Download this article
 Download this article For screen
For printing
Recent Issues

Volume 25
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
The persistent topology of optimal transport based metric thickenings

Henry Adams, Facundo Mémoli, Michael Moy and Qingsong Wang

Algebraic & Geometric Topology 24 (2024) 393–447
Bibliography
1 M Adamaszek, H Adams, The Vietoris–Rips complexes of a circle, Pacific J. Math. 290 (2017) 1 MR3673078
2 M Adamaszek, H Adams, F Frick, Metric reconstruction via optimal transport, SIAM J. Appl. Algebra Geom. 2 (2018) 597 MR3871057
3 M Adamaszek, H Adams, S Reddy, On Vietoris–Rips complexes of ellipses, J. Topol. Anal. 11 (2019) 661 MR3999516
4 H Adams, J Bush, F Frick, The topology of projective codes and the distribution of zeros of odd maps, preprint (2021) arXiv:2106.14677
5 H Adams, M Heim, C Peterson, Metric thickenings and group actions, J. Topol. Anal. 14 (2022) 587 MR4493474
6 H Adams, J Mirth, Metric thickenings of Euclidean submanifolds, Topology Appl. 254 (2019) 69 MR3895304
7 H Barcelo, V Capraro, J A White, Discrete homology theory for metric spaces, Bull. Lond. Math. Soc. 46 (2014) 889 MR3262192
8 Y Baryshnikov, P Bubenik, M Kahle, Min-type Morse theory for configuration spaces of hard spheres, Int. Math. Res. Not. 2014 (2014) 2577 MR3207377
9 S Basu, Computing the top Betti numbers of semialgebraic sets defined by quadratic inequalities in polynomial time, Found. Comput. Math. 8 (2008) 45 MR2403530
10 S Basu, N Karisani, Persistent homology of semialgebraic sets, SIAM J. Appl. Algebra Geom. 7 (2023) 651 MR4646856
11 S Basu, R Pollack, M F Roy, Computing the first Betti number of a semi-algebraic set, Found. Comput. Math. 8 (2008) 97 MR2403532
12 U Bauer, Ripser : efficient computation of Vietoris–Rips persistence barcodes, J. Appl. Comput. Topol. 5 (2021) 391 MR4298669
13 V Berestovskii, C Plaut, Uniform universal covers of uniform spaces, Topology Appl. 154 (2007) 1748 MR2317077
14 V I Bogachev, Measure theory, II, Springer (2007) MR2267655
15 V I Bogachev, Weak convergence of measures, 234, Amer. Math. Soc. (2018) MR3837546
16 R Bott, Nondegenerate critical manifolds, Ann. of Math. 60 (1954) 248 MR0064399
17 R Bott, Lectures on Morse theory, old and new, Bull. Amer. Math. Soc. 7 (1982) 331 MR0663786
18 R Bott, Morse theory indomitable, Inst. Hautes Études Sci. Publ. Math. 68 (1988) 99 MR1001450
19 J Brazas, P Fabel, Thick Spanier groups and the first shape group, Rocky Mountain J. Math. 44 (2014) 1415 MR3295636
20 N Brodskiy, J Dydak, B Labuz, A Mitra, Rips complexes and covers in the uniform category, Houston J. Math. 39 (2013) 667 MR3080460
21 L N Bryzgalova, Maximum functions of a family of functions that depend on parameters, Funktsional. Anal. i Prilozhen. 12 (1978) 66 MR0487233
22 P S Bullen, D S Mitrinović, P M Vasić, Means and their inequalities, 31, D Reidel (1988) MR0947142
23 D Burago, Y Burago, S Ivanov, A course in metric geometry, 33, Amer. Math. Soc. (2001) MR1835418
24 P Bürgisser, F Cucker, P Lairez, Computing the homology of basic semialgebraic sets in weak exponential time, J. ACM 66 (2019) 5 MR3892564
25 G Carlsson, Topology and data, Bull. Amer. Math. Soc. 46 (2009) 255 MR2476414
26 M Cencelj, J Dydak, A Vavpetič, Ž Virk, A combinatorial approach to coarse geometry, Topology Appl. 159 (2012) 646 MR2868863
27 F Chazal, D Cohen-Steiner, L J Guibas, F Mémoli, S Y Oudot, Gromov–Hausdorff stable signatures for shapes using persistence, Computer Graphics Forum 28 (2009) 1393
28 F Chazal, S Y Oudot, Towards persistence-based reconstruction in Euclidean spaces, from: "Computational geometry (SCG’08)", ACM (2008) 232 MR2504289
29 F Chazal, V de Silva, M Glisse, S Oudot, The structure and stability of persistence modules, Springer (2016) MR3524869
30 F Chazal, V de Silva, S Oudot, Persistence stability for geometric complexes, Geom. Dedicata 173 (2014) 193 MR3275299
31 D Cohen-Steiner, H Edelsbrunner, J Harer, Stability of persistence diagrams, Discrete Comput. Geom. 37 (2007) 103 MR2279866
32 J Conant, V Curnutte, C Jones, C Plaut, K Pueschel, M Lusby, J Wilkins, Discrete homotopy theory and critical values of metric space, Fund. Math. 227 (2014) 97 MR3257953
33 A Dranishnikov, Cohomological approach to asymptotic dimension, Geom. Dedicata 141 (2009) 59 MR2520063
34 H Edelsbrunner, J L Harer, Computational topology: an introduction, Amer. Math. Soc. (2010) MR2572029
35 H Edelsbrunner, D Letscher, A Zomorodian, Topological persistence and simplification, from: "41st Annual Symposium on Foundations of Computer Science", IEEE Comput. Soc. (2000) 454 MR1931842
36 H Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959) 418 MR0110078
37 P Frosini, C Landi, F Mémoli, The persistent homotopy type distance, Homology Homotopy Appl. 21 (2019) 231 MR3923782
38 V Gershkovich, H Rubinstein, Morse theory for Min-type functions, Asian J. Math. 1 (1997) 696 MR1621571
39 A L Gibbs, F E Su, On choosing and bounding probability metrics, Int. Stat. Rev. 70 (2002) 419
40 M Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983) 1 MR0697984
41 M Gromov, Asymptotic invariants of infinite groups, from: "Geometric group theory, II" (editors G A Niblo, M A Roller), London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1 MR1253544
42 J C Hausmann, On the Vietoris–Rips complexes and a cohomology theory for metric spaces, from: "Prospects in topology" (editor F Quinn), Ann. of Math. Stud. 138, Princeton Univ. Press (1995) 175 MR1368659
43 N J Kalton, M I Ostrovskii, Distances between Banach spaces, Forum Math. 11 (1999) 17 MR1673915
44 H Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math. 30 (1977) 509 MR0442975
45 M Katz, The filling radius of two-point homogeneous spaces, J. Differential Geom. 18 (1983) 505 MR0723814
46 M Katz, Diameter-extremal subsets of spheres, Discrete Comput. Geom. 4 (1989) 117 MR0973541
47 M Katz, The filling radius of homogeneous manifolds, from: "Séminaire de théorie spectrale et géométrie", Univ. Grenoble I (1991) 103 MR1715933
48 M Katz, On neighborhoods of the Kuratowski imbedding beyond the first extremum of the diameter functional, Fund. Math. 137 (1991) 161 MR1110030
49 M Katz, The rational filling radius of complex projective space, Topology Appl. 42 (1991) 201 MR1137947
50 J Latschev, Vietoris–Rips complexes of metric spaces near a closed Riemannian manifold, Arch. Math. 77 (2001) 522 MR1879057
51 M Lesnick, The theory of the interleaving distance on multidimensional persistence modules, Found. Comput. Math. 15 (2015) 613 MR3348168
52 S Lim, F Mémoli, O Okutan, Vietoris–Rips persistent homology, injective metric spaces, and the filling radius,
53 S Lim, F Mémoli, Z Smith, The Gromov–Hausdorff distance between spheres, Geom. Topol. 27 (2023) 3733
54 V I Matov, Topological classification of the germs of functions of the maximum and minimax of families of functions in general position, Uspekhi Mat. Nauk 37 (1982) 167 MR0667989
55 F Mémoli, Gromov–Wasserstein distances and the metric approach to object matching, Found. Comput. Math. 11 (2011) 417 MR2811584
56 F Mémoli, Some properties of Gromov–Hausdorff distances, Discrete Comput. Geom. 48 (2012) 416 MR2946454
57 F Mémoli, A distance between filtered spaces via tripods, preprint (2017) arXiv:1704.03965
58 F Mémoli, O B Okutan, Quantitative simplification of filtered simplicial complexes, Discrete Comput. Geom. 65 (2021) 554 MR4212978
59 F Mémoli, L Zhou, Persistent homotopy groups of metric spaces, preprint (2019) arXiv:1912.12399
60 J Milnor, Morse theory, 51, Princeton Univ. Press (1963) MR0163331
61 J R Mirth, Vietoris–Rips metric thickenings and Wasserstein spaces, PhD thesis, Colorado State University (2020)
62 O B Okutan, Persistence, metric invariants, and simplification, PhD thesis, The Ohio State University (2019)
63 S Pavoine, S Ollier, D Pontier, Measuring diversity from dissimilarities with Rao’s quadratic entropy : are any dissimilarities suitable ?, Theoret. Population Biol. 67 (2005) 231
64 C Plaut, J Wilkins, Discrete homotopies and the fundamental group, Adv. Math. 232 (2013) 271 MR2989983
65 C Radhakrishna Rao, Diversity and dissimilarity coefficients: a unified approach, Theoret. Population Biol. 21 (1982) 24 MR0662520
66 A Rieser, Vietoris–Rips homology theory for semi-uniform spaces, preprint (2020) arXiv:2008.05739
67 J Roe, Coarse cohomology and index theory on complete Riemannian manifolds, 497, Amer. Math. Soc. (1993) MR1147350
68 K Sakai, Geometric aspects of general topology, Springer (2013) MR3099433
69 F Santambrogio, Euclidean, metric, and Wasserstein gradient flows : an overview, Bull. Math. Sci. 7 (2017) 87 MR3625852
70 C Thäle, 50 years sets with positive reach, Surv. Math. Appl. 3 (2008) 123 MR2443192
71 L Vietoris, Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen, Math. Ann. 97 (1927) 454 MR1512371
72 C Villani, Optimal transport: old and new, 338, Springer (2009) MR2459454
73 Ž Virk, Rips complexes as nerves and a functorial Dowker-nerve diagram, Mediterr. J. Math. 18 (2021) 58 MR4218370
74 Ž Virk, Footprints of geodesics in persistent homology, Mediterr. J. Math. 19 (2022) 160 MR4443111
75 M C B Zaremsky, Bestvina–Brady discrete Morse theory and Vietoris–Rips complexes, Amer. J. Math. 144 (2022) 1177 MR4494179
76 A Zomorodian, G Carlsson, Computing persistent homology, Discrete Comput. Geom. 33 (2005) 249 MR2121296