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Computing the Morava K -theory of real Grassmannians
using chromatic fixed point theory

NICHOLAS J KUHN
CHRISTOPHER J R LLOYD

We study K(n)*(Grg(R™)), the 2-local Morava K—theories of the real Grassmannians, about which
very little has been previously computed. We conjecture that the Atiyah—Hirzebruch spectral sequences
computing these all collapse after the first possible nonzero differential d,,+1_;, and give much evidence
that this is the case.

We use a novel method to show that higher differentials can’t occur: we get a lower bound on the size of
K(n)*(Grz (R™)) by constructing a C4—action on our Grassmannians and then applying the chromatic
fixed point theory of the authors’ previous paper. In essence, we bound the size of K(n)*(Grz (R™)) by
computing K (n — 1)*(Grg (R™)4).

Meanwhile, the size of E,,+1 is given by Q,-homology, where Q, is Milnor’s n" primitive mod 2
cohomology operation. Whenever we are able to calculate this O ,—homology, we have found that the size
of E,n+1 agrees with our lower bound for the size of K(n)*(Grg(R™)). We have two general families
where we prove this: m < 27+1 and all d, and d = 2 and all m and n. Computer calculations have allowed
us to check many other examples with larger values of d.

55M35, 55N20; 55P91, 57S17

1 Introduction

Let Gr; (R™) be the real Grassmannian of k—planes in R, a much studied compact manifold of dimension
d(m — d) admitting the structure of a CW complex with () “Schubert cells”.

Much is known about the ordinary cohomology of these spaces:
(1) H*(Grg(R™);7Z/2) is generated by Stiefel-Whitney classes satisfying standard relations. It has
total dimension (7).

(2) H*(Grg(R™);Q) is generated by Pontryagin classes, along with, in some cases, an odd-dimensional
class. For fixed d, and € = 0 or 1, the total dimension of H*(Grg(R2~€1+2/); Q) is polynomial of
degree |d /2] as a function of [ > 0.

(3) If m is even, then Grgy(R™) is oriented. Furthermore, the inclusion Grg (R”~!) < Grgz(R™)
induces an epimorphism in rational cohomology.
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920 Nicholas J Kuhn and Christopher J R Lloyd

(4) Nontrivial torsion in H*(Grgz (R™); Z) has order 2. The mod 2 Bockstein spectral sequence (BSS)
collapses after the first differential. Equivalently, the mod 2 Adams spectral sequence (ASS)
converging to H*(Grg(R™); Z) collapses at E.

Much less is known about other cohomology theories applied to these Grassmannians. In this paper,
we study K (n)*(Grg(R™)) for n > 1. Here K(n)*(X) denotes the 2—local n™ Morava K—theory of a
space X, a graded vector space over the graded field K(n)x = Z/ 2[1)3:] with |v,| =2"T1 —2. We let
k(n) denote the connective cover of K(n): k(n)« = Z/2[v,].

Viewing HQ as K(0) and HZ as k(0), our discovery is that analogues of statements (2)—(4) above
appear to hold for all n, with the Atiyah—Hirzebruch spectral sequence (AHSS) replacing the Bockstein
spectral sequence in statement (4). Furthermore, the analogue of statement (1) holds through a much
bigger range than one would expect from dimension considerations.

In the next two subsections, we describe our main results.

1.1 Results proved using chromatic fixed point theory
Given a finite complex X and n > 0, we let k, (X) = dimg,), K(n)*(X).

Theorem 1.1 If m < 2"*!, then k,(Gry(R™)) = (7). Thus, in this range, the AHSS converging to
K(n)*(Grg (R™)) collapses at E;.

We note that this collapsing range is surprisingly large, as dimension considerations just imply collapsing
ifdim—d) <2"+1,

For larger m, we have the following lower bound.

Theorem 1.2 Let m =2""! —¢ 42/ withe =0 or 1, and [ > 0. Then

ld/2]

on+l1 e Ji
m
G @ = Y- (P ) (i)

1=
Conjecture 1.3 Equality always holds in this last theorem.
The biggest novelty of this paper is our method for proving Theorems 1.1 and 1.2: we make use of

chromatic fixed point theory to prove these nonequivariant results.

The blue shift theorem of Barthel, Hausmann, Naumann, Nikolaus, Noel and Stapleton [2] says that if C
is a finite cyclic p—group and X is a finite C—CW complex, then

Kn)*(X)=0 = Kn—-1)*X%) =0:

see also Balderrama and the first author [1]. In [8], we upgraded this. Specialized to cyclic groups, [8,
Theorem 2.17] says the following.
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Computing the Morava K—theory of real Grassmannians using chromatic fixed point theory 921

Theorem 1.4 If C is a finite cyclic p—group, and X is a finite C—CW complex, then
kn(X) = kn—1(X).

Note that, in these statements, K (n), means Morava K—theory at the prime p.

As (’Z; ) is an evident upper bound for k, (Gr; (R™)), to prove Theorem 1.1, it suffices to show that
ky(Grg (R™)) > (2’;) in the stated range. Using Theorem 1.4, we will show this by induction on n using
a Cp—action on Gry (R™) induced by an m—dimensional real representation of C = Cs.

We will similarly prove Theorem 1.2 for n > 1 by using a C4—action on Grg (R™) induced by an
m—dimensional real representation of C = Cy.

In both cases, it will be quite easy to compute k,_1(Grg (R™)C).

Details of this will be in Section 2.

1.2 Results about the Q,—homology of the Grassmannians

Conjecture 1.3 follows from a conjectural calculation that only involves H*(Gry (R™); Z/2), viewed as
a module over the Steenrod algebra.

Let O, forn=0,1,2,...be the Milnor primitives: the elements in the mod 2 Steenrod algebra recursively
defined by Q¢ = Sq!, and Q,, = [Qn_l,qun]. These satisfy Q2 = 0, and we let kg, (X) denote the
total dimension of the Q,—homology of X,

Z*(X: 0,
H*(X;Qn)=#.g§,

Z*(X: 0p) =ket{Qn: H*(X:Z/2) — H*t?""' =\ (X;2/2)},
B*(X: 0n) =im{Qn: H*2""'Y1(X:2/2) = H*(X;Z/2)}.

where

As will be reviewed in Section 3.1, the first differential in the AHSS converging to K(n)*(X) is dyn+1_1,
with formula

dyn+1_1(x) = Qn(x)vp
for all x € E; /0 (X) = H*(X;Z/2). This makes it not hard to check the next lemma.

Lemma 1.5 If X is a finite complex, kg, (X) > k,(X) is always true, and the following are equivalent:
@ ko, (X)=kn(X);
(b) the AHSS, whenn > 1, or the BSS, when n = 0, computing K(n)*(X) collapses at E,n+1;
(c) the ASS computing k(n)*(X) collapses at E».

We apply this to our situation. First, Theorem 1.1 has the following nontrivial algebraic consequence.
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922 Nicholas J Kuhn and Christopher J R Lloyd

Corollary 1.6 If m < 2"+, then Q, acts trivially on H*(Grg(R™);Z/2).

For an algebraic proof of this result using the methods of Section 3.5, see the second author’s thesis [10,
page 75].

For m > 2"+, we believe the following is true.

Conjecture 1.7 Let m =2"*! —¢ + 2] withe =0or 1, and [ > 0. Then

/2] snt1_

ko, (Grg(R™)) = Z( d—2i )(f)

i=0
Comparison with Theorem 1.2 shows that when Conjecture 1.7 is true, one can conclude

* kg, (Grg(R™)) = k,(Grg (R™)), and Conjecture 1.3 is true;

 the AHSS computing K(n)*(Grg (R™)) collapses at Epn+1;

¢ the ASS computing k(1)*(Grg (R™)) collapses at E;

e kn(Gry (R2n+] —€+21y) is polynomial of degree |d /2] as a function of /.
Known rational calculations imply that the conjecture is true when n = 0. It is also easy to show that the
conjecture is true when d = 1, and one calculates

m if 1 <m <2nt!
kn(Gry (R™)) = ot
n( rl( )) 2n+1_€ 1fm:2n+1—6+21

With much more work we prove the following.

Theorem 1.8 Conjecture 1.7 is true when d = 2. Thus the Atiyah—Hirzebruch spectral sequence com-
puting K(n)*(Grp(R™)) collapses at E,n+1, the Adams spectral sequence computing k(n)*(Grz(R™))
collapses at E5, and we have the calculation

" if2<m<2"t!
k Gr Rm — (Zn) — — ’
n(Gr2(R™)) G+ ifm=2mt eyl

We are firm believers in our conjectures. For more evidence, the second author has made extensive
computer calculations verifying Conjecture 1.7 in hundreds more cases with larger values of d; see the
tables in the appendix.

For d > 2, computing the size of H*(Gry(R™); Q,) seems tricky. We have organized our efforts by
studying how these numbers change as m is increased as follows.

Let C;(R™) denote the cofiber of the inclusion Gry (R™~1) — Gry(R™), so there is a cofiber se-
quence Gry (R 1) - Gry(R™) £ C;(R™). In Section 3.3, Cz(R™) is identified as the Thom
space of the canonical normal bundle over Gry_; (R™~1), and in Section 3.4 we study the Q,-module
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Computing the Morava K—theory of real Grassmannians using chromatic fixed point theory 923
H*(Cz(R™); Z/2), viewed as H*(Gry_1(R™ 1) Z/2) equipped with an explicit twisted Qp—action.
One has an induced short exact sequence of modules over the Steenrod algebra

0— B*(Ca(R™): Z/2) £ H*(Grg(R™): Z./2) 15 H*(Grg(R™™1): Z,/2) — 0,
inducing a long exact sequence on Q,—homology.

When m is even, we see much orderly behavior.

Theorem 1.9 Let m be even.

(@) HAm=4)(Gry(R™); Qn) ~ Z/2, ie the nonzero top-dimensional cohomology class is not in the
image of Q,, for alln.

(b) The chain complex (ﬁ *(Cy (R™); Qn)) is dual to the chain complex
(HA= D7 (Grg— (R™™1): Ow))-

(¢) If Conjecture 1.7 is true for (n,d,m — 1) and (n,d — 1,m — 1), then it is true for (n,d, m).
Furthermore, Grgz (R™) will then be k(n)—oriented, and the cofiber sequence above will induce
short exact sequences

0— A*(Ca(R™); Q) £ H*(Gra(R™); Q) L H* (Grg(R™"); ) >0,
0 R(n)*(Ca(R™) £ K (n)*(Grg (R™)) L K(n)* (Grg (R™ ")) — 0.
We prove Theorem 1.9 in Section 4. We make use of the additive basis {s) } dual to the classical Schubert
cells. Here A runs through partitions having at most d parts, each no bigger than m — d. In [9], Cristian

Lennart gave a combinatorial formula for 0, (sy), and we use this to prove (a). Duality statement (b)
follows quite formally from (a), and (c) follows easily from (b).

When m is odd, the analogues of statements (a) and (b) are false, and, for d > 3, the full behavior of the
connecting map in the Q,-homology long exact sequence,

§: H*(Grg(R™Y); 0,) — H* 2" =1(C (R™); ),

is as yet unclear to the authors. In Section 6, we will prove analogues of Theorems 1.1 and 1.2 for
C4(R™), and then speculate on behavior of § that would be compatible with all of our computations.

However, when d = 2, we have the following result.

Theorem 1.10 Let m > 2"*! be odd. Then kg, (C2(R™)) = 2"*! —2 and the map
H*(C2(R™): Qn) #— H*(Gra(R™): On)
is zero, so there is a short exact sequence

2n+1

0 — H*(Gra(R™): 0,) L H*(Gra(R™1): 0,) 45 H*H2" —1(CL(R™): 0,,) — 0.
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From this, Theorem 1.8 quickly follows and one can deduce that, in this case, there is a short exact
sequence

0 — K(n)*(Gra(R™)) <5 K(n)*(Gra(R™™1)) <5 K (n)*+1(C2(R™)) — 0.

We prove Theorem 1.10 in Section 5. The tools we use are very different from those used in proving
Theorem 1.9: we work with the classical presentation of H*(Gr; (R™); Z/2) as a ring of Stiefel-Whitney
classes.

1.3 Comparison with other work

When comparing our work to what has come before, the first thing to say is that the outcome of our calcu-
lations — though not the methods — are in line with the classical calculations first made by C Ehresmann
in 1937 [3]. He determined the additive structure of both H*(Gr; (R™);7Z/2) and H*(Grgz (R™); Q).
He also showed that all the torsion in H *(Grgz (R™); Z) was of order 2; in modern terms this is equivalent
to showing that the Bockstein spectral sequence computing H *(Grg (R™); Z) collapses after the first
nonzero differential given by Q¢ = Sq' = B.

Calculating the Morava K—theories of Gr; (R°°) = BO(d) was done first by Kono and Yagita [7], and then,
with a simpler proof, by Kitchloo and Wilson [6]. Again, the AHSS computing K (n)*(BO(d)) collapses
after the first nonzero differential, but the collapsing is for an elementary reason: H*(BO(d); Q) is
concentrated in even degrees. Indeed, one quickly learns that the complexification map BO(d) — BU(d)
induces an epimorphism K(n)*(BU(d)) — K(n)*(BO(d)), so K(n)*(BO(d)) is generated by Chern
classes c1,...,¢4.

An equivalent statement is that H*(BO(d); Q) is generated by the classes w%, e, wfi. These will still

be permanent classes in the AHSS converging to K (n)*(Gr; (R™)), but now we have odd-dimensional
classes as well, with the number of these seemingly growing as d and m grow.

Finally, we point out that we do not attempt to describe K(n)*(Grz(R™)) as a K(n)*-algebra. Our
results do tell us something about this, however. In the situation of Theorem 1.1, the known algebra
H*(Grg (R™); Z/2) ® K(n)* will be an associated graded. Similarly, whenever our conjecture is valid,
H*(Grgz(R™); 0,) ® K(n)* would be an associated graded of the K(n)*—algebra K (n)*(Grg (R™)).
What is still needed, and might be necessary to prove our conjectural collapsing in general, are sensible
constructions of classes in odd degrees.

Acknowledgements
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2 The proofs of Theorems 1.1 and 1.2

In this section we prove Theorems 1.1 and 1.2 by using our chromatic fixed point theorem Theorem 1.4.
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2.1 A fixed point formula

Let G be a finite group, and let V' be an m—dimensional real representation of G. Then Gryg(V), the
space of d—planes in V, is a model for Grg (R™) with an evident G—action. Here we describe Grg (V)
its space of G—fixed points.

To state this, we need some notation. Let V1, ..., Vi be the irreducible real representations of G, let
ri = dimg V;, and let D; = Endgr[g(Vi, Vi). Each of the endomorphism algebras ID; will be a finite-
dimensional real division algebra, and thus isomorphic to R, C, or H, and dimg ID; will divide r;.

Proposition 2.1 If V = V"' @---@ V,""*, then there is a homeomorphism

Gry (V)% = | | Grj, (D) x -+ x G, (D7'%).
Jirttet jkre=d

Proof The fixed point space Gry (V)€ will be the space of sub-G—modules W < V of real dimension d.
Such a G—module W will decompose canonically as W = W, &- - - Wy, with W; < Vlm i Ifd; =dimg W;,
then di + -+ + di = d. Thus we have a decomposition

Gry(V) = ||  Gra, (V"™ x Grg, (3% x -+ x Grg, (V™).
di++dr=d

A submodule W; of Vimi must be isomorphic to Vl.j for some j; thus Gry, (Vim1 )@ will be empty unless

di = jir; for some j;.

Finally, using that Homg[g (Vl.j V") = Homp (D’ ,D™), one deduces that the submodules of V™!
isomorphic to Vl.] " correspond to the D—subspaces of D™ of dimension j; over D. Thus there is a
homeomorphism

Grj,r, (V"G = Grj, (D). O

Corollary 2.2 IfV = Vlml ®---B Vkmk, then, for any n,

kn(Grg (V)©) = > kn (Grj, (DY) -+ kn(Grj, (D).
Jiritetjkre=d

Proof A consequence of the Kiinneth theorem for K(n) is that k, (X xY) =k, (X)k,(Y). Thus the
corollary follows from the proposition. a

Remark 2.3 If D = C or H, then Gry(D™) has a CW structure with (7) cells that are all even-
dimensional, and thus k, (Grg (D™)) = ('Z; ) for all n.
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926 Nicholas J Kuhn and Christopher J R Lloyd

2.2 Proof of Theorem 1.1

Theorem 1.1 says that if m < 2"+! then k, (Grg (R™)) = (’;’;) Using Theorem 1.4 and Proposition 2.1,

we prove this by induction on 7.

The n = 0 case of the theorem is easy to check, as

ifd =0, ifd =0,1,
Gry(R%) = o . and Gry(RY) = ol .
& otherwise, & otherwise.

For the inductive step, assume that if p < 2" then k,—1(Grg (R?)) = (fl’)
Let m < 2"+, As it is clear that k, (Grg (R™)) < (77), our goal is to show that k, (Grg (R™)) = (7).

Let C; be the cyclic group of order 2. To get our needed lower bound, our strategy will be to make R™
into a Co—module, and then apply Theorem 1.4.

The group C;, has two irreducible 1-dimensional real representations; call them L; and L,. Since
m < 2"*T1 we can write m as m = p + ¢ with both p < 2" and g < 2". Now let V = Lf ® L%, an
m—dimensional real representation of C,.

Applying Proposition 2.1, we see that

Gry(N) = | | Gri(R?)xGr;(RY).
i+j=d

Applying Theorem 1.4 to this, we learn that

kn(Grg(R™) = > kn—1(Gr;(R?))kn—1(Grj (R?))

i+j=d
= Z (zp ) (;]) (by inductive hypothesis)
i+j=d

— (m
= ()
Remark 2.4 The same inductive proof can be used to prove the classical result that

dimz)> H* (Gra®");2/2) = (7})

for all m and d, with our chromatic fixed point theorem Theorem 1.4 replaced by the classical the-
orem of Ed Floyd [4, Theorem 4.4]: if the cyclic group C, acts on a finite CW complex X, then
dimg,, H*(X;Z/p) = dimg,, H*(X»;7/p). It would be interesting to know if this argument was
known to Floyd, or others, like Bob Stong, who regularly worked with these sorts of group actions.
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2.3 Proof of Theorem 1.2

The strategy of the proof of Theorem 1.2 is the same as the proof in the last subsection: we get a lower
bound on &, (Grg (R™)) by letting a cyclic 2—group act on R™ and applying Theorem 1.4.

In this case, the representation theory of C; is not rich enough to give us a big enough lower bound, but a
well chosen real representation of the group C4 of order 4 works better. Curiously, in our calculation of
kn—1 of the resulting fixed point space, we are able to use our already proven Theorem 1.1, so the proof

is not by induction, but more direct.

The group C4 has three irreducible real representations: L and L, of dimension 1, and R of real
dimension 2. Note that Endg[c,j(R) ~ C

Now let m = 2"t1 —¢ 4+ 2/ withe =0 or 1, and [ > 0. We define an m—dimensional real representation
Vof CabyV=L¥aLY “®R.

Applying Proposition 2.1, we see that

Grg(N= | ] Grj(R*")xGrr(R*" ™€) x Gr; (C)).
jt+k+2i=d

Applying Theorem 1.4 to this, we learn that

kn(Grg(R™) = >~ kn—1(Grj (R*"))kn—1(Grz (R*"~€))ken—1 (Gri (C'))

j+k+2i=d
= Z (2Jn)(2nk_€)(f) (using Theorem 1.1)
jtk+2i=d

-2[ 2. OE00

- (05)0)

3 The Q, homology of Gr; (R™): background material

3.1 The AHSS and the ASS for Morava K -theory

Let n > 1. We recall the structure of the AHSS converging to K (n)*(X) (as always, in this paper, with
p = 2). It is a spectral sequence of graded K(n)* = Z/2[vF] algebras with

EX*(X)= H*(X; K(n)*) = H*(X; Z/2)[vE].
Here v, has cohomological degree 2 — 2" 1,
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Sparseness of the rows implies that the differential d, will be zero unless r = s(2" ™1 —2) 4 1 for
some s. The first possible nonzero differential, d,n+1_;, satisfies the following formula [15]: given
xe EX°(X)=H*(X;Z/2),

dyn+1_1(x) = Qn(x)Vn.

It follows that E,n+1(X) >~ H*(X; Qn)[v,jf], and so the dimension of E,x+1(X) as a K(n)*—vector
space will equal kg, (X), the dimension of the Q,—homology of X. One immediately deduces part of
Lemma 1.5: ko, (X) = k,(X) if and only if the AHSS converging to K (n)*(X) collapses at Eyn+1(X).

To continue with the proof of Lemma 1.5, let cE;"*(X) denote the terms of the AHSS computing
k(n)*(X), a 4™ quadrant spectral sequence. Note that CE;’* = H*(X;Z/2)[v,] embeds in E;’*(X) =
H*(X;7Z/2) [v,:l‘:], and equals it for » <0, and that the latter spectral sequence is obtained from the former
by inverting vy,.

*9

It follows that cE,;
sequences corresponding to the epimorphism Z*(X; Q,) — H*(X; Q). From this, one sees that any
higher differential in the k(n)*(X) AHSS would be detected in the K(n)*(X) AHSS. Since this second
spectral sequence is the localization of the first, we can conclude that the K(n)*(X) AHSS collapses at
E5n+1(X) if and only if the k(n)*(X) AHSS collapses at ¢ Eyn+1(X).

LX) = E;,’,fr] (X) for » < 0, with the map on the O-line between the spectral

Next we note that the AHSS spectral sequence cE,*(X) identifies with the ASS computing k(1)*(X)
with suitable reindexing, with cE ;’111 (X) corresponding to the Adams E» term. Firstly, a result of
CRF Maunder [11] implies that the AHSS converging to [X, k(n)]« can be constructed by taking the
Postnikov filtration of the spectrum k(n). But the Postnikov tower for k(n) is also an Adams tower: as
described in the survey paper [14, Section 5], there is a cofibration sequence

22" 2k () 25 k() Z> HZJ2 2 22T k()
such that 2" "'~z 0, = 0, and 7 induces the epimorphism A — A/AQ, on mod 2 cohomology.

Finally, we note that, when n = 0, one still has the cofibration sequence as above, now with vg = 2, so
that the ASS for £(0) = HZ is similarly related to the Bockstein spectral sequence.

3.2 The description of H*(Grgz(R™); Z/2) via Stiefel-Whitney classes

We recall classical results that are either explicitly in [12] or can easily be deduced from the material
there.

Let wy,...,wy denote the Stiefel-Whitney classes of the canonical d—dimensional bundle y; over
Gr; (R®°). One has

H*(Grg(R®): Z/2) = Z./2[wy, ..., wq).
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Dual classes w1, wa, . .. are defined by the equation
(I+wy+-+wg)(1+wy +w2+-+) =1,

and this allows one to write the classes wy as polynomials in wq, ..., wy.

The inclusion Grg (R™) < Gry (R®°) then induces a surjective ring homomorphism
H*(Grg(R%):Z/2) - H*(Grg(R™); Z/2)

with kernel J(d,m —d) = (Wy | k > m —d). Now wy, can be interpreted as wy ()/j‘), where )/j- is the
(m—d )—dimensional bundle complementary to y,.

We record some useful consequences. To state these, it is useful to let
i:Grg(R™ 1) < Grg (R™)
be the inclusion induced by the inclusion R”~! < R™ and to let
J:Grg_1(R™™") < Grg (R™)

be the inclusion sending V C R™ ! to V @R C R™.

Lemma 3.1 (a) The ideal J(d,m —d) is generated by the d classes Wy,—g+1, Wm—d+2,---» Wm.
(b) In H*(Gry(R™);Z/2), wgwm—q = 0.
(©) ker{i*} = (Bm-q) C H*(Grg(R™):Z/2).
(d) ker{j*} = (wg) C H*(Grg (R™);Z/2).

Proof Statement (a) follows from the recursive relations among the wy. Statement (b) follows from the

equation
(I4+wr 4 +wg) (I +wg + -+ Wy—g) =1,

which holds in H*(Gr,; (R™); Z/2). Statement (c) follows from the fact that
Jd,m—-1-d)=J(d,m)+ (Wy—qg),
and (d) follows from (c), noting that j can be written as the composite
Gry_ (R™ 1) ~ Gr,,,_ g (R™ 1) - Gr,py g (R™) ~ Grg (R™),
where the indicated homeomorphisms are given by taking complementary subspaces (and, in cohomology,
these maps swap each w; with a w;). |
We end this subsection with a couple more facts about H*(Gry (R™);Z/2).
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An additive basis for H?(Grgz (R™); Z/2) is given by the monomials

d
Z”ifm—d},

i=1

ry, .2 rq
%wl w2 ...wd

so the top-dimensional class is wfl"_d in degree d(m —d); see [5].
The Wu formulae [12, page 94] are closed formulae for Sqi w;, and, in theory, formulae for O, (w;)

follow.

3.3 A description of the cofiber C; (R™) and its cohomology

Recall that C;(R™) is defined as the cofiber of the inclusion Grgz (R”~1) AN Gr; (R™). This cofiber
can be identified as a Thom space as follows.
Proposition 3.2 Let S (yj-_l) and D()/j‘_l) be the sphere and disk bundles associated to

yj‘_l — Grg_1(R™1).

There is a pushout ;
S(yz_y) —— Gra(R™™1)

L]
D(yg_) —— Gra®™).
inducing a homeomorphism f : Th(ydL_l) = C4(R™), such that the composite
Grg—y (R"™") 2220, Dy ) L Gra ®™)

is the map j of Lemma 3.1.
Proof Recall that

D(yz_) = {(V.v) | V €Grg—iR" ™) v eV o] <13,

Sy ) ={(V,0) |V €Grg_yR™ ), ve Vst v =1}
We define f: D()/j‘_l) — Gr; (R™) by the formula

fV,0)=V+ @+ V1—|ven),

where e,, is the m™ standard basis vector in R”. We claim this f has the needed properties.
First, note that f(V,0) =V + (em) =V &R = j(V).

Second, (V,v) € S(yj-_l) if and only if f(V,v) = V + (v), and so is an element of Gry(R”1!).
Furthermore, f: S (yj-_l) — Grg (R™71) is surjective: given any W € Gry (R™~1), if we choose any
(d—1)—dimensional subspace V' of W, and a unit length vector v € W in the 1-dimensional orthogonal
complement, then f(V,v) = W.
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Finally, we need to check that f is bijective on D(yj-_l) = D()/j‘_l) -8 ()/j‘_l). To check this, let
W € Grg (R™) be a d—dimensional subspace of R™ not contained in R”*~!, so that

V=WnR"!eGrg_;(R™1).

Let V1 be the complement of V' in of R™ so that W N V'~ is one-dimensional, and let v be the unique
unit vector v € W N VL such that v has positive m™ coordinate. Let 7 : R” — ]R”tl be the standard
projection. We claim that f(V,7(v)) = W and (V, w(v)) is the unique point in D(yj-_l) with this

property: since |v| = 1 the m™ component of v is /1 — |7 (v)|2; thus v = 7(v) + /1 — |7 (v)|2e, and
so f(V,r(v)) =V 4+ (v) =W. ad

Letuyl € Hm—d (Th()/j‘_l)) be the Thom class of yj-_l — Grg_; (R™~1). Then H™4 (Th(yl))is a
free rank 1 H*(Grgz_; (R™~1))-module on uyL . Meanwhile, H*(Grg (R™)) is a H*(Grg—; (R™=1))—
module via j*, and the ideal (w,,_g) = H*(C4(R™)) is a submodule. The proposition thus implies the
following.

Corollary 3.3 The map f*: H*(Cz(R™)) = H *(Th(yj-_l)) is an isomorphism of free rank 1
H*(Grg_1(R™1Y)—modules, and f*(W,,—q) = Uyt

3.4 The characteristic class associated to Q, and a twisted Q ,—module

Leta, € H 2m+i-1 (Grg—1(R™1)) be defined as the element satisfying

On(Bm—g) = tnWm—q € H*(Cq(R™)).
Then define
On: H*(Grg_y(R"™1)) = H**?"' =1 (Gry_y (R™1))
by the formula

On(x) = Qn(x) + xay.

Proposition 3.4 Q2 = 0, and the chain complex (H*(Grg_; (R™)), 0,) is isomorphic to the chain
complex (ﬁ*+m_d (Cz(R™Y), Qn).

Proof Let ©: H*(Gry_;(R™~1)) — H**Tm=d(C,(R™)) be the isomorphism established in the last
subsection, ®(x) = xw,,_g. The proposition follows once we check that @(Qn (x)) = 04 (0(x));

O(0n(x)) = 0n(x)m—g
= (Qn(x) + x0n)Wi—g
= On(X)Wiy—g + x(AnWim—q)
= On(X)Wm—g +x0n(Wm—aq)
= On(XWp—q)

= 0n(O(x)). m
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It is useful to put the class «;, in context. Given any element a in the Steenrod algebra 54, one gets
a characteristic class wq(§) € H!|(B;Z/2) associated to any real vector bundle §¢ — B; wg(£) is
defined as the element satisfying a(ug) = wq(E)ug € HI™E1aI(Th(£); Z/2), where ug is the Thom
class of £. So, for example, wgyr (§) = wy(£), and, relevant for us, our class ay, equals wo,, (§) when
£= Vj'_l — Grg—_1(R™71).

We have the following characterization of wg,, .

Proposition 3.5 wg,, is the unique characteristic class satisfying the following two properties:

(@ wo,(E®v)=wg,(§)+wg, )

(b) if y — B is one-dimensional, then wg, (y) = wi ()/)2”+1_1.

Proof Property (a) follows from the fact that @, is primitive in & (or, equivalently, that Q, acts a
derivation). To see property (b), one first calculates that 0, (r) = 12"t € Z/2[t] = H*(RP°;Z/2),
recalling that Q¢ = Sq!, and 0, = Sq2n On—1+ Qn_13q2". Then property (b) follows, since if y is the
universal line bundle over R P*°, then u, = ¢. Uniqueness follows from the splitting principle. m]

Remark 3.6 Thus wg, (§) agrees with the “s—class” s,n+1_1(£), analogous to the class of the same
name for complex vector bundles as defined in [12, Section 16]. (These s7 are not the same as the s of
the next subsection; these are two conflicting and standard usages.)

Since VdL—l @ y 1 is trivial, property (b) has the following consequence.
Corollary 3.7 o =wo, (va_1) € H" ~N(Gry_1(R™1): Z./2).
3.5 The description of H*(Grgz(R™); Z/2) via Schubert cells, and Lenart’s formula

For the purposes of proving Theorem 1.9, we use an alternative description of H*(Gry (R™);7Z/2).

We recall the cell structure of Gry(R?*¢) as described in [12, Section 6]. A Schubert symbol A =
(A1,...,Aq) of Grg (R™) is a sequence of integers

m—d=>=A >Ay>---> 17 >0.

The weight of A is defined to be ) ; A; and is denoted |A|. Such a A is a partition contained inside of a
d x (m — d) grid when depicted as Young diagrams — diagrams with A; boxes in the i row.

To each such partition is associated a Schubert cell e(4) of dimension A in Grg (R™) defined by
e(\) ={V € Grg(R™) | dim(V NRitAa+1-iy > j for 1 <i < d}.

This cell decomposition of the Grassmannian leads to the dual Schubert cell basis for H*(Gr; (R™); Z/2)
with basis elements s; € H'*(Grg (R™); Z/2).
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With this notation, one has that w; = S(17) and w; = s(;). Although we don’t use this here, it is worth
noting that the cohomology ring structure in this basis is described by the Littlewood—Richardson rule of
symmetric function theory.

To state Lenart’s formula for calculating O, on a Schubert basis element [9], we need some combinatorial
definitions. Given a Young diagram A that includes into another Young diagram p, one can form the
complement p/A. For example,

w= p/r=_[]

A=

The content of a box b of y in row i and column j is defined to be ¢(b) = j —i. For a box b in the skew
shape /A, we define its content to be the content of » embedded in . Here we fill in the contents of the

o]z o[1]2]3] 3]

1 p=|—1/0]1 p/A= o1
— - =

A skew-shape is said to be connected when each pair of boxes in the diagram is connected by a sequence

diagrams from above:

A=

of boxes that each share an edge. A shape A is called a border strip, if it is connected and does not contain
a 2 x 2 block of boxes. A shape satisfying just the second condition is called a broken border strip, and in
particular, a border strip is an example of a broken border strip with just one connected component. If A
is a broken border strip, then we denote by cc(A) the number of connected components of A. If A is not a
broken border strip, then we define cc(A) = oco. For example, in the next diagram, A; is a border strip,
A2 is a broken border strip that is not a border strip, and A3 is an example of a shape that is neither:

L] [TT] |
A= — Ay = — A3 =
L] L] L]

A sharp corner of a broken border strip is a box with no north, no west and no northwest neighbors. A

dull corner is a box with both north and west neighbors, but no northwest neighbor. Let C(x/A) denote
the set of sharp and dull corners of «/A. For example, in the following diagram the sharp corners have
been labeled S and the dull corners have been labeled D:

S| 1]
S[_[D
We are now ready to state Lenart’s formula from [9]:
(3-1) Qn(sy) = > Ay
WA | —[A|=2"F1—1
ce(u/A)=2
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where /A must be a broken border strip and

Y bec(u/r) €(b) if u/A is connected,
(3'2) dA’u = ) ] )
1 if w/A is disconnected.

Example 3.8 As an example we compute Q1 on wi = s in the Schubert basis in Gr,(R®). There are
three basis elements in degree four,
M1 =011, W2 :BZD, H3 :EB,

To compute Q, (s) using (3-1) we must consider each complement. Let A = . For w1,

ma=[o]t]2[3]/] |=[1]2]3]

The complement is a border strip and there is just one sharp corner (the left most corner) and no dull
corners. The content of the sharp corner is 1 modulo two; hence dj,, = 1, and so s, is in the expansion
of 01(s;). Next we consider

/Lz//'\=_01 1|2‘/D=EI

This is a disconnected broken border strip; hence d,,, = 1, and so s, is in the expansion. Finally,

0]1 1]
Halh= —1—2/D=\—1—2

There are two sharp corners, one of content —1 and the other of content 1. There is also one dull corner

of content —2. This means d,,, = (=1) + 1 +2 =0, and so s, is not in the expansion. Hence,

01(s) = SO + S

4 Results about H*(Gr;(R™); Q,) when m is even

Proof of Theorem 1.9(a) We are going to show that Q, (s, ) = 0 for each Schubert basis element s, in
degree d(m —d) —2"*1 4 1. Since S(am-a»y is the only class in degree d(m —d),

Qn (SA) = dl(d(mfd))s(d(mfd)),

where dj (gm-ayy is given by (3-2). We must only consider A such that (d (m=d)) /) is a broken border
strip. As (d™=9) is a d x (m —d) grid the complement (d ™4/} is always connected and so if
(d ™))/} is a broken border strip it must be, in particular, a border strip. If (d ™))/ is a border
strip, then it must be one of three types:
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(1) (d®™=D)/A is the last row of (d ™=4)),
2 (m_d))//\ is the last column of (d =9)),

(3) (d™=9))/} is the union of the last row and last column of (d ™~%)).

We will show that d) (yen-a)y = 0 in each of these cases. As m was assumed to be even, the content of
the right most bottom box of (d ™~9)) is also even.

(1) For the first case, there is just one sharp corner, namely the left most box, and there are no dull
corners. Since the strip is of odd length, namely, 2”1 — 1, the leftmost box and the rightmost box
have the same content modulo two. Hence, the content of this sharp corner is zero modulo two,
and so dk(d(m—d)) =0.

(2) For the second case, the argument is exactly the same, but with the sharp corner on the top.

(3) For the third case, the content of the sharp corner on the bottom left and the content of the sharp
corner on the top right agree modulo two, because the border strip is of odd length. There is one
dull corner in the bottom right and it is zero modulo two. Thus, the two sharp corners cancel and
the dull corner contributes nothing.

Thus, in all cases Q,(sy) = 0 for s, in degree d(m —d) — 2" ! + 1. This completes the proof that the
top class is not in the image of @, for even m. a
Proof of Theorem 1.9(b) We wish to prove that, when m is even, the chain complexes (FI *(Cy (R™)); O ,,)
and (Hd(m_d)_*(Grd_l (R™1y); Qn) are dual.
By Proposition 3.4, (FI *+m=d(C,(R™)); Qn) is isomorphic to the chain complex
(H*(Gra—1(R"™™1)): On).

where we recall that Qn (y) = 0n(») + yay, and that @, Wy,—g = Qn(Wy—q) € H*(Grg(R™); Z/2).
So we need to check that the chain complexes

(H*(Gra-1(R™1)); 0n) and  (HY=DO=D™*(Grg_ 1 (R™7)); 00)
are dual. This means we need to show that, if x, y € H*(Gryz_;(R™1); Z/2) satisfy

lx| +|y[+1OQnl =(d —1)(m—1),
then
On(x)y = x0n(y).
By Theorem 1.9(a), we know that
On(xytpm_q) =0€ HY "D (Grg(R™): Z/2).
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Thus, in H2™=4 (Grg(R™); Z./2),

0= Qn(xywm—q)
= O0n(X)YWp—g + XOn(¥)Wim—g +xyOn(Wim—a)
= 0n(X)YWpn—q + X0n(Y)Wim—g + XyUnWp—g
= (On(x)y +x0n(y) + Xyotn)Wp—q
= (Qn(¥)y +x0n(¥)Bp—g,

and we conclude that 0 = Q,(x)y + xQn (y) € H@=-D0m=d)(Gr,_,(R™1);Z/2). O

Proof of Theorem 1.9(c) Recall that kg, (X) denotes the rank of the Q,—homology H™*(X; Q).
Similarly, let IEQn (X) denote the rank of H*(X; 0,).

Letm=2"t1—¢4+2] withe=0o0r1,and/ > 0. Let

ld/2]
keam = 3 (50

We start with the first part of Theorem 1.9(c). This asserts that, when m is even, if we assume that
ko, (GrgR™ ) =kS(@d,m—1) and ko, (Grg_1(R™ 1) =kC(d —1,m—1),

then we can conclude that kg, (Grg (R™)) = knG (d,m).

Theorem 1.2 tells us that kg, (Grg (R™)) > kS (d, m).

Since we have a short exact sequence

0 —> H*(Cz(R™)) — H*(Grg(R™)) - H*(Grg(R™ 1)) — 0,
we see that
ko, (Grg(R™ 1) + kg, (Cq(R™)) > kg, (Grg(R™)),

with equality if and only if the associated long exact Q,—homology sequence is still short exact.
Since m is even, Theorem 1.9(b) applies, and tells us that IEQn (C4(R™)) =kg, (Gry_ (R™~1)).
Putting this all together, under our assumptions,

kS(d.m—1)+kS(d—1.m~1) = kg, (Grg(R™)) = k< (d.m).

That these would be, in fact, equalities, follows from the next lemma.
Lemmad4.l If m =2"t1 4 2] with [ > 0, then
kC(d,m—1)+kS(d—1,m=1)=kC(d,m).
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Proof We compute

kC(d,m—1)+kS(d—-1,m—1)= Z[(ZZ:;) + (jnjzli_—ll)](zl')

1

2n+1 i
- Z(d i ) (i )
1
=kS(d.m). O
When all of this happens, we then see that the O,—homology long exact sequence really is still short

exact, and also that the K(n)-AHSS must collapse for these three spaces. Thus there is also a short exact

sequence
0— R(m)*(Ca(R™) L K(n)* (Grg(R™) £ K(n)* (Grg (R" 1)) — 0.

Finally, the top cohomology class in H4®~4)(Gr;(R™); Z/2) will be a permanent cycle in the AHSS
computing K (n)*(Gr; (R™)) and thus also in the AHSS computing k (n)*(Gr; (R™)), and this is equiva-
lent to saying that Gr; (R™) is k(n)—oriented. a

5 Results about H*(Gr;(R™); Q,) whend =2

In this section we present our results about the Q,—homology of Gr, (R™), with the focus on understanding
the case when m has the form 271 — 1 42/,

To begin with, we know that
o H*(Grp(R™):Z/2) = Z/2[w1, w2]/(Wn—1, Wm);
e in H*(Gra(R™); Z/2), the ideal H*(C»(R™):Z/2) has an additive basis {wliu_)m_z |0<i<m-—2}.

Now we collect results that hold in H*(Grz(R*°); Z/2).

Lemma 5.1 In H*(Gry(R*®);Z/2),
(a) wo =1, w; = wi, and, recursively, Wy = W1Wk_1 + WrWk_2;
(b) wiie =3 (})w] ™ hes ji:
© b =3 ()i wi;
(d) Wy, = w2 ! forall b > 0;

— — b_~c+1 -
(&) Wopr_p = Zf:(l) w% 2¢ w%c Uforallb > 1.

Proof The homogeneous components of the equation 0 = (1 + wy + wy)(1 + Wy + wy + --+) give
statement (a).
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Statement (b) is proved by induction on j. The case when j = 0 is trivial, and statement (a) rewrites as
W W) = W1Wk+1 + Wk42, Which is the case when j = 1. One then computes

w) Wy = wa(wy W)
f—1 —1—i _
= Z(J i )w{ "Wagyj-14i
i
i—1 . 1
=Z(ji )[w{ Wi W] Wit it
i
j—1 j—1 i—i _
:Z[( ; )-l—(l._l)]w{ "Wkt j i
i
j P
= (l)w{ lwk-i-j—i-i'
For (c), note that wy, is the homogeneous component of degree k in

[e.e]
W=1+w +wy) ! = Z(wl +wo).

Statement (d) follows from (c):
) 20 1—j\ k—2j ; _
Wab—y = Z( J ! )wlf Y g = w%b g
J
. 26_1—j\ _ P
using that (=~ 7/) = 1 mod 2 only if j = 0.

Similarly, statement (e) follows from (c):

u_sz_2:Z(2 _]2 j) Z -2 Zc h

J c=0

using that (2”—].2—-/' )=1mod2if and only if j =2°—1 with0 < j <b—1. o
Now we determine the action of Q, on various classes.
Lemma 5.2 In H*(Gr(R*®);Z/2), Qn(wy1) = w%nH = W1 Won+1_q.

Proof The first equality here was already noted in the proof of Proposition 3.5, and the second follows
from Lemma 5.1(d). O

Lemma 5.3 In H*(Gry(R*);Z/2),

2n+1_2(+1 1
On(wy) = E + w2 = W1 W2Won+1_5.
c=0
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Proof The second equality here follows from Lemma 5.1(e), so we just need to check the first. We do
this by induction on 7, where the n = 0 case is the easily checked: Q¢(w>) = Sq'(w2) = wiws.

Before proceeding with the inductive step, we make two observations.

The firstis that forn > 1, O, (w2) = qun 0 1n—1(wy) because the other term, Q1 qun (w,), will be zero.
This is clear if n > 2 as then qun (w») =0, and when 1 = 1, we observe that Q¢Sq?(w>) = Sq! (w%) =0.

The second observation is that Sq(w2) = wa (1 + w1 + w2), so Sq(w%C) = w%c 1+ wfc + w%c), and thus

w2’ if j =0,
2¢..,2¢ e s c
. c wr w if j =2
Sa’ (w2 = 112 )
q’ (w3 ) w%“ if j =20+,
0 otherwise.
Now we check the inductive step of our proof.
On(w2) = qun On—1(w2) (by our first observation)
n—1 -
= Z qun (w%n 2T+ w%c) (by inductive hypothesis)
c=0
n—1 ' - )
=YY s i T Fhsq! (w3).
c=0 j

By our second observation, the only possible nonzero terms in this double sum are when j = 0,2¢,2¢+1,

I el o o
The terms with j = 0 are all zero, as qun (w%n 2 +1) = 0 by the unstable condition. Similarly, the only
S . +1_ . +1_nc+2 +1

nonzero term with j = 2¢ is the term w%n Yw,, when ¢ = 0. Finally, one gets w%n 2 Hw%(

when j = 2¢t1 forall 0 < ¢ <n — 1. One is left with

n

2n+1_20+1+1 ¢
Qn(w2) =Y wj w3’
c=0
completing our induction. a

Remark 5.4 The referee has pointed out that the first equality in the last lemma appears in [13, page 508].!
We now turn our attention to the behavior of Q,, on H*(Co(R™); Z/2).
Lemma 5.5 In H*(C2(R™):Z/2), Qn(Wm—2) = w?"" ~Mibpm_s.

PI‘OOf By COI'OHary 37, Qn(wm—Z) = an (yl)li)m_z, Where Y1 — Grl (Rm—l) iS the Canonical line
bundle, and Proposition 3.5 tells us that wg, (1) = w?" " L. o

IThere is a slight misprint, and a proof is just hinted at.
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Remark 5.6 This lemma also admits a proof using the Schubert cell perspective; see [10, Lemma 4.9.13].

. . . . + .
As O, is a derivation, the lemma, together with the calculation O, (w;) = w%n 1, allows one to easily

compute the Q,-homology of C»(R™). What results is the following.

Proposition 5.7  (a) In H*(C,(R™);Z/2),

n+1_ - o .
w% Y pm_s  ifi is even,

On(wiibm-2) =5 if i is odd.
(b) If m <2"t1 then Q, acts as zero on H*(C,(R™): Z/2). Thus ngn (C2(R™)=m—1.
(c) If m > 2"*1 and is even, then the classes
(W Mopa|1<j<2"=1} and (W P ibpma|1<j<2"}
represent the Q ,—homology classes. Thus IEQH (Co(R™)) = 2"+ 1.

(d) If m > 2" and is odd, then the classes

m—1-2j

{wfj_lwm—z | 1 < ] < 2}’! — 1} and {w wm ) | 1 < ] <2}’l 1}

represent the O, —homology classes. Thus an (Co(R™)) = 2"+l 2,

Proof of Theorem 1.10 Let m = 2" 4 1 + 2/. We need to prove that the map
H*(C2(R™): Q) #— H*(Gra(R™): On)

is zero; ie we need to show that representatives of the Q,—homology classes in H*(C,(R™); Z/2) are
in the image of Q, when regarded in H*(Gry(R™);Z/2).

By Proposition 5.7(d), these representatives are in two families,
wi ey and w4y,
both with 0 < j <2" —2.
If we can find a, b € H*(Gry(R™;Z/2) such that
On(a) = wiWyn+1_149; and  Qn(b) = wl U_)zn+1—1+zlv

we will be done, as then
. 2l+2+2 -
On(wi’a) =wi ™ byus1_y 5 and Qn(wi’b) = T Want1_1 4

Thus the next two propositions finish the proof. |
Proposition 5.8 In H*(Gry(R*);Z/2),

Qn(wlu_)Zl) = wlu_)zn-l-l_l_l_zl.
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Proposition 5.9 In H*(Gry(R2""'+1+20). 7/9),

0n (3™ = w2y i1y .
Before proving these, we first run through how Theorem 1.10 leads to the proof of Theorem 1.8.

Proof of Theorem 1.8 Our goal is to show that if m =2"*! —¢ +2/ withe =0 or 1, and / > 0, then
n+1

kg, (Gr2(R™)) = (2 +2 ") + 1, the lower bound coming from Theorem 1.2.

We prove this by induction on m, with the two cases when / = 0 already covered by Theorem 1.1. The

case when m is even is covered by Theorem 1.9(c), as we know our calculations are right for (n, 1,m —1),

and by induction we can assume the theorem for (n,2,m — 1).

Suppose m is odd, so € = 1 and m — 1 = 2"T! 4+ 2(] — 1). By induction, we can assume that

ko, (Groy(R™=1)) = (*"") 4+ (1 = 1). Then

ko, (Gra(R™) = kg, (Gra(R™ 1)) — kg, (C2(R™)) (by Theorem 1.10)

2n+1
=( R

=) :

) +(-1)—@2"1=2) (by Proposition 5.7(d))

It remains to prove Propositions 5.8 and 5.9.

Proof of Proposition 5.8 We prove by induction on / that
On(W1Wa1) = W1Wan+1_147]
holds in H*(Gra(R*°);Z/2).
We start the induction by checking both the / = 0 and / = 1 cases.
When / = 0, this reads Q,(w1) = wjW,n+1, Which was proved in Lemma 5.2.
We check the / =1 case using both Lemmas 5.2 and 5.3,
Qn(W102) = Qn (w1 (wz +w}))
= On(wiwz + w%)
= Qn(wi)wz + w1 Qn(w2) + wi Qn(wi)
= w1w2u72n+1_1 + w%wzu_}zn—i-l_z + wfu_)2n+1_1
= w1 [wzu_)2n+1_1 + wq (w2u_)2n+1 2 + wq w2n+l_1)]
= W1 [WaWon+1_1 + W1 Won+1]
- w1 u_)zn—‘,-l +1-
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942 Nicholas J Kuhn and Christopher J R Lloyd

For the inductive case, we use the identity wy = w% Wi_q + w%u_)k_z which holds for all £ > 4. Then

On(w1s1) = Qn(W1w3Wa(—2) + Wi Wa(—1))
= w3 Qn(W1Wa(—2)) + WT O (W1Wa(—1))
= W1W3 Wanti {p(—2)—1 T Wi Want1420-1)—1
= w1 [W3Wont14o¢—2)—1 + W Want1 1p0—1)—1]

= wlw2n+l+2l_l. O

Proof of Proposition 5.9 We wish to prove that

Qn(w3' ™) = w214y
holds in H*(Grp(R2" ' +1+20). 7 /2).
We begin with a calculation in H*(Grz(R®°); Z/2),

0n (W21 = w2 0, (ws)

= w1w§l+1w2n+1_2 (using Lemma 5.3)

21+1 i .
- Z( i )w%HZ "Won+149;_14; (using Lemma 5.1(b)).
1

When we project this sum onto
H*(Grp(R2" 1421y 710y — 7, /2[wy, wa] /(g | k > 271 4 21),
only the term with i = 0 is not zero. In other words
0n (3™ = w2y 1y 1

holds in H*(Grp(R2" "' +1+20). 7 /2). O

6 Towards the conjectures

As organized in this paper, we are trying to calculate H*(Grg (R™); Q) by induction on m (and d) with
two steps:

o calculate H*(Cz(R™): 0,), recalling that C; (R™) is the Thom space of a bundle over Gry_; (R™~1);
o calculate §: H*(Grg(R™1): 0,,) — H*T2" 7' =1(C,(R™); Q).

When m is even, Theorem 1.9 says we can carry through with this plan. In this section we speculate
about how things might go when m is odd.

Firstly, we have the analogues of Theorems 1.1 and 1.2 for
kn(Ca(R™)) = dimgmy, K()*(Ca(R™)).

Algebraic € Geometric Topology, Volume 24 (2024)
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I -1
Theorem 6.1 If m <2"*1, then k,(Cz(R™)) = (7Z,).

Proof Theorem 1.1 implies that, if m < 2”1, the inclusion Gry (R~ !) — Grgz(R™) induces an
inclusion K (1)+(Grg (R™™1)) = K(n)«(Grg (R™)), as this is true in mod p homology. Thus

fn(Ca(R™) = kn (Grg R™) — kn Grg R = (1) = (") = (5 7))- .

Theorem 6.2 Let m =2"T! —¢ + 2] withe =0 or1, and [ > 0. Then
ld/2]

= 3 (50500

1=
Proof The proof is similar to the proof of Theorem 1.2, with a little tweak.

If V is a real representation of Cy4, and W is a subrepresentation, let Cz(V, W) denote the cofiber of the
inclusion Gry (W) < Gry(V); this is a based Cy4 space.

If dim V = m and dim W = m—1, then C4(R™) = C4(V, W) and thus k, (Cz (R™)) > k,(Cz(V, W)C*),
by our chromatic fixed point theorem, Theorem 1.4. Furthermore, C(V, W)€* will be the cofiber of the
inclusion Grg (W)€4 < Gry (V)C4.

Now we choose V' and W. Recall that L1 and L, were the one-dimensional real representations of C4 and
R was the two-dimensional irreducible. Welet V = L?" @ L2" @R and W = L?" 1@ L' < @ R'.

Proposition 2.1 tells us that

Gry(N%= || GrjR*)xGre(R* ™€) x Gr; (C)
j+k+2i=d
and
GryW)= | | Grj(R¥ ") x Grx (R* ™) x Gr; (Ch),
j+k+2i=d
SO
CaVw)= \/ C®R")AGr[R* )y AGr(CHy.
Jtk+2i=d
Thus, _ )
kn(Ca®™) = > kn1(Cj(R*))kp—1(Gre (R*"~€))kp—1(Gr; (C1))
jt+k+2i=d
M1\ 2" —e\ (] .
= Z (j—l)( k )(l) (using Theorems 6.1 and 1.1)
Jtk+2i=
211\ 2" —e\] /!
—Z[ > (o) )](z)
i “j+k=d-2i

-2 (aE0) °

Algebraic € Geometric Topology, Volume 24 (2024)



944 Nicholas J Kuhn and Christopher J R Lloyd

Conjecture 6.3 Equality holds in Theorem 6.2.
As before, this would be implied by a conjectural calculation of the O, homology of Cy(R;,).

Conjecture 6.4 Let m =2""! —¢ + 2/ withe =0or1, and [ > 0. Then

fo, ) =Y (%5 ()

1
Our various conjectures imply a conjecture about the behavior of the boundary map
§: H* (Gra(R™™"); Q) — H*T2"" 71 (Cy(R™); 0p)
when m = 2"+l —¢ 4+ 2]. Let kﬁ (d, m) denote the dimension of the image of this map.
Conjecture 1.7 says that kg, (Grg (R™)) = k,(,; (d,m), where
G _ on +1__ € )i
am= 350 ()
l
Conjecture 6.4 similarly says that IEQH (Cz(R™)) = ]EnC (d, m), where
- 2l _1—e\ 1
Cc —
o (d,m) = Z( d—1-2i )(1)
1
If these conjectures are true, then the exactness of the Q,—homology long exact sequence would imply
that
kG (d,m)+2k8(d.m)=kS(d,m—1)+kE (d.m),

so that
kS(d,m) = 1[kC(d,m—1)+kS (d,m)—kZ(d,m)].

As expected, the right hand side here is zero if m is even, ie € = 0.

When m is odd, so € = 1, the right hand side is not zero, but can be rearranged as in the following lemma.
Lemma 6.5 If m =2"T1—142[ and [ > 0, then

_ n+1_ _
%[knG(d,m— 1)+ kS (d.m)—kC(d.m)] = Z(j_l_zzl.)(l l. 1).

Proof We expand k,? (d,m—1):
k (d.m —1) = Z(jnjzlz')(l:l)
- (0 2 S G
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We rewrite knG (d,m)— IEnC (d,m):

kG(d m)— kC(d m) = [(2;12_11) §n+11 2:)](1)
n+1
(2d+ 2i )( )
<2';+12—12 [<171 l_i)}

o3[y M) )

Subtracting our second expression from the first, and dividing by two, proves the lemma. a
Thus we can add the following to our conjectures.

Conjecture 6.6 If m =2"T1— 142/ and | > 0, then
P _ 22 1—1
Fen(dm) = Z(d—1—2i)( i )
4
Example 6.7 Suppose that n = 0, so m = 2/ + 1. Conjecture 6.4 predicts that

0 if d is even,

dimg H*(C4(R?*1);Q) = {
@GR D =01y ipg = e 41,
Similarly, Conjecture 6.6 predicts that
0 if d i
kg(d,21+1)={ if d is even,

(7Y ifd =2c+1.

c

Noting that kg (d, 2l + 1) can be viewed as the dimension of the cokernel of the map
i*: H*(GrgR¥™1): Q) — H*(Gra(R*): Q).

one can check that our conjectures do correspond to the known behavior of i * — it takes Pontryagin
classes to Pontryagin classes — together with the computations
I .
fm=2l+1andd =2cor2c+1
dimg H* Grg®™): Q) = { () 1 ’
@ A7 (Gra R Q) 2(7Y) itm=20andd =2¢ +1.

Appendix Tables

We present some tables of calculations made by the second author that support Conjecture 1.7. Calcula-
tional algorithms used are documented in [10, Appendix B]. For larger Grassmannians the authors used the
University of Virginia Rivanna high-performance computing system. The white cells are the conjectured
values which have not been checked due to computational limitations. The tables are necessarily symmetric
incand d.
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d ‘11 o2 3 4 5 6 7 8 9 10 11

1 2 3 4 3 4 3 4 3 4 3 4

2 3 6 4 7 5 8 6 9 7 10 8

3 4 4 8 7 12 10 16 13 20 16 24

4 3 7 7 14 12 22 18 31 25 41 33

5 4 5 12 12 24 22 40 35 60 51 84

6 3 8 10 22 22 44 40 75 65 116 98

7 4 6 16 18 40 40 80 75 140 126 224

8 3 9 13 31 35 75 75 150 140 266 238

9 4 7 20 25 60 65 140 140 280 266 504
10 3 10 16 41 51 116 126 266 266 532 504
11 4 8 24 33 84 98 224 238 504 504 1008
12 3 11 19 52 70 168 196 434 462 966 966
13 4 9 28 42 112 140 336 378 840 882 1848
14 3 12 22 o4 92 232 288 666 750 1632 1716
15 4 10 32 52 144 192 480 570 1320 1452 3168
16 3 13 25 77 117 309 405 975 1155 2607 2871
17 4 11 36 63 180 255 660 825 1980 2277 5148
18 3 14 28 91 145 400 550 1375 1705 3982 4576
19 4 12 40 75 220 330 880 1155 2860 3432 8008
20 3 15 31 106 176 506 726 1881 2431 5863 7007
21 4 13 44 88 264 418 1144 1573 4004 5005 12012
22 3 16 34 122 210 628 936 2509 3367 8372 10374
23 4 14 48 102 312 520 1456 2093 5460 7098 17472
24 3 17 37 139 247 767 1183 3276 4550 11648 14924
25 4 15 52 117 364 637 1820 2730 7280 9828 24752
26 3 18 40 157 287 924 1470 4200 6020 15848 20944
27 4 16 56 133 420 770 2240 3500 9520 13328 34272
28 3 19 43 176 330 1100 1800 5300 7820 21148 28764
29 4 17 60 150 480 920 2720 4420 12240 17748 46512
30 3 20 46 196 376 1296 2176 6596 9996 27744 38760
31 4 18 64 168 544 1088 3264 5508 15504 23256 62016
32 3 21 49 217 425 1513 2601 8109 12597 35853 51357
33 4 19 68 187 612 1275 3876 6783 19380 30039 81396
34 3 22 52 239 477 1752 3078 9861 15675 45714 67032
35 4 20 72 207 684 1482 4560 8265 23940 38304 105336
36 3 23 55 262 532 2014 3610 11875 19285 57589 86317
37 4 21 76 228 760 1710 5320 9975 29260 48279 134596
38 3 24 58 286 590 2300 4200 14175 23485 71764 109802
39 4 22 80 250 840 1960 6160 11935 35420 60214 170016
40 3 25 61 311 651 2611 4851 16786 28336 88550 138138
41 4 23 84 273 924 2233 7084 14168 42504 74382 212520
42 3 26 64 337 715 2948 5566 19734 33902 108284 172040
43 4 24 88 297 1012 2530 8096 16698 50600 91080 263120
44 3 27 67 364 782 3312 6348 23046 40250 131330 212290
45 4 25 92 322 1104 2852 9200 19550 59800 110630 322920
46 3 28 70 392 852 3704 7200 26750 47450 158080 259740
47 4 26 96 348 1200 3200 10400 22750 70200 133380 393120
48 3 29 73 421 925 4125 8125 30875 55575 188955 315315
49 4 27 100 375 1300 3575 11700 26325 81900 159705 475020
50 3 30 76 451 1001 4576 9126 35451 64701 224406 380016

[ Jed <2t -1 [ |projective spaces | | Theorem 1.8
[ ]conjecture verified [ ]conjecture

Table 1: kq(Grg(RZ+€)).
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d ‘1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 7 8 7 8

2 3 6 10 15 21 28 22 29 23 30 24

3 4 10 20 35 56 42 64 49 72 56 80

4 5 15 35 70 56 98 78 127 101 157 125

5 6 21 56 56 112 98 176 147 248 203 328

6 7 28 42 98 98 196 176 323 277 480 402

7 8§ 22 64 18 176 176 352 323 600 526 928

8 7 29 49 127 147 323 323 646 600 1126 1002
9 8§ 23 72 101 248 271 600 600 1200 1126 2128
10 7 30 56 157 203 480 526 1126 1126 2252 2128
11 8§ 24 80 125 328 402 928 1002 2128 2128 4256
12 7 31 63 188 266 668 792 1794 1918 4046 4046
13 8§ 25 88 150 416 552 1344 1554 3472 3682 7728
14 7 32 70 220 336 888 1128 2682 3046 6728 7092
15 8§ 26 96 176 512 728 1856 2282 5328 5964 13056
16 7 33 77 253 413 1141 1541 3823 4587 10551 11679
17 8§ 27 104 203 616 931 2472 3213 7800 9177 20856
18 7 34 84 287 497 1428 2038 5251 6625 15802 18304
19 8§ 28 112 231 728 1162 3200 4375 11000 13552 31856
20 7 35 91 322 588 1750 2626 7001 9251 22803 27555
21 8§ 29 120 260 848 1422 4048 5797 15048 19349 46904
22 7 36 98 358 686 2108 3312 9109 12563 31912 40118
23 8§ 30 128 290 976 1712 5024 7509 20072 26858 66976
24 7 37 105 395 791 2503 4103 11612 16666 43524 56784
25 8§ 31 136 321 1112 2033 6136 9542 26208 36400 93184
26 7 38 112 433 903 2936 5006 14548 21672 58072 78456
27 8§ 32 144 353 1256 2386 7392 11928 33600 48328 126784
28 7 39 119 472 1022 3408 6028 17956 27700 76028 106156
29 8§ 33 152 386 1408 2772 8800 14700 42400 63028 169184
30 7 40 126 512 1148 3920 7176 21876 34876 97904 141032
31 8 34 160 420 1568 3192 10368 17892 52768 80920 221952
32 7 41 133 553 1281 4473 8457 26349 43333 124253 184365
33 8 35 168 455 1736 3647 12104 21539 64872 102459 286824
34 7 42 140 595 1421 5068 9878 31417 53211 155670 237576
35 8 36 176 491 1912 4138 14016 25677 78888 128136 365712
36 7 43 147 638 1568 5706 11446 37123 64657 192793 302233
37 8 37 184 528 2096 4666 16112 30343 95000 158479 460712
38 7 44 154 682 1722 6388 13168 43511 77825 236304 380058
39 8 38 192 566 2288 5232 18400 35575 113400 194054 574112
40 7 45 161 727 1883 7115 15051 50626 92876 286930 472934
41 8 39 200 605 2488 5837 20888 41412 134288 235466 708400
42 7 46 168 773 2051 7888 17102 58514 109978 345444 582912
43 8 40 208 645 2696 6482 23584 47894 157872 283360 866272
44 7 47 175 820 2226 8708 19328 67222 129306 412666 712218
45 8 41 216 686 2912 7168 26496 55062 184368 338422 1050640
46 7 48 182 868 2408 9576 21736 76798 151042 489464 863260
47 8 42 224 728 3136 7896 29632 62958 214000 401380 1264640
48 7 49 189 917 2597 10493 24333 87291 175375 576755 1038635
49 8 43 232 771 3368 8667 33000 71625 247000 473005 1511640
50 7 50 196 967 2793 11460 27126 98751 202501 675506 1241136

[Jed <241 —1
[ ]conjecture verified [ ]conjecture

[ ] projective spaces

Table 2: k»(Grg (RZ+€)).

Algebraic € Geometric Topology, Volume 24 (2024)

[ ] Theorem 1.8
[ ] Theorem 1.1

947



948 Nicholas J Kuhn and Christopher J R Lloyd

d 11 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11 12

2 3 6 10 15 21 28 36 45 55 66 78

3 4 10 20 35 56 84 120 165 220 286 364

4 5 15 35 70 126 210 330 495 715 1001 1365
5 6 21 56 126 252 462 792 1287 2002 3003 4368

6 7 28 84 210 462 924 1716 3003 5005 8008 6370

7 8§ 36 120 330 792 1716 3432 6435 11440 9438 15808
8 9 45 165 495 1287 3003 6435 12870 11440 20878 17810
9 10 55 220 715 2002 5005 11440 11440 22880 20878 38688
10 11 66 286 1001 3003 8008 9438 20878 20878 41756 38688
11 12 78 364 1365 4368 6370 15808 17810 38688 38688 77376
12 13 91 455 1820 3458 9828 12896 30706 33774 72462 72462
13 14 105 560 1470 4928 7840 20736 25650 59424 64338 136800
14 15 120 470 1940 3928 11768 16824 42474 50598 114936 123060
15 16 106 576 1576 5504 9416 26240 35066 85664 99404 222464
16 15 121 485 2061 4413 13829 21237 56303 71835 171239 194895
17 16 107 592 1683 6096 11099 32336 46165 118000 145569 340464
18 15 122 500 2183 4913 16012 26150 72315 97985 243554 292880
19 16 108 608 1791 6704 12890 39040 59055 157040 204624 497504
20 15 123 515 2306 5428 18318 31578 90633 129563 334187 422443
21 16 109 624 1900 7328 14790 46368 73845 203408 278469 700912
22 15 124 530 2430 5958 20748 37536 111381 167099 445568 589542
23 16 110 640 2010 7968 16800 54336 90645 257744 369114 958656
24 15 125 545 2555 6503 23303 44039 134684 211138 580252 800680
25 16 111 656 2121 8624 18921 62960 109566 320704 478680 1279360
26 15 126 560 2681 7063 25984 51102 160668 262240 740920 1062920
27 16 112 672 2233 9296 21154 72256 130720 392960 609400 1672320
28 15 127 575 2808 7638 28792 58740 189460 320980 930380 1383900
29 16 113 688 2346 9984 23500 82240 154220 475200 763620 2147520
30 15 128 590 2936 8228 31728 66968 221188 387948 1151568 1771848
31 16 114 704 2460 10688 25960 92928 180180 568128 943800 2715648
32 15 129 605 3065 8833 34793 75801 255981 463749 1407549 2235597
33 16 115 720 2575 11408 28535 104336 208715 672464 1152515 3388112
34 15 130 620 3195 9453 37988 85254 293969 549003 1701518 2784600
35 16 116 736 2691 12144 31226 116480 239941 788944 1392456 4177056
36 15 131 635 3326 10088 41314 95342 335283 644345 2036801 3428945
37 16 117 752 2808 12896 34034 129376 273975 918320 1666431 5095376
38 15 132 650 3458 10738 44772 106080 380055 750425 2416856 4179370
39 16 118 768 2926 13664 36960 143040 310935 1061360 1977366 6156736
40 15 133 665 3591 11403 48363 117483 428418 867908 2845274 5047278
41 16 119 784 3045 14448 40005 157488 350940 1218848 2328306 7375584
42 15 134 680 3725 12083 52088 129566 480506 997474 3325780 6044752
43 16 120 800 3165 15248 43170 172736 394110 1391584 2722416 8767168
44 15 135 695 3860 12778 55948 142344 536454 1139818 3862234 7184570
45 16 121 816 3286 16064 46456 188800 440566 1580384 3162982 10347552
46 15 136 710 3996 13488 59944 155832 596398 1295650 4458632 8480220
47 16 122 832 3408 16896 49864 205696 490430 1786080 3653412 12133632
48 15 137 725 4133 14213 64077 170045 660475 1465695 5119107 9945915
49 16 123 848 3531 17744 53395 223440 543825 2009520 4197237 14143152
50 15 138 740 4271 14953 68348 184998 728823 1650693 5847930 11596608

[ Jed <2t -1 [ |projective spaces | | Theorem 1.8
[ ]conjecture verified [ ]conjecture [ ] Theorem 1.1

Table 3: k3(Grg (RZ+¢)).
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[ ]conjecture verified [ ]conjecture

Table 4: k4(Grg (R2+€)).
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[ ] Theorem 1.1

d 1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10 11
2 3 6 10 15 21 28 36 45 55 66
3 4 10 20 35 56 84 120 165 220 286
4 5 15 35 70 126 210 330 495 715 1001
5 6 21 56 126 252 462 792 1287 2002 3003
6 7 28 84 210 462 924 1716 3003 5005 8008
7 8 36 120 330 792 1716 3432 6435 11440 19448
8 9 45 165 495 1287 3003 6435 12870 24310 43758
9 10 55 220 715 2002 5005 11440 24310 48620 92378
10 11 66 286 1001 3003 8008 19448 43758 92378 184756
11 12 78 364 1365 4368 12376 31824 75582 167960 352716
12 13 91 455 1820 6188 18564 50388 125970 293930 646646
13 14 105 560 2380 8568 27132 77520 203490 497420 1144066
14 15 120 680 3060 11628 38760 116280 319770 817190 1961256
15 16 136 816 3876 15504 54264 170544 490314 1307504 3268760
16 17 153 969 4845 20349 74613 245157 735471 2042975 5311735
17 18 171 1140 5985 26334 100947 346104 1081575 3124550 8436285
18 19 190 1330 7315 33649 134596 480700 1562275 4686825 13123110
19 20 210 1540 8855 42504 177100 657800 2220075 6906900 20030010
20 21 231 1771 10626 53130 230230 888030 3108105 10015005 30045015
21 22 253 2024 12650 65780 296010 1184040 4292145 14307150 44352165
22 23 276 2300 14950 80730 376740 1560780 5852925 20160075 64512240
23 24 300 2600 17550 98280 475020 2035800 7888725 28048800 52240890
24 25 325 2925 20475 118755 593775 2629575 10518300 22789650 75030540
25 26 351 3276 23751 142506 736281 3365856 8625006 31414656 60865896
26 27 378 3654 27405 169911 906192 2799486 11424492 25589136 86455032
27 28 406 4060 31465 201376 767746 3567232 9392752 34981888 70258648
28 29 435 4495 35960 174406 942152 2973892 12366644 28563028 98821676
29 30 465 4960 31930 206336 799676 3773568 10192428 38755456 80451076
30 31 496 4526 36456 178932 978608 3152824 13345252 31715852 112166928
31 32 466 4992 32396 211328 832072 3984896 11024500 42740352 91475576
32 31 497 4557 36953 183489 1015561 3336313 14360813 35052165 126527741
33 32 467 5024 32863 216352 864935 4201248 11889435 46941600 103365011
34 31 498 4588 37451 188077 1053012 3524390 15413825 38576555 141941566
35 32 468 5056 33331 221408 898266 4422656 12787701 51364256 116152712
36 31 499 4619 37950 192696 1090962 3717086 16504787 42293641 158446353
37 32 469 5088 33800 226496 932066 4649152 13719767 56013408 129872479
38 31 500 4650 38450 197346 1129412 3914432 17634199 46208073 176080552
39 32 470 5120 34270 231616 966336 4880768 14686103 60894176 144558582
40 31 501 4681 38951 202027 1168363 4116459 18802562 50324532 194883114
41 32 471 5152 34741 236768 1001077 5117536 15687180 66011712 160245762
42 31 502 4712 39453 206739 1207816 4323198 20010378 54647730 214893492
43 32 472 5184 35213 241952 1036290 5359488 16723470 71371200 176969232
44 31 503 4743 39956 211482 1247772 4534680 21258150 59182410 236151642
45 32 473 5216 35686 247168 1071976 5606656 17795446 76977856 194764678
46 31 504 4774 40460 216256 1288232 4750936 22546382 63933346 258698024
47 32 474 5248 36160 252416 1108136 5859072 18903582 82836928 213668260
48 31 505 4805 40965 221061 1329197 4971997 23875579 68905343 282573603
49 32 475 5280 36635 257696 1144771 6116768 20048353 88953696 233716613
50 31 506 4836 41471 225897 1370668 5197894 25246247 74103237 307819850

[ Jed <2t -1 [ |projective spaces | | Theorem 1.8
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