c0. Let �K , �c , and �c0 be their preferred longitudes. Observe
that Œ�c �D 4Œ�K � and Œ�c0 �D 2Œ�K � in H1.E/.

Now consider the family of links Ln;m DKn;m[ cn[ c0m with exterior En;m obtained from K and the
core curves of .�1=.nC1//–surgery on c and .1=.mC2nC3//–surgery on c0. Thus En;m ŠE where

�Kn;m
D �K ; �cn

D��c C .nC 1/�c and �c0m
D �c0 C .mC 2nC 3/�c0 :

Now letting

(3-1) x D Œ�K �; y D Œ�c �; z D Œ�c0 �; xn;m D Œ�Kn;m
�; yn D Œ�cn

� and zm D Œ�c0m
�

in the group rings ZŒH1.E/� and ZŒH1.En;m/�, we have

(3-2) xn;m D x; yn D y�1x4.nC1/ and zm D zx2.mC2nC3/

and hence
x D xn;m; y D y�1

n x4.nC1/
n;m and z D zmx�2.mC2nC3/

n;m :

Therefore

(3-3) �Ln;m
.xn;m;yn; zm/D�L.xn;m;y

�1
n x4.nC1/

n;m ; zmx�2.mC2nC3/
n;m /:

Using the Torres formulae [30], one obtains that

(3-4) �Kn;m
.xn;m/D

xn;m� 1

x4
n;m� 1

�Kn;m[cn
.xn;m; 1/D

xn;m� 1

.x4
n;m� 1/.x2

n;m� 1/
�Kn;m[cn[c0m

.xn;m; 1; 1/:
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Hence, using (3-3) and (3-4) where we set xn;m D t , yn D 1, and zm D 1, we obtain

�Kn;m
.t/D

t � 1

.t4� 1/.t2� 1/
�L.t; t

4.nC1/; t�2.mC2nC3//:

We calculate that

�L.x;y; z/D .x
2
� 1/.x3y2zCx2y3z�x2y2zCx2yCxy2z�xyCxCy/:

Then

�Kn;m
.t/D

t�1

.t4�1/.t2�1/
�L.t; t

4.nC1/; t�2.mC2nC3//

D t4nC3�m .t�1/.tm�4n�2C t�m� t1�mC t2�mC tmC1� tmC2C tmC3C t�mC4nC5/

.t4�1/

:
D
.t�1/..tm�4n�2� tmC2/C.t�mC t2�mC tmC1C tmC3/C.t4nC5�m� t1�m//

.t4�1/

D
tmC2.t�1/.t�4n�4�1/

t4�1
C
.t�1/.t�mC t2�mC tmC1C tmC3/

t4�1
C

t1�m.t�1/.t4nC4�1/

t4�1

D

�
tm�1

nX
iD0

t�4i.t�1
�1/

�
C

�
tmC1� tmC t�m� t�m�1

t� t�1

�
C

�
t1�m

nX
jD0

t4j .t�1/

�

D

�
tm�1

nX
iD0

.t�4i�1
� t�4i/

�
C

�
.�1/m

mX
jD�m

.�t/j
�
C

�
t1�m

nX
kD0

.t4kC1
� t4k/

�
;

where the :
D indicates that we have divided out the unit t4nC3�m.

(4) Using our Alexander polynomial calculations provides obstructions to the knots Kn;m for n > 0

being L–space knots when m> 0. As an example, taking n> 0 and mD 1 gives

�Kn;1
.t/D

t � 1

.t4� 1/.t2� 1/
�L.t; t

4.nC1/; t�2.2nC4//

:
D

� nX
iD0

.t4i�1
� t4i/

�
C .t�1

� 1C t/C

� nX
kD0

.t4kC1
� t4k/

�
:

One may observe that the constant coefficient is �3. Hence the knots Kn;1 cannot be L–space knots.
Indeed, one may further observe that, when n> 0 and m> 0, the central terms will have overlap with
the end terms to give coefficients ˙2 or ˙3 for terms with degree of small magnitude. Thus none of the
knots Kn;m with n> 0 and m> 0 are L–space knots.

In the other direction, where n> 0 and m� 0, we may observe via [23; 24], as in Lemma 2.2, that the
Seifert fibered space M resulting from .8nC6�4m/–surgery on Kn;m is an L–space. For that we need
to distinguish several cases. We continue with the notation of Lisca and Stipsicz [24] as in Lemma 2.2.

Since n> 0,
1> 1

2
>

2nC1

4nC4
> 0:
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So we must reckon with the coefficient
2

2mC4nC5
D

2

2.2nCmC1/C3
:

If 2nCmC 1� 1,
1> 1

2
>

2nC1

4nC4
>

2

2mC4nC5
> 0:

If we now assume that there exist coprime integers a and b such that

1
2
b < a<

2nC3

4nC4
b and 2

4nC2mC5
b < 1;

we conclude from the first inequality that 0< 2a�b < b=.2nC2/ and the second inequality implies that
b � 2nC 2Cm� 2nC 2. Putting both together yields the contradiction

0< 2a� b <
b

2nC2
� 1:

Thus M carries no positive transverse contact structure and is therefore an L–space.

If 2nCmC 1D 0 we get the Seifert fibered space M
�
�1I 2

3
; 1

2
; .2nC 1/=.4nC 4/

�
. We assume that

there exist coprime integers a and b such that 2
3
b < a< 1

2
b and ..2nC 1/=.4nC 4//b < 1, from which

we conclude 4b < 6a< 3b and b < 2C 2=.2nC 1/� 4, which is a contradiction. Therefore M does not
carry a positive transverse contact structure and is thus an L–space.

If 2nCmC 1D�1 we get the Seifert fibered space

M
�
�1I

1

2
;
2nC1

4nC4
; 2
�
DM

�
1I

1

2
;
2nC1

4nC4

�
;

which is a lens space and hence an L–space.

If 2nCmC 1D�2 we get the Seifert fibered space

M
�
�1I

1

2
;
2nC1

4nC4
;�2

�
DM

�
�3I

1

2
;
2nC1

4nC4

�
;

which is a lens space and hence an L–space.

If 2nCmC 1� �3 we see that
2

2mC4nC5
D

2

2.2nCmC1/C3
2 Œ�1; 0�;

and thus the correctly normalized Seifert fibered space is

M
�
�2I

1

2
;
2nC1

4nC4
;
4nC2mC7

4nC2mC5

�
;

which admits a positive contact structure. Next, we consider

�M DM
�
2I �

1

2
;�

2nC1

4nC4
;�

4nC2mC7

4nC2mC5

�
DM

�
�1I

1

2
;
2nC3

4nC4
;�

2

4nC2mC5

�
:

If 2nCmC1D�3, then the correct ordering of the Seifert invariants is M
�
�1I 2

3
; .2nC3/=.4nC4/; 1

2

�
.

We readily see that there exist no coprime integers a and b such that 2
3
b < a < ..2nC 1/=.4nC 4//b

and 1
2
b < 1. Thus M carries no positive transverse contact structure and is therefore an L–space. If
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2nCmC1��4 the Seifert invariants are ordered as M
�
�1I .2nC3/=.4nC4/; 1

2
;�2=.4nC2mC5/

�
.

We assume that there exist coprime integers a and b such that

2nC3

4nC4
b < a< 1

2
b and �

2

4nC2mC5
b < 1:

But putting them together yields the contradiction

0< a�
2nC3

4nC4
b < �

1

4nC4
b < 0:

Thus M does not admit a positive transverse contact structure and is therefore an L–space.

Remark 3.2 In the cases of the above proof when 2nCmC 1D�1 or �2, the knots Kn;m have lens
space surgeries. These knots can be seen to be Berge knots as follows. With �m� 2n� 3 D 1 or 0,
Figure 5(d) can be seen to divide along a horizontal line into two rational tangles. A vertical arc in the
middle would be the arc dual to the rational tangle replacement on the 0–framed arc from Figure 5(c).
In the double branched cover, this vertical arc will lift to a knot in the lens space with an S3–surgery.
Furthermore, one may observe that this arc lifts to a .1; 1/–knot in the lens space. Hence the knot Kn;m

must be a Berge knot [6].

4 Curiosities about the Alexander polynomial of o9_30634 and its
generalizations

Like the failure of braid positivity, the hyperbolic L–space knot o9_30634 exhibits two more curious
properties that had previously only been observed for L–space knots among iterated cables of torus knots.
The first, regarding formal semigroups, Teragaito communicated to us near the completion of the initial
preprint. The second, regarding the roots of its Alexander polynomial, came after that. Both actually
generalize to the infinite family fKngn�1 as well.

4.1 An infinite family of hyperbolic L–space knots whose formal semigroups are
semigroups

Teragaito informed us about the work of Wang [31] on formal semigroups of L–space knots, and that there
are only two L–space knots in the SnapPy census whose formal semigroups were actual semigroups. He
had also observed that one of these knots appeared to fail to be braid positive. It turns out that this is the
knot o9_30634, which we had confirmed to not be braid positive. Upon seeing an early draft of this article,
Teragaito further showed that all of our hyperbolic L–space knots Kn have formal semigroups that are
semigroups. Below we overview the formal semigroup and then record Teragaito’s results in Theorem 4.1.

An algebraic link is defined to be the link of an isolated singularity of a complex curve in C2. Algebraic
knots are known to be iterated cables of torus knots [14] and they are all L–space knots; see [17]. Moreover,
one can assign to any algebraic knot K an additive semigroup SK <N0 which determines the Heegaard
Floer chain complex and is computable from the Alexander polynomial of K; see [8].
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In [31] Wang has generalized this definition, but now SK is not necessarily a semigroup anymore. Let K

be an L–space knot with (symmetrized) Alexander polynomial �K . Then the formal semigroup SK �N0

is defined by
tg.K /�K .t/

1� t
D

X
s2SK

t s;

where g.K/ denotes the genus of K. (Note that tg.K /�K .t/ is now an ordinary polynomial of degree
2g.K/.) The set SK still determines the Heegaard Floer chain complex of K but is not necessarily a
semigroup. This is used by Wang to construct an infinite family of L–space knots which are iterated cables
of torus knots but not algebraic [31]. On the other hand, it remained open if there exists an L–space knot
which is not an iterated cable of torus knots but whose formal semigroup is a semigroup [31, Question 2.8].

Theorem 4.1 (Teragaito, personal communication, 2022) There exists an infinite family of hyperbolic
L–space knots whose formal semigroups are semigroups. More concretely:

(1) o9_30634 and t09847 are hyperbolic L–space knots whose formal semigroups are semigroups. The
formal semigroup of every other L–space knot in the SnapPy census is not a semigroup.

(2) The formal semigroups SKn
of the infinite family of hyperbolic L–space knots fKng from Section 2

are all semigroups.

Consequently, the knots fKng provide an infinite family of knots answering [31, Question 2.8] negatively.

Proof (1) The formal semigroup SK of an L–space knot is computable from the Alexander polynomial
of K; in particular, SK always contains all natural numbers larger than g.K/ and the finitely many other
elements of SK can be read off from the Alexander polynomial. In [2] we present code that computes the
formal semigroups of all SnapPy census L–space knots and determines that o9_30634 and t09847 are
the only ones whose formal semigroups are semigroups.

(2) In Proposition 3.1(3) we have computed the Alexander polynomials of Kn, from which we read off
the formal semigroup SKn

to be

f4nC4; 4nC5; 4nC6; 4nC8; 4nC9; 4nC10; 4nC12; 4nC13; 4nC14; : : : ; 8n; 8nC1; 8nC2; 8nC4g

[ f0; 4; 8; : : : ; 4ng[ f4nC 2g[N>8nC4;

which is a semigroup for any n.

Remark 4.2 (Teragaito, personal communication, 2022) A braid word of t09847 is given by

Œ.2; 1; 3; 2/3; 1; 2; 1; 1; 2�;

which is very close to our braid word for o9_30634. One can similarly show that t09847 fits into an
infinite family of hyperbolic L–space knots with braid words

Œ.2; 1; 3; 2/2nC1; 1; 2; 1; 1; 2�

whose formal semigroups are semigroups.
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Remark 4.3 The semigroups from Theorem 4.1 and the preceding remark all have rank 3, ie the minimal
number of a generating set is 3. On the other hand, Teragaito constructs in [28] an infinite family of
hyperbolic L–space knots whose formal semigroups are semigroups of rank 5.

4.2 Two infinite families of hyperbolic L–space knots whose Alexander polynomial roots
are all roots of unity

The Alexander polynomial of o9_30634DK1 DK1;0 can be written as

�o9_30634.t/
:
D
.t6C 1/.t9C 1/

.t C 1/.t2C 1/
:

From this one may observe that all of its roots are roots of unity. Since o9_30634 is a hyperbolic
L–space knot, it provides a counterexample to [22, Conjecture 1.3]; see also the discussion surrounding
its reference as [18, Conjecture 6.10]. Indeed, we have infinite families of hyperbolic L–space knots that
are counterexamples to this conjecture:

Theorem 4.4 The two infinite families of hyperbolic L–space knots fKngn�1 and fKn;�1gn�1 consist
of knots whose Alexander polynomials have all of their roots on the unit circle.

Proof Proposition 3.1(1) and (4) show that the knots of fKngn�1 and fKn;�1gn�1 are hyperbolic L–space
knots. Proposition 3.1(3) gives a general formula for �Kn;m

.t/. In the course of that proof, we obtained
the first equality below. Dividing out the unit t and rearranging gives the second:

�Kn;m
.t/D t4nC3�m .t � 1/.tm�4n�2C t�m� t1�mC t2�mC tmC1� tmC2C tmC3C t�mC4nC5/

.t4� 1/

:
D
.t8nC7C t4nC4� t4nC3C t4nC2/t�2mC .t4nC3� t4nC4C t4nC5C 1/

.t C 1/.t2C 1/
:

Setting mD 0 yields

�Kn;0
.t/

:
D
.t8nC7C t4nC4� t4nC3C t4nC2/C .t4nC3� t4nC4C t4nC5C 1/

.t C 1/.t2C 1/

D
t8nC7C t4nC5C t4nC2C 1

.t C 1/.t2C 1/
D
.t4nC5C 1/.t4nC2C 1/

.t C 1/.t2C 1/
;

while setting mD�1 yields

�Kn;�1
.t/

:
D
.t8nC9C t4nC6� t4nC5C t4nC4/C .t4nC3� t4nC4C t4nC5C 1/

.t C 1/.t2C 1/

D
t8nC9C t4nC6C t4nC3C 1

.t C 1/.t2C 1/
D
.t4nC6C 1/.t4nC3C 1/

.t C 1/.t2C 1/
:

From these presentations of their Alexander polynomials, one sees that all of their roots are roots of unity.

Remark 4.5 (1) While we do not yet know if any of the knots in fKngn�1 are braid positive, all of
the knots fKn;�1gn�1 are braid positive by Proposition 3.1(5).
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(2) As one may check, the hyperbolic L–space knots fKn;�2gn�1 have Alexander polynomials with
roots that are not roots of unity.

Remark 4.6 In light of Theorem 4.4 and [9, Corollary 1.2], one may hope that at least one of the
hyperbolic L–space knots among fKngn�1 and fKn;�1gn�1 has a double branched cover that is an
L–space. This would answer a question of Moore in the negative; see [9, Question 1.3]. However, as one
may check, these knots are not definite. Indeed, j�.Kn/j D g.Kn/C 2 < 2g.Kn/ while j�.Kn;�1/j D

g.Kn;�1/C 3< 2g.Kn;�1/.
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