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Milnor invariants of braids and welded braids up to homotopy

JACQUES DARNÉ

We consider the group of pure welded braids (also known as loop braids) up to (link-)homotopy. The
pure welded braid group classically identifies, via the Artin action, with the group of basis-conjugating
automorphisms of the free group, also known as the McCool group P†n. It has been shown recently that
its quotient by the homotopy relation identifies with the group hP†n of basis-conjugating automorphisms
of the reduced free group. We describe a decomposition of this quotient as an iterated semidirect product
which allows us to solve the Andreadakis problem for this group, and to give a presentation by generators
and relations. The Andreadakis equality can be understood, in this context, as a statement about Milnor
invariants; a discussion of this question for classical braids up to homotopy is also included.
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Introduction

The present paper is a contribution to the theory of loop braids (also called welded braids), via the study
of their finite-type invariants. Finite-type invariants were defined by Vassiliev [1990] and were much
studied during the 1990s (see for instance [Gusarov 1994; Kontsevich 1993]), giving birth to a whole field
of research, which is still very active nowadays. Finite-type invariants of string-links and braids have been
the focus of several papers in the late 1990s, by Stanford [1996; 1998], Mostovoy and Willerton [2002],
and Habegger and Masbaum [2000]. By then, finite-type invariants of braids were fairly well understood.
Meanwhile, a generalization of finite-type invariants to virtual knotted objects was introduced in [Gusarov
et al. 2000]. However, it was only much later that this definition was used and studied for welded knotted
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1278 Jacques Darné

objects [Bar-Natan and Dancso 2016; 2017]. In the meantime, the interest for welded knotted objects
had grown, as the link between welded diagrams, four-dimensional topology and automorphisms of the
free group had become more apparent [Baez et al. 2007; Fenn et al. 1997; Satoh 2000]; see [Damiani
2017] for a survey of welded braids. In recent years, the study of these objects has been flourishing; see
for instance [Audoux 2016; Bardakov and Bellingeri 2014; Damiani 2019; Kamada 2007; Meilhan and
Yasuhara 2019; Nakamura et al. 2018]. In particular, link-homotopy for these objects (corresponding to
self-virtualization moves in welded diagrams) has been the focus of several recent papers [Audoux et al.
2017a; 2017b; Audoux and Meilhan 2019].

The invariants under scrutiny in this paper appear naturally as filtrations on groups. Precisely, suppose
G is a group whose elements are the objects one is interested in. For example, these could be mapping
classes of a manifold, automorphisms of a group, (welded) braids up to isotopy, (welded) braids up to
homotopy, etc. Suppose we are also given a filtration of G by subgroups: G DG1 �G2 � � � � . Then one
can consider the class Œg�d of an element g 2G inside G=GdC1 and hope to understand g through its
approximations Œg�d , which become finer and finer as d grows to infinity. These approximation are often
easier to understand than g. For instance, Œg�d could be described by a finite family of integers (or other
simple mathematical objects), that we would call invariants of degree at most d .

With this point of view, the question of comparing different filtrations on the same group (such as the
Andreadakis problem — see Section 0.1) can be interpreted as a problem of comparison between different
kinds of invariants. Conversely, comparing different notions of invariants on elements of a group can
often be interpreted as a problem of comparison between different filtrations on the group, provided that
these invariants are indexed by some kind of degree measuring their accuracy, and that they possess some
compatibility with the group structure. It is mainly the latter point of view that we adopt below, working
with filtrations on groups, with a rather algebraic point of view, getting back to the language of invariants
only to interpret our results. This is motivated by the fact that the invariants we consider are strongly
compatible with the group structures: not only do they come from filtrations by subgroups, as described
above, but these filtrations are strongly central, a very nice property allowing us to study them using Lie
algebras. Moreover, all the filtrations we consider do have a natural algebraic definition.

We consider mainly three kinds of filtrations (or invariants):

� Minor invariants correspond to Andreadakis-like filtrations (or the Johnson filtration for the
mapping class group). These are defined for automorphism groups of groups, and their subgroups.

� Finite-type (or Vassiliev) invariants with coefficients in a fixed commutative ring k correspond
to the dimension filtration Dk

�G DG \ .1C I
�/, where I is the augmentation ideal of the group

ring kG.

� The lower central series on G is the minimal strongly central filtration on G.

The minimality of the lower central series means that the corresponding invariants of degree d contain as
much information as possible for invariants possessing this compatibility with the group structure. Since
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the two other filtrations are also strongly central, and the Milnor invariants are of finite type, the above
list goes from the coarsest invariants to the finest ones. Thus, although we will not always emphasize this
in the sequel, the reader should keep in mind that a statement of the form “Milnor invariants of degree at
most d distinguish classes of elements g 2G modulo �dC1G” implies that Milnor invariants of degree at
most d are universal finite-type invariants of degree at most d , and that finite-type invariants of degree at
most d distinguish classes of elements g 2G modulo �dC1G.

Main results

We are interested in the group of pure welded braids (or pure welded string-links) up to homotopy. This
group identifies, through a version of the Artin action up to homotopy, with the group hP†n of (pure)
basis-conjugating automorphisms of the reduced free group RFn (see Definition 1.2). The key result of
this paper is the decomposition theorem:

Theorem 3.1 There is a decomposition of hP†n into a semidirect product

hP†n Š

��Y
i<n

N.xn/=xi

�
Ì .RFn=xn/

�
Ì hP†n�1;

where N.xn/=xi is the normal closure of xn inside RFn=xi , and the action of RFn=xn Š RFn�1 on the
product is the diagonal one. Moreover , the semidirect product on the right is an almost direct one.

The reduced free group is studied in Section 1. In particular, using the version of the Magnus expansion
for the reduced free groups introduced by Milnor, which takes values in the reduced free algebra, we are
able to show an analogue of Magnus’s theorem:

Theorem 1.12 The Lie ring of the reduced free group identifies with the reduced free Lie algebra on
the same set of generators.

The restriction hP†n\A�.RFn/ of the Andreadakis filtration A�.RFn/ of RFn encodes Milnor invariants
of pure welded braids. We are able to determine the structure of the associated graded Lie algebra in
Section 2.1:

Theorem 2.9 The Lie algebra L.hP†n\A�.RFn// identifies , via the Johnson morphism , to the algebra
of tangential derivations of the reduced free algebra.

On the other hand, the decomposition of hP†n (Theorem 3.1) induces a decomposition of its lower
central series, which in turn gives a decomposition of the associated Lie algebra (Theorem 3.8). We are
thus able to compare the lower central series and the Andreadakis filtrations via a comparison of their
associated graded Lie algebras, getting the promised comparison result, which we also show for the group
hPn of classical pure braids up to homotopy, embedded into Aut.RFn/ via the Artin action:

Theorem 3.9 The Andreadakis equality holds for G D hPn and G D hP†n; that is ,

G \A�.RFn/D ��G:
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1280 Jacques Darné

In other words , Milnor invariants of degree at most d classify braids up to homotopy (resp. welded braids
up to homotopy) up to elements of �dC1.hPn/ (resp. �dC1.hP†n/).

Notice that there is no obvious link between this theorem and its analogue up to isotopy. On the one hand,
for classical braids up to isotopy, the fact that Milnor invariants can detect the lower central series of Pn
has been known for a long time [Habegger and Masbaum 2000; Mostovoy and Willerton 2002], but the
result up to homotopy is new, and cannot be deduced from the former (as far as I know). On the other
hand, for (pure) welded braids (that is, for basis-conjugating automorphisms of the free group), the result
up to isotopy is still open. In fact, although [Bardakov 2003, Theorem 1] gives a decomposition of P†n
similar to our decomposition theorem (see also Remarks 3.4 and 3.6), the pieces of this decomposition
are poorly understood, far from the fairly complete description in our setting. Besides, one feature of
hPn and hP†n which makes them very different from Pn and P†n (and in fact, much easier to handle)
is their nilpotence, which is used throughout the paper.

Finally, we use our methods to give a presentation of the group hP†n. A classical result of McCool
[1986] asserts that the group P†n of (pure) basis-conjugating automorphisms of the free group Fn is the
group generated by generators �ij .i ¤ j / submitted to the McCool relations:

Œ�ik�jk; �ij �D 1 for i; j; k pairwise distinct;

Œ�ik; �jk�D 1 for i; j; k pairwise distinct;

Œ�ij ; �kl �D 1 if fi; j g\ fk; lg D¿:

We show that we need to add three families of relation to get its quotient hP†n:

Theorem 5.8 The pure loop braid group up to homotopy hP†n is the group generated by generators
�ij .i ¤ j / submitted to the McCool relations on the �ij , and the three families of relations ,

Œ�mi ; w; �mi �D Œ�im; w; �jm�D Œ�im; w; �mi �D 1;

for i; j < m, i ¤ j , and w 2 h�mkik<m.

The method used for the group can be adapted to the Lie algebra associated to the lower central series
of hP†n. We show in Section 5.3 that it admits a similar presentation. We also give a presentation of the
Lie algebra of hPn in Corollary 3.12.
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0 Reminders: strongly central series and Lie rings

We give here a short introduction to the theory of strongly central filtrations and their associated Lie rings,
whose foundations were laid by M Lazard [1954]. Details may be found in [Darné 2019; 2021].

0.1 A very short introduction to the Andreadakis problem

LetG be an arbitrary group. The left and right action ofG on itself by conjugation are denoted respectively
by xy D y�1xy and yxD yxy�1. The commutator of two elements x and y in G is Œx; y� WD xyx�1y�1.
If A and B are subsets of G, we denote by ŒA; B� the subgroup generated by all commutators Œa; b�
with .a; b/ 2 A�B . We denote the abelianization of G by Gab WDG=ŒG;G� and its lower central series
by ��.G/; that is,

G D �1.G/� ŒG;G�D �2.G/� ŒG; �2.G/�D �3.G/� � � � :

The lower central series is a fundamental example of a strongly central filtration (or N–series) on a
group G:

Definition 0.1 A strongly central filtration G� on a group G is a nested sequence of subgroups

G DG1 �G2 �G3 � � � �

such that ŒGi ; Gj ��GiCj for all i; j > 1.

In fact, the lower central series is the minimal such filtration on a given group G, as is easily shown by
induction.

Recall that when G� is a strongly central filtration, the quotients Li .G�/ WDGi=GiC1 are abelian groups,
and the whole graded abelian group L.G�/ WD

L
Gi=GiC1 is a Lie ring (ie a Lie algebra over Z), where

Lie brackets are induced by group commutators. The lower central series of a group is usually difficult
to understand, but we are often helped by the fact that its associated Lie algebra is always generated in
degree one.

Convention 0.2 If g is an element of a group G endowed with a (strongly central) filtration G�, the
degree of g with respect to G� is the minimal integer d such that g 2 Gd �GdC1. Since most of the
filtrations we consider satisfy

T
Gi D f1g, this is well defined (if not, we could just say that d D1 for

elements of
T
Gi ). We often speak of the class Ng of g in the Lie algebra L.G�/, by which we mean the

only nontrivial one, in Ld .G�/D Gd=GdC1, where d is the degree of g with respect to G�, unless a
fixed degree is specified.

When G� is a strongly central filtration on G DG1, there is a universal way of defining a strongly central
filtration on a group of automorphisms of G. Precisely, we get a strongly central filtration on a subgroup
of Aut.G�/, the latter being the group of automorphisms of G preserving the filtration G�:

(0-1) Aj .G�/ WD f� 2 Aut.G�/ j 8i > 1; Œ�;Gi ��GiCj g:
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The commutator is computed inGÌAut.G/, which means that for � 2Aut.G/ and g2G, Œ�; g�D�.g/g�1.
Thus, Aj .G�/ is the group of automorphisms of G� acting trivially on the quotients Gi=GiCj (i > 1).
For instance, A1.G�/ is the group of automorphisms of G� acting trivially on L.G�/. When G� is the
lower central series of a group G, then L.G/ WDL.��.G// is generated (as a Lie ring) by L1.G/DG

ab,
so A1.G/ identifies with the group IAG of automorphisms of G acting trivially on its abelianization Gab.
Thus A�.G/ WDA�.��.G// is a strongly central filtration on IAG , and we can try to understand how it
compares to the minimal such filtration on IAG , which is its lower central series:

Problem 1 (Andreadakis) For a given group G, how close is the inclusion of ��.IAG/ into A�.G/ to
being an equality?

One way to attack this problem is to restrict to subgroups of IAG . Precisely, if K � IAG is a subgroup,
we can consider the following three strongly central filtrations on K:

��.K/�K \��.IAG/�K \A�.G/:

Definition 0.3 We say that the Andreadakis equality holds for a subgroup K of IAG when

��.K/DK \A�.G/:

Our three main tools in calculating Lie algebras are the following:

Lazard’s theorem [1954, Theorem 3.1] (see also [Darné 2019, Theorem 1.36]) If A is a filtered
ring (that is, A is filtered by ideals A D A0 � A1 � A2 � � � � such that AiAj � AiCj ), the subgroup
A�\ .1CA1/ of A� inherits a strongly central filtration A�� WD A

�\ .1CA�/ whose Lie ring embeds
into the graded ring gr.A�/, via

L.A�� / ,! gr.A�/; Nx 7! x� 1:

If G is any group endowed with a morphism ˛ WG! A�, then we can pull the filtration A�� back to G,
and L.˛�1.A�� // embeds into L.A�� /, thus into gr.A�/.

Semidirect product decompositions [Darné 2021, Section 3.1] If G� is a strongly central filtration,
G� D H� ÌK� is a semidirect product of strongly central filtrations if Gi D Hi ÌKi is a semidirect
product of groups for all i , and ŒKi ;Hj ��HiCj for all i and j . Then the strong centrality of G� implies
that H� and K� must be strongly central. This kind of decomposition is useful because it induces a
decomposition of Lie algebras

L.G�/D L.H�/ÌL.K�/:

Now, if G DH ÌK is any semidirect product of groups, then its lower central series decomposes into a
semidirect product ��.G/D �K� .H/Ì��.K/ of strongly central filtrations, where �K� .H/ is defined by

H D �K1 .H/� ŒG;H�D �
K
2 .H/� ŒG; �

K
2 .H/�D �

K
3 .H/� � � � :

Algebraic & Geometric Topology, Volume 24 (2024)
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When the semidirect product is an almost-direct one, which means that K acts trivially on H ab, then
�K� .H/D ��.H/, so in this case

L.H ÌK/D L.H/ÌL.K/:

The Johnson morphism [Darné 2019, Section 1.4] A very useful tool to study a filtration of the
form A�.G�/ is the Johnson morphism, which encodes the fact that the associated graded Lie algebra
L.Aj .G�// acts faithfully on the graded Lie algebra L.G�/. It is defined by

� W L.A�.G�// ,! Der.L.G�//; N� 7! Œ�;��;

which means that it is induced by � 7! .x 7! �.x/x�1/. Its injectivity comes from the universality of the
filtration A�.G�/.

If we want to compare the filtration A�.G�/ with another one, we can do so using comparison morphisms.
For example, if K is a subgroup of Aut.G�/, the inclusion of ��K into K\A�.G�/ induces a morphism
i� W L.K/! L.K \A�.G�// which is injective if and only if ��K DK \A�.G�/. Thus we can show
the Andreadakis equality by showing the injectivity of the morphism � 0 WD � ı i� (� 0 is also sometimes
called the Johnson morphism).

0.2 The case of the free group

Before beginning our study of the Andreadakis problem for the reduced free group, it may be useful
to recall some basic facts about the free group case. Here Fn denotes the free group on n generators
x1; : : : ; xn.

Magnus expansions The assignment xi 7!1CXi defines an embedding of Fn into the group of invertible
power series on n noncommuting indeterminates X1; : : : ; Xn with integral coefficients. In fact, it is easy
to see that it defines a morphism to 1C .X1; : : : ; Xn/, and that this induces (using universal properties)
an isomorphism of completed rings,

bZFn Š bT Œn�;
where the group ring ZFn is completed with respect to the filtration by the powers of its augmentation
ideal, and the tensor algebra T Œn� on n generators X1; : : : ; Xn is completed with respect to the usual
valuation. One shows that the above morphism from Fn to this ring is injective by showing directly that
the image of a reduced nontrivial word must be nontrivial.

Magnus’s theorem Using Lazard’s theorem, we can get a surjection of L.Fn/ onto the Lie ring generated
in degree one inside gr.bT Œn�/Š T Œn�, which is the free Lie ring LŒn� on n generators. Using freeness,
one shows that this surjection has to be injective as well;

L.Fn/Š LŒn�:

The Andreadakis problem and the Johnson morphism In the case of the free group, the Johnson
morphism defines an embedding of L.A�.Fn// into the Lie ring of derivations of the free Lie ring.
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The Andreadakis problem for automorphisms of free groups is a difficult problem. The two filtrations were
first conjectured to be equal [Andreadakis 1965, page 253]. This was disproved very recently [Bartholdi
2016], but the methods used do not give a good understanding of what is going on. The Andreadakis
equality is known to hold for certain well-behaved subgroups, such as the pure braid group Pn [Darné
2021; Satoh 2017]. However, the problem stays largely open in general. In particular, it is open for the
group P†n of basis-conjugating automorphisms (that is, for the group of pure welded braids), of which
our group hP†n is a simpler version.

1 The reduced free group and its Lie algebra

In this first section, we introduce and study the reduced free group, which was first introduced by Milnor
[1954] as the link group of the trivial link with n components. Using the Magnus expansion defined in
[Milnor 1954], we determine its Lie ring.

Notation 1.1 Several of our constructions are functors on the category of sets. For such a functor ˆ, we
denote by ˆŒX� its value at a set X . When X is finite with n elements, we will often denote ˆŒX� by
ˆŒn� or by ˆn.

1.1 The reduced free group

Definition 1.2 The reduced free group on a set X is the group defined by the presentation

RFŒX� WD hX j 8x 2X; 8w 2 F ŒX�; Œx; xw �D 1i:

This means that it is the largest group generated by X such that each element of X commutes with all its
conjugates.

Since any x commutes with itself, the relations Œx; xw � of Definition 1.2 can also be written Œx; Œx; w��.
The next result and its proof are taken from [Habegger and Lin 1990, Lemma 1.3]:

Proposition 1.3 For any integer n, the group RFn is n–nilpotent. For any set X , the group RFŒX� is
residually nilpotent.

Proof We use the fact that RFŒ�� is a functor on pointed sets. First, for a finite set X , we show by
induction on nD jX j that RFn D RFŒX� is n–nilpotent. This is obvious for nD 1, because RF1 Š Z.
Suppose that RFn�1 is .n�1/–nilpotent. If x 2X , the normal subgroup N.x/ of RFŒX� generated by x
is the kernel of the projection px from RFŒX� to RFŒX �fxg� sending x to 1. We have an exact sequence

1!
\
x2X

N.x/! RFŒX� pD.px/����!

Y
x2X

RFŒX �fxg�:

Since the group on the right is .n�1/–nilpotent by the induction hypothesis, the morphism p must send
�n.RFŒX�/ to 1, so that �n.RFŒX�/ is inside the kernel

T
N.x/. Moreover, by definition of the reduced
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free group, for every x 2X , all elements of N.x/ commute with x. Thus, an element of
T

N.x/ commutes
with all x 2X , so it is in the center Z.RFŒX�/. As a conclusion, �n.RFŒX�/� Z.RFŒX�/, which means
exactly that RFŒX� is n–nilpotent.

Suppose now X infinite. Let w be an element of RFŒX�. It can be written as a product of a finite number
of elements of X and their inverses. Denote be W such a finite subset of X . Then w is inside the image of
the canonical injection RFŒW � ,! RFŒX�, which is split by the projection from RFŒX� to RFŒW � sending
X �W to 1. Since RFŒW � is jW j–nilpotent, this construction provides a nilpotent quotient of RFŒX� in
which the image of w is nontrivial, whence the residual nilpotence of RFŒX�.

1.2 The reduced free algebra

Definition 1.4 Let Y be a set. If s > 2 is an integer, let us define �s.Y / by

�s.Y / WD f.yi / 2 Y
s
j 9i ¤ j; yi D yj g:

The reduced free algebra on Y is the unitary associative ring defined by the presentation

AŒY � WD hY j 8s; 8.yi / 2�s.Y /; y1 � � �ys D 0i:

For short, we often forget the mention of Y when it is clear from the context, and write only A for AŒY �.

Fact 1.5 The algebra AŒY � is graded by the degree of monomials. As a Z–module , AŒY � is a direct
factor of the tensor algebra T ŒY �; a (finite) basis of AŒY � is given by monomials without repetition on
the generators y 2 Y , which are monomials of the form y1 � � �ys with .yi / …�s.Y /.

Proof Let R be the (free) Z–submodule of T ŒY � generated by the y1 � � �ys such that .yi / 2 �s.Y /
(monomials with repetition). This module is clearly a homogeneous ideal of T ŒY �. As a consequence,
AD T=R. Moreover, if we denote by S the (free) Z–submodule of T generated by monomials without
repetition, then T D S ˚R as a Z–module, so AŠ S .

Definition 1.6 Let Y be a set. The reduced free Lie algebra on Y is the Lie algebra defined by the
presentation

RLŒY � WD hY j 8s; 8.yi / 2�s.Y /; Œy1; : : : ; ys�D 0i;

where Œy1; : : : ; ys� denotes Œy1; Œy2; Œ � � � Œys�1; ys� � � � ���.

The following result uses some of the combinatorics of the free Lie ring recalled in the appendix:

Proposition 1.7 The Lie subalgebra of AŒY � generated by Y identifies with RLŒY �.

Proof We need to prove that the intersection of the ideal R of relations defining AŒY � with the free Lie
algebra LŒY �� T ŒY � is exactly the module S of relations defining RLŒY �. The inclusion of S into R is
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clear: when we decompose a relation in S on the basis of T V , only monomials with exactly the same
letters appear, counting repetitions. For the converse, let us first remark that thanks to Lemma A.14, S
is the submodule of LŒY � generated by all Lie monomials with repetition. Let p ¤ 0 be an element of
R\LŒY �, and let us consider its decomposition pD

P
�wPw on the Lyndon basis of LŒY �. Let w be the

smallest Lyndon word such that �w ¤ 0. It follows from Lemma A.7 that �w must be the coefficient of w
in the decomposition of p into a linear combination of monomials of T V . Since p 2R, the word w must
be with repetition, so Pw 2 S . Then p��wPw 2R\LŒY � has less terms than p in its decomposition
on the Lyndon basis, giving us the result by induction.

Remark 1.8 When Y is a finite set with n elements, we can extract finite presentations from the above
presentations. Indeed, the ideal R and the Lie ideal S are both generated in degrees at most nC 1, since
RnC1 D T Œn�nC1 and SnC1 D LŒn�nC1 (a word of length nC 1 must possess at least a repetition). As a
consequence, the relations of degree at most nC 1 are enough do describe AŒn� (resp. RLŒn�), and there
are finitely many of them.

Proposition 1.9 Lyndon monomials without repetition on the yi are a basis of RLŒY �. The rank of the
degree-k part RLŒn�k of RLŒn� is .k� 1/Š

�
n
k

�
.

Proof Lemma A.14 implies that the module S in the proof of Proposition 1.7 is the submodule generated
by all Lyndon monomials with repetition, which are thus a basis of S . As a consequence, Lyndon
monomials without repetition give a basis of the quotient RLŒY �D LŒY �=S .

In order to determine the ranks, we need to count Lyndon words without repetition of length k in
y1; : : : ; yn. A word without repetition is Lyndon if and only if its first letter is the smallest one. Such a
word is determined by the choice of k letters, and a choice of ordering of the .k� 1/ letters left when the
smallest one is removed. This gives .k� 1/Š

�
n
k

�
such words, as announced.

Proposition 1.10 In AŒY ��, each element of 1CY commutes with all its conjugates.

Proof Let y be an element of Y . From the relation y2 D 0, we deduce that 1C y is invertible, with
1�y as its inverse. Let u 2 A�. Then u.1Cy/u�1 D 1Cuyu�1. Since yAy D 0, we can write

.1Cy/.1Cuyu�1/D 1CyCuyu�1 D .1Cuyu�1/.1Cy/;

which is the desired conclusion.

Notation 1.11 From now on, we denote by X and Y two sets endowed with a bijection X Š Y that we
will denote by xi 7! yi (we consider both X and Y indexed by a bijection from a set of indices I ). This
notation will allow us to distinguish between the group-theoretic world and its algebraic counterpart.

From Proposition 1.10, we get a well-defined morphism, which is an analogue of the Magnus expansion,
and was introduced by Milnor [1954, Section 4],

(1-1) � W RFŒX�! AŒY ��; xi 7! 1Cyi :
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From Lazard’s theorem [1954, Theorem 3.1] (see also [Darné 2019, Theorem 1.36]), we get an associated
morphism between graded Lie algebras,

(1-2) N� W L.RFŒX�/! gr.AŒY �/Š AŒY �; Nxi 7! yi :

From this we deduce our first main theorem:

Theorem 1.12 The above morphism (1-2) induces a canonical isomorphism between the Lie algebra of
the reduced free group and the reduced free algebra ,

L.RFŒX�/ŠRLŒY �:

Proof Since L.RFŒX�/ is generated in degree 1 [Darné 2019, Proposition 1.19] (that is, generated by
the Nxi ), the morphism (1-2) defines a surjection from L.RFŒX�/ onto the Lie subalgebra of A generated
by Y , which is RLŒY � (Proposition 1.7). But L.RFŒX�/ is a reduced Lie algebra on X , by which we mean
that the relations on the yi definingRLŒY � are true for the classes Nxi . Indeed, in RFŒX�, the normal closure
N.x/ of a generator x 2X is commutative. As a consequence, if u is any element of N.x/, then Œx; u�D 1.
Applying this to u D ŒxrC1; : : : ; xs; x; w� 2 N.x/ (where our notation for iterated commutators is the
same as above for iterated brackets in Lie algebras), we see that any Œx1; : : : ; xr ; x; xrC1; : : : ; xs; x; w�
is trivial in the group, hence so is its class in the Lie algebra. Thus yi 7! Nxi defines an inverse to our
surjection, which has to be an isomorphism.

Corollary 1.13 The morphism � W xi 7! 1Cyi (1-1) from RFŒX� to AŒY �� is injective.

Proof Let w be an element of ker.�/. If w¤ 1, then, by residual nilpotence of RFŒX� (Proposition 1.3),
there exists an integer k such that w 2 �k ��kC1. Thus, xw is a nontrivial element of Lk.RFŒX�/, sent to
0 by N�. But N� is an isomorphism (Theorem 1.12), so this is not possible; our element w must be trivial.

Remark 1.14 This statement also appears in [Bar-Natan 1995]; compare Proposition 5.2 therein.

Some remarks on finite presentations of nilpotent groups Every nilpotent group of finite type admits
a finite presentation. This fact is easy to prove, by induction on the nilpotency class, using that finitely
generated abelian groups are finitely presented, and that an extension of finitely presented groups is finitely
presented. As a consequence, the reduced free group RFn on x1; : : : ; xn must admit a finite presentation.
Can we find a simple one? Considering that we have a finite presentation of the associated Lie algebra, the
problem does not seem to be difficult, at first glance. Indeed, let Gn is the group admitting the same finite
presentation as RLn (see Remark 1.8), where brackets are replaced by commutators. These relations
are true in RFn (see the proof of Theorem 1.12), thus there is a map � from Gn onto RFn, which must
induce an isomorphism at the level of Lie rings. However, we can deduce that � is an isomorphism only
if we know that both these groups are nilpotent. Which raises the question: do the relations defining Gn
imply that it is nilpotent?

Algebraic & Geometric Topology, Volume 24 (2024)



1288 Jacques Darné

Thus we are led to ask ourselves: what finite set of relation is needed to ensure that a group is nilpotent?
This question is strongly related to the following question: can we give a simple finite presentation of
the free nilpotent group of class c (where “simple” is taken in some naive sense)?. This question is
surprisingly difficult. The reader can convince himself that killing commutators of the form Œxi0 ; : : : ; xic �

(or even Œx˙i0 ; : : : ; x
˙
ic
�) does not seem to be enough, because the usual formulas of commutator calculus

seem not to allow one to reduce to commutators of this particular form and length. Even killing all iterated
commutators of length cC 1 of the generators is only conjectured to be enough [Jackson 2008; Sims
1987].

To get a presentation known to work in general, we must take a much larger one. For instance, one can kill
all iterated commutators of the generators of length between cC 1 and 2c. This can be improved slightly
by killing only relations of the form Œx; y�, where x and y are iterated commutators of the generators of
length at most c, whose length add up to at least cC 1. Indeed, all iterated commutators of length greater
than c can be written as a product of conjugates of iterated commutators of the generators of length
greater than c (by repeated use of the formulas Œa; bc�D Œa; b� � Œa; c� � ŒŒc; a�; b� and Œa; b�1�D Œb; a�b).
And every such commutator has a subcommutator of the given form (to see that, it can help to think of
commutator words as rooted planar binary trees).

In order to avoid these problems, and to keep our presentations simple, we will only give a presentation
of RFn as a nilpotent group, that is, we assume that the group Gn in the reasoning above is nilpotent,
thus obtaining:

Proposition 1.15 The reduced free group RFn is the quotient of the free n–nilpotent group on x1; : : : ; xn
by the finite set of relations

8s 6 n 8.xi / 2�s.X/ Œx1; : : : ; xs�D 1;

where Œx1; : : : ; xs� denotes Œx1; Œx2; Œ � � � Œxs�1; xs� � � � ���.

The subtlety of this situation was not perceived in [Cohen 1995], where it was assumed that this presentation
(with nC1 commutators included) would automatically define a nilpotent group. Note that several results
of the present paper give some insight on the group-theoretic results of [Cohen 1995], which were stated
only in terms of the underlying abelian groups, and become simpler when taking into account the Lie
ring structure.

1.3 Centralizers

We will use Corollary 1.13 to compute the centralizers of generators in RFŒX�. First, we show a lemma
about commutation relations in AŒY �:

Lemma 1.16 Let y 2 Y , and let � be an integer. Define the �–centralizer C�.y/ of y in AŒY � to be

C�.y/ WD fu 2 AŒY � j uy D �yug:
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If �¤ 1, then C�.y/ is exactly hyi. If �D 1, then C�.y/DZ �1˚hyi. As a consequence , Z �1˚hyi is
the centralizer C.y/ of y. Also , hyi is the annihilator Ann.y/ of y, and it is also the set of elements u
satisfying uy D�yu.

Proof If u is an element of hyi, then uy D �yuD 0. Moreover, obviously, 1 2 C1.y/. This proves one
inclusion. Let us prove the converse. Let u be an element of C�.y/. Let us decompose u as a sum of
monomials without repetition

P
�˛m˛ in A, and consider a monomial m˛ ¤ 1 not containing y. Then

�˛ is the coefficient of m˛y in 0D uy � �yu, so it must be zero. Also, if � is the coefficient of 1 in
m, then the coefficient of y in uy � �yu is .1� �/�, hence � D 0 if � ¤ 1. Thus all the monomials
appearing in the decomposition of u (except possibly 1 if �D 1) must contain y, so that u belongs to hyi
(resp. to Z˚hyi if �D 1).

The next lemma is [Habegger and Lin 1990, Lemma 1.10]:

Lemma 1.17 Let x 2 X . Let C.x/ be the centralizer of x in RFŒX�. Then C.x/ is exactly the normal
closure N.x/ of x.

Proof The inclusion N.x/�C.x/ follows from the definition of RFŒX�. Let us prove the converse. From
Corollary 1.13, we know that C.x/DC.1Cy/\RFŒX�D .Z˚hyi/\RFŒX�. Moreover, RFŒX� ,!AŒY �

takes values in 1CAŒY � (where A is the augmentation ideal of A, that is, the set of polynomials with no
constant term). As a consequence, this intersection is .1Chyi/\RFŒX�. But 1Chyi is exactly the set
of elements sent to 1 by the projection AŒY �� AŒY �fyg�. This projection induces the projection from
RFŒX� to RFŒX �fxg�, whose kernel is N.x/, whence the result.

Lemma 1.18 Let y 2 Y . Let CL.y/ be the centralizer of y in RLŒY �. Then CL.y/ is exactly the Lie
ideal hyi generated by y.

Proof If we now denote by hyiA the ideal generated by y in A (denoted by hyi above), we have that
CL.y/D C1.y/\RLŒY �D hyiA\RLŒY � is the submodule of RLŒY � generated by Lie monomials in
which y appears, which is exactly hyi.

Proposition 1.19 The center of RFn is the intersection of the N.xi /, and also coincides with �n.RFn/; it
is free abelian of rank .n� 1/Š

Proof The inclusions �n.RFn/�
T

N.xi /� Z.RFn/ were established in the proof of Proposition 1.3.
Let w be a nontrivial element of Z.RFn/. Since RFn is nilpotent, w 2 �k ��kC1 for some k, and xw is a
nontrivial element in the center of L.RFn/ŠRLn (see Theorem 1.12). From Lemma 1.18, we deduce
that xw is in the Lie ideal hy1i \ � � � \ hyni. As a consequence, all yi appear at least once in each Lie
monomial of the decomposition of xw. Thus its degree must be at least n, which means that w 2 �n.RFn/.

Moreover, �n.RFn/ D �n.RFn/=�nC1.RFn/ D Ln.RFn/ identifies with the degree-n part RLŒn�n
of RLŒn�, which is free abelian of rank .n� 1/Š by Proposition 1.9.
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2 Derivations and the Johnson morphism

In order to tackle the Andreadakis problem for RFn, we need to understand the associated Johnson
morphism, whose target is the algebra of derivations of the reduced free Lie algebra.

2.1 Derivations

We begin our study of derivations by those of AŒY �, which are quite easy to handle.

Proposition 2.1 Any derivation d of AŒY � sends each element y of Y to an element of the ideal hyi.
Conversely, any application dY W Y ! AŒY � sending each y into hyi extends uniquely to a derivation
of AŒY �.

Proof First, given a derivation d , we can apply it to the relation y2D 0. We get that .dy/yCy.dy/D 0.
Thus dy 2 C�1.y/, which means that dy 2 hyi by Lemma 1.16.

Suppose now that we are given a map dY W Y !AŒY � sending each y into hyi. Then dY extends uniquely
to a derivation dT from T ŒY � to AŒY � (the latter being a T ŒY �–bimodule in the obvious sense) in the
usual way,

dT .yi1 � � �yil / WD

lX
jD1

yi1 � � �yij�1 � dY .yij / �yij�1 � � �yil :

From the hypothesis on dY , we deduce that d vanishes on the monomials with repetition (the sum on
the left being a sum of monomials with repetition in this case), so it induces a well-defined derivation
d W AŒY �! AŒY � extending dY . Unicity is obvious from the fact that Y generates the ring AŒY �.

We now turn to the study of derivations of RLŒY �. We consider only derivations (strictly) increasing
the degree, that is, sending Y into RLŒY �>2. In fact, we will mostly be concerned with homogeneous
such derivations (which raise the degree by a fixed amount), but we will see that this distinction is not
important for RLŒY � (Corollary 2.3).

Proposition 2.2 Let d be a derivation of RLŒY �. Then for any y 2 Y ,

dy 2 hyiC
\
y0¤y

hy0i DW Jy ;

where hyi is the Lie ideal generated by y. Conversely , any map from Y to RLŒY �>2 satisfying this
condition can be extended uniquely to a derivation of RLŒY �.

Let us remark that the homogeneous ideal Jy differs from hyi only in degree jY j � 1 (in particular,
only when Y is finite), since the second term is generated by Lie monomials without repetition where
all y0 appear, save possibly y. Moreover, one easily sees that, for jY j D n, the ideal Jy contains all
of RLŒn�n�1.

Algebraic & Geometric Topology, Volume 24 (2024)



Milnor invariants of braids and welded braids up to homotopy 1291

Proof of Proposition 2.2 For jY j D 2, remark that RLŒY �2 � hy1i \ hy2i and RLŒY �>3 D f0g. As a
consequence, any linear map raising the degree satisfies the condition and defines a derivation, so we
have nothing to show.

Let us suppose that Y has at least three elements. Let d be a derivation of RLŒY �, and let y 2 Y . Take
z 2 Y � fyg, and consider the relation 0D d.Œy; z; y�/D Œdy; z; y�C Œy; z; dy�. Let us decompose dy
as a sum of monomials in AŒY �. Let m be a monomial which contains neither y nor z, and let � be the
coefficient of m in dy. Then the monomial mzy appears with coefficient 2� in the decomposition of
Œdy; z; y�C Œy; z; dy�, so � must be trivial. Since this is true for any z ¤ y, the only monomials without
repetition not containing y that can appear in dy are the ones containing every element of Y save y,
which are exactly the generators of Jy modulo hyi. This shows that dy 2 Jy .

To show the converse, we can restrict to homogeneous maps, since any map from Y to RLŒY �>2 is
a sum of homogeneous ones, and a sum of derivations is a derivation. Suppose that we are given a
homogeneous map dY W Y ! RLŒY �>2 sending each y into Jy . If dY is not of degree jY j � 2, this
condition amounts to dY .y/ 2 hyi. This Lie ideal stands inside the associative ideal hyi � AŒY �. We can
thus use Proposition 2.1 to extend this map to a derivation of AŒY �. This derivation sends Y into RLŒY �,
hence it preserves RLŒY �� AŒY �. As a consequence, it restricts to a derivation of RLŒY � extending dY .

We are left to study the case when Y has n elements and dY is of degree n� 2. Then the conditions
on the elements dY .y/ are empty. We can still extend dY to a derivation from T ŒY � to AŒY �, as in the
proof of Proposition 2.1, but it does not vanish on the relations defining AŒY �. However, the induced Lie
derivation from LŒY � to RLŒY � does vanish on the Lie monomials with repetition. Indeed, it vanishes
on all elements of degree at least 3 (sent to RLŒY �>nC1 D f0g), and there are no such monomials in
degree 2, since the elements Œy; y� are already trivial in LŒY �. As a consequence, it induces a well-defined
derivation from RLŒY � to itself. This derivation extends dy and is the only one to do so, since RLŒY � is
generated by Y .

Corollary 2.3 Any derivation of RLn is the sum of homogeneous components ,

Der.Ln/Š
M
k>1

Derk.RLn/:

Proof If d is such a derivation, Proposition 2.2 shows that the homogeneous components of its restriction
to Y extend uniquely to derivations of RLn, whose sum coincides with d on Y , hence everywhere. Note
that it makes sense to speak of this sum, because Y is finite, so that the number of nontrivial homogeneous
components of d jY is finite.

The following theorem is an analogue of [Darné 2019, Proposition 2.41], replacing free nilpotent groups
by reduced free groups.

Theorem 2.4 Let n> 2 be an integer. The Johnson morphism is an isomorphism:

L.A�.RFn//Š Der.RLn/:
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Proof Take jX j D jY j D n. Let d be a derivation of RLŒY �, of degree k. We need to lift it to an automor-
phism ' of RFŒX�. We first suppose that k ¤ n� 2. Since d.yi / 2 hyi i \RLkC1ŒY � (Proposition 2.2),
we can write each d.yi / as a linear combination of Lie monomials of length kC 1 containing yi . The
corresponding product of brackets in RFŒX� lifts d.yi / to an element wi of �kC1.RFŒX�/\N.xi /. The
element wixi belongs to N.xi /, so it commutes with all its conjugates. As a consequence, xi 7! wixi

defines an endomorphism ' of RFŒX�. Since ' acts trivially on the abelianization of RFŒX�, which is
nilpotent, it is an automorphism [Darné 2019, Lemma 2.38]. Moreover, by construction, �. N'/D d .

Suppose now that k D n � 2. Then d.yi / can be any element of RLn�1ŒY �. Choose any lift wi in
�n�1.RFŒX�/ of d.yi /. Using the usual formulas of commutator calculus, we see that for any w 2RFŒX�,
Œwixi ; w;wixi � � Œxi ; w; xi � .mod �nC1/. Since Œxi ; w; xi � D 1 and �nC1.RFn/ D f1g, we conclude
that Œwixi ; w;wixi � D 1, which means exactly that wixi commutes with all its conjugate. The same
construction as in the first case then gives an automorphism ' 2An�2 such that �. N'/D d .

2.2 Tangential derivations

Definition 2.5 A tangential derivation of RLŒY � is a derivation sending each y 2 Y to an element of the
form Œy; wy � (for some wy 2RLŒY �).

Fact 2.6 The subset Der� .RLŒY �/ of tangential derivations is a Lie subalgebra of Der.RLŒY �/.

Proof Let d W y 7! Œy; wy � and d 0 W y 7! Œy; w0y �. Then an elementary calculation gives

(2-1) Œd; d 0�.y/D Œy; Œwy ; w
0
y �C d.w

0
y/� d

0.wy/�;

whence the result.

Proposition 2.7 Let n> 2 be an integer. The Lie subalgebra of Der.RLn/ generated in degree 1 is the
subalgebra Der� .RLn/ of tangential derivations.

Proof Consider the derivation dij sending yi to Œyi ; yj � and all the other yk to 0. From Proposition 2.2,
we know that these generate the module of derivations of degree 1. They are tangential derivations, so the
Lie subalgebra they generate is inside Der� .RLŒY �/. Let us show that it is all of Der� .RLŒY �/. Consider
the set Di of tangential derivations sending all yk to 0, save the i th one. Such derivations vanish on all
monomials which are not in hyi i, and preserve hyi i. Since elements of hyi i commute with yi , formula
(2-1) implies that

ci WRLŒY �!Di ; t 7! .yi 7! Œyi ; t �/;

is a morphism. It is obviously surjective, so Di is a Lie subalgebra of Der� .RLŒY �/. Moreover, its kernel
is hyi i (Lemma 1.18), so Di ŠRLŒY �=yi is in fact the free reduced Lie algebra on the ci .yj /D dij (for
j ¤ i). Since Der� .RLŒY �/ is the (linear) finite direct sum of the Di , it is indeed generated (as a Lie
algebra) by the dij .
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Recall that the McCool group P†X is the group of automorphisms of the free group F ŒX� on a set X
fixing the conjugacy class of each generator x 2X .

Definition 2.8 The reduced McCool group hP†X is the subgroup of Aut.RFŒX�/ preserving the conju-
gacy class of each generator x 2X of RFŒX�.

This group hP†X is also called AutC .RFX /, but we prefer to think of it as version of P†X up to
homotopy (this terminology will be explained in Section 4). When X is finite, we denote its elements by
x1; : : : ; xn and hP†X by hP†n.

Consider the filtration A�.RFn/ on Aut.RFn/. It restricts to a filtration hP†n \A�.RFn/ on hP†X .
Moreover, since A�.RFn/ is strongly central on the subgroup A1.RFn/ of automorphisms acting trivially
on RFab

n , and hP†n �A1.RFn/, this induced filtration is strongly central on hP†n.

Theorem 2.9 Let n> 2 be an integer. The Johnson morphism induces an isomorphism

L.hP†n\A�.RFn//Š Der� .RLn/:

Proof Let ' W xi 7! x
wi
i be a basis-conjugating automorphism belonging to Ak �AkC1. Then

�.'/.yi /D Œyi ; xwi �

(where xwi is the class of wi in �k=�kC1), so the Johnson morphism sends L.hP†n \A�.RFn// into
Der� . Moreover, it is injective by Theorem 2.4, and since �.�ij /D dij , Proposition 2.7 implies that it is
surjective.

Theorem 2.9, together with Proposition 2.7, have an interesting consequence: the group hP†n is
maximal among subgroups of Aut.RFn/ for which the Andreadakis equality can be true. Indeed, let
hP†n ¨G �Aut.RFn/, and consider the comparison morphism i� WL.G/!L.G\A�/ obtained from
the inclusion of ��G into G\A�. On the one hand, the Lie algebra L.G\A�/ contains L.hP†n\A�/,
and this inclusion must be strict, otherwise we could argue as in the proof of Lemma 5.3 to show that
G D hP†n. On the other hand, L.G/ is generated in degree 1, so that i�.L.G//�L.hP†n\A�/, the
latter being the subalgebra of L.A�.RFn//Š Der.RLn/ generated by its degree one. As a consequence,
i� cannot be surjective, whence the conclusion.

Here is another consequence of these theorems:

Corollary 2.10 The group hP†n is generated by the �ij (i ¤ j ), and hP†ab
n identifies with the free

abelian group generated by the N�ij .

In particular, the canonical morphism from P†n to hP†n is surjective. This means that when it comes
to basis-conjugating automorphisms, all automorphisms of RFn are tame. This is in striking contrast
with the case of free nilpotent groups [Darné 2019, Section 2.6]. This fact is in fact obvious from the
geometrical interpretation (recalled in Section 4), but we give an algebraic proof here, using much less
machinery.
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Proof of Corollary 2.10 Thanks to Proposition 2.7 and Theorem 2.9, we know that the classes of the
�ij in L.A�\hP†n/ generate this Lie ring. By applying Lemma 5.3 to the finite filtration A�\hP†n,
we deduce that the �ij generate hP†n.

As a consequence, the N�ij generate its abelianization. Moreover, the Johnson morphism from hP†ab
n

to Der1.RLn/ sends the N�ij to the linearly independent elements dij of Der1.RLn/. Thus the N�ij are a
basis of hP†ab

n .

We can also use the proof of Proposition 2.7 to compute the Hirsch rank of the nilpotent group hP†n
(which is the rank of any associated Lie algebra). We recover the formula of [Audoux et al. 2017b,
Remark 4.9]:

Corollary 2.11 The Hirsch rank of the reduced McCool group is

rk.hP†n/D rk.Der� .RLn//D n � rk.RLn�1/D
n�1X
kD1

nŠ

.n� k� 1/Š � k
�

Proof The first equality is a direct consequence of Theorem 2.9. The second one stems from the proof
of Proposition 2.7, where we have shown that Der� .RLn/ is (linearly) a direct sum of n copies Di of
RLn�1. The last one is a direct application of Proposition 1.9.

3 The Andreadakis problem

The McCool group P†n�Aut.Fn/ is generated by the elements �ij Wxi 7!x
xj
i (�ij fixes all the other xt ).

The following relations, called the McCool relations, are known to define a presentation of the McCool
group P†n [1986]. The reader can easily check that they are satisfied in P†n:

Œ�ik�jk; �ij �D 1 for i; j; k pairwise distinct;

Œ�ik; �jk�D 1 for i; j; k pairwise distinct;

Œ�ij ; �kl �D 1 if fi; j g\ fk; lg D¿:

Thanks to Corollary 2.10, we know that hP†n is naturally a quotient of P†n. We will give in Section 5
three families of relations that need to be added to a presentation of P†n in order to get a presentation of
hP†n. This will rely on the semidirect product decomposition that we now describe.

3.1 A semidirect product decomposition

The following decomposition theorem is the central result of the present paper. From it we will deduce
the Andreadakis equality for hP†n (Section 3.3) and a presentation of this group and of its Lie ring
(Section 5):
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Theorem 3.1 There is a decomposition of hP†n as a semidirect product ,

hP†n Š

��Y
i<n

N.xn/=xi

�
Ì .RFn=xn/

�
Ì hP†n�1;

where N.xn/=xi is the normal closure of xn inside RFn=xi , and the action of RFn=xn Š RFn�1 on the
product is the diagonal one. Moreover , the semidirect product on the right is an almost direct one.

We prove this theorem in three steps. First, we show that hP†n decomposes into a semidirect product
Kn ÌhP†n�1. Then we investigate the structure of Kn, which decomposes as K0n ÌRFn�1. Finally, we
investigate the structure of K0n, which is abelian and decomposes as the direct product of the N.xn/=xi .

Step 1: decomposition of hP†n Elements of hP†n preserve the conjugacy class of xn, so they
preserve its normal closure N.xn/. As a consequence, any of these automorphisms induces a well-defined
automorphism of RFn=N.xn/Š RFn�1. In other words, the projection xn 7! 1 from RFn onto RFn�1
induces a well-defined morphism pn from hP†n to hP†n�1. Moreover, this morphism is a split
projection, a splitting sn being the map extending automorphisms by making them fix xn. Let us denote
by Kn the kernel of pn. We thus get our first decomposition,

(3-1) hP†n Š Kn Ì hP†n�1:

Moreover, it will follow from Lemma 3.3 below that this is indeed an almost direct product: Kab
n is

generated by the classes of the �in and the �ni . From Corollary 2.10, we know that these are sent
to linearly independent elements in hP†ab

n , so they freely generate Kab
n . We thus get a direct product

decomposition hP†ab
n Š Kab

n ˚ hP†
ab
n�1, as announced.

Step 2: structure of Kn We first state an easy result on generators of factors in semidirect products.

Lemma 3.2 Let G D H ÌK be a semidirect product of groups. Suppose we are given a family .hi /
of elements of H , and a family .kj / of elements of K such that their reunion generates G. Then K is
generated by the kj , and H is generated by the hki , for k 2K.

Proof Take an element g 2G and write it as a product of h˙1i and k˙1j . Then use the formula khD .kh/k
to push the kj to the right. We obtain a decomposition g D h0k, where h0 2H is a product of conjugates
of the h˙1i by elements of K, and k 2K is a product of the k˙1j . This decomposition has to be the unique
decomposition of g into a product of an element of H followed by and element of K. As a consequence,
if g 2H , then g D h0, whereas if g 2K, then g D k, proving our claim.

We can apply Lemma 3.2 to the �ij in hP†n Š Kn Ì hP†n�1. Indeed, the �in and the �ni are in Kn,
and the other �ij belong to hP†n�1. Hence, Kn is generated by the conjugates of the �in and the �ni
by products of the other �ij and their inverses. In fact, more is true:

Lemma 3.3 The group Kn is generated by the �in and the �ni .
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Proof We use the above relations to show that the subgroup H of Kn generated by the �in and the �ni
is normal in hP†n, that is, ŒhP†n;H ��H .

The commutator Œ�in; �˛ˇ � is obviously in H if ˛ D n or ˇ D n. Otherwise, it is trivial, except possibly
when ˛ D i or ˇ D i . In the first case (since �nˇ and �iˇ commute),

1D Œ�in; �nˇ�iˇ �D Œ�in; �nˇ �.
�nˇŒ�in; �iˇ �/;

whence Œ�in; �iˇ � 2H . In the second case,

1D Œ�in�˛n; �˛i �D .
�inŒ�˛n; �˛i �/Œ�in; �˛i �;

so, using the first case, Œ�in; �˛i � 2H .

In a similar fashion, the bracket Œ�ni ; �˛ˇ � belongs to G if ˛D n or ˇD n. Otherwise, it is trivial, except
when ˛ D i . But in this case,

1D Œ�ni ; �iˇ�nˇ �D Œ�ni ; �iˇ �.
�nˇŒ�in; �nˇ �/;

so Œ�ni ; �iˇ � 2 H . Thus, H is stable under conjugation by all generators of hP†n, so it is normal
in hP†n.

Remark 3.4 We have used only the McCool relations here, so the analogue of Lemma 3.3 is also true
in P†n.

By looking at how elements of Kn act on xn, we get a split projection qn from Kn onto RFn�1. Namely,
if ' 2Kn is an automorphism sending each xi to xwii , qn sends ' onto the class xwn 2 RFn=xn Š RFn�1.
This is well defined, because of Lemma 1.17,

xvn D x
w
n () xvw

�1

n D 1 () vw�1 2 C.xn/D N.xn/ () Nv D xw:

Moreover, this defines a morphism. Indeed, if ' and  send xn respectively to xwnn and xvnn , then

 '.xn/D  .x
wn
n /D xvn .wn/n ;

and since  2 Kn, we have  .wn/D xwn, whence

qn. '/D vn .wn/D Nvn xwn D qn. /qn.'/:

This morphism qn is a retraction of the inclusion tn of RFn�1 Š RFn=xn into Kn sending w 2 RFn to
the automorphism fixing all xi save xn, which is sent to xwn . If we call K0n the kernel of qn, we thus get a
decomposition

(3-2) Kn D K0n ÌRFn�1:

Lemma 3.5 The above decomposition is hP†n�1–equivariant , with respect to the action of hP†n�1
on Kn (and on K0n � Kn) coming from conjugation in hP†n, and to the canonical action of hP†n�1 on
RFn�1. Precisely, qn and tn are hP†n�1–equivariant morphisms.
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Proof If ' 2 Kn sends xi to xwii as above, and � 2 hP†n�1, then �'��1 sends xn to x�.wn/n , so

qn.�'�
�1/D �.wn/D �. xwn/D �.qn.'//:

As for the equivariance of tn, if w 2RFn�1, both � � tn.w/ ���1 and tn.�.w// fix all xi save xn, the latter
being sent to x�.w/n , hence they are equal.

Remark 3.6 A similar decomposition holds in P†n, replacing RFn�1 by Fn�1. The same proof works,
replacing the equality C.xn/D N.xn/ (which is not true in this case) by the inclusion C.xn/� N.xn/.

Step 3: structure of K0
n So far, we have not really used the fact that we consider welded braids up

to homotopy (that is, automorphisms of RFn, not of Fn). In fact, the analogues of the decomposition
results above are true in the group P†n of welded braids (see Remarks 3.4 and 3.6). We now come to the
part where the homotopy relation plays a crucial role. That is, we are going to use the relations defining
RFn in a crucial way. These relations, saying that each element xi of the fixed basis commutes with its
conjugates, can be rewritten as

8i 6 n 8s; t 2 RFn x
sxi t
i D xsti :

In other words, for w 2 RFn, xwi depends only on the class of w modulo xi (that is, modulo the normal
closure of xi ). These relations allow us to say more about the above decomposition of Kn:

Lemma 3.7 The kernel K0n of the projection qn W Kn� RFn�1 is an abelian group , isomorphic to the
product of the N.xn/=xi , where N.xn/=xi is the normal closure of xn inside RFn=xi ŠRFn�1. Precisely ,
the identification of N.xn/=xi with a factor of K0n is induced by the map

ci W N.xn/! K0n; u 7!

�
xj 7!

�
xui if j D i
xj otherwise

�
;

which is a well-defined group morphism. Furthermore , ci is RFn�1–equivariant , where RFn�1 Š h�nj ij
acts via automorphisms on the source , and via conjugation on the target.

Proof We identify elements w 2RFn�1 with their image by tn WRFn�1!Kn, that is, we denote by w the
automorphism fixing all xi save xn, which is sent to xwn . Applying Lemma 3.2 to the semidirect product
decomposition (3-2), we see that K0n is generated by the elements �win, which we now compute. The
automorphism �win fixes x˛ if ˛ … fi; ng. On xi and xn, using that �in.w/� w .mod xn/, we compute

�win W xi 7! xi 7! x
xn
i 7! x

xwn
i ; �win W xn 7!

wxn 7!
�in.w/xn D

wxn 7! xn:

From this calculation, we see that all �D �win commute with every �0 D �vjn, showing that K0n is indeed
abelian. If j ¤ i , this is a consequence of the fact that these automorphisms act trivially modulo xn,

�0.x
xwn
i /D x

x
�0.w/
n

i D x
xwn
i :

For i D j , it follows from the fact that the conjugates of xn commute.
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Consider now Ni the subgroup generated by the �win, for w 2 RFn�1. The elements of Ni are auto-
morphisms fixing all xj save xi , and sending xi to an element xui , for some u2N.xn/. As a consequence,
the map ci is a surjection from N.xn/ onto Ni . Since, by definition of the reduced free group, xsxi ti D xsti
for all s; t 2 RFn, we see that ci .v/ depends only on the class Nv of v in RFn�1=xi . We use this to show
that ci is a morphism,

ci .u/ci .v/ W xi 7! ci .u/.x
Nv
i /D .x

Nu
i /
ci .u/. Nv/ D xuvi D ci .uv/.xi /:

Now, the kernel of ci is C.xi / \ N.xn/ D N.xi / \ N.xn/ (using Lemma 1.17). It thus induces an
isomorphism between N.xn/=.N.xi / \ N.xn// and Ni . Moreover, since it is the image of N.xn/ in
RFn=N.xi /, this group identifies with the normal closure of xn inside RFn=xi Š RFn�1.

We are left to show that ci is RFn�1–equivariant. It is enough to show that it commutes with the actions
of the generators. If ' 2 h�nj ij¤i , then xi does not appear in '.xn/, so

ci .u/
'
W xi 7! xi 7! xui 7! x

'.u/
i ; ci .u/

'
W xn 7! '.xn/ 7! '.xn/ 7! xn;

showing that ci .u/' D ci .'.u//. It remains to check that ci .u/�ni D ci .�ni .u//; ci .�ni .u// identifies
with ci .u/, since �ni acts trivially modulo xi . We thus need to check that �ni commutes with all the
ci .u/ (which are all elements in Ni ). This comes from the two relations xxin D x

xu
i
n (because u 2N.xn/)

and x�ni .u/i D xui (because �ni acts trivially modulo xi ). This finishes the proof of the lemma, and of
Theorem 3.1.

3.2 The Lie algebra of the reduced McCool group

The decomposition of hP†n described in Theorem 3.1 induces a decomposition of its Lie algebra:

Theorem 3.8 The Lie algebra L.hP†n/ decomposes into a semidirect product ,

L.hP†n/Š

��Y
i<n

hyi i

�
ÌRLn�1

�
ÌL.hP†n�1/;

where hyi i is the ideal generated by yi inside RLn�1, and the action of RLn�1 on the product is the
diagonal one.

Proof From the almost-direct product decomposition hP†n Š Kn Ì hP†n�1, comes a decomposition
of the Lie algebra L.hP†n/Š L.Kn/ÌL.hP†n�1/. In the decomposition of Kn described in (3-2),
we can replace the normal closure N.xn/=xi of xn in RFn=xi by the normal closure N.xi /=xn of xi in
RFn=xn Š RFn�1. Indeed, the automorphism of RFn exchanging xi and xn induces an isomorphism
between these two, which is RFn�1–equivariant, since xi acts trivially on both of them. We thus have to
compute

L.Kn/Š L

��Y
i<n

N.xi /

�
ÌRFn�1

�
:
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Since this is not a decomposition into an almost direct product, we have to use Section 3.1 of [Darné
2021]: we need to compute �RFn�1

�

�Q
N.xi /

�
, which is the product

Q
�

RFn�1
� .N.xi //, since RFn�1 acts

diagonally. In order to do this, consider the split short exact sequence of groups,

N.xi / ,! RFn�1� RFn�1=xi Š RFn�2:

From [Darné 2021, Proposition 3.4], this gives rise to a decomposition of ��.RFn�1/ into a semidirect
product �RFn�2

� .N.xi // Ì ��.RFn�2/, where �RFn�2
� .N.xi // is defined by taking commutators with

N.xi / Ì RFn�2 Š RFn�1 at each step, so is equal to �RFn�1
� .N.xi //. As a consequence, N�.xi / WD

�
RFn�1
� .N.xi // is the intersection of ��.RFn�1/ with N.xi /. Its associated Lie algebra fits into the short

exact sequence
L.N�.xi // ,! L.RFn�1/� L.RFn�2/:

Theorem 1.12 ensures that the projection on the right identifies with the projection of RLn�1 onto RLn�2
sending yi to 0, whose kernel is hyi i. Thus L.N�.xi //Š hyi i, and

L.N.xi /ÌRFn�1/Š L.N�.xi //ÌL.RFn�1/Š hyi iÌRLn�1:

3.3 The Andreadakis equality

Theorem 3.8 gives a complete description of the graded Lie ring associated to ��.hP†n/. On the other
hand, Theorem 2.9 describes the Lie ring associated with the Andreadakis filtration hP†n\A�.RFn/.
Using these two results, we are now able to show:

Theorem 3.9 The Andreadakis equality holds for hP†n.

Proof We want to show that the Johnson morphism � 0 WL.hP†n/!Der.RLn/ is injective (see the end
of Section 0.1). We make use of the commutative diagram

L.Kn/ L.hP†n/ L.hP†n�1/

� Der� .RLn/ Der� .RLn�1/

� 0 � 0 � 0

where the bottom projection is the one induced by yn 7! 0. By induction (beginning at nD 2), using the
snake lemma, we only have to prove that the left map is injective, that is, that � 0 WL.Kn/! Der.RLn/ is.
Take an element

' D ..wi /; wn/ 2 �j .Kn/D

�Y
j<n

.�j .RFn/\N.xn//=xi

�
Ì�j .RFn�1/;

meaning that ' is the automorphism conjugating xn by wn 2�j .RFn�1/ and xi by wi 2�j .RFn/\N.xn/

for i < n, which depends only on the class of each wi modulo N.xi /. Then � 0j . N'/ sends each yi (i 6 n)
to Œyi ; xwi � 2 LjC1.RFn/. As a consequence, the equality � 0j . N'/D 0 would mean that each xwi commutes
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with yi in L.RFn/Š RLn. By Lemma 1.18, this would imply that xwi 2 hyi i. However, in the course
of the proof of Theorem 3.8, we have shown that hyi i D L.��.RFn/\N.xi //. Thus there exists vi in
�j .RFn/\N.xi / such that Nvi D xwi , that is, wi � vi .mod �jC1.RFn//. But we can replace wi by wiv�1i
without changing ', so all the wi can be chosen to be in �jC1.RFn/. This implies that ' 2 �jC1.hP†n/,
which means that N' D 0 in Lj .hP†n/. This ends the proof that the kernel of � 0 is trivial, and the proof
of the theorem.

3.4 Braids up to homotopy

Consider the (classical) pure braid group Pn. It can be embedded into the monoid of string-links on n
strands. These string-links can be considered up to (link-)homotopy, which means that one adds to the
isotopy relation the possibility for each strand to cross itself. This relation is obviously compatible with
the monoid structure, and since every string-link is in fact homotopic to a braid, this quotient is a quotient
of the pure braid group, called the group of braids up to homotopy, denoted by hPn.

3.4.1 Decomposition and Lie algebra Goldsmith [1974] described hPn as a quotient of Pn by a
finite set of relations. These relations say exactly that for j < k, the generators Ajk commute with their
conjugates by elements of hAikii<kŠFk�1. This means exactly that the free factors in the decomposition
of Pn are replaced by reduced free groups,

hPnC1 Š RFn Ì hPn:

This decomposition first appeared explicitly in [Habegger and Lin 1990], where a more topological proof
is described.

Such a decomposition is compatible with the decomposition of the (classical) pure braid group, which
means that the canonical projections give a morphism of semidirect products:

(3-3)

Fn PnC1 Pn

RFn hPnC1 hPn

Since Goldsmith’s relations are commutation relations, the projection from PnC1 onto hPnC1 induces an
isomorphism between P ab

nC1 onto hP ab
nC1. As a consequence, since the decomposition PnC1ŠFnÌPn is

an almost-direct product decomposition, the decomposition hPnC1 Š RFn Ì hPn also is. It then induces
a decomposition of the lower central series and of the corresponding Lie ring. Precisely, we get iterated
semidirect product decompositions,

(3-4) �j .hPnC1/D �j .RFn/Ì�j .hPn/;

inducing such decompositions of the associated graded Lie rings. Thus we get:
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Proposition 3.10 The group hPnC1 is n–nilpotent , and its Lie algebra decomposes as an iterated
semidirect product of reduced free Lie algebras ,

L.hPnC1/Š L.RFn/ÌL.hPn/ŠRLn ÌL.hPn/:

From this, we can deduce the Hirsch rank of hPn, recovering Milnor’s formula, as quoted in [Habegger
and Lin 1990, Section 3]:

Corollary 3.11 The group hPn has no torsion and its Hirsch rank is

rk.hPn/D
n�1X
kD1

.k� 1/Š
� n

kC1

�
:

Proof That it has no torsion (even no torsion in its lower central series) comes from the fact that the
RLŒm� do not, according to Proposition 1.9. The same proposition gives us the ranks of the RLŒm�k ,
allowing us to compute

rk.Lk.hPn//D
n�1X
mD1

rk.RLŒm�k/D .k� 1/Š
n�1X
mD1

�m
k

�
D .k� 1/Š

� n

kC1

�
;

the last equality being obtained by iterating Pascal’s formula, or by a combinatorial proof (replacing the
choice of k elements t1; : : : ; tk among m elements, with m ranging from k to n� 1, by the choice of
kC 1 elements t1; : : : ; tk; mC 1 among n elements).

Let us also mention that we can deduce from the decomposition of L.hPn/ described in Proposition 3.10
and from the usual presentation of the pure braid group a presentation of this Lie ring, which is a quotient
of the Drinfeld–Kohno Lie ring L.Pn/ of infinitesimal braids (whose rational version was introduced in
[Kohno 1985]).

Corollary 3.12 The Lie ring of hPn is generated by tij (1 6 i; j 6 n), under the Drinfeld–Kohno
relations

tij D tj i and ti i D 0 for all i; j;

Œtij ; tikC tkj �D 0 for all i; j; k;

Œtij ; tkl �D 0 if fi; j g\ fk; lg D¿;

to which are added , for each m, the vanishing of Lie monomials in the tim (i < m) with repetition.

Proof The proof in the classical case (see for instance the appendix of [Darné 2021]) adapts verbatim,
by considering reduced free Lie rings instead of free Lie rings.

Notice that as in the definition of the reduced free Lie ring (Definition 1.6 — see also Remark 1.8), one
can give a simpler finite presentation by considering, for each m, only linear Lie monomials in the tim
(i < m) of length at most m.
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3.4.2 The Andreadakis problem The semidirect product RFnÌhPn described above is the same thing
as an action of hPn on RFn, also described by a morphism from hPn to Aut.RFn/. This is the homotopy
Artin action, that we now study, using the fact that it is encoded by conjugation inside hPnC1DRFnÌhPn.

First, we remark that this action is by basis-conjugating automorphisms. In fact, the compatibility diagram
(3-3) gives rise to a commutative diagram

Pn AutC .Fn/

hPn AutC .RFn/
a

where the morphism on the left is surjective by Corollary 2.10. The top map, which is the Artin
action, is injective (the action is faithful) and its image is exactly the subgroup of basis-conjugating
automorphisms fixing the boundary element x1 � � � xn [Birman 1974, Theorem 1.9]. Habegger and Lin
[1990, Theorem 1.7] have shown that the analogous statements are true for hPn: the homotopy Artin action
induces an isomorphism between hPn and the group Aut@C .RFn/ of basis-conjugating automorphisms of
RFn preserving the product x1 � � � xn. Precisely, they show that the latter admits the same decomposition
as hPn, and that the pieces of these decompositions are identified under the Artin morphism. We recover
the faithfulness of the homotopy Artin action as part of our answer to the Andreadakis problem for
hPn � AutC .RFn/ (see Corollary 3.14 below).

Theorem 3.13 The Andreadakis equality holds for the image of the Artin action a W hPn! Aut.RFn/.
Namely, ��.hPn/D a�1.A�.RFn//.

Proof We adapt the proof for Pn given in [Darné 2021]. Let w 2 hPn, and suppose that w acts on RFn
as an element of Aj . We want to show that it belongs to �j .hPn/. Our hypothesis can be written as

Œw;RFn�� �jC1.RFn/;

where the bracket is computed in RFnÌhPn, which is exactly hPnC1. Moreover, from the decomposition
of the lower central series of hPnC1 described above (Section 3.4.1), we deduce that

�j .hPn/D hPn\�j .hPnC1/;

so the conclusion we seek is in fact w 2 �j .hPnC1/. Let us comb w: we write

w D ˇn � � �ˇ2 2 RFn�1 Ì .RFn�2 Ì . � � �ÌRF1//D hPn:

Again, because of the decomposition of the lower central series of hPn, we need to show that each ˇi is in
�j .PnC1/. In the rest of the proof, we often write �k for �k.hPnC1/, its intersection with the subgroups
under consideration being their own �k , because of (3-4).

Let us suppose that w … �j .hPnC1/. Then w 2 �k � �kC1 for some k < j . Let i be maximal such
that ˇi … �kC1. On the one hand, the generator Ai;nC1 2 RFn commutes with every ˇk with k < i ,
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so Œw;Ai;nC1� � Œˇi ; Ai;nC1� .mod �kC2/. Moreover, by hypothesis, Œw;Ai;nC1� 2 �jC1 � �kC2, so
Œˇi ; Ai;nC1� 2 �kC2. Since ˇi has degree k and Ai;nC1 has degree 1 in the lower central series, this
means that Œ Ňi ; Ai;nC1�D 0 in the Lie algebra. On the other hand, ˇi and Ai;nC1 belong to another copy
of RFn inside hPnC1, namely hA1;i ; : : : ; Ai�1;i ; Ai;iC1; : : : ; Ai;nC1i. We denote this copy by fRFn. We
remark that the equality ��.fRFn/DfRFn\��.hPnC1/ is also true for this copy of RFn, as one sees by
switching the strands i and nC 1 in the reasoning above. But then we can apply Lemma 1.18: since
Ň
i commutes with the generator Ai;nC1 of L.fRFn/Š RLn, it must belong to the Lie ideal of L.fRFn/

generated by Ai;nC1. But this is impossible: by definition of ˇi , the generator Ai;nC1 cannot appear
in Ňi . We thus get a contradiction, and our conclusion.

From this, we can recover the injectivity part of the result of Habegger and Lin:

Corollary 3.14 [Habegger and Lin 1990, Theorem 1.7] The homotopy Artin action is faithful.

Proof If w 2 hPn acts trivially on RFn, then a.w/ 2 f1g DAn.RFn/, so w 2 �n.hPn/ by Theorem 3.13.
But �n.hPn/D f1g (Proposition 3.10), whence w D 1.

This injectivity of a W hPn ! hP†n D AutC .RFn/ is weaker than our statement, which says that the
lower central series are in fact compatible, since they both are the trace of the Andreadakis filtration
A�.RFn/:

Corollary 3.15 For all n, hPn\��.hP†n/D ��.hPn/.

Proof Combine Theorems 3.13 and 3.9.

Remark 3.16 The rationalization of the Lie ring L.Pn/ is exactly Phsl of [Bar-Natan 1995, Theorem 3],
where different diagramatic descriptions for its enveloping algebra are discussed.

4 Topological interpretation

Consider the group Pn of pure braids. Via the decomposition PnC1 Š Fn ÌPn, we get an action of Pn
on the free group Fn, which is the classical Artin action. Geometrically, it is best understood as the action
of Pn, which is the motion group of n points in a plane, on the fundamental group of the plane with n
points removed. As mentioned above (Section 3.4.2), this action is faithful, giving an embedding of Pn
into Aut.Fn/, whose image is exactly the subgroup Aut@C .Fn/ of automorphisms fixing the conjugacy
class of each generator xi , and preserving the boundary element x1 � � � xn [Birman 1974, Theorem 1.9].

An analogous statement is true for the group P†n of pure welded braids. This group is a group of
tube-shaped braids in R4, and can also be seen as the (pure) motion group of n unknotted circles in R3

(see [Damiani 2017] on the different definitions on this group). It acts on the fundamental group of R3
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with n unknotted circles removed, which is again the free group Fn. This Artin action is again faithful,
and its image is exactly the subgroup AutC .Fn/ of automorphisms fixing the conjugacy class of each
generator xi [Goldsmith 1981].

The same statements are true up to (link-)homotopy. These have been recalled for braids in Section 3.4. For
welded braids, link-homotopy of string links also makes sense (in R4), and for welded diagrams (which
are another point of view on these objects), this relation corresponds to virtualization of self-crossings. It
has been shown in [Audoux et al. 2017a, Theorem 2.34] that the group of welded braids up to homotopy
is isomorphic to the group AutC .RFn/D hP†n of automorphisms of RFn fixing the conjugacy class of
each generator xi .

We sum up the situation with the following diagrams:

(4-1)

up to isotopy up to homotopy

Pn Aut@C .Fn/

P†n AutC .Fn/

Š

Š

hPn Aut@C .RFn/

hP†n AutC .RFn/

Š

Š

4.1 Milnor invariants

Here we interpret our work in terms of Milnor invariants of welded braids up to homotopy. Milnor
invariants were first defined in [Milnor 1957] for links, as integers with some indeterminacy. It appeared
later that they were more naturally defined for string links, for which they are proper integers, the
indeterminacy previously observed corresponding exactly to a choice of presentation of a link as the
closure of a string-link. Here we focus on their definition for braids, which is not a restrictive choice
when working up to homotopy.

If ˇ is a pure braid, we can look at its image via the Artin action, which is a basis-conjugating automorphism
xi 7! x

wi
i . The element wi is well defined up to left multiplication by x˙1i , so it is well defined if we

suppose that xi does not appear in the class xwi 2 F ab
n . For each i , one can look at the image of the

element wi 2 Fn by the Magnus expansion � W Fn ,! bT Œn�, getting an element of the completion of the
free associative ring bT Œn� on n generators X1; : : : ; Xn, which can be seen as the ring of noncommutative
power series on these generators. Recall that the Magnus expansion is defined by xi 7! 1CXi , and
it is an injection of the free group Fn into bT Œn��. Then the Milnor invariants are the coefficients of
the �.wi /. Precisely, if i 6 n is an integer, and I D .i1; : : : ; id / is any list of positive integers, then
�I;i .ˇ/ is the coefficient of the monomial Xi1 � � �Xid in �.wi /. Moreover, we call d the degree of the
Milnor invariant �I;i .

The first nontrivial Milnor invariants of ˇ can also be obtained through the Johnson morphism. Namely,
let d be the greatest integer such that ˇ 2Ad .Fn/ (we identify ˇ with its image via the Artin action).
By definition of wi , xi does not appear in the class xwi 2 F ab

n . Thus, we deduce from [Darné 2021,
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Lemma 6.3] that for all j > 1, Œxi ; wi � 2 �jC1.Fn/ if and only if wi 2 �d .Fn/. This implies that d is
maximal such that all wi belong to �j .Fn/. The image of Ň 2Ad=AdC1 by the Johnson morphism is
the derivation of the free Lie algebra LŒn� given by xi 7! Œxi ; xwi �, where xwi 2 �d=�dC1.Fn/Š LŒn�d is
the class of wi , possibly trivial (but nontrivial for at least one i ).

Now, we can consider the element xwi as being inside T Œn�d , and the inclusion of LŒn� into T Œn� is exactly
the graded map induced by the Magnus expansion �. Precisely, if we call yT d1 the ideal of T Œn� defined by
elements of valuation at least d (the valuation of a power series being the total degree of its least nontrivial
monomial), then �d .Fn/D��1.1C yT d1 /, and the induced map N� W�d=�dC1.Fn/ ,! yT d1 = yT

dC1
1 identifies

with the canonical inclusion of LŒn�d into T Œn�d . As a consequence, the class xwi is the degree-d part
of �.wi /, which has valuation at least d . We sum this up in the following:

Proposition 4.1 The group Ad .Fn/\Pn is the set of braids with vanishing Milnor invariants of degree
at most d � 1. Moreover , Milnor invariants of degree d of these braids can be recovered from their image
by the Johnson morphism � WAd=AdC1 ,! Derd .LŒn�/.

Obviously, since we have not used anywhere that the automorphism ˇ preserves the boundary element,
these constructions work for all welded braids (that is, for all basis-conjugating automorphisms of Fn).

Let us now explain how to define Milnor invariants for (welded) braids up to homotopy. First, we need to
replace Fn by RFn. Then we can assume that xi does not appear in wi (since xuxivi D xuvi in the reduced
free group). The Magnus expansion must be replaced by the morphism (1-1), and we get only Milnor
invariants without repetitions (that is, I must be without repetition in order to define a nontrivial �I;i ).
Everything works as described above (using the work done in Section 1.2), so Ad .Fn/ is exactly the
subgroup where invariants of degree at most d � 1 vanish. So we can reformulate Theorems 3.9 and 3.13
as:

Theorem 4.2 Homotopy Milnor invariants of degree at most d classify braids (resp. welded braids) up
to homotopy up to elements of �dC1.hPn/ (resp. �dC1.hP†n/).

Remark 4.3 The group �dC1.hPn/ can also be seen as the set of braids which are homotopic to elements
of �dC1.Pn/.

4.2 Arrow calculus

We now explain briefly the precise link between our work and the work of Meilhan and Yasuhara [2019].
We will not give any definition here; the reader is referred to their paper for basic definitions and details.

Our understanding of the link between our work and theirs relies on the following remark: calculus of
arrows and w–trees is the same thing as commutator calculus in the welded braid group P†n. Precisely,
when attaching a tree T to a diagram D, one has to select the points where the root and leaves of T are
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attached. If we consider a little arc around each of these points, we see that doing so consists of choosing
n strands (which inherit their orientation from D). Then the data of T describes an element of the braid
group on these strands, and doing the surgery along T is exactly the same as inserting the braid described
by T at the chosen spot on D, to get the new diagram DT . Namely, a single arrow from a strand j to
a strand i describes the insertion of the braid �ij , and a tree with root at i describes the insertion of a
commutator between the �ij , for varying j (note that any number of strands can be added).

In the light of this remark, we can see that many relations they describe correspond to algebraic relations
written in the present paper. Also, two diagrams arewk–equivalent if and only if they can be obtained from
one another by inserting braids in �k.Pn/ (for varying n). And we can in fact deduce our Andreadakis
equality (Theorem 4.2) from their classification theorem of welded string links up to homotopy [Meilhan
and Yasuhara 2019, Theorem 9.4]. They fell short of doing so, stating only their weaker Corollary 9.5. In
fact, they did not look for the precise identification between trees and commutator calculus described here.
They only knew that something of the sort should be true, but were interested in other matters at the time.

5 A presentation of the homotopy loop braid group

Goldsmith [1974] gave a presentation of the braid group up to homotopy (see also Section 3.4). She
proved that, to a presentation of the pure braid group with generators Aij , one has to add the family of
relations making each hA1k; : : : ; Ak�1;ki into a reduced free group. The goal of the present section is to
give a similar presentation of the loop braid group up to homotopy. The situation here it more intricate;
to a presentation of P†n with generators �ij , we have to add three families of relations:

(R1) the relations saying that for all m, h�mkik<m is reduced;

(R2) Œ�im; w; �jm�D 1, for i; j < m and w 2 h�mkik<m;

(R3) Œ�im; w; �mi �D 1, for i < m and w 2 h�mkik<m;k¤i .

We remark that because of the symmetry with respect to the generators of RFn, these relations are still
true if we replace each symbol “<” by a symbol “¤”, which would give a more symmetric (but bigger)
set of relations.

Remark 5.1 These relations also describe the quotient of the group wBn of all welded braids by the
homotopy relation. Indeed, performing a homotopy cannot move endpoints of string links, so the subgroup
of relations must be a subgroup of the pure welded braid group, like in the classical setting [Goldsmith
1974, Lemma 1].

5.1 Generators of nilpotent groups

One key argument in the determination of a presentation of hP†n consists in lifting generators from
Lie rings to groups. Such generators will be obtained from combinatorics in the free Lie ring (see the
appendix), and lifting them will use the nilpotence of the groups involved.

Algebraic & Geometric Topology, Volume 24 (2024)



Milnor invariants of braids and welded braids up to homotopy 1307

Convention 5.2 By a finite filtration, we always mean a separating one; a strongly central series G� is
finite if there exists a i > 1 such that Gi D f1g. In particular, if there exists a finite strongly central series
on G, then G must be nilpotent (recall that Gi � �iG).

Lemma 5.3 Let G� be a finite strongly central filtration on a (nilpotent) group G. Suppose that the x˛
are elements of G such that their classes Nx˛ generate the Lie ring L.G�/. Then the x˛ generate G.

Proof Consider the subgroup K of G generated by the x˛ . The canonical morphism from L.G�\K/ to
L.G�/ comes from an injection between filtrations, so it is injective. By hypothesis, it is also surjective.
By induction (using the five lemma), we deduce that K=.Gj \K/DG=Gj , for all j . Since there exists
j such that Gj D f1g, this proves that K DG.

The definition of the Lyndon monomials Pw (Section A.2) makes sense in any group, if we interpret
letters as elements of the group, and brackets as commutators.

Proposition 5.4 Let G be a nilpotent group generated by a set X , and x 2X . Then the normal closure
N.x/ of x in G is generated by Lyndon monomials Pw , for Lyndon words w 2X� containing x.

Proof By taking images inG, it is enough to show this for the free nilpotent group Fj ŒX� WDF ŒX�=�jC1.
In this case, N.x/ is the kernel of the canonical projection from Fj ŒX� to Fj ŒX �fxg�. Setting N�.x/ WD

N.x/\��.Fj ŒX�/, we get a short exact sequence of filtrations translating into a short exact sequence of
Lie rings

L.N�.x// ,! L.Fj ŒX�/� L.Fj ŒX �fxg�/:

Since L.Fj ŒX�/ is the j th truncation of the free Lie algebra on Y DX , and the projection is the canonical
one (sending yD Nx to 0), the subring L.N�.x// identifies with the j th truncation of the ideal hyi of LŒY �.
This ideal is linearly generated by Lyndon Lie monomials on Y containing y. Since these are the classes
of the corresponding monomials in the group Fj ŒX�, Lemma 5.3 gives the desired conclusion.

Corollary 5.5 Let X be a set , and x 2X . The normal closure N.x/ of x in RFŒX� is free abelian on the
Lyndon monomials Pw , for Lyndon words without repetition w 2X� containing x.

Proof It is enough to show this for X finite. Then RFŒX� is nilpotent, and we can apply Proposition 5.4
to show that Lyndon monomials without repetition containing x generate N.x/. Indeed, in RFŒX�, the
only nontrivial Lyndon monomials in elements of X are those without repetition. Moreover, N.x/ is
abelian, by definition of RFŒX�. We are thus left with proving that these elements are linearly independent.
But any nontrivial linear relation between them would give a nontrivial linear relation between Lyndon
monomials without repetition in L.RFŒX�/ (take l to be the minimal length of the monomials involved,
and project the relation into �l=�lC1). Such a relation cannot hold (Proposition 1.9), so this proves the
corollary.
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If g; g1; : : : ; gm are elements of a group, let us denote by Lynd.gIg1; : : : ; gm/ the family of Lyndon
monomials .Pw/, where w runs through Lyndon words without repetition on the letters g; g1; : : : ; gm
which contain g. When considering these sets, we will choose an order on the letters making all gi greater
than g. In that case, elements of Lynd.gIg1; : : : ; gm/ are of the form ŒŒg; Pv�; Pw �, where neither v nor
w contains g. As usual, we denote by .g1; : : : ; Ogi ; : : : ; gm/ the .m�1/–tuple obtained from .g1; : : : ; gm/

by removing the i th component.

We now use Corollary 5.5 in order to get a basis of the group K0n introduced in Section 3 from the
decomposition obtained in Lemma 3.7.

Lemma 5.6 A basis of the abelian group K0n is given by[
i

Lynd.�inI�n1; : : : ; O�ni ; : : : ; �n;n�1/:

Proof We use notation from the proof of Lemma 3.7. Equivariance of the isomorphism ci ensures that c�1i
sends the set Lynd.�inI�n1; : : : ; O�ni ; : : : ; �n;n�1/ to the set B WD Lynd.xnI�n1; : : : ; O�ni ; : : : ; �n;n�1/,
the latter brackets being computed in the semidirect product .N.xn/=xi /Ì h�nj ij . If v 2 RFn�1, we
denote by �v the automorphism of RFn sending xn to xvn and fixing all other generators (�v was denoted
by tn.v/ above). Elements of B are of the form ŒŒxn; �v�; �w �, where �v and �w are Lyndon monomials
in the �nj (j ¤ i ), which means exactly that v and w are Lyndon monomials in the xj (j ¤ i; n), since
tn W v 7! �v is a morphism. Recall that the class of �v in the Lie algebra L.A�.RFn// acts on the Lie
algebra RLn via the tangential derivation �. N�v/ induced by Œ�v;��, sending xn to Œxn; v� and all other
xi to 0. As a consequence, the class of ŒŒxn; �v�; �w � in the Lie algebra L.N�.xn/=xi /�RLn is

�. N�w/�. N�v/.xn/D �. N�w/.Œv; xn�/D Œv; Œw; xn��D ŒŒxn; w�; v�;

since the derivation �. N�w/ vanishes on v. As a consequence, the family B is another lift of the basis of
L.N�.xn/=xi / considered above, and the same proof as the proof of Corollary 5.5 (in RFn=xi Š RFn�1)
shows that it is a basis of N.xn/=xi , whence the result.

Remark 5.7 In the semidirect product .N.xn/=xi /Ìh�nj ij which appears in the proof, the group h�nj ij
is isomorphic to RFn�1 but its action is not the conjugation action.

5.2 The presentation

Let us recall the relations on the �ij that will give a presentation of hP†n:

(R0) the McCool relations on the �ij (see the introduction);

(R1) Œ�mi ; w; �mi �D 1, for i < m and w 2 h�mkik<m;

(R2) Œ�im; w; �jm�D 1, for i; j < m and w 2 h�mkik<m;

(R3) Œ�im; w; �mi �D 1, for i < m and w 2 h�mkik<m;k¤i .

We now show that they indeed give the presentation that we were looking for:
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Theorem 5.8 The pure loop braid group up to homotopy hP†n is the quotient of P†n by relations
(R1), (R2) and (R3). As a consequence , it admits the presentation

hP†n Š h�ij .i ¤ j / j (R0); (R1); (R2); (R3)i:

Proof Let Gn be the group defined by the presentation of the theorem. The �ij in hP†n satisfy the
above relations. As a consequence, there is and obvious morphism � from Gn to hP†n. Since the �ij
generate hP†n (Corollary 2.10), this morphism is surjective. We need to show that it is an isomorphism.
We will do that by showing that Gn admits a decomposition similar to that of hP†n, and that the pieces
in the two decompositions are isomorphic via � . We do this in three steps, parallel to the proof of
Theorem 3.1.

Step 1 We define a projection Qpn from Gn to Gn�1 by sending �ij to �ij if n … fi; j g, and �in and �nj
to 1. This morphism is well defined (from the presentations), and so is its obvious section Qsn WGn�1 ,!Gn.
If we denote by zKn the kernel of Qpn, we get a semidirect product decomposition Gn D zKn ÌGn�1 that
fits in the following diagram:

zKn Gn Gn�1

Kn hP†n hP†n�1

Qpn

� �

Qsn

pn

sn

By induction (using the five lemma), beginning with the isomorphism G2 Š hP†2 Š Z2 (which is the
group h�12; �21i of inner automorphisms of RF2), we only need to show that the induced morphism
between the kernels are isomorphisms.

Step 2 We can apply Lemma 3.2 to the above decomposition of Gn; the proof of Lemma 3.3 only used
the McCool relations, so it carries over without change to show that zKn is generated by the �in together
with the �nj . This shows directly that the map from zKn to Kn is surjective (this fact also comes from the
snake lemma and the induction hypothesis). Consider the map zKn!Kn� RFn, where the second map
is the projection qn from Kn to RFn�1 defined in the proof of Theorem 3.1. This map sends the �in to 1
and the �nj to the xj . From the relations (R1), we know that the assignment xj 7! �nj defines a section
Qtn from RFn�1 to zKn. This shows that the �nj generate a reduced free group inside zKn. If we denote
by zK0n the kernel of Qqn D qn ı� , we get a semidirect product decomposition zKn D zK0n ÌRFn�1, similar
to (3-2), that fits in the following diagram:

zK0n zKn RFn�1

K0n Kn RFn�1

Qqn

� Š

Qtn

qn

tn
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Step 3 In order to show that the induced projection � W zK0n ! K0n is an isomorphism, we need to
investigate the structure of zK0n. By Lemma 3.2, it is generated by the �win for w 2 h�nj i ŠRFn�1, and the
relations (R2) say exactly that these commute with each other. Thus zK0n is abelian. Let us fix i and denote
by zNi the subgroup generated by the �win. It is the normal closure of �in in the subgroup zMi generated
by �in and the �nj . Relations (R1) and (R2) imply that �in and the �nj commute with their conjugates
in Mi , which is thus a quotient of RFn. In particular, zMi is nilpotent, and we can apply Proposition 5.4
to get that zNi is generated by Lyndon monomials in �in and the �nj containing �in. We can even limit
ourselves to the subset Lynd.�inI .�nj /j / of monomials without repetitions, the other ones being trivial
by the argument above. Furthermore, the relations (R3) say exactly that among these, the ones containing
�ni vanish. Thus, the abelian group zNi is generated by Lynd.�inI�n1; : : : ; O�ni ; : : : ; �n;n�1/. Because
of Lemma 5.6, we know that these monomials are sent to linearly independent elements in Ni (in fact, to
a basis of this abelian group), so they must be a basis of zNi , and the projection � induced a isomorphism
between zNi and Ni . The projection � W zK0n!K0n, being the direct product of these isomorphisms, is thus
an isomorphism, which is the desired conclusion.

Remark 5.9 The same remarks made at the end of Section 1.2 for RFn hold true for hP†n: it is finitely
generated and nilpotent (of class n� 1), so it has a finite presentation. However, in order to write down
such a finite presentation, we need a presentation of the free .n�1/–nilpotent group on n2 generators �ij .
We can then add to such a presentation the relations similar to (R1), (R2) and (R3) that are iterated
brackets of the generators (of any shape) of length at most n� 1 to get an explicit finite presentation
of hP†n. In other words, the latter relations give a finite presentation of hP†n as an .n�1/–nilpotent
group.

5.3 A presentation of the associated Lie ring

Using the above methods, one can also find a presentation of the Lie ring associated to hP†n, similar to
the presentation of L.hPn/ given in Corollary 3.12.

Proposition 5.10 The Lie ring of hP†n is generated by xij (16 i ¤ j 6 n), under the relations

ŒxikC xjk; xij �D 0 for i; j; k pairwise distinct;

Œxik; xjk�D 0 for i; j; k pairwise distinct;

Œxij ; xkl �D 0 if fi; j g\ fk; lg D¿;
to which are added , for each m, the families of relations

Œxim; Œxmi ; t ��D 0; Œxim; Œxjm; t ��D 0; Œxim; Œxmi ; t ��D 0;

where , in each case , t describes Lie monomials in the xmk (k < m).

Proof Since it is very similar to the proof of Theorem 5.8, we only outline the proof. Let hpn be the
Lie ring defined by the presentation of the theorem. The relations are true for the classes of the �ij in
L.hP†n/ (as direct consequences of the relations in the group hP†n), so xij 7! N�ij defines a projection
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� from hpn onto L.hP†n/. One shows that hpn admits a decomposition similar to the decomposition
of L.hP†n/ described in Theorem 3.8. Indeed, the morphism from hpn to hpn�1 sending xij on xij
if n … fi; j g and to 0 else is a well-defined projection p, which is split. From the relations, reasoning
as in the proof of Lemma 3.3, one checks that the xin together with the xni generate an ideal of hpn,
which has to be the kernel kn of p. They one argues exactly as in the proof of Theorem 5.8 to show
(using the first family of relations) that kn decomposes as a semidirect product k0n ÌRLn�1. Moreover,
the projection � is compatible with the decompositions of hpn and L.hP†n/. Using the five lemma, we
see that we only have to check that � induces an isomorphism between k0n and

Q
hyi i. Since we know a

basis of the target, whose elements are Lie monomials on the N�in and N�ni , we are left with showing that
the corresponding Lie monomials on the xin and xni generate k0n. Like in the proof of Theorem 5.8, the
last two families of relations ensure exactly that, so � is indeed an isomorphism.

Remark 5.11 In the presentation, one can consider only the relations where t is a linear monomial of
length at most m.

Remark 5.12 It is a difficult open question, very much related to the Andreadakis problem for P†n, to
decide whether the first three relations (the linearized McCool relations) define a presentation of the Lie
ring of P†n. It is only known to hold rationally [Berceanu and Papadima 2009].

Appendix Lyndon words and the free Lie algebra

For the comfort of the reader, we gather here some basic facts about Lyndon words. These describe
a basis of the free Lie algebra, and we give a self-contained proof of this classical result involving as
little machinery as possible. Our main sources for this appendix were Serre’s lecture notes [1965] and
Reutenauer’s book [2003, 5.1].

A.1 Lyndon words

Let A be a set (called an alphabet) endowed with a fixed total order. We denote by A� the free monoid
generated by A. Elements of A� are words in A, that is, finite sequence of elements of A. The set A� is
endowed with the usual dictionary order induced by the order on A.

The length of a word w is denoted by jwj. If v and w are words, v is a suffix (resp. a prefix) of w if there
exists a word u such that w D uv (resp. w D vu). It is called proper when it is nonempty and different
from w.

Definition A.1 The standard factorization of a word w of length at least 2 is the factorization w D uv,
where v is the smallest proper suffix of w.

Definition A.2 A Lyndon word is a nonempty word that is minimal among its nonempty suffixes.
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Lemma A.3 If w D uv is a standard factorization , then v is a Lyndon word , and if w is Lyndon then so
is u.

Proof The fact that v is a Lyndon word is clear. Suppose that w is a Lyndon word. Let x be any proper
suffix of u. Since uv D w < xv, if x is not a prefix of u, then u < x. Otherwise, u D xy for some
nonempty y, but then xyv < xv implies yv < v, which contradicts the definition of v.

The following proposition is the most basic result in the theory of Lyndon words:

Proposition A.4 Every word w 2A� factorizes uniquely as a product l1 � � � ln where n is an integer , the
li are Lyndon words and l1 > l2 > � � �> ln. We call this the Lyndon factorization of w.

Proof We first prove unicity, by proving that in a factorization wD l1 � � � ln into a nonincreasing product
of Lyndon words, ln is the smallest nonempty suffix of w. Indeed, let v be a suffix of w. Decompose v
as ylkC1 � � � ln, where y is a nonempty suffix of lk (possibly equal to lk). Then v > y > lk > ln.

We show existence by induction on the length of w. Take ln to be the smallest nonempty suffix of w.
Then w D w0ln, and ln is a Lyndon word. Moreover, a nonempty suffix of w0 cannot be strictly smaller
than ln. Indeed, if y is a nonempty suffix of w0 such that y < ln, then either y is a (proper) prefix of ln or
yln < ln. The second case contradicts the definition of ln. In the first case, by definition of ln, we get
yln > ln D yu, whence ln > u. Thus both cases contradict the definition of ln; we must have y > ln. As
a consequence, a factorization of w0 satisfying the conditions of the proposition gives such a factorization
for w, whence the conclusion.

Proposition A.4 allows us to identify the abelian group ZA� with the symmetric algebra S�Z.Lynd/. Note
that this linear identification does not preserve the ring structure, since the Lyndon factorization of a
product uv need not be the product of the Lyndon factorization of u with that of v.

A.2 The Lyndon basis of the free Lie algebra

In the sequel, V D ZfAg is the free abelian group generated by the alphabet A. We denote by LV the
free Lie algebra on V and by T V the free associative algebra on V . Recall that their universal properties
imply that T V is the enveloping algebra of LV . We denote by � W LV ! T V the canonical Lie morphism
between them. Note that we do not know a priori that this map is injective (we do not assume the PBW
theorem to be known).

Define an application w 7! Pw from the set Lynd of Lyndon word on A to LV as follows:

� Take Pa WD a 2 V for any letter a 2A.

� Ifw is a Lyndon word, consider its standard factorizationwDuv and definePw to be ŒPu; Pv�2LV .
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Lemma A.5 (standard factorization of a product of Lyndon words) Let u and v be Lyndon words.
Then uv is a Lyndon word if and only if u < v. Moreover , suppose that u < v, and denote by uD xy the
standard factorization of u, if u is not a letter. Then the standard factorization of uv is u � v if and only if
u is a letter or v 6 y.

Proof If uv is a Lyndon word, then u < uv < v. Conversely, suppose that u < v. Then either uv < v
or u is a prefix of v. But in this second case, v D uw, and v < w implies that uv < uw D v, so in both
cases uv < v. Now, take a proper suffix w of uv. If w is a suffix of v, then w > v > uv. If not, then
wDw0v with w0 a proper suffix of u. Then u <w0 implies uv < w0vDw, finishing the proof that uv is
a Lyndon word.

If u is a letter, then v is clearly the smallest proper suffix of uv. Let us assume that u is not a letter.
Suppose that v 6 y. A proper suffix of uv is either a suffix of v, which is greater than v, or of the form
wv, where w is a proper suffix of u. In the latter case, since y is the smallest proper suffix of u, we have
v 6 y 6 w < wv. This shows that v is the smallest proper suffix of uv in this case. Conversely, if v > y,
then yv is a Lyndon word by the first part of the proof. Hence yv < v, so v is not the smallest proper
suffix of uv in this case.

The following proposition and its proof are adapted from [Serre 1965, Theorem 5.3]. The proof is arguably
the most technical one in the present appendix:

Proposition A.6 The Pw for w 2 Lynd linearly generate LV .

Proof We only need to show that the Z–module generated by the Pw is a Lie subalgebra. We show
that if u and v are Lyndon words, then ŒPu; Pv� is a linear combination of Pw , with jwj D jujC jvj and
w <max.u; v/, by induction on jujC jvj and on max.u; v/. To begin with, if u and v are letters, then we
can suppose that u < v (otherwise, use the antisymmetry relation). Then ŒPu; Pv�D Puv, and uv < v.

Now, take .u; v/ such that juj C jvj > 2, and suppose that our claim is proven for every .u0; v0/ such
that ju0jC jv0j< jujC jvj, or ju0jC jv0j D jujC jvj and max.u0; v0/ <max.u; v/. Using antisymmetry if
needed, we can assume that u< v. We then use Lemma A.5. When u is not a letter, consider the standard
factorization uD xy of u. If u is a letter or y > v, then u � v is the standard factorization of uv, whence
ŒPu; Pv�D Puv, and uv < v, proving our claim. Suppose that y < v. Then

ŒPu; Pv�D ŒŒPx; Py �; Pv�D ŒŒPx; Pv�; Py �C ŒPx; ŒPy ; Pv��:

Since jxj; jyj < juj, we can use the induction hypothesis to write ŒPx; Pv� (resp. ŒPy ; Pv�) as a linear
combination of Pw (resp. Pt ) such that jwj D jxj C jvj (resp. jt j D jyj C jvj), and w < v (resp. t < v).
Then, using that x; y < v (since x < xy D u< y < v), we can apply the induction hypothesis to ŒPw ; Py �
(resp. to ŒPx; Pt �) to prove our claim, ending the proof of the proposition.
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The application w 7! Pw extends to a map from A� to T V defined as follows:

� Take Pa WD a 2 V for any letter a 2A.

� Ifw is a Lyndon word, consider its standard factorizationwDuv and definePw to be ŒPu; Pv�2LV .

� If w is any word, consider its Lyndon factorization wD l1 � � � ln. Define Pw to be Pl1 � � �Pln 2 T V .

The next lemma [Reutenauer 2003, Theorem 5.1], which says that the expression of the Pw in terms of
associative monomials is governed by a triangular matrix, will play a key role in what follows.

Lemma A.7 For any word w, the polynomial Pw is the sum of w and a linear combination of (strictly)
greater words having the same length as w.

Proof Note that if l is a Lyndon word and l D uv with u and v nonempty, then uv D l < v < vu.

We use this to show the lemma for Lyndon words, by induction on their length. For letters, the result
is obvious. Let l be a Lyndon word, and consider its standard factorization l D uv. Then u and v are
Lyndon words, and u < v (Lemmas A.3 and A.5). If the result is true for u and v, then Pl D ŒPu; Pv� is
a linear combination of elements of the form Œs; t �D st � ts, where jsj D juj, jt j D jvj, s > u and t > v.
Then ts > vu > uv, and st > uv, with equality if and only if s D u and t D v. Thus the word l D uv
appears with coefficient 1 in the decomposition of Pl , and Pl � l is a linear combination of greater words,
of the same length as l , which proves our claim.

Now, if w is any word, consider its Lyndon factorization w D l1 � � � ln. Then Pw WD Pl1 � � �Pln is a linear
combination of x1 � � � xn, where each xi is a word satisfying jxi j D jli j and xi > li . As a consequence,
jx1 � � � xnj D jl1 � � � lnj, and x1 � � � xn > l1 � � � ln, with equality if and only if each xi is equal to li . This
last case only appears with coefficient 1, so the lemma is proved.

The above application extends to a linear map P W ZA�! T V .

Proposition A.8 The application P W ZA�! T V defined above is injective.

Proof Let m be a linear combination of words in the kernel of P . Suppose that w is such that no word
smaller that w appears in m. Let � be the coefficient of w in m. Then by Lemma A.7, � is also the
coefficient of w in Pm D 0, so it must be trivial. Thus, by induction, all coefficients of m have to be
trivial, whence mD 0 and P is injective.

We can now sum this up as the main result of this appendix:

Theorem A.9 The map P induces a graded linear isomorphism

ZfLyndg Š LV:

Otherwise said , the family .Pw/w2Lynd is a linear basis of LV .

Proof The Pw generate LV (Proposition A.6) and, since their images in T V are linearly independent
(Proposition A.8), they must be linearly independent.
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A.3 Primitive elements and the Milnor–Moore theorem

In proving the previous result, we have only used basic linear algebra, and the combinatorics of Lyndon
words. In order to convince the reader of how powerful these techniques are, we will now recover the
Milnor–Moore theorem for the algebra T V , using not much more machinery. The only additional tools
we need are coalgebra structures and primitive elements.

The free commutative ring on the free abelian group V is denoted by S�.V /. It is endowed with its usual
Hopf algebra structure, whose coproduct is the only algebra morphism � W S�.V /! S�.V /˝S�.V /

sending each element v of V to v˝ 1C 1˝ v. That is, it is the only bialgebra structure on S�.V / such
that V consists of primitive elements. In fact, these are the only primitive elements in S�.V / [Serre 1965,
Theorem 5.4]:

Proposition A.10 The set of primitive elements of S�.V / is V .

Proof By definition of the coproduct of S�.V /, the subspace V is made of primitive elements. To show
the converse, it is helpful to see S�.V / as the algebra ZŒXi � of polynomials in indeterminates Xi . Then
S�.V /˝S�.V / identifies with ZŒX 0i ; X

00
i �, and the coproduct sends Xi to X 0iCX

00
i . Since it is an algebra

morphism, it sends a polynomial f .Xi / to f .X 0i CX
00
i /. Thus primitive elements are those f such that

f .X 0i CX
00
i /D f .X

0
i /C f .X

00
i /, ie additive ones. But since we work over Z, these are only the linear

ones, which is the desired conclusion.

The algebra T V is endowed with a Hopf structure defined exactly as the one for S�V : it is the unique
bialgebra structure such that elements of V are primitive ones. Since primitive elements are a Lie
subalgebra, they contain the Lie subalgebra generated by V (which is the image �.LV / of the canonical
morphism � W LV ! T V ).

Recall that Proposition A.4 allows us to identify ZA� with the symmetric algebra S�Z.Lynd/. We will
show the following:

Theorem A.11 (Milnor–Moore) The application P W S�Z.Lynd/! T V defined in Section A.2 is an
isomorphism of coalgebras.

Proof Injectivity has already been shown (Proposition A.8). Let us first prove surjectivity. Let p ¤ 0
be a homogeneous element of T V . Let w be the smallest monomial appearing in p, with coefficient �.
Then p � �Pw is homogeneous and contains only monomials greater than w (see Lemma A.7). By
repeating this process, we can write p as a linear combination of Pw . Indeed, this process stops, since
we consider only the finite set of words of fixed length (equal to the degree of p) whose letters appear in
some monomial of p. This proves that P is surjective.
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We are left to show that the application P W w 7! Pw preserves the coproduct. We first remark that if l is
a Lyndon word, then l is primitive in S�Z.Lynd/, and Pl 2 �.LV / is primitive in T V . For any word w,
consider its Lyndon factorization w D l1 � � � ln. Then we can write

�.Pw/D�.Pl1/ � � ��.Pln/D .Pl1 ˝ 1C 1˝Pl1/ � � � .Pln ˝ 1C 1˝Pln/

D

X
nDXtY

Plx1
� � �Plxp ˝Ply1

� � �Plyq ;

where the sum is over all partitions of the set nD f1; : : : ; ng into two subsets X D fx1 < � � �< xpg and
Y D fy1 < � � �< yqg. As a consequence,

�.Pw/D
X

nDXtY

Plx1 ���lxp
˝Ply1 ���lyq

D .P ˝P /

� X
nDXtY

lx1 � � � lxp ˝ ly1 � � � lyq

�
D .P ˝P /.�.l1/ � � ��.ln//D .P ˝P /.�.w//:

Corollary A.12 The canonical map � W LV ! T V identify LV with the Lie algebra of primitive elements
in T V .

Proof Thanks to Theorems A.9 and A.11, this map identifies with ZfLyndg ! S�Z.Lynd/. But
Proposition A.10 ensures that the set of primitive elements of the coalgebra S�Z.Lynd/ is exactly ZfLyndg,
whence the result.

Remark A.13 Neither our identification of the free abelian group ZfLyndg with the primitives of T V nor
our proof of Theorem A.11 requires the use of the fact that Lyndon words generate LV (Proposition A.6);
we only used that they are linearly independent (Proposition A.8) for that. The full strength of Theorem A.9
is only used to see that P W ZA� ,! T V coincides with � W LV ! T V (whence Corollary A.12).

A.4 Linear trees

The free Lie algebra can be seen as a quotient of the free abelian group ZM.A/ on the free magma M.A/

on A by antisymmetry and the Jacobi identity. Elements of the free magma can be seen as parenthesized
words in A, or as finite rooted planar binary trees, whose leaves are indexed by elements of A. The
images of elements of the free magma in LV are called Lie monomials.

Lyndon words encode a family of rooted binary trees whose leaves are indexed by letters. Precisely, if w
is a Lyndon word, the tree T .w/ is just one leaf indexed by w, if w is a letter. If not, take the standard
factorization w D uv. Then T .w/ is given by a root, a left son T .u/ and a right son T .v/:

T .uv/D

T u T v

Algebraic & Geometric Topology, Volume 24 (2024)



Milnor invariants of braids and welded braids up to homotopy 1317

The Lyndon basis of the free Lie algebras are the Lie monomials Pw obtained from such trees by
interpreting nodes as Lie brackets. We call these Lyndon monomials

One can consider another family of Lie monomials, called linear Lie monomials, given by linear trees,
that is, monomials which are letters or of the form Œy1; : : : ; yn� (D Œy1; Œy2; Œ: : : Œyn�1; yn� : : :���). It is
easy to see, by induction, using the Jacobi identity, that these generate LV . In fact, the Jacobi identity
can be written as

(A-1)

A B

C D A

B C

� B

A C

Using this as a rewriting rule (from left to right), one can write any tree (that is, any Lie monomial) as a
linear combination of trees whose left son is a leaf. Applying the induction hypothesis to the right sons,
one gets a linear combination of linear trees.

There are nŠ linear Lie monomials in degree n, which is clearly strictly greater than the number of Lyndon
words of length n, so they must be linearly dependent. It is the need to control this redundancy that leads
us to consider Lyndon words (or, more generally, Hall sets).

Lemma A.14 Any Lie monomial is a linear combination of linear Lie monomials with the same letters
(counted with repetitions). Also , it is a linear combination of Lyndon monomials with the same letters.

Proof The first part follows from the rewriting process that we have just described. The second one is
a bit trickier: although we know that a decomposition into a linear combination of Lyndon monomials
exists (Proposition A.6), we did not give an algorithm to compute it. However, we can use a homogeneity
argument as follows: ZM.A/ is NfAg–graded, the degree of an element of the free magma M.A/ being
its image in the free commutative monoid NfAg (which counts the number of appearance of each letter
in a given nonassociative word). Moreover, the antisymmetry and the Jacobi relations are homogeneous
with respect to this degree, so that the quotient LŒA� is again a graded abelian group with respect to this
degree. As a consequence, if we write a Lie monomial m of degree d as a linear combination of Lyndon
monomials, taking the homogeneous component of degree d results in an expression of m as a linear
combination of Lyndon monomials of degree d 2NfAg, as claimed.

We remark that the expression of m obtained in the proof by taking the homogeneous component must in
fact must be the same as the first one, because of Theorem A.9.

Linear trees can be used to define a basis of the reduced free Lie ring RLŒn� which could be used to
replace the Lyndon basis in all our work (this is in fact the point of view used in [Meilhan and Yasuhara
2019]):
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Lemma A.15 For all integer k > 2, a basis of RLŒn�k is given by Lie monomials which are letters or of
the form Œyi1 ; : : : ; yik � where the ij 6 n are pairwise distinct and satisfy ik Dmaxj .ij /.

Proof Using antisymmetry, one sees that up to a sign, any Lie monomial without repetition is equal to a
Lie monomial with the same letter where the right-most factor (the right-most leaf of the corresponding
tree) bears the maximal index. Then we can use the rewriting rule (A-1) to get a linear combination
of linear trees, and the right-most leaf stays the same throughout the process, as does the set of letters
used. This shows that Lie monomials of the form described in the lemma generate the abelian group
RLŒn�k . Moreover, there are .k � 1/Š

�
n
k

�
such monomials, which is already known to be the rank of

RLŒn�k (Proposition 1.9); hence this family must be a basis of RLŒn�k .
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