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Towards a higher-dimensional construction of
stable/unstable Lagrangian laminations

SANGJIN LEE

We generalize some properties of surface automorphisms of pseudo-Anosov type. First, we generalize the
Penner construction of a pseudo-Anosov homeomorphism, and show that if a symplectic automorphism is
constructed by our generalized Penner construction, then it has an invariant Lagrangian branched subman-
ifold and an invariant Lagrangian lamination. These invariants are higher-dimensional generalizations of
a train track and a geodesic lamination in the surface case. As an application, we compute the Lagrangian
Floer homology of some Lagrangians on plumbings of cotangent bundles of spheres.

53D05, 53D40, 57R17

1 Introduction

By the Nielsen–Thurston classification of surface diffeomorphisms, an automorphism  W S ��! S of
a compact oriented surface S is of one of three types: periodic, reducible, or pseudo-Anosov. We
recommend Casson and Bleiler [2] or Thurston [14]. Maher [7] shows that, for a suitable notion of
randomness, a random element of the mapping class group is pseudo-Anosov.

Let us assume that  is of pseudo-Anosov type. For any closed curve C � S , it is known that there is a
sequence fLmgm2N of closed geodesics such that Lm is isotopic to  m.C / for all m2N, and fLmgm2N

converges to a closed subset L with respect to the Hausdorff metric on closed subsets. Moreover, L is a
geodesic lamination. The definitions of a lamination, a geodesic lamination, and a Lagrangian lamination
are the following:

Definition 1.1 (1) A k–dimensional lamination on an n–dimensional manifold M is a decomposition
of a closed subset of M into k–dimensional submanifolds called leaves such that the closed subset
is covered by charts of the form I k � In�k where a leaf passing through a chart is a slice of the
form I k � fptg.

(2) An 1–dimensional lamination L on a Riemannian 2–manifold .S; g/ is a geodesic lamination if
every leaf of L is geodesic.

(3) An n–dimensional lamination L on a symplectic manifold .M 2n; !/ is a Lagrangian lamination if
every leaf of L is a Lagrangian submanifold.

For more details, we refer the reader to Farb and Margalit [5, Chapter 15].
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In [3], Dimitrov, Haiden, Katzarkov and Kontsevich defined the notion of a pseudo-Anosov functor of
a triangulated category, and they gave examples of it on the Fukaya categories: a pseudo-Anosov map
 on a compact oriented surface S induces a functor, also called  , on the derived Fukaya category
D� Fuk.S; !/, where ! is an area form of S . In [3], the authors showed that  is a pseudo-Anosov
functor.

In [3, Section 4], the authors listed a number of open questions. One of them is to find a symplectic
automorphism  on a symplectic manifold M of dimension greater than 2 which has invariant transversal
stable/unstable Lagrangian measured foliations. A slightly weaker version of the question is to define a
symplectic automorphism  with invariant stable/unstable Lagrangian laminations.

The goal of the present paper is to answer the latter question. First, we define symplectic automorphisms
of generalized Penner type.

Definition 1.2 Let M be a symplectic manifold. A symplectic automorphism  W M ��! M is of
generalized Penner type if there are two collectionsADf˛1; : : : ; ˛mg andBDfˇ1; : : : ; ˇlg of Lagrangian
spheres satisfying

� ˛i \ j̨ D¿, and ˇi \ ǰ D¿ for all i ¤ j ,

� ˛i t ǰ for all i and j , and

� for each ˛i 2 A (resp. ǰ 2 B), there is at least one ǰ 2 B (resp. ˛i 2 A) such that ˛i \ ǰ ¤¿,

so that  is a product of positive powers of Dehn twists �i along ˛i and negative powers of Dehn twists
�j along ǰ , subject to the condition that every sphere appear in the product.

We will define a Dehn twist along a Lagrangian sphere in Section 2.2, partly to establish notation.

Then, we will define the notion of Lagrangian branched submanifold and carried by. These are higher-
dimensional generalizations of the notion of train tracks and “carried by a train track” in surface theory.
Roughly, in the surface theory, if a curve C is carried by a train track � , then it is possible to encode C on
� with the extra data called “weights”. We refer the reader to Farb and Margalit [5] for detail. Motivated
by this, we will give the higher-dimensional generalizations of train tracks and the notion of “carried by”
in Sections 3.1 and 3.3. Then, we prove Theorem 1.3 at the end of Section 3.

Theorem 1.3 Let M be a symplectic manifold and let  WM ��!M be a symplectic automorphism
of generalized Penner type. Then there exists a Lagrangian branched submanifold B such that if L
is a Lagrangian submanifold which is carried (resp. weakly carried ) by B , then  m.L/ is carried
(resp. weakly carried ) by B for all m 2N.

Remark 1.4 Theorem 1.3 cares about symplectic automorphisms of generalized Penner type. However,
there should be a generalized version of Theorem 1.3 for arbitrary symplectic automorphisms, which we
do not prove in the current paper.
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In Section 4, we will prove that if a Lagrangian L is carried by a Lagrangian branched submanifold B,
one can encode L on B with extra data called braids. The definition of braids will appear in Section 4.3.
In Sections 5 and 6, by using the notion of braids, we prove our main theorem, ie Theorem 1.5.

Theorem 1.5 Let M be a symplectic manifold , and let  WM ��!M be a symplectic automorphism
of generalized Penner type. Then there is a Lagrangian lamination L such that if L is a Lagrangian
submanifold of M which is carried by B , then there is a sequence of Lagrangian submanifolds Lm
satisfying

� Lm is Hamiltonian isotopic to  m.L/, and

� Lm converges to L as m!1.

Also, in Section 6.4, we will see how this generalizes to symplectic automorphisms which are not of
generalized Penner type.

Finally, we will talk about Lagrangian Floer theory related to Theorems 1.3 and 1.5. The results will be
written in Section 7.

Structure of the paper

This paper consists of 7 sections. In Section 2, we review plumbing spaces and generalized Dehn twists.
We will prove Theorem 1.3 in Section 3 and Theorem 1.5 in Sections 4–6. In Section 7, we will discuss
the relation of Theorems 1.3 and 1.5 to Lagrangian Floer theory and give a related calculation of Floer
cohomology (Theorem 7.3).
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2 Preliminaries

In this section, we will review plumbings of cotangent bundles and generalized Dehn twists, partly to
establish notation.

2.1 Plumbing spaces

Let ˛ and ˇ be oriented spheres Sn. We describe how to plumb T �˛ and T �ˇ at p 2 ˛ and q 2 ˇ. Let
U � ˛ and V � ˇ be small disk neighborhoods of p and q. Then, we identify T �U and T �V so that the
base U (resp. V ) of T �U (resp. T �V ) is identified with a fiber of T �V (resp. T �U ).
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To do this rigorously, we fix coordinate charts  1 W U ! Rn and  2 W V ! Rn. Then we obtain a
compositions of symplectomorphisms

T �U
. �1 /

�1

����! T �Rn 'R2n
f
�!R2n ' T �Rn

 �2
�! T �V;

where f .x1; : : : ; xn; y1; : : : ; yn/D .y1; : : : ; yn;�x1; : : : ;�xn/.

A plumbing space P.˛; ˇ/ of T �˛ and T �ˇ is defined by T �˛tT �ˇ=�, where x� . �2 ıf ı 
��1
1 /.x/

for all x 2T �U . Since  �2 ıf ı 
��1
1 is a symplectomorphism, P.˛; ˇ/ has a natural symplectic structure

induced by the standard symplectic structures of cotangent bundles.

Since the plumbing procedure is a local procedure, we can plumb a finite collection of cotangent bundles
of the same dimension at finitely many points. For convenience, we plumb cotangent bundles of oriented
manifolds.

Note that we can replace f by

g.x1; : : : ; xn; y1; : : : ; yn/D .�y1; y2; : : : ; yn; x1;�x2; : : : ;�xn/:

If we plumb T �˛ and T �ˇ at one point using g, this plumbing space is symplectomorphic to the previous
plumbing space P.˛; ˇ/, which is plumbed using f . However, if we plumb at more than one point, then
by replacing f with g at a plumbing point, the plumbing space will change.

Definition 2.1 Let ˛1; : : : ; ˛m be oriented manifolds of dimension n.

(1) A plumbing datum is a collection of pairs of nonnegative integers .ai;j ; bi;j / for all 1� i � j �m
and collections of distinct points

fp
i;j

k
2 ˛i j 1� i � j �m; 1� k � ai;j C bi;j g;

fq
i;j

k
2 j̨ j 1� i � j �m; 1� k � ai;j C bi;j g:

(2) A plumbing space P.˛1; : : : ; ˛m/, with the given plumbing datum, is given by

P.˛1; : : : ; ˛m/D T
�˛1 t � � � tT

�˛m=�;

where the equivalence relation � is defined as follows: first, choose small disk neighborhoods
U
i;j

k
� ˛i of pi;j

k
and V i;j

k
� j̨ of qi;j

k
such that U i1;j1

k1
\U

i2;j2
k2
D¿ if .i1; j1; k1/¤ .i2; j2; k2/

and orientation-preserving coordinate charts  i;j
k
W U

i;j

k
��!Rn and �i;j

k
W V

i;j

k
��!Rn; then for

all x 2 T �U i;j
k

,

x �

�
.�
i;j�

k
ıf ı . 

i;j�

k
/�1/.x/ if 1� k � ai;j ;

.�
i;j�

k
ıg ı . 

i;j�

k
/�1/.x/ if ai;j C 1� k � ai;j C bi;j :

(3) A plumbing point is an identified point pi;j
k
� q

i;j

k
2 P.˛1; : : : ; ˛m/.

Figure 1 shows some examples of plumbing spaces.

If ˛i is of dimension n � 2, then specific choices of plumbing points do not change the symplectic
topology of P.˛1; : : : ; ˛m/.
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ˇ ˇ

˛ ˛

˛ ˛

Figure 1: P.˛ ' S1; ˇ ' S1/ with plumbing datum .2; 0/ (left) and .1; 1/ (right).

2.2 Generalized Dehn twist

Let
T �Sn D f.u; v/ 2RnC1 �RnC1 j kuk D 1; hu; vi D 0g;

Sn D f.u; 0nC1/ 2 T
�Sng;

where .u; v/ 2RnC1 �RnC1 and hu; vi is the standard inner product of u and v in RnC1. Moreover, let
0k be the origin in Rk .

We fix a Hamiltonian function �.u; v/Dkvk on T �SnnSn. Then � induces a circle action on T �SnnSn

given by
�.eit /.u; v/D

��
cos.t/uC sin.t/ v

kvk

�
; .cos.t/v� sin.t/kvku/

�
:

Let r W Œ0;1/! R be a smooth decreasing function such that r.0/D � and r.t/D 0 for all t � � for
a small positive number �. If !0 is the standard symplectic form of T �Sn, we define a symplectic
automorphism � W .T �Sn; !0/

��! .T �Sn; !0/ by

(2-1) �.u; v/D

�
�.eir.�.u;v///.u; v/ if v ¤ 0nC1;
.�u; 0nC1/ if v D 0nC1:

Let .M 2n; !/ be a symplectic manifold and let L' Sn be a Lagrangian sphere in M . By the Lagrangian
neighborhood theorem — see Weinstein [16] — there is a neighborhood N.L/ � L and a symplecto-
morphism � W T �Sn ��!N.L/. We define a generalized Dehn twist �L along L by

(2-2) �L.x/D

�
.� ı � ı��1/.x/ if x 2N.L/;
x if x …N.L/:

Note that the support of �L is contained in N.L/. From now on, a generalized Dehn twist will just be
called a Dehn twist.
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Remark 2.2 We will use two specific Dehn twists �; Q� W T �Sn ��! T �Sn which are defined by (2-1) and
two functions r; Qr W Œ0;1/!R. The function r (resp. Qr) defining � (resp. Q� ) satisfies the above conditions
in addition to r.t/D � for all t � �

2
(resp. Qr 0.0/ < 0/. The two Dehn twists � and Q� are equivalent in the

sense that � ı Q��1 is a Hamiltonian isotopy.

Dehn twists have been studied extensively by Seidel. For example, Seidel [12] proved the following
theorem.

Theorem 2.3 Let ˛ be a Lagrangian sphere and ˇ be a Lagrangian submanifold of a symplectic
manifold M . If ˛ and ˇ intersect transversally at only one point , ˇ #˛ is Lagrangian isotopic to �˛.ˇ/,
where ˇ #˛ is a Lagrangian surgery of ˇ and ˛.

We prove Theorem 2.3 in the special case that ˇ is also a sphere and M D P.˛; ˇ/, as an illustration of
the “spinning” procedure.

To define “spinning”, we use the following notation. Let y 2 Sn�1 �Rn. Then

 y W T
�S1 ' S1 �R! T �Sn;

..cos �; sin �/; t/ 7!
�
.cos �.0n; 1/C sin �.y; 0//; .t cos �.y; 0/� t sin �.0n; 1//

�
is a symplectic embedding. Let Wy be the embedded symplectic surface  y.T �S1/. We would like to
note that Wy DW�y .

Definition 2.4 Given a curve C in T �S1, its spun image S.C / is
S
y2Sn�1  y.C /.

Remark 2.5 A spun image S.C / of a curve C � T �S1 is not an embedded submanifold of T �Sn for
all C . However, for some C , S.C / is an embedded submanifold. For example, if C is invariant under
the action .�; t/ 7! .��;�t / on T �S1, then S.C / is an embedded submanifold. Moreover, if S.C / is a
submanifold, then it is easy to prove that S.C / is Lagrangian.

Proof of Theorem 2.3 We use T �˛ and T �ˇ to indicate neighborhoods of ˛ and ˇ inside M DP.˛; ˇ/.
Let p be the intersection point of ˛ and ˇ. Then, T �p ˛ D ˇ \ T

�˛. The closure of T �p ˛ is denoted
by D�p ; we use D to indicate that this is a disk and the subscript p means that p is the center of D�p . The
meaning of the negative sign in D�p will be explained in the next section. Since �˛ is supported on T �˛,

�˛.ˇ/D �˛.ˇ\T
�˛/[ �˛.ˇ nT

�˛/D �˛.D
�
p /[ .ˇ nT

�˛/:

There exists � WT �Sn ��!T �˛ such that �˛D�ı�ı��1. Without loss of generality, �..0n; 1/; 0nC1/Dp
and

D�p D �
�
f.0n; 1; ty; 0/ j t 2R; y 2 Sn�1 �Rng

�
:

Then
.� ı �˛ ı�

�1/.D�p /D .� ı �/
�
f.0n; 1; ty; 0/ j t 2R; y 2 Sn�1 �Rng

�
D

[
y2Sn�1

�
�
f�.0n; 1; ty; 0/ j t 2Rg

�
:
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D T �S1

C

p

C � T �S1

D T �S1

C 0

p

C 0 � T �S1

U

Figure 2: Curves C and C 0 in T �S1.

Since there is a curve C in T �S1 such that  y.C /Df�.0n; 1; ty; 0/ j t 2Rg, �˛.D�p / is given by spinning
with respect to p and �.

Figure 2 represents C � T �S1. By Remark 2.5, it is easy to check that �˛.D�p / is Lagrangian.

One possible construction of ˇ #˛ is as follows. The Lagrangian surgery ˇ #˛ agrees with ˛[ˇ outside
of a small neighborhood U of p. On U , there is a Darboux chart � satisfying

�.U /DCn; �.˛/DRn; �.ˇ/D .iR/n;

�.ˇ #˛/D
��
x1; : : : ; xn;�

�x1
p
x21 C � � �C x

2
n

; : : : ;�
�xn

p
x21 C � � �C x

2
n

� ˇ̌̌
xi 2R

�
:

We refer the reader to Auroux [1]. Based on this construction, one could say that ˇ #˛ can be obtained
by spinning a curve C 0 � T �S1 at p. Figure 2, bottom, represents C 0 � T �S1.

Similarly, we can construct a Lagrangian isotopy connecting �˛.ˇ/ and ˇ #˛ by spinning.

3 Lagrangian branched submanifolds

In Section 3.1, we will define Lagrangian branched submanifolds. In Section 3.2, we will introduce a
construction of a fibered neighborhood of a Lagrangian branched submanifold. In Section 3.3, we will
defined the notion of “carried by” by using a fibered neighborhood. In Section 3.4, we will introduce the
generalized Penner construction. Finally, we will give a proof of Theorem 1.3 in Section 3.5.

Algebraic & Geometric Topology, Volume 24 (2024)



662 Sangjin Lee

3.1 Lagrangian branched submanifolds

Thurston [15] used train tracks, which are 1–dimensional branched submanifolds of surfaces, and defined
the notion of “carried by a train track”. In this subsection, we generalize train tracks.

The generalization of a train track is an n–dimensional branched submanifold of a 2n–dimensional
manifold. We define the n–dimensional branched submanifolds with local models, as Floyd and Oertel
defined a branched surface in a 3–dimensional manifold in [6; 9]. For our definition, we need a smooth
function s WR!R such that s.t/D 0 if t � 0 and s.t/ > 0 if t > 0.

Definition 3.1 Let M 2n be a smooth manifold.

(1) A subset B �M is an n–dimensional branched submanifold if for every p 2 B, there exists a
chart �p W Up ��!R2n about p such that �p.p/D 0 and �p.B\Up/ is a union of submanifolds
L0; L1; : : : ; Lk for some k 2 f0; : : : ; ng, where

(3-1) Li WD f.x1; : : : ; xn; s.x1/; s.x2/; : : : ; s.xi /; 0; : : : ; 0/ 2R2n j xj 2Rg:

(2) A sector of B is a connected component of the set of all points in B that are locally modeled by L0,
ie k D 0.

(3) The branch locus Locus.B/ of B is the complement of all the sectors.

(4) Let .M 2n; !/ be a symplectic manifold. A subset B�M is a Lagrangian branched submanifold
if for every p 2B, there exists a Darboux chart �p W .Up; !jUp /

��! .R2n; !0/ about p, satisfying
that �p.B\Up/ is a union of submanifolds L0; L1; : : : ; Lk for some k 2 f0; : : : ; ng where Li is
defined in (3-1).

Remark 3.2 (1) At every point p of a branched submanifold B, the tangent plane TpB is well defined.
Moreover, if B is Lagrangian, then TpB is a Lagrangian subspace of TpM .

(2) A point on the branch locus is (a smooth version of) an arboreal singularity in the sense of Nadler [8].

Example 3.3 (1) Every Lagrangian submanifold L is a Lagrangian branched submanifold. The
branch locus Locus.L/ is empty.

(2) Every train track of a surface equipped with an area form is a Lagrangian branched submanifold.

(3) Let .M;!/ be a symplectic manifold and let L1 and L2 be two Lagrangian submanifold of M
such that

L1 t L2 D L1\L2 D fpg:

The Lagrangian surgery of L1 and L2 at p will be denoted by L2 #p L1. Then, L2 #p L1 [L1
and L2 #p L1[L2 are examples of Lagrangian branched submanifolds.

In Section 3.3, we will define the notion of “carried by” which appears in Theorems 1.3 and 6.6. In order
to define the notion of carried by, we will construct a fibered neighborhood first in Section 3.2.
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3.2 Construction of fibered neighborhoods

Let B be a Lagrangian branched submanifold. A fibered neighborhood N.B/ of B is, roughly speaking, a
codimension zero compact submanifold with boundary and corners of M , which is foliated by Lagrangian
closed disks which are called fibers.

Definition 3.4 A fibered neighborhood of B is a union
S
p2B Fp, where fFp j p 2 Bg is a family of

Lagrangian disks which are called fibers satisfying

(1) for any p 2B, Fp t B,

(2) for any p; q 2B, either Fp D Fq or Fp \Fq D¿,

(3) there exists a closed neighborhood U �B of Locus.B/, such that fFp j p 2U g is a smooth family
over each local sheet Li \U ,

(4) for each sector S of B, fFp j p 2 S nU g is a smooth family,

(5) if p 2 S \ @U where S is a sector of B, then, for any sequence fqn 2 S nU gn2N , limn!1 Fqn is
a Lagrangian disk such that limn!1 Fqn � F

ı
p D Fp n @Fp.

Example 3.5 Let M be a symplectic manifold and let L be a Lagrangian submanifold of M . Then L
is a Lagrangian branched submanifold of M . By the Lagrangian neighborhood theorem [16], for any
Lagrangian submanifold L ofM , there exists a small neighborhood N.L/ of the zero section of T �L such
that a symplectic embedding iL WN.L/ ,!M is defined on N.L/. Without loss of generality, we assume
that N.L/ is a closed neighborhood. Then N.L/ is foliated by closed Lagrangian disks N.L/\ T �p L.
Thus, N.L/ is a fibered neighborhood of L.

We will now give a specific construction of a fibered neighborhood N.B/. The rough sketch of the
construction is as follows. If p 2B lies on a sector S of B, by Example 3.5, there is a natural embedding
iS W N.S/ ,!M . Then is.N.S/\ T �pS/ t B. Thus, it is natural to set Fp WD is.N.S/\ T �pS/ t B.
However, if one sets as above, the odds are that there are p; q 2B nLocus.B/ near Locus.B/ such that
Fp \Fq ¤¿, but Fp ¤ Fq . See Figure 3 representing the case of dimM D 2.

To handle this issue, we classify p 2B into three cases: “near the branch locus”, “far from the branch
locus”, and “between the other two”. Then, we construct a fiber Fp for p in each case.

Fibrations over near the branch locus First, we will construct fibers near the branch locus. For
each connected component ` of Locus.B/, we choose a small closed Lagrangian neighborhood L` of `
satisfying the following. Fix a Riemannian metric g or an almost complex structure J compatible with !.
Then, one can define a normal bundle for every Lagrangian submanifold. We choose any Lagrangian L`
containing ` such that for any x 2 `, .Tx��1x .Li //

? t TxL` for all i . Note that �x and Li appeared in
Definition 3.1.
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B

`

Fp

Fq

p

q

Figure 3: Black curves are part of a Lagrangian branched submanifold B, the black point is a
connected component ` of Locus.B/, the red and blue points are p; q 2B, and the red and blue
lines are Fp and Fq .

Then, by Example 3.5, there exists a symplectic embedding

iL` W N.L`/ ,!M:

Let U.`/D iL`.N.L`//.

Without loss of generality, we can choose a sufficiently small L` such that

iL`.N.L`/\T
�
x L`/\B¤¿ for all x 2 L`;

iL`.N.L`/\T
�
x L`/ t B for all x 2 L`;

U.`/\U.`0/D¿ if `¤ `0:

If p 2 B is “close” to the branch locus, ie there is a connected component ` of Locus.B/ such that
p 2B\U.`/, then there exists x 2L` such that p 2 iL`.N.L`/\T

�
x L`/. Let Fp WD iL`.N.L`/\T

�
x L`/.

Then Fp is a closed Lagrangian disk containing p.

By choosing a sufficiently small L`, for every p 2B\U.`/,

(3-2) Fp t B and @Fp \BD¿:

After possibly renaming U.`/, from now we assume that

U.`/D
[
p2L`

Fp:

If p 2B\U.`/, then there is a unique q 2 L` such that p 2 Fq . We define Fp WD Fq . Thus, for p 2B

which is close to Locus.B/, ie p 2 U.`/ for some connected component ` of Locus.B/, we can define a
fiber Fp at p.

Fibrations far from the branch locus If p 2B n
S
` U.`/, then there is a sector S of B containing p.

Since S is Lagrangian, there is an embedding iS WN.S/ ,!M . We can assume N.S/ is small enough that

Fq \ iS .N.S//� Fq
ı
D Fq n @Fq for any q 2B\U.`/;�

iS .N.S// n[U.`/
�
\
�
iS 0.N.S

0// n[U.`/
�
D¿ if S ¤ S 0:

Figure 4, bottom right, represents examples of N.S/.
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`

Fp

L.`/

U.`/ Fp is not transversal to B

.Fp nF
ı
p /\B¤¿ example of N.S/

Figure 4: Black curves are part of a Lagrangian branched submanifold and the black marked
points denote a connected component ` of Locus.B/. In the top left, L` is in red, and the fibers
Fp , for p 2B\U.`/, are in blue; the top right and bottom left are not allowed by (3-2); and in
the bottom right, the red and green boxes are examples of N.S/ and the dotted box is an example
of U.`/.

For any sector S , S n
S
` IntU.`/ is a Lagrangian submanifold with boundary. The boundary of

S n
S
` IntU.`/ is a union of S.`/ WD S \ @.U.`//. We fix a tubular neighborhood of S.`/, which

is contained in S n
S
` IntU.`/, and identify the tubular neighborhood with S.`/� Œ0; 1/. For convenience,

we will pretend that S.`/� Œ0; 1�� S and S.`/� f0g D S.`/.

If p 2 S n
S
` IntU.`/ does not lie in any S.`/� .0; 1/, then we set Fp WD iS .N.S/\T �p S/. See Figure 5,

top right.

Interpolation on S.`/� Œ0; 1� Let p 2 S.`/. Then F.p;0/ and F.p;1/ are already constructed. We will
construct F.p;t/ from F.p;0/ and F.p;1/. The idea is to understand F.p;0/ as a deformed F.p;1/. In order
to measure how much deformed F.p;0/ is from F.p;1/, we will construct a family of Lagrangian discs
B.p;t/ for all t 2 Œ0; 1�, which are parallel to F.p;1/. The family B.p;t/ is defined by setting

B.p;t/ WD iS .N.S/\T
�
.p;t/S/:

We note that B.p;t/ is parallel to B.p;1/ D F.p;1/ so that there is a natural bijection map between B.p;t/
and B.p;1/.
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U.`/

`

Fp for p … S.`/� .0; 1�

`

Fp for p 2 S.`/� .0; 1�

`

Figure 5: Black curves are part of a Lagrangian branched submanifold and marked points denote `;
in the top left, U.`/ is shaded blue, the vertical line segments are fibers. in the top right, the fiber
Fp for p … S.`/� .0; 1� is in green; and in the bottom, the fiber Fp for p 2 S.`/� .0; 1� is in red.

By applying the Lagrangian neighborhood theorem [16] to B.p;0/,

F.p;0/\ iS .N.S//D iB.p;0/.the graph of a closed section in T �B.p;0//:

Every closed section of T �B.p;0/ is an exact section because B.p;0/ is a disk. Thus, there is a function
f.p;0/ W B.p;0/!R such that

F.p;0/\ iS .N.S//D iB.p;0/.the graph of df.p;0//:

In other words, F.p;0/ is obtained by deformingB.p;0/. The deformation can be understood by using f.p;0/.

Similarly, we will construct F.p;t/ by deforming B.p;t/. In order to deform, we define a function
f.p;t/ W B.p;t/!R as

f.p;t/ W B.p;t/
��! B.p;0/

.1�t/f.p;0/
�������!R:

The first arrow comes from the bijection between them. Then we set

F.p;t/ WD iB.p;t/.the graph of df.p;t//:

A fibered neighborhood N.B/ is given by the union of fibers, ie N.B/ D
S
p2B Fp. Note that the

construction of N.B/ is not unique.
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3.3 Associated branched manifolds and the notion of “carried by”

We constructed a fibered neighborhood N.B/. In order to define what it means for a Lagrangian to be
carried by B, we introduce a projection map from N.B/ to an associated branched manifold B�.

Definition 3.6 Let B be a Lagrangian branched submanifold of M and let N.B/ be a fibered neighbor-
hood of B. Then, the associated branched submanifold B� is defined by setting

B� WDN.B/=�; x � y if there exists an Fp such that x; y 2 Fp:

Let � WN.B/!B� denote the quotient map. We would like to remark that �jB is not bijective, but B

and B� are equivalent as branched manifolds. We explain this with more detail in Remark 3.8.

We note that B� is not contained in M . However, since B� is a branched manifold, we can define the
branch locus and sectors of B� as follows:

Definition 3.7 (1) A sector of B� is a connected component of

fp 2B� j p has a neighborhood which is homeomorphic to Rng:

(2) A branch locus of B� is the complement of all the sectors.

Remark 3.8 (1) Fibered neighborhoods N.B/ of B are not unique. However, if N.B/ is small enough,
then B and B� are equivalent as branched manifolds. For the equivalence between branched manifolds,
we refer to Williams [17]. One can easily check their equivalence by using the Darboux chart that
appeared in Definition 3.1. Thus, B� is unique as a branched manifold under the assumption that N.B/
is small enough.

In the rest of this paper, when it comes to a Lagrangian branched submanifold B, we will consider a triple
.B; N.B/;B�/ with an arbitrary choice of N.B/. Moreover, for any triple .B; N.B/;B�/, the projection
map is denoted by � for convenience.

(2) A fibered neighborhood N.B/ is a union of fibers, ie N.B/D
S
p2B Fp. In the equation, B is an

index set. However, there is a possibility of having two distinct points p; q 2B such that Fp D Fq . From
now on, we will use B� as an index set and, by abuse of notation, Fx denotes ��1.x/ for all x 2B�.

(3) Let x be a branch point of B�. Then there are sectors S0; S1; : : : ; Sl of B� for some l � 2 such that

x 2 S i for every i D 0; 1; : : : ; l;

Fx \��1.S0/D Fx and Fx \��1.Si /� F ıx D Fx n @Fx for every i D 1; 2; : : : ; l:

Figure 6, right, represents this.

If a Lagrangian submanifold L (resp. Lagrangian branched submanifold L) is contained in N.B/, there
is a restriction of � to L (resp. L). For convenience, we will simply use � instead of �jL W L! B�

(resp. �jL W L!B�).
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N.B/

x

S0

S2

S1

B�

� #

� WN.B/!B� Fx

��1.S2/\Fx

��1.S1/\Fx

Fx

Figure 6: The left represents � W N.B/ ! B�. In N.B/, the blue, red, and green represent
��1.S0/, ��1.S1/, and ��1.S2/, where Si is the corresponding sector of B�. The right represents
Fx where x is in the branch locus of B� to the left.

Definition 3.9 Let L be a Lagrangian submanifold (resp. L be a Lagrangian branched submanifold)
of N.B/.

(1) A point x of L (resp. L) is a regular point of � if L t F�.x/ (resp. L t F�.x/) at x.

(2) A point x of L (resp. L) is a singular point of � if x is not regular point of � . Moreover, y 2B�

is a singular value of � if there is a singular point x of � such that �.x/D y.

(3) L is minimally singular with respect to B if � W L!B� has no singular value on the branch locus
of B� and jFx \Lj D jFy \Lj, for any nonsingular value x and y which lie in the same sector
of B�, where j � j means the cardinality of a set.

We recall that by definition, branched manifolds have tangent spaces even along the branch locus, so
Definition 3.9 makes sense.

Definition 3.10 Let B and L be branched Lagrangian submanifolds.

(1) L is strongly carried by B if L (resp. L) is Hamiltonian isotopic to L0 such that L0 �N.B/ and
� W L0!B� has no singular value.
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(2) L is weakly carried by B if L is Hamiltonian isotopic to L0 such that L0 �N.B/, L0 is minimally
singular, and � W L0!B� has countably many singular values.

We would like to remark that Lagrangian submanifolds are branched Lagrangian submanifold with empty
branch locus. In the rest of this paper, if L is weakly carried by B, then we will assume that L�N.B/
and L is minimally singular with respect to B.

Note that the notion of “carried by” used by Thurston in [14] is our notion of “strongly carried by”. For
the case of surfaces, singularities of � can be easily resolved. However, for the case of higher-dimensional
symplectic manifolds, there exists singularities which cannot be resolved. Thus, we defined the notion of
“weakly carried by”. We will give more detail in Section 3.4 with examples.

Thurston showed that for a pseudo-Anosov surface automorphism  W S ��! S , there is a 1–dimensional
branched submanifold � which is called a train track such that  .�/ is strongly carried by � . Our higher-
dimensional generalization is slightly weaker, ie for some symplectic automorphism W .M;!/ ��! .M;!/,
we construct a Lagrangian branched submanifold B such that  .B / is weakly carried by B . In
other words, we allow nontransversality at countably many point p 2 B . However, we allow only
one type of nontransversality. In the rest of the present subsection, we will describe the unique type of
nontransversality.

Definition 3.11 Let L be weakly carried by B. A singular component V of � W L!B is a connected
component of the set of all singular points of � .

Example 3.12 Let M be the symplectic manifold T �Rn 'R2n equipped with the canonical symplectic
form. The zero section Z WD Rn � 0 � R2n is a Lagrangian branched submanifold. The fibered
neighborhood N.Z/ is M with fibers Fp WD T �p Rn for all p 2Rn D Z. Then, a Lagrangian submanifold

L� WD f.tx; x/ 2Rn �Rn j t 2R; x 2 Sn�1 �Rng

is weakly carried by Z, and �� has only one singular component

V� WD f.0; x/ j x 2 S
n�1
g;

where �� is the projection map.

In order to understand the singularity, we would like to restrict �� on L�. By definition L� is R�Sn�1,
and the restriction is the map described as follows. First, the map collapses the center sphere f0g �Sn�1

to a point and get two cones of Sn�1 glued at the vertex. Then, second, the map projects each cone of
Sn�1 to a disk Dn. Figure 7 describes the case of nD 2.

Definition 3.13 A singular component V of � W L!B is of real blow-up type if there exists an open
neighborhood U of V and a symplectomorphism � W U ��!R2n such that �.U \B/D Z; �.V /D V�,
and ��1 ı�� ı� D � , where Z, V�, and �� are defined in Example 3.12.
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L�

V�

��

Figure 7: In the upper left, the Lagrangian L� is shaded in black and the set of singular points V�
is shaded in red; the vertical arrow means the projection map ��. In the lower left, the disk is a
target of ��; the red marked point is the singular value. In the middle right, the picture describes
two cones glued at the vertex(red marked point), which is obtained by collapsing V�.

Definition 3.14 A Lagrangian submanifold L (resp. Lagrangian branched submanifold L) is carried by a
Lagrangian branched submanifold B if L (resp. L) is weakly carried by B and every singular component
of � is a singular component of real blow-up type.

3.4 Examples of “weakly carried by”

In Section 3.4, we will give three examples of Lagrangians which are weakly carried by Lagrangian
branched submanifolds. The first example is the lowest dimensional example, ie a 1–dimensional
Lagrangian in a 2–dimensional symplectic manifold. The second example is a Lagrangian torus in T �S2.
We will introduce these two examples in order to help the reader’s understanding on the notion of “weakly
carried by”. The third example is a Lagrangian sphere in an A3–surface singularity. With the example, we
will explain why singular components occur naturally by iterating Dehn twists, which we will consider in
the present paper.

Algebraic & Geometric Topology, Volume 24 (2024)



Towards a higher-dimensional construction of stable/unstable Lagrangian laminations 671

T �S1

Z

B

Figure 8: T �S1 together with the zero section B (black) and a Lagrangian Z (red) Hamiltonian
isotopic to B.

An example in T �S 1 We consider the cotangent bundle of S1. Let B denote the zero section of T �S1.
Figure 8 describes T �S1 and B. Let Z denote the red curve in Figure 8. Then Z is a Lagrangian which
is Hamiltonian isotopic to B.

By restricting a cotangent bundle map � on Z, Z is weakly carried by B. However, by Hamiltonian
isotoping Z, one obtains B and one can resolve the singularities of � W Z! B. In other words, Z is
strongly carried by B.

In [14], Thurston proved that on a surface, if a Lagrangian L is carried by a branched submanifold B,
then by isotoping L, one can resolve the singularities. Thus, Thurston used the notion of “carried by”
without defining the notion of “weakly carried by” and his notion of “carried by” is the same to the notion
of “strongly carried by”.

Remark 3.15 Thurston resolved the singularities by isotoping, not Hamiltonian isotoping. Thus, for a
1–dimensional Lagrangian L which is weakly carried by a branched submanifold B, it is possible that
one cannot resolve the singularities of � W L!B, ie L is not strongly carried by. However, we do not
discuss the existence of such examples in the current paper.

A torus in T �S 2 We will introduce an example of a torus T in T �S2 such that T is weakly carried by,
but not strongly carried by, the zero section B. In order to describe the example, let assume that

T �S2 D

�
.x1; x2; x3; y1; y2; y3/ 2R6

ˇ̌̌ 3X
iD1

x2i D 1;

3X
iD1

xiyi D 0

�
�R6 ' T �R3:

Then it is easy to check that !jT �S2 is a symplectic form on T �S2, where ! D
P3
iD1 dxi ^ dyi .

Let T be given by

T D
˚�

cos �.0; 0; 1/C sin �.cos�; sin�; 0/;�sin �.0; 0; 1/C cos �.cos�; sin�; 0/
�
j �; � 2R

	
:
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Then it is easy to check that T is a Lagrangian submanifold of T �S2. By restricting the cotangent bundle
map � on T , T is weakly carried by B. However, L cannot be strongly carried by B. If L is strongly
carried by B, then L should be a covering space of B. However, since B is S2, a torus T cannot be a
covering space.

This example shows the reason why we need to define the notion of “weakly carried by” in a symplectic
manifold of dimension greater than or equal to 4.

Singularity arising from iterating a Dehn twist We will give an exact Lagrangian sphere in A3–surface
singularity. By definition, A3–surface singularity M is symplectically identified with

M WD f.x; y; z/ j x2Cy2C z4 D 1g � .C3; !std/:

We will use well-known properties of M without proof. For details, we refer the reader to Wu [18].

The first property is that M is symplectically equivalent to the plumbing of two copies of T �S2 at one
point, ie

M ' P.˛; ˇ/:

We defined P.˛; ˇ/ in Section 2.1. The second property of M is that M is equipped with a Weinstein
Lefschetz fibration f .x; y; z/D z. The Lefschetz fibration has three singular points. Fibers at regular
points are T �S1.

The Lagrangian sphere which we will consider is �2.ˇ/, where � is a Dehn twist along ˛. We will
encode �2.ˇ/ on the base of the Lefschetz fibration. Figure 9 describes the base of the Lefschetz fibration
f WM !C. Then ˛ (resp. ˇ) is a union of vanishing cycles over a curve connecting two singular points
on the base, which is shaded red (resp. blue) in Figure 9, top. Similarly, �2.ˇ/ is a union of vanishing
cycles over a curve shaded green in Figure 9, top.

Let B be the union of vanishing cycles over a curve shaded red in Figure 9, bottom. Then �2.ˇ/ is carried
by B. The projection map from �2.ˇ/ to B could be drawn as arrows on the base of f ; see Figure 9,
bottom.

One can observe that, in Figure 9, bottom, there is a arrow from a regular point x to a singular point y.
On �2.ˇ/, the point x corresponds to the vanishing cycle on f �1.x/. The vanishing cycle is projected to
a point on f �1.y/ by � W �2.ˇ/!B. Moreover, one can observe that the singular component is of real
blow-up type. Thus, �2.ˇ/ is carried by B.

Remark 3.16 The last example shows that a singular component could occur when we iterate a Dehn
twist. We will consider the natural occurrence in later sections.

3.5 The generalized Penner construction

In this subsection, we give a higher-dimensional generalization of Penner construction [10] of pseudo-
Anosov surface automorphisms. The generalization replaces Dehn twists by generalized Dehn twists
along Lagrangian spheres.
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base of the Lefschetz fibration

f .B/

Figure 9: Top: base of the Lefschetz fibration f ; the red, blue and green curves are images of ˛,
ˇ and �2.ˇ/. Bottom: the red curves are the image of B under f and the arrows are describing
the projection maps from �2.ˇ/ to B.

Generalized Penner construction Let M be a symplectic manifold. A symplectic automorphism
 WM ��!M is of generalized Penner type if there are two collections,

AD f˛1; : : : ; ˛mg; B D fˇ1; : : : ; ˇlg;

of Lagrangian spheres satisfying

˛i \ j̨ D¿; ˇi \ ǰ D¿ for all i ¤ j;

˛i t ǰ for all i; j

such that  is a product of positive powers of Dehn twists �i along ˛i and negative powers of Dehn twists
�j along ǰ , subject to the condition that every sphere appear in the product.

A Lagrangian sphere ˛i (resp. ǰ ) is called a positive (resp. negative) sphere since only positive powers
of �i (resp. negative powers of �j ) appear in  .

Remark 3.17 (1) In Theorems 1.3 and 1.5, we can assume that the symplectic manifold M is a
plumbing space. Every �i (resp. �j ) is supported on a neighborhood of ˛i (resp. ǰ ), which is denoted
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˛

ˇ ˇ

˛
p p

DCp D�p

.ˇ #p ˛/[˛ .ˇ #p ˛/[ˇ

Figure 10: The blue curves represent DCp in the left-hand picture and D�p in the right-hand
picture; the red curves represent Np in both.

by T �˛i (resp. T � ǰ ). Thus,  is supported on the union of T �˛i and T � ǰ . By the transversality
condition ˛i t ǰ , we can identify the union with a plumbing space

P D P.˛1; : : : ; ˛m; ˇ1; : : : ; ˇl/:

Thus, it suffices to prove Theorems 1.3 and 1.5 on the plumbing space P , which we take to be connected.

(2) In [10], the Penner construction required that A and B fill the surface S ; ie the complement of
A[B is a union of disks and annuli, one of whose boundary components is a component of @S . In
the current paper, we do not require the analogue of the filling condition since we only construct an
invariant Lagrangian branched submanifold and an invariant Lagrangian lamination, not an invariant
singular foliation on all of M .

In the rest of this subsection, we define a set of Lagrangian branched submanifolds in a plumbing space
P.˛1; : : : ; ˛m; ˇ1; : : : ; ˇl/. We start from the simplest plumbing space, having one positive and one
negative sphere intersecting at only one point.

Example 3.18 Let ˛ and ˇ be n–dimensional spheres and letM be a plumbing P.˛; ˇ/which is plumbed
at only one point p. Let ˇ#p˛ be the Lagrangian surgery of ˛ and ˇ at p such that ˇ#p˛'�˛.ˇ/'��1ˇ .˛/.
See Figure 10, which represents the case nD 1. The cross-shape is the plumbing space P.˛; ˇ/, where ˛
is the horizontal line and ˇ is the vertical line.

The neck Np at p connecting ˛ and ˇ is the closure of .ˇ #p ˛/� .˛[ˇ/. In Figure 10, Np is drawn in
red. The positive disk DCp at p is the closure of ˛� .ˇ #p ˛/ and the negative disk D�p at p is the closure
of ˇ� .ˇ #p ˛/. The disks D˙p are drawn in blue in Figure 10. Then, by attaching DCp or D�p to ˇ #p ˛,
we obtain Lagrangian branched submanifolds .ˇ #p ˛/[˛ and .ˇ #p ˛/[ˇ.

On a general plumbing space M D P.˛1; : : : ; ˛m; ˇ1; : : : ; ˇl/ with positive spheres ˛i and negative
spheres ǰ , we similarly construct Lagrangian branched submanifolds. More precisely, given a plumbing
point p, Np , DCp and D�p are the closures of . ǰ #p ˛i /� .˛i [ ǰ /, ˛i � . ǰ #p ˛i / and ǰ � . ǰ #p ˛i /,
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respectively. In order to construct a Lagrangian branched submanifold B, let Dp.B/ be either DCp or D�p .
In other words, to construct B, one choose either DCp or D�p for each plumbing points p. Then we
construct a Lagrangian branched submanifold B by setting

(3-3) B WD
[
i

�
˛i �

[
p2˛i

DCp

�
[

[
j

�
ǰ �

[
p2 ǰ

D�p

�
[

[
p

Np [
[
p

Dp.B/:

There are 2N possible choices of B, where N is the number of plumbing points. Let B be the set of all
2N Lagrangian branched submanifolds constructed above.

3.6 Proof of Theorem 1.3

In this subsection, letM DP.˛1; : : : ; ˛m; ˇ1; : : : ; ˇl/, let �i (resp. �j ) be a Dehn twist along ˛i (resp. ǰ ),
and let  be of generalized Penner type.

In the rest of the paper, we assume that every Dehn twist, �i and �j , satisfies that

(1) �i (resp. �j ) is supported on a small neighborhood T �˛i (resp. T � ǰ ) of ˛i (resp. ǰ );

(2) �i (resp. �j ) agrees with the antipodal map on ˛i (resp. ǰ ).

We define

(3-4)

Ap WD �i .D
C
p /; Bp WD �

�1
j .D�p / if p 2 ˛i \ ǰ ;

˛0i WD ˛i �
[
p2˛i

.DCp [Ap/; ˇ0j WD ǰ �

[
p2 ǰ

.D�p [Bp/:

In words, Ap (resp. Bp) is a neighborhood of an antipodal point of p in ˛i (resp. ǰ ). We are assuming
that D˙p , Ap and Bp are sufficiently small that they are disjoint to each other.

Recall that B is the set of Lagrangian branched submanifolds defined in Section 3.5; see the last sentence
of that subsection.

Lemma 3.19 For all k, there exists a function F�k W B! B such that �k.B/ is carried by F�k .B/ for all
B 2 B. Similarly, there is a function F��1

j
W B! B for all j such that ��1j .B/ is carried by F��1

j
.B/.

Proof In this proof, �k is given by (2-2) and Q� WT �Sn ��!T �Sn defined in Section 2.2; ie �kD�ı Q�ı��1

in a neighborhood of ˛k , where � is an identification of T �Sn and a neighborhood of ˛k .

Given B 2 B, B admits the decomposition

(3-5) BD
[
i

˛0i [
[
j

ˇ0j [
[
p

Np [
[
p

Ap [
[
p

Bp [
[
p

Dp.B/;

where Dp.B/ is either DCp or D�p . This follows from (3-3) and (3-4).

We prove the first statement for �k; the proof for ��1j is analogous. Our strategy is to apply �k to ˛0i , ˇ
0
j ,

Np, Ap, Bp, and D˙p . We claim:

(i) �k.˛
0
i /D ˛

0
i and �k.ˇ0j /D ˇ

0
j , and they are strongly carried by ˛0i and ˇ0j .
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(ii) If p … ˛k , then �k.Np/ D Np, �k.D˙p / D D
˙
p , �k.Ap/ D Ap and �k.Bp/ D Bp, and they are

strongly carried by Np, D˙p , Ap and Bp.

(iii) If p 2 ˛k , then �k.DCp /D Ap , �k.Ap/DDCp and �k.Bp/D Bp , and they are strongly carried by
Ap, DCp and Bp.

(iv) If p 2 ˛k , then �k.D�p / and �k.Np/ are obtained by spinning with respect to p. Moreover, �k.D�p /
is strongly carried by Np [ .˛k �DCp / and �k.Np/ is carried by Np [ .˛k �DCp /.

By (3-5) and (i)–(iv), �k.B/ is carried by B0 such that

(3-6) B0 D
[
i

˛0i [
[
j

ˇ0j [
[
p

Np [
[
p

Ap [
[
p

Bp [
[
p

Dp.B
0/;

where DP .B0/ is Dp.B/ if p … ˛k and DCp if p 2 ˛k . Then F�k W B! B is defined by F�k .B/DB0.

For (i), since �k agrees with the antipodal map on ˛k , �k.˛0k/D ˛
0
k

and �k.˛0k/ is strongly carried by ˛0
k

.
Moreover, since �k is supported on T �˛k , ˛0i does not intersect the support of �k for all i ¤ k. Thus,
�k.˛

0
i / agrees with ˛0i and �k.˛0i / is strongly carried by itself. The same proof applies to �k.ˇ0j /.

Statements (ii) and (iii) are proved in the same way.

For (iv), we compute �k.D�p / and �k.Np/ by spinning with respect to p and �. We assume

�
�
..1; 0n/; 0nC1/

�
D p

without loss of generality. Using the notation from Section 2,D�p andNp are contained in
S
y2Sn�1 �.Wy/.

Thus,

�k.D
�
p /D

[
y2Sn�1

.� ı Q� ı��1/.D�p \�.Wy//(3-7)

D

[
y2Sn�1

�
�
�
Q� jWy .�

�1.D�p /\Wy/
��
D

[
y2Sn�1

�k.D
�
p /\�.Wy/;

�k.Np/D
[

y2Sn�1

.� ı Q� ı��1/.Np \�.Wy//(3-8)

D

[
y2Sn�1

�
�
Q� jWy .�

�1.Np/\Wy/
�
D

[
y2Sn�1

�k.Np/\�.Wy/:

The restriction Q� jWy is a Dehn twist on Wy ' T �S1 along the zero section. Thus, we obtain Figure 11
which represents intersections �.Wy/ \D�p , �.Wy/ \ Np, �.Wy/ \ �k.D�p /, and �.Wy/ \ �k.Np/.
Equation (3-8) and Figure 11 imply that �k.Np/ is carried by Np[.˛k�DCp / This is because in eachWy ,
the vertical projection has no critical values. Thus, if there is a singular value, then the singular value is
created when one takes the union in (3-8). One can easily check that �k.p/ is the only singular value
when one takes the union. Similarly, �k.D�p / is strongly carried by Np [ .˛k �DCp /.

Then (i)–(iv) and (3-5) prove that �k.B/ is carried by F�k .B/.
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�k.p/

Np(red), D�p (blue)

p
�k.p/

p p
�k.p/

�k.Np/ �k.D
�
p /

Figure 11: In the left picture, the blue curve represents D�p and the red curve represents Np;
in the middle picture, the red curve represents �k.Np/; and in the right picture, the blue curve
represents �k.D�p /.

Lemma 3.20 If L is a Lagrangian submanifold which is carried (resp. weakly carried ) by B 2 B, then
�k.L/ is carried (resp. weakly carried ) by F�k .B/. The case of ��1j is analogous.

Proof We can assume that L is contained in an arbitrary small neighborhood of B. Then we apply a Dehn
twist �k as we did in the proof of Lemma 3.19. The details are similar to the proof of Lemma 3.19.

Proof of Theorem 1.3 Let  WM ��!M be a symplectic automorphism of generalized Penner type.
Then we can write  D ı1 ı� � �ııl , where ık is a Dehn twist �i or ��1j . By Lemma 3.19, we have specific
functions F�i and F��1

j
acting on B. We then define F D Fı1 ı � � � ıFıl W B! B.

We claim that F is a constant map, ie there is a unique B 2 B such that F .B/DB for all B 2 B,
which we define as follows: in (3-3), for p 2 ˛i \ ǰ , we set Dp.B /DD

C
p if the last �i in  appears

later than the last ��1j , and Dp.B /DD
�
p otherwise. Note that every Dehn twist �i and ��1j appears

in  ; thus B is well defined. By (3-6), F .B/DB for all B2B. Lemma 3.20 completes the proof.

Remark 3.21 (1) A singular value of � W  m.L/!B� can be moved by isotoping  m.L/.

(2) Every singular value of � W  m.B /!B� lies near �.p/, �.�i .p//, or �.��1j .p// by isotoping,
where p is a plumbing point.

4 Encoding a Lagrangian on a Lagrangian branched submanifold

In the previous section, we generalized the notion of “carried by” for higher-dimensional symplectic
manifolds. It is well known that on a surface, if a curve is carried by a train track, then one can encode
the isotopy class of curve on the train track with an extra data. The extra data is called weight. We briefly
review the notion of weight in Section 4.1, then generalize this for higher-dimensional case in Section 4.

4.1 Weights on a train track

We will briefly review the notion of weights on a train track with a simple example, and how one
can construct a stable lamination of a surface automorphism of generalized Penner type from them in
Section 4.1. We will introduce some well-known facts without proofs. For more detail, we refer the
reader to Penner and Harer [11], or Farb and Margalit [5].
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4 4

2

2

2

Figure 12: Top left: the cross shape is a surface S , the black graph is a Lagrangian branched
submanifold B , and the red curves are carried by B . Top right: the numbers are the weights
corresponding to the red curve in the diagram to the left. Bottom: the red curves are parallel
copies of each edges and the blue dotted curves are the unique way to connecting the parallel
copies.

At the end of Section 4.1, we will explain why the construction on surfaces does not work on the cases of
a higher-dimensional symplectic manifold. Then, we will give a detailed organization of Section 4.

The notion of weights Let S be a surface obtained by plumbing two copies of T �S1 at one point.
Two zero sections of each copies of T �S1 will be denoted by ˛ and ˇ as we did in previous sections.
Similarly, let � and � denote Dehn twists along ˛ and ˇ respectively. We will fix a surface automorphism
 WD � ı ��1. Then, by Section 3, there is a branched submanifold B such that if a curve C � S is
carried by B , then  .C/ is also carried by B . Moreover, as mentioned in Section 3.4, one can assume
that there is no singular value of � W C !B by isotoping. Figure 12, top left, describes the surface S
and B together with an example of a curve C which is carried by B .

Weights on a train track are collection of nonnegative numbers assigned on each edges of the train track. If
a curve C is carried by a train track B, then C gives weights on B by assigning the number of connected
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components of ��1.e/ for each edge e of B . Figure 12, top right, is an example of weights, which are
induced from the curve C drawn in Figure 12, top left.

Conversely, one can recover the isotopy class of a curve C from a train track B which carries C and
the weights induced from C . In order to recover, one can considers parallel copies of each edges. The
numbers of copies are the weights on each edges. Then, it is known that there is a unique way to connect
each copies to construct an isotopy class of the curve C . Figure 12, bottom, is the example of the
recovering process.

Linear algebra on weights By Theorem 1.3, for a surface automorphism  of generalized Penner type,
if a curve C is carried by a train track B , then  .C/ is carried by B . Since C and  .C/ are carried
by B , they induce weights on B . Moreover, it is well known that the weights for  .C/ is obtained
from the weights for C by doing linear algebra. We will review this with the example which we used
above, ie S is the plumbing of T �˛ and T �ˇ and  D � ı ��1.

Let C be a curve carried by B such that the induced weights on B are a, b and c, as drawn in Figure 13,
top left. For simplicity, we write the weight for C in a vector

EwC D

0@ab
c

1A :
Figure 13, top right and bottom left, are �.B / and  .B /. One can observe that  .B / is carried by
B and induces weights 3bC 2c, 2bC c and a on B . Thus, the weights for C and  .C/ satisfy

(4-1) Ew .C/ D

0@0 3 20 2 1

1 0 0

1A � EwC :
Remark 4.1 In (4-1), a 3� 3 matrix appears. One can replace this matrix with a 2� 2 matrix. Since the
weight assigned on the blue edge in Figure 13 should be the same to the sum of weights assigned on the
red and black edges in Figure 13. This condition is called the switch condition. For the detail, see Farb
and Margalit [5].

Stable lamination of  For a surface automorphism  of generalized Penner type, it is well known
that the stable lamination of  is easily constructed from B and the linear algebra which we did above.
For a rigorous treatment, we should define the notion of measured lamination and should explain how a
measured lamination L can be encoded onto a pair .B; EwL/ of a train track B and weights EwL. However,
for simplicity, we skip this excepts that the weight vector EwL is an eigenvector of A corresponding to
an eigenvalue � > 1, where A is the matrix appearing in (4-1).

For more details including the notion of measured laminations and the existence of an eigenvalue � > 1
of A , we refer the reader to Farb and Margalit [5].
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a

c

b

b

a c

2bC c

3bC 2c a

Figure 13: Top left: the Lagrangian branched submanifold B has three edges shaded blue, red
and black, and a, b and c are weights on the edges, respectively. Top right describes ��1.B /;
blue, red and black edges are assigned the same weights a, b and c. Bottom left describes
�.��1.B // D  .B /; blue, red and black edges are assigned the same weights a, b and c.
Bottom right describes the projection of  .B / onto B , and one finds new weights on each
edge of B .

A difficulty on higher-dimensional symplectic manifolds For a surface automorphism  of generalized
Penner type, one can construct the stable lamination of  by doing some linear algebra on weights on a
train track B . This is because, in the case of a surface, the notion of carried by is the notion of strongly
carried by, ie there is no singular component. However, in the case of a higher-dimensional symplectic
manifold, the construction of laminations on surfaces does not work, because of singularities.

In Section 4.2, we will decompose B� into a union of disks. The disks are of two types, one with
singularities and one without singularities. Then, in Section 4.3, we will generalize the notion of weights.
Since the generalization should have information on singularities, it will be defined by using the disks
with singularities. In Section 5.1, we will generalize the linear algebra on weights. In Section 6.2, we
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will construct a stable Lagrangian lamination on a disc with singularities, and in Section 6.3, we will
construct on a disc without singularities.

4.2 Singular and regular disks

As mentioned in the previous subsection, the construction of laminations on surfaces does not work
because of singularities. In Section 4.2, for a symplectic automorphism  of generalized Penner type,
we decompose B into a union of disks. The disks are classified into two types, with and without
singularities.

Definition 4.2 Let assume that there is a pair . WM ��!M;B / of a symplectic automorphism  and
a Lagrangian branched submanifold B such that  n.B / is carried by B for all n 2N. Let B� be the
associated branched manifold of B . Then the triple . ;B ;B

�
 / admits a decomposition into singular

and regular discs if B� can be decomposed into the union of a finite number of disks Si 'Dn, which
are called singular disks, and Rj 'Dn, which are called regular disks, ie

(4-2) B� D
[
i

Si [
[
j

Rj

such that

(1) each singular disk Si is a closed disk contained in a closure of a sector of B�;

(2) Si \Sj D¿ for any i ¤ j ;

(3) every singular value of � W m.B /!B after weakly fibered isotopy lies in
S
i S
ı
i for allm2N,

where Sıi is the interior of Si ;

(4) each regular disk Rj is a closed disk contained in a closure of a sector minus
S
i S
ı
i ;

(5) Si and Rj (resp. Ri and Rj for i ¤ j ) meet only along their boundaries.

For convenience, we simply say that B� , instead of a triple . ;B ;B
�
 /, admits a decomposition into

singular and regular discs.

Definition 4.3 Let a triple . ;B ;B
�
 / admit a decomposition into singular and regular discs. A

Lagrangian L which is carried by B is compatible with the decomposition if L is Hamiltonian isotopic
to L0 such that every singular value of � W L0!B lies on a singular disc.

Remark 4.4 In Section 3, we used a decomposition of B with notation D˙p , Ap , Bp and so on. However,
the decomposition introduced in Definition 4.3 is a decomposition of the associated branched manifold B�,
not B.

In the rest of Section 4.2, we will introduce and use a specific decomposition of B� for  of generalized
Penner type. Since the specific decomposition of B� , together with the decomposition of B in (3-5), is
likely to confuse the reader, we remark that here.

Algebraic & Geometric Topology, Volume 24 (2024)



682 Sangjin Lee

If B� admits a decomposition into singular and regular discs, then one obtains a decomposition ofN.B /

as
N.B /D

[
i

��1.Si /[
[
j

��1.Rj /:

Remark 4.5 In Section 4.3 (resp. Section 6.3), we will construct a Lagrangian lamination on ��1.Sıi /
(resp. ��1.Rıj /) which is the closure of ��1.Sıi /, not on ��1.Si / (resp. � ��1.Rj /). This is because
��1.Si / (resp. ��1.Rj /) is not a (closed) submanifold of M if Si (resp. Rj ) intersects the branch locus
of B�.

Figure 6 is an example. If S1 in Figure 6 is a singular disk, then ��1.S1/ is the union of the red box in
Figure 6, left, and Fx .

Decomposition of B�
 

for of generalized Penner type Let us assume that a symplectic automorphism
 WM ��!M is of generalized Penner type. Then, in Section 3, we constructed a Lagrangian branched
submanifold B . We will now give a specific decomposition of B� into singular and regular discs, which
we will call the standard decomposition of B� .

By Remark 3.21, after weakly fiber isotoping, every singular value of � W  m.B /! B� lies in the
interior of Sp.B / or S˙p , where Sp.B / WD �.Dp.B //, SCp WD �.Ap/ and S�p WD �.BP /. We note
that as the notation suggests, Sp.B/ depends on B, but S˙p does not. In the specific decomposition,
Sp.B / and S˙p are singular disks of B� and there is no other singular discs.

Remark 4.6 As mentioned in Remark 4.4, Sp.B / and S˙p are subsets of B� , not B . However, in
the rest of the current paper, if there is no chance of misunderstanding, we will abuse notation and will
identify the singular disks with Dp.B /, Ap and Bp. This is for notational convenience.

We will divide the complement of singular disks from B� , ie

(4-3) B� n

�[
p

Sp.B /t
[
p

SCp t
[
p

S�p

�
;

into regular disks. In order to do this, we cut out a symplectic submanifold W 2n�2 �M 2n, which is
defined as follows: for each ˛i (resp. ǰ ), there is an equator C˛i (resp. C

ǰ
) ' Sn�1 such that

(1) for any plumbing point p 2 ˛i (resp. ǰ ), p lies on C˛i (resp. C
ǰ

);

(2) if p 2 ˛i \ ǰ , then T �C˛i � T
�C

ǰ
near p.

Note that the equators on Lagrangian spheres ˛i and ǰ are defined using identifications �˛i W ˛i
��! Sn

and �
ǰ
W ǰ

��! Sn. Thus, by choosing proper identification �˛i and �
ǰ

, we can assume the existence
of C˛i and C

ǰ
. Then

W WD
[
i

T �C˛i [
[
j

T �C
ǰ

is a .2n�2/–dimensional symplectic submanifold of M .
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B W

C˛

Cˇ

C˛

Cˇ

Figure 14: Left: the black curves represent B and the red dotted circles are C˛ (left) and Cˇ
(right). The blue shaded regions are singular disks. Right: W as a symplectic submanifold, black
curves are W \B , red dotted lines are C˛ (horizontal) and Cˇ (vertical), blue shaded regions
are intersections of W and singular disks.

We cut (4-3) along �.W /. The components of the complement ofW are the regular discsRj in the specific
decomposition of B . Each Rk is a manifold with corners, where the corners are at Rk \�.W /\Sl .
Then the proof of Theorem 1.3 shows that this decomposition of B� is a decomposition into singular and
regular discs. More precisely, there are two types of singularities of � W  m.B /! B , one coming
from a singularity of  m�1.B / and the other occurring when one applies  . The proof of Theorem 1.3
shows two things; first,  sends a singular value of  m�1.B / onto a singular disk, and second, a new
born singular value lies on a singular disk.

Remark 4.7 (1) If B 1 DB 2 , then it is easy to check that the standard decomposition with respect
to  i are the same.

(2) In Section 3.5, we defined a set B of Lagrangian branched submanifolds in M . For all B 2 B, one
can find a symplectic automorphism  such that BDB . Together with the above argument, for
all B 2 B, B� admits the standard decomposition.

Example 4.8 LetM be the plumbing of T �˛ and T �ˇ at one point p, where ˛; ˇ'S2. Let  D � ı��1

where � (resp. ˇ) is a Dehn twist along ˛ (resp. ˇ). Then B D .ˇ #p ˛/[˛ and . ;B ;B
�
 / admits

the standard decomposition.

Figure 14, left, is a schematic picture of B . The regions shaded blue are singular disks of the standard
decomposition. The red dotted circles are C˛ and Cˇ . Figure 14, right, is the symplectic submanifold W
of codimension 2.

Remark 4.9 For a given symplectic manifold M and a given triple . ;B ;B
�
 /, it is natural to ask

which Lagrangians L are compatible with the standard decomposition of B� . One can easily check that
if L is one of zero sections ˛i or ǰ , or if L is obtained by applying a series of Dehn twist to one of zero
sections, then L is compatible with the standard decomposition. See Remark 3.17 for the notation ˛i
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and ǰ and see the proof of Lemma 5.1. Also we note that by Wu [18], if M is an An–surface singularity,
then every exact Lagrangian L is compatible with the standard decomposition of B� if L is carried
by B . In the current paper, we simply assume that a Lagrangian M is compatible with the standard
decomposition for convenience.

4.3 Braids

In Section 4.3, we will generalize the notion of weights on higher-dimensional symplectic manifolds. We
will assume that a given triple . ;B ;B

�
 / admits a decomposition into singular and regular disks.

Let S be a singular disk in B� and let Sı be the interior of S . Then ��1.Sı/D
S
p2Sı Fp is symplec-

tomorphic to DT �.Dn/ı. Thus, the closure ��1.Sı/ is symplectomorphic to DT �Dn and there is a
natural symplectomorphism between them. The boundary @��1.Sı/ is a Dn–bundle over @S ' Sn�1

and the natural symplectomorphism induces ' W @��1.Sı/ ��! Sn�1 �Dn.

Definition 4.10 D.S/ (resp. D.@S/) is the Dn–bundle ��1.Sı/ (resp. @��1.Sı/) over Si (resp. @S ).

Definition 4.10 is for notational convenience.

Remark 4.11 Since D.S/ is symplectomorphic to a disk cotangent bundle of Dn, coordinate charts on
the base will induce a natural identification between D.S/ and Dn �Dn. By restricting the identification
on the boundary, D.@S/ is identified with Sn�1 �Dn.

If L is a Lagrangian submanifold which is carried by B and if L is compatible with the decomposition
of B� , then, for all p 2 @S , '.L\Fp/ is a finite collection of isolated points in Fp ' Dn; recall that
� W L ! B� has no singular value on @S . Thus, '.L \D.@S// can be identified with a map from
@S ' Sn�1 to the configuration space Confl.Dn/ of l points on Dn where l D l.L; S/, ie a braid. Since
L is Lagrangian, .'�1/�! vanishes on �.L\D.@S//.

From now on, we will define the braids on the boundary of a singular disk S . Let f W Sn�1!Confl.Dn/
for some l . In other words, there are maps

f1; : : : ; fl W S
n�1
!Dn

such that f .p/D ff1.p/; : : : ; fl.p/g with fi .p/¤ fj .p/ for all i ¤ j . We define

(4-4)
B.f / WD f.p; fi .p// 2 S

n�1
�Dn j p 2 Sn�1; i 2 f1; : : : ; `gg;eBr@S WD f'

�1.B.f // jf W Sn�1! Confl.D
n/ such that .'�1/�.!/ is zero onB.f / for some lg:

Note that eBr@S is a set of closed subsets of D.@S/ and independent of '.

We define an equivalence relation on eBr@S as follows: b0 � b1 for bi 2 eBr@S if there exists a smooth
1–parameter family bt 2 eBr@S connecting b0 and b1. Let Br@S WD eBr@S=�.
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Definition 4.12 Let . ;B ;B
�
 / admit a decomposition into singular and regular discs. If L is a

Lagrangian submanifold which is carried by B and is compatible with the decomposition of B� , then the
braid b.L; S/ of L on a singular disk S is the braid isotopy class of Br@S which is given by

b.L; S/D ŒL\D.@S/� 2 Br@S :

Remark 4.13 The word “braid” comes from the case of 1
2

dimM D nD 2. If nD 2, then f in (4-4) is
an element of �1.Confl.D2//, ie a braid. For a general n, we consider an element of �n.Confl.Dn//.

The notion of braid is defined as an equivalence class in Definition 4.12. However, in the rest of the
present paper, if it is not likely to be misunderstood, then we use the word “braid b.L; S/” to indicate a
representative of the class. This is for the notational convenience. By considering a representative of a
braid, we can consider b.L; S/ as a subset in D.@S/. For the case of 1

2
dimM D nD 2 (resp. general n),

a braid b.L; S/ is a union of circles (resp. Sn�1) embedded in D.@S/.

Definition 4.14 A strand of a braid b.L; S/ is a connected component of b.L; S/�D.@S/.

As similar to Remark 4.13, the word “strand” comes from the case of 1
2

dimM D nD 2.

5 Action of a symplectomorphism

In Section 5.1, we briefly review how one can keep track of the action of a surface automorphism changing
the isotopy classes of curves. The action can be written as a linear map acting on the set of weights. Also,
we generalized the notion of weights in Section 5.

In Section 5, we generalize the “linear algebra on weights” for higher-dimensional cases.

5.1 Linear algebra on braids

We would like to generalize the linear algebra on weights, which we reviewed in Section 4.1. More
precisely, we claim the following:

Claim (?) If L is carried by B and L is compatible with the standard decomposition of B� for a
symplectic automorphism  of generalized Penner type , then there is a systematic way to obtain

fb. .L/; S/ j S is a singular disk of the standard decomposition of B� g

from
fb.L; S/ j S is a singular disk of the standard decomposition of B� g:

Moreover , the systematic way depends only on  , independent of L, as one has a matrix A for  of
generalized Penner type as in Section 4.1.
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Instead of proving (?), we will prove Lemma 5.1, which considers Dehn twists �k and ��1j instead of  .
Recall Remark 3.17 saying that the symplectic manifold M is a plumbing space of copies of T �Sn and �i
(resp. �j ) is a Dehn twist along one of the zero sections of T �Sn. We also recall Lemma 3.20 saying
the following: there exists a set B of Lagrangian branched submanifolds and functions F�k W B! B

(resp. F��1
j
W B! B), such that if L is carried by B 2 B, then �k.L/ (resp. ��1j .L/) is carried by F�k .B/

(resp. F��1
j
.B/).

Lemma 5.1 LetL be a Lagrangian submanifold of M such thatL is carried by B2B andL is compatible
with the standard decomposition of B�. Then �k.L/ is compatible with the standard decomposition of
F�k .B/. Moreover , there exists a systematic way to obtain

fb.�k.L/; S/ j S is a singular disk of the standard decomposition of F�k .B/
�
g

from

fb.L; S/ j S is a singular disk of the standard decomposition of B�g:

The case of ��1j is analogous.

Remark 5.2 Since a symplectic automorphism  of generalized Penner type is a product of Dehn twists
�k and ��1j , Lemma 5.1 is enough to prove (?).

We will prove Lemma 5.1 in Sections 5.2 and 5.3. The proof will be given for an example case. In the
rest of Section 5.1, we will introduce the main idea of the proof. Also, we will introduce the example
case which we will consider in Sections 5.2 and 5.3.

The main idea The main idea is to consider �k.N.B// instead of �k.L/. More precisely, for a given
singular disk S 0 of F�k .B/DB0, we consider �k.N.B//\D.@S 0/. One can check that every connected
component of �k.N.B//\D.@S 0/ is homeomorphic to Sn�1 �Dn. For an arbitrary component, there
is a map fS!S 0;i W D.@S/! D.@S 0/, where S is a singular disk of B� and a natural number i , such
that the image of fS!S 0;i is the connected component. In other words, every connected component of
�k.N.B//\D.@S

0/ is given as the image of a function defined on D.@S/ where S is a singular disk
of B.

The subscription .S!S 0; i/ of fS!S 0;i means that it is a function explaining the contribution of b.L; S/
on b.�k.L/; S 0/. Since it is possible that there are multiple connected components of �k.N.B//\D.@S 0/,
which are induced from the same singular disk S , one needs multiple functions, which are labeled by
natural numbers i in the subscription.

Since L is carried by B, L�N.B/. Thus, �k.L/� �k.N.B//. By definition,

b.�k.L/; S
0/D �k.L/\D.@S

0/� �k.N.B//\D.@S
0/:
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We consider the intersection of b.�k.L/; S 0/ with each connected components of �k.N.B//\D.@S 0/.
In the connected component, which is the image of FS!S 0;i , b.�k.L/; S 0/ is given by

fS!S 0;i .b.L; S//:

Thus, the set ffS!S 0;ig of functions gives the systematic way to construct

fb.�k.L/; S/ j S is a singular disk of the standard decomposition of F�k .B/
�
g

from

fb.L; S/ j S is a singular disk of the standard decomposition of B�g:

The example case The symplectic manifold we consider is M D P.˛; ˇ1; ˇ2/, where ˛ and ǰ are
spheres such that ˛\ˇ1 D fpg and ˛\ˇ2 D fqg, ie M is a plumbing space of three copies of T �Sn.
Let �0 and �j be Dehn twists along ˛ and ǰ , and  D �0 ı ��11 ı �

�1
2 . Then Theorem 1.3 gives a

Lagrangian branched submanifold B . For the case of dimM D 2nD 2, Figure 15 describes the example
symplectic manifold M . In the example, we will consider the effects of ��12 on B in Section 5.2 and
�0 in Section 5.3.

For convenience, we establish notation here. The standard decomposition of B has 6 singular disks
which are centered at p, �0.p/, ��11 .p/, q, �0.q/ and ��12 .q/. As mentioned in Remark 4.6, we are
abusing notation and pretending that the singular disks are in B , not in B� . We also note that �0.p/
and �0.q/ are antipodal points of p and q on ˛. Similarly, ��11 .p/ (resp. ��12 .q/) is the antipodal point
of p (resp. q) on ˇ1 (resp. ˇ2). Let S1; : : : ; S6 denote the singular disks centered at p, �0.p/, ��11 .p/, q,
�0.q/ and ��12 .q/ respectively. Moreover, let bi denote b.L; Si / for i D 1; : : : ; 6.

Similarly, the Lagrangian branched submanifolds B0 WDF��12
.B/ and B00 WDF�0.B/ each have 6 singular

disks. By definition of the standard decomposition, those singular disks are also centered at p, �0.p/,
��11 .p/, q, �0.q/ and ��12 .q/. As we did for B, let S 01; : : : ; S

0
6 (resp. S 001 ; : : : ; S

00
6 ) denote the singular

disks of B0 (resp. B00) centered at p, �0.p/, ��11 .p/, q, �0.q/ and ��12 .q/. Moreover, we label

bi D b.L; Si /; b0i D b.�
�1
2 .L/; S 0i /; b00i D b.�0.L/; S

00
i /:

In the rest of this paper, we make specific choices of �0 and �j , given by (2-2) and � W T �Sn ��! T �Sn,
which is defined in Remark 2.2. In other words, �0 D �˛ ı � ı ��1˛ and �j D � ǰ

ı � ı ��1
ǰ

, where �˛
(resp. �

ǰ
) is a symplectomorphism from T �Sn to a neighborhood of ˛ (resp. ǰ ). The neighborhood

of ˛ (resp. ǰ ) will be denoted by T �˛ (resp. T � ǰ ).

Remark 5.3 Recall that � is a Dehn twist on T �Sn which agrees with the antipodal map

T �Sn ��! T �Sn; .u; v/ 7! .�u;�v/;

on a neighborhood of the zero section Sn.
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p q

ˇ1 ˇ2

˛ �.p/ �.q/

��11 .p/ ��12 .q/

Lagrangian branched submanifold B (blue)

p q �.p/ �.q/

��11 .p/ ��12 .q/

singular disks Si (red)

S1

S3

S4

S6

S2 S5

N.B / (black) and D.@Si / (blue)

D.@S1/

D.@S3/

D.@S4/

D.@S6/

D.@S2/ D.@S5/

Figure 15: Top: the black curves represent ˛, ˇ1 and ˇ2 inM DP.˛; ˇ1; ˇ2/, and the blue curve
is B . Middle: the red curves are singular disks Si . Bottom: the fibered neighborhood N.B /

and a disk bundle D.@Si /'D1 �S0, ie two intervals attached at @Si .

Remark 5.4 In the next sections, we will consider the example which we specified in the present
subsection. Moreover, for convenience, we will assume that the dimension 2n of the symplectic manifold
M is 4. For the case of nD 2, we specify identifications 'i , '0i and '00i fromD.@Si /, D.@S 0i / andD.@S 00i /
to S1 �D2. We would like to point out that there is no reason to choose these specific identifications,
this is only for the notational convenience.
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In order to construct '1 WD.@S1/ ��! S1 �D2, we remark that

D.@S1/D @��1.S
ı
1 /; D.S1/D ��1.S

ı
1 /

by definition. Thus, in order to specify '1, it is enough to identify D.S1/ and D2 �D2. We remark that
D.S1/ is a disk bundle over S1 'D2.

By abuse of notation, let’s assume that S1 � B , not B0 . Then S1 is a Lagrangian disk in M . Thus,
D.S1/ is a small neighborhood of a Lagrangian disk S1. By the Lagrangian neighborhood theorem [16],
it is enough to choose coordinate charts on S1. Similarly, it is enough to choose coordinate charts for Si ,
S 0i and S 00i .

In order to choose specific coordinate charts, we use the symplectic submanifold W �M defined in
Section 4.2.

Let .x1; x2/ be a coordinate chart on S1 � ˛ such that the x1–axis agrees with W \S1. There are two
choices for the positive x1–direction corresponding to the two orientations of W \S1, or equivalently
orientations of C˛ . We can choose either of them. Then, let .y1; y2/ be an oriented chart on S2 such that
the y1–axis agrees with W \ˇ1 and !.@x1 ; @y1/ > 0. The positive y1–direction determines an orientation
of Cˇ1 . On S3, there exists an oriented chart .x1; x2/ such that the positive x1–direction agrees with the
orientation of C˛ . For the other singular disks, we obtain oriented coordinate charts from the orientations
of C˛, Cˇi , ˛ and ˇi in the same way.

5.2 Effect of ��1
2

In Section 5.2, we discuss how fb0i j i D 1; : : : ; 6g are obtained from fbi j i D 1; : : : ; 6g. Since ��12 is
supported on T �ˇ2, a small neighborhood of ˇ2, bi and b0i are the same braid in Br@Si for i D 1; 2; 3
and 5. We will explain how b06 is constructed.

We can obtain ��12 .B / by spinning with respect to q in T �ˇ2, ie ��12 .B / is the union of curves in
a 2–dimensional submanifold �ˇ2.Wy/ over y 2 Sn�1. Recall that the spinning and Wy are defined in
Section 2.2.

Figure 16 represents a support of ��12 in M , ie a small neighborhood of ˇ2�M where M is a symplectic
manifold of dimension 2 given in Figure 15. Similarly, in Section 5.2, the rectangles in Figures 15–19 are
the support of ��12 .

By spinning blue, red, and green points in Figure 16, we obtain ��12 .B /\D.@S
0
6/. Let B , R and G be

obtained by spinning constant curves drawn blue, red and green points in Figure 16, respectively.

SinceN.B /�B , ��12 .N.B //\D.@S
0
6/ is a neighborhood of ��12 .B /\D.@S

0
6/. By assuming that

N.B / is a sufficiently small neighborhood of B , ��12 .N.B //\D.@S
0
6/ consists of three connected

components, which are neighborhoods of B , R and G. Each connected component will be called N.B/,
N.R/ and N.G/.
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D�q
�2.q/

q

DCq

B ��12 .B /

��1
2
���!

q

Figure 16: The left picture represents B \�ˇ2.Wy/ and the right picture represents ��12 .B /\�ˇ2.Wy/.

Since b06 D ��12 .L/ \D.@S 06/ � N.B/ t N.R/ t N.G/, b
0
6 is divided into three groups, which are

contained in N.B/, N.R/ and N.G/ respectively. We argue the group which is contained in N.B/ first.

Let assume that ��12 .S4/ D S
0
6. Then ��12 .@S4/ D @S

0
6. Moreover, if ��12 .D.@S4/// � D.@S

0
6/, then

N.B/ D ��12 .D.@S4// � D.@S
0
6/. Also, one concludes that ��12 jD.@S4/ W D.@S4/

��! N.B/. If one
can assume that b4 is a subset of D.@S4/ by definition of braids, the set of braids of b06 inside N.B/ is
��14 .b4/.

However, ��12 .S4/ is not s06. Thus, we will construct a Hamiltonian isotopy ˆt so that there exists a
slightly smaller disk DB is S4 satisfying

.ˆ1 ı �
�1
2 /.DB/D S

0
6:

Note that “slightly smaller” means that there is no singular value on S4 nDB . Then

.ˆ1 ı �
�1
2 /.D.@DB//DN.B/;

where D.@DB/ is defined as similar to Definition 4.10. The strands of b06 in N.B/ will be given by
.ˆ1ı�

�1
2 /.D.@DB/\L/. Moreover, D.@DB/ (resp.D.@DB/\L) andD.@S4/ (resp. b4DD.@S4/\L)

are naturally isotopic. Under the isotopic relation, there is a function f1 WD.@S4/!D.@S 06/ such that
the strands of b06 in N.B/ are f1.b4/.

From now on, we will construct a specific ˆt . For notational simplicity, we assume that dim.M/D 4,
but the construction of ˆt is easily generalized for the case of higher dimensions.
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��12 .q/

B ��12 .B / ˆ1.�
�1
2 .B //

��1
2
���!

ˆ1
��!

��12 .DB/
ˆ1.�

�1
2 .DB//

ND�q

DB

DCq

q q q

Figure 17: The blue curves represent zDB \�ˇ2.Wy/ in the left picture, ��12 . zDB/\�ˇ2.Wy/ in
the middle picture, and ˆ1.��12 . zDB//\�ˇ2.Wy/ in the right picture.

We choose a neighborhoodU �ˇ2 of ��12 .q/ and a Darboux chart �q WT �U ��!R4 such that �q.��12 .q//

is the origin. We remark that T �ˇ2 denotes a neighborhood of ˇ2 in M , which is symplectomorphic to
the cotangent bundle of ˇ2. Thus, for a subset U of ˇ2, one can assume that T �U is a subset of M .

For convenience, let �q.x/D .x1; x2/ where xi 2R2. Then there is a Hamiltonian isotopy

(5-1) ˆt .x/D

�
.��1q ıHtı.c1kx1kCc2kx2k/ ı�q/.x/ if x 2 T �U;
x if x … T �U;

where ci is a positive constant, k � k is the standard norm on R2, and Ht and ı are defined as follows: let
Ht WR4!R4 be a Hamiltonian isotopy given by

Ht D

0BB@
cos t 0 –sin t 0

0 cos t 0 –sin t
sin t 0 cos t 0

0 sin t 0 cos t

1CCA ;
and let ı W Œ0;1/!R be a smooth decreasing function such that ı.x/D �

2
for all x < 1 and ı.x/D 0 for

all x > 2.

Figure 17 represents the case of dimM D 2. We note that the rectangles in Figure 17 represent a support
of ��12 . By choosing proper constants ci , we obtain a small disk DB � S4 such that

.ˆ1 ı �
�1
2 /.D.@DB//�D.@S

0
6/:
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ˆ1ı�
�1
2

�����!
p

��12 .p/

D.@S4/

B \T
�ˇ2 �M .ˆ1 ı �

�1
2 /.B /\T

�ˇ2 �M

D.@S 06/

Figure 18: Left: the whole rectangle is a neighborhood of ˇ2 in M ; thick black curves are parts
of B and the dashed black curves are N.B /; the red thick curves represent D.@S4/. Right:
thick black curves are .ˆ1 ı��12 /.B /, dashed black curves are .ˆ1 ı��12 /.N.B //, blue curves
are D.@S 06/, and thick red curves represent the part of D.@S 06/ where D.@S4/ contributes.

On a small neighborhood of DB , ��12 agrees with the antipodal map of �ˇ2.T
�ˇ2/ ' T

�S2, as we
mentioned in Remark 5.3. Then we obtain a map

f1 W S
1
� .D2/

ı
' ��1.@DB/

ˆ1ı�
�1
2

����!D.@S 06/' S
1
�D2; .�; x; y/ 7! .� C�;�r1x;�r1y/:

The first and the last identifications are the natural identifications mentioned in Remark 4.11. The reason
we consider the natural identification is for notational convenience, ie in order to write f1 as a map on
.�; x; y/ 2 S1 �D2. Then, the strands of b06 in N.B/ is given by f1.b4/.

Figure 18 is a picture summarizing the whole process obtaining strands of b06 in the first group, or
equivalently, the picture explains how b4 contributes on the construction of b06, in the case dimM D2nD2.

In order to study the construction of strands of b06 in N.R/ and N.G/, one should consider

zD.@S4/ WD
[

p2Locus.B0/\@S4

Fp:

It is easy to check that zD.@S4/ is a Dn–bundle over @S4 and D.@S4/� zD.@S4/.

Together with zD.@S4/, we observe how b6 contributes on the construction of b06. First, one can observe
that b6 and L\ . zD.@S4/ nD.@S4// are isotopic to each other. The isotopy connecting them is along the
fibers on some regular disks such that the union of regular disks has @S4 and @S6 as their boundaries.
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ˆ1ı�
�1
2

�����!
p

��12 .p/

zD.@S4/

B \T
�ˇ2 �M .ˆ1 ı �

�1
2 /.B /\T

�ˇ2 �M

D.@S 06/

Figure 19: Left: the whole rectangle is a neighborhood of ˇ2 in M , thick black curves are parts
of B and the dashed black curves are N.B /, and the red thick curves represent zD.@S4/. Right:
thick black curves are .ˆ1 ı��12 /.B /, dashed black curves are .ˆ1 ı��12 /.N.B //, blue curves
are D.@S 06/, and thick red curves represent the part of D.@S 06/ where D.@S4/ contributes.

More precisely, the union of regular disks (resp. fibers on them) is homeomorphic to Sn�1� Œ0; 1� (resp. a
disk bundle over Sn�1 � Œ0; 1�). The boundary of Sn�1 � Œ0; 1� corresponds to @S4 and @S6.

Similarly, one can observe that L\ . zD.@S4/ nD.@S4// and b6 are isotopic to each other. The isotopy
connecting them is the intersection of L and the fibers on the regular disks.

Second, one can describe the contribution of L\ . zD.@S4/ nD.@S4// on the contribution of b06. The
contributions are given as two functions as the contribution of b4 is described by the function f1. For the
case of nD 2 and under the identification defined in Remark 5.4, the two functions denoted by f2 and f3
are

f2 W S
1
�D2! S1 �D2; .�; x; y/ 7! .�; r0 cos � C r2x; r0 sin � C r2y/;

and
f3 W S

1
�D2! S1 �D2;

.�; x; y/ 7! .�;�r0 cos � C r2.x cos 2� �y sin 2�/;�r0 sin � C r2.x sin 2� Cy cos 2�//;

Similar to Figure 18, Figure 19 summarizes the whole process obtaining strands of b06 in the second and
third groups, or equivalently, the picture explains how zD.@S4/ contributes on the construction of b06, for
the case of dimM D 2nD 2.
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Remark 5.5 (1) The constant r1 is determined by the choice of an identification �ˇ2 WT
�S2 ��!T �ˇ2,

the fixed Dehn twist � in Remark 2.2, and so on. However, r1 has to be smaller than 1. This is
because Im.f1/, Im.f2/ and Im.f3/ are mutually disjoint, since they correspond to N.B/, N.R/
and N.G/, respectively. Moreover, r0 and r2 are also positive numbers smaller than 1.

(2) Note that r0 and r2 are positive constants which are determined by specific choices. However, r0
and r2 have to satisfy r1C r2 < r0, since Im.f1/, Im.f2/ and Im.f3/ are mutually disjoint.

(3) To obtain f1, we used a Hamiltonian isotopy ˆt . Similarly, to obtain f2 and f3, we need a
Hamiltonian isotopy.

The situation for b04 is analogous. We obtain three maps g1, g2 and g3 in the same way. At the end, b04 is
represented by g1.b6/tg2.b6/tg3.b6/. This proves Lemma 5.1 for the case of ��12 .

Note that maps fi and gj are given by specific maps acting on S1 �D2, but we would like to consider
them as maps on eBr@Sk for some k. We summarize the effect of ��12 as the matrix

†2;B D

0BBBBBBB@

id 0 0 0 0 0

0 id 0 0 0 0

0 0 id 0 0 0

0 0 0 0 0 g1Cg2Cg3
0 0 0 0 id 0

0 0 0 f1 0 f2Cf3

1CCCCCCCA
:

Thus, 0BBBBBBB@

b01
b02
b03
b04
b05
b06

1CCCCCCCA
D†2;B 

0BBBBBBB@

b1
b2
b3
b4
b5
b6

1CCCCCCCA
D

0BBBBBBB@

b1
b2
b3

g1.b6/tg2.b6/tg3.b6/

b5
f1.b4/tf2.b6/tf3.b6/

1CCCCCCCA
:

Remark 5.6 In surface theory, we can do linear algebra on weights, but in a higher-dimensional case, we
cannot do linear algebra with the matrix †2;B because there is no module structure on eBr@Si . In other
words, the matrix †2;B and sums of functions, for example g1Cg2Cg3, are for notational convenience.
Thus, the title of Section 5.1 is an abuse of terminologies.

5.3 Effect of �0

The situation for �0 is similar to that for ��12 . For example, by observing how �0 acts on D.@S1/, we
obtain

h1 W S
1
�D2! S1 �D2;
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explaining the contribution of b1 on the construction of b003 . Then, h1 is given by a translation on S1 and
a scaling on D2, as f1 is. Similarly, we obtain h2 and h3, which explain the contributions of b3 on the
construction of b003 . The maps h2 and h3 are of the same type as f2 and f3, respectively, ie

h2.�; x; y/D .� or � C�;˙r1 cos � C r2x;˙r1 sin � C r2y/;

h3.�; x; y/D
�
� or � C�;˙r1 cos � C r2.x cos 2� �y sin 2�/;˙r1 sin � C r2.x sin 2� Cy cos 2�/

�
;

where r1 and r2 are constants.

We say that a map is of scaling type if a map is of the same type as f1, in other words, if the map is given
by a translation on S1 and a scaling on D2. This is because the formula defining the map is given by a
scaling on fibers. The maps of scaling type explain how the braids along the singular disk centered at p
or antipodes of p, b.L; Sp.B // or b.L; S˙p /, contribute on the braid along the singular points centered
at the same points, b

�
ı.L/; Sp.Fı.B //

�
or b.ı.L/; S˙p /, when one applies a Dehn twist ı.

We say that a map is of the first (resp. second) singular type if a map is of the same type as f2 (resp. f3).
This is because they are related to a creation of new singular component. The maps of the first and
second singular types explain how the braid b.L; SCp / contributes on the construction of the braid
b
�
ı.L/; Sp.Fı.B //

�
.

To summarize, if bi contributes the construction of b0j and if the center of a singular disk corresponding
to bi is either the same point or the antipodal point of the center of the singular disk corresponding to b0j ,
maps of these three types explain the contribution of bi on the construction of b0j . Note that the center of
a singular disk is defined in Remark 3.21.

The maps of these three types explain the effects of ��12 on B. However, to explain the effects of �0
on B , we need maps of one more type. The reason is given in Figure 20, roughly. We note that the
rectangles in Figure 20 are the support of �0 in M where M is given in Figure 15, ie a neighborhood of
˛ �M .

More precise reasoning is as follows. We note that ˛ has two plumbing points, unlike ˇi which has only
one plumbing point. Thus, when we apply �0, bi can contribute to b00j even if the centers of singular disks
corresponding to bi and b00j are neither the same nor antipodes of each other. For example,L\��1.�.Np//
is stretched by �0. The stretched part �0

�
L\��1.�.Np//

�
has intersection with D.@S 004 / and D.@S 005 / as

one can see in Figure 20. Thus, b004 has some strands corresponding to �0
�
L\��1.�.Np//

�
\D.@S4/.

These strands are the contribution of b3 on the construction of b004 . Similarly, b3 contributes to the
construction of b005 , and b6 contributes to the constructions of b001 and b002 .

To describe the contribution of b3 on b004 , without loss of generality, we assume that there is no singular
value for

�0
�
L\��1.�.Np//

�
\D.S4/

�
�! S4;

by Remark 3.21. Thus, �0
�
L\��1.�.Np//

�
\D.S4/ is a union of disjoint Lagrangian disks on D.S4/.

We note that D.S4/ is a disk bundle over .S 04/
ı which is an open disk. Thus, on the boundary D.@S 04/,
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p q �.p/ �.q/

D.@S 004 / D.@S 005 /

B in a neighborhood of ˛ �M

�0.B /

Figure 20: Top: the thick black and blue curves are B in a neighborhood of ˛�M ; in particular,
the blue curves areNp and the red parts are a fibered neighborhood ofNp , ie ��1.�.Np//. Bottom:
the thick curves are �0.B /, the red parts are extended neighborhood of Np by applying �0, and
blue dashed lines are D.@S 004/ and D.@S 005 /.

b3 contributes to b004 by adding strands near �0.Np/\D.@S4/ which are not braided to each other. The
number of the added strands is the same as the number of strands of b3. In the same way, b3 contributes
to the construction of b005 .

Remark 5.7 In the above argument, we said that the added strands are not braided to each other. To be
more rigorous, we should specify the meaning of “not braided”. We remark that D.@S 004 / is identified
with Sn�1 �Dn by the specific identification given in Remark 5.4. The added strands are not braided in
Sn�1 �Dn after the identification.

As we did before, we would like to describe the added strands as an image of a function defined on
D.@S/D Sn�1�Dn. In Section 5.3, we consider the case of dim.M/D 4 as we did in Section 5.2 under
the identifications given in Remark 5.4.

Let ht be the function defined on S1 �D2. As we explained in Section 5.2, we expect that ht .b3/ can
explain the contribution of b3. However, for this case, ht .b3/ cannot do that. This is because the important

Algebraic & Geometric Topology, Volume 24 (2024)



Towards a higher-dimensional construction of stable/unstable Lagrangian laminations 697

factor is the number of strands of b3, not that b3 is braided. Thus, we define a trivial braid bt3 such that
bt3 and b3 have the same number of strands as

bt3 WD '
�1
3 .f.�; x0; y0/ 2 S

1
�D2 j .0; x0; y0/ 2 '3.b3/g/�D.@S3/:

Then, one obtains

ht W S
1
�D2

'1
�! ��1.@S1/

ˆ1ı�0
����! ��1.@S4/

'04
' S1 �D2; .�; x; y/ 7! .�; r0xC c1; r0yC c2/;

where r0 is a positive constant number less than 1 and ˆ1 is a Hamiltonian isotopy. We note that
in Section 5.2, we needed a Hamiltonian isotopy. In a similar way, we can construct a Hamiltonian
isotopy ˆ1. Then ht . Nbı1/ represents the added strands in b04, which correspond to �0

�
L\��1.�.Np//

�
.

Similarly, if bi contributes the construction of b00j and if the center of a singular disk corresponding to bi
is neither the same point nor the antipodal point of the center of the singular disk corresponding to b00j ,
then the contribution of bi on b00j can be described by a map like ht . A map is of trivial type if a map is of
the same type with ht , because a map of trivial type adds strands which are not braided with each other.

Then, we can describe the effect of �0 on B as a matrix

T0;B D

0BBBBBBB@

0 i 0 0 0 ht
h1 0 h2C h3 0 0 it
0 0 id 0 0 0

0 0 ht 0 i 0

0 0 it h1 0 h2C h3
0 0 0 0 0 id

1CCCCCCCA
:

Among the entries, h1, i and id are of scaling type, h2 and h3 are of the first and second singular types,
and ht and it are of trivial type.

Remark 5.8 A  of generalized Penner type is a product of Dehn twists. In the general case, when we
apply  , each Dehn twist is followed by a Hamiltonian isotopy as ��12 is followed by ˆt in step two. Let
 H D .ˆ1;1 ı ı1/ ı � � � ı .ˆl;1 ı ıl/, where  D ı1 ı � � � ı ıl , ıi is a Dehn twist, and ˆi;t is a Hamiltonian
isotopy which follows ıi .

After applying the Hamiltonian isotopy, the effect of a Dehn twist �i (resp. ��1j ) on B 2 B is described
by a matrix Ti;B (resp. †j;B), whose entries are sums of maps of four types.

6 Proof of Theorem 1.5

In Sections 4 and 5, we generalized the notion of weights and linear algebra on weights. In this section,
we prove our main theorem, ie Theorem 1.5, by using those generalizations.
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6.1 Limit of a sequence of braids

By Lemma 5.1, one obtains braid sequences fb. m.L/; Si /gm2N , where L is carried by B , and Si is a
singular disk of B� . In the present subsection, we construct a limit of fb. m.L/; Si /gm2N as m!1.

We argue with the above example, ie

M D P.˛; ˇ1; ˇ2/;  D �0 ı �
�1
1 ı �

�1
2 ; dimM D 4

For convenience, let
B WDB ; B0 WD F��12

.B/; B00 WD F��11
.B0/;

and let Si , S 0i and S 00i denote singular disks of B, B0 and B00. Using notation from Sections 5.2 and 5.3, we
have matrices T0;B00 ,†1;B0 and†2;B. Then we obtain‰DT0;B00 �†1;B0 �†2;B by defining a multiplication
of maps as the composition of them. Note that a product of two arbitrary matrices is not defined since a
composition of two arbitrary functions is not defined. For example, an input of †2;B and an output of
T0;B00 are tuples of braids on singular disks of B�. Thus, †2;B �T0;B00 is defined. However, T0;B00 �†2;B
is not defined since an input of T0;B00 is a tuple of braids on singular disks of B�, but an output of †2;B
is a tuple of braids on singular disks of B0�.

Let bi;m D b. m.L/; Si /. Then 0BBBBBBB@

b1;m
b2;m
b3;m
b4;m
b5;m
b6;m

1CCCCCCCA
WD‰m

0BBBBBBB@

b1
b2
b3
b4
b5
b6

1CCCCCCCA
:

Thus, in order to keep track of braid sequences fbi;mgm2N , it is enough to keep track of ‰m.

Every entry of ‰m is a sum of compositions of 3m maps. The image of a composition of 3m maps is a
solid torus. By Remark 5.5, the radius of each solid torus appearing in ‰m decreases exponentially and
converges to zero as m!1.

In order to be more precise, we consider  H which is defined in Remark 5.8. One observes

bi;m �  
m
H .N.B //\D.@Si /

for all m 2N and i D 1; : : : ; 6. Let

Bi;m WD  
m
H .N.B //\D.@Si /:

Then Bi;m is the disjoint union of solid tori. Each solid torus in Bi;m is the image of a composition of
3m maps, appearing in ‰m. Conversely, for each composition of 3m maps appearing in ‰m, the image
is a solid torus contained in Bi;m. The radii of solid tori in Bi;m are decreasing exponentially and are
converging to zero as m!1.
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Since BiC1;m � Bi;m for all m 2N, there is a limit

Bi;1 WD lim
m!1

Bi;m D
\
m2N

Bi;m:

Thus, Bi;1 is the union of infinite strands as a subset of D.@Si / and

lim
m!1

bi;m D Bi;1

as a sequence of closed sets in D.@Si /.

Remark 6.1 (1) We have constructed a sequence of specific representatives fbi;mgm2N such that

lim
m!1

bi;m D Bi;1:

For the purposes of extending the lamination to the singular and regular disks in Sections 6.2
and 6.3, we assume that the limit Bi;1 is a specific closed subset in D.@Si /.

(2) Each strand of Bi;1 corresponds to an infinite sequence ffmgm2N such that f1 ı � � � ıf3m appears
in ˆm for all m 2N.

6.2 Lagrangian lamination on a singular disk

Let  be of generalized Penner type and let L be a Lagrangian submanifold which is carried by B .
In the previous sections, on each singular disk Si , we gave an inductive description of a sequence
fbi;m WD b. 

m.L/; Si /gm2N . There is a limit Bi;1 of the sequence, which is independent of L. In this
present subsection, we will construct a Lagrangian lamination Li � �

�1.Si / from Bi;1.

Lemma 6.2 Let  be of generalized Penner type. For each singular disk Si of B , there is a Lagrangian
lamination Li �D.Si /, such that if L is a Lagrangian submanifold of M which is carried by B , then
for every m 2 N, there is a Lagrangian submanifold Lm which is Hamiltonian isotopic to  m.L/ and
Lm\D.Si / converges to Li as a sequence of closed subsets.

Proof Let  be of generalized Penner type, ie  D ı1 ı � � � ı ıl , where ık is a Dehn twist �i or ��1j . We
will use similar notation as the previous subsections; for example, Si denotes a singular disk of B , ‰
denotes a matrix corresponding to  , 'i WD.@Si / ��! Sn�1�Dn denotes the identification induced from
the fixed coordinate chart on Si , and so on.

We will assume that Lm in Lemma 6.2 is  mH .L/ where  H is defined in Remark 5.8. Then Li is the limit
of mH .L/\D.Si / asm!1. Thus, Li\D.@Si / is the limit of mH .L/\D.@Si /, ie Li\D.@Si /DDi;1.
We will construct a Lagrangian lamination Li when Bi;1 is given. Then we will prove that Lemma 6.2
holds with the constructed Li .

Construction of Li As we mentioned in Remark 6.1, each strand of Bi;1 is identified with an infinite
sequence ffmgm2N such that f1 ı � � � ı flk appears in ‰k for all k 2 N. For each strand ffmgm2N

of Bi;1, we will construct a Lagrangian submanifold of D.Si / whose boundary agrees with the strand
ffmgm2N in the construction part.
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First, for a given strand ffmgm2N , let f1 be of trivial type. Then the strand is identified with a sphere

f.�; x1; : : : ; xn/ j � 2 S
n�1
g � Sn�1 �Dn

'i
'D.@Si /;

where xi is a constant. A subsequence ffmgm�2 determines constants xi . Let

D WD f.p; x1; : : : ; xn/ j p 2 Sig �Dn �Dn
'i
'D.Si /:

Then 'i .D/ is a Lagrangian disk in D.Si /, whose boundary agrees with the strands ffmgm2N .

Second, let f1 be not of trivial type, but there exists m2N such that fm is of trivial type. Let k > 1 be the
smallest number such that fk is of trivial type appearing in ffmgm2N . Then Q Dık0ı� � �ıılıı1ı� � �ıık0�1,
where k0 Š k (mod l), is of generalized Penner type satisfying the following: B Q has a singular disk
zSj such that zBj;1, the limit of the braid sequence corresponding to Q and zSj , has a strand identified
with ffmgm�k . Thus, there is a Lagrangian disk in D. zSj / whose boundary agrees with ffmgm�k . Let D
denote the Lagrangian disk in D. zSj /. Then there is a connected component of�

.ˆ1;1 ı ı1/ ı � � � ı .ˆk0;1 ı ık/
�
.D/\D.Si /

whose boundary is ffmgm2N , where ˆi;t is a Hamiltonian isotopy mentioned in Remark 5.8.

To summarize, if there is at least one map of trivial type in ffmgm2N , then we have a Lagrangian
submanifold inD.Si /, whose boundary agrees with ffmgm2N . Let Li;1 be the union of those Lagrangian
submanifolds.

Finally, suppose that fm is not of trivial type for any m 2N. Then, for all k 2N, we will construct a
sequence ff kmgm2N for each k 2N, satisfying

(1) ff kmgm2N is a strand of Bi;1;

(2) if m� kl , then f km D fm;

(3) there exists a constant Nk 2N such that f k
klCNk

is of trivial type.

To prove the existence of these sequences ff kmgm2N for all k 2N, we use the fact that the limits Bi;1
depend only on  and are independent of L. Let k be a fixed positive integer. Then f1 ı � � � ıfkl explains
an impact of bi;0 D b.L; Si / on bj;k D b. k.L/; Sj / for some i and j .

Let consider Qbi;m D b
�
 m. N .L//; Si

�
D bi;mCN for a sufficiently large integer N . Then Qbi;0 is given

by a union of images of g1 ı � � � ıgNl which appears in the i th row of ‰N . If we assume that there is at
least one compact case having two or more plumbing points, then for a sufficiently large N , there exists
a sequence of functions g1; : : : ; gNl such that g1 ı � � � ıgNl appears in the i th row of ‰N and gt is of
trivial type for some t 2 Œ1; N l�. The reason is as follows: First, when we apply a Dehn twist along the
compact core with two or more plumbing points, a function gt of trivial type appears. The function gt
appears in a specific row. By applying  sufficiently many times, ie N times, one can guarantee that gt
appears in i th row. This is because every Dehn twist along each compact core appears in  .
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In Qbi;kl D bi;klCNl , there is a strand satisfying the last two conditions, and thus it guarantees the existence
of ff kmgm2N for all k 2N, assuming at least one compact core has two or more plumbing points. We note
that the assumption excludes only one case, the plumbing of one positive and one negative sphere plumbed
at only one point. The excluded case can be easily handled directly. For more detail, see Remark 6.3

Without loss of generality, there is a strand ff kmgk2N of Bi;1 for each k 2N. These strands converge to
ffmgm2N as k!1. Moreover, by definition of Li;1, the boundary of Li;1 contains strands ff kmgm2N

for all k 2 N. Thus, the strand ffmgm2N is contained in the boundary of Li WD Li;1, ie the closure
of Li;1.

Remark 6.3 If there is no sphere with two or more plumbing points, then every sphere is plumbed at
only one point. Thus, there is exactly one positive sphere and one negative sphere plumbed at one point.
In this case, we can construct a Lagrangian lamination L on M by spinning. This is because only two
spheres are plumbed, thus there is a plenty of symmetry, which comes from the symmetry of spheres.
Then, Li WD L\D.Si / is a Lagrangian lamination which we want to construct in Lemma 6.2.

Convergence to Li Let Lm WD  mH .L/. We defined  H in the fourth step of the proof of Lemma 5.1.
We will prove that Lm\D.Si / converges to Li .

First, we will show that

(6-1) lim
m!1

.Lm\D.Si //D lim
m!1

�
 mH .N.B //\D.Si /

�
:

Since  H .N.B //�N.B /,

 mC1H .N.B //\D.Si /�  
m
H .N.B //\D.Si / for all m 2N:

Thus, we have the limit

lim
m!1

�
 mH .N.B //\D.Si /

�
D

\
m

�
 mH .N.B //\D.Si /

�
:

If we equipM with a Riemannian metric g, then dH
�
 mH .B /;  

m
H .N.B //

�
, where dH is the Hausdorff

metric induced by g, converges to zero asm!1 for the same reason thatBi;m WD mH .N.B //\D.@Si /

converges to an infinite braid Bi;1 in the last part of Section 6.1.

Since for a large integer N0, LN0 intersects D.Sj / for any singular disk Sj , and LmCN0 \D.Sj /
intersects every connected component of  mH .N.B //\D.Si /. Thus,

0� lim
m!1

dH .LmCN0 \D.Si /;  
m
H .N.B //\D.Si //

� lim
m!1

ŒdH .LmCN0 \D.Si /;  
m
H .B /\D.Si //C dH . 

m
H .B /\D.Si /;  

m.N.B //\D.Si //�

� lim
m!1

2dH . 
m
H .B /\D.Si /;  

m
H .N.B //\D.Si //

D 0:

This proves (6-1). Let Li be the limit in (6-1).
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Second, we show that Li is Li . By the construction of Li , we know that

Li �  
m
H .N.B //\D.Si / for every m 2N:

It implies that Li � Li . Moreover,

Li \�
�1.@Si /D Li D Bi;1\D.Si /:

Because every connected component of Li has a boundary on @Si , this shows Li D Li .

6.3 Lagrangian lamination on a regular disk

In the previous subsection, we constructed Lagrangian laminations on singular disks, when boundary data
for singular disks were given. In the present subsection, first, we will define boundary data for a regular
disk. Second, we will construct Lagrangian laminations on regular disks from the given data. Finally, we
will prove Theorem 1.5 as a corollary of Lemmas 6.2 and 6.5.

Before defining the boundary data, we remark that, ��1.Rıi / is symplectomorphic to DT �Dn, where
Dn is a disk, by Remark 4.5. Similar to Definition 4.10, let D.Rj / (resp. D.@Rj /) denote the Dn–bundle
��1.Rıi / (resp. @��1.Rıi /) over Rj (resp. @Rj ).

We define a data cj;m on the boundary of a regular disk Rj for  m.L/, by setting

cj;m WD Lm\D.@Rj /:

We defined Lm WD  mH .L/ in the proof of Lemma 6.2. Note that cj;m is a closed subset, not a class of a
closed subset.

To obtain a limit of cj;m, we consider

Cj;m WD  
m
H .N.B //\D.@Rj /;

as we did in Section 6.1. Since  mH .N.B //�N.B /, Cj;mC1 � Cj;m. Moreover, Cj;m is the union of
solid tori in D.@Rj / when nD 2, or the union of Sn�1�Dn for general n. If a symplectic manifold M is
equipped with a Riemannian metric g, we can measure the radii of solid tori in Cj;m. The radii decrease
exponentially and converge to zero as m!1, for the same reason that radii of solid tori comprising
Bi;m decrease exponentially and converge to zero as m!1 in Section 6.1. The limit of cj;m is given by

Cj;1 D lim
m!1

Cj;m D
\
m

Cj;m:

The next step is to smooth Rj . A regular disk Rj has corners. We will replace Rj with a smooth disk R0j .
This is because, at the end, a Lagrangian lamination will be given as graphs of closed sections. By
smoothing Rj , it will be easier to handle closed sections.

To smooth Rj , we subtract a tubular neighborhood N.@Rj /�Rj from Rj . Let R0j WDRj nN.@Rj /. Then
R0j is a smooth disk. We replace Rj with R0j . To finish smoothing, we need to obtain boundary data for
R0j from cj;m.
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Each connected component of cj;m can be identified with a section of a bundle D.@Rj / over @Rj . We can
extend this section to a closed section of a bundle ��1.N.@Rj // over N.@Rj / by computations. Then
the graph of the extended section is a Lagrangian submanifold of ��1.N.@Rj //. The boundary of the
Lagrangian submanifold on @R0j makes up the boundary data for R0j .

From now, we assume that a regular disk Rj is a smoothed disk. Lemma 6.4 claims that for a given data
cj;m on a smoothed regular disk Rj , we can construct a Lagrangian submanifold Nj;m �D.Ri / such
that @Nj;m D cj;m\D.Ri /.

Lemma 6.4 Let Q be a closed subset of @T �Dn such that there exists a disjoint union L of Lagrangian
disks in T �Dn, which are transversal to fibers , such that L\ @T �Dn D Q. Then we can construct a
Lagrangian submanifold L uniquely up to Hamiltonian isotopy through Lagrangians transverse to the
fibers.

Proof To prove Lemma 6.4, we consider a identification ' W @T �Dn ��! Sn�1 �Dn which is defined
as follows. If there is a global coordinate charts of the zero section Dn of T �Dn, then it induces an
identification between Dn �Dn and T �Dn. By restricting the identification on @T �Dn, one obtains
' W @T �Dn ��! Sn�1 �Dn. With the fixed identification ', '.Q/ D '.@L/ is isotopic to a union of
spheres

fSn�1 �p1; : : : ; S
n�1
�pm j pi 2Dn; m is the number of component of Lg:

This is because '.L/ is a union of Lagrangian disks in Dn �Dn
'
' T �Dn.

The proof of Lemma 6.4 consists of two parts: the construction of L and the uniqueness of L.

Construction We start the proof with the simplest case, ie Q consists of only one strand.

By fixing coordinate charts on Dn, we can write down Q as a section of a disk bundle @T �Dn over @Dn,
ie

Q WD ff1.x1; : : : ; xn/dx1C � � �Cfn.x1; : : : ; xn/dxn j x
2
1 C � � �C x

2
n D 1g:

Then, the simplest case is proved by determining a function � WDn!R such that d�Df1dx1C� � �Cfndxn
on @Dn. The graph of d� is a Lagrangian submanifold which we would like to find. Note that there
are infinitely many � satisfying the conditions, but the Hamiltonian isotopy class of the graph of d� is
unique through Lagrangians transverse to the fibers.

If Q has two or more connected components li , then we can write li as a section over @Dn. For each i ,
we need to determine functions �i WDn!R such that d�i agrees with li on @Dn. Moreover, to avoid
self-intersection, they should not be equal, ie d�i ¤ d�j for all i ¤ j . Then, the union of graphs of d�i
on T �Dn is a Lagrangian submanifold L which we want to construct.

We discuss with the simplest nontrivial case, ie Q has two connected components l0 and l1, and the
dimension 2nD 4. Without loss of generality, we assume that l0 is the zero section. Furthermore, we can
assume that �0 � 0. We only need to determine �1 such that d�1 does not vanish everywhere.
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r0

m� n�

1
m1 m2 m4 m3n2 n1 n3 n4

C

C

�

�

�

Figure 21: Example of a collection C on Œr0; 1��S1.

We assume that there exists �1 satisfying the conditions. Then we will collect combinatorial data from �1,
and we will construct a function Q�1 satisfying conditions given by the combinatorial data. Through this,
we will see what combinatorial data we need. We will end the construction by explaining how to obtain
the combinatorial data from the given Q.

For convenience, we will use the polar coordinates instead of .x; y/–coordinates on D2. Let r0 be a small
positive number. We restrict the function �1 on Œr0; 1��S1. On f1g�S1D @D2, d�1 agrees with l1. On
fr0g �S

1, d�1 is approximately a constant section

adxC bdy D a.cos � dr � r0 sin � d�/C b.sin � dr C r0 cos � d�/;

where d�1.0; 0/D adxC bdy and .x; y/ are the standard coordinate charts of D2.

We remark that on fr0g � S1, the pair of graphs of d�i jfr0g�S1 represents the trivial braid under the
identification induced from the .x; y/–coordinates. Similarly, on Œr0; 1��S1, the pair .d�0 � 0; d�1/
implies an isotopy between two representatives of the trivial braid.

For every r� 2 Œr0; 1�, we can find all local maxima and minima of a function

� 7! �1.r�; �/:

We mark .r�; ��/ as a red (resp. blue) point if the above function has a local maxima (resp. minima) at ��.
If r� D 1, there are same number of red/blue marked points on f1g �S1, and there is only one red/blue
marked point on fr0g �S1. On Œr0; 1��S1, we have a collection C of curves shaded red and blue. If a
curve in C is not a circle, then the curve has two end points on the boundary of Œr0; 1��S1. There are
exactly two curves connecting both boundary components of Œr0; 1��S1, and those two curves have end
points of the same color.

If we write d�1 D f d� C g dr , then f is zero on curves in C. Since d�1 does not vanish, g cannot
be zero on the curves. Thus, we can assign the sign of g for each curve. Figure 21 is an example of a
collection C.
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Conversely, if we have a collection C of curves such that each curve is shaded red and blue and is equipped
with a sign, then we can draw a graph of Q�1 roughly. This is because the collection C determines the
sign of horizontal directional derivative of Q�1, ie d Q�1.@� / on every point of Œr0; 1�� S1, and vertical
directional derivative of Q�1, ie d Q�1.@r/ on the curves. From these, one obtains a (rough) graph of Q�1.
Thus, in order to determine a function �1, it is enough to determine a collection C of curves in Œr0; 1��S1

from the given Q.

From now on, we will construct a collection C from the given Q. For the given Q, we assume that a
connected component l0 of Q is the zero section, without loss of generality. For the other connected
component l1, one has f1; g1 W S1!R such that l1 is the graph of f1 d� C g1 dr on f1g �S1 D @D2.
We know that Q represents the trivial braid with respect to the standard .x; y/–coordinates of D2. Thus,
there is an isotopy � W Œr0; 1��S1!D2 such that

�.1; �/D .f .�/; g.�//; �.r0; �/D .Ar0 cos �; A sin �/;

�.t; �/¤ .0; 0/ for all .t; �/ 2 Œr0; 1��S1;
where A is a constant.

For every r 2 Œr0; 1�, let 
r.�/D �.r; �/. Then, 
r is a closed curve in D2, for all r . Moreover, � is a
path connecting 
1 and 
r0 in the loop space of .D2/ı without touching the origin.

We mark .r; �/ on Œr0; 1�� S1 as a red (resp. blue) point if 
r.�/ intersects dr–axis from right to left
(resp. from left to right). These marked points comprise curves in Œr0; 1��S1, and we have a collection
C of curves, shaded red and blue, in Œr0; 1��S1. We know that 
1 has intersection points. The number
of intersection points is an even number. When r decreases, there is a series of creations/removals of
intersection points, which are given by finger moves along the dr–axis. Each finger move does not touch
the origin. Thus, for a curve in C, every intersection point composing the curve lies on either the positive
dr–axis or the negative dr–axis. Then, we can assign a sign for each curve in C.

Figure 22 is an example of � , corresponding to the case described by Figure 21.

The upper left of Figure 22 is 
1 and the upper right is 
r0 . Through the first arrow, we observe a finger
move removing two intersection points. Those two intersection points correspond to m2, a local maxima
shaded red, and n2, a local minima shaded blue. Thus, we obtain a curve connectingm2 and n2 in Figure 21.
Moreover, the intersection points lie in the negative part of the dr–axis. Thus, we assign a negative sign
to the curve. Similarly, we observe there are finger moves removing intersection points. We obtain curves
connecting mi and ni for i D 1; 2; 3 in Figure 21. After the finger moves, there are only two intersection
points corresponding to m� and n�, and we obtain curves connecting m4 (resp. n4) and m� (resp. n�).

We have constructed a collection C of curves on Œr0; 1�� S1 from an isotopy � . Thus, we can obtain
a function �1 W Œr0; 1��S1!R. In order to complete the proof, we need to extend �1 into a small disk
with radius r0. To extend �1, we assume that

�1.x; y/D Ar sin � D Ay
on the small disk.

Algebraic & Geometric Topology, Volume 24 (2024)



706 Sangjin Lee

dr dr

dr dr

d� d�

d� d�


1.n2/


1.m2/


r0.m�/


r0.n�/

#

�!

"

Figure 22: Creation of a collection C.

The situation for the general case is analogous. If Q has more connected components li for i D 0; : : : ; k,
then we have to determine �i WD2!R such that d�i D li on @D2, and d�i ¤ d�j for all i ¤ j . We fix an
isotopy � , and obtain a collection C of curves on Œr0; 1��S1 from � . Each curve in C encodes restrictions
on d�i�d�j for some i and j . More precisely, .�i��j / has a local maxima (resp. minima) in the horizon-
tal direction, only at a point of a curve shaded red (resp. blue), and .d�i �d�j /.@r/ has the sign assigned
on the curve. For the case of general dimension 2n, we obtain combinatorial data from Q, ie a collection
of curves on Œr0; 1��Sn�1 assigned a sign, and construct functions on Dn from the combinatorial data.

Uniqueness Recall that the construction consists of three steps. First, we choose an isotopy � connecting
Q and the trivial representative of the trivial braid. Then, we obtained a collection C of curves from � ,
such that each curve encodes restrictions on d�i � d�j . The last step is to construct a set of functions
f�i WDn!Rg.
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The construction depends on choices in the first and last steps. More precisely, for the first step, the choice
of isotopy � is not unique. If we choose an isotopy � , then there is a unique collection C. However, a set
f�ig of functions, which is constructed from the collection C, is not unique. We will show that the Hamil-
tonian isotopy class of L, through Lagrangians transverse to the fibers, is independent of those choices.

First, we discuss the choice in the third step. Let us assume that we have a collection C of curves in
Œr0; 1��S

n�1 and two sets of functions f�igi and f�igi satisfying the restrictions encoded by C. Then,
by setting �i;t WD .1� t /�i C t�i , we obtain a family of sets of functions such that every member of the
family satisfies the restrictions encoded by C.

Let Lt be the Lagrangian submanifold corresponding to f�i;tg for a fixed t . Then Lt is a Lagrangian
isotopy connecting L0, corresponding to f�ig, and L1, corresponding to f�ig. Since Lt is a disjoint union
of Lagrangian disks in T �Dn, L0 and L1 are Hamiltonian isotopic. Thus, the Hamiltonian class of L
through Lagrangians transverse to the fibers is independent of the choice of functions for the third step
of the construction.

Before discussing the choice of the first step, note that a continuous change on a collection C does not
make a change on the Hamiltonian isotopy class. More precisely, let C0 D f
1; : : : ; 
N g be a collection
of curves and let f�ig be a set of functions corresponding to C0. If f
k;tg is a continuous family of curves
with respect to t such that 
k;0D
k for all k, then we can obtain a continuous family f�1;t ; : : : ; �N;tg such
that �i;0 D �i and f�1;t ; : : : ; �N;tg corresponds to Ct WD f
1;t ; : : : ; 
N;tg. Then, it is easy to check that
the Hamiltonian isotopy class of the union of graphs of d�i;t in T �Dn, through Lagrangians transverse
to the fibers, is independent of t .

Finally, we will discuss the choice of � . Let �0 and �1 be two isotopies obtained from the given Q in the
first step. Then we can understand �0 and �1 as paths on the loop space of the configuration space of .Dn/ı.
Since the loop space is simply connected, there is a continuous family f�tgt2Œ0;1� connecting 
0 and 
1.

Let Ct be the collection of curves obtained from �t and let f�ig be a set of functions constructed from C0.
There is f�i;tg corresponding to Ct such that �i;0 D �i . Then, if Lt is the union of graphs of d�i;t , then
the Hamiltonian class of Lt is independent of t . This shows the uniqueness of L, up to Hamiltonian
isotopy, through Lagrangians transverse to the fibers.

For a smoothed regular disk Rj , there is a sequence of data cj;m for each m 2N. Then, we can construct
a sequence of Lagrangian submanifolds Nj;m �D.Rj / such that Nj;m\ @D.Rj /D cj;m. The following
lemma, Lemma 6.5, claims that we can construct Nj;m wisely, so that Nj;m converges to a Lagrangian
lamination Nj as m goes to1.

Lemma 6.5 It is possible to constructNj;m�D.Rj / so that the sequenceNj;m converges to a Lagrangian
lamination Nj �D.Rj / as m!1.
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Proof Let the boundary condition cj;m be the set fl1;m; : : : ; lNm;mg, where li;m is a connected component
of cj;m, or equivalently, li;m is a strand of the braid represented by cj;m. Note that Cj;m is a disjoint union
of solid tori in D.@Rj /, which is defined at the beginning of the present subsection. Then we can divide
cj;m into a partition such that li;m and lj;m are in the same subset if and only if li;m and lj;m are in the
same solid torus (or Sn�1 �Dn, for a higher-dimensional case) in Cj;m. After that, we randomly choose
a connected component ls;m from each subset of the partition.

By Lemma 6.4, there is �s;m WRj !R such that d�s;m D ls;m on @Rj . Then �.d�s;m/ is a Lagrangian
disk in D.Rj /, where �.d�s;m/ is the graph of d�s;m. We can choose a neighborhood N.�.�s;m// of
�.d�s;m/ in D.Rj /, such that N.�.d�s;m//' T �Dn and N.�.d�s;m//\D.@Rj / is the torus in Cj;m
containing ls;m. Moreover, we can assume that

dH .N.�s;m/; �.d�s;m// < 2r
m;

where dH is the Hausdorff metric induced by a fixed Riemannian metric and r < 1 is a small positive
number.

We apply Lemma 6.4 to flt;mC1 2 cj;mC1 j lt;mC1 � N.�.d�s;m//g in N.�.d�s;m// ' T �Dn. Then
we can construct �t;mC1 W Rj ! R such that d�i;mC1 D lt;mC1 on @Rj and �.d�s;m/ is contained in
N.�s;mC1/. We repeat this procedure inductively on m 2N.

Let l be a strand of Cj;1. Then there is a sequence lim;m 2 cj;m such that lim;m converges to l . If we
construct �i;m by repeating the above procedure, we know that

dH .�.d�im;m/; �.d�in;n// < 4r
max.m;n/:

Thus, d�im;m converges. Moreover, by assuming that �i;m.p/D 0 for every i and m, where p is a center
of Rj , �im;m converges to a function �. Then �.d�/ is a Lagrangian disk in D.Rj / whose boundary is l ,
the stand of Cj;1. The union of �.d�/ is the Lagrangian lamination Nj which Nj;m converges to.

Proof of Theorem 1.5 By Lemma 6.2, there is a Lagrangian lamination Li in D.Si /, and by Lemma 6.5,
there is a Lagrangian lamination Nj in D.Rj /. Moreover, every Lagrangian lamination agrees with each
other along boundaries. Thus, we can glue them. Then we obtain a Lagrangian lamination L in M .

6.4 A generalization

In the previous sections, we assumed that  is of generalized Penner type. In the present subsection, we
discuss a symplectic automorphism  W .M;!/! .M;!/, not necessarily to be of generalized Penner
type, with some assumptions. In other words, we prove the following theorem.

Theorem 6.6 Let  WM ��!M be a symplectic automorphism and let B be a Lagrangian branched
submanifold such that  .B / is carried by B . If the associated branched manifold B admits a
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decomposition into singular and regular disks , then there is a Lagrangian lamination L such that if L is a
Lagrangian submanifold of M which is carried by B and if L is compatible with the decomposition
of B� , then there is a Lagrangian submanifold Lm for all m 2 N, which is Hamiltonian isotopic to
 m.L/ and converges to L as closed sets as m!1.

First, we assume that there is a Lagrangian branched submanifold B such that  .B / is (weakly)
carried by B . Then if a Lagrangian submanifold L is (weakly) carried by B , then  .L/ is carried
by B . This is because the proof of Lemma 3.19 carries over with no change.

As mentioned in Section 4.2, we assume that B� admits a decomposition into a union of finite number
of singular disks Si 'Dn and regular disks Rj 'Dn.

Proof of Theorem 6.6 First, we define data on the boundary of each singular and regular disk, in the
same way we did for the case of  of generalized Penner type. Then, on a regular disk Rj , the proofs of
Lemma 6.4 and Lemma 6.5 carry over with no change. Thus, we can construct a Lagrangian lamination
on D.Rj /.

On a singular disk Si , we define the boundary data in the same way. In other words, the boundary data is
defined by the isotopy class of  m.L/\D.@Si /. We also can obtain a matrix ‰, which explains how the
sequences of braids are constructed inductively. However, the rest of the proof of Lemma 6.2 does not
carry over. This is because in the proof of Lemma 6.2, functions of trivial type have a key role. To use the
same proof, we need to show that there are enough functions of trivial type. However, the assumptions
cannot imply the existence of enough functions of trivial type.

For a singular disk Si , let ffmgm2N be a strand of the limit braid on Si . We note that each strand can
be identified to an infinite sequence of functions. We forget specific functions fm, but remember their
types. Then, we obtain a sequence of types. The sequence of types determines the “shape” of strand, for
example, how many times the strand is rotated.

We can construct a symplectomorphism � which is of generalized Penner type such that B� has a
singular disk S such that the limit braid assigned on S has a strand of the same shape. In Section 4.3, we
constructed a Lagrangian submanifold L0 �D.S/ such that @L0 is the strand. Since D.S/'D.Si /, we
assume that L0 is a Lagrangian submanifold in D.Si /. By scaling and translating L0 inside D.Si /, we
obtain a Lagrangian submanifold whose boundary agrees with the strand.

The rest of the proof is the same as the proof of Theorem 1.5.

7 Application to Lagrangian Floer homology

One natural question following the construction of stable/unstable Lagrangian lamination is: how can
we understand those constructed Lagrangian laminations in terms of Fukaya category? The purpose of
Section 7 is to introduce one possible view-point of answering the question. More precisely, we expect
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that a symplectic automorphism of Penner type will induce a pseudo-Anosov autoequivalence in terms of
Fan, Filip, Haiden, Katzarkov and Liu [4].

Remark 7.1 There are two different definitions of pseudo-Anosov autoequivalence. One is defined by
Dimitrov, Haiden, Katzarkov and Kontsevich in [3] and the other is defined in [4].

Roughly, we expect that, for a given � of Penner type, by counting intersection numbers of a Lagrangian
submanifold L and the stable/unstable Lagrangian laminations, we can define a mass function for �.
Then, � will induce a pseudo-Anosov autoequivalence with respect to that mass function.

We do not prove the above claim in the current paper. However, we prove Theorem 7.3 which relates the
intersection numbers with Lagrangian Floer theory.

In Section 7.1, we state Theorem 7.3. In Section 7.2, we will give a proof of Theorem 7.3. Moreover, we
will prove Lemmas 7.7 and 7.8, in order to weaken the difficulties of applying Theorem 7.3 together with
Example 7.9.

Remark 7.2 (1) In order to do Lagrangian Floer theory, we should choose a suitable almost complex
structure J . We will discuss our choice of almost complex structure in Section 7.1; see Remark 7.6.

(2) If M is a surface, ie a 2–dimensional symplectic manifold, then zLi D Li , and Theorem 7.3 is
claiming that the rank of Lagrangian Floer homology of L1 and L2 is the same to the intersection
number of L1 and L2. This is already proven in [3, Lemma 2.18].

7.1 Setting

First, we state Theorem 7.3. Then, we will define the terms in Theorem 7.3.

Theorem 7.3 Let M be a plumbing space of Penner type , and let � W M ��! M be the involution
associated to M . Assume that a transversal pair L1; L2 �M of Lagrangian submanifolds satisfies

(1) �.Li /D Li for i D 0; 1;

(2) if zLi DLi \Mi , then zLi is a Lagrangian submanifold of zM such that zL0 and zL1 are not isotopic
to each other;

(3) L0\L1 D zL0\ zL1;

(4) L0 and L1 are not isotopic to each other.

Then

(7-1) dimHF 0.L1; L2/C dimHF 1.L1; L2/D i.zL1; zL2/;

where HF k.L1; L2/ denotes Z=2–graded Lagrangian Floer homology over the Novikov ring of charac-
teristic 2 and i.zL1; zL2/ denotes the geometric intersection number of zL1 and zL2 in the fixed surface zM .
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In Section 7, we assume that our symplectic manifold M is a plumbing space

M D P.˛1; : : : ; ˛m; ˇ1; : : : ; ˇl/

of Penner type defined as follows.

Definition 7.4 A plumbing space M D P.˛1; : : : ; ˛m; ˇ1; : : : ; ˇl/ is of Penner type if ˛i and ǰ satisfy

(1) ˛1; : : : ; ˛m and ˇ1; : : : ; ˇl are n–dimensional spheres,

(2) ˛i \ j̨ D¿ and ˇi \ ǰ D¿ for all i ¤ j .

Note that P.˛1; : : : ; ˛m; ˇ1; : : : ; ˇl/ is defined in Section 2.1.

From now on, we will define an involution � WM ��!M , which is associated to M .

Involution �0 on T �Sn First, we will define an involution �0 on T �Sn. Let

Sn D fx 2RnC1 j jxj D 1g;

T �Sn D f.x; y/ 2 Sn �RnC1 j x 2 Sn; hx; yi D 0g:

Then we define �0 W T �Sn ��! T �Sn by

�0.x1; : : : ; xnC1; y1; : : : ; ynC1/D .x1; x2;�x3; : : : ;�xnC1; y1; y2;�y3; : : : ;�ynC1/:

Let
W0 D f.cos �; sin �; 0; : : : ; 0/ j � 2 Œ0; 2��g � Sn;

T �S D f.cos �; sin �; 0; : : : ; 0;�r sin �; r cos �; 0; : : : ; 0/ j � 2 Œ0; 2��; r 2Rg � T �Sn:

Then it is easy to check that T �W0 is the set of fixed points of �0, ie �fixed
0 D T �W0.

Involution � associated toM First, we will construct an involution �˛i and �
ǰ

on T �˛i and T � ǰ for
every i and j . Note that T �˛i ; T � ǰ �M .

For each ˛i , we will choose a great circle W˛i � ˛i such that W˛i contains every plumbing point of ˛i .
Then there is a symplectic isomorphism �˛i WT

�Sn ��!T �˛i such that �˛i .S
n/D˛i and �˛i .W0/DW˛i .

One obtains an involution �˛i W T
�˛i

��! T �˛i by setting

�˛i WD �˛i ı �0 ı .�˛i /
�1:

Similarly, one obtains an involution �
ǰ
W T � ǰ

��! T � ǰ .

Without loss of generality, one can assume that �˛i .x/D � ǰ
.x/ for every x 2 T �˛i \ T � ǰ . Finally,

the involution � WM ��!M is defined by

�.x/ WD

�
�˛i .x/ if x 2 T �˛i ;
�
ǰ
.x/ if x 2 T � ǰ :

Let zM be the set of fixed points of �, ie zM D fx 2 M j �.x/ D xg. It is easy to check that zM is a
2–dimensional symplectic submanifold of M . Moreover, zM is symplectomorphic to a plumbing space
P.S˛1 ; : : : ; S˛m ; Sˇ1 ; : : : ; Sˇl / of Penner type. Note that S˛i and S

ǰ
are embedded circles in ˛i and ǰ .
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Definition 7.5 (1) The above � is called the involution associated to M .

(2) The above zM is called the fixed surface of M .

Remark 7.6 It is easy to check that our setting is a special case of Seidel and Smith [13]. More precisely,
[13] considers Lagrangian Floer cohomology on a symplectic manifold carrying a symplectic involution.
Under various topological hypothesis, the authors proved a localization theorem, and the theorem implies
a Smith-type inequality which is closely related to (7-1).

As a basic setup of Lagrangian Floer homology, [13] contains some analytic background; for example, the
choice of almost complex structures. We follow their settings in order to do Lagrangian Floer homology.
We refer the reader to [13, Section 3].

7.2 Proof of Theorem 7.3

LetM be a plumbing space of Penner type, � the associated involution ofM , and L0 and L1 a transversal
pair of Lagrangian submanifolds such that

(1) �.Li /D Li ;

(2) zLi D Li \ zM is a Lagrangian submanifold of zM ;

(3) L0\L1 D zL0\ zL1;

(4) L0 and L1 are not isotopic to each other.

We will compute Z=2–graded Lagrangian Floer homology HF �.L0; L1/ over the Novikov field ƒ of
characteristic 2. To do this, we will prove that chain complexes CF �.L0; L1/ and CF �.zL0; zL1/ have
the same generators and the same differential maps.

First, it is easy to show that CF �.L0; L1/ and CF �.zL0; zL1/ have the same generators since L0 and L1
satisfy that L0\L1 D zL0\ zL1. Thus, CF �.L0; L1/D CF �.zL0; zL1/ as vector spaces.

Second, let @ (resp. Q@) denote the differential map on CF �.L0; L1/ (resp. CF �.zL0; zL1/). Then

@.p/D
X

q2L0\L1
Œu�Wind.Œu�/D1

.#M.p; qI Œu�; J //T !.Œu�/q;

where J is an almost complex structure on M , u is a holomorphic strip connecting p and q, and
M.p; qI Œu�; J / is the moduli space of holomorphic strips. We skip the foundational details of the
definition of @.

One can easily check that � ı u is also a holomorphic strip connecting p and q. Assume that for a
holomorphic strip u, the image of u is not contained in zM . Then u and � ıu will be canceled together
in @.p/, since the Novikov field ƒ is of characteristic 2. Thus, in order to define the differential map @, it
is enough to count holomorphic strips u such that the image of u is contained in zM .

On the other hand, in order to define Q@ W CF �.zL0; zL1/! CF �.zL0; zL1/, one needs to count the holomor-
phic strips on zM . Thus, @.p/D Q@.p/ for all p 2 L0\L1 D zL0\ zL1.
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Under the assumptions, HF �.L0; L1/DHF �.zL0; zL1/. Note that the former is defined on M 2n, but
the latter is defined on a surface zM . Thus, it is enough to check that

dimHF 0.zL1; zL2/C dimHF 1.zL1; zL2/D i.zL1; zL2/:

By Remark 7.2, [3, Lemma 2.18] completes the proof.

7.3 Example 7.9

In the present subsection, we will prove Lemmas 7.7 and 7.8 in order to slightly weaken the difficulty of
applying Theorem 7.3. Then, we will give Example 7.9.

The difficulty of applying Theorem 7.3 is that there are too many conditions which L0 and L1 should
satisfy. Lemmas 7.8 and 7.7 will give us plenty of Lagrangians satisfying the conditions after Hamiltonian
isotopies.

Before giving the statement of Lemmas 7.7 and 7.8, we will establish notation. Since

M D P.˛1; : : : ; ˛m; ˇ1; : : : ; ˇl/

is a plumbing space of Penner type, we can construct a set B of Lagrangian branched submanifolds of M
as we did in Section 3.4. Every Lagrangian branched submanifold B2B is a union of (parts of) ˛i and ǰ

and Lagrangian connected sums ˛i and ǰ . However, there are two possible Lagrangian connected sums
of ˛i and ǰ at each plumbing point p 2 ˛i \ ǰ . They are ˛i #p ǰ and ǰ #p ˛i . By assuming that ˛i is
a positive sphere and ǰ is a negative sphere, one considers the Lagrangian connected sum ǰ #p ˛i , not
˛i #p ǰ . Similarly, by assuming that ˛i is negative and ǰ is positive, one can construct another set Bop

of Lagrangian branched submanifolds.

Lemma 7.7 Let B1;B2 2 B[Bop. Then there is a Hamiltonian isotopy ˆt WM !M such that

(1) ˆt ı �D � ıˆt ,

(2) B0 tˆ1.B1/,

(3) for every q 2B0\ˆ1.B1/, q is not a plumbing point or the antipodal point of a plumbing point.

Proof Since B1 is a union of (parts of) compact cores and their Lagrangian connected sums, we will
construct Hamiltonian isotopies perturbing each compact core ˛i and ǰ . Then, one obtains a perturbation
of B1 as a union of (parts of) perturbations of ˛i , ǰ and Lagrangian connected sums of perturbed ˛i
and ǰ .

First, we choose a smooth function fi W ˛i !R with isolated critical points such that

(1) for every plumbing point p 2 ˛i , fi .p/D fi .�p/D 0, where �p is the antipodal point of p on ˛i ;

(2) every critical point q of fi lies on S˛i and q ¤ p;�p for any plumbing point p 2 ˛i ;

(3) jdfi .x/j< � for all x 2 ˛i and for a sufficiently small fixed positive number �;

(4) fi ı �˛i D fi , where �˛i is the involution on T �˛i defined in Section 7.1.

Algebraic & Geometric Topology, Volume 24 (2024)



714 Sangjin Lee

We remark that

T �˛i
�˛i
' T �Sn D f.x; y/ 2RnC1 �RnC1 j jxj D 1; hx; yi D 0g;

where �˛i W T
�Sn ��! T �˛i is the identification which we used in Section 7.1. Also, we remark that

in (3), jdfi .x/j is given by the standard metric on R2nC2.

Then, we can extend fi to Qfi W T �˛i !R as follows. Let ı W Œ0;1/!R be a smooth decreasing function
such that

ı.Œ0; ��/D 1; ı.Œ2�;1//D 0:

We set
Qfi W T

�˛i !R; Qfi .x; y/D ı.jyj/fi .x/:

We get Qgj W T � ǰ !R in the same way.

These Hamiltonian functions Qfi and Qgj induce Hamiltonian isotopies on T �˛i and T � ǰ . Moreover,
these Hamiltonian isotopies could be extended on the plumbing space M since the Hamiltonian isotopies
have compact supports on T �˛i and T � ǰ .

Let ˆ˛i ;t WM
��!M be the (extended) Hamiltonian isotopy associated to Qfi . It is easy to check that

ˆ˛i ;t ı �D � ıˆ˛i ;t ;

ˆ˛i ;t .˛k/D ˛k if k ¤ i;

ˆ˛i ;t . ǰ /D ǰ for all j;

ˆ˛i ;1.˛i /D �.dfi /;

where �.dfi / is the graph of dfi in T �˛i � M . Similarly, one can obtain a Hamiltonian isotopy
ˆ

ǰ ;t WM
��!M for each ǰ .

Let
ˆt D

Y
ǰ

ˆ
ǰ ;t ı

Y
˛i

ˆ˛i ;t :

It is easy to check that ˆt satisfies the first condition of Lemma 7.7. Moreover, one can assume that
ˆ1.B1/ is constructed from ˆ1.˛i / and ˆ1. ǰ /. Thus, it is easy to prove that B0 and ˆ1.B1/ satisfy
the second and the last conditions of Lemma 7.7.

We will now explain how Lemma 7.7 weakens a difficulty of applying Theorem 7.3. The difficulty we
will consider is the last condition of Theorem 7.3, ie L0\L1 D zL0\ zL1. The other conditions can be
weakened by a similar way.

Assume that L0 (resp. L1) is a Lagrangian submanifold which is carried by B0 (resp. B1) in B[Bop.
Note that ˆ1.L1/ is carried by ˆ1.B1/, where ˆ1 is the Hamiltonian isotopy constructed in Lemma 7.7.
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We will count the numbers of intersections L0 \ˆ1.L1/ and zL0 \ˆ1.zL1/. If these numbers are the
same, then L0\ˆ1.L1/D zL0\ˆ1.zL1/.

First, we remark that zL0 (resp. ˆ1.zL1/) is a curve carried by a train track B0\ zM (resp. ˆ1.B1/\ zM ).
Then, zL0 (resp. ˆ1.zL1/) has weights on the train track B0 \ zM (resp. ˆ1.B1/\ zM ). Moreover, the
number of zL0\ˆ1.zL1/ isX

x2B0\ˆ1.B1/

.the weight of zL0 at x/ � .the weight of ˆ1.zL1/ at x/:

To count the number of L0\ˆ1.L1/, we can assume that L0\ˆ1.L1/ is contained in a small neigh-
borhood of B0 \ˆ1.B1/. Since L0 is carried by B0, not strongly carried by, L0 can have singular
points. However, the singular points are “close” to one of plumbing points or the antipodes of plumbing
points. Since the intersection points of B0 and ˆ1.B1/ are not plumbing points or their antipodes, every
x 2 L0 \ˆ1.L1/ is a regular point of L0 (resp. ˆ1.L1/). It means that the number jL0 \ˆ1.L1/j is
also given by X

x2B0\ˆ1.B1/

.the weight of zL0 at x/ � .the weight of ˆ1.zL1/ at x/:

Thus, jL0\ˆ1.L1/j D jzL0\ˆ1.zL1/j.

Lemma 7.8 Let L0 and L1 be carried by B0;B1 2 B[Bop. Then there is a Hamiltonian isotopy ˆt
such that

L0\ˆ1.L1/D zL0\ˆ1.zL1/:

Thus, if L0 and L1 are carried by B0;B1 2 B[Bop, and if L0 and L1 satisfy conditions (1), (2) and (4)
of Theorem 7.3, then one can apply Theorem 7.3 for L0 and ˆ1.L1/.

Example 7.9 Let  0 and  1 be symplectomorphisms of Penner type, ie  0 and  1 are products of
positive (resp. negative) powers of �i and negative (resp. positive) powers of �j , where �i and �j are
Dehn twists along ˛i and ǰ respectively. Assume that L0 (resp. L1) is a Lagrangian submanifold of M ,
which is generated from one of compact cores by applying  0 (resp.  1), ie

L0 D  0.˛k/ or  0. ǰ /; L1 D  1.˛k/ or  1. ǰ /:

Then �.Li /D Li since

�.˛i /D ˛i ; �. ǰ /D ǰ ; � ı �i D �i ı �; � ı �j D �j ı � for all i; j:

Moreover, zLi D  i . Q̨k/ or  i . Q̌j /. Thus, zLi is a Lagrangian submanifold of zM . Finally, Li is carried
by B i .

Thus, if L0 and L1 are not isotopic to each other, then one can apply Theorem 7.3.
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