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Slopes and concordance of links

ALEX DEGTYAREV

VINCENT FLORENS

ANA G LECUONA

The slope is an isotopy invariant of colored links with a distinguished component, initially introduced
by the authors to describe an extra correction term in the computation of the signature of the splice. It
appeared to be closely related to several classical invariants, such as the Conway potential function or the
Kojima �–function (defined for two-components links). We prove that the slope is invariant under colored
concordance of links. Besides, we present a formula to compute the slope in terms of C–complexes and
generalized Seifert forms.

57K10, 57K14, 57N70

1 Introduction

The slope is an isotopy invariant defined for so-called .1; �/–colored links K [L (with a distinguished
component K given color 0) in rational homology spheres. It is closely related to several classical
invariants (see Degtyarev, Florens and Lecuona [11; 12; 13]), such as the Conway potential and Kojima–
Yamasaki �–function (defined for two-components links; see Cochran [5], Jin [14] and Kojima and
Yamasaki [16]). To certain C�–valued characters of the group �1.S � L/, viz those trivial on ŒK�,
see (2.2), the slope associates a (possibly infinite) complex number. The torus of characters preserving
the coloring is naturally identified with the complex torus .C�/�, and the slope is a function on (a Zariski
open subset of) the variety A.K=L/� .C�/� of admissible characters. This function is rational away
from a certain singular locus determined by the Alexander module of K [L; however, in general, the
values of the slope are not determined by the Alexander module.

Our aim here is to show that the slope is invariant under colored topological concordance of links (see
Theorem 3.2), and to present a method to compute the slope in terms of the Seifert forms of the colored
link L with an extra piece of data; see Theorem 4.3. In the case of algebraically split links of two
components, the invariance of the slope under colored concordance was known for certain values, viz
those where it coincides with the �–function [13, Corollary 3.24]. We show that, outside a certain subset
of .C�/�, the Knotennullstellen — see Conway, Nagel and Toffoli [7] and Nagel and Powell [19] —
(topologically) concordant links have the same slope. More generally, for algebraically split links with an
arbitrary number of components, our result implies that a certain quotient of the Conway functions of
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K [L and L is invariant under colored concordance of K [L (see Corollary 3.4), whereas the Conway
functions themselves are not concordance invariants; see Kawauchi [15].

One can compute the slope directly from the definition using the Fox calculus [13, Section 3.2]. While
allowing for easy computer-assisted computations, this approach is not particularly useful when dealing
with families of examples. In certain cases, the slope can also be computed as a ratio of the Conway
polynomials [13, Theorem 3.1], but this formula is inconclusive at the common roots of the numerator and
denominator (l’Hôpital’s rule does not work); in particular, it leaves wide open the most interesting case,
where both polynomials vanish identically. We suggest yet another method of computing the slope, using
C–complexes. These were introduced by Cooper [8] and extended, in very recent years, by different
groups to compute many link invariants (Cimasoni [3], Cimasoni and Florens [4], Conway, Friedl and
Toffoli [6] and Merz [18] among others) and to study their properties (Amundsen, Anderson, Davis and
Guyer [1], Davis, Martin and Otto [9] and Davis and Roth [10] among others).

The computation of the slope using C–complexes is particularly powerful when dealing with families of
examples as in [12, Example 5.5; 13, Example 3.28]. For the moment, our formula only works in the
special case of K algebraically unlinked from each monochrome sublink Li . For an algebraically split
two-component link, the C–complex used in the computation is merely a Seifert surface.

The paper is organized as follows. In Section 2 we recall the construction and the basic properties of the
slope. Section 3 is devoted to the proof of the concordance invariance. In Section 4 the computation of
the slope in terms of (generalized) Seifert forms is given, and the main formula is proved in Section 5.
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2 Slopes

A �–colored link is an oriented link L in S3 equipped with a surjective map �0.L/� f1; : : : ; �g, called
a coloring. The union of the components of L given the color i is a monochrome sublink denoted by
Li for all i D 1; : : : ; �. Each link has a canonical maximal coloring, where each component is given a
separate color. In this special case, each Li is a knot.

We denote by X WD S3 X TL the complement of a small open tubular neighborhood of L. The group
H1.X/ is free abelian, generated by the classes mC of the meridians of the components C � L. By
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convention, mC is oriented so that mC ı `C D 1 in @TC , where `C is a longitude and the orientation on
@TC is that induced from X . The coloring induces an epimorphism

' W �1.X/�H WD

�M
iD1

Zti

sending mC to ti whenever C � Li . A multiplicative character ! W �1.X/! C� is determined by its
values on the meridians, and the torus of characters preserving the coloring (those that factor through ')
is naturally identified with the complex torus .C�/�. Through this identification, we set !i WD !.'.ti //
and, with a certain abuse of the language, speak about a character ! D .!1; : : : ; !�/. We define

!�1 WD .!�11 ; : : : ; !�1� /; x! WD .x!1; : : : ; x!�/ and !� WD x!�1:

A character ! is called unitary if !� D !, ie j!i j D 1 for all i D 1; : : : ; �. Unitary characters constitute
a torus .S1/� � .C�/�.

Given a topological space X and a multiplicative character ! W�1.X/!C�, we denote by H�.X IC.!//
the homology of X with coefficients in the local system C.!/ twisted by !; see [13, Section 2] for
more details.

We consider mainly colored links with a distinguished component. They are .1; �/–colored links, defined
as .1C�/–colored links of the form

K [LDK [L1[ � � � [L�;

where the knot K is the only component given the distinguished color 0. The linking vector of a
.1; �/–colored link is `k.K;L/ WD .�1; : : : ; ��/ 2 Z�, where �i WD `k.K;Li /.

Definition 2.1 A character ! W �1.X/! C� on a .1; �/–colored link K [L is called admissible if
!.ŒK�/D 1; it is called nonvanishing if !i ¤ 1 for all i D 1; : : : ; �.

The variety of admissible characters is denoted by A.K=L/, and Aı.K=L/�A.K=L/ is the (Zariski)
open subset of admissible nonvanishing characters. Letting � WD `k.K;L/ we have

.2.2/ A.K=L/D f! 2 .C�/� j !� D 1g and Aı.K=L/DA.K=L/\ .C� X 1/�;

where !� WD
Q
!
�i
i . In particular, if �D 0, then Aı.K=L/D .C� X 1/�.

Let XK D S3 X TK[L be the complement of an open tubular neighborhood of K [L. We abbreviate
m WD mK and ` WD `K , where `K is the preferred longitude, also called Seifert longitude, that is, the
unique longitude with zero linking number with K.

Remark 2.3 Any character ! 2 .C�/� extends to a natural character �1.XK/!C� sending m to 1;
for short, this extension is also denoted by !. In this language, the original character ! is admissible if
and only if !.`/D 1.
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We denote by @KXK D @TK the intersection of @XK with the closure of TK and consider the inclusion

i W @KXK ,! @XK ,!XK :

If ! 2Aı.K=L/, the homomorphism

.2.4/ i� WH1.@KXK IC.!//
'
�!H1.@XK IC.!//!H1.XK IC.!//

can be regarded as that induced by the inclusion @XK ,!XK of the boundary, andH1.@KXK IC.!//'C2

is generated by the meridian m and Seifert longitude `.

Definition 2.5 [13] If Ker i� in (2.4) has dimension one, it is generated by a single vector amC b` for
some Œa W b� 2 P1.C/, and the slope of K [L at ! 2Aı.K=L/ is defined as the quotient

.K=L/.!/ WD �
a

b
2C[1:

This notion is extended to all characters ! 2A.K=L/ by “patching” the components Li on which !i D 1.
(This operation results in patching with solid tori the corresponding boundary components of the manifold
X WD S3 XTL.)

Proposition 2.6 [13] The slope at a character ! 2 Aı.K=L/ is well defined if and only if the two
inclusion homomorphisms H1.KIC.�//!H1.S

3XLIC.�//, for � D ! or !�, are either both trivial or
both nontrivial. The slope is finite , .K=L/.!/ 2C, if and only if both homomorphisms are trivial.

Note also (see [13, Section 2.4] for details) that the slope is always defined on a unitary character
! 2 .S1/�: in this case, by twisted Poincaré duality, Ker i� is a Lagrangian subspace of

H1.@KXK IC.!//DH1.@XK IC.!//;

see (2.4), with respect to the twisted intersection form and, hence, dim Ker i� D 1.

Recall (see eg [17]) that the characteristic varieties associated with a �–colored link L are the jump loci

Vr.L/ WD f! 2 .C�/� j dimH1.X IC.!//> rg for r > 0:

They are indeed nested algebraic subvarieties:

.2.7/ .C�/� D V0 � V1 � V2 � � � � with V1.L/D f! j�L.!/D 0g:

The first proper characteristic variety, ie the first member Vr of the sequence (2.7) such that Vr ¤ .C�/�,
is denoted by Vmax WD Vmax.L/. This variety depends on L only, and, if � WD `k.K;L/D 0, it is a proper
algebraic subvariety of the torus A.K=L/D .C�/� of admissible characters.

Remark 2.8 If � WD `k.K;L/¤ 0, the situation is slightly more involved. Let �D n�0, where �0 2 Z�

is a primitive vector. In view of (2.2), the variety A.K=L/ of admissible characters (depending on �
only) splits over Q into irreducible components

Ad WD fˆd .!�
0

/D 0g for d jn;
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where ˆd stands for the cyclotomic polynomial, and we should speak about a separate first proper
characteristic variety V�;dmax .L/¨Ad for each component Ad . In general, V�;dmax .L/¤ Vmax.L/\Ad as
Vmax.L/ may contain Ad . To keep the notation uniform, we occasionally extend it to the case �D 0 via
A0 WDA.K=L/ and V0;0max.L/ WD Vmax.L/.

Theorem 2.9 [13, Theorems 3.19 and 3.21] Let � WD `k.K;L/. For each rational component Ad �
A.K=L/, the slope restricts to a rational function , possibly identical1, on the complement Aı

d
XV�;dmax .L/.

In other words , the slope gives rise to an element of the extended function field Q.Ad /[1.

If V�;dmax .L/D V1.L/\Ad , ie �L does not vanish identically on Ad , one has

.K=L/.!/D�
r 0.1;

p
!/

2rL.
p
!/
2C[1;

where r 0 is the derivative of rK[L.t; � / with respect to t .

3 Concordance of links

Two oriented �–colored links L0 and L1 are concordant if there exists a collection of properly embedded
disjoint locally flat cylinders A WD A1 t � � � tA� in S3 � Œ0; 1� such that

@Ai \ .S
3
� 0/D�L0i and @Ai \ .S

3
� 1/D L1i

for all i D 1; : : : ; �. (In general, each Ai is a union of cylinders.)

3.1 The concordance invariance

In the study of knot and link concordance, there is a subset of the complex numbers of particular
relevance, the so-called Knotennullstellen. This was first introduced in [19] for knots and extended to the
multicomponent link case in [7]. For our purposes, we only need the following definition. Consider the
subset of Laurent polynomials

U WD fp 2 ZŒt˙11 ; : : : ; t˙1� � j p.1; : : : ; 1/D˙1g:

An element ! 2A.K=L/ is called a concordance root if there is a polynomial p 2U such that p.!/D 0.
We denote by Ac.K=L/�A.K=L/ the subset of admissible characters that are not concordance roots,
and abbreviate Aıc.K=L/ WDAc.K=L/\Aı.K=L/. Note that these sets are larger than the set TŠ used
in [7], since we allow for nonunitary characters.

Remark 3.1 If `k.K;L/ D 0, the set Ac.K=L/ is dense in A.K=L/ D .C�/�, as it is a countable
intersection of Zariski open sets. In general, Ac.K=L/ is only dense in the components Ad (see
Remark 2.8) for which d is a prime power (or d D 1 as a special case). Indeed, if d is not a prime power,
then ˆd . � / 2 U and, hence each point of Ad is a concordance root.

Algebraic & Geometric Topology, Volume 24 (2024)
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Theorem 3.2 Let K0 [L0 and K1 [L1 be two concordant .1; �/–colored links. Then Ac.K0=L0/
and Ac.K1=L1/ coincide as subsets of .C�/� and

.K0=L0/.!/D .K1=L1/.!/

for any character ! 2Ac.K0=L0/.

The proof of Theorem 3.2 is postponed till Section 3.2. The next few corollaries are direct consequences
of Theorems 3.2 and 4.3.

Corollary 3.3 Let K0[L0 and K1[L1 be concordant .1; �/–colored links such that `k.Ks; Ls/D 0
for s D 0; 1. Then the slopes K0=L0 and K1=L1 are equal as elements of the extended function field
Q..C�/�/[1. In particular , .K0=L0/.!/D .K1=L1/.!/ for each character ! in the complement of
the (common) first proper characteristic variety Vmax.L

0/D Vmax.L
1/.

Proof If L0 and L1 are concordant, their nullities coincide (see [4, Theorem 7.1]); hence, so do their first
proper characteristic varieties. Therefore, the statement is an immediate consequence of Theorem 3.2, the
rationality of the slope given by Theorem 2.9, and the density of Ac.K=L/ discussed in Remark 3.1.

Corollary 3.4 (of Corollary 3.3 and Theorem 2.9) Let K0 [ L0 and K1 [ L1 be two concordant
.1; �/–colored links such that `k.Ks; Ls/D 0 and �Ls ¥ 0 for s D 0; 1. Then

r 0
K0[L0

.1; Nt /

rL0.Nt /
D
r 0
K1[L1

.1; Nt /

rL1.Nt /
for Nt WD .t1; : : : ; t�/:

Remark 3.5 A priori, the conclusions of Corollaries 3.3 or 3.4 do not need to hold if � WD `k.Ks; Ls/¤0:
it is not even obvious that the first proper varieties V�;dmax .L

s/ or even their indices in (2.7) should coincide
if d is not a prime power. (Note though that we do not know any counterexample, as that would require
going far beyond the known link tables.) The precise statements, based on Remarks 2.8 and 3.1 and
Theorems 3.2 and 2.9, are left to the reader.

Recall that a link is slice if it is concordant to an unlink. It is a boundary link if the components bound a
collection of mutually disjoint Seifert surfaces in S3. For any coloring of the link L, the slope obstruct L
being slice, or concordant to any boundary link. Indeed, the two following corollaries are available for
any coloring:

Corollary 3.6 If K [L is a slice link , then .K=L/.!/D 0 for all ! in Ac.K=L/.

Corollary 3.7 If K [L is concordant to a boundary link , then .K=L/.!/D 0 for all ! in Ac.K=L/.

Corollary 3.7 is in fact a particular case of the following statement (see [4] or Section 4.1 for the definition
of a C–complex):

Corollary 3.8 If K [L is concordant to a .1; �/–colored link K 0[L0 admitting a C–complex F for L
and a Seifert surface S for K disjoint from F , then .K=L/.!/D 0 for all ! 2Ac.K=L/.

Algebraic & Geometric Topology, Volume 24 (2024)
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Corollary 3.8 is actually a consequence of both Theorems 3.2 and 4.3; see Example 4.5.

The following example illustrates that the values of the slope at concordance roots, that is outside the set
Ac.K=L/, might not be invariant under concordance. We observe a similar pattern with knot signatures:
Knotennullstelle unitary characters are precisely where they fail to be concordance invariants [2; 19].
See [7] for the case of colored links.

Example 3.9 LetK[L be the .1; 1/–colored two-component slice link L10n36, whereK is the unknotted
component. ThenrK[L.t; t1/D0 andrL.t1/D .t1�1Ct�11 /2, so by [13, Theorem 3.21], .K=L/.!/D0
unless! is one of the two roots ˛˙ ofrL, which agrees with Theorem 3.2 and Corollary 3.4. (By definition,
˛˙ …Ac.K=L/.) A computation using Fox calculus (see [13, Section 3.2]) gives us .K=L/.˛˙/D1.

In the proof of Theorem 3.2 we will need the following lemma. We state it in our more general setting of
arbitrary, not necessarily unitary, characters, but the proof found in [7] extends literally as it relies on
simple homological algebra.

Lemma 3.10 [7, Lemma 2.16] Let k > 0 be an integer. If .X; Y / is a CW–pair over BZ� such that
Hi .X; Y IZ/D 0 for all 0 6 i 6 k, then also Hi .X; Y IC.!//D 0 for all 0 6 i 6 k and any character
! 2 .C�/� that is not a concordance root.

3.2 Proof of Theorem 3.2

To save space, we abbreviate H!
� .�/ WDH�.�IC.!//.

LetD[A�S3� Œ0; 1� be the concordance, @DD�K0tK1, and consider an open tubular neighborhood
TD[A of D [ A with a fixed trivialization extending Seifert framings (in the tubular neighborhoods
TKs[Ls WD TD[A\ .S

3 � s/ for s D 0; 1) of the links. Define

U WD S3 � Œ0; 1�XTA and UK WD S
3
� Œ0; 1�XTD[A;

and let
Xs WD U \ .S3 � s/ and XsK WD UK \ .S

3
� s/

for s D 0; 1. The inclusions XsK ,! UK send the meridians of Ks [Ls to those of D[A. The relative
Mayer–Vietoris exact sequences applied to

.S3 � I; S3 � s/D .UK ; X
s
K/[ .TD[A; TKs[Ls /D .U;X

s/[ .TA; TLs /

(where T� stands for the closure of a tubular neighborhood T�) give us

.3.11/ H�.UK ; X
s
K/DH�.U;X

s/D 0

for s D 0; 1. In particular, the inclusions XsK ,! UK induce isomorphisms

.3.12/ H1.X
0
K/
'
�!H1.UK/

'
 �H1.X

1
K/

preserving the meridians, and thus identify the three character tori. Since the trivialization of TD
homotopes `0 to `1, we have Ac.K0=L0/DAc.K1=L1/; see Remark 2.3.

Algebraic & Geometric Topology, Volume 24 (2024)
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From now on, patching, if necessary, a few components of both links (and the concordance), we can
assume the character ! nonvanishing, ie ! 2Aıc.K0=L0/. Referring to Remark 2.3 and using the above
identification of the character tori, we can regard ! as a homomorphism �1.UK/! C�. The twisted
Mayer–Vietoris sequence applied to the pairs

.U;Xs/D .UK ; X
s
K/[ .TD; TKs /

gives us, for all i ,

!H!
i .D �S

1; Ks �S1/!H!
i .UK ; X

s
K/˚H

!
i .TD; TKs /!H!

i .U;X
s/!;

where f � g �S1 are the meridians of Ks and D, on which ! is trivial. Since

H!
� .D �S

1; Ks �S1/D 0 and H!
� .UK ; X

s
K/DH

!
� .U;X

s/D 0;

the latter by Lemma 3.10 and (3.11), we obtain H!
� .UK ; X

s
K/D 0 and the inclusions XsK ,! UK induce

isomorphisms
H!
1 .X

0
K/
'
�!H!

1 .UK/
'
 �H!

1 .X
1
K/

preserving the meridians and, similar to (3.12), taking the class of `0 to that of `1. It follows that
am0C b`0 D 0 2H!

1 .X
0
K/ if and only if am1C b`1 D 0 2H!

1 .X
1
K/.

4 Computation with Seifert forms

For the remainder of the paper, unless specified otherwise, we abbreviate

H�.�/ WDH�.�IC/; H�.�/ WDH�.�IC/ and H!
� .�/DH�.�IC.!//:

For a character ! 2 .C� X 1/�, we also abbreviate z!i WD .1�!�1i / for 16 i 6 �.

4.1 Seifert forms

Let LD L1[ � � � [L� � be an oriented �–colored link in S3. A C–complex F for L [3] is a collection
of Seifert surfaces F1; : : : ; F� for the sublinks L1; : : : ; L� that intersect only along (a finite number of)
clasps. Each class in H1.F IZ/ can be represented by a union of proper loops, ie loops ˛ W S1! F such
that the pullback of each clasp is a single (possibly empty) segment. We routinely identify classes, loops
and their images.

Given a vector " 2 f˙1g�, the push-off ˛" of a proper loop ˛ is the loop in S3 XF obtained by a slight
shift of ˛ off each surface Fi in the direction of "i . (If ˛ runs along a clasp c� Fi \Fj , the shift respects
both directions "i and "j .) Due to [4], this operation gives rise to a well-defined homomorphism

‚" WH1.F IZ/!H1.S
3
XF IZ/DH 1.F IZ/

(we use Alexander duality), which can be computed by means of the Seifert forms

�" WH1.F IZ/˝H1.F IZ/! Z given by ˛˝ˇ 7! `k.˛; ˇ"/:

Algebraic & Geometric Topology, Volume 24 (2024)
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Now, given a character ! 2 .C� X 1/�, we define

….!/ WD

�Y
iD1

.1�!i / 2C� and A.!/ WD
X

"2f˙1g�

�Y
iD1

"i!
.1�"i /=2
i ‚" WH1.F /!H 1.F /

and let

.4.1/ E.!/ WD….!�1/�1A.!�1/ WH1.F /!H 1.F /:

Throughout the text we will use the shorthand KerE.!/? to denote the subset of H 1.F / defined as
Ann KerE.!/. It is straightforward that

E�.!/DE.!�1/ and E.!/DE.x!/;

where E� is the adjoint in the sense of linear algebra over an arbitrary field, and for a linear map
L W U ˝C! V ˝C between two complexified real vector spaces, we let L W u 7! L. Nu/. In particular, if
! 2 .S1 X 1/� is unitary, the operator E.!/ is Hermitian, ie E�.!/DE.!/; thus it has a well-defined
signature. Furthermore, if ! is unitary, the operator E.!�1/ differs from H.!/ considered in [4] by the
positive real constant ….!/�1….x!/�1; hence, the two have the same signature and nullity and E can be
used instead of H in the following theorem:

Theorem 4.2 [4] If ! 2 .S1 X 1/� is a nonvanishing unitary character , then �L.!/D signE.!/ and
�L.!/D dim KerE.!/C b0.F /� 1.

In the case of a 1–colored link L, the C–complex reduces to a single Seifert surface F , so that � WD �C

and ‚ WD‚C are the classical Seifert form and operator, respectively. Since, in this case, we obviously
have �� D �� and hence ‚� D‚�, the operator E takes the classical form

E.!�1/D .1�!/�1.‚�!‚�/:

4.2 The statement

Let K [L be a .1; �/–colored link. Assume that �, the linking vector between K and L, vanishes and
fix a C–complex F for L disjoint from K. By Alexander duality H1.S3XF IZ/DH 1.F IZ/, there is a
well-defined cohomology class

� WD ŒK� 2H 1.F IZ/�H 1.F /; � W ˛ 7! `k.˛;K/:

Theorem 4.3 Under the above assumptions , for any character ! 2 Aı.K=L/, consider the operator
E.!/ WH1.F /!H 1.F /; see (4.1). Then

.K=L/.!/D

�
�h˛; �i if � 2 ImE.!/\KerE.!/?;
1 if � … ImE.!/[KerE.!/?I

otherwise , .K=L/.!/ is undefined. In the first case , ˛ 2H1.F / is any class such that E.!/.˛/D �.

Example 4.4 Consider the Whitehead link K [L with the C–complex F depicted in Figure 1, which
is simply a genus-one Seifert surface for the knot L. We want to compute the slope .K=L/.!/ using

Algebraic & Geometric Topology, Volume 24 (2024)
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a

K

a0

b

b0

L

F

Figure 1: The Whitehead link K [L with a C–complex F for L (a Seifert surface in this case)
and chosen bases fa; bg and fa0; b0g of H1.F / and H1.S3 XF /DH 1.F /, respectively.

Theorem 4.3, and to this end we fix the basis fa; bg of H1.F / and fa0; b0g of H1.S3 XF / D H 1.F /

which are illustrated in Figure 1. With respect to these bases,

�C D

�
0 0

1 1

�
; A.!/D

�
0 �!

1 1�!

�
and E.!/D

�
0 .1�!/�1

.1�!�1/�1 1

�
:

It is evident from the figure that � is the same class as a0. One can easily compute a class ˛ 2H1.F /
such that E.!/.˛/D �:

E.!/

�
.1�!�1/.! � 1/

1�!

�
D

�
1

0

�
D �:

Finally, we calculate the slope as �h˛; �i, that is,

.K=L/.!/D .1�!/.1�!�1/;

which coincides with previous computations using Fox calculus; see [13].

Example 4.5 (see Corollary 3.8) LetK[L be a .1; �/–colored link admitting aC–complex F forL and
a Seifert surface S forK disjoint from F . Obviously �D 0 and then .K=L/.!/D 0 for all ! 2Aı.K=L/.
This implies that, by Theorem 3.2, for any .1; �/–colored link concordant to a .1; �/–colored link
bounding a disjoint C–complex and Seifert surface, the slope vanishes at any ! 2Ac.K=L/.

5 Proof of Theorem 4.3

5.1 Geometry of C –complexes

The notation and maps introduced in this section are illustrated in Figure 2. Let L be a �–colored link
and F a C–complex for L. Given a pair i ¤ j of indices, let Cij WD Fi \Fj and Cij WD �0.Cij / be the
set of clasps in the intersection of the surfaces Fi and Fj . Also define C WD

S
Cij and C WD

S
Cij .

By convention, each clasp c 2 Cij is oriented from c\Li to c\Lj , if i < j . The sign of c, denoted by
sg c 2 f˙1g, is the local intersection index Li ıFj D Lj ıFi at the corresponding endpoint of c.
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˛CC1

‚�C˛�‚CC˛

L1 L2

F1 F2

˛

b

c

C C

c1 c2

b1 b2

Figure 2: This minimal example shows a two–colored link LD L1[L2 bounding a C–complex
with two positive claps. In this example CD C12 D fc; bg. The lined subset is the open set V with
two connected components Vc and Vb. The relative class ˛CC1 2H1.F

ı
1 ; @LF

ı
1 / and the element

‚�C˛�‚CC˛ D relCC1 ˛ 2H 1.F / are identified through the isomorphism in Lemma 5.1.

Fix a regular open neighborhood V � F of the union of all clasps, denote by V its closure, and let
F ıi WD Fi XV for all i . Then @F ıi D @LF

ı
i [ @CF

ı
i , where

@LF
ı
i WD @F

ı
i \L and @CF

ı
i WD @F

ı
i \V :

Given a clasp c 2 Cij , let Vc be the connected component of V containing c, and let ci 2H1.F ıi ; @LF
ı
i /

be the arc F ıi \Vc, with its boundary orientation induced from V , as well as the class realized by this arc.

The following statement is a formalization of the intuitive fact that any class in H 1.F / can be represented
as the intersection index with a certain surface S � S3 such that @S\F D¿; on the other hand, any such
surface can be made disjoint from C and, when doing so, each clasp can be “circumvented” in two ways.

In the lengthy computation that follows, we follow the common practice and treat canonically isomorphic
objects as equal, thus simplifying the notation.

Lemma 5.1 The intersection pairing establishes an isomorphism

H 1.F /D

�M
iD1

H1.F
ı
i ; @LF

ı
i /=fci C cj D 0 j c 2 Cij for 16 i < j 6 �g:

Proof Since all groups involved are torsion free, the statement follows from the exact sequence of the
pair .F; V /

0!H1.F /!H1.F; V /!H0.V /!H0.F /;

Algebraic & Geometric Topology, Volume 24 (2024)



1112 Alex Degtyarev, Vincent Florens and Ana G Lecuona

ci

Fi Fj

relij ˛

˛

C C

ci

Fi Fj

relij ˛

˛

C �

Figure 3: The element ˛ 2H1.F / is depicted with both possible orientations. The orientation of
the element relij ˛ depends on the sign of the clasp, as illustrated. Note that the element relij ˛ is
by definition inH 1.F /: the green curve depicted is a representative of that element via Lemma 5.1.

where H1.F; V / D
L
i H1.F

ı
i ; @CF

ı
i /, and applying Poincaré–Lefschetz duality H 1.F ıi ; @CF

ı
i / D

H1.F
ı
i ; @LF

ı
i /.

Let "2 f˙1g�. Pick a class ˛ 2H1.F /, represent it by a proper loop, and denote by ˛"i 2H1.F
ı
i ; @LF

ı
i /

the class realized by the arc ˛ \ Fi pushed off each clasp c 2 Cij in the direction prescribed by "j .
Passing further to the image in H 1.F /, see Lemma 5.1, we obtain a well-defined homomorphism
rel"i WH1.F /!H 1.F /. It is easily seen that rel"i is independent of "i . In fact,

rel"i ˛ D‚
"Œ�i�˛�‚"ŒCi�˛;

where "Œ˙i � is obtained from " by replacing the i th component by ˙1. Furthermore, for an index j ¤ i ,

.5.2/ rel"ŒCj �i ˛� rel"Œ�j �i ˛ D relij ˛ WD
X
c2Cij

sg c � h˛; ci ici :

For the reader’s convenience a local illustration is presented in Figure 3. (Note that h˛; ci ici Dh˛; cj icj for
each clasp c 2 Cij , and hence relij ˛ D relj i ˛ as elements of H 1.F /.) Let � WD Œ�1; : : : ;�1� 2 f˙1g�.
Then, applying the last two equations inductively, for each " 2 f˙1g� we get

.5.3/ ‚"˛�‚�˛ D�
X
i

"i>0

rel�i ˛�
X
i<j

"iD"j>0

relij ˛:

Remark 5.4 It follows from (5.3) that, as in the classical case of a single Seifert surface, all operators ‚"

are almost determined by any one of them, as the relativization homomorphisms rel"i and relij are intrinsic
to the abstract C–complex F with prescribed signs sg c of the clasps. In the classical case, (5.3) takes the
well-known form

‚��‚D rel WH1.F /!H1.F; @F /DH
1.F /;

which explains the notation rel.

Now, given a character ! 2 .C� X 1/�, observe that

A.!/D….!/‚�C
X

"2f˙1g�

�Y
iD1

"i!
.1�"i /=2
i .‚"�‚�/:
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Hence, using (5.3), rearranging the terms, and using the definition z!i D 1�!�1i , we arrive at

.5.5/ E.!/D‚��R.!/ for R.!/ WD
�X
iD1

z!�1i rel�i C
X

16i<j6�

z!�1i z!
�1
j relij :

5.2 Reference sheets

We briefly recall how twisted homology can be computed via coverings. Consider a connected CW–
complex X , an abelian group G, and an epimorphism ' W �1.X/�H1.X IZ/�G. The kernel of ',
which is a normal subgroup of �1.X/, gives rise to a Galois G–covering zX ! X , where the deck
transformation g 2G sends a point Qx 2 zX to the other endpoint of the arc that begins at Qx and covers a
loop representing an element of '�1.g/. This model induces the structure of a ZŒG�–module on C�. zX/
and, for each multiplicative character ! WG!C�, there is a canonical chain isomorphism of complexes
of C.!/–modules

C�.X IC.!//' C�. zX/˝ZG C.!/:

Occasionally, the homomorphism ' WH1.X IZ/!G might not necessarily be surjective. (Typically, this
situation occurs when we restrict the construction to a subcomplex Y �X .) Then, letting G0 WD Im', the
G–covering zX consists of ŒG WG0� connected components, each isomorphic to the G0–covering zX 0, and

C�. zX/' C�. zX
0/˝ZG0 ZG:

However, this isomorphism is no longer canonical; to make it so, we need to fix a reference component
zX 0 � zX . An important special case is that where the restriction of ! to X is trivial. Then we have an

isomorphism

H�.C�. zX/˝ZG C.!//'H!
� .X/DH�.X/;

which is canonical provided that a reference sheet X in the trivial covering zX !X is fixed.

Returning to the original setup, when dealing with the twisted homology we need to avoid the ramification
locus L. Hence, we fix pairwise disjoint tubular neighborhoods Ti � Li and, denoting by Ti the closure
of Ti and letting T WD

S
i Ti and T WD

S
i Ti , introduce

SL WD S
3
XT; FL WD .F [T /XT � SL; CL WD C XT; VL WD V XT and @LVL WD VL\T I

see Figure 4. Here V � C is the neighborhood introduced in Section 5.1, and we assume the radius of T
is small enough that Fi \Tj � V for each i ¤ j .

Formally, we also need to shrink the surfaces F ıi to F ıi XT , changing the boundary @LF ıi to .F ıi XT /\T ;
however, using the obvious isomorphisms in (co)homology, we keep the notation .F ıi ; @LF

ı
i / for these

new pairs.
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Figure 4: A minimal example of the set FL D .F [T /XT consisting of the gray shaded surface
together with the two depicted tori. The lined subset is VL. To the right we have a copy of a
connected component of VL with the subset @LVL highlighted in red.

We make use of the isomorphisms

H!
� .SL; FL/'H�.SL; FL/DH�.S; F /;.5.6/

H!
� .F

ı
i ; @LF

ı
i /'H�.F

ı
i ; @LF

ı
i /;.5.7/

H!
� .VL; @LVL/DH

!
� .CL; @CL/'H�.CL; @CL/DH�.C; @C /;.5.8/

etc, and, in order to fix the (not quite canonical in the context of a common G–covering) isomorphisms
denoted by ', we need a coherent choice of reference sheets, upon which we change the notation to D.
(The other isomorphisms are standard combinations of excision and homotopy equivalences, and thus are
canonical.) To this end, we consider a “negative” collar (trace of the push-off in the negative direction)
N WD .�ı; 0/� .F XT / for ı� radius.T /, and, letting S 0L WD SL XN , use excision to identify

H�.SL; FL/DH�.S
0
L; @S

0
L/ and H!

� .SL; FL/DH
!
� .S

0
L; @S

0
L/:

Since the covering is obviously trivial over S 0L, we can choose and fix a reference sheet S 0L � zSL and use
it for (5.6). Then it remains to observe that this sheet contains a single copy of each of F ıi and CL, which
are used for (5.7) and (5.8), respectively.

Convention 5.9 We have then thatH!
2 .SL; FL/DH2.SL; FL/ andH1.FL/DH!

1 .FL/. For the twisted
boundary operators like

H2.SL; FL/!H1.FL/;

we assume that @! D
P
i .@
�C!�1i @C/, where @C is the lower boundary (the C superscript is related to

the orientation conventions).

Algebraic & Geometric Topology, Volume 24 (2024)



Slopes and concordance of links 1115

Convention 5.10 The “reference lift” of a loop is the loop in the covering whose endpoint is in the
reference sheet.

5.3 The homology of F

Throughout this section, we assume that F is connected and that � ¤ 0. (The general case will be treated
later, see Figure 7.) Recall from Lemma 5.1 that H 1.F / is a quotient of

L
H1.F

ı
i ; @LF

ı
i / by relations

of the form ci C cj D 0. We deduce the following description of the twisted homology of F :

Lemma 5.11 The assignment � WH 1.F /!H!
1 .FL; @T /DH

!
1 .FL/ given by

�X
iD1

˛i 7! inclusion�
�M
iD1

z!i˛i for ˛i 2H1.F ıi ; @LF
ı
i /

is a well-defined isomorphism.

Proof The isomorphisms H!
� .FL; @T /DH

!
� .FL/ follow from the assumption !i ¤ 1 for each i , and

hence H!
� .@T /D 0. We compute H!

1 .FL; @T / using the relative Mayer–Vietoris sequence associated to
the decomposition F XT D VL[

�S�
iD1 F

ı
i

�
:

.5.12/ H!
1 .@VL; @LVL/!H!

1 .VL; @LVL/˚

�M
iD1

H!
1 .F

ı
i ; @LF

ı
i /

p
�!H!

1 .FL; @T /! 0:

The last term is H!
0 .@VL; @LVL/ D 0; see (5.8) and Figure 4. By (5.8), H!

1 .@VL; @LVL/ D
L

Cci ,
where the sum runs over all c2Cij and all pairs 16 i ¤ j 6�. The inclusions induce the homomorphisms

.5.13/
ci 7! ci 2H

!
1 .F

ı
i ; @LF

ı
i /DH1.F

ı
i ; @LF

ı
i / (see (5.7));

ci 7! sg.j � i/ � sg c � z!j c 2H!
1 .VL; @LVL/D

M
c2C

Cc:

(To follow the above formulas, the reader might find helpful the schematics of the behavior of the twisted
homology in Figure 5.) Identifying the two images of each generator ci , we conclude that the inclusions
F ıi ,! FL induce an isomorphism

�M
iD1

H1.F
ı
i ; @LF

ı
i /=f z!i ci C z!j cj D 0 j c 2 Cij g DH

!
1 .FL; @T /;

and the isomorphism in the statement follows from Lemma 5.1.

Corollary 5.14 Given a proper loop ˛ � F , consider its push-off ˛� and its “trace” S� � S3, ie a
cylinder contained in a regular neighborhood of ˛ and such that S�\F D ˛ and @S� D ˛�˛�. Then
the twisted boundary @!S�C˛� is equal to �.R.!/.˛// 2H!

1 .FL/; see (5.5) and Lemma 5.11.
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mj !jmj

mi

!imi

!2i mi

c

!�1j c

!i c

!�1i c

!j c

cjci
c

mimj

Fi
Fj

!�1j mj

Figure 5: To the left is a local picture of a positive clasp with i < j . To the right, the schematics
of the behavior of the lifted curves on a covering space. Shown in red are the chosen reference lifts.

Proof Clearly, using Lemma 5.11, @!S�C˛� is homologous to the image under p in (5.12) of the cycle
�X
iD1

rel�i ˛C
X

16i<j6�

X
c2Cij

h˛; ci icI

see Figure 6 for a simple example. Then, by (5.13), for all i < j and c 2 Cij , we have cD sg c � z!�1j ci in
H!
1 .FL/ and, using (5.2), we obtain

�X
iD1

rel�i ˛C
X

16i<j6�

z!�1j

X
c2Cij

sg ch˛; ci ici
(5.2)
D

�X
iD1

rel�i ˛C
X

16i<j6�

z!�1j relij ˛

D

�X
iD1

z!i

�
z!�1i rel�i ˛C

�X
jDiC1

z!�1i z!
�1
j relij ˛„ ƒ‚ …

Ri

�
:

Now, by (5.5), each Ri is the i th component of (a representative of) R.!/.˛/, and the statement follows
from the definition of � in Lemma 5.11.

We proceed with the computation of the twisted homology of SL and SLXK. We have fixed isomorphisms

H!
� .SL; FL/DH�.S; F / and H!

� .SL XK;FL/DH�.S XK;F /I

see (5.6). In particular,
H!
1 .SL; FL/DH

!
1 .SL XK;FL/D 0

(recall that we assume F is connected and � ¤ 0) and, by the respective exact sequences of pairs .S; F /
and .S XK;F /,

H!
2 .SL; FL/DH1.F / and H!

2 .SL XK;FL/D Ker � �H1.F /:
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rel�1 ˛

L1 L2

F1 F2

˛

h˛; c1ic

C C

c1 c2

b1 b2

rel�2 ˛

˛�

h˛; b1ib

Figure 6: The push-off ˛� is to be thought of as located “behind” the surface F1 [ F2. With
the orientations depicted, together ˛ and �˛� are the obvious boundary of the cylinder S� (not
in the picture). The different elements of the cycle described at the beginning of the proof of
Corollary 5.14, rel�i ˛ and h˛; ci ic, are highlighted.

Now, from the corresponding twisted exact sequences, and with the isomorphism � given by Lemma 5.11
taken into account, we arrive at

.5.15/ H!
1 .SL/DH

1.F /= Im d and H!
1 .SL XK/DH

1.F /=d.Ker �/;

where d is the composed map

.5.16/ d WH1.F /
@�1
��!H2.S; F /DH

!
2 .SL; FL/

@!
��!H!

1 .FL/
��1
��!H 1.F /:

5.4 The twisted homomorphisms

We still assume that F is connected and � ¤ 0. By (5.15), for X WD SL or X WD SLXK, we have natural
epimorphisms

.5.17/ �X WH
1.F /�H!

1 .X/:

Composing the inclusion with Alexander duality, we obtain a homomorphism

D WH!
1 .X XFL/DH1.X XFL/!H1.S

3
XF / '�!H 1.F /:
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Consider also the “orthogonal projection”

prX WH
!
1 .X XFL/!H!

1 .X XFL/ given by
�
˛ 7! ˛ if X D SL;
˛ 7! ˛� `k.˛;K/m if X D SL XK:

Lemma 5.18 For X D SL or SL XK and any class ˛ 2H!
1 .X XFL/, the image of prX .˛/ under the

inclusion homomorphism H!
1 .X XFL/!H!

1 .X/ is �X .D.˛//.

Proof The statement is a geometric version of Lemma 5.11. The class ˛0 WD prX .˛/ is represented by
a cycle in X XFL, which bounds a Seifert surface G � S3 XK. (This is why we subtract `k.˛;K/m in
the case X D SLXK; we want a Seifert surface disjoint from K.) Set GL WDG\SL. We can choose the
surfaceGL so that it cuts on F a collection of arcs ˛i �F ıi with @˛i �@LF ıi . Then D.˛0/ is represented by

�X
iD1

˛i 2

�M
iD1

H1.F
ı
i ; @LF

ı
i /!H 1.F /

(see Lemma 5.1), whereas the twisted boundary is

.5.19/ @!GL�˛
0
D�

�X
iD1

z!i˛i D��.D.˛//;

(see Lemma 5.11), implying that ˛0D �.D.˛// in H!
1 .FL/DH

1.F /. We complete the proof by passing
to the quotient using �X .

Corollary 5.20 For X D SL or SLXK, let ˛ 2H!
1 .X XFL/ be the class of ŒK� or `, respectively. Then

the image of ˛ in H!
1 .X/ is �X .�/.

Lemma 5.21 The homomorphism d in (5.16) equals �E.!/.

Lemma 5.22 For each ˛ 2H1.F /, one has

�SLXK.E.!/.˛//D�h˛; �im

in H!
1 .SL XK/; see (5.17).

Proof of Lemmas 5.21 and 5.22 Let ˛�F be a proper loop and consider its push-off ˛��S3X.K[F /.
Let S� be the trace cylinder as in Corollary 5.14, and let G be a Seifert surface bounded by ˛�. (For
Lemma 5.22, we replace ˛� with its projection pr.˛�/D ˛� � h˛; �im in order to keep S in S3 XK;
details are left to the reader.)

Defining GL WD G \ SL and letting S WD GL [ S�, we have @S D ˛. On the other hand, the twisted
boundary

@!S D .@!S�C˛�/C .@!GL�˛
�/D �.R.!/.˛//� �.‚�.˛//

is given by Corollary 5.14 and (5.19), and the statements follow from (5.5).
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ˇ
F F 0

Figure 7: To the left is a local picture of a disconnectedC–complexF . To the right, the complexF 0,
obtained by adding a pair of close clasps to F . We have H1.F 0IZ/DH1.F IZ/˚Zˇ.

Corollary 5.23 (of Lemma 5.21 and (5.15)) There are canonical , up to multiplication by integral
powers of !i s , isomorphisms

H!
1 .SL/DH

1.F /= ImE.!/ and H!
1 .SL XK/DH

1.F /=E.!/.Ker �/:

Proof of Theorem 4.3 If � D 0, then K bounds a Seifert surface disjoint from F , and hence K=L� 0,
which agrees with the statement of the theorem.

Therefore, till the rest of the proof we assume that � ¤ 0. Assume also that F is connected, so that
we can use the results of Sections 5.3 and 5.4. Abbreviate E WD E.!/, so that E� D E.!�1/ and
KerE? D ImE�. Then, in view of Corollary 5.23, the last two cases in the statement, as well as the
finiteness of the slope in the first case, are given by Proposition 2.6. To compute this finite slope in the
first case, we compare Corollary 5.20 and Lemma 5.22: if � DE.˛/, then `D�h˛; �im in H!

1 .SLXK/.

Finally, if F is not connected, we can inductively reduce the number of components by introducing pairs
of close clasps as in Figure 7. If F 0 is obtained from F by introducing one such pair connecting two
distinct components, then H1.F 0IZ/DH1.F IZ/˚Zˇ, where ˇ is a small proper loop running through
the two clasps, and, extending the existing pair of dual bases by ˇ 2H1.F / and ˇ� 2H 1.F /, the other
data are

‚0" D‚"˚ Œ0� and �0 D �˚ Œ0�:

Obviously, this modification does not affect the result of the computation.
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