

# Algebraic & Geometric Topology

Volume 24 (2024)

Branched covers and rational homology balls

CHARLES LIVINGSTON





## Branched covers and rational homology balls

CHARLES LIVINGSTON

The concordance group of knots in  $S^3$  contains a subgroup isomorphic to  $(\mathbb{Z}_2)^{\infty}$ , each element of which is represented by a knot K with the property that, for every n > 0, the n-fold cyclic cover of  $S^3$  branched over K bounds a rational homology ball. This implies that the kernel of the canonical homomorphism from the knot concordance group to the infinite direct sum of rational homology cobordism groups (defined via prime-power branched covers) contains an infinitely generated two-torsion subgroup.

57K10, 57M12

### **1** Introduction

There is a homomorphism

$$\varphi \colon \mathcal{C} \to \prod_{q \in \mathcal{Q}} \Theta^3_{\mathbb{Q}}$$

where C is the smooth concordance group of knots in  $S^3$ , Q is the set of prime power integers, and  $\Theta^3_{\mathbb{Q}}$  is the rational homology cobordism group. For a knot K and  $q \in Q$ , the q-component of  $\varphi(K)$  is the class of  $M_q(K)$ , the q-fold cyclic cover of  $S^3$  branched over K.

In [1], Aceto, Meier, A Miller, M Miller, Park, and Stipsicz proved that ker  $\varphi$  contains a subgroup isomorphic to  $(\mathbb{Z}_2)^5$ . Here we will prove that ker  $\varphi$  contains a subgroup isomorphic to  $(\mathbb{Z}_2)^\infty$ . Our examples are of the form  $K\#-K^r$ , where -K denotes the concordance inverse of K (the mirror image of K with string orientation reversed), and  $K^r$  is formed from K by reversing its string orientation. Such knots are easily seen to be in the kernel of  $\varphi$ ; the more difficult work is to find nontrivial examples of order two.

The first known example of a nontrivial element in ker  $\varphi$  was represented by the knot  $K_1 = 8_{17} \# - 8_{17}^r$ , which is of order two in C. That  $K_1$  is of order at most two is elementary; that  $K_1$  is nontrivial in C is one of the main results of Kirk and Livingston in [9], proved using twisted Alexander polynomials.

The results of Kim and Livingston [7] provide an infinitely generated free subgroup of ker  $\varphi$ . Conjecturally,  $\mathcal{C} \cong \mathbb{Z}^{\infty} \oplus (\mathbb{Z}_2)^{\infty}$ ; if true, then ker  $\varphi \cong \mathbb{Z}^{\infty} \oplus (\mathbb{Z}_2)^{\infty}$ .

#### 1.1 Main result

Figure 1 illustrates a knot  $P_n$  in a solid torus, where  $J_n$  represents the braid illustrated on the right in the case of n = 5; n will always be odd. We let  $K_n$  denote the satellite of  $8_{17}$  built from  $P_n$ . In standard

<sup>© 2024</sup> MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.



Figure 1: The knot  $P_n \subset S^1 \times B^2$ ,  $J_n$ , and  $J_n^*$ .

notation,  $K_n = P_n(8_{17})$ . For future reference, we illustrate the braid  $J_n^*$  formed by rotating  $J_n$  around the vertical axis.

**Theorem 1** Let  $K_n = P_n(\aleph_{17})$ . For all odd *n*, the knot  $L_n = K_n \# - K_n^r$  satisfies  $2L_n = 0 \in C$  and  $L_n \in \ker \varphi$ . There is an infinite set of prime integers  $\mathcal{P}$  for which  $L_\alpha \neq L_\beta \in C$  for all  $\alpha \neq \beta$  in  $\mathcal{P}$ . In particular, the set of knots  $\{L_n\}_{n \in \mathcal{P}}$  generates a subgroup of ker  $\varphi$  that is isomorphic to  $(\mathbb{Z}_2)^\infty$ .

The rest of the paper presents a proof of this theorem. The first two claims are easily dealt with in Sections 2 and 3. The more difficult step of the proof calls on an analysis of twisted Alexander polynomials and their relevance to knot slicing; a review of twisted polynomials is included in Section 4. The proof of Theorem 1 is completed in Section 5, with the exception of a number-theoretic result that is described Appendix A.

**Acknowledgements** Thanks to Darrell Haile for assisting me in the proof of the number-theoretic result in Appendix A. Allison Miller provided valuable feedback about an early draft of this paper. This work was supported by a grant from the National Science Foundation, NSF-DMS-1505586.

# 2 Proof that $2L_n = 0 \in C$

Let  $P_n^* \subset S^1 \times B^2$  denote the knot formed using the braid  $J_n^*$  in Figure 2. For any knot K, let  $P_n^*(K)$  denote the satellite of K built using  $P_n^*$ . It should be clear that  $P_n$  and  $P_n^*$  are orientation-preserving isotopic, and thus for all knots K,  $P_n(K) = P_n^*(K)$ .

Figure 2 illustrates, for an arbitrary knot K, the connected sum  $P_n(K) # P_n^*(K) = P_n(K) # P_n(K)$  in the case of n = 5. Performing n - 1 band moves in the evident way yields the (0, n)-cable of K # K. Thus, if  $K # K = 0 \in C$ , then the n components of this link can be capped off with parallel copies of the slice disk for K # K, implying that  $P_n(K) # P_n(K) = 0 \in C$ . In particular,  $2K_n = 0 \in C$  and  $2K_n^r = 0 \in C$ .



Figure 2:  $P_5(K) # P_5(K)$ .

Branched covers and rational homology balls

#### 3 Proof that $L_n \in \ker \varphi$

We prove a stronger statement: for all odd n, and for all positive integers q,  $M_q(L_n)$  is a rational homology sphere that represents  $0 \in \Theta_{\mathbb{Q}}^3$ .

The q-fold cyclic cover of  $S^3$  branched over  $K_n \# - K_n^r$  is the same space as the q-fold cyclic cover of  $S^3$  branched over  $K_n \# - K_n$ . A slice disk for  $K_n \# - K_n$  is built from  $(S^3 \times I, K_n \times I)$  by removing a copy of  $B^3 \times I$ . Taking the q-fold branched cover shows that the q-fold cyclic cover of  $B^4$  branched over that slice disk is diffeomorphic to  $M_q(K_n)^* \times I$ , where  $M_q(K_n)^*$  denotes a punctured copy of  $M_q(K_n)$ . It remains to show that  $M_q(K_n)$  is a rational homology 3-sphere.

A formula of Fox [5] and Goeritz [6] states that the order of the first homology of  $M_q(K_n)$  is given by the product of values  $\Delta_{K_n}(\omega_q^i)$ , where  $\Delta_{K_n}(t)$  denotes the Alexander polynomial,  $\omega_q$  is a primitive q-root of unity, and *i* runs from 1 to q-1.

A result of Seifert [11] shows that  $\Delta_{K_n}(t) = \Delta_{8_{17}}(t^n) \Delta_{P_n(U)}$ , where U is the unknot. We have that  $P_n(U) = U$ . The Alexander polynomial for  $8_{17}$  is

$$\Delta_{8_{17}}(t) = 1 - 4t + 8t^2 - 11t^3 + 8t^4 - 4t^5 + t^6.$$

A numeric computation confirms that this polynomial does not have roots on the unit complex circle, and hence  $\Delta_{8_{17}}(t^n)$  has no roots on the unit complex circle. From this is follows that  $\Delta_{K_n}(\omega_q^i) \neq 0$  for all *i*; thus the order of the homology of  $M_q(K_n)$  is finite.

# 4 Review of twisted polynomials and 8<sub>17</sub>

In this section we review twisted Alexander polynomials and their application in [8; 9] showing that  $8_{17} \# - 8_{17}^r \neq 0 \in C$ .

Let  $(X, B) \to (S^3, K)$  be the *q*-fold cyclic branched cover of a knot *K* with *q* a prime power. In particular, *X* is a rational homology sphere. There is a canonical surjection  $\epsilon \colon H_1(X - B) \to \mathbb{Z}$ . Suppose that  $\rho \colon H_1(X) \to \mathbb{Z}_p$  is a homomorphism for some prime *p*. Then there is an associated twisted polynomial  $\Delta_{K,\epsilon,\rho}(t) \in \mathbb{Q}(\omega_p)[t]$ . It is well-defined, up to factors of the form  $at^k$ , where  $a \neq 0 \in \mathbb{Q}(\omega_p)$ . These polynomials are discriminants of Casson–Gordon invariants, first defined in [3].

In the case of  $K = 8_{17}$  and q = 3, we have  $H_1(X) \cong \mathbb{Z}_{13} \oplus \mathbb{Z}_{13}$ , and as a  $\mathbb{Z}_{13}$ -vector space this splits as a direct sum of a 3-eigenspace and a 9-eigenspace under the order three action of the deck transformation. Both eigenspaces are 1-dimensional. We denote this splitting by  $E_3 \oplus E_9$ . There are corresponding characters  $\rho_3$  and  $\rho_9$  of  $H_1(X)$  onto  $\mathbb{Z}_{13}$ ; these are defined as the quotient maps onto  $H_1(X)/E_3$  and onto  $H_1(X)/E_9$ . We let  $\rho_0$  denote the trivial  $\mathbb{Z}_{13}$ -valued character.

The values of  $\Delta_{8_{17},\epsilon,\rho_i}(t)$  are given in [9], duplicated here in Appendix B. For i = 0 it is polynomial in  $\mathbb{Q}[t]$ . For i = 3 and i = 9 it is in  $\mathbb{Q}(\omega_{13})[t]$  and is not in  $\mathbb{Q}[t]$ . An essential observation is that, for  $8_{17}^r$ ,

the roles of  $\rho_3$  and  $\rho_9$  are reversed. All three of the polynomials are irreducible in their respective polynomial rings, once any factors of (1-t) and t are removed.

In [9] the proof that  $8_{17} # - 8_{17}^r$  is not slice comes down to the observation that no product of the form

$$\sigma_{\delta}(\Delta_{\mathbf{8}_{17},\epsilon,\rho_3}(t))\sigma_{\gamma}(\Delta_{\mathbf{8}_{17},\epsilon,\rho_i}(t)) \quad \text{or} \quad \sigma_{\delta}(\Delta_{\mathbf{8}_{17},\epsilon,\rho_9}(t))\sigma_{\gamma}(\Delta_{\mathbf{8}_{17},\epsilon,\rho_i}(t))$$

is of the form  $af(t)\overline{f(t^{-1})}(1-t)^j$  for some  $f(t) \in \mathbb{Q}(\omega_{13})[t]$ . (That is, these products are not *norms* in the polynomial ring  $\mathbb{Q}(\omega_{13})[t, t^{-1}]$ , modulo powers of (1-t) and t.) Here i = 0 or i = 9, and j = 0 or j = 3. The number a is in  $\mathbb{Q}(\omega)$  and the  $\sigma_v$  are Galois automorphisms of  $\mathbb{Q}(\omega_p)$  (which acts by sending  $\omega_p$  to  $\omega_p^v$ ).

Showing that the product of the polynomials does not factor in this way is elementary once it is established that  $\Delta_{8_{17},\epsilon,\rho_3}(t)$  and  $\Delta_{8_{17},\epsilon,\rho_9}(t)$  are irreducible and not Galois conjugate.

#### 5 Main proof

Using the fact that  $-P_n(8_{17})^r = P_n(8_{17})^r$ , the knot  $L_{\alpha} \# L_{\beta}$  can be expanded as

$$P_{\alpha}(8_{17}) \# P_{\alpha}(8_{17})^r \# P_{\beta}(8_{17}) \# P_{\beta}(8_{17})^r$$

We begin by analyzing the 3-fold cover of  $S^3$  branched over  $P_n(8_{17})$ , and assume that 3 does not divide *n*. This cover is  $M_3(P_n(8_{17}))$  and we denote the branch set in the cover by  $\tilde{B}$ .

There is the obvious separating torus T in  $S^3 \setminus P_n(\mathfrak{b}_{17})$ . Since 3 does not divide n, T has a connected separating lift  $\tilde{T} \subset M_3(P_n(\mathfrak{b}_{17}))$ . One sees that  $\tilde{T}$  splits  $M_3(P_n(\mathfrak{b}_{17}))$  into two components: X, the 3-fold cyclic cover of  $S^3 \setminus \mathfrak{b}_{17}$ , and Y, the 3-fold cyclic branched cover of  $S^1 \times B^2$ , branched over  $P_n$ . A simple exercise shows that, since  $P_n(U)$  is unknotted, Y is the complement of some knot  $\tilde{J}_n \subset S^3$ .

A Mayer–Vietoris argument shows that  $H_1(M_3(P_n(\aleph_{17}))) \cong \mathbb{Z}_{13} \oplus \mathbb{Z}_{13}$  and the two canonical representations  $\rho_3$  and  $\rho_9$  that are defined on X extend trivially on Y, and so to  $M_3(P_n(\aleph_{17}))$ . We denote these extension by  $\rho'_3$  and  $\rho'_9$ . Let  $\epsilon'$  be the canonical surjective homomorphism  $\epsilon' : H_1(M_3(P_n(\aleph_{17}))) \setminus \tilde{B}) \to \mathbb{Z}$ . Restricted to X we have  $\epsilon'(x) = \epsilon(nx)$ , where  $\epsilon$  was the canonical representation to  $\mathbb{Z}$  defined for the cover of  $S^3 \setminus \aleph_{17}$ .

In [8, Theorem 3.7] there is a discussion of twisted Alexander polynomials of satellite knots in  $S^3$ , working in the greater generality of homomorphisms to the unitary group U(m). (A map to  $\mathbb{Z}_p$  can be viewed as a representation to U(1).) The proof of that theorem, which relies on the multiplicativity of Reidemeister torsion, applies in the current setting, yielding the following lemma:

#### Lemma 2 $\Delta_{P_n(8_{17}),\epsilon',\rho'_2}(t) = \Delta_{8_{17},\epsilon,\rho_3}(t^n) \Delta_{\tilde{I}_n}(t).$

Similar results hold for the knot  $P_n(8_{17})^r$  and for the character  $\rho_9$ .

As described in [8; 9], Casson–Gordon theory implies that, if  $L_{\alpha} # L_{\beta}$  is slice, then for some 3–eigenvector or for some 9–eigenvector the corresponding twisted Alexander polynomial is a norm; that is, it factors as  $at^k f(t) \overline{f(t^{-1})}$ , modulo multiples of (1-t). If it is a 3–eigenvector, the relevant polynomial is of the form

(1) 
$$\Delta(t) = \sigma_a(\Delta_{8_{17},\epsilon,\rho_3}(t^{\alpha}))^x \sigma_b(\Delta_{8_{17},\epsilon,\rho_9}(t^{\alpha}))^y \sigma_c(\Delta_{8_{17},\epsilon,\rho_3}(t^{\beta}))^z \sigma_d(\Delta_{8_{17},\epsilon,\rho_9}(t^{\beta}))^w (\Delta_{\tilde{J}_{\alpha}}(t)\Delta_{\tilde{J}_{\beta}}(t))^2,$$

where one of x, y, z, or w is equal to 1, and each of the others are either 1 or 0.

The four  $\mathbb{Q}(\omega_{13})[t]$ -polynomials that appear here,

 $\Delta_{8_{17},\epsilon,\rho_3}(t^{\alpha}), \quad \Delta_{8_{17},\epsilon,\rho_9}(t^{\alpha}), \quad \Delta_{8_{17},\epsilon,\rho_3}(t^{\beta}), \quad \text{and} \quad \Delta_{8_{17},\epsilon,\rho_9}(t^{\beta}),$ 

and all their Galois conjugates are easily seen to be distinct for any pair  $\alpha \neq \beta$ . The following numbertheoretic result implies that there is an infinite set of primes  $\mathcal{P}$  such that, if  $\alpha \in \mathcal{P}$  and  $\beta \in \mathcal{P}$ , then no product as given in (1) can be a norm in  $\mathbb{Q}(\omega_{13})[t]$ , proving that the connected sum  $L_{\alpha} \# L_{\beta}$  is not slice. We will present a proof in Appendix A.

**Lemma 3** Let  $f(t) \in \mathbb{Z}(\omega_p)[t]$  be an irreducible monic polynomial. If there exists  $\zeta \in \mathbb{C}$  such that  $f(\zeta) = 0$  and  $\zeta^n \neq 1$  for all n > 0, then the set of primes p for which  $f(t^p)$  is reducible is finite.

**Proof of Theorem 1** The last factor in (1) involving the  $\tilde{J}_n$  is a norm, so it can be ignored in determining if the product is a norm.

A numeric computation shows that the twisted polynomials  $\Delta_{8_{17},\epsilon,\rho_i}(t)$  for i = 3 and i = 9 do not have roots on the unit circle, so Lemma 3 can be applied with  $\mathbb{F} = \mathbb{Q}(\omega_{13})$ . Let  $\mathcal{P}$  be the infinite set of primes with the property that if  $p \in \mathcal{P}$ , then  $\Delta_{8_{17},\epsilon,\rho_3}(t^p)$  and  $\Delta_{8_{17},\epsilon,\rho_9}(t^p)$  are irreducible. Consider the case of x = 1 in (1). Then, assuming that  $\alpha \in \mathcal{P}$  and  $\beta \in \mathcal{P}$ , the term  $\sigma_a(\Delta_{8_{17},\epsilon,\rho_3})(t^{\alpha})$  that appears in (1) is relatively prime to the remaining factors, and all the factors are irreducible, modulo powers of t and 1 - t. Hence, the product cannot be of the form  $t^k(1-t)^j f(t) f(t^{-1})$  for any  $f(t) \in \mathbb{Q}(\omega_{13})[t]$ . The cases of y, z, or w = 1 are the same.

# Appendix A Factoring $f(t^p)$

In this appendix we prove Lemma 3, stated in somewhat more generality as Lemma 4 below. We first summarize some background material. Further details can be found in any graduate textbook on algebraic number theory.

- A ⊂ C denotes the ring of algebraic integers. This is the ring consisting of all roots of monic polynomials in Z[t].
- For an extension field  $\mathbb{F}/\mathbb{Q}$ , the ring of algebraic integers in  $\mathbb{F}$  is defined by  $\mathcal{O}_{\mathbb{F}} = \mathbb{F} \cap \mathbb{A}$ .
- The property of *transitivity* states that, if  $f(t) \in \mathcal{O}_{\mathbb{F}}[t]$  is monic and  $f(\zeta) = 0$ , then  $\zeta \in \mathbb{A}$ .

- $\mathcal{O}_{\mathbb{F}}^{\times}$  is defined to be the set of units in  $\mathcal{O}_{\mathbb{F}}$ .
- The *norm* of an element x ∈ O<sub>F</sub> is defined as N(x) = ∏ x<sub>i</sub> ∈ Z, where the x<sub>i</sub> are the complex Galois conjugates of x. This map satisfies N(xy) = N(x)N(y) for all x, y ∈ O<sub>F</sub>. An element x ∈ O<sub>F</sub> is in O<sup>×</sup><sub>F</sub> if and only if N(x) = ±1.
- The *Dirichlet unit theorem* states that, for a finite extension F/Q, the abelian group O<sup>×</sup><sub>F</sub> is finitely generated and isomorphic to G ⊕ Z<sup>r+s-1</sup>, where G is finite cyclic, r is the number of embeddings of F in R, and 2s is the number of nonreal embeddings of F in C.

**Lemma 4** Let  $\mathbb{F}$  be a finite extension of  $\mathbb{Q}$ , and let  $f(t) \in \mathcal{O}_{\mathbb{F}}[t]$  be an irreducible monic polynomial. If there exists  $\zeta \in \mathbb{C}$  such that  $f(\zeta) = 0$  and  $\zeta^n \neq 1$  for all n > 0, then the set of primes p for which  $f(t^p)$  is reducible is finite.

**Proof** Step 1 If  $f(\zeta) = 0$ , then  $\zeta \in \mathcal{O}_{F(\zeta)}$ .

This follows immediately from the assumption that f(t) is monic.

**Step 2** Suppose that  $f(t) \in \mathbb{F}[t]$  is irreducible and  $f(\zeta) = 0$ . If, for some prime p,  $f(t^p)$  is reducible over  $\mathbb{F}$ , then  $\zeta = \eta^p$  for some  $\eta \in \mathcal{O}_{\mathbb{F}(\zeta)}$ .

Let  $\xi \in \mathbb{C}$  satisfy  $\xi^p = \zeta$ . Since f(t) is irreducible of degree *n* and  $f(t^p)$  is reducible, we have the degrees of extensions satisfying  $[\mathbb{F}(\zeta):\mathbb{F}] = n$  and  $[\mathbb{F}(\xi):\mathbb{F}] < np$ . It follows from the multiplicity of degrees of extensions that  $[\mathbb{F}(\xi):\mathbb{F}(\zeta)] < p$ .

The polynomial  $t^p - \zeta \in \mathbb{F}(\zeta)[t]$  has  $\xi$  as a root. For all i,  $\omega_p^i \xi$  is also a root, so  $t^p - \zeta$  factors completely in  $\mathbb{C}[t]$  as

$$t^p - \zeta = (t - \xi)(t - \omega_p \xi) \cdots (t - \omega_p^{p-1} \xi).$$

By the degree calculation just given,  $t^p - \zeta$  has an irreducible factor  $g(t) \in \mathbb{F}(\zeta)[t]$  of degree l < p. We can write  $g(t) = \prod (t - \omega_p^i \xi)$ , where the product is over some proper subset of  $\{0, \ldots, p-1\}$ . Multiplying this out, one finds that the constant term is of the form  $\omega_p^j \xi^l \in \mathbb{F}(\zeta)$  for some j and l < p. Since l and p are relatively prime, there are integers u and v such that ul + vp = 1. Thus,  $(\omega_p^j \xi^l)^u (\xi^p)^v = \omega_p^s \xi$  for some s. In particular, for some s, we have  $\omega_p^s \xi \in \mathbb{F}(\zeta)$ . We let  $\eta = \omega_p^s \xi$  and find that  $\eta^p = (\omega_p^s)^p \xi^p = \zeta$ . Finally,  $\eta$  satisfies the monic polynomial  $f(t^p)$  and thus is in  $\mathcal{O}_{\mathbb{F}}(\zeta)$ .

**Step 3** The set of primes p such that  $\zeta = \eta^p$  for some  $\eta \in \mathcal{O}_{\mathbb{F}}(\zeta)$  is finite.

If  $\zeta = \eta^p$ , then  $N(\zeta) = N(\eta)^p$ . If  $N(\zeta) \neq \pm 1$ , then the set of p for which  $N(\zeta) = a^p$  for some integer a is finite.

If  $N(\zeta) = \pm 1$ , then  $\zeta \in \mathcal{O}_{\mathbb{F}(\zeta)}^{\times}$ . Hence  $\zeta$  represents a nontorsion element in a finitely generated abelian group, and thus it has a finite number of roots.

**Comments** The argument just given is based on a summary of the proof for the case  $\mathbb{F} = \mathbb{Q}$  presented on MathOverflow by Dimitrov [4]. Step 2 is a special case of the *Vahlen–Capelli theorem*, proved in the case of  $\mathbb{F} = \mathbb{Q}$  by Vahlen and for fields of characteristic 0 by Capelli [2]. A proof for fields of finite characteristic is given by Rédei [10].

### Appendix B Twisted polynomials of 8<sub>17</sub>

Here are the three needed polynomials. We write  $\omega$  for  $\omega_{13}$ .

$$\begin{aligned} \Delta_{8_{17},\epsilon,\rho_0}(t) &= 1 - t - 34t^2 - 101t^3 - 34t^4 - t^5 + t^6, \\ \Delta_{8_{17},\epsilon,\rho_3}(t)/(1-t) \\ &= 1 + t(2\omega + 2\omega^2 + 2\omega^3 + 4\omega^4 + 2\omega^5 + 2\omega^6 + \omega^7 + \omega^8 + 2\omega^9 + 4\omega^{10} + \omega^{11} + 4\omega^{12}) \\ &+ t^2(-15\omega - 10\omega^2 - 15\omega^3 - 15\omega^4 - 10\omega^5 - 10\omega^6 - 10\omega^7 - 10\omega^8 - 15\omega^9 - 15\omega^{10} - 10\omega^{11} - 15\omega^{12}) \\ &+ t^3(4\omega + \omega^2 + 4\omega^3 + 2\omega^4 + \omega^5 + \omega^6 + 2\omega^7 + 2\omega^8 + 4\omega^9 + 2\omega^{10} + 2\omega^{11} + 2\omega^{12}) + t^4, \\ \Delta_{8_{17},\epsilon,\rho_9}(t)/(1-t) \\ &= 1 + t(6\omega + 5\omega^2 + 6\omega^3 + 6\omega^4 + 5\omega^5 + 5\omega^6 + 5\omega^7 + 5\omega^8 + 6\omega^9 + 6\omega^{10} + 5\omega^{11} + 6\omega^{12}) \end{aligned}$$

$$+t^{2}(-13\omega - 12\omega^{2} - 13\omega^{3} - 13\omega^{4} - 12\omega^{5} - 12\omega^{6} - 12\omega^{7} - 12\omega^{8} - 13\omega^{9} - 13\omega^{10} - 12\omega^{11} - 13\omega^{12})$$
  
+
$$t^{3}(6\omega + 5\omega^{2} + 6\omega^{3} + 6\omega^{4} + 5\omega^{5} + 5\omega^{6} + 5\omega^{7} + 5\omega^{8} + 6\omega^{9} + 6\omega^{10} + 5\omega^{11} + 6\omega^{12}) + t^{4}.$$

#### References

- P Aceto, J Meier, AN Miller, M Miller, J Park, AI Stipsicz, Branched covers bounding rational homology balls, Algebr. Geom. Topol. 21 (2021) 3569–3599 MR Zbl
- [2] A Capelli, Sulla riduttibilità delle equazioni algebriche, Napoli Rend. 3 (1897) 243–252 Zbl
- [3] A J Casson, C M Gordon, Cobordism of classical knots, from "À la recherche de la topologie perdue" (L Guillou, A Marin, editors), Progr. Math. 62, Birkhäuser, Boston (1986) 181–199 MR Zbl
- [4] V Dimitrov, f(x) is irreducible but  $f(x^n)$  is reducible, MathOverflow thread (2014) Available at https://mathoverflow.net/q/179387
- [5] RH Fox, Free differential calculus, III: Subgroups, Ann. of Math. 64 (1956) 407–419 MR Zbl
- [6] L Goeritz, Die Betti'schen Zahlen Der Zyklischen Uberlagerungsraume Der Knotenaussenraume, Amer. J. Math. 56 (1934) 194–198 MR Zbl
- [7] T Kim, C Livingston, Knot reversal acts non-trivially on the concordance group of topologically slice knots, Selecta Math. 28 (2022) art. id. 38 MR Zbl
- [8] P Kirk, C Livingston, Twisted Alexander invariants, Reidemeister torsion, and Casson–Gordon invariants, Topology 38 (1999) 635–661 MR Zbl
- [9] P Kirk, C Livingston, Twisted knot polynomials: inversion, mutation and concordance, Topology 38 (1999) 663–671 MR Zbl

- [11] H Seifert, On the homology invariants of knots, Quart. J. Math. Oxford Ser. 1 (1950) 23-32 MR Zbl

Department of Mathematics, Indiana University Bloomington, IN, United States

livingst@indiana.edu

Received: 17 May 2022 Revised: 3 August 2022

# [10] L Rédei, Algebra, I, Pergamon, Oxford (1967) MR Zbl



594

#### ALGEBRAIC & GEOMETRIC TOPOLOGY

#### msp.org/agt

#### EDITORS

#### PRINCIPAL ACADEMIC EDITORS

| John Etnyre                     |  |
|---------------------------------|--|
| etnyre@math.gatech.edu          |  |
| Georgia Institute of Technology |  |

Kathryn Hess kathryn.hess@epfl.ch École Polytechnique Fédérale de Lausanne

#### BOARD OF EDITORS

| Julie Bergner          | University of Virginia                                           | Robert Lipshitz   | University of Oregon                                       |
|------------------------|------------------------------------------------------------------|-------------------|------------------------------------------------------------|
|                        | jeb2md@eservices.virginia.edu                                    |                   | lipshitz@uoregon.edu                                       |
| Steven Boyer           | Université du Québec à Montréal<br>cohf@math.rochester.edu       | Norihiko Minami   | Nagoya Institute of Technology<br>nori@nitech.ac.jp        |
| Tara E Brendle         | University of Glasgow<br>tara.brendle@glasgow.ac.uk              | Andrés Navas      | Universidad de Santiago de Chile<br>andres.navas@usach.cl  |
| Indira Chatterji       | CNRS & Univ. Côte d'Azur (Nice)<br>indira.chatterji@math.cnrs.fr | Thomas Nikolaus   | University of Münster<br>nikolaus@uni-muenster.de          |
| Alexander Dranishnikov | University of Florida<br>dranish@math.ufl.edu                    | Robert Oliver     | Université Paris 13<br>bobol@math.univ-paris13.fr          |
| Tobias Ekholm          | Uppsala University, Sweden tobias.ekholm@math.uu.se              | Jessica S Purcell | Monash University<br>jessica.purcell@monash.edu            |
| Mario Eudave-Muñoz     | Univ. Nacional Autónoma de México<br>mario@matem.unam.mx         | Birgit Richter    | Universität Hamburg<br>birgit.richter@uni-hamburg.de       |
| David Futer            | Temple University<br>dfuter@temple.edu                           | Jérôme Scherer    | École Polytech. Féd. de Lausanne<br>jerome.scherer@epfl.ch |
| John Greenlees         | University of Warwick<br>john.greenlees@warwick.ac.uk            | Vesna Stojanoska  | Univ. of Illinois at Urbana-Champaign vesna@illinois.edu   |
| Ian Hambleton          | McMaster University<br>ian@math.mcmaster.ca                      | Zoltán Szabó      | Princeton University<br>szabo@math.princeton.edu           |
| Matthew Hedden         | Michigan State University<br>mhedden@math.msu.edu                | Maggy Tomova      | University of Iowa<br>maggy-tomova@uiowa.edu               |
| Hans-Werner Henn       | Université Louis Pasteur<br>henn@math.u-strasbg.fr               | Nathalie Wahl     | University of Copenhagen<br>wahl@math.ku.dk                |
| Daniel Isaksen         | Wayne State University<br>isaksen@math.wayne.edu                 | Chris Wendl       | Humboldt-Universität zu Berlin<br>wendl@math.hu-berlin.de  |
| Thomas Koberda         | University of Virginia<br>thomas.koberda@virginia.edu            | Daniel T Wise     | McGill University, Canada<br>daniel.wise@mcgill.ca         |
| Christine Lescop       | Université Joseph Fourier<br>lescop@ujf-grenoble.fr              |                   | ·                                                          |

See inside back cover or msp.org/agt for submission instructions.

The subscription price for 2024 is US \$705/year for the electronic version, and \$1040/year (+\$70, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Algebraic & Geometric Topology is indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Algebraic & Geometric Topology (ISSN 1472-2747 printed, 1472-2739 electronic) is published 9 times per year and continuously online, by Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840. Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.

AGT peer review and production are managed by EditFlow<sup>®</sup> from MSP.

PUBLISHED BY mathematical sciences publishers nonprofit scientific publishing https://msp.org/ © 2024 Mathematical Sciences Publishers

# ALGEBRAIC & GEOMETRIC TOPOLOGY

| Chow–Witt rings of Grassmannians                                                                | 1   |
|-------------------------------------------------------------------------------------------------|-----|
| MATTHIAS WENDT                                                                                  |     |
| Higher chromatic Thom spectra via unstable homotopy theory                                      | 49  |
| Sanath K Devalapurkar                                                                           |     |
| The deformation space of nonorientable hyperbolic 3–manifolds                                   | 109 |
| JUAN LUIS DURÁN BATALLA and JOAN PORTI                                                          |     |
| Realization of Lie algebras and classifying spaces of crossed modules                           | 141 |
| YVES FÉLIX and DANIEL TANRÉ                                                                     |     |
| Knot Floer homology, link Floer homology and link detection                                     | 159 |
| FRASER BINNS and GAGE MARTIN                                                                    |     |
| Models for knot spaces and Atiyah duality                                                       | 183 |
| Syunji Moriya                                                                                   |     |
| Automorphismes du groupe des automorphismes d'un groupe de Coxeter universel 2                  | 251 |
| YASSINE GUERCH                                                                                  |     |
| The $RO(C_4)$ cohomology of the infinite real projective space 2                                | 277 |
| NICK GEORGAKOPOULOS                                                                             |     |
| Annular Khovanov homology and augmented links 3                                                 | 325 |
| Hongjian Yang                                                                                   |     |
| Smith ideals of operadic algebras in monoidal model categories 3                                | 341 |
| DAVID WHITE and DONALD YAU                                                                      |     |
| The persistent topology of optimal transport based metric thickenings 3                         | 393 |
| HENRY ADAMS, FACUNDO MÉMOLI, MICHAEL MOY and QINGSONG WANG                                      |     |
| A generalization of moment-angle manifolds with noncontractible orbit spaces 4                  | 449 |
| LIYU                                                                                            |     |
| Equivariant Seiberg–Witten–Floer cohomology 4                                                   | 493 |
| DAVID BARAGLIA and PEDRAM HEKMATI                                                               |     |
| Constructions stemming from nonseparating planar graphs and their Colin de Verdière invariant 5 | 555 |
| ANDREI PAVELESCU and ELENA PAVELESCU                                                            |     |
| Census L–space knots are braid positive, except for one that is not 5                           | 569 |
| KENNETH L BAKER and MARC KEGEL                                                                  |     |
| Branched covers and rational homology balls 5                                                   | 587 |
| CHARLES LIVINGSTON                                                                              |     |