Download this article
 Download this article For screen
For printing
Recent Issues

Volume 25
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
Vietoris–Rips persistent homology, injective metric spaces, and the filling radius

Sunhyuk Lim, Facundo Mémoli and Osman Berat Okutan

Algebraic & Geometric Topology 24 (2024) 1019–1100
Bibliography
1 M Adamaszek, H Adams, The Vietoris–Rips complexes of a circle, Pacific J. Math. 290 (2017) 1 MR3673078
2 M Adamaszek, H Adams, F Frick, Metric reconstruction via optimal transport, SIAM J. Appl. Algebra Geom. 2 (2018) 597 MR3871057
3 M Adamaszek, H Adams, E Gasparovic, M Gommel, E Purvine, R Sazdanovic, B Wang, Y Wang, L Ziegelmeier, Vietoris–Rips and Čech complexes of metric gluings, from: "34th international symposium on computational geometry" (editors B Speckmann, C D Tóth), Leibniz Int. Proc. Inform. 99, Schloss Dagstuhl. Leibniz-Zent. Inform. (2018) MR3824247
4 M Adamaszek, H Adams, S Reddy, On Vietoris–Rips complexes of ellipses, J. Topol. Anal. 11 (2019) 661 MR3999516
5 H Adams, J Bush, J Mirth, Operations on metric thickenings, from: "Proceedings of the 3rd annual international applied category theory conference 2020" (editors D I Spivak, J Vicary), Electron. Proc. Theor. Comput. Sci. 333, EPTCS (2021) 261 MR4259620
6 H Adams, B Coskunuzer, Geometric approaches to persistent homology, SIAM J. Appl. Algebra Geom. 6 (2022) 685 MR4522864
7 H Adams, F Mémoli, M Moy, Q Wang, The persistent topology of optimal transport based metric thickenings, preprint (2021) arXiv:2109.15061
8 N Aronszajn, P Panitchpakdi, Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956) 405 MR0084762
9 S Awodey, Category theory, 52, Oxford Univ. Press (2010) MR2668552
10 G Azumaya, Corrections and supplementaries to my paper concerning Krull–Remak–Schmidt’s theorem, Nagoya Math. J. 1 (1950) 117 MR0037832
11 U Bauer, Ripser, C++ code (2015)
12 U Bauer, M Lesnick, Induced matchings of barcodes and the algebraic stability of persistence, from: "Computational geometry" (editors S W Cheng, O Devillers), ACM (2014) 355 MR3382316
13 A Blumberg, M Lesnick, Universality of the homotopy interleaving distance, Trans. Amer. Math. Soc. 376 (2023) 8269 MR4669297
14 M Bonk, O Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000) 266 MR1771428
15 D Burago, Y Burago, S Ivanov, A course in metric geometry, 33, Amer. Math. Soc. (2001) MR1835418
16 G Carlsson, Topology and data, Bull. Amer. Math. Soc. 46 (2009) 255 MR2476414
17 G Carlsson, V de Silva, Zigzag persistence, Found. Comput. Math. 10 (2010) 367 MR2657946
18 G Chaparro Sumalave, Vietoris–Rips complexes of the circle and the torus, master’s thesis, Universidad de los Andes (2016)
19 F Chazal, D Cohen-Steiner, L J Guibas, F Mémoli, S Y Oudot, Gromov–Hausdorff stable signatures for shapes using persistence, Computer Graphics Forum 28 (2009) 1393
20 F Chazal, W Crawley-Boevey, V de Silva, The observable structure of persistence modules, Homology Homotopy Appl. 18 (2016) 247 MR3575998
21 F Chazal, S Y Oudot, Towards persistence-based reconstruction in Euclidean spaces, from: "Computational geometry" (editor M Teillaud), ACM (2008) 232 MR2504289
22 F Chazal, V de Silva, M Glisse, S Oudot, The structure and stability of persistence modules, Springer (2016) MR3524869
23 F Chazal, V de Silva, S Oudot, Persistence stability for geometric complexes, Geom. Dedicata 173 (2014) 193 MR3275299
24 S Chowdhury, F Mémoli, A functorial Dowker theorem and persistent homology of asymmetric networks, J. Appl. Comput. Topol. 2 (2018) 115 MR3873182
25 W Crawley-Boevey, Decomposition of pointwise finite-dimensional persistence modules, J. Algebra Appl. 14 (2015) MR3323327
26 J Curry, The fiber of the persistence map for functions on the interval, J. Appl. Comput. Topol. 2 (2018) 301 MR3927355
27 C J A Delfinado, H Edelsbrunner, An incremental algorithm for Betti numbers of simplicial complexes on the 3–sphere, Comput. Aided Geom. Design 12 (1995) 771 MR1365107
28 T K Dey, F Mémoli, Y Wang, Topological analysis of nerves, Reeb spaces, mappers, and multiscale mappers, from: "33rd international symposium on computational geometry" (editors B Aronov, M J Katz), Leibniz Int. Proc. Inform. 77, Schloss Dagstuhl. Leibniz-Zent. Inform. (2017) 36 MR3685708
29 T tom Dieck, Partitions of unity in homotopy theory, Compositio Math. 23 (1971) 159 MR0293625
30 A W M Dress, Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces, Adv. in Math. 53 (1984) 321 MR0753872
31 A Dress, K T Huber, J Koolen, V Moulton, A Spillner, Basic phylogenetic combinatorics, Cambridge Univ. Press (2012) MR2893879
32 L E Dubins, G Schwarz, Equidiscontinuity of Borsuk–Ulam functions, Pacific J. Math. 95 (1981) 51 MR0631658
33 J Dugundji, Absolute neighborhood retracts and local connectedness in arbitrary metric spaces, Compositio Math. 13 (1958) 229 MR0113217
34 H Edelsbrunner, J Harer, Persistent homology: a survey, from: "Surveys on discrete and computational geometry" (editors J E Goodman, J Pach, R Pollack), Contemp. Math. 453, Amer. Math. Soc. (2008) 257 MR2405684
35 H Edelsbrunner, J L Harer, Computational topology: an introduction, Amer. Math. Soc. (2010) MR2572029
36 H Edelsbrunner, D Letscher, A Zomorodian, Topological persistence and simplification, Discrete Comput. Geom. 28 (2002) 511 MR1949898
37 H Federer, Geometric measure theory, 153, Springer (1969) MR0257325
38 A Fomenko, D Fuchs, Homotopical topology, 273, Springer (2016) MR3497000
39 P Frosini, A distance for similarity classes of submanifolds of a Euclidean space, Bull. Austral. Math. Soc. 42 (1990) 407 MR1083277
40 P Frosini, Measuring shapes by size functions, from: "Intelligent robots and computer vision, X: Algorithms and techniques" (editor D P Casasent), SPIE Proceedings 1607, SPIE (1992) 122
41 P Frosini, C Landi, Size functions and morphological transformations, Acta Appl. Math. 49 (1997) 85 MR1482881
42 H Gakhar, J A Perea, Künneth formulae in persistent homology, preprint (2019) arXiv:1910.05656
43 M Gameiro, Y Hiraoka, I Obayashi, Continuation of point clouds via persistence diagrams, Phys. D 334 (2016) 118 MR3545973
44 E Gasparovic, M Gommel, E Purvine, R Sazdanovic, B Wang, Y Wang, L Ziegelmeier, A complete characterization of the one-dimensional intrinsic Čech persistence diagrams for metric graphs, from: "Research in computational topology" (editors E W Chambers, B T Fasy, L Ziegelmeier), Assoc. Women Math. Ser. 13, Springer (2018) 33 MR3905000
45 R Ghrist, A Muhammad, Coverage and hole-detection in sensor networks via homology, from: "Fourth international symposium on information processing in sensor networks" (editor A Savvides), IEEE (2005) 254
46 M Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983) 1 MR0697984
47 M Gromov, Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75 MR0919829
48 M Gromov, Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser (2007) MR2307192
49 A Hatcher, Algebraic topology, Cambridge Univ. Press (2002) MR1867354
50 J C Hausmann, On the Vietoris–Rips complexes and a cohomology theory for metric spaces, from: "Prospects in topology" (editor F Quinn), Ann. of Math. Stud. 138, Princeton Univ. Press (1995) 175 MR1368659
51 S T Hu, Theory of retracts, Wayne State Univ. Press (1965) 234 MR0181977
52 J R Isbell, Six theorems about injective metric spaces, Comment. Math. Helv. 39 (1964) 65 MR0182949
53 P Joharinad, J Jost, Topological representation of the geometry of metric spaces, preprint (2020) arXiv:2001.10262
54 M Katz, The filling radius of two-point homogeneous spaces, J. Differential Geom. 18 (1983) 505 MR0723814
55 M Katz, Diameter-extremal subsets of spheres, Discrete Comput. Geom. 4 (1989) 117 MR0973541
56 M Katz, On neighborhoods of the Kuratowski imbedding beyond the first extremum of the diameter functional, Fund. Math. 137 (1991) 161 MR1110030
57 M Katz, The rational filling radius of complex projective space, Topology Appl. 42 (1991) 201 MR1137947
58 M G Katz, Systolic geometry and topology, 137, Amer. Math. Soc. (2007) MR2292367
59 M Kılıç, Ş Koçak, Tight span of subsets of the plane with the maximum metric, Adv. Math. 301 (2016) 693 MR3539386
60 U Lang, Injective hulls of certain discrete metric spaces and groups, J. Topol. Anal. 5 (2013) 297 MR3096307
61 M Lesnick, The theory of the interleaving distance on multidimensional persistence modules, Found. Comput. Math. 15 (2015) 613 MR3348168
62 S Lim, F Mémoli, O B Okutan, Vietoris–Rips persistent homology, injective metric spaces, and the filling radius, preprint (2020) arXiv:2001.07588
63 S Lim, F Mémoli, Z Smith, The Gromov–Hausdorff distance between spheres, Geom. Topol. 27 (2023) 3733 MR4674839
64 L Liu, The mapping properties of filling radius and packing radius and their applications, Differential Geom. Appl. 22 (2005) 69 MR2106377
65 F Mémoli, A distance between filtered spaces via tripods, preprint (2017) arXiv:1704.03965
66 F Mémoli, O B Okutan, Quantitative simplification of filtered simplicial complexes, Discrete Comput. Geom. 65 (2021) 554 MR4212978
67 F Mémoli, O B Okutan, Q Wang, Metric graph approximations of geodesic spaces, preprint (2018) arXiv:1809.05566
68 J R Munkres, Elements of algebraic topology, Addison-Wesley (1984) MR0755006
69 A Nabutovsky, Linear bounds for constants in Gromov’s systolic inequality and related results, Geom. Topol. 26 (2022) 3123 MR4540902
70 P Niyogi, S Smale, S Weinberger, Finding the homology of submanifolds with high confidence from random samples, Discrete Comput. Geom. 39 (2008) 419 MR2383768
71 J A Perea, Persistent homology of toroidal sliding window embeddings, from: "2016 IEEE international conference on acoustics, speech and signal processing" (editors M Dong, T F Zheng), IEEE (2016) 6435
72 J A Perea, Künneth formuale in persistent homology, (2018)
73 V Robins, Towards computing homology from finite approximations, Topology Proc. 24 (1999) 503 MR1876386
74 M Schmahl, Structure of semi-continuous q–tame persistence modules, Homology Homotopy Appl. 24 (2022) 117 MR4404959
75 C Semple, M Steel, Phylogenetics, 24, Oxford Univ. Press (2003) MR2060009
76 V de Silva, G Carlsson, Topological estimation using witness complexes, from: "Symposium on point-based graphics 2004" (editors M Gross, H Pfister, M Alexa, S Rusinkiewicz), The Eurographics Association (2004) 157
77 V de Silva, R Ghrist, Coverage in sensor networks via persistent homology, Algebr. Geom. Topol. 7 (2007) 339 MR2308949
78 E H Spanier, Algebraic topology, Springer (1981) MR0666554
79 A Verri, C Uras, P Frosini, M Ferri, On the use of size functions for shape analysis, Biol. Cybern. 70 (1993) 99
80 L Vietoris, Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen, Math. Ann. 97 (1927) 454 MR1512371
81 Ž Virk, 1–dimensional intrinsic persistence of geodesic spaces, J. Topol. Anal. 12 (2020) 169 MR4080099
82 Ž Virk, Rips complexes as nerves and a functorial Dowker-nerve diagram, Mediterr. J. Math. 18 (2021) MR4218370
83 F H Wilhelm Jr., On the filling radius of positively curved manifolds, Invent. Math. 107 (1992) 653 MR1150606
84 T Yokota, On the filling radius of positively curved Alexandrov spaces, Math. Z. 273 (2013) 161 MR3010155