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In the applied algebraic topology community, the persistent homology induced by the Vietoris–Rips
simplicial filtration is a standard method for capturing topological information from metric spaces. We
consider a different, more geometric way of generating persistent homology of metric spaces which
arises by first embedding a given metric space into a larger space and then considering thickenings of the
original space inside this ambient metric space. In the course of doing this, we construct an appropriate
category for studying this notion of persistent homology and show that, in a category-theoretic sense, the
standard persistent homology of the Vietoris–Rips filtration is isomorphic to our geometric persistent
homology provided that the ambient metric space satisfies a property called injectivity.

As an application of this isomorphism result, we are able to precisely characterize the type of intervals
that appear in the persistence barcodes of the Vietoris–Rips filtration of any compact metric space and
also to give succinct proofs of the characterization of the persistent homology of products and metric
gluings of metric spaces. Our results also permit proving several bounds on the length of intervals in the
Vietoris–Rips barcode by other metric invariants, for example the notion of spread introduced by M Katz.

As another application, we connect this geometric persistent homology to the notion of filling radius
of manifolds introduced by Gromov and show some consequences related to the homotopy type of the
Vietoris–Rips complexes of spheres, which follow from work of Katz, and characterization (rigidity)
results for spheres in terms of their Vietoris–Rips persistence barcodes, which follow from work of
F Wilhelm.

Finally, we establish a sharp version of Hausmann’s theorem for spheres which may be of independent
interest.
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1 Introduction

The simplicial complex nowadays referred to as the Vietoris–Rips complex was originally introduced
by Leopold Vietoris in the early 1900s in order to build a homology theory for metric spaces [80].
Later, Eliyahu Rips and Mikhail Gromov [47] both utilized the Vietoris–Rips complex in their study of
hyperbolic groups.

Given a metric space .X; dX / and r >0, the r–Vietoris–Rips complex VRr.X/ hasX as its vertex set, and
simplices are all nonempty finite subsets of X whose diameter is strictly less than r . In [50], Hausmann
showed that the Vietoris–Rips complex can be used to recover the homotopy type of a Riemannian
manifold M . More precisely, he introduced a quantity r.M/ (a certain variant of the injectivity radius),
and proved that VRr.M/ is homotopy equivalent to M for any r 2 .0; r.M//.

Since VRr.X/ � VRs.X/ for all 0 < r � s, this construction then naturally induces the so-called
Vietoris–Rips simplicial filtration of X , denoted by VR�.X/D .VRr.X//r>0. By applying the simplicial
homology functor (with coefficients in a given field) one obtains a persistence module: a directed system
V� D .Vr

vrs
�! Vs/r�s of vector spaces and linear maps (induced by the simplicial inclusions). The

persistent module obtained from VR�.X/ is referred to as the Vietoris–Rips persistent homology of X .

The notion of persistent homology arose from work by Ferri, Frosini, Landi, Verri and Uras, [39; 40;
41; 79], Robins [73], and Delfinado, Edelsbrunner, Letscher and Zomorodian [27; 36]. After that,
considering the persistent homology of the simplicial filtration induced from Vietoris–Rips complexes was
a natural next step. For example, Carlsson and de Silva [76] applied Vietoris–Rips persistent homology to
topological estimation from point cloud data, and Ghrist and de Silva applied it to sensor networks [77].
Its efficient computation has been addressed by Bauer in [11]. A more detailed historical survey and
review of general ideas related to persistent homology can be found in Carlsson [16] and Edelsbrunner
and Harer [34; 35].

The persistent homology of the Vietoris–Rips filtration of a metric space provides a functorial way1 of
assigning a persistence module to a metric space. Persistence modules are usually represented, up to

1Where for metric spaces X and Y morphisms are given by 1–Lipschitz maps � WX ! Y , and for persistence modules V� and
W� morphisms are systems of linear maps �� D .�r W Vr !Wr /r>0 making all squares commute.
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isomorphism, as barcodes: multisets of intervals each representing the lifetime of a homological feature.
In this paper, the barcodes are associated to Vietoris–Rips filtrations, and these barcodes will be denoted
by barcVR

� . � /. In the areas of topological data analysis (TDA) and computational topology, this type of
persistent homology is a widely used tool for capturing topological properties of a dataset [11; 76; 77].

Despite its widespread use in applications, little is known in terms of relationships between Vietoris–Rips
barcodes and other metric invariants. For instance, whereas it is obvious that the right endpoint of any
interval I in barcVR

� .X/ must be bounded above by the diameter of X , there has been little progress
in relating the length of bars to other invariants such as volume (or Hausdorff measure) or curvature
(whenever defined).

Contributions One main contribution of this paper is establishing a precise relationship (ie a filtered
homotopy equivalence) between the Vietoris–Rips simplicial filtration of a metric space and a more
geometric (or extrinsic) way of assigning a persistence module to a metric space, which consists of
first isometrically embedding it into a larger space and then considering the persistent homology of the
filtration obtained by considering the resulting system of nested neighborhoods of the original space
inside this ambient space. These neighborhoods, being also metric (and thus topological) spaces, permit
giving a short proof of the Künneth formula for Vietoris–Rips persistent homology.

A particularly nice ambient space inside which one can isometrically embed any given compact metric
space .X; dX / is L1.X/; the Banach space consisting of all the bounded real-valued functions on X ,
together with the `1–norm. The embedding is given by X 3 x 7! dX .x; � /: it is indeed immediate that
this embedding is isometric since kdX .x; � /�dX .x0; � /k1 D dX .x; x0/ for all x; x0 2X . This is usually
called the Kuratowski isometric embedding of X .

That the Vietoris–Rips filtration of a finite metric space produces persistence modules isomorphic to the
sublevel set filtration of the distance function

ıX W L
1.X/!R�0; L1.X/ 3 f 7! inf

x2X
kdX .x; � /�f k1;

was already used by Chazal, Cohen-Steiner, Guibas, Mémoli and Oudot [19] in order to establish the
Gromov–Hausdorff stability of Vietoris–Rips persistence of finite metric spaces.

In this paper we significantly generalize this point of view by proving an isomorphism theorem between
the Vietoris–Rips filtration of any compact metric space X and its Kuratowski filtration,�

ı�1X .Œ0; r//
�
r>0

;

a fact which immediately implies that their persistent homologies are isomorphic.

We do so by constructing a filtered homotopy equivalence between the Vietoris–Rips filtration and the
sublevel set filtration induced by ıX . Furthermore, we prove that L1.X/ above can be replaced with
any injective (or equivalently, hyperconvex) metric space — see Dress, Huber, Koolen, Moulton and
Spillner [31] and Lang [60] — admitting an isometric embedding of X :

Algebraic & Geometric Topology, Volume 24 (2024)
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Theorem 4.1 (isomorphism theorem) Let � WMet! PMet be a metric homotopy pairing (for example ,
the Kuratowski functor). Then B� ı � WMet! hTop� is naturally isomorphic to VR2�.

Above, Met is the category of compact metric spaces with 1–Lipschitz maps, PMet is the category of
metric pairs .X;E/ where X ,! E isometrically, E is an injective metric space, a metric homotopy
pairing is any right adjoint to the forgetful functor (eg the Kuratowski embedding), and B� is the functor
sending a pair .X;E/ to the filtration .Br.X;E//r>0; see Sections 3 and 4.

A certain well known construction which involves the isometric embedding X ,! L1.X/ is that of the
filling radius of a Riemannian manifold [46] defined by Gromov in the early 1980s. In that construction,
given an n–dimensional Riemannian manifold M , one studies for each r > 0 the inclusion

�r WM ,! ı�1M .Œ0; r//

and seeks the infimal r > 0 such that the map induced by �r at degree n homology level annihilates the
fundamental class ŒM � of M . This infimal value defines FillRad.M/, the filling radius of M . In this
paper, we will consider a version of the filling radius associated to the fundamental class with coefficients
in a given field F which will be denoted by FillRad.M IF/.

Via our isomorphism theorem we are able prove that there always exists a bar in the barcode of a manifold
whose length is exactly twice its filling radius:

Proposition 9.28 Let M be a closed connected n–dimensional Riemannian manifold. Then

.0; 2FillRad.M IF/� 2 barcVR
n .M IF/;

where F is an arbitrary field if M is orientable , and F D Z2 if M is nonorientable. Moreover , this is
the unique interval in barcVR

n .M IF/ starting at 0, and FillRad.M IF/ � FillRad.M/ whenever M is
orientable.

As a step in his proof of the celebrated systolic inequality, Gromov proved in [46] that the filling radius
satisfies FillRad.M/ � cn.vol.M//1=n for any n–dimensional complete manifold M (where cn is a
universal constant, and Nabutovsky recently proved that cn can be improved to n

2
[69, Theorem 1.2]).

This immediately yields a relationship between barcVR
� .M/ and the volume of M . The fact that the

filling radius has already been connected to a number of other metric invariants also permits importing
these results to the setting of Vietoris–Rips barcodes (see Section 9.3). This in turn permits relating
barcVR

� .M/ with other metric invariants of M , a research thread which has remained mostly unexplored.
See Proposition 9.46 for a certain generalization of Proposition 9.28 to ANR spaces.

In a series of papers [54; 55; 56; 57], M Katz studied both the problem of computing the filling radius
of spheres (endowed with the geodesic distance) and complex projective spaces, and the problem of
understanding the change in homotopy type of ı�1X .Œ0; r// when X 2 fS1;S2g as r increases.

Of central interest in topological data analysis has been the question of providing a complete characteriza-
tion of the Vietoris–Rips persistence barcodes of spheres of different dimensions. Despite the existence
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of a complete answer to the question for the case of S1 due to Adamaszek and Adams [1], relatively little
is known for higher-dimensional spheres. In [2], Adamaszek, Adams and Frick consider a variant of the
Vietoris–Rips filtration, which they call Vietoris–Rips metric thickening. The authors are able to obtain
information about the successive homotopy types of this filtration on spheres of different dimension —
see [2, Section 5] — for a certain range of values of the scale parameter.

The authors of [2] conjecture that the open Vietoris–Rips filtration (which is the one considered in the
present paper) is filtered homotopy equivalent to their open Vietoris–Rips metric thickening filtration
(as a consequence their persistent homologies are isomorphic). This isomorphism was conjectured in [2,
Conjecture 6.12] which was recently settled in [7, Corollary 5.10].

Our isomorphism theorem (Theorem 4.1) permits applying Katz’s results in order to provide partial
answers to the questions mentioned above and also to elucidate other properties of the standard open
Vietoris–Rips filtration and its associated persistence barcodes barcVR

� . � /. In addition to these results
derived from our isomorphism theorem, in Section A.4, we refine certain key lemmas used in the original
proof of Hausmann’s theorem [50] and establish the homotopy equivalence between VRr.Sn/ and Sn for
any r 2

�
0; arccos .�1=.nC 1//

�
:

Theorem 7.1 For any n 2 Z>0, we have VRr.Sn/' Sn for any r 2
�
0; arccos.�1=.nC 1//

�
.

Note that this is indeed an improvement since, for spheres, Hausmann’s quantity satisfies

r.Sn/D �
2
< arccos

�
�

1

nC1

�
:

This improvement is obtained with the aid of a refined version of Jung’s theorem (see Theorem A.8)
which we also establish. Theorem 7.1 also improves upon [54, Remark, page 508]; see the discussion in
Section 7.1.

In the direction of characterizing the Vietoris–Rips barcodes of spheres, we are able to provide a complete
characterization of the homotopy types of the Vietoris–Rips complexes of round spheres Sn�1 � Rn

endowed with the (restriction of the) `1–metric, which we denote by Sn�11 . Two critical observations
are that

(1) the r–thickening of Sn�11 inside of Rn1 (Rn equipped with the `1–metric) is homotopy equivalent
to the r–thickening of Sn�11 inside of Dn1 (n–dimensional unit ball with `1–metric), and

(2) it is easier to find the precise shape of the latter.

Theorem 7.19 For any n 2 Z>0 and r > 0,

Br.S
n�1
1 ;Rn1/' Br.S

n�1
1 ;Dn1/DDn1nVn;r ;

where
Vn;r WD

\
.p1;:::;pn/2fr;�rgn

�
.x1; : : : ; xn/ 2Rn

ˇ̌̌ nX
iD1

.xi �pi /
2
� 1

�
:
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1:5
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0:5
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�0:5

�1

�1:5
�1:5 �1 �0:5 0 0:5 1 1:5

Figure 1: Br .S11;D
2
1/DD2

1nV2;r in the plane R21. The set V2;r is given by the intersection of
the four closed disks shown in the figure. See Theorem 7.19.

In particular , for r > 1=
p
n we have Vn;r D ∅, so Br.Sn�11 ;Dn1/D Dn1. As a result , Br.Sn�11 ;Rn1/

is homotopy equivalent to Sn�1 for r 2 .0; 1=
p
n� and contractible for r > 1=

p
n (see Figure 1 for an

illustration of the case nD 2).

From a different perspective, by appealing to our isomorphism theorem, it is also possible to apply
certain results from quantitative topology to the problem of characterization of metric spaces by their
Vietoris–Rips persistence barcodes. In applied algebraic topology, a general question of interest is:

Question 1 Assume X and Y are compact metric spaces such that barcVR
k
.X IF/D barcVR

k
.Y IF/ for

all k 2 Z�0. Then how similar are X and Y (in a suitable sense)?

It follows from work by Wilhelm [83] and Yokota [84] on rigidity properties of spheres via the filling
radius, and the isomorphism theorem (Theorem 4.1), that any n–dimensional Alexandrov space without
boundary and sectional curvature bounded below by 1 such that its Vietoris–Rips persistence barcode
agrees with that of Sn must be isometric to Sn. This provides some new information about the inverse
problem for persistent homology; see Curry [26] and Gameiro, Hiraoka and Obayashi [43]. More precisely,
and for example, we obtain the corollary below, where for an n–dimensional manifold M , IM

n;F denotes
the persistence interval in barcVR

n .M IF/ induced by the fundamental class of M (see Proposition 9.28):

Corollary 9.51 (barcVR
� rigidity for spheres) For any closed connected n–dimensional Riemannian

manifold M with sectional curvature KM � 1,

(1) IM
n;F � I

Sn
n ;

Algebraic & Geometric Topology, Volume 24 (2024)
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S2

T u1

u2 u3

u4

S2
h

u2 u3

u4

Figure 2: The construction of the one parameter family of surfaces S2
h

with the same filling radius
as S2. The points u1, u2, u3 and u4 are vertices of a regular geodesic tetrahedron, and T is a small
geodesic triangle, which is used to form a cylinder of height h (left figure). See Example 9.54 for
details.

(2) if IM
n;F D I

Sn
n then M is isometric to Sn;

(3) there exists �n > 0 such that if length.ISn
n /� �n < length.IM

n;F /, then M is diffeomorphic to Sn;

(4) if length.IM
n;F / >

�
3

, then M is a twisted n–sphere (and , in particular , homotopy equivalent to the
n–sphere).

The lower bound on sectional curvature is crucial — in Example 9.54 we construct a one parameter family
of deformations of the sphere S2 with constant filling radius (see Figure 2).

See Propositions 9.56 and 9.57 for additional related results, and see Question 3 for a relaxation of
Question 1.

Lastly, let us address a variant of Question 1 concerning the case when barcVR
k
.X IF/ and barcVR

k
.Y IF/

are possibly different. Recall that there is the bottleneck distance dB measuring the dissimilarity between
two barcodes (see Definition 2.12). One of the fundamental results of topological data analysis is the
following stability theorem (see Theorems 2.13 and 2.14): for any field F ,

(1) `VR.X; Y / WD 1
2

sup
k

dB.barcVR
k .X IF/; barcVR

k .Y IF//� dGH.X; Y /:

Therefore, in order to understand how strong the Vietoris–Rips barcode is as a geometric invariant, it is
natural to ask the following question:

Question 2(i) How good is `VR.X; Y / as an estimator of dGH.X; Y /?

Algebraic & Geometric Topology, Volume 24 (2024)
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For example, one might ask whether the inequality (1) is tight or not. What we know is that this is
indeed not tight when X and Y are spheres of different dimension since, in Corollary 9.39, we show that
`VR.Sm;Sn/D 1

4
arccos .�1=.mC 1// for any 0 <m< n. However, in [63, Theorem B] it is proved that

1
2

arccos .�1=.mC 1// (ie twice `VR.Sm;Sn/) lower bounds dGH.Sm;Sn/ for any 0 < m < n and that
this bound is tight.

Now, let us ask the following question:

Question 2(ii) For what type of spaces X and Y does inequality (1) become tight?

Or, one might ask the following question too:

Question 2(iii) For what type of spaces X and Y do we have the reverse stability inequality

dGH.X; Y /� C � `
VR.X; Y /

for some C > 0?

Note that the reverse stability inequality mentioned in Question 2(iii) cannot hold in general. For example,
if we let X D S1 and Y be S1 attached with disjoint trees of arbitrary length (regarded as a geodesic
metric space), then we can prove `VR.X; Y /D 0 whereas dGH.X; Y / can be arbitrarily large (depending
on the length of the attached trees). See Figure 10 and the beginning of Section 9.4 for a more detailed
explanation.

The authors hope that this paper can help bridge between the applied algebraic topology and the quantitative
topology communities.

Organization In Section 2, we provide some necessary definitions and results about Vietoris–Rips
filtration, persistence, and injective metric spaces.

In Section 3, we construct a category of metric pairs. This category will be the natural setting for our
extrinsic persistent homology. Although being functorial is trivial in the case of Vietoris–Rips persistence,
the type of functoriality which one is supposed to expect in the case of metric embeddings is a priori not
obvious. We address this question in Section 3 by introducing a suitable category structure.

In Section 4, we show that the Vietoris–Rips filtration can be (categorically) seen as a special case of
persistent homology obtained through metric embeddings via the isomorphism theorem (Theorem 4.1).
In this section, we also we also establish the stability of the filtration obtained via metric embeddings.

Sections 5–9 provide applications of our isomorphism theorem to different questions.

In Section 5, we prove that any interval in persistence barcode for open Vietoris–Rips filtration must have
open left endpoint and closed right endpoint.

In Section 6, we obtain new proofs of formulas about the Vietoris–Rips persistence of metric products
and metric gluings of metric spaces.

Algebraic & Geometric Topology, Volume 24 (2024)
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In Section 7, we prove a number of results concerning the homotopy types of Vietoris–Rips filtrations of
spheres and complex projective spaces. Also, we fully compute the homotopy types of Vietoris–Rips
filtration of spheres with `1–norm.

In Section 8, we reprove Rips and Gromov’s result about the contractibility of the Vietoris–Rips complex
of hyperbolic geodesic metric spaces, by using our method consisting of isometric embeddings into
injective metric spaces. As a result, we will be able to bound the length of intervals in the Vietoris–Rips
persistence barcode by the hyperbolicity of the underlying space.

In Section 9, we give some applications of our ideas to the filling radius of Riemannian manifolds and
also study consequences related to the characterization of spheres by their persistence barcodes and some
generalizations and novel stability properties of the filling radius.

The appendix contains relegated proofs and some background material.
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2 Background

In this section we cover the background needed for proving our main results. We alert readers that, in
this paper, the same notation can mean either a simplicial complex itself or its geometric realization,
interchangeably. The precise meaning will be made clear in each context.

2.1 Vietoris–Rips filtration and persistence

References for the definitions and results in this subsection are [12; 61].

Definition 2.1 (Vietoris–Rips filtration) Let X be a metric space and r > 0. The (open) Vietoris–Rips
complex VRr.X/ of X is the simplicial complex whose vertices are the points of X and whose simplices
are the finite subsets of X with diameter strictly less then r . Note that if r � s, then VRr.X/ is contained
in VRs.X/. Hence, the family VR�.X/ is a filtration, called the open Vietoris–Rips filtration of X .

The (geometric realization of) a Vietoris–Rips filtration is a special case of the following more general
notion:

Definition 2.2 (persistence family) A persistence family is a collection .Ur ; fr;s/r�s2T , where T is a
nonempty subset of R such that, for each r � s � t 2 T , Ur is a topological space, fr;s W Ur ! Us is a
continuous map, fr;r D idUr and fs;t ıfr;s D fr;t .

Algebraic & Geometric Topology, Volume 24 (2024)
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Given two persistence families .U�; f�;�/ and .V�; g�;�/ indexed by the same T �R, a morphism from
the first one to the second is a collection .�r/r2T such that for each r � s, �r is a homotopy class of
maps Ur ! Vr , and �s ıfr;s is homotopy equivalent to gr;s ı�r .

Definition 2.3 (persistence module) A persistence module V�D .Vr ; vr;s/r�s2T over T �R is a family
of F–vector spaces Vr for some field F with morphisms vr;s W Vr ! Vs for each r � s such that

� vr;r D idVr ,

� vs;t ı vr;s D vr;t for each r � s � t .

In other words, a persistence module is a functor from the poset .T;�/ to the category of vector spaces.
The morphisms v�;� are referred to as the structure maps of V�.

By 0� we will denote the zero persistence module.

For any k � 0, applying the degree k homology functor (with coefficients in a field F) to a persistence
family .Ur ; fr;s/r�s2T produces the persistence module Hk.U�IF/ where the morphisms are those
induced by .fr;s/r�s .

Following the extant literature, we will use the term persistent homology of a persistence family (ie a
filtration) to refer to the persistence module obtained upon applying the homology functor to this family.

In particular, one can apply the homology functor to the Vietoris–Rips filtration of a metric space X . This
induces a persistence module (with T DR>0) where the morphisms are those induced by inclusions. As
a persistence module, it is denoted by PHk.VR�.X/IF/ and referred to as the Vietoris–Rips persistent
homology of X .

Definition 2.4 (interval persistence module [17]) Given an interval I in T � R (ie if r � s � t and
r; t 2 I , then s 2 I ) and a field F , the persistence module F�ŒI � over T is defined as follows: the vector
space at r is F if r is in I and zero otherwise; given r � s, the morphism corresponding to .r; s/ is the
identity if r and s are in I and zero otherwise.

Definition 2.5 (barcode) For a given persistence module V�, if there is a multiset of intervals .I�/�2ƒ
such that V� is isomorphic to

L
�2ƒ F�ŒI��, then that multiset is denoted by barc.V�/ and referred to as

a (persistence) barcode associated to the persistence module V� (see below). Modules for which there
exist such a multiset of intervals are said to be interval decomposable.

By Azumaya’s theorem [10], persistence barcodes, whenever they exist, are unique: any two persistence
barcodes associated to a given V� must agree (up to reordering). The most important existence result for
persistence barcodes is Crawley-Boevey’s theorem [25] which guarantees the existence of a persistence
barcode associated to V� D .Vr ; vr;s/ if V� is pointwise finite-dimensional (ie dim.Vr/ <1 for all r).
However, for many natural persistence modules (eg Vietoris–Rips persistent homology of a nonfinite metric
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space X), it is not straightforward to verify the pointwise finite-dimensionality condition. Nevertheless,
in Theorem 2.9, we are able to establish that, if X is totally bounded, then its Vietoris–Rips persistent
homology has a (unique) persistence barcode. This is achieved without invoking Crawley-Boevey’s
theorem and instead through combining our main (isomorphism) theorem (see Theorem 4.1) with a recent
result by Schmahl [74, Theorem 1.2]. The proof of Theorem 2.9 can be found in the extended (arXiv)
version of this paper [62, Section 5]. The totally boundedness condition is required in the theorem in
order to guarantee the following notion of regularity:

Definition 2.6 (q–tame persistence module) A persistence module V� D .Vr ; vr;s/r�s2T is said to be
q–tame if rank.vr;s/ <1 whenever r < s.

Remark 2.7 The notions of interval decomposability and q–tameness are not equivalent. Indeed:

(1) [22, Remark 2.9] There exist q–tame modules which are not interval decomposable.

(2) [22, Example 3.30] There exist interval decomposable modules which are not q–tame.

Interval decomposability and q–tameness are however related through a certain notion of weak isomor-
phism; see [20].

Remark 2.8 In [23, Proposition 5.1], it is proved that if X is a totally bounded metric space, then
PHk.VR�.X/IF/ is q–tame for any nonnegative integer k � 0 and any field F .

Theorem 2.9 [62, Section 5] If X is a totally bounded metric space , then there is a (unique) persistence
barcode associated to PHk.VR�.X/IF/.

If X is a totally bounded metric space, then we denote the barcode corresponding to PHk.VR�.X/IF/
by barcVR

k
.X IF/.

From now on, unless specified otherwise, we will always assume that T DR. For a given metric space
and integer k � 0, we will occasionally view V� D PHk.VR�.X/IF/ as a persistence module defined
over the whole real line R by trivially extending it to the left of 0 2R; that is, we set Vt D 0 for t � 0.

We now recall a notion of distance between persistence modules.

Definition 2.10 (interleaving distance) Two persistence modules V� andW� are said to be ı–interleaved
for some ı � 0 if there are natural transformations f W V�!W�Cı and g WW�! V�Cı such that f ıg
and g ı f are equal to the structure maps W�!W�C2ı and V�! V�C2ı , respectively. The interleaving
distance between V� and W� is defined as

dI.V�; W�/ WD inffı � 0 j V� and W� are ı–interleavedg:

It is known [12] that dI is an extended pseudometric on the collection of all persistence modules.
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Example 2.11 Consider 0�, the zero persistence module. Then for any finite-dimensional V� one has

dI.V�; 0�/D
1
2

supflength.I / j I 2 barc.V�/g:

Definition 2.12 (bottleneck distance) Let M and M 0 be two possibly empty multisets of intervals. A
subset P �M �M 0 is said to be a partial matching between M and M 0 if it satisfies that

� every interval I 2M is matched with at most one interval of M 0, ie there is at most one interval
I 0 2M 0 such that .I; I 0/ 2 P ;

� every interval I 0 2M 0 is matched with at most one interval of M , ie there is at most one interval
I 2M such that .I; I 0/ 2 P .

The bottleneck distance between M and M 0 is defined as

dB.M;M
0/ WD inf

P partial matching
cost.P /;

where
cost.P / WDmax

˚
sup

.I;I 0/2P

kI � I 0k1; sup
IDha;bi2MtM 0 unmatched

1
2
ja� bj

	
and

kI � I 0k1 WDmaxfja� a0j; jb� b0jg

for I D ha; bi; I 0 D ha0; b0i (here, h � ; � i means either open or closed endpoint).

Theorem 2.13 (isometry theorem [22, Theorem 5.14]) For any two q–tame persistence modules V�
and W�,

dB.barc.V�/; barc.W�//D dI.V�; W�/:

For the proof of the following theorem, see [23, Lemma 4.3] or [13; 19; 65].

Theorem 2.14 Let X and Y be compact metric spaces and F be an arbitrary field. Then , for any
k 2 Z�0,

dI
�
PHk.VR�.X/IF/;PHk.VR�.Y /IF/

�
� 2dGH.X; Y /:

2.2 Injective (hyperconvex) metric spaces

A hyperconvex metric space is one where any collection of balls with nonempty pairwise intersections
forces the nonempty intersection of all balls. These were studied by Aronszajn and Panitchpakdi [8]
who showed that every hyperconvex space is an absolute 1–Lipschitz retract. Isbell [52] proved that
every metric space admits a smallest hyperconvex hull (see the definition of tight span below). Dress
rediscovered this concept in [30] and subsequent work provided much development in the context of
phylogenetics [31; 75]. More recently, Joharinad and Jost [53] considered relaxations of hyperconvexity
and related it to a certain notion of curvature applicable to general metric spaces.

References for this subsection are [30; 31; 60].
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Definition 2.15 (injective metric space) A metric space E is called injective if for each 1–Lipschitz
map f W X ! E and isometric embedding of X into zX , there exists a 1–Lipschitz map Qf W zX ! E

extending f :
X zX

E
f

Qf

Definition 2.16 (hyperconvex space) A metric space X is called hyperconvex if for every family
.xi ; ri /i2I of xi in X and ri � 0 such that dX .xi ; xj /� ri C rj for each i; j 2 I , there exists a point x
such that dX .xi ; x/� ri for each i 2 I .

The following lemma is easy to deduce from the definition of hyperconvex space:

Lemma 2.17 Any nonempty intersection of closed balls in hyperconvex space is hyperconvex.

For a proof of the following proposition, see [8] or [60, Proposition 2.3].

Proposition 2.18 A metric space is injective if and only if it is hyperconvex.

Moreover, every injective metric space is a contractible geodesic metric space, as one can see in
Lemma 2.20 and Corollary 2.21.

Definition 2.19 (geodesic bicombing) By a geodesic bicombing  on a metric space .X; dX /, we mean
a continuous map  WX �X � Œ0; 1�!X such that, for every pair .x; y/ 2X �X , .x; y; � / is a geodesic
from x to y with constant speed. In other words,  satisfies

(1) .x; y; 0/D x and .x; y; 1/D y;

(2) dX ..x; y; s/; .x; y; t//D .t � s/ � dX .x; y/ for any 0� s � t � 1.

Lemma 2.20 [60, Proposition 3.8] Every injective metric space .E; dE / admits a geodesic bicombing
 such that , for any x; y; x0; y0 2E and t 2 Œ0; 1�, it is:

(1) Conical dE ..x; y; t/; .x
0; y0; t //� .1� t /dE .x; x

0/C tdE .y; y
0/.

(2) Reversible .x; y; t/D .y; x; 1� t /.

(3) Equivariant L ı .x; y; � /D .L.x/; L.y/; � / for every isometry L of E.

Corollary 2.21 Every injective metric space E is contractible.

Proof By Lemma 2.20, there is a geodesic bicombing  on E. Fix an arbitrary point x0 2 E. Then
restricting  to E � fx0g � Œ0; 1� gives a deformation retraction of E onto x0; hence E is contractible.

Example 2.22 For any set S , the Banach space L1.S/ consisting of all the bounded real-valued
functions on S with the `1–norm is injective.
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Definition 2.23 For a compact metric space .X; dX /, the map � WX!L1.X/, defined by x 7! dX .x; � /,
is an isometric embedding and it is called the Kuratowski embedding. Hence every compact metric space
can be isometrically embedded into an injective metric space.

Let us introduce some notation which will be used throughout this paper. Suppose that X is a subspace
of a metric space .E; dE /. For any r > 0, let Br.X;E/ WD fz 2E j 9x 2X with dE .z; x/ < rg denote
the open r–neighborhood of X in E. In particular, if X D fxg for some x 2 E, it is just denoted by
Br.x;E/, the usual open r–ball around x in E.

As one more convention, whenever there is an isometric embedding � WX ,!E, we will use the notation
Br.X;E/ instead of Br.�.X/;E/. For instance, in the sequel we will use Br.X;L1.X// rather than
Br.�.X/; L

1.X//.

Definition 2.24 For any metric spaceE, a nonempty subspaceX , and r >0, the Čech complex LCr.X;E/
is defined as the nerve of the open covering Ur WD fBr.x;E/ j x 2Xg. In other words, LCr.X;E/ is the
simplicial complex whose vertices are the points of X , and fx0; : : : ; xng �X is a simplex in LCr.X;E/ if
and only if

Tn
iD0Br.xi ; E/¤∅.

The following observation is simple, yet it plays an important role in our paper:

Proposition 2.25 If .E; dE / is an injective metric space and ∅¤X �E then , for any r > 0,

LCr.X;E/D VR2r.X/:

Remark 2.26 Proposition 2.25 is optimal in the sense that if LCr.X;E/D VR2r.X/ holds true for all
∅¤X �E, then this condition itself resembles hyperconvexity of E (see Definition 2.16).

Also note that Proposition 2.25 is a generalization of both [45, Lemma 4] and [19, Lemma 2.9] in that
those papers only consider the case when X is finite and E D `1.X/.

Proof of Proposition 2.25 Because of the triangle inequality, it is obvious that LCr.X;E/ is a subcomplex
of VR2r.X/. Now, fix an arbitrary simplex fx0; : : : ; xng 2 VR2r.X/. Then dE .xi ; xj / < 2r for any
i; j D 0; : : : ; n. Since E is hyperconvex, by Proposition 2.18, there exists Nx 2E such that dX .xi ; Nx/ < r
for any i D 0; : : : ; n (note that, since fx0; : : : ; xng is finite, one can use < instead of � when invoking
the hyperconvexity property). Therefore, fx0; : : : ; xng 2 LCr.X;E/. Hence VR2r.X/ is a subcomplex of
LCr.X;E/.

In particular, Proposition 2.25 implies the following result:

Proposition 2.27 Let X be a subspace of an injective metric space .E; dE /. Then , for any r > 0, the
Vietoris–Rips complex VR2r.X/ is homotopy equivalent to Br.X;E/.

The proof of Proposition 2.27 will use the following lemma:
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Lemma 2.28 In an injective metric space E, every nonempty intersection of open balls is contractible.

Proof Let  be a geodesic bicombing on E, whose existence is guaranteed by Lemma 2.20. Then, for
each x; y; x0; y0 in E and t in Œ0; 1�,

dE ..x; y; t/; .x
0; y0; t //� .1� t /dE .x; x

0/C tdE .y; y
0/:

In particular, by letting x0 D y0 D z, we obtain

dE ..x; y; t/; z/�maxfdE .x; z/; dE .y; z/g

for any t 2 Œ0; 1�. Hence, if x and y are contained in an open ball with center z, then .x; y; t/ is contained
in the same ball for each t in Œ0; 1�. Therefore, if U is a nonempty intersection of open balls in E, then 
restricts to U �U � Œ0; 1�! U , which implies that U is contractible.

Proof of Proposition 2.27 Let Ur WD fBr.x;E/ j x 2 Xg. By Lemma 2.28, Ur is a good cover of
Br.X;E/. Hence, by the nerve lemma [49, Corollary 4G.3], Br.X;E/ is homotopy equivalent to the nerve
of Ur , which is the same as the Čech complex LCr.X;E/. By Proposition 2.25, LCr.X;E/DVR2r.X/.

3 Persistence via metric pairs

One of the insights leading to the notion of persistent homology associated to metric spaces was considering
neighborhoods of a metric space in a nice (for example Euclidean) embedding [70]. In this section we
formalize this idea in a categorical way.

Definition 3.1 (category of metric pairs) � A metric pair is an ordered pair .X;E/ of metric spaces
such that X is a metric subspace of E.

� Let .X;E/ and .Y; F / be metric pairs. A 1–Lipschitz map from .X;E/ to .Y; F / is a 1–Lipschitz
map from E to F mapping X into Y .

� Let .X;E/ and .Y; F / be metric pairs and f and g be 1–Lipschitz maps from .X;E/ to .Y; F /. We
say that f and g are equivalent if there exists a continuous family .ht /t2Œ0;1� of 1–Lipschitz maps
from E to F and a 1–Lipschitz map � WX! Y such that h0D f , h1D g and ht jX D � for each t .

� We define PMet as the category whose objects are metric pairs and whose morphisms are defined
as follows: given metric pairs .X;E/ and .Y; F /, the morphisms from .X;E/ to .Y; F / are
equivalence classes of 1–Lipschitz maps from .X;E/ to .Y; F /.

Recall the definition of persistence families, Definition 2.2. We let hTop� denote the category of persistence
families with morphisms specified as in Definition 2.2.

Remark 3.2 Let .X;E/ and .Y; F / be persistent pairs and let f be a 1–Lipschitz morphism between
them. Then f maps Br.X;E/ into Br.Y; F / for each r > 0. Furthermore, if g is equivalent to f , then
they reduce to homotopy equivalent maps from Br.X;E/ to Br.Y; F / for each r > 0.
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By the remark above, we obtain the following functor from PMet to hTop�:

Definition 3.3 (persistence functor) Define the persistence functor B� W PMet! hTop� sending .X;E/
to the persistence family obtained by the filtration .Br.X;E//r>0 and sending a morphism between
metric pairs to the homotopy classes of maps it induces between the filtrations.

Remark 3.4 Suppose a metric pair .X;E/ is given. For any k � 0, one can apply the degree k homology
functor (with coefficients in a given field F ) to a persistence family B�.X;E/. This induces a persistence
module where the morphisms are induced by inclusions. As a persistence module, it is denoted by
PHk.B�.X;E/IF/.

Let Met be the category of metric spaces where morphisms are given by 1–Lipschitz maps. There is a
forgetful functor from PMet to Met mapping .X;E/ to X and mapping a morphism defined on .X;E/ to
its restriction to X . Although forgetful functors often have left adjoints, we are going to see that this one
has a right adjoint.

Theorem 3.5 The forgetful functor from PMet to Met has a right adjoint.

First we need to prove a few results. The reader should consult Section 2.2 for background on injective
metric spaces.

Lemma 3.6 Let .X;E/ and .Y; F / be metric pairs such that F is an injective metric space. Let f and g
be 1–Lipschitz maps from .X;E/ to .Y; F /. Then f is equivalent to g if and only if f jX � gjX .

Proof The “only if” part is obvious from Definition 3.1. Now assume that f jX � gjX . By Lemma 2.20,
there exists a geodesic bicombing  W F �F � Œ0; 1�! F such that for each x; y; x0; y0 2 F and t 2 Œ0; 1�,

dF ..x; y; t/; .x
0; y0; t //� .1� t /dF .x; x

0/C tdF .y; y
0/:

For t 2 Œ0; 1�, define h W E � Œ0; 1�! F by ht .x/ D .f .x/; g.x/; t/. Note that h0 D f , h1 D g and
.ht /jX is the same map for all t . The inequality above implies that ht is 1–Lipschitz for all t .

Lemma 3.7 Let .X;E/ and .Y; F / be metric pairs such that F is an injective metric space. Then , for
each 1–Lipschitz map � WX ! Y , there exists a unique (up to equivalence) 1–Lipschitz map from .X;E/

to .Y; F / extending �.

Proof The uniqueness up to equivalence part follows from Lemma 3.6. The existence part follows from
the injectivity of F .

Proof of Theorem 3.5 Let � WMet! PMet be the functor sending X to .X;L1.X// where L1.X/
is the Banach space consisting of all the bounded real-valued functions on X with `1–norm (see
Definition 2.23 in Section 2.2). A 1–Lipschitz map f W X ! Y is sent to the unique morphism (see
Lemma 3.7) extending f . This functor � is said to be the Kuratowski functor.
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There is a natural morphism

Hom
�
.X;E/; .Y; L1.Y //

�
! Hom.X; Y /;

sending a morphism to its restriction to X . By Lemma 3.7, this is a bijection. Hence � is a right adjoint
to the forgetful functor.

Recall that any two right adjoints of a same functor must be isomorphic [9, Proposition 9.9].

Definition 3.8 (metric homotopy pairing) A functor � WMet!PMet is called a metric homotopy pairing
if it is a right adjoint to the forgetful functor.

Example 3.9 Let .X; dX / be a metric space. L1.X/ is an injective space associated toX ; see Section 2.2
for the precise definition. Consider also the following additional spaces associated to X :

�.X/ WD ff 2 L1.X/ j f .x/Cf .x0/� dX .x; x
0/ for all x; x0 2Xg;

E.X/ WD ff 2�.X/ j if g 2�.X/ and g � f then g D f g;

�1.X/ WD�.X/\Lip1.X;R/;

with `1–metrics for all of them; see [60, Section 3]. Then

.X;L1.X//; .X;E.X//; .X;�.X//; .X;�1.X//

are all metric homotopy pairings, since the second element in each pair is an injective metric space [60,
Section 3] into which X isometrically embeds via the map � W x 7! dX .x; � /. Here, E.X/ is said to be
the tight span of X [30; 52] and it is a especially interesting space. E.X/ is the smallest injective metric
space into which X can be embedded and it is unique up to isometry. Furthermore, if X is a tree metric
space (ie a metric space with 0–hyperbolicity; see Definition 8.1), then E.X/ is the smallest metric tree
containing X . This special property has recently been used to the application of phylogenetics [31].

4 Isomorphism and stability

Recall that Met is the category of metric spaces with 1–Lipschitz maps as morphisms. We have the
functor VR� WMet! hTop� induced by the Vietoris–Rips filtration. The main theorem we prove in this
section is the following:

Theorem 4.1 (isomorphism theorem) Let � WMet! PMet be a metric homotopy pairing (for example
the Kuratowski functor). Then B� ı � WMet! hTop� is naturally isomorphic to VR2�.

Recall the precise definitions of Ur and LCr.X;E/ from Definition 2.24. We denote the filtration of Čech
complexes . LCr.X;E//r>0 by LC�.X;E/.

The following theorem is the main tool for the proof of Theorem 4.1. Its proof, being fairly long, is
relegated to Section A.3.
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Theorem 4.2 (generalized functorial nerve lemma) Let X and Y be two paracompact spaces , � WX!Y

be a continuous map , U D fU˛g˛2A and V D fVˇ gˇ2B be good open covers (every nonempty finite
intersection is contractible) of X and Y , respectively, based on arbitrary index sets A and B , and
� W A! B be a map such that

�.U˛/� V�.˛/ for any ˛ 2 A:

Let NU and NV be the nerves of U and V , respectively. Observe that , since U˛0 \� � �\U˛n ¤∅ implies
V�.˛0/\ � � � \V�.˛n/ ¤∅, � induces the canonical simplicial map N� W NU ! NV .

Then there exist homotopy equivalences X ! NU and Y ! NV that commute with � and N� up to
homotopy:

X NU

Y NV

� N�

The next corollary is an important special case of Theorem 4.2.

Corollary 4.3 (functorial nerve lemma) Let X �X 0 be two paracompact spaces. Let U D fU˛g˛2ƒ
and U 0 D fU 0˛g˛2ƒ be good open covers (every nonempty finite intersection is contractible) of X and X 0,
respectively , based on the same index set ƒ, such that U˛ � U 0˛ for all ˛ 2ƒ. Let NU and NU 0 be the
nerves of U and U 0, respectively.

Then there exist homotopy equivalences X ! NU and X 0 ! NU 0 that commute with the canonical
inclusions X ,!X 0 and NU ,! NU 0, up to homotopy:

X NU

X 0 NU 0

Proof Choose the canonical inclusion map X ,! X 0 as �, the identity map on ƒ as � , and apply
Theorem 4.2.

Remark 4.4 A result similar to Corollary 4.3 was already proved in [21, Lemma 3.4] for finite-index
sets, whereas in our version index sets can have arbitrary cardinality. In [24, Theorems 25 and 26], the
authors prove a simplicial complex version of Corollary 4.3 for finite-index sets and invoke a certain
functorial version of Dowker’s theorem.

Finally, recently we became aware of [82, Lemma 5.1], which is similar to Theorem 4.2. The author
considers spaces with numerable covers (ie the spaces admit locally finite partition of unity subordinate
to the covers), whereas in our version that condition is automatically satisfied since we only consider
paracompact spaces. Our proof technique differs from that of [82] in that whereas [82] relies on a result
from [29], our proof follows the traditional proof of the nerve lemma [49].
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Proposition 4.5 For each metric pair .X;E/ 2 PMet, there exist homotopy equivalences

�
.X;E/
� W B�.X;E/! LC�.X;E/

such that , for any 0 < r � s, the diagram

Br.X;E/ LCr.X;E/

Bs.X;E/ LCs.X;E/

�
.X;E/
r

�
.X;E/
s

commutes up to homotopy , where Br.X;E/ ,! Bs.X;E/ and LCr.X;E/ ,! LCs.X;E/ are the canonical
inclusions.

Proof Observe that LCr.X;E/ is the nerve of the open cover Ur for any r > 0, and apply Corollary 4.3.

Proposition 4.6 Let .X;E/ and .Y; F / be metric pairs in PMet, and f W .X;E/ ! .Y; F / be a 1–
Lipschitz map. Let �.X;E/� WB�.X;E/! LC�.X;E/ and �.Y;F /� WB�.Y; F /! LC�.Y; F / be the homotopy
equivalences guaranteed by Proposition 4.5. Then , for any r > 0, the diagram

Br.X;E/ LCr.X;E/

Br.Y; F / LCr.Y; F /

fr

�
.X;E/
r

fr

�
.Y;F/
r

commutes up to homotopy, where f� W Br.X;E/! Br.Y; F / and f� W LCr.X;E/! LCr.Y; F / are the
canonical maps induced from f .

Furthermore , if we substitute f with an equivalent map , then the homotopy types of the vertical maps
remain unchanged.

Proof Since f is 1–Lipschitz, f .Br.x;E//� Br.f .x/; F /. Hence, if we choose f jBr .X;E/ as �, and
f jX as � , the commutativity of the diagram is the direct result of Theorem 4.2.

Furthermore, if f and g are equivalent, then the homotopy .ht / between f and g induces the homotopy
between fr W Br.X;E/! Br.Y; F / and gr W Br.X;E/! Br.Y; F /. Moreover, since f jX D gjX , both
of the induced maps fr W LCr.X;E/! LCr.Y; F / and gr W LCr.X;E/! LCr.Y; F / are exactly the same.

We are now ready to prove the main theorem of this section.

Proof of Theorem 4.1 Since all metric homotopy pairings are naturally isomorphic, without loss
of generality we can assume that � D �, the Kuratowski functor. Note that, by Proposition 2.25,
LCr.X;E/D VR2r.X/ for any X 2Met and r > 0.
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Let’s construct the natural transformation � from B� ı � WMet! hTop� to VR2� in the following way:
Fix an arbitrary metric space X 2Met, and let �X be the homotopy equivalences

�
.X;L1.X//
� W B�.X;L

1.X//! VR2�.X/

guaranteed by Proposition 4.5. Then, when f W X ! Y is 1–Lipschitz, the functoriality between �X
and �Y is the direct result of Proposition 4.6. So � is indeed a natural transformation. Finally, since each
�
.X;L1.X//
r is a homotopy equivalence for any X 2Met and r > 0, � is natural isomorphism.

4.1 Stability of metric homotopy pairings

In this subsection, we consider a distance between metric pairs by invoking the homotopy interleaving
distance introduced by Blumberg and Lesnick [13] and then show that metric homotopy pairings are
1–Lipschitz with respect to this distance and the Gromov–Hausdorff distance.

Let us give a quick review of homotopy interleaving distance between R–spaces. For more details, please
see [13, Section 3.3]. An R–space is a functor from the poset .R;�/ to the category of topological spaces.
Note that given a metric pair .X;E/, the filtration of open neighborhoods B�.X;E/ is an R–space. Two
R–spaces A� and B� are said to be ı–interleaved for some ı > 0 if there are natural transformations
f WA�!B�Cı and g WB�!A�Cı such that f ıg and gıf are equal to the structure maps B�!B�C2ı

and A�! A�C2ı , respectively.

A natural transformation f WR�!A� is called a weak homotopy equivalence if f induces a isomorphism
between homotopy groups at each index. Two R–spaces A� and A0� are said to be weakly homotopy
equivalent if there exists an R–spaceR� and weak homotopy equivalences f WR�!A� and f 0 WR�!A0�.
The homotopy interleaving distance dHI.A�; B�/ is then defined as the infimal ı > 0 such that there exists
ı–interleaved R–spaces A0� and B 0� with the property that A0� and B 0� are weakly homotopy equivalent to
A� and B�, respectively.

We now adapt this construction to metric pairs. Given metric pairs .X;E/ and .Y; F /, we define the
homotopy interleaving distance between them by

dHI..X;E/; .Y; F // WD dHI.B�.X;E/; B�.Y; F //:

The main theorem that we are going to prove in this section is the following. Below, dGH denotes the
Gromov–Hausdorff distance between metric spaces (see [15]) and dI denotes the interleaving distance
between persistence modules (see Section 2.1).

Theorem 4.7 Let � WMet! PMet be a metric homotopy pairing. Then for any compact metric spaces X
and Y ,

dHI.�.X/; �.Y //� dGH.X; Y /:
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Remark 4.8 By combining Theorem 4.7 and the isomorphism theorem (Theorem 4.1), one obtains
another proof of Theorem 2.14: for any compact metric spaces X and Y , a field F , and k 2 Z�0,

dI
�
PHk.VR�.X/IF/;PHk.VR�.Y /IF/

�
� 2dGH.X; Y /:

Lemma 4.9 If .X;E/ and .Y; F / are isomorphic in PMet, then dHI..X;E/; .Y; F //D 0.

Proof Let f W .X;E/! .Y; F / and g W .Y; F /! .X;E/ be 1–Lipschitz maps such that f ıg and g ıf
are equivalent to the respective identities. Then the result follows since f and g induce an isomorphism
between the R–spaces B�.X;E/ and B�.Y; F /.

Lemma 4.10 LetE and F be injective metric spaces containingX . Then .X;E/ is isomorphic to .X; F /
in PMet.

Proof By injectivity of E and F , there are 1–Lipschitz maps f WE! F and g W F !E such that f jX
and gjX are equal to idX . Hence, by Lemma 3.6, f ıg W .X; F /! .X; F / and g ıf W .X;E/! .X; F /

are equivalent to the identity.

Proof of Theorem 4.7 Since all metric homotopy pairings are naturally isomorphic, by Lemma 4.9,
without loss of generality we can assume that �D �, the Kuratowski functor. Let r > dGH.X; Y /. Let us
show that

dHI
�
.X;L1.X//; .Y; L1.Y //

�
� r:

By assumption (see [15]), there exists a metric spaceZ containingX and Y such that the Hausdorff distance
between X and Y as subspaces of Z is less than or equal to r . Hence, the R–spaces B�.X;L1.Z// and
B�.Y; L

1.Z// are r–interleaved as

B�.X;L
1.Z//� BrC�.Y; L

1.Z// and B�.Y; L
1.Z//� BrC�.X;L

1.Z//

for each �. Now, by Lemma 4.10,

dHI
�
.X;L1.X//; .Y; L1.Y //

�
D dHI

�
.X;L1.Z//; .Y; L1.Z//

�
� r:

5 Application: endpoints of intervals in barcVR
k
.X/

It is known that, in some cases, the intervals in the Vietoris–Rips barcode of a metric space are of the
form .u; v� or .u;1/ for 0� u < v <1.

Example 5.1 In the following examples, any I 2 barcVR
k
.X IF/ has a form of .u; v� or .u;1/ for some

0� u < v <1:

(1) when X is a finite metric space, for any k � 0;

(2) when X D S1, for any k � 0 (see [1, Theorem 7.4]);

(3) when X is a compact geodesic metric space, for k D 1 (see [81, Theorem 8.2]).
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As far as we know, the general statement given in Theorem 5.2 below is first proved in this paper. Our
proof crucially exploits the isomorphism theorem (Theorem 4.1).

Theorem 5.2 Suppose a compact metric space .X; dX /, a field F , and a nonnegative integer k are given.
Then , for any I 2 barcVR

k
.X IF/, I must be of the form .u; v� or .u;1/ for some 0� u < v <1.

We first state and prove two lemmas which will be combined in order to furnish the proof of Theorem 5.2.

Lemma 5.3 Let X be a topological space and G be an abelian group. Then , for any k � 0 and any
k–dimensional singular chain c of X with coefficients in G, there exist a compact subset Kc � X and
k–dimensional singular chain c0 of Kc with coefficients in G such that

.�/].c
0/D c;

where � WKc ,!X is the canonical inclusion map.

Proof Recall that one can express c as a sum of finitely many k–dimensional singular simplices with
coefficients in G. In other words,

c D

lX
iD1

˛i�i ;

where ˛i 2G and �i W�k!X is a continuous map for each i D 1; : : : ; l . Next, let Kc WD
Sl
iD1 �i .�k/.

This Kc is the compact subspace that we required.

For the remainder of this section, given any field F and a metric pair .X;E/, for each 0 < r <1 we
will denote by .SC.r/� ; @

.r/
� / the singular chain complex of Br.X;E/ with coefficients in F . For each

0 < r � s <1 we will denote by ir;s the canonical inclusion map Br.X;E/� Bs.X;E/. By .ir;s/] we
will denote the (injective) map induced at the level of singular chain complexes.

Lemma 5.4 Suppose that a compact metric space .X; dX /, a field F , a metric homotopy pairing �, and a
nonnegative integer k are given. Then , for every I 2 barc

�
PHk.B� ı �.X/IF/

�
:

(i) If u 2 Œ0;1/ is the left endpoint of I , then u … I (ie I is left-open).

(ii) If v 2 Œ0;1/ is the right endpoint of I , then v 2 I (ie I is right-closed ).

Proof (i) Let �.X/D .X;E/. The fact that I 2 barc
�
PHk.B� ı �.X/IF/

�
implies that, for each r 2 I ,

there exists a singular k–cycle cr on Br.X;E/ with coefficients in F satisfying

(1) Œcr � 2 Hk.Br.X;E/IF/ is nonzero for any r 2 I ,

(2) .ir;s/�.Œcr �/D Œcs� for any r � s in I .

Now, suppose that u is a closed left endpoint of I (so u 2 I ). In particular, by the above there exists a
singular k–cycle cu on Bu.X;E/ with coefficients in F with the above two properties.
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Then, by Lemma 5.3, we know that there is a compact subset Kcu � Bu.X;E/ and a singular k–cycle
c0u on Kcu with coefficients in F such that .�/].c0u/ D cu where � W Kcu ! Bu.X;E/ is the canonical
inclusion. Moreover, since Kcu is compact, there exists a small " > 0 such that

Kcu � Bu�".X;E/:

Now, define cu�" WD .�0/].c0u/ where �0 WKcu!Bu�".X;E/ is the canonical inclusion. Then, this singular
chain satisfies

.iu�";u/].cu�"/D .iu�";u/] ı .�
0/].c

0
u/D .�/].c

0
u/D cu:

Moreover, cu�" cannot be null-homologous. Otherwise, there would exist a singular .kC1/–chain du�"
on Bu�".X;E/ with coefficients in F such that @.u�"/

kC1
du�" D cu�". However, this would imply

@
.u/

kC1
ı .iu�";u/].du�"/D .iu�";u/] ı @

.u�"/

kC1
.du�"/D .iu�";u/].cu�"/D cu;

by the naturality of the boundary operators @.u�"/
kC1

and @.u/
kC1

. This would in turn contradict the property
Œcu�¤ 0.

So, we must have Œcu�"�¤ 0. But, the existence of such cu�" contradicts the fact that u is the left endpoint
of I . Therefore, one concludes that u cannot be a closed left endpoint, so it must be an open endpoint.

(ii) Now, suppose that v is an open right endpoint of I (so that v … I and therefore cv is not defined by
the above two conditions). Choose a small enough " > 0 that v� " 2 I , and let

cv WD .iv�";v/].cv�"/:

Then cv must be null-homologous.

This means that there is a singular .kC1/–dimensional chain dv on Bv.X;E/ with coefficients in F such
that @.v/

kC1
dvD cv . By Lemma 5.3, we know that there is a compact subsetKdv �Bv.X;E/ and a singular

.kC1/–chain d 0v of Kdv with coefficients in F such that .�/].d 0v/D dv where � WKdv ! Bv.X;E/ is the
canonical inclusion. Moreover, sinceKdv is compact, there exists "0 2 .0; "� such thatKdv �Bv�"0.X;E/.

Let dv�"0 WD .�0/].d 0v/ where �0 W Kdv ,! Bv�"0.X;E/ is the canonical inclusion. Then, again by the
naturality of boundary operators,

.iv�"0;v/] ı @
.v�"0/

kC1
.dv�"0/D @

.v/

kC1
ı .iv�"0;v/].dv�"0/

D @
.v/

kC1
ı .iv�"0;v/] ı .�

0/].d
0
v/D @

.v/

kC1
ı .�/].d

0
v/D @

.v/

kC1
dv D cv:

Since .iv�"0;v/] is injective and .iv�"0;v/] ı .iv�";v�"0/].cv�"/D .iv�";v/].cv�"/D cv , one can conclude
that @.v�"

0/

kC1
.dv�"0/D .iv�";v�"0/].cv�"/. This indicates that

0D Œ.iv�";v�"0/].cv�"/�D .iv�";v�"0/�.Œcv�"�/D Œcv�"0 �;

but it contradicts the fact that Œcv�"0 �¤ 0. Therefore, v must be a closed endpoint.

Finally, the proof of Theorem 5.2 follows from the lemmas above.

Proof of Theorem 5.2 Apply Lemma 5.4 and Theorem 4.1.
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A (false) conjecture Actually, we first expected the following conjecture to be true. Observe that, if
true, the conjecture would imply Theorem 5.2. Also, it is obvious that this conjecture is true when X is a
finite metric space.

Conjecture 5.5 (lower semicontinuity of the homotopy type of Vietoris–Rips complexes) Suppose
X is a compact metric space. Then, for any r 2 R>0, VRr.X/ is homotopy equivalent to VRr�".X/
whenever " > 0 is small enough.

However, the following example shows that this conjecture is false:

Example 5.6 By [1, Theorem 7.4], we know that VRr.S1/ is homotopy equivalent to S2mC1 if
r 2 .2�m=.2mC1/; 2�.mC1/=.2mC3/� formD 0; 1; : : : . Observe that limm!1 2�m=.2mC1/D� .
Therefore, VR�.S1/ cannot be homotopy equivalent to VR��".S1/ for all small enough ", since for r in
the interval Œ� � "; ��, VRr.S1/ attains infinitely many different homotopy types.

Then, one might now wonder whether the conjecture holds when we restrict the range of r to .0; diam.X//.
But, again this new conjecture is false, as the following example shows:

Example 5.7 Let X WDS1_˛ �S1 for some ˛ 2 .0; 1/. Observe that diam.X/D� . Also, by Lemma 6.6,
E_F will be an injective metric space containingX wheneverE is an injective metric space containing S1

(eg E.S1/) and F is an injective metric space containing ˛ �S1 (eg E.˛ �S1/). Hence, by Proposition 2.27,
VR2r.X/ ' Br.X;E _ F / D Br.S1; E/ _ Br.˛ � S1; F / and VR2r.˛ � S1/ ' Br.˛ � S1; F / for any
r > 0. Therefore, VR˛�.X/ cannot be homotopy equivalent to VR˛��".X/ for small enough ", since
VRr.˛ �S1/ attains infinitely many homotopy types for r 2 Œ˛� � "; ˛��.

6 Application: products and metric gluings

The following statement regarding products of filtrations are obtained at the simplicial level (and in
more generality) in [71, Proposition 2.6; 42; 72]. The statement about metric gluings appeared in [3,
Proposition 4; 66, Proposition 4.4]. These proofs operate at the simplicial level.

Here we give alternative proofs through the consideration of neighborhoods in an injective metric space
via Theorem 4.1.

We first recall the notion of metric gluing: given two metric spaces X and Y and points p 2X and q 2 Y ,
the metric gluing X _Y WDX tY=p � q is defined with the metric

dX_Y .z; z
0/ WD

8<:
dX .z; z

0/ if z; z0 2X;
dY .z; z

0/ if z; z0 2 Y;
dX .z; p/C dY .z

0; q/ if z 2X and z0 2 Y:

Algebraic & Geometric Topology, Volume 24 (2024)



Vietoris–Rips persistent homology, injective metric spaces, and the filling radius 1043

Theorem 6.1 (persistent Künneth formula) Let X and Y be metric spaces , and F be a field.

(1) Persistent Künneth formula Let X �Y denote the `1–product of X and Y . Then

PH�.VR�.X �Y /IF/Š PH�.VR�.X/IF/˝PH�.VR�.Y /IF/:

(2) Let p and q be points in X and Y respectively. Let X _ Y denote the metric gluing of metric
spaces X and Y along p and q. Then2

PH�.VR�.X _Y /IF/Š PH�.VR�.X/IF/˚PH�.VR�.Y /IF/:

Remark 6.2 Corollaries 5.2 and 5.8 of [5] establish results analogous to Theorem 6.1 for the products
and metric gluings of Vietoris–Rips metric thickenings.

Remark 6.3 The tensor product of two simple persistence modules corresponding to intervals I and J is
the simple persistence module corresponding to the interval I \J . Therefore, the first part of Theorem 6.1
implies that

barcVR
k .X �Y IF/ WD fI \J j I 2 barcVR

i .X IF/; J 2 barcVR
j .Y IF/; i C j D kg

for any nonnegative integer k.

Example 6.4 (tori) For a given choice of ˛1; : : : ; ˛n > 0, let X be the `1–product
Qn
iD1.˛i � S

1/.
Then, by [1, Theorem 7.4] and Remark 6.3,

barcVR
0 .X IF/D f.0;1/g;

and

barcVR
k .X IF/

D

��
max
1�j�m

2�˛ij lij

2lijC1
; min
1�j�m

2�˛ij .lijC1/

2lijC3

� ˇ̌̌
fij g

m
jD1 � f1; : : : ; ng; lij 2 Z�0;

mX
jD1

.2lijC1/D k

�
for any k 2 Z>0.

Note that above we are defining a multiset; hence if an element appears more than once in the definition,
then it will appear more than once in the multiset. In particular, in the case of X D S1 � S1, for all
integers k � 0,

barcVR
0 .X IF/D f.0;1/g;

barcVR
2kC1.X IF/D

��
2�k

2kC 1
;
2�.kC 1/

2kC 3

�
;

�
2�k

2kC 1
;
2�.kC 1/

2kC 3

��
;

barcVR
4kC2.X IF/D

��
2�k

2kC 1
;
2�.kC 1/

2kC 3

��
;

barcVR
4kC4.X IF/D∅:

See also the remarks on homotopy types of Vietoris–Rips complexes of tori in [1, Proposition 10.2; 18].

2We use the “reduced” homology functor for this metric gluing case.
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To be able to prove Theorem 6.1, we need the following lemmas:

Lemma 6.5 If E and F are injective metric spaces , then so is their `1–product.

Proof Let X be a metric space. Note that .f; g/ WX !E �F is 1–Lipschitz if and only if f and g are
1–Lipschitz. Given such f and g and a metric embedding X into Y , we have 1–Lipschitz extensions
Qf and Qg of f and g from Y to E and F , respectively. Hence, . Qf ; Qg/ W Y ! E � F is a 1–Lipschitz

extension of .f; g/. Therefore E �F is injective.

Lemma 6.6 If E and F are injective metric spaces , then so is their metric gluing along any two points.

Proof Let p and q be points in E and F , respectively, and E _F denote the metric gluing of E and F
along p and q. We are going to show that E _F is hyperconvex, hence injective (see Proposition 2.18).
We denote the metric on E _F by d , the metric on E by dE and the metric on F by dF .

Let .xi ; ri /i and .yj ; sj /j be such that each xi is in E, each yj is in F , ri � 0, sj � 0,

dE .xi ; xi 0/� ri C ri 0 ; dF .yj ; yj 0/� sj C sj 0 ; d.xi ; yj /� ri C sj

for each i , i 0, j and j 0. Define � by

� WDmax
˚
inf
i
.ri � dE .xi ; p//; inf

j
.sj � dF .yj ; q//

	
:

Let us show that � � 0. If the second element inside the maximum is negative, then there exists j0 such
that dF .yj0 ; q/� sj0 > 0. Since d.xi ; yj0/D dE .xi ; p/C dF .q; yj0/ for all i ,

ri � dE .xi ; p/D dF .yj0 ; q/C .ri � d.xi ; yj0//� dF .yj0 ; q/� sj0 > 0:

Therefore the first element inside the maximum is nonnegative. Hence � � 0.

Without loss of generality, let us assume that

� D inf
i
.ri � dE .xi ; p//� 0:

This implies that the nonempty closed ball B�.q; F / is contained in Bri .xi ; E _F / for all i . Now, for
each j ,

�C sj D inf
i
.ri � dE .xi ; p/C sj /� inf

i
.d.xi ; yj /� dE .xi ; p//D dF .yj ; q/:

Therefore,�\
i

Bri .xi ; E _F /

�
\

�\
j

Bsj .yj ; E _F /

�
� B�.q; F /\

�\
j

Bsj .yj ; F /

�
¤∅;

where the right-hand side is nonempty by hyperconvexity of F .

Proof of Theorem 6.1 (1) Let E and F be injective metric spaces containing X and Y respectively.
Let E �F denote the `1–product of E and F . Note that for each r > 0,

Br.X �Y;E �F /D Br.X;E/�Br.Y; F /:
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Hence, by the (standard) Künneth formula [68, Theorem 58.5],

H�.Br.X �Y;E �F /IF/Š H�.Br.X;E/IF/˝H�.Br.Y; F /IF/:

Now, the result follows from Lemma 6.5 and Theorem 4.1.

(2) Let E and F be as above and E _F denote metric gluing of E and F along p and q. Note that

Br.X _Y;E _F /D Br.X;E/_Br.Y; F /:

Hence, by [49, Corollary 2.25],

H�.Br.X _Y;E _F /IF/Š H�.Br.X;E/IF/˚H�.Br.Y; F /IF/:

Now, the result follows from Lemma 6.6 and Theorem 4.1.

7 Application: homotopy types of VRr.X/ for X 2 fS1;S2;CP n
g

In a series of papers [54; 55; 56; 57], Katz studied the filling radius of spheres and complex projective
spaces. In this sequence of papers, Katz developed a notion of Morse theory for the diameter function
diam W pow.X/!R over a given metric space. By characterizing critical points of the diameter function
on each of the spaces S1, S2, and CPn, he was able to prove some results about the different homotopy
types attained by Br.X;L1.X// for X 2 fS1;S2;CPng as r increases. Here, we obtain some corollaries
that follow from combining the work of Katz [55; 56] with Theorem 4.1.

7.1 The case of spheres with geodesic distance

In [50, Theorem 3.5], Hausmann introduced the quantity r.M/ for a Riemannian manifold M , which is
the supremum of those r > 0 satisfying the following three conditions:

(1) For all x; y 2M such that dM .x; y/ < 2r , there is a unique shortest geodesic joining x to y. Its
length is dM .x; y/.

(2) Let x; y; z; w 2M with dM .x; y/; dM .y; z/; dM .z; x/ < r , and w be any point on the shortest
geodesic joining x to y. Then dM .z; w/�maxfdM .y; z/; dM .z; x/g.

(3) If  and  0 are arc-length parametrized geodesics such that .0/D  0.0/, and if 0� s; s0 < r and
0� t � 1, then dM ..ts/;  0.ts0//� dM ..s/; .s0//.

In particular, it can be checked that r.Sn/D �
2

for any n� 1. Hausmann then proved that if r.M/ > 0,
VRr.M/ is homotopy equivalent to M for any r 2 .0; r.M//. This theorem is one of the foundational
results in topological data analysis, since it provides theoretical basis for the use of the Vietoris–Rips
filtration for recovering the homotopy type of the underlying space.

Then, via Proposition 2.27, we obtain that Br.M;L1.M// ' M for r 2
�
0; 1
2
r.M/

�
, and therefore

Br.Sn; L1.Sn//' Sn for all r 2
�
0; �
4

�
. In [54, Remark, page 508], Katz constructs a retraction from

Br.Sn; L1.Sn// to Sn for r in the range
�
0; 1
2

arccos.�1=.nC 1//
�
, which is a larger range than the
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Figure 3: A 2–dimensional sphere with more than one interval in its barcVR
2 .

one guaranteed by Hausmann’s result. This suggests that an improvement of Hausmann’s results might
be possible for the particular case of spheres.

Indeed, in the special case of spheres, by a refinement of Hausmann’s method of proof (critically relying
upon Jung’s theorem) we obtain the following theorem, which also improves the aforementioned claim
by Katz:

Theorem 7.1 For any n 2 Z>0, we have VRr.Sn/' Sn for any r 2
�
0; arccos.�1=.nC 1//

�
.

That this result improves upon Hausmann’s follows from the fact that arccos.�1=.nC 1// � �
2

for all
integers n� 1. The proof follows from the fact that with the aid of Jung’s theorem, one can modify the
lemmas that Hausmann originally used. See Section A.4 for a detailed proof along these lines which we
believe is of independent interest.

Remark 7.2 Proposition 5.3 of [2] establishes a result analogous to Theorem 7.1 for Vietoris–Rips
metric thickenings of Sn.

Remark 7.3 The above theorem implies that for every n, barcVR
n .SnIF/ contains an interval In of

the form .0; dn� where dn � arccos.�1=.nC 1//. This theorem does not, however, guarantee that dn
equals its lower bound, nor that In is the unique interval in barcVR

n .SnIF/. See Figure 3 for an example
of a 2–dimensional sphere (with nonround metric) having more than one interval in its 2–dimensional
persistence barcode, and see Proposition 9.28 for a general result about In.

For the particular cases of S1 and S2, we have additional information regarding the homotopy types of
their Vietoris–Rips r–complexes when r exceeds the range contemplated in the above corollary.

The case of S1 The complete characterization of the different homotopy types of VRr.S1/ as r > 0
grows was obtained by Adamaszek and Adams in [1]. Their proof is combinatorial in nature and takes
place at the simplicial level.

Below, by invoking Theorem 4.1, we show how partial results can be obtained from the work of Katz
who directly analyzed the filtration

�
Br.S1; L1.S1//

�
r>0

via a Morse-theoretic argument.
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For each integer k � 1 let �k WD 2�k=.2k C 1/. Katz proved in [56] that Br.S1; L1.S1// changes
homotopy type only when r D 1

2
�k for some k. In particular, his results imply:

Corollary 7.4 For r 2
�
2�
3
; 4�
5

�
, VRr.S1/' S3.

Proof Br.S1; L1.S1// is homotopy equivalent to S3 for r 2
�
1
2
�
2�
3
; 1
2
�
4�
5

�
by [56, Theorem 1.1].

Hence, the result follows from Theorem 4.1.

The case of S2 Similar arguments hold for the case of S2. Whereas the homotopy types of VRr.S1/ for
any r > 0 are known [1], we are not aware of similar results for S2. Below, E6 is the binary tetrahedral
group.

Corollary 7.5 For r 2
�
arccos

�
�
1
3

�
; arccos.�1=

p
5/
�
, VRr.S2/' S2 �S3=E6.

Proof Br.S2; L1.S2// is homotopy equivalent to the topological join of S2 and S3=E6 for r in the
interval

�
1
2
� arccos

�
�
1
3

�
; 1
2
� arccos.�1=

p
5/
�

by [56, Theorem 7.1]. Hence, applying Theorem 4.1 yields
the result.

Remark 7.6 S3=E6 D SO.3/=A4, where A4 is the tetrahedral group; see [2, Remark 5.6].

Remark 7.7 As already pointed out in Remark 7.3, by virtue of Theorem 7.1, .0; dn� 2 barcVR
n .SnIF/

for some dn � arccos.�1=.nC 1//. Moreover, since for nD 1 and nD 2 we know (by Corollaries 7.4
and 7.5) that the homotopy type changes after arccos.�1=.nC 1//, we conclude that barcVR

n .SnIF/

contains
�
0; arccos.�1=.nC1//

�
for nD 1 and nD 2 and that this is the unique interval in barcVR

n .SnIF/

starting at 0. Surprisingly, it is currently unknown how the homotopy type of VRr.Sn/ changes after
arccos.�1=.nC1// for n�3. But, still, in Section 9 we will be able to show that

�
0; arccos.�1=.nC1//

�
2

barcVR
n .SnIF/ for general n via arguments involving the filling radius; see Proposition 9.28. In particular,

this implies that the homotopy type of VRr.Sn/must change after the critical point rDarccos.�1=.nC1//
since the fundamental class dies after that point, even though we still do not know “how” the homotopy
type changes. Moreover, since VRr.Sn/ is homotopy equivalent to Sn for any r 2

�
0; arccos.�1=.nC1//

�
,

we know that for any interval I 2 barcVR
n .SnIF/ with I ¤

�
0; arccos.�1=.nC 1//

�
, the left endpoint

of I must be greater than or equal to arccos.�1=.nC 1//.

The following subconjecture of [2, Conjecture 5.7] is still open except for the nD 1 and nD 2 cases; see
also [2, Theorem 5.4].

Conjecture 7.8 For any n 2 Z>0, there exists an " > 0 such that

VRr.Sn/' Sn � .SO.nC 1/=AnC2/

for any r 2
�
arccos.�1=.nC1//; arccos.�1=.nC1//C"

�
, where AnC2 is the alternating group of degree

nC 2.
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Remark 7.9 To see that Conjecture 7.8 is a subconjecture of [2, Conjecture 5.7], observe that

Sn � .SO.nC 1/=AnC2/Š†nC1.SO.nC 1/=AnC2/

for any nonnegative integer n. It is a special case of the more general homeomorphism

Sn �X Š†nC1X

for any Hausdorff and locally compact space X . This fact can be proved by induction on n and the
associativity of the topological join (see [38, Lecture 2.4]).

7.2 The case of CP n

Partial information can be provided for the case of CPn as well. First of all, recall that the complex
projective line CP1 with its canonical metric actually coincides with the sphere S2. Hence, one can
apply Theorem 7.1 and Corollary 7.5 to CP1. The following results can be derived for general CPn:

Corollary 7.10 Let CPn be the complex projective space with sectional curvature between 1
4

and 1 with
canonical metric. Then:

(1) There exist ˛n 2
�
0; arccos

�
�
1
3

��
such that VRr.CPn/ is homotopy equivalent to CPn for any

r 2 .0; ˛n�.

(2) Let A be the space of equilateral 4–tuples in projective lines of CPn. Let X be the partial join of
A and CPn where x 2 CPn is joined to a tuple a 2 A by a line segment if x is contained in the
projective line determined by a. There exists a constant ˇn > 0 such that if

arccos
�
�
1
3

�
< r < arccos

�
�
1
3

�
Cˇn

then VRr.CPn/ is homotopy equivalent to X .

Proof By Hausmann’s theorem [50, Theorem 3.5], there exist ˛n > 0 such that VRr.CPn/ is homotopy
equivalent to CPn for any r 2 .0; ˛n�. Also, by [56, Theorem 8.1], ˛n cannot be greater than arccos

�
�
1
3

�
.

The second claim is a direct result of Theorem 4.1 and [56, Theorem 8.1].

7.3 The case of spheres with the `1–metric

The Vietoris–Rips filtration of S1 with the usual geodesic metric is quite challenging to understand [1].
However, it turns out that if we change its underlying metric, the situation becomes very simple. Through-
out this section, all metric spaces of interest are embedded in .Rn; `1/ and are endowed with the
restriction of the ambient space metric. In particular, in this section, for any n 2 Z>0,

(1) Rn1 D .R
n; `1/,

(2) Dn1 WD
�˚
.x1; : : : ; xn/ 2Rn j

Pn
iD1 x

2
i � 1

	
; `1

�
,

(3) Sn�11 WD
�˚
.x1; : : : ; xn/ 2Rn j

Pn
iD1 x

2
i D 1

	
; `1

�
,
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(4) �n1 WD .f.x1; : : : ; xn/ 2Rn j xi 2 Œ�1; 1� for every i D 1; : : : ; ng; `1/,

(5) �n�11 WD .f.x1; : : : ; xn/ 2Rn j .x1; : : : ; xn/ 2�n1 and xi D˙1 for some i D 1; : : : ; ng; `1/.

Note that �n1 is just the unit closed `1–ball around the origin in Rn1 and �n�11 is its boundary.

The following theorem by Kılıç and Koçak is the motivation of this subsection:

Theorem 7.11 [59, Theorem 2] Let X and Y be subspaces of R21. If Y contains X , is closed ,
geodesically convex,3 and minimal (with respect to inclusion) with these properties , then Y is the tight
span of X .

Theorem 7.11 has a number of interesting consequences.

Lemma 7.12 �21 is the tight span of �11. Moreover ,

Br.�11;�
2
1/D

�
Œ�1; 1�2nŒ�.1� r/; .1� r/�2 if r 2 .0; 1�;
Œ�1; 1�2 if r > 1:

Proof By Theorem 7.11, the first claim is straightforward. The second claim, namely the explicit
expression of Br.�11;�21/ is also obvious since we are using the `1–norm.

Corollary 7.13 Br.�11;�21/ is homotopy equivalent to S1 for r 2 .0; 1� and contractible for r > 1.
Hence , for any field F ,

barcVR
k .�11;F/D

8<:
f.0;1/g if k D 0;
f.0; 2�g if k D 1;
∅ if k � 2:

Proof Apply Lemma 7.12 and Theorem 4.1.

Interestingly, one can also prove the following result:

Lemma 7.14 D21 is the tight span of S11. Moreover ,

Br.S
1
1;D

2
1/DD21nVr

for any r > 0, where

Vr WD
\

.p;q/2fr;�rg2

f.x; y/ 2R2 j .x�p/2C .y � q/2 � 1g:

In particular , for r > 1=
p
2 we have Vr D∅, so Br.S11;D

2
1/DD21 (see Figure 1).

Proof By Theorem 7.11, the first claim is straightforward.

Fix an arbitrary .zC t; wC s/ 2Br.S11;D
2
1/, where z2Cw2D 1 and t; s 2 .�r; r/. Suppose z � 0 and

w � 0. Then

.zC t C r/2C .wC sC r/2 D z2Cw2C .t C r/2C .sC r/2C 2z.t C r/C 2w.sC r/ > 1

3That is, for any p; q 2 Y , there exists at least one geodesic in R21 between p and q which is fully contained in Y .
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because of the assumptions on z, w, t , and s. Therefore, .zC t; wC s/ … Vr , so .zC t; wC s/ 2D21nVr .
By symmetry, the same result holds for other possible sign combinations of z and w. Hence, we have
Br.S11;D

2
1/�D21nVr .

Now, fix an arbitrary .x; y/ 2D21nVr . Since .x; y/ … Vr , without loss of generality, one can assume that
.xC r/2C .yC r/2 > 1. Also, x2Cy2 � 1 since .x; y/ 2D21. Then, there must be some t 2 Œ0; r/ such
that .xC t /2C .yC t /2 D 1. It follows that .x; y/ 2 Br.S11;D

2
1/. Since .x; y/ is an arbitrary point in

D21nVr it follows that D21nVr � Br.S
1
1;D

2
1/.

With this we conclude that Br.S11;D
2
1/DD21nVr , as we wanted.

Corollary 7.15 Br.S11;D
2
1/ is homotopy equivalent to S1 for r 2 .0; 1=

p
2� and contractible for

r > 1=
p
2. Hence , for any field F ,

barcVR
k .S11;F/D

8<:
f.0;1/g if k D 0;
f.0;
p
2�g if k D 1;

∅ if k � 2:

Proof Apply Lemma 7.14 and Theorem 4.1.

Moreover, it turns out that, despite the fact that Theorem 7.11 is restricted to subsets of R2, Lemma 7.12
can be generalized to arbitrary dimensions.

Lemma 7.16 For any n 2 Z>0,�n1 is the tight span of �n�11 . Moreover ,

Br.�n�11 ;�n1/D
�
Œ�1; 1�nnŒ�.1� r/; 1� r�n if r 2 .0; 1�;
Œ�1; 1�n if r > 1:

Proof When n � 3 one cannot invoke Theorem 7.11 since it does not hold for general n; see [59,
Example 5]. We will instead directly prove that �n1 is the tight span of �n�11 .

First, observe that�n1DB1.O;Rn1/, whereOD .0; : : : ; 0/ is the origin, is hyperconvex by Lemma 2.17.

Therefore, in order to show that �n1 is indeed the tight span of �n�11 , it is enough to show that there is
no proper hyperconvex subspace of �n1 containing �n�11 . Suppose this is not true. Then there exists
a proper hyperconvex subspace X such that �n�11 � X ¨ �n1. Choose p D .x1; : : : ; xn/ 2 �n1nX .
Without loss of generality, one can assume x1 � � � � � xn. Now, let

p0 WD .x1� .xnC 1/; x2� .xnC 1/; : : : ;�1/;

p1 WD .1; x2C .1� x1/; : : : ; xnC .1� x1//:

See Figure 4. Then it is clear that p0; p1 2�n�11 �X and

kp0�p1k1 D .xnC 1/C .1� x1/D kp0�pk1Ckp�p1k1:
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p0

p p1

Figure 4: The points p, p0 and p1 in the proof of Lemma 7.16.

Therefore, since X is hyperconvex, we know that

Bkp0�pk1.p0; X/\Bkp�p1k1.p1; X/¤∅:

However, note that

Bkp0�pk1.p0; X/\Bkp�p1k1.p1; X/� Bkp0�pk1.p0;R
n
1/\Bkp�p1k1.p1;R

n
1/D fpg:

This means that p 2 X , which is a contradiction; hence no such X exists. Therefore, �n1 is the tight
span of �n�11 , as we required.

The second claim, namely the explicit expression of Br.�n�11 ;�n1/ is obvious since we are using the
`1–norm.

Corollary 7.17 For any n 2 Z>0, Br.�n�11 ;�n1/ is homotopy equivalent to Sn�1 for r 2 .0; 1� and
contractible for r > 1. Hence , for any field F ,

barcVR
k .�n�11 ;F/D

8<:
f.0;1/g if k D 0;
f.0; 2�g if k D n� 1;
∅ otherwise;

for n� 2, and
barcVR

k .�01;F/D
�
f.0;1/; .0; 2�g if k D 0;
∅ if k � 1:

Proof Apply Lemma 7.16 and Theorem 4.1.

Remark 7.18 It seems of interest to study the homotopy types of Vietoris–Rips complexes of ellipsoids
with the `1–metric; see [4].

Here, observant readers would have already noticed that we do not need to use the tight spans of S11 and
�n�11 in order to apply Theorem 4.1 since Rn1 itself is an injective metric space for any n 2 Z>0. In
particular, the persistent homology of �n�11 is simpler to compute if we use Rn1 as an ambient space.
However, we believe that it is worth clarifying what are the tight spans of S11 and �n�11 since the exact
shape of tight spans are largely mysterious in general.

We do not know whether Dn1 is the tight span of Sn�11 for general n. However, if we use Rn1 as an
ambient injective metric space, we are still able to compute its persistent homology.
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Theorem 7.19 For any n 2 Z>0 and r > 0,

Br.S
n�1
1 ;Rn1/' Br.S

n�1
1 ;Dn1/DDn1nVn;r ;

where

Vn;r WD
\

.p1;:::;pn/2fr;�rgn

�
.x1; : : : ; xn/ 2Rn

ˇ̌̌ nX
iD1

.xi �pi /
2
� 1

�
:

In particular , for r > 1=
p
n we have Vn;r D ∅, so Br.Sn�11 ;Dn1/D Dn1. As a result , Br.Sn�11 ;Rn1/

is homotopy equivalent to Sn�1 for r 2 .0; 1=
p
n� and contractible for r > 1=

p
n (see Figure 1 for an

illustration for the case when nD 2).

Proof First, let’s prove that Br.Sn�11 ;Dn1/ is a deformation retract of Br.Sn�11 ;Rn1/. Consider the map
Pn W

˚
.x1; : : : ; xn/2Rn j

Pn
iD1 x

2
i �1

	
!Sn�11 such thatPn.x1; : : : ; xn/ is the unique point of Sn�11 such

that k.x1; : : : ; xn/�Pn.x1; : : : ; xn/k1 D inf.y1;:::;yn/2Sn�11
k.x1; : : : ; xn/� .y1; : : : ; yn/k1. Observe

that it is easy (but very tedious) to prove that Pn is well-defined, continuous, and that PnjSn�11 D idSn�11
.

Now, for any r > 0, consider the homotopy

hn;r W Br.S
n�1
1 ;Rn1/� Œ0; 1�! Br.S

n�1
1 ;Rn1/;

.x1; : : : ; xn; t / 7!

�
.x1; : : : ; xn/ if .x1; : : : ; xn/ 2Dn1;

.1� t /.x1; : : : ; xn/C tPn.x1; : : : ; xn/ if .x1; : : : ; xn/ …Dn1:

The only subtle point is ascertaining whether the image of this map is contained inBr.Sn�11 ;Rn1/. For this,
note that k.x1; : : : ; xn/�Pn.x1; : : : ; xn/k1 < r by the definition of Pn and the fact that .x1; : : : ; xn/ is
in Br.Sn�11 ;Rn1/. Therefore, both .x1; : : : ; xn/ and Pn.x1; : : : ; xn/ belong to Br.Pn.x1; : : : ; xn/;Rn1/,
so the linear interpolation is also contained in Br.Pn.x1; : : : ; xn/;Rn1/� Br.S

n�1
1 ;Rn1/. Hence, one

can conclude that Br.Sn�11 ;Dn1/ is a deformation retract of Br.Sn�11 ;Rn1/.

Next, let’s prove thatBr.Sn�11 ;Dn1/DDn1nVn;r . Fix an arbitrary .z1Ct1; : : : ; znCtn/2Br.Sn�11 ;Dn1/

where
Pn
iD1 z

2
i D 1 and ti 2 .�r; r/ for all i D 1; : : : ; n. Consider the case of zi � 0 for all i D 1; : : : ; n.

Then
nX
iD1

.zi C ti C r/
2
D

nX
iD1

z2i C

nX
iD1

.ti C r/
2
C

nX
iD1

2zi .ti C r/ > 1

by the assumptions on fzigniD1 and ftigniD1. Therefore, .z1C t1; : : : ; znC tn/ … Vn;r , so

.z1C t1; : : : ; znC tn/ 2Dn1nVn;r :

By symmetry, the same result holds for other possible sign combinations of the zi . Hence, we have
Br.Sn�11 ;Dn1/�Dn1nVn;r .

Now, fix arbitrary .x1 : : : ; xn/ 2 Dn1nVn;r . Since .x1; : : : ; xn/ … Vn;r , without loss of generality, one
can assume that

Pn
iD1.xi C r/

2 > 1. Also,
Pn
iD1 x

2
i � 1 since .x1; : : : ; xn/ 2 Dn1. Then, there must
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be some t 2 Œ0; r/ such that
Pn
iD1.xi C t /

2 D 1. It follows that .x1; : : : ; xn/ 2 Br.Sn�11 ;Dn1/. Since
.x1; : : : ; xn/ is an arbitrary point in Dn1nVn;r it follows that Dn1nVn;r � Br.S

n�1
1 ;Dn1/.

With this we conclude that Br.Sn�11 ;Dn1/DDn1nVn;r .

Corollary 7.20 For any n� 2, Br.Sn�11 ;Rn1/ is homotopy equivalent to Sn�1 for r 2 .0; 1=
p
n� and

contractible for r > 1=
p
n. Hence , for any field F ,

barcVR
k .Sn�11 ;F/D

8<:
f.0;1/g if k D 0;
f.0; 2=

p
n�g if k D n� 1;

∅ otherwise:

Proof Apply Theorems 7.19 and 4.1.

8 Application: hyperbolicity and persistence

One can reap benefits from the fact that one can choose any metric homotopy pairing in the statement of
Theorem 4.1, not just the Kuratowski functor.

In this section, we will see one such example which arises from the interplay between the hyperbolicity
of the geodesic metric space X and its tight span E.X/ (see Example 3.9 to recall the definition of tight
span).

We first recall the notion of hyperbolicity.

Definition 8.1 (ı–hyperbolicity) A metric space .X; dX / is called ı–hyperbolic, for some constant
ı � 0, if

dX .w; x/C dX .y; z/�maxfdX .w; y/C dX .x; z/; dX .x; y/C dX .w; z/gC ı

for all quadruples of points w; x; y; z 2X . If a metric space is ı–hyperbolic for some ı � 0, it is said to
be hyperbolic.

The hyperbolicity hyp.X/ of X is defined as the infimal ı � 0 such that X is ı–hyperbolic. A metric
space is said to be hyperbolic if hyp.X/ is finite.

For a more concrete development on the geometry of hyperbolic metric spaces and its applications
(especially to group theory), see [14; 47].

Example 8.2 Here are some examples of hyperbolic spaces:

(1) Metric trees are 0–hyperbolic spaces.

(2) All compact Riemannian manifolds are trivially hyperbolic spaces. More interestingly, among un-
bounded manifolds, Riemannian manifolds with strictly negative sectional curvature are hyperbolic
spaces. Observe that “strictly negative” sectional curvature is a necessary condition (for example,
consider the Euclidean plane R2).
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The following proposition guarantees that the tight spanE.X/ preserves the hyperbolicity of the underlying
space X with controlled distortion:

Proposition 8.3 [60, Proposition 1.3] If X is a ı–hyperbolic geodesic metric space for some ı � 0,
then its tight span E.X/ is also ı–hyperbolic. Moreover ,

Br.X;E.X//DE.X/

for any r > ı.

Remark 8.4 Since X embeds isometrically into E.X/, the above implies that

hyp.E.X//D hyp.X/:

The following corollary was already established by Gromov (who attributes it to Rips) in [47, Lemma 1.7.A].
The proof given by Gromov operates at the simplicial level. By invoking Proposition 8.3 we obtain an
alternative proof, which instead of operating the simplicial level, exploits the isometric embedding of X
into its tight span E.X/ (which is a compact contractible space).

Corollary 8.5 If X is a hyperbolic geodesic metric space , then VR2r.X/ is contractible for any
r > hyp.X/.

Proof Choose an arbitrary r > hyp.X/. Then, there is ı 2 Œhyp.X/; r/ such that X is ı–hyperbolic.

By Proposition 2.27, VR2r.X/ is homotopy equivalent to Br.X;E.X//. But, by Proposition 8.3,
Br.X;E.X//DE.X/. Since E.X/ is contractible by Corollary 2.21, VR2r.X/ is contractible.

As a consequence one can bound the length of intervals in the persistence barcode of hyperbolic spaces.

Corollary 8.6 If X is a hyperbolic geodesic metric space , then for any k�1 and ID.u;v�2barcVR
k
.XIF/,

we have v � 2 hyp.X/. In particular , length.I /� 2 hyp.X/.

Proof Apply Corollary 8.5.

Observe that metric trees are both 0–hyperbolic and hyperconvex. A recent paper by Joharinad and
Jost [53] analyzes the persistent homology of metric spaces satisfying the hyperconvexity condition
(which is equivalent to injectivity) as well as that of spaces satisfying a relaxed version of hyperconvexity.

9 Application: the filling radius, spread, and persistence

In this section, we recall the notions of spread and filling radius, as well as their relationship. In particular,
we prove a number of statements about the filling radius of a closed connected manifold. Moreover, we
consider a generalization of the filling radius and also define a strong notion of filling radius which is
akin to the so-called maximal persistence in the realm of topological data analysis.
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9.1 Spread

We recall a metric concept called spread. The following definition is a variant of the one given in [54,
Lemma 1]:

Definition 9.1 (N–spread) For any integer N 2 Z>0, the N th spread spreadN .X/ of a metric space
.X; dX / is the infimal r > 0 such that there exists a subset A of X with cardinality at most N such that

� diam.A/ < r ,

� supx2X infa2A dX .x; a/ < r .

Finally, the spread of X is defined to be spread.X/ WD infN spreadN .X/, ie the set A is allowed to have
arbitrary (finite) cardinality.

Remark 9.2 Recall that the radius of a compact metric space .X; dX / is

rad.X/ WD inf
p2X

max
x2X

dX .p; x/:

Thus, rad.X/D spread1.X/.

Remark 9.3 (the spread of spheres) Katz proves in [54, Theorem 2] that for all integers n� 1,

spread.Sn/D arccos
�
�1

nC1

�
:

For example, spread.S1/ D 2�
3

. Notice that spread.Sm/ � spread.Sn/ � �
2

for m � n. Katz’s proof
actually yields that

spreadnC2.S
n/D spread.Sn/

for each n.

9.2 Bounding barcode length via spread

Let .X; dX / be a compact metric space. Recall that for each integer k � 0, barcVR
k
.X IF/ denotes

the persistence barcode associated to PHk.VR�.X/IF/, the kth persistent homology induced by the
Vietoris–Rips filtration of X (see Section 2.1).

The following lemma is due to Katz [54, Lemma 1]:

Lemma 9.4 Let .X; dX / be a compact metric space. Then , for any ı > 1
2

spread.X/, there exists a
contractible space U such that X � U � Bı.X;L1.X//.

Remark 9.5 Via the isomorphism theorem, Katz’s lemma implies the fact that whenever I D .0; v� 2
barcVR

� .X/, we have v � spread.X/. The lemma does not permit bounding the length of intervals whose
left endpoint is strictly greater than zero.

It turns out that we can prove a general version of Lemma 9.4 for closed s–thickenings Bs.X;L1.X//
for any s � 0.
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Lemma 9.6 Let .X; dX / be a compact metric space. Then , for any s � 0 and ı > 1
2

spread.X/, there
exists a contractible space Us;ı such that Bs.X;L1.X//� Us;ı � BsCı.X;L1.X//.

Note that Lemma 9.4 can be obtained from the case s D 0 in Lemma 9.6. We provide a detailed
self-contained proof of this general version in Section 9.2.2.

Armed with Lemma 9.6 and Theorem 4.1, one immediately obtains item (1) in the proposition below:

Proposition 9.7 Let .X; dX / be a compact metric space , k� 1, and let I be any interval in barcVR
k
.X IF/.

Then

(1) length.I /� spread.X/, and

(2) if I D .u; v� for some 0 < u < v, then v � spread1.X/.

Remark 9.8 Item (2) of the proposition above implies that the right endpoint of any interval I (often
referred to as the death time of I ) cannot exceed the radius rad.X/ of X ; see Remark 9.2.

Note that by [54, Section 1], when X is a geodesic space (eg a Riemmanian manifold),

spread.X/� 2
3

diam.X/:

This means that we have the following universal bound on the length of intervals in the Vietoris–Rips
persistence barcode of a geodesic space X :

Corollary 9.9 (bound on length of bars of geodesic spaces) Let X be a compact geodesic space. Then ,
for any k � 1 and any I 2 barcVR

k
.X IF/,

length.I /� 2
3

diam.X/:

Remark 9.10 � For k D 1, S1 achieves equality in the corollary above. Indeed, this follows from
[1] since the longest interval in barcVR

k
.S1/ corresponds to k D 1 and is exactly

�
0; 2�

3

�
.

� Since VRr.X/ is contractible for any r > diam.X/, it is clear that length.I /� diam.X/ in general.
The corollary above improves this bound by a factor of 2

3
when X is geodesic.

� In [54], Katz proves that the filling radius of a manifold is bounded above by 1
3

of its diameter.
Our result is somewhat more general than Katz’s in two senses: his claim applies to Riemannian
manifolds M and only provides information about the interval induced by the fundamental class of
the manifold (see Proposition 9.28). In contrast, Corollary 9.9 applies to any compact geodesic
space and in this case it provides the same upper bound for the length any interval in barcVR

k
.X IF/,

for any k.

� Besides the proof via Lemma 9.6 and Theorem 4.1 explained above, we provide an alternative
direct proof of Proposition 9.7 via simplicial arguments. We believe each proof is interesting in its
own right.
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Proof of Proposition 9.7 via simplicial arguments Let ı > spread.X/. It is enough to show that for
each s > 0, the map

Hk.VRs.X/IF/! Hk.VRıCs.X/IF/

induced by the inclusion is zero. By the definition of spread, we know that there is a nonempty finite
subset A�X such that

� diam.A/ < ı,

� supx2X infa2A dX .x; a/ < ı.

Note that then Hk.VRı.A/IF/ D 0 because VRı.A/ is a simplex. Let � W X ! A be a map sending
x to a closest point in A. Then dX .x; �.x// < ı for any x 2 X because of the second property of A
(moreover, �.x/ D x if x 2 A). Observe that, since diam.�.�// < ı for any simplex � 2 VRs.X/ by
the first property of A, this map � induces a simplicial map from VRs.X/ to VRı.A/. Hence, one can
construct a composite map � from VRs.X/ to VRıCs.X/,

VRs.X/
�
�! VRı.A/ ,! VRı.X/ ,! VRıCs.X/;

where the second and third maps are induced by the canonical inclusions. Observe that this composition
of maps induces a map from Hk.VRs.X// to Hk.VRıCs.X//, and this induced map is actually the zero
map since Hk.VRı.A/IF/D 0. So, it is enough to show that the composite map � is contiguous to the
canonical inclusion VRs.X/ ,!VRıCs.X/. Let � Dfx0; : : : ; xng be a subset of X with diameter strictly
less than s. Let ai WD �.xi / for i D 0; 1; : : : ; n. Then

dX .xi ; aj /� dX .xi ; xj /C dX .xj ; aj / < ıC s:

Hence the diameter of the subspace fx1; : : : ; xk; a1; : : : ; akg is strictly less than ıC s. This shows the
desired contiguity and completes the proof. The proof of (2) follows similar (but simpler) steps and thus
we omit it.

Remark 9.11 Whereas the proof of Lemma 1 in [54] takes place at the level of L1.X/, the proof of
Proposition 9.7 given above takes place at the level of simplicial complexes and simplicial maps.

9.2.1 Bounds based on localization of spread One can improve Proposition 9.7 by considering a
localized version of spread. Note that, in [6], Adams and Coskunuzer also built some bounds on the
length of barcodes based on certain notions of size of homology classes.

For an integer k � 0, a given field F , and a metric space X , let

Speck.X;F/ WD
[
r>0

�
Hk.VRr.X/IF/nf0g � frg

�
be the kth Vietoris–Rips homological spectrum of X (with coefficients in F/. Note that we only consider
nonzero elements of Hk.VRr.X/IF/ in the definition Speck.X;F/ to avoid trivial cases (there can be no
positive length bars associated to a zero element).
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Example 9.12 Consider X D f0; 1g equipped with the metric inherited from R. Then, for any field F ,

Spec0.X;F/D
� [
r2.0;1�

SpanF .f�r ; �rg/� frg

�
[

�[
r>1

SpanF .f!rg/� frg

�
;

where �r and �r 2 H0.VRr.X/IF/nf0g are the homology classes homologous to 0 and 1, respectively,
for r 2 .0; 1�, and !r 2H0.VRr.X/IF/nf0g is the homology class homologous to both 0 and 1 for r > 1
(ie !r D .ir 0;r/�.�r 0/D .ir 0;r/�.�r 0/ for any r 0 2 .0; 1� and r > 1).

Definition 9.13 (prelocalized spread of a homology class) For each .!; s/ 2 Speck.X;F/ we define
the prelocalized spread of .!; s/ as

pspread.X I!; s/ WD inf
B2S.!;s/

spread.B/;

where S.!; s/ denotes the collection of all B � X such that ! D ��.Œc�/, c is a simplicial k–cycle on
VRs.B/, and � W B ,!X is the canonical inclusion.

Any B as in the definition above will be said to support the homology class .!; s/ 2 Speck.X;F/.

Lemma 9.14 Suppose .!; s/ 2 Speck.X;F/ and k � 1 are given. Then for any ı > pspread.X I!; s/,

.is;.sCı//�.!/D 0;

where is;.sCı/ W VRs.X/ ,! VRsCı.X/ is the canonical inclusion.

Proof By the definition of pspread.X I!; s/, there exists B � X such that ! D ��.Œc�/ where c is a
simplicial k–cycle on VRs.B/ and spread.B/ < ı. Then, as in the proof of Proposition 9.7, one can
prove that

.js;.sCı//� W Hk.VRs.B/IF/! Hk.VRsCı.B/IF/

is the zero map, where js;.sCı/ W VRs.B/ ,! VRsCı.B/ is the canonical inclusion. Hence,

.js;.sCı//�.Œc�/D 0:

Furthermore, note that the diagram

Hk.VRs.B/IF/ Hk.VRsCı.B/IF/

Hk.VRs.X/IF/ Hk.VRsCı.X/IF/

��

.js;.sCı//�

��

.is;.sCı//�

commutes, where all the arrows are maps induced by canonical inclusions. Hence, one can conclude
.is;.sCı//�.!/D 0 as we required.

Now, fix an arbitrary .!; s/ 2 Speck.X;F/. Then, let

u.!;s/ WD inffr > 0 j r � s and 9 nonzero !r 2 Hk.VRr.X/IF/ such that .ir;s/�.!r/D !g;

v.!;s/ WD supft > 0 j t � s and 9 nonzero !t 2 Hk.VRt .X/IF/ such that .is;t /�.!/D !tg:
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a

b b

1

Figure 5: See Example 9.16. In this example, X is the set of vertices of the above metric graph
(in green and orange) where 1 < a < b < 2. Then, barcVR

1 .X IF/D f.1; 2�; .a; b�g, while one can
choose .!; s/ 2 Spec1.X;F/ such that I.!;s/ D .a; 2� … barcVR

1 .X IF/.

With an argument similar to the one used in Section 5, one can prove that u.!;s/ < s � v.!;s/. Let

I.!;s/ WD

�
.u.!;s/; v.!;s/� if v.!;s/ <1;
.u.!;s/;1/ otherwise:

Intuitively, the interval I.!;s/ is the maximal (left open, right closed) interval containing s inside which
the class ! can be “propagated”.

Remark 9.15 If .!; s/; .!0; s0/ 2 Speck.X;F/, s � s
0, and !0 D .is;s0/�.!/, then v.!;s/ D v.!0;s0/ and

u.!;s/ � u.!0;s0/. Furthermore, if .is;s0/� is injective, then u.!;s/ D u.!0;s0/ so I.!;s/ D I.!0;s0/.

Example 9.16 In general, I.!;s/ is not necessarily one of the intervals in barcVR
k
.X IF/. Here is a brief

sketch of how to construct such an example. Consider the metric graph consisting of 12 vertices and
24 edges as shown in Figure 5. Assume that the length of the edge between adjacent inner (green)
vertices is 1, the length of the edge between adjacent outer (orange) vertices is a, and the length of
the edge between adjacent inner and outer vertices is b where 1 < a < b < 2. Now, let X be the set
of vertices of this graph, and let dX be the shortest path metric between them. Then one can easily
check that barcVR

1 .X IF/ D f.1; 2�; .a; b�g, where .1; 2� is associated to the homology class induced
by the inner cycle and .a; b� is associated to the homology class induced by the outer cycle. Now,
if we choose f.!s; s/gs2.a;b� � Spec1.X;F/ corresponding to the interval .a; b� 2 barcVR

1 .X IF/, then
I.!s ;s/ D .a; 2� … barcVR

1 .X IF/ for s 2 .a; b�.

Despite the above, in the extended (arXiv) version of this paper (see [62, Proposition 9.2]), we prove that,
for all r < s, the multiplicity of the interval .r; s� in the barcode barcVR

k
.X IF/ is equal to the maximal
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nonnegative integer m for which there exist linearly independent vectors !1; : : : ; !m 2 Hk.VRs.X/IF/
such that I.!i ;s/ D .r; s� for all i and any nonzero linear combination of the !i does not belong to
Im..ir;s/�/.

Definition 9.17 (localized spread of a homology class) For each .!; s/ 2 Speck.X;F/, we define the
localized spread of .!; s/ as

spread.X I!; s/ WD supfpspread.X I!0; s0/ j s0 � s and ! D .is0;s/�.!0/g:

Remark 9.18 It is easy to check that both pspread.X I!; s/ and spread.X I!; s/ are always bound above
by spread.X/.

The following Proposition 9.19 is the “localized” version of Proposition 9.7 we promised in the beginning
of this section:

Proposition 9.19 Let .X; dX / be a compact metric space and k � 1. Then for any .!; s/ 2 Speck.X;F/,

length.I.!;s//� spread.X I!; s/:

Proof Fix an arbitrary ı > spread.X I!; s/ and s0 2 .u.!;s/; s�. Then there exists !0 2 Hk.VRs0.X/IF/
such that ! D .is0;s/�.!0/. Hence, by Lemma 9.14, .is0;.s0Cı//�.!0/D 0. This indicates v.!;s/ < s0C ı.
Since the choice of ı and s0 are arbitrary, one can conclude

length.I.!;s//D v.!;s/�u.!;s/ � spread.X I!; s/:

For an arbitrary I 2 barcVR
k
.X IF/, a family of nonzero homology classes f.!s; s/gs2I � Speck.X;F/

such that .is;s0/�.!s/D!s0 for any s� s0 in I where is;s0 WVRs.X/ ,!VRs0.X/ is the canonical inclusion,
will be said to correspond to I if there is an isomorphism

ˆ� W PHk.VR�.X/IF/!
M

I2barcVR
k
.X IF/

IF

such that
SpanF .f!sg/ SpanF .f!s0g/

F F

ˆs

.is;s0 /�

ˆs0

id

Observe that Theorem 2.9 guarantees that at least one such family of nonzero homology classes
f.!s; s/gs2I always exists.

Remark 9.20 Now, given an arbitrary I 2 barcVR
k
.X IF/, there is a family of nonzero homology classes

f.!s; s/gs2I � Speck.X;F/ corresponding to I as described above. Then obviously I � I.!s ;s/ for each
s 2 I . Hence,

length.I /� inf
s2I

length.I.!s ;s//� inf
s2I

spread.X I!s; s/� spread.X/;

so one recovers the result in Proposition 9.7. Below we show some examples that highlight cases in which
the localized spread is more efficient at estimating the length of bars than its global counterpart.
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Example 9.21 Here are some applications of the notion of localized spread.

Let X be a compact metric space. If for a given I 2 barcVR
k
.X IF/ a corresponding family f.!s; s/gs2I �

Speck.X;F/ is supported by a subset B �X , then

(2) length.I /� inf
s2I

length.I.!s ;s//� inf
s2I

spread.X I!s; s/� spread.B/;

where the first inequality holds as in Remark 9.20, the second inequality holds by Proposition 9.19, and
the last inequality follows from Remark 9.18.

Here are three scenarios in which the estimate in inequality (2) is useful:

(1) Suppose a closed Riemannian manifold M and a nonzero homology class ! 2 H1.M IF/ are
given. Also, let B � M be the shortest loop representing !. Recall that there is an interval
I 2 barcVR

1 .M IF/ associated to !; see Proposition 9.46. Then

length.I /� spread.B/D 1
3

length.B/

by inequality (2) and Remark 9.3. Actually, I D
�
0; 1
3

length.B/
�
; see [44; 81, Theorem 8.10].

(2) Let X be the metric gluing of a loop of length l2 and an interval of length l1 (glued to the circle at
one of its endpoints). Then, by Proposition 9.7, I � spread.X/ for any I 2 barcVR

k
.X IF/. However,

observe that one can make spread.X/ arbitrarily large by increasing l1. But, if J 2 barcVR
1 .X IF/

and a family of nonzero homology classes f.!s; s/gs2J � Spec1.X;F/ corresponding to J is
supported by the loop, then

length.J /� spread.B/D 1
3
l2

by inequality (2) and Remark 9.3. Again, as in the first item, J D
�
0; 1
3
l2
�
. Note that the existence

of the interval
�
0; 1
3
l2
�

in barcVR
1 .X IF/ can also be proved via the “crushing” technique introduced

by Hausmann (see [50, Proposition 2.2]) since X can be crushed onto the loop of length l2.

(3) An example similar to the one described in the previous item arises from Figure 3. Consider the
tube connecting the two blobs to be large: in that case the standard spread of the space will be
large yet the lifetime of the individual H2 classes will be much smaller.

9.2.2 The proof of Lemma 9.6 Let us introduce a technical tool for this subsection. It is easy to check
that the usual linear interpolation in L1.X/ gives a geodesic bicombing on L1.X/ satisfying all three
properties mentioned in Lemma 2.20. However, in [54], Katz introduced an alternative way to construct a
geodesic bicombing on L1.X/:

Definition 9.22 (Katz’s geodesic bicombing) Let X be a compact metric space. We define the Katz
geodesic bicombing K on L1.X/ by

K W L
1.X/�L1.X/� Œ0; 1�! L1.X/; .f; g; t/ 7! K.f; g; t/;
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where
K.f; g; t/ WX !R; x 7!

�
maxff .x/� tkf �gk1; g.x/g if f .x/� g.x/;
minff .x/C tkf �gk1; g.x/g if f .x/� g.x/:

In other words, K.f; g; � / moves from f to g with the same speed at every point.

The following proposition establishes that K is indeed a (continuous) geodesic bicombing, amongst
other properties. The proof is relegated to Section A.1.

Proposition 9.23 Let X be a compact metric space. Then , for any f; g; h 2 L1.X/ and 0� s � t � 1,
the Katz geodesic bicombing K on L1.X/ satisfies

(1) K.f; g; 0/D f and K.f; g; 1/D g;

(2) kK.f; g; s/� K.f; g; t/k1 D .t � s/ � kf �gk1;

(3) kK.f; g; t/� K.h; g; t/k1 � 2kf � hk1;

(4) kK.f; g; t/� K.f; h; t/k1 � kg� hk1;

(5) K.�;  ; �/D K.f; g; .1��/sC�t/where �D K.f; g; s/ and  D K.f; g; t/ for any �2 Œ0; 1�
(this property is called consistency);

(6) kK.f; g; r/� hk1 �maxfkK.f; g; s/� hk1; kK.f; g; t/� hk1g for any r 2 Œs; t �.

Properties (2), (3), and (4) of Proposition 9.23 imply the continuity of the Katz geodesic bicombing. In
contrast, this bicombing is neither conical nor reversible; see Section A.2 in the appendix.

Proof of Lemma 9.6 By the definition of spread, we know that there is a nonempty finite subset A�X
and ı0 2 .0; ı/ such that diam.A/ < 2ı0 and supx2X infa2A dX .x; a/ < 2ı0.

Next, we define
f WX !R; x 7! dX .x; A/C ı

0:

The main strategy of the proof is depicted in Figure 6.

Claim 1 For any a 2 A, kdX .a; � /�f k1 D ı0.

Proof To prove this, fix arbitrary x 2X . Note that

dX .a; x/�f .x/D dX .a; x/� dX .x; A/� ı
0:

Since dX .x; A/� dX .a; x/, we have �ı0 � dX .a; x/�dX .x; A/� ı0. Also, because the diameter of A is
smaller than 2ı0, we have dX .a; x/�dX .x; A/�ı0 < ı0. Therefore, jdX .a; x/�f .x/j � ı0. Furthermore,
if we put x D a, we have that kdX .a; � /�f k1 D ı0.

Now, let
Us;ı WD fK.g; f; t/ j g 2 Bs.X;L

1.X//; t 2 Œ0; 1�g:

Then Us;ı obviously contains Bs.X;L1.X// and can be contracted to the point f .
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BsCı.X;L
1.X//

Bs.X;L
1.X//

g

ı0
K.g; f; t0/

sC ı0 �

ı0
f

dX .x; � /

dX .a; � /

X

Figure 6: Strategy of the proof of Lemma 9.6. By construction, the distance between f and
dX .a; � / (represented by the red dot) is ı0 and the distance between K.g; f; t0/ and dX .a; � /
is less than or equal to sC ı0. Hence, by item (6) of Proposition 9.23, we have that the point
represented by a square will be at distance at most sC ı0 from dX .a; � /.

The lemma will follow once we establish the following claim:

Claim 2 Us;ı � BsCı.X;L
1.X//.

Proof To see this, fix an arbitrary g 2 Bs.X;L1.X// and t 2 Œ0; 1�. Note that one can choose x 2X
such that kg� dX .x; � /k1 � s.

� If kg�f k1 � ı0, then

kK.g; f; t/� dX .x; � /k1 � kK.g; f; t/�gk1Ckg� dX .x; � /k1 � sC ı
0 < sC ı

by the triangle inequality and properties (1) and (2) of Proposition 9.23. So, K.g;f; t/2BsCı.X;L1.X//.

� Now, assume kg � f k1 > ı0. Let us denote t0 WD ı0=kg�f k1. Now, for t 2 Œ0; t0�, we have
K.g; f; t/ 2 BsCı.X;L

1.X// since

kK.g; f; t/�dX .x; � /k1 � kK.g; f; t/�gk1Ckg�dX .x; � /k1 � tkg�f k1C s � sCı
0 < sCı:

Next, we want to show K.g; f; t/ 2BsCı.X;L
1.X// for t 2 Œt0; 1�. To do that, choose a 2A such that

dX .x; a/ < 2ı
0. We will prove kK.g; f; t0/� dX .a; � /k1 � sC ı0.

Fix arbitrary x0 2X . If jg.x0/�f .x0/j � ı0, then K.g; f; t0/.x0/D f .x0/. Hence,

jK.g; f; t0/.x
0/� dX .a; x

0/j D jf .x0/� dX .a; x
0/j � ı0

by Claim 1. If jg.x0/�f .x0/j> ı0, then g.x0/ cannot be between dX .a; x0/ and f .x0/ since, by Claim 1,
jdX .a; x

0/�f .x0/j � ı0. This implies that either

jg.x0/� dX .a; x
0/j D jdX .a; x

0/�f .x0/jC jg.x0/�f .x0/j

or
jg.x0/�f .x0/j D jdX .a; x

0/�f .x0/jC jg.x0/� dX .a; x
0/j:
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Either way, it is easy to see that we always have

jK.g; f; t0/.x
0/� dX .a; x

0/j D jjg.x0/� dX .a; x
0/j � ı0j � sC ı0;

where the last inequality is true because jg.x0/� dX .a; x0/j � jg.x0/� dX .x; x0/jC dX .a; x/ < sC 2ı0.
So, one can conclude that

kK.g; f; t0/� dX .a; � /k1 � sC ı
0:

Therefore, combining this inequality with Claim 1 and property (6) of Proposition 9.23, one finally obtains
that

kK.dX .x; � /; f; t/� dX .a; � /k1 � sC ı
0 < sC ı;

so K.g; f; t/ 2 BsCı.X;L1.X// for any t 2 Œt0; 1�.

This concludes the proof of Lemma 9.6.

9.3 The filling radius and Vietoris–Rips persistent homology

Now, we recall the notion of filling radius, an invariant for closed connected manifolds introduced by
Gromov [46, page 8] in the course of proving the systolic inequality (see also [48; 58] for a comprehensive
treatment). It turns out to be that this notion can be a bridge between topological data analysis and
differential geometry/topology.

Definition 9.24 (filling radius) Let M be a closed connected n–dimensional manifold with compatible
metric dM . One defines the filling radius of M as

FillRad.M IG/ WD inffr > 0 j Hn.�r IG/.ŒM�/D 0g;

where �r WM ,! Br.M;L
1.M// is the (corestriction of the) Kuratowski isometric embedding, and ŒM �

is the fundamental class of M , with coefficients in G. We will use the shorthand notation FillRad.M/

when either M is orientable and G D Z or when M is not orientable and G D Z2.

Remark 9.25 (metric manifolds) The definition of the filling radius does not require the metric dM
on M to be Riemannian — it suffices that dM generates the manifold topology. We call any .M; dM /
satisfying this condition a metric manifold. In particular, one can consider the filling radius of

(1) the `1–metric product of .M; dM / and .N; dN / when M and N are Riemannian manifolds and
dM and dN are their corresponding geodesic distances;

(2) .N; dM jN�N / when N is a submanifold of the Riemannian manifold .M; dM /.

Remark 9.26 (relative filling radius and minimality for injective metric spaces) The relative filling
radius can be defined for every metric pair .M;E/ by considering r–neighborhoods of M in E— it is
denoted by FillRad.M;E/. Gromov [46] showed that we obtain the minimal possible relative filling
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Figure 7: A big sphere X with a small handle. In this case, as r > 0 increases, Br .X;L1.X//
changes homotopy type from that of X to that of S2 as soon as r > r0 for some r0 < FillRad.X/.

radius through the Kuratowski embedding (that is when E D L1.M/). This also follows from our
work but in greater generality in the context of embeddings into injective metric spaces. If M can be
isometrically embedded into an injective metric space F , then this embedding can be extended to a
1–Lipschitz map f W E! F , which induces a map of filtrations fr W Br.M;E/! Br.M;F /, for each
r > 0 (see Definition 2.15). Hence, if the fundamental class of M vanishes in Br.M;E/, then it also
vanishes in Br.M;F /. Therefore,

(3) FillRad.M;F /� FillRad.M;E/:

In particular, this implies that FillRad.M;E/ D FillRad.M;F / whenever E and F are both injective
metric spaces admitting isometric embeddings of M .

Remark 9.27 (filling radius and first change in homotopy type) In [54, Theorem 2], Katz proved that
FillRad.Sn/D 1

2
arccos.�1=.nC 1//. Moreover, in a remark right after the proof of Theorem 2 in that

paper he shows that Br.Sn; L1.Sn// is homotopy equivalent to Sn if r 2 .0;FillRad.Sn/�.

One might then ask whether for any closed connected manifold M it holds that FillRad.M/ is the first
value of r where the homotopy type of Br.M;L1.M// changes. In general, however, this is not true as
the following two examples show:

(1) It is known [57, Proposition 0.3] that FillRad.CP3/ > FillRad.CP1/D 1
2

arccos
�
�
1
3

�
. Also, by

[56, Theorem 8.1], Br.CP3; L1.CP3// is not homotopy equivalent to CP3 for r in the interval�
1
2

arccos
�
�
1
3

�
; 1
2

arccos
�
�
1
3

�
C "0

�
, where "0 > 0 is a positive constant. In other words, the

homotopy type of Br.CP3; L1.CP3// already changed before r D FillRad.CP3/.

(2) The following example provides geometric intuition for how the homotopy type of Kuratowski
neighborhoods may change before r reaches the filling radius. Consider a big sphere with a small
handle attached through a long neck (see Figure 7). Since the top-dimensional hole in this space is
big, we expect the filling radius to be big. On the other hand, the degree 1 homology class coming
from the small handle dies in a small Kuratowski neighborhood, hence the homotopy type changes
at that point.
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We now relate the filling radius of a closed connected n–dimensional manifold to its n–dimensional
Vietoris–Rips persistence barcode.

Proposition 9.28 Let M be a closed connected n–dimensional Riemannian manifold. Then

.0; 2FillRad.M IF/� 2 barcVR
n .M IF/;

where F is an arbitrary field if M is orientable , and F D Z2 if M is nonorientable. Moreover , this
is the unique interval in barcVR

n .M IF/ starting at 0 and FillRad.M IF/ � FillRad.M/ whenever M is
orientable.

The unique interval identified by Proposition 9.28 will be henceforth denoted by

IMn;F WD .0; d
M
n;F �:

Proof First, let us consider the case when M is orientable. Observe that the diagram

Hn.M IZ/˝F Hn
�
Br.M;L

1.M//IZ
�
˝F Hn

�
Bs.M;L

1.M//IZ
�
˝F

Hn.M IF/ Hn
�
Br.M;L

1.M//IF
�

Hn
�
Bs.M;L

1.M//IF
�j jr js

commutes for any 0 < r � s, where every horizontal arrow is induced by the obvious inclusions, and the
vertical arrows (j , jr , and js) must be injective by the universal coefficient theorem for homology (see
[68, Theorem 55.1]). Hence, one obtains that

FillRad.M IF/D inffr > 0 j Hn.�r IF/.j.ŒM �//D 0g:

Therefore, with the aid of Theorems 4.1 and 5.2, one concludes that

.0; 2FillRad.M IF/� 2 barcVR
n .M IF/:

Also, by Hausmann’s theorem [50, Theorem 3.5], VRr.M/ is homotopy equivalent to M for r > 0

small enough. Therefore, .0; 2FillRad.M IF/� must be the unique interval in barcVR
n .M IF/ with left

endpoint 0.

The proof of the nonorientable case is similar, so we omit it.

Remark 9.29 FillRad.SnIF/D FillRad.Sn/ for any field F . This can be verified via Proposition 9.28
and Remark 7.3. Alternatively, a more direct proof can be obtained via Jung’s theorem (Theorem A.8)
following an idea similar to the one used in the proofs of [46, Lemmas 1.2.B and 4.5.A; 54, Theorem 2].
Details of this direct proof can be found in the extended (arXiv) version of this paper [62, Remark 9.13].
With this observation, from now on we will drop F from the notation ISn

n;F and dSn
n;F , and respectively use

ISn
n and dSn

n instead.

Remark 9.30 Actually, one can generalize Proposition 9.28 to metric manifolds. See Proposition 9.46
for the full generalization.
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Remark 9.31 Let M and N be closed connected metric manifolds. Let M �N denote the `1–product
of M and N (as metric spaces). By Theorem 6.1, Remark 6.3, and Proposition 9.28,

FillRad.M �N IF/DminfFillRad.M IF/;FillRad.N IF/g:

A similar result is true for the `1–product of more than two metric manifolds.

9.3.1 Bounding the filling radius and consequences for Vietoris–Rips persistent homology Using
Proposition 9.28, we can estimate certain properties of the barcode barcVR

n .M IF/ of an n–dimensional
manifold M .

Injectivity radius and persistence barcodes If IM
n;F D .0; d

M
n;F � is the unique interval in barcVR

n .M IF/

identified by Proposition 9.28, then

(4) dMn;F �
Inj.M/

nC 2
:

This follow from the fact that FillRad.M IF/ � Inj.M/=.2.nC 2// for any field F , where Inj.M/ is
the injectivity radius of M [46, Proof of Lemma 4.5.A]. Since the injectivity radius of the sphere is �

2
,

equation (4) implies that dSn
n � �=.2.nC 2//. Note that Proposition 9.28 indicates that this estimate is

not tight in general since

dSn
n D 2FillRad.Sn/D arccos

�
�1

nC1

�
�
�
2
:

Systole and persistence barcodes The systole sys1.M/ of a Riemannian manifold M is defined to be
the infimal length over noncontractible loops of M . In [46, Lemma 1.2.B], Gromov proved that

sys1.M/� 6FillRad.M/

for any closed essential Riemannian manifold M .4 Note that, by slightly modifying the proof of [46,
Lemma 1.2.B], one can also verify that sys1.M/� 6FillRad.M IF/ whenever M is orientable and F is
an arbitrary field. Moreover, one can also define the homological systole sysh1.M IG/ to be the infimal
length over non null-homologous (with coefficients in a given group G) loops of M . We will use the
shorthand notation sysh1.M/ whenever G D Z. In general, sys1.M/ � sysh1.M/ � sysh1.M IG/ for
any group G since any contractible loop is null-homologous (see [49, 2.A]). See Figure 8 for a space on
which the notions differ. In [81, Theorem 8.10], Ž Virk proved that�

0; 1
3

sysh1.M IF/
�
2 barcVR

1 .M IF/

for any closed Riemannian manifold M . Observe that the n–dimensional torus Tn is an aspherical,
hence essential, manifold. Also, observe that sys1.T

n/ D sysh1.T
n/D sysh1.T

nIF/ for any field of
coefficients F since the fundamental group �1.Tn/ is abelian and the homology group of Tn is free
abelian. Therefore, this permits relating the top-dimensional persistence barcode with the 1–dimensional
barcode of any n–dimensional Riemannian torus. We summarize this via the following:

4See [46] for the definition of essential manifolds. For this paper it suffices to keep in mind that aspherical manifolds are
essential.
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Figure 8: A space X for which sys.X/¤ sysh.X/.

Corollary 9.32 For any Riemannian metric on the n–dimensional torus Tn,

� the interval ITn
1 WD

�
0; 1
3

sys1.Tn/
�

is an element of barcVR
1 .TnIF/,

� the interval ITn
n;F WD .0; 2FillRad.TnIF/� is an element of barcVR

n .TnIF/, and

� ITn
1 � ITn

n;F .

Finally, observe that if the metric on Tn is the `1–product metric, then FillRad.TnIF/D FillRad.Tn/

for any field F by Remark 9.31.

Volume and persistence barcodes An inequality proved by Gromov in [46, Main Theorem 1.2.A]
states that for each n natural there exists a constant cn > 0 such that if M is any n–dimensional complete
Riemannian manifold, then

(5) FillRad.M/� cn.vol.M//1=n:

It then follows that

(6) dMn;F � 2cn.vol.M//1=n:

In particular, this bound improves upon the one given by Corollary 9.9, dM
n;F �

2
3

diam.M/, when M is
“thin” like in the case of a thickened embedded graph [67].

Spread and persistence barcodes The following proposition is proved in [54, Lemma 1]. Here we
provide a different proof, which easily follows from the persistent homology perspective that we have
adopted in this paper.

Proposition 9.33 Let M be a closed connected metric manifold. Then

FillRad.M IF/� 1
2

spread.M/:

Proof This follows from Propositions 9.7 and 9.28.

Remark 9.34 One can also use Lemma 9.4 to prove Proposition 9.33.

Remark 9.35 The inequality in the statement above becomes an equality for spheres [54].
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By Corollary 9.9, Proposition 9.28, and the fact that FillRad.S1/D �
3

, we know that

length.I /� 2�
3
D length.IS1

1 /

for any k � 1, and any I 2 barcVR
k
.S1IF/. This motivates the following conjecture:

Conjecture 9.36 Let M be a closed connected n–dimensional metric manifold. Then

length.I /� length.IMn;F /

for any I 2 barcVR
k
.M IF/ and any k � 1.

However, this conjecture is not true in general, as the following example shows:

Remark 9.37 Consider the `1–product X D S1 �S2. Then, by Remark 9.31,

FillRad.X/Dmin.FillRad.S1/;FillRad.S2//D 1
2

arccos
�
�
1
3

�
:

This implies that length.IX3 /D 2FillRad.X/D arccos
�
�
1
3

�
. Now, we will prove that there is a longer

interval in barcVR
1 .X IF/. First, observe that there is an infinite length interval in barcVR

0 .S2IF/. Also,
IS1
1 D .0; 2FillRad.S1/�D

�
0; 2�

3

�
. Therefore, by the persistent Künneth formula (Theorem 6.1(1)), and

Remark 6.3, the interval I D
�
0; 2�

3

�
exists in barcVR

1 .X IF/.

Therefore, since 2�
3
> arccos

�
�
1
3

�
, Conjecture 9.36 is false.

9.3.2 Application to obtaining lower bounds for the Gromov–Hausdorff distance With the aid of
the stability of barcodes (Theorem 2.14) and the notion of filling radius, one can obtain the following
result:

Proposition 9.38 Let M be a closed connected m–dimensional orientable (resp. nonorientable) Rie-
mannian manifold , and let X be a compact metric space such that

(1) Hm.X IF/D 0 for some arbitrary field F (resp. Hm.X IF/D 0 for F D Z2), and

(2) VRr.X/'X for every r 2 .0;FillRad.M IF/�.

Then
dB.barcVR

m .M IF/; barcVR
m .X IF//� FillRad.M IF/

and , as a consequence ,
dGH.M;X/�

1
2

FillRad.M IF/:

Proof Observe that by Theorems 2.13 and 2.14,

dGH.M;X/�
1
2
dB.barcVR

m .M IF/; barcVR
m .X IF//:

Hence, it is enough to establish that

dB.barcVR
m .M IF/; barcVR

m .X IF//� FillRad.M IF/:

Recall that the special interval IMm;F WD .0; 2FillRad.M IF/� belongs to barcVR
m .M IF/ by Proposition 9.28.

Moreover, if I WD .u; v� 2 barcVR
m .X IF/, then u� FillRad.M IF/ by the two assumptions on X .
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Now, fix an arbitrary partial matching P between barcVR
m .M IF/ and barcVR

m .X IF/. If IMm is unmatched
to any interval in barcVR

m .X IF/, then

cost.P /� 1
2
j0� 2FillRad.M IF/j D FillRad.M IF/:

If .IM
m;F ; I WD .u; v�/ 2 P , then cost.P / � j0�uj D u � FillRad.M IF/. Since P is arbitrary, one can

conclude dB.barcVR
m .M IF/; barcVR

m .X IF//� FillRad.M IF/, as we required.

By combining Proposition 9.38 with Proposition 9.7 we now obtain the exact value of the lower bound
for dGH.Sm;Sn/ given by invoking the stability of Vietoris–Rips barcodes:

Corollary 9.39 For any positive integers 1�m< n,

sup
k

dB
�
barcVR

k .SmIF/; barcVR
k .SnIF/

�
D FillRad.Sm/D 1

2
arccos

�
�1

mC1

�
and , as a consequence ,

dGH.S
m;Sn/� 1

4
arccos

�
�1

mC1

�
�
�
8
:

Proof Notice that Sm is orientable, Hm.SnIF/ D 0 for any field F , VRr.Sn/ ' Sn for any r in the
interval

�
0; arccos.�1=.nC 1//

�
by Theorem 7.1, and

arccos
�
�1

nC1

�
�
�
2
�
1
2

arccos
�
�1

mC1

�
D FillRad.Sm/:

Hence, by Proposition 9.38,

sup
k

dB
�
barcVR

k .SmIF/; barcVR
k .SnIF/

�
� FillRad.Sm/D 1

2
arccos

�
�1

mC1

�
:

The reverse inequality follows from Proposition 9.7 and Remarks 9.3 and 9.27 relating the spread to the
filling radius of spheres. Indeed, by basic properties of the bottleneck distance,5 for every integer k � 0,

dB.barcVR
k .SmIF/; barcVR

k .SnIF//� 1
2

max
�

max
I2barcVR

k
.SmIF/

length.I /; max
J2barcVR

k
.SnIF/

length.J /
�
:

Now, by Proposition 9.7, the right-hand side is bounded above by 1
2

max.spread.Sm/; spread.Sn// which,
by Remark 9.3, is equal to 1

2
arccos.�1=.mC 1// and in turn equal to FillRad.Sm/ by Remark 9.27.

Remark 9.40 The lower bounds provided by Corollary 9.39 are nonoptimal; see [63] for improved
lower bounds via considerations based on a certain version of the Borsuk–Ulam theorem. In fact, there
the factor 1

2
is removed, leading, for example, to the bound dGH.Sm;Sn/ � FillRad.Sminfm;ng/ for all

0 � m < n �1. This bound is therein shown to be tight when .m; n/ 2 f.1; 2/; .1; 3/; .2; 3/g via the
construction of suitable correspondences. Via Example 2.11, Theorem 2.14, and Proposition 9.28, one
can directly see that for any geodesic, compact, and simply connected space Y ,

dGH.S
1; Y /� �

6
:

This, taken together with the comments above leads to the following conjecture:

5The cost of the empty matching upper bounds the bottleneck distance.
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Figure 9: An ANR space contemplated by Proposition 9.46.

Conjecture 9.41 For any geodesic, compact, and simply connected space Y ,

dGH.S
1; Y /� �

3
:

9.3.3 A generalization of the filling radius The goal of this section is to provide some partial results
regarding the structure of barcVR

� . � / for nonsmooth spaces; see Figure 9. In order to do so we consider
a generalization of the notion of filling radius for arbitrary compact ANR metric spaces and arbitrary
homology dimension. See [51] for an introduction to the general theory of ANRs.

Definition 9.42 (absolute neighborhood retract) A metric space .X; dX / is said to be ANR (absolute
neighborhood retract) if, whenever X is a subspace of another metric space Y , there exists an open set
X � U � Y such that X is a retract of U .

It is known that every topological manifold with compatible metric (so, a metric manifold) is an ANR. Not
only that, every locally Euclidean metric space is an ANR (see [51, Theorem III.8.1]). Also, every compact,
(topologically) finite-dimensional, and locally contractible metric space is ANR (see [33, Section 1]).
The following example is one application of this fact:

Example 9.43 Let G be a compact metric graph and M1; : : : ;Mn be closed connected metric manifolds.
Choose points v1; : : : ; vn 2G and pi 2Mi for each i D 1; : : : ; n and consider the geodesic metric space
X WD G _M1 _ � � � _Mn arising from metric gluings via v1 � p1; : : : ; vn � pn. Since X is compact,
(topologically) finite-dimensional, and locally contractible, it is an ANR. See Figure 9.

Finally, we are ready to define a generalized filling radius.

Definition 9.44 (generalized filling radius) Let .X;E/ be a metric pair where X is a compact ANR
metric space. For any integer k � 1, any abelian group G, and any ! 2 Hk.X IG/, we define the
generalized filling radius as

FillRadk..X;E/;G; !/ WD inffr > 0 j Hk.�
E
r IG/.!/D 0g;

where �Er WX ,! Br.X;E/ is the (corestriction of the) isometric embedding. In other words, we have the
map

FillRadk..X;E/;G; � / W Hk.X IG/!R�0:
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Remark 9.45 Following the discussion in Remark 9.26 after equation (3), one can also prove that
the smallest possible value of the generalized filling radius is attained when E is an injective metric
space. Hence, we write FillRadk.X;G; !/ instead of FillRadk..X;E/;G; !/ whenever E is injective,
for simplicity.

LetM be an n–dimensional metric manifold. Then, note that we have FillRadn.M;G; ŒM�/DFillRad.M/

in the following two cases: when M is orientable and G DZ, and when M is nonorientable and G DZ2.

A priori, one can define the generalized filling radius for any metric space X . However, we believe that
the context of ANR metric spaces is the right level of generalization for our purposes because of the
following proposition, analogous to Proposition 9.28:

Proposition 9.46 Let X be a compact ANR metric space. Then , for any k�1 and nonzero ! 2Hk.X IF/,
we have FillRadk.X;F ; !/ > 0, and

.0; 2FillRadk.X;F ; !/� 2 barcVR
k .X IF/;

where F is an arbitrary field.

Proof First, note that one cannot apply Hausmann’s theorem since X is not necessarily a Riemannian
manifold. However, since X is ANR and a closed subset of L1.X/, there exists an open U � L1.X/
such that X � U and U retracts onto X . Let � W U ! X be the retraction. Now, since U is open there
exists an r > 0 such that Br.X;L1.X//� U . Observe that the restriction

�r WD �jBr .X;L1.X// W Br.X;L
1.X//!X

is still a retraction. It means that �r ı �r D idX . Therefore,

Hk.�r IF/ W Hk.X IF/! Hk
�
Br.X;L

1.X//IF
�

is injective. This implies that FillRadk.X;F ; !/ > 0 and that there exists some interval in barcVR
k
.X IF/

corresponding to the nonzero homology class ! 2 Hk.X IF/.

The remaining part of proof is essentially the same as the proof of Proposition 9.28, so we omit it.

Example 9.47 For any nonzero ! 2 H1.M IF/ with an arbitrary field F , because of the result in [81,
Theorem 8.10], one has that 2FillRad1.M;F ; !/ D 1

3
length./, where  is a shortest closed curve

representing the homology class !.

A refinement for the case kD 1 We now prove that when kD 1, the intervals given by Proposition 9.46
are the only bars in barcVR

1 .X IF/.

Lemma 9.48 Let X be a compact geodesic metric space , which is a subspace of an injective metric
space .E; dE /. Then , for any r > 0, the canonical inclusion �r WX ,! Br.X;E/ induces a surjection at
the level of fundamental groups. In particular , this also implies �r induces a surjection at the level of first
degree of homology.
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Proof Let  W Œ0; 1�! Br.X;E/ be an arbitrary continuous path with endpoints x and x0 in X . It is
enough to show that  is homotopy equivalent to a path in X relative to its endpoints. By the Lebesgue
number lemma, one can choose 0 D t0 < t1 < � � � < tn D 1 such that there exists xi 2 X satisfying
.Œti�1; ti �/�Br.xi ; E/ for each i 2 f1; : : : ; ng. Let yi WD .ti / for i 2 f0; : : : ; ng. Since each Br.xi ; E/
is contractible by Lemma 2.28, one can choose continuous paths ˛i and ˇi contained in Br.xi ; E/ such
that ˛i is from yi�1 to xi and ˇi is from xi to yi . As Br.xi ; E/ is contractible,  jŒti�1;ti � is homotopy
equivalent to ˛i �ˇi relative to endpoints. Hence

 ' .˛1 �ˇ1/� � � � � .˛n �ˇn/

relative to endpoints. Note that ˛1 and ˇn can be chosen as geodesics in X as they connect x and x1 in
Br.x1; E/ and xn and x0 in Br.xn; E/, respectively. Hence it is enough to show that

.ˇ1 �˛2/� � � � � .ˇn�1 �˛n/

is homotopy equivalent to a path in X relative to endpoints. Let us show that ˇi � ˛iC1 is homotopy
equivalent to a path in X for each i . Let p be a midpoint of xi and xiC1 in X . Note that p and yi are
contained in Br.xi ; E/\Br.xiC1; E/, which is contractible (again by Lemma 2.28). Let � be a path
in that intersection from yi to p. Let xi ;p be a shortest geodesic in X from xi to p and p;xiC1 be a
shortest geodesic in X from p to xiC1. Note that xi ;p � N� is contained in Br.xi / and has endpoints xi
and yi ; hence it is homotopy equivalent to ˇi relative to endpoints. Similarly � � p;xiC1 is homotopy
equivalent to ˛iC1 relative to endpoints. Hence

ˇi �˛iC1 ' xi ;p �
N� � � � p;xiC1 ' xi ;p � p;xiC1

relative to endpoints. This completes the proof of the first claim.

For the second claim, exploit [49, Theorem 2A.1].

In [81, Theorem 8.10], Virk provided a proof of the corollary below which takes place at the simplicial level.
The proof we give below exploits the hyperconvexity properties of L1.X/ and also our isomorphism
theorem, Theorem 4.1. Given our main results, we can give a more concise proof. See [28, Section 3] for
related results.

Corollary 9.49 Let X be a compact geodesic metric space. Then , for any I 2 barcVR
1 .X IF/, there exists

! 2 H1.X IZ/ such that I D .0; 2FillRad1.X;Z; !/�.

Proof Apply Lemma 9.48 and Theorem 4.1.

A conjecture After seeing the proof of Proposition 9.46, some readers might wonder whether one can
prove a version of Hausmann’s theorem [50, Theorem 3.5] for compact ANR metric spaces. This leads to
formulating the conjecture below:

Conjecture 9.50 Let .X; dX / be a compact ANR metric space. Then, there exists r.X/ > 0 such that
VRr.X/ is homotopy equivalent to X for any r 2 .0; r.X/�.
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9.4 Rigidity of spheres

A problem of interest in the area of persistent homology is that of deciding how much information from a
metric space is captured by its associated persistent homology invariants. One basic (admittedly imprecise)
question that we posed on page 1024 is:

Question 1 Assume X and Y are compact metric spaces such that barcVR
k
.X IF/D barcVR

k
.Y IF/ for

all k 2 Z�0. Then how similar are X and Y (in a suitable sense)?

As proved in [66] via the notion of core of a metric graph or as a consequence of [50, Proposition 2.2], the
unit circle S1 and the join X of S1 with disjoint trees of arbitrary length (regarded as a geodesic metric
space) have the same Vietoris–Rips persistence barcodes (for all dimensions); see Figure 10. However,
by increasing the length of the trees attached these two spaces are at arbitrarily large Gromov–Hausdorff
distance, as shown in Figure 10. This means that, in full generality, Question 1 does not admit a reasonable
answer if “similarity” is measure in a strict metric sense via the Gromov–Hausdorff distance.

A related type of questions one might pose are of the type:

Question 3 Let C be a given class of compact metric spaces. Does there exist �C > 0 such that whenever
dB.barcVR

� .X/; barcVR
� .Y // < �C for some X; Y 2 C, then X and Y are homotopy equivalent?

Answers to questions such as Questions 1 and 3 above (together with Questions 2(i), 2(ii), and 2(iii) on
page 1025) are not currently known in full generality. One might then consider “localized” versions of the
above questions: fix some special compact metric space X0, and then assume Y satisfies the respective
conditions stipulated in the above question statements.

In this regard, from work by Wilhelm [83, Main Theorem 2] and Proposition 9.28 we immediately obtain
the following corollary for the case of Riemannian manifolds:

Corollary 9.51 (barcVR
� rigidity for spheres) For any closed connected n–dimensional Riemannian

manifold M with sectional curvature KM � 1:

(1) IM
n;F � I

Sn
n .

(2) If IM
n;F D I

Sn
n then M is isometric to Sn.

(3) There exists �n > 0 such that if length.ISn
n /� �n < length.IM

n;F /, then M is diffeomorphic to Sn.

(4) If length.IM
n;F / >

�
3

, then M is a twisted n–sphere (and , in particular , homotopy equivalent to the
n–sphere).

Remark 9.52 The case of n D 1 is simpler. Let M be an arbitrary closed connected 1–dimensional
Riemannian manifold. Then, M is isometric to r � S1 for some r > 0 and IM

1;F D
�
0; 2�

3
r
�
. Hence,

IM
1;F D I

S1
1 obviously implies M is isometric to S1.
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Figure 10: Two geodesic spaces with the same Vietoris–Rips persistence barcodes. Notice that
these spaces are at a large Gromov–Hausdorff distance.

Remark 9.53 Wilhelm’s method of proof does not yield an explicit value for the parameter �n given
in item (2) above. Wilhelm’s rigidity result was extended to Alexandrov spaces by Yokota [84], so
Corollary 9.51 can be generalized to that context.

Example 9.54 (a one-parameter family of surfaces with the same filling radius as S2) If we ignore the
sectional curvature condition in Corollary 9.51, then for each " > 0 small enough one can construct a
one-parameter family fS2

h
j h 2 Œ0;FillRad.S2/� "�g of surfaces with the same filling radius as S2 such

that S20 D S2 but S2
h

is not isometric to S2 for any h > 0. This phenomenon is analogous to the one
depicted in Figure 10.

Here is the construction (see Figure 2):

Let u1, u2, u3, and u4 be the vertices of a regular tetrahedron inscribed in S2. Hence, dS2.ui ; uj /D

2FillRad.S2/ for any i ¤ j . Now, let T be a very small spherical triangle contained inside the spherical
triangle determined by the points u1, u2, and u3 as in Figure 2, left. In other words, we choose
" WD diam.T /� 2FillRad.S2/.

Now, for any h� 0, we define S2
h

by

S2h WD .S
2
nInt.T /� f0g/[ .@T � Œ0; h�/[ .T � fhg/¨ S2 � Œ0; h�

with the metric
dS2

h
..x; s/; .y; t// WD dS2.x; y/Cjs� t j:

Then S2
h

is a 2–dimensional metric manifold. See Figure 2, right, for the description of S2
h
. Also, note

that the map
Ph W S

2
h! S2; .x; s/ 7! x;

is 1–Lipschitz.

Claim 1 First , we claim that FillRad.S2
h
/� FillRad.S2/ for any h� 0.

Proof Note that, since Ph is 1–Lipschitz, the diagram

S2
h

Br.S2h; L
1.S2

h
//

S2 Br.S2; L1.S2//

Ph zPh

commutes for any r > 0. Since .Ph/�.ŒS2h�/D ŒS
2�, this implies FillRad.S2

h
/� FillRad.S2/.
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Claim 2 Next , we claim that FillRad.S2
h
/� FillRad.S2/ whenever hC "� 2FillRad.S2/.

Proof For this we will prove that the spread of S2
h

is bounded by twice the filling radius of S2.

Note that the set f.u1; 0/; .u2; 0/; .u3; 0/; .u4; 0/g � S2
h

satisfies

(1) diam
�
f.u1; 0/; .u2; 0/; .u3; 0/; .u4; 0/g

�
D 2FillRad.S2/, and

(2) mini2f1;2;3;4g dS2
h
..x; s/; .ui ; 0//� 2FillRad.S2/ for any .x; s/ 2 S2

h
.

Observe that the second condition holds because if .x; s/ 2 @T � Œ0; h�[T � fhg (the triangular cylinder
with its cap), dS2

h
..x; s/; .u1; 0//D dS2.x; u1/C s � hC "� 2FillRad.S2/.

Hence, by Proposition 9.33, FillRad.S2
h
/� 1

2
spread.S2

h
/� FillRad.S2/.

We then conclude that FillRad.S2/D FillRad.S2
h
/ whenever h 2 Œ0; 2FillRad.S2/� "�.

Remark 9.55 The above construction can be generalized to Sn for n � 3. Also, the small subset T
need not be a spherical triangle in general, though the argument becomes more involved in that case. For
example, one can choose T to be a small geodesic disk on S2.

Rigidity theorems with respect to the bottleneck distance Propositions 9.56 and 9.57 below provide
rigidity results with respect to the bottleneck distance (see Definition 2.12).

For the rest of this subsection we will assume that an arbitrary constant c � 1 is fixed.

Proposition 9.56 Suppose M is a closed connected n–dimensional Riemannian manifold with sectional
curvature KM 2 Œ1; c� and injectivity radius Inj.M/� �=2

p
c, then:

(1) There exists "n > 0 such that , if

dB
�
barcVR

n .M IF/; barcVR
n .SnIF/

�
<min

n
"n;

1

�
p
c
�FillRad.Sn/

o
;

then M is diffeomorphic to Sn.

(2) If dB
�
barcVR

n .M IF/; barcVR
n .SnIF/

�
<min

˚
2FillRad.Sn/� �

3
; .1=�

p
c / �FillRad.Sn/

	
, thenM

is a twisted n–sphere (and , in particular , homotopy equivalent to the n–sphere).

If M is even-dimensional, then we can drop the assumption on the injectivity radius.

Proposition 9.57 Suppose M is a closed connected n–dimensional Riemannian manifold with sectional
curvature KM 2 Œ1; c� for even n, then:

(1) There exists "n > 0 such that , if

dB
�
barcVR

n .M IF/; barcVR
n .SnIF/

�
<min

�
"n;

1

4
p
c
�FillRad.Sn/

�
;

then M is diffeomorphic to Sn.

(2) If dB
�
barcVR

n .M IF/; barcVR
n .SnIF/

�
<minf2FillRad.Sn/� �

3
; .1=4

p
c / �FillRad.Sn/g, then M

is a twisted n–sphere (and , in particular , homotopy equivalent to the n–sphere).

Algebraic & Geometric Topology, Volume 24 (2024)



Vietoris–Rips persistent homology, injective metric spaces, and the filling radius 1077

Lemma 9.58 Let M be a closed connected n–dimensional Riemannian manifold. If

dB
�
barcVR

n .M IF/; barcVR
n .SnIF/

�
< "

for some " 2 .0; 2FillRad.Sn/�, then either

(1) FillRad.M IF/ < ", or

(2) 2jFillRad.M IF/�FillRad.Sn/j< ".

Proof By Proposition 9.28, we know that .0; 2FillRad.M IF/� 2 barcVR
n .M IF/. Suppose

dB
�
barcVR

n .M IF/; barcVR
n .SnIF/

�
< "

for some " 2 .0; 2FillRad.Sn/�. Then there is a partial matching (see Definition 2.12) R" between
barcVR

n .M IF/ and barcVR
n .SnIF/ such that cost.R"/ < ". Consider the following two cases:

(1) Suppose the interval .0; 2FillRad.M IF/� is not matched to any interval in barcVR
n .SnIF/. Then

FillRad.M IF/� cost.R"/ < ":

(2) Suppose .0; 2FillRad.M IF/� is matched to some interval .u; v� 2 barcVR
n .SnIF/ in the partial

matching R". Then we claim that .u; v�D .0; 2FillRad.Sn/�. Suppose not. Since we know that
VRr.Sn/' Sn for any r 2 .0; 2FillRad.Sn/� by Theorem 7.1, any interval in barcVR

n .SnIF/ other
than .0; 2FillRad.M IF/� must be born after 2FillRad.Sn/. In particular, u� 2FillRad.Sn/. This
implies

2FillRad.Sn/� ju� 0j � cost.R"/ < "� 2FillRad.Sn/;

which is a contradiction. Hence, .0; 2FillRad.M IF/� is matched to .0; 2FillRad.Sn/� in the
optimal matching. Therefore,

2jFillRad.M IF/�FillRad.Sn/j � cost.R"/ < ":

The proof strategy for Propositions 9.56 and 9.57 is to invoke Wilhelm’s result [83, Main Theorem 2]
and Lemma 9.58 above. However, if FillRad.M/ were small, one would not be able to apply Wilhelm’s
theorem. To avoid that, we will invoke a result due to Liu [64].

Proof of Proposition 9.56 Since c � 1, .1=�
p
c/ �FillRad.Sn/� 2FillRad.Sn/.

(1) By Corollary 9.51(3), there is an "n > 0 such that 2jFillRad.M IF/� FillRad.Sn/j < "n implies
M is diffeomorphic to Sn.
Suppose dB

�
barcVR

n .M IF/; barcVR
n .SnIF/

�
<minf"n; .1=�

p
c / �FillRad.Sn/g. Then

FillRad.M IF/ <min
n
"n;

1

�
p
c
�FillRad.Sn/

o
or

2jFillRad.M IF/�FillRad.Sn/j<min
n
"n;

1

�
p
c
�FillRad.Sn/

o
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by Lemma 9.58. However, the first case is impossible since FillRad.M IF/� .1=�
p
c/�FillRad.Sn/

by [64, Proofs of Theorem 1.1 and Proposition 1.6]. Therefore,

2jFillRad.M IF/�FillRad.Sn/j<min
n
"n;

1

�
p
c
�FillRad.Sn/

o
� "n;

so M and Sn are diffeomorphic.

(2) By basically the same argument,

dB
�
barcVR

n .M IF/; barcVR
n .SnIF/

�
<min

n
2FillRad.Sn/� �

3
;
1

�
p
c
�FillRad.Sn/

o
implies 2jFillRad.M IF/� FillRad.Sn/j < 2FillRad.Sn/� �

3
. Therefore, length.IM

n;F / >
�
3

, so
M is a twisted n–sphere.

Proof of Proposition 9.57 The proof is basically the same as the proof of Proposition 9.56. The only
difference is we have to use [64, Remark 1.8(3)] instead of [64, Proposition 1.6].

9.5 Stability of the filling radius

In [64], Liu studies the mapping properties of the filling radius. His results can be interpreted as providing
certain guarantees for how the filling radius changes under multiplicative distortion of metrics. Here we
study the effect of additive distortion.

Question 4 Under suitable restrictions, does there exists a constant L > 0 such that for all closed
connected metric manifolds M and N ,

(7) jFillRad.M/�FillRad.N /j � L � dGH.M;N /‹

This question is whether the filling radius could be stable as a map from the collection of all metric
manifolds to the real line. The answer is negative, as the following example proves:

Example 9.59 (counterexample for manifolds with different dimension) Fix � > 0 and let M D S1 and
N� D S1� .� �S1/, a thin torus. Then, it is clear that dGH.M;N�/� � whereas FillRad.S1/D �

3
and, by

Remark 9.31, FillRad.N�/D �
3
�. This means that (7) cannot hold in general.

A subsequent possibility is considering only manifolds with the same dimension. The answer in this case
is also negative:

Example 9.60 (counterexample for manifolds with the same dimension) Let n� 2 be any integer and
�; ı > 0; we assume that ı� � so that a certain tubular neighborhood construction described below works.
Consider M D Sn � RnC1. Endow Sn with the usual round Riemannian metric. Let G� be a (finite)
metric graph embedded in Sn such that dGH.Sn; G�/ < �; such graphs always exist for compact geodesic
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spaces [15, Proposition 7.5.5]. Now, let N�;ı be (a suitably smoothed out version of) the boundary
of the ı–tubular neighborhood of G� in RnC1. Then dGH.M;N�;ı/ � C � .�C ı/, for some constant
C > 0 whose exact value is not relevant. However, FillRad.M/D 1

2
arccos.�1=.nC 1//� �

4
, whereas

FillRad.N�;ı/ � Cn � ı by inequality (5). This means that (7) cannot hold in general, even when the
manifolds M and N have the same dimension.

We are however able to establish the following:

Proposition 9.61 (stability of the filling radius) Let M be a closed connected n–dimensional manifold.
Let d1 and d2 be two metrics on M compatible with the manifold topology. Then

jFillRad.M; d1/�FillRad.M; d2/j � kd1� d2k1:

Actually, one can prove a more general result.

Proposition 9.62 (stability of generalized filling radii) Let M be a closed connected manifold. Let d1
and d2 be two metrics on M compatible with the manifold topology. For any integer k � 0, any abelian
group G, and any nonzero ! 2 Hk.M IG/,

jFillRadk..M; d1/; G; !/�FillRadk..M; d2/; G; !/j � kd1� d2k1:

Remark 9.63 Proposition 9.61 is just a special case of Proposition 9.62 when k D n, ! D ŒM �, and
G D Z or Z2.

Proof of Proposition 9.62 Let i1 W .M; d1/ ! L1.M/ and i2 W .M; d2/ ! L1.M/) be the Kura-
towski embeddings of M into L1.M/ with respect to d1 and d2, respectively. For arbitrary r > 0, let
ir1 W .M; d1/! Br.i1.M/;L1.M// and ir2 W .M; d2/! Br.i2.M/;L1.M// denote the corresponding
isometric embeddings induced from i1 and i2. For arbitrary r > 0, observe that

Br.i1.M/;L1.M//� BrCkd1�d2k1.i2.M/;L1.M//

because, for arbitrary f 2Br.i1.M/;L1.M//, there exist x 2M such that kf �d1.x; � /k1 < r ; hence,

kf � d2.x; � /k1 � kf � d1.x; � /k1Ckd1.x; � /� d2.x; � /k1 < r Ckd1� d2k1:

In a similar way, one can prove that Br.i2.M/;L1.M//� BrCkd1�d2k1.i1.M/;L1.M//.

Now, fix arbitrary r > FillRadk..M; d1/; G; !/ and let

j r W Br.i1.M/;L1.M// ,! BrCkd1�d2k1.i2.M/;L1.M//

be the canonical inclusion map. The maps defined above fit into the following (in general noncommutative)
diagram:

M Br.i1.M/;L1.M//

BrCkd1�d2k1.i2.M/;L1.M//

ir1

i
rCkd1�d2k1

2

j r

Algebraic & Geometric Topology, Volume 24 (2024)
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Next, we prove that j r ı ir1 is homotopic to irCkd1�d2k12 via the linear interpolation

H WM � Œ0; 1�! BrCkd1�d2k1.i2.M/;L1.M//; .x; t/ 7! .1� t /d1.x; � /C td2.x; � /:

The only subtle point is whether this linear interpolation is always contained in the thickening

BrCkd1�d2k1.i2.M/;L1.M//

or not. To ascertain this, for arbitrary x 2M and t 2 Œ0; 1�, compute the distance between H.x; t/ and
d2.x; � / as

k.1�t /d1.x; � /Ctd2.x; � /�d2.x; � /k1Dj1�t j�kd1.x; � /�d2.x; � /k1�kd1�d2k1<rCkd1�d2k1:

Hence, H is a well-defined homotopy between j r ı ir1 and irCkd1�d2k12 . Therefore,

.j r/� ı .i
r
1 /� D .i

rCkd1�d2k1
2 /�:

From the assumption on r , we know that .ir1 /�.!/D 0. By the above, this implies that

.i
rCkd1�d2k1
2 /�.!/D 0:

Hence,

FillRadk..M; d2/; G; !/� FillRadk..M; d1/; G; !/Ckd1� d2k1

since r > FillRadk..M; d1/; G; !/ is arbitrary. In a similar way, one can also show

FillRadk..M; d1/; G; !/� FillRadk..M; d2/; G; !/Ckd1� d2k1:

9.5.1 The strong filling radius Examples 9.59 and 9.60 suggest that the setting of Proposition 9.61
might be a suitable one for studying stability of the filling radius.

In this section we consider a certain strong variant of the filling radius satisfying (7) which arises from
the notion of persistent homology.

Definition 9.64 (strong filling radius) Given a closed connected n–dimensional metric manifold M
and a field F , we define the strong filling radius sFillRad.M IF/ as half the length of the largest interval
in the nth Vietoris–Rips persistence barcode of M ,

sFillRad.M IF/ WD 1
2

maxflength.I / j I 2 barcVR
n .M IF/g:

The reader familiar with concepts from applied algebraic topology will have noticed that the definition
of strong filling radius of an n–dimensional metric manifold coincides with (one half of) the maximal
persistence of its associated Vietoris–Rips persistence module. In fact, for each nonnegative integer k
one can define the k–dimensional version of strong filling radius of any compact metric space X .
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Definition 9.65 (generalized strong filling radius) Given a compact metric space X , a field F , and a
nonnegative integer k � 0, we define the generalized strong filling radius sFillRadk.X IF/ as half the
length of the largest interval in the kth Vietoris–Rips persistence barcode of X ,

sFillRadk.X IF/ WD 1
2

maxflength.I / j I 2 barcVR
k .X IF/g:

Remark 9.66 � When X is isometric to a metric manifold M with dimension n, we of course have
sFillRadn.X/D sFillRad.M/.

� In general, sFillRadk and FillRadk are obviously related in the sense that

sFillRadk.X IF/� supfFillRadk.X;F ; !/ j ! 2 Hk.X IF/g

for any nonnegative integer k.

The following remark follows directly from Propositions 9.7 and 9.28:

Remark 9.67 FillRad.M IF/� sFillRad.M IF/� 1
2

spread.M/ for any field F when M is orientable,
and F D Z2 when M is nonorientable.

Definition 9.68 (F–regularly filled manifold) Let .M; dM / be a closed connected metric manifold and
F be a field. We say that M is F–regularly filled if FillRad.M IF/D sFillRad.M IF/.

Remark 9.69 For each n � 1, the n–dimensional unit sphere with the intrinsic metric is F–regularly
filled for any field F . Indeed, by [54, Proof of Theorem 2], FillRad.Sn/ D 1

2
spread.Sn/. Hence, the

result follows from Remark 9.67.

As a consequence of the remark above and Remark 9.3 we have:

Corollary 9.70 For all integers n� 1, FillRad.Sn/D sFillRad.SnIF/D 1
2

arccos.�1=.nC 1//.

There exist, however, nonregularly filled metric manifolds. We present two examples: the first one arises
from our study of the Künneth formula in Section 6, whereas the second one is a direct construction.
Both examples make use of results from [1] about homotopy types of Vietoris–Rips complexes of S1.

Example 9.71 (a nonregularly filled metric manifold) Fix r > 1 and let X be the `1–product
S1 �S1 � .r �S1/. By Remark 9.31, FillRad.X/D FillRad.S1/D 2�

3
. By Example 6.4, barcVR

3 .X IF/

contains the interval
�
2�
3
r; 4�

5
r
�
, which has length 2�

15
r . Hence, if r > 5, X is not F–regularly filled.

Example 9.72 (a nonregularly filled Riemannian manifold) Take any embedding of S1 into R4 and
let � > 0 be small. Consider the boundary C� of the �–tubular neighborhood around S1. This will
be a 3–dimensional submanifold of R4. As a submanifold it inherits the ambient inner product and
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C� can be regarded as a Riemannian manifold in itself. Then, as a metric space, with the geodesic
distance, C� will be �–close to S1 (with geodesic distance) in the Gromov–Hausdorff sense. Because we
know that for r 2

�
2�
3
; 4�
5

�
, VRr.S1/' S3, and because of the Gromov–Hausdorff stability of barcodes

(Theorem 2.14), it must be that barcVR
3 .C�IF/ contains an interval I which itself contains

�
2�
3
C�; 4�

5
��
�
.

This latter interval is nonempty whenever � > 0 is small enough, so sFillRad.C�IF/� 2�
15
�2�. However,

FillRad.C�/� �.

By invoking the relationship between the Vietoris–Rips persistent homology and the strong filling radius,
one can verify that the strong filling radii of two n–dimensional metric manifolds M and N are close if
these two manifolds are similar in the Gromov–Hausdorff distance sense.

Proposition 9.73 Let X and Y be compact metric spaces. Then , for any integer k � 0,

jsFillRadk.X IF/� sFillRadk.Y IF/j � 2dGH.X; Y /:

Proof By Remark 4.8 one has

2dGH.X; Y /� dI.barcVR
k .X IF/; barcVR

k .Y IF//� jdI.barcVR
k .X IF/; 0�/� dI.barcVR

k .Y IF/; 0�/j;

where the last inequality follows from the triangle inequality for the interleaving distance. The conclusion
now follows from Example 2.11.

Remark 9.74 Albeit for the notation sFillRadk , the above stability result should be well known to
readers familiar with applied algebraic topology concepts — we state and prove it here however to provide
some background for those readers who are not.

Appendix

A.1 Proof of Proposition 9.23

Proposition 9.23 Let X be a compact metric space. Then , for any f; g; h 2 L1.X/ and 0� s � t � 1,
the Katz geodesic bicombing K on L1.X/ satisfies

(1) K.f; g; 0/D f and K.f; g; 1/D g;

(2) kK.f; g; s/� K.f; g; t/k1 D .t � s/ � kf �gk1;

(3) kK.f; g; t/� K.h; g; t/k1 � 2kf � hk1;

(4) kK.f; g; t/� K.f; h; t/k1 � kg� hk1;

(5) K.�;  ; �/D K.f; g; .1��/sC�t/where �D K.f; g; s/ and  D K.f; g; t/ for any �2 Œ0; 1�
(this property is called consistency);

(6) kK.f; g; r/� hk1 �maxfkK.f; g; s/� hk1; kK.f; g; t/� hk1g for any r 2 Œs; t �.
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Proof (1) The first claim trivially follows from the definition of K and that of the `1–norm.

(2) For the second claim, observe that it is enough to show

kK.f; g; s/� K.f; g; t/k1 � .t � s/ � kf �gk1

for any f; g 2 L1.X/ and 0� s � t � 1.

Fix an arbitrary x 2X . Without loss of generality, one can assume that f .x/� g.x/. Then

jK.f; g; s/.x/� K.f; g; t/.x/j Dmaxff .x/� skf �gk1; g.x/g�maxff .x/� tkf �gk1; g.x/g:

Observe that, if s 2 Œ0; .f .x/�g.x//=kf �gk1�,

maxff .x/� skf �gk1; g.x/g D f .x/� skf �gk1:
Hence,

jK.f; g; s/.x/� K.f; g; t/.x/j D .f .x/� skf �gk1/�maxff .x/� tkf �gk1; g.x/g

� .f .x/� skf �gk1/� .f .x/� tkf �gk1/

D .t � s/kf �gk1:

Also, if s 2 Œ.f .x/�g.x//=kf �gk1; 1�,

maxff .x/� skf �gk1; g.x/g Dmaxff .x/� tkf �gk1; g.x/g D g.x/

so jK.f; g; s/.x/� K.f; g; t/.x/j D 0� .t � s/kf �gk1.

Since x is arbitrary, we obtain kK.f; g; s/� K.f; g; t/k1 � .t � s/ � kf �gk1.

(3) Fix an arbitrary x 2X . We will prove that

jK.f; g; t/.x/� K.h; g; t/.x/j � 2kf � hk1:

Unfortunately, we have to do tedious case-by-case analysis.

(a) If f .x/� g.x/ and h.x/� g.x/, then, for t 2 Œ0; .f .x/�g.x//=kf �gk1�,

K.f; g; t/.x/D f .x/� tkf �gk1:

Hence,

K.f; g; t/.x/� K.h; g; t/.x/D .f .x/� tkf �gk1/�maxfh.x/� tkh�gk1; g.x/g

� .f .x/� tkf �gk1/� .h.x/� tkh�gk1/

D f .x/� h.x/� t .kf �gk1�kh�gk1/

� jf .x/� h.x/jC t jkf �gk1�kh�gk1j

� 2kf � hk1:

Now, for t 2 Œ.f .x/�g.x//=kf �gk1; 1�, K.f; g; t/.x/D g.x/. Hence,

K.f; g; t/.x/� K.h; g; t/.x/D g.x/�maxfh.x/� tkh�gk1; g.x/g

� g.x/�g.x/D 0� 2kf � hk1:
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In a similar way, one can also obtain

K.h; g; t/.x/� K.f; g; t/.x/� 2kf � hk1

for any t 2 Œ0; 1�. Hence,

jK.f; g; t/.x/� K.h; g; t/.x/j � 2kf � hk1:

(b) If f .x/� g.x/ and h.x/� g.x/, this case is similar to the previous one so we omit it.

(c) If f .x/� g.x/ and h.x/� g.x/, then K.f; g; t/.x/; K.h; g; t/.x/ 2 Œh.x/; f .x/�. Therefore,

jK.f; g; t/.x/� K.h; g; t/.x/j � f .x/� h.x/� kf � hk1 � 2kf � hk1:

(d) For f .x/� g.x/ and h.x/� g.x/, this is similar to the previous case.

Since x is arbitrary, we finally have

kK.f; g; t/� K.h; g; t/k1 � 2kf � hk1:

(4) Fix an arbitrary x 2X . We will prove that

jK.f; g; t/.x/� K.f; h; t/.x/j � kg� hk1:

Let’s do case-by-case analysis.

(a) If f .x/� g.x/ and f .x/� h.x/, then, for t 2 Œ0; .f .x/�g.x//=kf �gk1�,

K.f; g; t/.x/D f .x/� tkf �gk1:

Hence,

K.f; g; t/.x/� K.f; h; t/.x/D .f .x/� tkf �gk1/�maxff .x/� tkf � hk1; h.x/g

� .f .x/� tkf �gk1/� .f .x/� tkf � hk1/

D t .kf � hk1�kf �gk1/

� kg� hk1:

Now, for t 2 Œ.f .x/�g.x//=kf �gk1; 1�, K.f; g; t/.x/D g.x/. Hence,

K.f; g; t/.x/�K.f; h; t/.x/Dg.x/�maxff .x/�tkf �hk1; h.x/g�g.x/�h.x/�kg�hk1:

In a similar way, one can also obtain

K.f; h; t/.x/� K.f; g; t/.x/� kg� hk1

for any t 2 Œ0; 1�. Hence,

jK.f; g; t/.x/� K.f; h; t/.x/j � kg� hk1:

(b) For f .x/� g.x/ and f .x/� h.x/, this is similar to the previous case.
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(c) If f .x/� g.x/ and f .x/� h.x/, then

K.f; g; t/.x/; K.f; h; t/.x/ 2 Œg.x/; h.x/�:

Therefore,

jK.f; g; t/.x/� K.f; h; t/.x/j � h.x/�g.x/� kg� hk1:

(d) For f .x/� g.x/ and f .x/� h.x/, this is similar to the previous case.

Since x is arbitrary, we finally have

kK.f; g; t/� K.f; h; t/k1 � kg� hk1:

(5) Fix arbitrary x 2X . Suppose f .x/� g.x/. Then

�.x/Dmaxff .x/� skf �gk1; g.x/g;  .x/Dmaxff .x/� tkf �gk1; g.x/g:

By property (1) of this proposition, we know k�� k1D .t�s/kf �gk1. Moreover, since �.x/� .x/,

K.�;  ; �/.x/Dmaxf�.x/��k� � k1;  .x/g:

Observe that

�.x/��k� � k1 Dmaxff .x/� skf �gk1; g.x/g��.t � s/kf �gk1

Dmaxff .x/� ..1��/sC�t/kf �gk1; g.x/��.t � s/kf �gk1g:

Since f .x/� ..1��/sC�t/kf �gk1 � f .x/� tkf �gk1 and g.x/� g.x/��.t � s/kf �gk1, we
finally have

K.�;  ; �/.x/Dmaxff .x/� ..1��/sC�t/kf �gk1; g.x/g D K.f; g; .1��/sC�t/.x/:

One can do a similar proof for the case when f .x/� g.x/. Hence,

K.�;  ; �/D K.f; g; .1��/sC�t/:

(6) Consider the special case s D 0 and t D 1. Fix an arbitrary x 2X . Observe that K.f; g; r/.x/ is
between f .x/ and g.x/. Therefore,

jK.f; g; r/.x/� h.x/j �maxfjf .x/� h.x/j; jg.x/� h.x/jg �maxfkf � hk1; kg� hk1g:

Since x is arbitrary,

kK.f; g; r/� hk1 �maxfkf � hk1; kg� hk1g DmaxfkK.f; g; 0/� hk1; kK.f; g; 1/� hk1g:

For general s and t , combine this result with property (5).

A.2 Some properties of K

Example A.1 In this example, we will see that some of the nice properties considered in Lemma 2.20
do not hold for the Katz geodesic bicombing (see Definition 9.22). Consider X to be a two-point space.
Then L1.X/ can be regarded as R2 with the `1–norm.
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(1) Katz’s geodesic bicombing is not conical in general We will find f; f 0; g; g0 2 L1.X/ and
t 2 Œ0; 1� such that

kK.f; g; t/� K.f
0; g0; t /k1 > .1� t /kf �f

0
k1C tkg�g

0
k1:

Let f D f 0 D .0; 0/, g D .c; d/ for some 0 < c < d , and g D .c0; d 0/ for some 0 < c0 < d 0. Then

K.0; g; t/D

�
.td; td/ if t 2 Œ0; c=d �;
.c; td/ if t 2 Œc=d; 1�;

and we have a similar expression for K.0; g0; t /. Hence, for any t 2 Œmaxfc=d; c0=d 0g; 1/,

K.0; g; t/D .c; td/ and K.0; g
0; t /D .c0; td 0/:

Therefore, if we choose jc � c0j> jd � d 0j (for example, .c; d/D .4; 5/ and .c0; d 0/D .1; 5/), then

kK.0; g; t/� K.0; g
0; t /k1 D jc � c

0
j

and
tkg�g0k1 D t jc � c

0
j:

Hence,
kK.0; g; t/� K.0; g

0; t /k1 > tkg�g
0
k1:

So the Katz geodesic bicombing is not conical. In particular, this implies it is not convex.

(2) Katz geodesic bicombing is not reversible in general We will find f; g 2 L1.X/ and t 2 Œ0; 1�
such that

K.f; g; t/¤ K.g; f; 1� t /:

Let f D .0; 0/ and g D .c; d/ for some 0 < c < d as before. Then

K.0; g; t/D

�
.td; td/ if t 2 Œ0; c=d �;
.c; td/ if t 2 Œc=d; 1�;

and

K.g; 0; t/D

�
.c � td; .1� t /d/ if t 2 Œ0; c=d �;
.0; .1� t /d/ if t 2 Œc=d; 1�:

Now, if we choose t 2 .0;minfc=d; 1�c=dg�, we have K.0; g; t/D .td; td/ and K.g; 0; 1�t /D .0; td/.
Hence,

K.0; g; t/¤ K.g; 0; 1� t /:

A.3 Proof of the generalized functorial nerve lemma

Theorem 4.2 (generalized functorial nerve lemma) Let X and Y be two paracompact spaces , � WX!Y

be a continuous map , U D fU˛g˛2A and V D fVˇ gˇ2B be good open covers (every nonempty finite
intersection is contractible) of X and Y , respectively, based on arbitrary index sets A and B , and
� W A! B be a map such that

�.U˛/� V�.˛/ for any ˛ 2 A:
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Let NU and NV be the nerves of U and V , respectively. Observe that , since U˛0 \� � �\U˛n ¤∅ implies
V�.˛0/\ � � � \V�.˛n/ ¤∅, � induces the canonical simplicial map N� W NU ! NV .

Then there exist homotopy equivalences X ! NU and Y ! NV that commute with � and N� up to
homotopy:

X NU

Y NV

� N�

Our proof of Theorem 4.2 invokes many elements of [49, Section 4.G], which provides a proof of the
classical nerve lemma.

Definition A.2 Let X be a topological space and let U D fU˛g˛2ƒ be an open covering of X (ƒ is
an arbitrary index set). For any � D f˛0; : : : ; ˛ng 2 NU , the nonempty intersection U˛0 \ � � � \U˛n is
denoted by U� . Note that, when � Df˛0; : : : ; ˛ng 2NU and � 0 is an n0–face of � , there are the canonical
inclusions

i�� 0 W U� ,! U� 0 and j�� 0 W�n0 ,!�n:

Then, the complex of spaces corresponding to U consists of the set of all U� and the set of all canonical
inclusions i�� 0 over all possible � 0 � � 2 NU .

The realization of this complex of spaces, denoted by �XU , is defined as

�XU WD
G

�Df˛0;:::;˛ng2NU

U� ��n=�;

where .x; p/� .x0; p0/ whenever i�� 0.x/D x0 and j�� 0.p0/D p.

We need the following slight improvements of Propositions 4G.1 and 4G.2 of [49]. These improved
claims are actually implicit in their respective proofs; see [49, pages 458–459].

Proposition A.3 [49, Proposition 4G.1] Let X be a topological space and U D fU˛g˛2ƒ be a good
open cover of X (every nonempty finite intersection is contractible). Then

f W�XU ! NU ; .x; p/ 7! p if .x; p/ 2 U� ��n;

is a homotopy equivalence between �XU and NU .

Proof First of all, since U� is contractible whenever � 2 NU , note that there is a homotopy equivalence
�� W U� ! f�g for any � 2 NU .

The homotopy equivalence between �XU and NU is just a special case of [49, Proposition 4G.1]. The
choice of f is implicit in the fact that both of �XU and NU are deformation retracts of �MXU where
�MXU is the realization of the complex of spaces consisting of the mapping cylinders M�� for any
� 2 NU and the canonical inclusions between them.
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Proposition A.4 [49, Proposition 4G.2] Let X be a paracompact space , U D fU˛g˛2ƒ be an open
cover of X , and f ˛g˛2ƒ be a partition of unity subordinate to the cover U (it must exist since X is
paracompact). Then

g WX !�XU ; x 7!
�
x; . ˛.x//˛2ƒ

�
;

is a homotopy equivalence between X and �XU .

Proof The proof is the same as [49, Proposition 4G.2].

Lemma A.5 Let X and Y be two topological spaces , � WX ! Y be a continuous map , U D fU˛g˛2A
and V D fVˇ gˇ2B be good open covers (every nonempty finite intersection is contractible) of X and Y
respectively, based on arbitrary index sets A and B , and � W A! B be a map such that

�.U˛/� V�.˛/

for any ˛ 2 A.

Let NU and NV be the nerves of U and V , respectively. Observe that � induces the canonical simplicial
map N� W NU ! NV since U˛0 \ � � � \U˛n ¤ ∅ implies V�.˛0/ \ � � � \ V�.˛n/ ¤ ∅, and � induces the
canonical map N� W�XU !�YV mapping .x; p/ to .�.x/; N�.p//.

Then there exist homotopy equivalences f W �XU ! NU and f 0 W �YV ! NV which commute with N�
and N� :

�XU NU

�YV NV

f

N� N�

f 0

Proof By Proposition A.3,

f W�XU ! NU ; .x; p/ 7! p if .x; p/ 2 U� ��n;

is a homotopy equivalence between �XU and NU . Also,

f 0 W�YV ! NV; .y; q/ 7! q if .y; q/ 2 V� ��n;

is a homotopy equivalence between �YV and NV .

To check the commutativity of the diagram, fix an arbitrary .x; p/ 2 U� ��n ��XU . Then,

N� ıf .x; p/D N�.p/D f 0.�.x/; N�.p//D f 0 ı N�.x; p/:

Hence, N� ıf D f 0 ı N�, as we wanted.

Lemma A.6 Let X and Y be two paracompact spaces , � WX ! Y be a continuous map , U D fU˛g˛2A
and V D fVˇ gˇ2B be open covers of X and Y respectively , based on arbitrary index sets A and B , and
� W A! B be a map such that

�.U˛/� V�.˛/

for any ˛ 2 A.

Algebraic & Geometric Topology, Volume 24 (2024)



Vietoris–Rips persistent homology, injective metric spaces, and the filling radius 1089

Let NU and NV be the nerves of U and V , respectively. Observe that � induces the canonical simplicial
map N� W NU ! NV since U˛0 \ � � � \U˛n ¤ ∅ implies V�.˛0/ \ � � � \ V�.˛n/ ¤ ∅, and � induces the
canonical map N� W�XU !�YV mapping .x; p/ to .�.x/; N�.p//.

Then there exist homotopy equivalences g WX !�XU and g0 W Y !�YV which commute with � and N�
up to homotopy:

X �XU

Y �YV

g

� N�

g 0

Proof By Proposition A.4,

g WX !�XU ; x 7!
�
x; . ˛.x//˛2ƒ

�
;

is a homotopy equivalence between X and �XU , where f ˛g˛2A is a partition of unity subordinate to
the cover U . And,

g0 W Y !�YV ; y 7!
�
y; . 0ˇ .y//ˇ2B

�
;

is a homotopy equivalence between Y and �YV where f 0
ˇ
gˇ2B is a partition of unity subordinate to the

cover V .

Finally, we will show that N� ıg ' g0 ı �. Observe that, for arbitrary x 2X ,

N� ıg.x/D N�
�
x; . ˛.x//˛2ƒ

�
D
�
�.x/; N�

�
. ˛.x//˛2A

��
and

g0 ı �.x/D g0.�.x//D
�
�.x/;

�
 0ˇ .�.x//

�
ˇ2B

�
:

Hence, one can just construct a homotopy between N� ıg and g0 ı � by

h WX � Œ0; 1�!�YV ; .x; t/ 7!
�
�.x/; .1� t / N�

�
. ˛.x//˛2A

�
C t

�
 0ˇ .�.x//

�
ˇ2B

�
:

Here, note that the linear interpolation between N�
�
. ˛.x//˛2A

�
and

�
 0
ˇ
.�.x//

�
ˇ2B

is well defined
since, because of the properties of partition of unity and the assumption that �.U˛/� V�.˛/,

�.x/ 2
\

˛W ˛.x/>0

V�.˛/\
\

ˇ W 0
ˇ
.�.x//>0

Vˇ ;

so
f�.˛/ 2 B j  ˛.x/ > 0g[ fˇ 2 B j  

0
ˇ .�.x// > 0g

forms a simplex in NV .

Finally, one can prove the functorial nerve lemma.

Proof of Theorem 4.2 Combine Lemmas A.5 and A.6.

A.4 Proof of VRr.S
n/' Sn for r 2

�
0; arccos.�1=.nC 1//

�
Theorem 7.1 For any n 2 Z>0, we have VRr.Sn/' Sn for any r 2

�
0; arccos.�1=.nC 1//

�
.
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Since the case of S1 is already proved in [1], it is enough to prove the above theorem for Sn with n� 2.
Moreover, unlike the other parts of the paper, in this section we discriminate between the simplicial
complex VRr.Sn/ and its realization jVRr.Sn/j.

To prove Theorem 7.1, we will basically emulate the proof strategy of Hausmann in [50]. However, a
crucial modification will be necessary, which requires the following version of Jung’s theorem:

Definition A.7 Given a nonempty subset A�Sn, its geodesic convex hull convSn.A/ is defined to be the
set consisting of the union of all minimizing geodesics between pairs of points in A. It is clear that when
A is contained in an open hemisphere, convSn.A/D f…Sn.c/ j c 2 conv.A/g where …Sn.p/ WD p=kpk

for p ¤ 0 and …Sn.p/ WD 0 otherwise.

Theorem A.8 (a version of Jung’s theorem for spheres) For any n � 1, if A � Sn satisfies D WD
diam.A/ < arccos.�1=.nC 1//, then there must be u 2 convSn.A/ such that A� B .D/.u;Sn/, where

 W
h
0; arccos

�
�

1

nC1

�i
!R�0; D 7! arccos

�r
1C.nC1/ cosD

nC2

�
:

The version of Jung’s theorem stated above is different from the one considered by Katz [54, Lemma 2]
in the following two senses:

(1) We provide a precise formula for the radius  .D/ of the closed ball covering A, depending on
D D diam.A/. In particular, our version is stronger when D is small.

(2) On the contrary, if D is large (close to arccos.�1=.nC 1//), then the radius  .D/ can be as large
as �

2
. But �

2
is strictly greater number than � �arccos.�1=.nC1// which is the radius guaranteed

by Katz’s version. So, for the case when D is large, Katz’s version is stronger.

The proof of our version is somewhat similar to the classical proof in [37].

Remark A.9 The map  satisfies:

(1)  .D/� �
2

for any D 2 Œ0; arccos.�1=.nC 1//�.

(2)  is an increasing function.

(3) limD!0C  .D/D 0.

Proof of Theorem A.8 Without loss of generality, one can assume A is compact. Recall that one can
view Sn as a subset of RnC1,

Sn D f.x1; : : : ; xnC1/ 2RnC1 j x21 C � � �C x
2
nC1 D 1g:

Also, for any x; y 2 Sn, the Euclidean norm kx�yk and the geodesic distance dSn.x; y/ satisfy

kx�yk D
p
2� 2 cos.dSn.x; y//:
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Now, if we apply [37, Lemma 2.10.40] with P WD A� f1g, there are p 2RnC1 and c � 0 such that

(1) for all a 2 A, ka�pk � c;

(2) p belongs to the convex hull of fa 2 A j ka�pk D cg.

Therefore, there are nonnegative numbers �1; : : : ; �nC2 and a1; : : : ; anC2 2 fa 2 A j ka� xk D cg such
that

(1) p D
PnC2
iD1 �iai ;

(2) 1D
PnC2
iD1 �i .

Hence, one can easily check kpk � 1. Also, since

kai � aj k D
p
2� 2 cos.dSn.x; y//�

p
2� 2 cosD <

r
2C

2

nC1
;

p ¤ 0 by [32, Lemma 1]. Furthermore, for each j 2 f1; : : : ; nC 2g,

2c2 D

nC2X
iD1

�i
�
2c2� 2h.ai �p/; .aj �p/i

�
D

nC2X
iD1

�ik.ai �p/� .aj �p/k
2

D

nC2X
iD1

�ikai � aj k
2

�

X
i¤j

�i .2� 2 cosD/

D .1��j /.2� 2 cosD/:

So, by summation with respect to j , we have 2.nC 2/c2 � .nC 1/.2� 2 cosD/. Therefore,

c �

r
.nC 1/.1� cosD/

nC 2
< 1:

Finally, let u WD p=kpk. Then, u 2 convSn.A/ since p 2 conv.A/. Also, one can check that

ka�uk �

q
2� 2
p

1� c2 �

s
2� 2

r
1C.nC1/ cosD

nC2

for all a 2 A. This implies

dSn.a; u/� arccos
�r

1C.nC1/ cosD
nC2

�
D  .D/

for any a 2 A.
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A.4.1 The proof of Theorem 7.1 Choose a total ordering on the points of Sn. From now on, whenever
we describe a finite subset of Sn by fx0; : : : ; xqg, we suppose that x0 < x1 < � � �< xq . Let r be in the
interval

�
0; arccos.�1=.nC 1//

�
. We shall associate to each q–simplex � WD fx0; : : : ; xqg 2 VRr.Sn/ a

singular q–simplex T� W�q! Sn. Recall that the standard Euclidean q–simplex �q is defined as

�q WD

� qX
iD0

tiei

ˇ̌̌
ti 2 Œ0; 1� and

qX
iD0

ti D 1

�
:

This map T� is defined inductively as follows: Set T .e0/ D x0. Suppose that T� .z/ is defined for
y D

Pp�1
iD0 siei . Let z WD

Pp
iD0 tiei . If tp D 1, we pose T� .z/D xp. Otherwise, let

x WD T�

�
1

1�tp

p�1X
iD0

tiei

�
:

We define T� .z/ as the point on the unique shortest geodesic joining x to xp with

dSn.x; T� .z//D tp � dSn.x; xp/

(the unique shortest geodesic exists since convSn.fx0; : : : ; xqg/ must be contained in some open ball of
radius smaller than �

2
by Theorem A.8). To sum up, T� is defined inductively on �p for p � q as the

geodesic join of T� .�p�1/ with xp.

If � 0 is a face of � of dimension p, we form the euclidean sub–p–simplex �0 of �q formed by the pointsPq
iD0 tiei 2�q with ti D 0 if xi … � 0. One can check by induction on dim � 0 that

(8) T� 0 D T� j�0 :

By (8), the correspondence � 7! T� gives rise to a continuous map

T W jVRr.Sn/j ! Sn:

Here is a quick overview of how we will prove Theorem 7.1. Through Lemmas A.10 (which enables the
application of Hausmann’s “crushings” on sufficiently small subsets of spheres), A.11 and A.12, we will
prove that T induces an isomorphism at homology level. Also, by Lemma A.13, we will prove that T
also induces an isomorphism at the level of fundamental groups. Finally, the proof of Theorem 7.1 will
follow by invoking the homology Whitehead theorem.

Lemma A.10 Let x 2 Sn and y; z 2 B�=2.x;Sn/. Let y W Œ0; 1�! Sn and z W Œ0; 1�! Sn be the
unique shortest geodesics from x to y and x to z. Then

dSn.y.s/; z.s//� dSn.y.t/; z.t//

for any 0� s � t � 1.

Algebraic & Geometric Topology, Volume 24 (2024)



Vietoris–Rips persistent homology, injective metric spaces, and the filling radius 1093

Proof Let dSn.x; y/D a and dSn.x; z/D b. Without loss of generality, one can assume a � b. By the
spherical law of cosine, one can compute

cos
�
dSn.y.t/; z.t//

�
D cos.ta/ cos.tb/C sin.ta/ sin.tb/ cos �

for any t 2 Œ0; 1�, where � is the angle between y and z at x.

Now, consider the map

f W Œ0; 1�!R�0; t 7! cos.ta/ cos.tb/C sin.ta/ sin.tb/ cos �:

To complete the proof, it is enough to show this f is nonincreasing. Observe that

f 0.t/D�a sin.ta/ cos.tb/� b cos.ta/ sin.tb/C a cos.ta/ sin.tb/ cos � C b sin.ta/ cos.tb/ cos �

� �a sin.ta/ cos.tb/� b cos.ta/ sin.tb/C a cos.ta/ sin.tb/C b sin.ta/ cos.tb/

�.a� b/ sin.ta/ cos.tb/C .a� b/ cos.ta/ sin.tb/

D�.a� b/ sin.t.a� b//

� 0:

Hence, f is nonincreasing.

The following lemma is an analogue of [50, Proposition 3.3]:

Lemma A.11 Let 0< r 0 � r � arccos.�1=.nC1//. Then the canonical inclusion VRr 0.Sn/�VRr.Sn/
induces an isomorphism on homology.

Proof Let � D fx0; : : : ; xqg be a simplex of VRr.Sn/ and let I� be the image of T� . If � 0 is a face
of � then I� 0 � I� , and thus VRı.I� 0/ is a subcomplex of VRı.I� / for all ı > 0. On the other hand,
VRı.I� / is acyclic for all ı > 0. Indeed, by Theorem A.8, there exists u2 I� such that I� �B�=2.u;Sn/.
So, one can consider the obvious crushing from I� to fxg via the shortest geodesics. So, VRı.I� /
must be contractible by Lemma A.10 and [50, Corollary 2.3]. These considerations show that for
0 < ı0 � ı � arccos.�1=.nC 1//, the correspondence

� 7! VRı 0.I� /

is an acyclic carrier ˆı;ı 0 from VRı.Sn/ to VRı 0.Sn/ (see [68, Section 13]).

We now use the acyclic carrier theorem [68, Theorem 13.3]. This implies that there exists an augmentation
preserving chain map � W C�.VRr.Sn//! C�.VRr 0.Sn// which is carried by ˆr;r 0 . Let � denote the
canonical inclusion from VRr 0.Sn/ into VRr.Sn/. Then �r 0;r 0 is an acyclic carrier for both � ı�� and
the identity of C�.VRr 0.Sn//. By the acyclic carrier theorem again, these two maps are chain homotopic
and thus � ı�� induces the identity on H�.VRr 0.Sn//. The same argument shows that �� ı � induces
the identity on H�.VRr.Sn// (using the acyclic carrier ˆr;r ).
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We will now compare the simplicial homology of VRr.Sn/ with the singular homology ofM . Formula (8)
shows that the correspondence � 7! T� gives rise to a chain map

T r] W C�.VRr.Sn//! SC�.Sn/;

where SC�.Sn/ denotes the singular chain complex of Sn.

The following lemma is an analogue of [50, Proposition 3.4]:

Lemma A.12 If 0<r � arccos.�1=.nC1// then the chain map T] induces an isomorphism on homology.

Proof We shall need a few accessory chain complexes. For ı > 0, denote by SC�.SnI ı/ the subchain
complexes of SC�.Sn/ based on singular simplexes � such that there exists u 2 Sn with the image
of � contained in the open ball Bı.u;Sn/. Recall that the inclusion SC�.SnI ı/ ,! SC�.Sn/ induces an
isomorphism on homology [50, Theorem 31.5].

We shall also use the ordered chain complex C 0�.VRr.Sn//. the group C 0q.VRr.Sn// is free abelian
group on .qC1/–tuples .x0; : : : ; xq/ such that fx0g[ � � � [ fxqg is a simplex of VRr.Sn/. One can view
that C�.VRr.Sn// as a subchain complex of C 0�.VRr.Sn// by associating a q–simplex fx0; : : : ; xqg of
VRr.Sn/ (with our convention that x0 < x1 < � � � < xq for the well-ordering on Sn) the .qC1/–tuple
.x0; : : : ; xq/. It is also classical that this inclusion is homology isomorphism [50, Theorem 3.6]. Observe
that the construction � 7!T� does not require that the vertices of � are all distinct. One can then define T�
for a basis element of C 0�.VRr.Sn// and thus extend to a chain map T r

]
WC 0�.VRr.Sn//!SC�.SnI .r//.

Now, choose r 0 < r such that  .r 0/� 1
2
r . One then has the commutative diagram

C 0�.VRr 0.Sn// SC�.SnI .r 0//

C 0�.VRr.Sn// SC�.SnI .r//

T r
0

]

T r
]

Let � W�q! Sn be a singular simplex whose image is contained in some open ball of radius  .r 0/. The
.qC1/–tuple .�.e0/; : : : ; �.eq// is element of C 0q.VRr.Sn//. This correspondence gives rise to a chain
map

R W SC�.SnI .r 0//! C 0�.VRr.Sn//:

The compositionRıT r
0

]
is equal to the canonical inclusion C 0�.VRr 0.Sn//�C 0�.VRr.Sn// which induces

a homotopy isomorphism by Lemma A.11. Let us now understand the composition

T r] ıR W SC�.SnI .r 0//! SC�.SnI .r//:

Let � W �q ! Sn be a singular simplex such that �.�q/ � B .r 0/.y;Sn/ for some y 2 Sn. Therefore,
� 0 WD T r

]
ıR.�/ also satisfies � 0.�q/� B .r 0/.y;Sn/ since  .r 0/ < �

2
. Hence, � and � 0 are canonically

homotopic (following, for each s 2�q , the shortest geodesic joining �.s/ to � 0.s/). As in the proof of
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the homotopy axiom for singular homology [50, Section 30], these provide a chain homotopy between
T r
]
ıR and the inclusion SC�.SnI .r 0//� SC�.SnI .r//. As said before, this inclusion is known to

induce a homology isomorphism. Therefore, T r
]
ıR induces an isomorphism on homology.

We have shown that both R ıT r
0

]
and T r

]
ıR induce homology isomorphisms. Therefore, T r

]
induces a

morphism both injective and surjective, hence a homology isomorphism.

Lemma A.13 If 0 < r � arccos.�1=.nC 1//, the map

T W jVRr.Sn/j ! Sn

induces an isomorphism on the fundamental groups.

Proof Let  W Œ0; 1�! Sn represent an element of �1.Sn/. Choose large enough positive integer N
such that 1=N is smaller than the Lebesgue number for the covering f�1.Br=2.x;Sn//gx2Sn . Then
dSn

�
.k=N/; ..kC 1/=N /

�
< r for any k D 0; : : : ; N � 1. Hence the path  jŒ.k=N/;..kC1/=N/� is then

canonically homotopic to a parametrization of the shortest geodesic joining .k=N/ to ..kC 1/=N /.
This shows that  is homotopic to a composition  0 of geodesics in open balls of radius 1

2
r . Such a path  0

represents the image of T of an element of �1.jVRr.Sn/j/, the latter being identified with the edge-path
group of the simplicial complex VRr.Sn/ [78, pages 134–139]. Thus, �1T W �1.jVRr.Sn/j/! �1.Sn/

is surjective.

Now, to prove injectivity, suppose �1T .Œ˛�/ D 0 where ˛ W Œ0; 1� ! jVRr.Sn/j is a continuous map
satisfying ˛.0/D ˛.1/. Moreover, again by [78, pages 134–139], one can assume ˛ is induced by an
edge-path of VRr.Sn/. In other words, there is a positive integer N , and x0; : : : ; xN�1; xN D x0 2 Sn

such that dSn.xi ; xiC1/ < r and ˛.i=N /D xi for i D 0; : : : ; N � 1 (here, we view xi as a 0–simplex).
Next, by the assumption, ŒT ı˛�D �1T .Œ˛�/D 0. This implies that there is a homotopy map

H W Œ0; 1�� Œ0; 1�! Sn

such that H.t; 1/D T ı˛.t/ and H.t; 0/DH.0; s/DH.1; s/D x0 for any t; s 2 Œ0; 1�. Next, choose a
large enough positive integer N 0 such that if we triangulate Œ0; 1�� Œ0; 1� with vertices .k=N 0; l=N 0/ for
k; l D 0; : : : ; N 0, each triangle is contained in one of fH�1.Br=2.x;Sn//gx2Sn . Then

dSn
�
H.k=N 0; l=N 0/;H.k0=N 0; l 0=N 0/

�
< r

whenever
�
.k=N 0; l=N 0/; .k0=N 0; l 0=N 0/

�
is an edge of the triangulation. Because of this observation,

one can prove that the edge path H.0; 1/;H.1=N 0; 1/; : : : ;H..N 0 � 1/=N 0; 1/;H.1; 1/ is equivalent
to x0. Also, it is easy to check that two edge paths H.0; 1/;H.1=N 0; 1/; : : : ;H..N 0�1/=N 0; 1/;H.1; 1/
and x0; x1; : : : ; xN�1; xN are equivalent. This means that Œ˛�D 0. So �1T is injective.

We are now in position to prove Theorem 7.1.

Algebraic & Geometric Topology, Volume 24 (2024)



1096 Sunhyuk Lim, Facundo Mémoli and Osman Berat Okutan

Proof of Theorem 7.1 As mentioned in the beginning of this section, one can assume n � 2. Hence,
Sn is simply connected. Therefore, by Lemma A.13, jVRr.Sn/j is also simply connected. Also, by
Lemma A.12 and the isomorphism between simplicial and singular homology [68, Section 34], T induces
an isomorphism on homology. Therefore, T is a homotopy equivalence by [49, Corollary 4.33].
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