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The localization spectral sequence in the motivic setting

CLEMENT DUPONT
DANIEL JUTEAU

We construct and study a motivic lift of a spectral sequence associated to a stratified scheme, recently
discovered by Petersen in the context of mixed Hodge theory and ¢—adic Galois representations. The
original spectral sequence expresses the compactly supported cohomology of an open stratum in terms
of the compactly supported cohomology of the closures of strata and the combinatorics of the poset
underlying the stratification. Some of its special cases are classical tools in the study of arrangements of
subvarieties and configuration spaces. Our motivic lift lives in the triangulated category of étale motives
and takes the shape of a Postnikov system. We describe its connecting morphisms and study some of its
functoriality properties.

18N40; 14F42, 14N20

Introduction

For a topological space X, an open subspace U and a complementary closed subspace Z, the compactly
supported cohomology groups of X, U and Z are related by a localization long exact sequence

(1) o> HXU) = HX(X) —» HN(Z) — HTYU) — -+ .

This can typically be used for two different purposes: either to compute the compactly supported
cohomology of X knowing that of U and Z, or to compute the compactly supported cohomology of U
knowing that of X and Z.

More generally, let X be a topological space equipped with a stratification, ie a partition by locally closed
subspaces called strata such that the closure of a stratum is a union of strata; we assume for simplicity
that there is a unique open stratum Xo. The specialization relation turns the set of strata into a finite poset
whose least element is Xo. One may either want to understand the space X in terms of the strata, or to
understand the open stratum X in terms of the closures of the strata. In the former case, the localization
long exact sequence can be generalized to a spectral sequence in an obvious way. In the latter case,
however, this was explained only recently by Petersen [2017] who devised a spectral sequence converging
to the compactly supported cohomology of X, whose first page is expressed in terms of the compactly
supported cohomology of the closures of strata, and of the combinatorics of the poset of strata. We refer
the reader to the introduction of [loc. cit.] for a clear interpretation in terms of inclusion-exclusion.
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1432 Clément Dupont and Daniel Juteau

A precursor of Petersen’s spectral sequence (or rather, of its Poincaré dual version) is Deligne’s spectral
sequence appearing in mixed Hodge theory [Deligne 1971, 3.2.4.1] where the stratification is induced
by a normal crossing divisor inside a smooth projective complex variety. Several other special cases are
classical tools in the study of more combinatorially involved contexts such as arrangements of subvarieties
[Bibby 2016; Bjorner and Ekedahl 1997; Dupont 2015; Goresky and MacPherson 1988; Looijenga 1993]
and configuration spaces [Cohen and Taylor 1978; Getzler 1999; KtiZ 1994; Totaro 1996]. In the general
case, Petersen proves that his spectral sequence is compatible with mixed Hodge structures when X is a
complex algebraic variety equipped with an algebraic stratification. It also has an étale {—adic variant
which is compatible with Galois actions. The proofs are sheaf-theoretic and involve filtering well-chosen
resolutions in abelian categories of sheaves.

The goal of this article is to lift Petersen’s spectral sequence to a motivic setting. Let now X be a scheme

equipped with a stratification (see Section 3 for the relevant assumptions) with a unique open stratum Xy,

X
= § . . . =

the closure of a stratum S. We denote by P the poset of strata and fix a strictly increasing mapo: P — Z

and let j: Xo < X denote the open immersion. We also denote by iX : § < X the closed immersion of
such that o(Xo) = 0. We fix a ring of coefficients K. To every stratum S € P is associated a cochain
complex of K—modules C*(S) which computes the reduced cohomology of the open interval (Xg, S) in
the poset P.

We work in the context of the triangulated category of étale motives (or motivic sheaves) over X with
coefficients in K, denoted by DAy [Ayoub 2007a; 2007b; 2014a; Cisinski and Déglise 2016; 2019]. The
lack of an abelian-categorical formalism for motivic sheaves forces us to depart from Petersen’s original
techniques. In the triangulated setting, the notion of a filtration has to be replaced with that of a Postnikov
system, that is, a sequence of distinguished triangles where each triangle has a vertex in common with
the next one. The main result of this article is as follows (see Theorems 3.3 and 3.16 for more precise
statements).

Main Theorem For & € DAy there is a Postnikov system in DAy,

F2 Fl FO —
G2 Gl GO

where the graded objects are given by

Gt = P (i) FRCS).

SeP
o(S)=k

Jii'F

The connecting morphisms G¥ — GK+1[1] are explicitly computed. This Postnikov system is functorial
in & and functorial with respect to a class of stratified morphisms.
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In the case of the constant motivic sheaf & = Ky, this theorem expresses the compactly supported motive
of X¢ in terms of the compactly supported motives of the closures of strata S and the complexes C*(S).
For instance, if the stratification consists of an open j: U < X and its closed complement i : Z — X,
the Postnikov system reduces to the localization triangle

j!KU — KX — i*KZ i)
which is the motivic lift of the localization long exact sequence (1).

One can recover Petersen’s spectral sequence(s) along with a description of the d; differential from our
main theorem, by applying (compactly supported) cohomological realization functors. In a genuinely
motivic setting, an application to the study of classical polylogarithm motives will appear as a joint article
of the first author with J Fresdn [Dupont and Fresdn 2023]. There, it is crucial to have a Postnikov system
that is functorial with respect to a group action on a stratified scheme, which is a special case of the
functoriality statement in our theorem.

One of the main difficulties in the proof of our main theorem is to construct the Postnikov system in a
way that makes it obviously functorial. For this we cannot simply work in the context of a triangulated
category, where cones are not functorial. Rather, we are led to work in the enhanced setting of triangulated
derivators. Another reason for this choice is that we rely on the six functor formalism for étale motives,
developed by Ayoub [2007a; 2007b] and written in the language of algebraic derivators, a geometric
enrichment of the notion of a triangulated derivator. From the standpoint of homotopy theory, it is
natural to expect our main theorem to lift to the stable co—category of motives; this would require an
oo—categorical enhancement of Ayoub’s six functor formalism.

We also study a dual version of our main theorem (Theorem 3.9) where we are interested in describing the
object j«j*%. Due to the lack of duality in the general setting of algebraic derivators, we cannot simply
repeat the proof. Instead, we rely on applying Poincaré—Verdier duality, but the latter is available at the
motivic level only under certain assumptions (see Section 3.4). Note that, if we gave up on functoriality,
then we would not need to work in the setting of algebraic derivators and could prove the dual statement
(without functoriality) in full generality. This strongly suggests that the dual statement (with functoriality)
is true in full generality, even though we are not able to prove it with our methods. In any case, if one is
only interested in working with realizations, one can first apply a realization functor to the main theorem
and then dualize.

Perspectives

A natural direction of research would be to try and apply our main theorem to prove motivic representation
stability results in the spirit of the homological representation stability results of Petersen [2017]. Also, it
would be desirable to clarify the general functoriality properties of our construction, beyond those already
explored here.
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1434 Clément Dupont and Daniel Juteau

A motivation for this project is the possibility to study a more general geometric setting mixing j; and j
extensions, depending on the strata. The corresponding motives can be viewed as relative cohomology
motives on some blow-up of the ambient variety and are ubiquitous in the geometric study of periods
(see eg [Goncharov 2002] and the introduction of [Dupont 2017]).

Outline

In Section 1 we review classical definitions and properties of poset (co)homology; to the best of our knowl-
edge, the only original content is the introduction of connecting morphisms relating poset (co)homology
complexes of different intervals in a poset. In Section 2 we work in the setting of triangulated derivators
and collect some tools to produce and study functorial Postnikov systems. In Section 3 we apply those
tools to our geometric setting and prove the main results.
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1 Poset (co)homology

In this section we review poset (co)homology. To the best of our knowledge, the only original content is
the introduction of connecting morphisms relating poset (co)homology complexes of different intervals
in a poset. We fix a commutative ring with unit K for the rest of this article, that will serve as a ring of
coefficients.

1.1 Definition

Let P be a finite poset. We will sometimes make use of the extension P= {f)} U P where 0 < p for all
p € P. For any element x € P we let C,(x), denoted by CF (x) when we want to make dependence on
P explicit, be the chain complex whose degree n component is the free K—module on chains

[x1 <+ <Xp—1 < Xp =X],
and whose differential d: Cp, (x) — C,—1(x) is given by
n—1 )
x1 < <Xp—1 <Xp=Xx]= Z(—I)Z_l[xl < <X << Xp—1 < Xp = X].

i=1

Algebraic € Geometric Topology, Volume 24 (2024)



The localization spectral sequence in the motivic setting 1435

We let h,(x) denote the homology of C,(x). Up to a shift, C,(x) is the (reduced) normalized chain
complex of the nerve of the poset Py = {p € P | p < x} and thus we have

hn(x) = Hy(Co(x)) = ﬁn—Z(P<x)-

We let C*(x), or Cp(x) when we want to make dependence on P explicit, denote the cochain complex
dual to C,(x) and use the same notation for the basis of chains and the (dual) basis of cochains. The
differential d : C™(x) — C"*T1(x) is given by

n
d[xy <~--<xn_1<xn=x]=X:(—1)"_1 Z [X1 < - <Xjim1 <Y <X <+ <Xp_1] <Xp=X],

i=1 Xi—1<Y<Xi
where by convention we have xg = 0in P. We let h*(x) denote the cohomology of C*(x) and we have
h"(x) = H"(C*(x)) = H"2(P<y).

The following lemma is classical.
Lemma 1.1 If P has a least element a then C,(x) and C*(x) are contractible for all x > a.

Proof The nerve of P<, = [a, x) is a cone over the nerve of the open interval (a, x) and thus contractible.
Concretely, a contracting homotopy ¢: Co(x) — Co41(x) is provided by the formula

0 ifxlza,
cxi1 < <xp_1<xp,=x]= .
[a<xy <. <xp—1<xp=x] ifx;>a.

The transpose of ¢ is a contracting homotopy for C*(x). a

It is sometimes convenient to extend the definitions to P by defining C, (6) and C* (6) to be K concentrated
in degree zero.

Remark 1.2 The complexes C, have a certain functoriality property with respect to morphisms of
posets. In this article we will only deal with functoriality with respect to isomorphisms (and in particular
with respect to group actions). For a: P — P’ an isomorphism of posets we have for every x € P
a natural isomorphism of chain complexes C,(a): CF (x) - CF "(x') for x' = a(x). They satisfy
C.(id) =id and C,(B o) = C,(B) o C, (). Dually we have natural isomorphisms of cochain complexes
C*(a): Cp,(x") = Cp(x) that satisfy C*(id) = id and C*(Boa) = C*(a) o C*(B).

1.2 The connecting maps

For x < y in P we define a map
bY: Cor1(y) = Calx)
by setting
=D"x1 < <xp=x] ifx,=x,

bllx1 < <xp<xpr1=yl= )
xl " et V] 0 otherwise.

Algebraic € Geometric Topology, Volume 24 (2024)
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< e < 1 = f _1=x,
Lemmal3  (9b) +b20)[x1 <o <X < xnp1 =] = | 1 Xn-1=x] ifon—y = x
0 otherwise.

Proof We compute, for X =[x <-+- <X, < Xp+1 = V],
n—1 )

bYOX =Y (=1 'Y [x1 << fi <o <xp <Xppr = Y]+ (DB Xy < < Xpoy <Xpp1 =,
i=1

If x,_1 = x then x, # x and we have by 0X = [x; <--- < X1 = x] and dby X = 30 = 0, which proves
the first part of the claim. If x,,—; # x and x, # x then all terms vanish and we get b} 0X = dbY X = 0.
If x,—1 # x and x,, = x then

n—1
bYOX =) (1) [x1 <. <& <--- <xp =x] = —0b}X. O
i=1

We write x <y when y covers x in P, ie when x < y and thereisno z € P such that x <z < y.

Lemmal4 (1) Forx<yinP,by:Cuey1(y) — C.(x) is a morphism of complexes.

(2) Letx <z in P be such that every y € (x, z) satisfies x < y < z. Then the morphism of complexes

> bIbI: Cota(z) > Co(x)
x<y<z
is homotopic to zero.

The first part of the lemma implies that we get connecting morphisms b} : o1 1(y) — he(x) in homology,
for x < y.

Proof (1) For x,—1 < xp < Xxp+1 = y we cannot have x,_; = x since y covers x. Then Lemma 1.3
implies that db) = —bj 0, thus b3 is a morphism of complexes.
(2) We have
—[x1 < <xy=x] ifx, =x,

Z bybylx1 <+ <Xnt1 < Xnt2 = 2] ={

0 otherwise.
x<y<z

Thanks to Lemma 1.3 this can be rewritten as

> bYb =—0b% —bZ0. O

x<y<z

By duality we get a map that we denote by the same symbol, since there is no risk of confusion,

bY: C*(x) — C ().
It is defined by the formula

bllxi <--<xp=x]=(D"[x1 < - <Xy =X <Xpt1 =]
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Lemma 1.5 (1) Forx <y in P,bY:C*(x) — C**1(y) is a morphism of complexes.
(2) Let x <z in P be such that every y € (x, z) satisfies x < y < z. Then the morphism of complexes
> bib):C(x) —> C*A(2)
x<y<z
is homotopic to zero.

Proof This is the dual of Lemma 1.4. O

It is sometimes convenient to extend the definitions to P. Indeed, for 0 < ¥, ie for y a minimal element
of P, we can define by Cor1(y)— C, (6) to be the natural (iso)morphism of complexes. The same goes
in cohomology for by c (O) — C*T1(y). One easily checks that Lemmas 1.4 and 1.5 also apply to the
case x = 0.

Remark 1.6 Let us assume for simplicity that the poset Pis graded, ie any two maximal chains between
two elements x < y in P have the same length. For x € P let rk(x) denote the length of a maximal chain
from 0 to x. In many geometric cases we have, for every x € P,

hy(x) =0 for n # rk(x),

and we simply write /(x) = hy(x)(x). (This implies that the cohomology of C*®(x) is concentrated in
degree rk(x) and that /™) (x) ~ h(x)V.) This condition is satisfied, eg if the poset Pis Cohen—Macaulay
[Baclawski 1980; Bjorner et al. 1982]. In this case we get a chain complex (4, b) where

= @ hx)

xeP
rk(x)=n

and b: hy,4+1 — hy is induced by the connecting maps by for x < y. One can also prove that these
connecting maps induce acyclic complexes of K—modules, for every x € P,

0>hx)> P - P @ —->h0) —o0.

yeﬁ,y<x zeﬁ,z<x
rk(y)=rk(x)—1 rk(z)=rk(x)—2

This allows one to define & (x) together with the connecting morphisms b;; by induction on rk(x).

A typical example of a Cohen—Macaulay poset is the poset of flats of a matroid (for instance, the poset of
strata of a central hyperplane arrangement); in this case (k, b) is the underlying chain complex of the
Orlik—Solomon algebra of the matroid [Orlik and Solomon 1980; Orlik and Terao 1992].

1.3 Interpretation of poset cohomology as homotopy limit

We will now consider the abelian category of representations of the finite poset P, ie the category
(K-Mod)? of functors from P viewed as a category to the category of K—modules. Since K—Mod is
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abelian, it admits finite limits, so we have a limit functor limp : (K—Mod)P — K-Mod, which is right
adjoint to the constant functor K-Mod — (K-Mod)?; since it has a left adjoint, it is left exact, and we
may consider the right derived functor R limp : D((K-Mod)?”) — D(K-Mod). In anticipation of the
next section, we will call it homotopy limit and denote it by holimp. We now prove and discuss the
following interpretation of the complexes C*(x) (see also [Tosteson 2016] for a similar discussion).

Proposition 1.7 For x € P we denote by K the representation of P defined by K, (y) =K if y =x
and zero otherwise. We have a canonical isomorphism in D(IK-Mod),

holimp K, ~ C*T1(x).
In order to compute the functor holimp we introduce convenient limp—acyclic representations of P. For

x € P and M € K-Mod, we let M<, € (K-Mod)? denote the representation given by M<,(y) = M if
¥ < x and zero otherwise, the transition morphisms being the identity of M or zero.

Lemma 1.8 The representation M <, is limp—acyclic.
Proof The functor
(—)<x: K-Mod — (K-Mod)?, M — Mc,,
is exact and sends injectives to injectives. Indeed, for T € (K-Mod)® we have an isomorphism
Hom g noqy? (T, M<x) > Homg moa (7' (x), M),
and thus the functor Homg_noq) 7 (—, M<x) is exact if M is injective. Thus, we have isomorphisms
Rlimp (M<yx) ~ Rlimp oR(—)<x(M) >~ R(limp o(—)<x)(M) =~ M ~1limp (M<y).
The first isomorphism follows from the fact that (—)<, is exact, the second follows from the fact that it

sends injectives to injectives, the third and fourth from the equality limp o(—)<x = Idk_mod- O

Proof of Proposition 1.7 For z < y we have a canonical morphism K<, — K<;. Moreover, those
morphisms compose functorially. Using them we can form a resolution

0->Ky > Kex > PKsy > P Kez— -

y<x z<y<x

R! = &y Kex, -

[x1<w<xp<xp41=x]

More precisely, we set

In analogy with the construction of the complexes C*(x) of Section 1.1, we define a differential
d: R" — R""! Tts component indexed by chains [x; < --- < X, < Xp4+1 = x] on the source and
[¥1 <+ <Xj_1 <y <Xj <--+<Xn < Xni1 = x] on the target equals (—1) times the natural map
(the latter being the identity for i > 1 and the canonical morphism K<y, — Kg, fori = 1). The other
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components are zero. One easily checks that we get a complex R} of representations of P which is such
that

K ifa = x,
Ry(a) = {CoTh(x) ifa<x,
0 otherwise.

By Lemma 1.1, the complex C[:z’x](x) is contractible and we thus get a resolution K = Rj.

By Lemma 1.8 this resolution is limp—acyclic. Hence, it can be used to compute holimp K, =Rlimp K.
Since each limp K<y, is just K, applying limp to the resolution gives limp R} ~ C**T1(x), and the
result follows. O

Remark 1.9 The resolution appearing in the proof of Proposition 1.7 is a Bousfield—Kan resolution
[1972, Chapter XI].

We now turn to the interpretation of the connecting morphisms by . For x < y in P we let K, denote
the representation of P defined by K (z) = K if z € {x, y} and zero otherwise, the transition morphism
K% (x) — K2 (») being the identity. We have a short exact sequence in (K-Mod)?,

0—->K, >K}—>Kx—0,
which induces a distinguished triangle K, — Ky — K, *Lin D((K-Mod)?). We denote by

al: Ky - Ky[1]

the connecting morphism.

Proposition 1.10 Assume that x < y. We have a commutative square in D(IK-Mod),

. holimp a?y .
holimp Ky —— holimp K [1]

~| |=

C°+1(X) - Co+2(y)
by [1]

where the vertical isomorphisms are those of Proposition 1.7.

Proof Let RS and Rj denote the resolutions of Ky and K described in the proof of Proposition 1.7.
By mimicking the definition of b and the proof of Lemma 1.5 1) we get a morphism of complexes
R — RJ',H. We let S* denote its cone shifted by —1, so that §* = RS @ R}, as graded P-representations.
We consider the commutative diagram

0 K, K> K« 0
[
4
0 R} S* RS 0

where both rows are short exact sequences. The dotted arrow K} — S° =K<, @ K< y is defined so that
its value at y is the identity of K and its value at x is the diagonal morphism K — K @ K. It is a morphism
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of representations of P because x < y. The composite K} — S — S is zero, as one can check on the
values at x and y. In the above commutative diagram, the bottom row is thus a lim p—acyclic resolution of
the top row, by the five lemma. This implies that the connecting morphism holimp K, — holimp K, [1]
is computed by the connecting morphism in the long exact sequence associated to the short exact sequence

0 — limp RJ', — limp §* — limp R} — 0.
By construction, this is nothing but the short exact sequence for the cone of the morphism
bY[=1]: C*Hx) = C*(y),

and the connecting morphism is by . |

Remark 1.11 Let o: P — P’ be an isomorphism of posets, let x € P and x’ = a(x) € P’. One easily
proves that the natural isomorphism

C;;,i_l(x/) ~ holimp/ Kx’ ~ hOlimp Kx ~ CI;—H(X)

is the isomorphism of complexes denoted by C**!(«) in Remark 1.2.

2 Triangulated derivators

In this section we collect some tools about triangulated derivators and natural Postnikov systems arising
in this context. The main result is Proposition 2.20.

2.1 The framework of triangulated derivators

We work within the framework of triangulated derivators, introduced by Grothendieck [1991] and
developed by several authors; see [Ayoub 2007a; Cisinski and Neeman 2008; Franke 1996; Groth 2013;
Heller 1988; Maltsiniotis 2001]. Broadly speaking, triangulated derivators are like triangulated categories
with well-defined homotopy limits and colimits (and more generally homotopy Kan extensions).

We work with Ayoub’s notion [2007a] of a triangulated derivator in order to be able to use the notion
of an algebraic derivator from [loc. cit.] in the next section. There a 2—category of “diagrams” is fixed,
which is a full 2—subcategory of the 2—category of (small) categories satisfying the axioms DO, D1 and
D2 of [Ayoub 2007a, section 2.1.2]; we choose it to be the 2—category of finite posets, since those are the
only diagrams that we will need. All 2—categories in this paper are strict, and our notion of a 2—functor
between two 2—categories is the weak one, ie that of a pseudofunctor in the sense of [Borceux 1994, 7.5].

2.1.1 Finite posets A finite poset P is viewed as a category with a unique morphism from x to y if
x < y, and none otherwise. Finite posets thus form a full 2—subcategory of the 2—category of (small)
categories. A functor between finite posets is an order-preserving map and is simply called a morphism
of posets. For two such morphisms f, g: P — Q, there is a unique natural transformation from f to g if
f(x) < g(x) for every x € P, and none otherwise.
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We denote by e the poset with one element. For P a finite poset, we denote by p or pp: P — e the

morphism to a point. An inclusion between posets Q C P is denoted i 5 :Q — P. For P a finite poset

P

x . e — P for the inclusion of x.

and x € P, we use the notation iy or i
2.1.2 Triangulated prederivators

Definition 2.1 A friangulated prederivator D is a 1—contravariant and 2—covariant 2—functor from the
2—category of finite posets to the 2—category of triangulated categories. In other words, it associates

(0) to every finite poset P, a triangulated category D(P);
(1) to every morphism f: P — Q of finite posets, a triangulated functor f*:D(Q) — D(P);
(2) to every pair of morphisms f,g: P — Q such that f(x) < g(x) for every x € P, a natural

transformation of triangulated functors f* — g*;

in a way that is compatible with horizontal and vertical composition.

Remark 2.2 The triangulated category D(e) is called the ground category. For a finite poset P, an
element x € P and an object & € D(P), the pullback (ix)*%F € D(e) is called the value of F at x. For
elements x, y € P such that x <y we have two morphisms iy, :e — P such thatiy(-) <i,(-) and thus
a natural transformation (ix)* — (i,,)*. Thus, the functors (ix)* induce an underlying diagram functor

) D(P) — D(e)”

which is not an equivalence in general. The category D (P) should be thought of as the category of
“homotopy coherent” P—shaped diagrams of objects of the ground category D (e), whereas the category
D(e)? consists of “homotopy incoherent” diagrams. More generally we have “partial” underlying diagram
functors, for finite posets P and FE,

D(E x P) — D(E)?

and diagrams in D(E)? can be called “partially homotopy incoherent”.

Remark 2.3 Our variance convention slightly differs from that of [Ayoub 2007a] since there prederivators

are 1—contravariant and 2—contravariant, which makes the underlying diagram functor land in D (e) ¥

2.1.3 Triangulated derivators A triangulated derivator [Ayoub 2007a, définition 2.1.34] is a triangu-
lated prederivator that satisfies a certain number of axioms, including the following that we mention for
future reference:

(1) We have D(2) = 0.

(2) The underlying diagram functor (2) is conservative for every finite poset P; it is a triangulated

equivalence if P is discrete.

(3) For every morphism f: P — Q of finite posets, the functor f*:D(Q) — D(P) admits right and
left adjoints,

Jfe:D(P) > D(Q), fi:D(P)—D(Q).
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respectively, which are automatically triangulated functors. They play the role of homotopy right and left
Kan extension functors; in the special case of p: P — e, the projection to a point, they are a homotopy
limit and colimit functors and we write p, = holim and p; = hocolim.

(4) For a morphism f: P — Q and some element y € O, let y/P C P denote the subposet consisting
of elements x € P such that y < f(x). We have a natural transformation

(Py/P)* (2)* > (L p)* f*

associated by 2—functoriality to the two morphisms (in )o pysp and f o (i f/ p) from y/P to Q. By
using the units and counits of the adjunctions we can obtain from it a natural transformation

(2)* fe = (py/p)e(if)p)*

which s (:.2)* fu = (py/ P (Py/p)* (i2)* fiu = (Py/p)wiE p)* [* fi = (Py/p)w(iF) p)*. We require
this last natural transformation to be invertible. In the same vein, let P/y C P denote the subposet
consisting of elements x € P such that f(x) < y. Then we have a natural transformation

(Pp/y)(if )" — (2)* fi
that we require to be invertible.

Remark 2.4 The axioms listed above are similar to the axioms 1-4 of [Ayoub 2007a, définition 2.1.34],
albeit slightly less complete for (2) and (4). In [loc. cit.] two more axioms, 5 and 6, relate the triangulated
structures on the categories D (P ) with the homotopy Kan extension functors fi and f; and will not be
used in the rest of this article.

Remark 2.5 If A is a Grothendieck abelian category, eg s§ = K-Mod, then we have a derivator D 4 such
that Dy (P) is the derived category of the diagram category A ¥ for every finite poset P. The pullback
functors f* are the obvious ones and their adjoints are obtained by deriving the usual Kan extension
functors.

2.1.4 Monoidal structure The triangulated derivators that we will deal with all have a unital symmetric
monoidal structure in the sense of [Ayoub 2007a, section 2.1.6]. This means that for every finite poset P
the triangulated category D (P) is endowed with the structure of a unital symmetric monoidal triangulated
category and that for every morphism f: P — Q the functor f*: D(Q) — D(P) is endowed with
the structure of a unital symmetric monoidal functor. The triangulated derivator Dg_pjoq Of the abelian
category K—Mod is symmetric monoidal.

Let D be a unital symmetric monoidal derivator. Then we have, for every morphism of finite posets
f: P — Q andfor F € D(P), 6 D(Q), a natural morphism

3) YR [1F — fo([T4QF).

Algebraic € Geometric Topology, Volume 24 (2024)



The localization spectral sequence in the motivic setting 1443

It is obtained as the composition 4 ® f«F — fu [ (4R fxF) = fu([*4Q f* [xF) = [x([T4RF),
where the first and last steps involve the unit and the counit of the adjunction, and the middle step uses
that f* is monoidal. In the same way, we have a natural morphism

4) NP RF) -4 HF.

Neither (3) nor (4) is an isomorphism in general.

2.1.5 Coefficients In the remainder of this section we fix a unital symmetric monoidal triangulated
derivator D equipped with a morphism of unital symmetric monoidal triangulated derivators Dg_noq — D.

Such an object can be called a unital symmetric monoidal triangulated derivator with coefficients in K.

We will allow ourselves to interpret complexes of K—modules as objects of D (e) without specific reference
to the morphism Dk _poq — D.

2.2 Extension by zero

‘We start with a classical lemma.

Lemma 2.6 Let P be a finite poset with projection p: P — e.
(1) If P has a least element x then we have isomorphisms ps« ~ (ix)* and p* >~ (ix):. The natural
morphism pyp* — idp ) is an isomorphism.

(2) If P has a greatest element y then we have isomorphisms py >~ (i,)* and p* ~ (i),)«. The natural
morphism idpy ey — p«p™ is an isomorphism.

Proof We prove the first point (the second is proved dually). The fact that x is the least element of P
may be expressed by the fact that (i, p) is an adjoint pair of functors. It follows that (p*, (i5)*) is also
an adjoint pair of functors. Now (ix)* being a right adjoint to p* means that it is equal to p«, and p*
being a left adjoint to (ix)* means that it is equal to (ix):.

For the second assertion, note that piy = ide, hence py(ix) > idp ), and the isomorphism p* = (ix),
identifies this with the adjunction morphism p)p* — idp ). ad

Lemma 2.7 Let i: Q — P denote the inclusion of a subposet. For every 4 € D(Q) the natural
morphisms
i*ix9—>% and G—i*i)

are isomorphisms.

Proof We prove that the first morphism is an isomorphism (the second case is proved dually). For every

x € Q we have a sequence of isomorphisms
(2)%i%ia G~ (i F)*ie (pry)e(iZ )™ 4~ (F/9)* (2 )"~ (12)*s.
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where the second isomorphism follows from Section 2.1.3(4) and the third isomorphism follows from
Lemma 2.6 since x is the least element of x/Q. One checks that the composition of these isomorphisms
is the composition of (i xQ)* with the natural morphism i *i 49 — 9. By Section 2.1.3(2) this proves the
claim. |

Definition 2.8 Let P be a finite poset.

(1) A sievein P is asubset U C P such that forevery x < yin P, y € U impliesx € U.
(2) A cosieve in P is a subset IV C P such that for every x < y in P, x € V implies y € V..

The complement of a sieve is a cosieve and the complement of a cosieve is a sieve. We also call a sieve
(resp. cosieve) the functor of posets given by the inclusion of a sieve (resp. cosieve). The following lemma
is classical and says that the functor u, (resp. vy) deserves the name “extension by zero” if u is a sieve
(resp. if v is a cosieve).

Lemma 2.9 Let P be a finite poset.

(1) Letu:U <> P be asieve. For ¥ € D(P), the natural morphism ¥ — u,u™*% is an isomorphism if
and only if (ix)*% =0 forallx € P\ U.

(2) Letv:V < P be acosieve. For & € D(P), the natural morphism viv*% — F is an isomorphism
ifand only if (ix)*% =0 forallx € P\ V.

Proof We prove the first point (the second is proved dually). Let us assume that the natural morphism
F — usxu™F is an isomorphism. Then for x € P \ U we have an isomorphism

(ix)*@ = (ix)*u*u*@ - (px/U)*(ig/U)*u*%,

where the second isomorphism follows from Section 2.1.3(4). By assumption, we have x/U = & and
Section 2.1.3(1) implies that (i,)*% = 0. Conversely, if (ix)*% = 0 for all x € P \ U then the same
argument shows that the natural morphism (i5)*% — (ix)*u«u™% is an isomorphism. The fact that it is
an isomorphism also for x € U follows from the same kind of reasoning as in the proof of Lemma 2.7.
Thanks to Section 2.1.3(2) we conclude that the morphism % — u4u*% is an isomorphism. |

The next lemma explains the compatibility between extension by zero and pullback.

Lemma 2.10 (1) Consider the cartesian diagram in the category of finite posets,
/) 0
Lol
where u is a sieve. Then we have a canonical isomorphism f*u, = (u’)«g™*.
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(2) Consider the cartesian diagram in the category of posets,
i =0
i| |
Vv —"P
where v is a cosieve. Then we have a canonical isomorphism (v')\h* = f*v,.

Proof We prove the first point (the second is proved dually). The morphism f*us — (u’)«g™* is the
composite [ *uyx — ()« W')* fFur = (U)xg*u*us => (u’)«g™*. The fact that it is an isomorphism
follows from Lemma 2.9 and the fact that u and u’ are sieves. O

The next lemma provides a projection formula for the “extension by zero” functors.

Lemma 2.11 Let P be a finite poset.
(1) Letu:U < P be asieve. For % € D(P) and 4 € D(U), the natural morphism
FRusY—> us(u*FRY9)
defined in Section 2.1.4(3) is an isomorphism.

(2) Letv:V < P be a cosieve. For % € D(P) and % € D(V), the a natural morphism
N*FRY) - FR 0%

defined in Section 2.1.4(4) is an isomorphism.

Proof We prove the first point (the second is proved dually). Let ¢: P\ U < P denote the cosieve
complementary to u. Then ¢*(F @ u49) >~ ¢*F ® c*u+% = 0 since ¢*ux = 0 by Lemma 2.9. Using that
same lemma and also Lemma 2.7, we see that each step in the definition of the morphism Section 2.1.4(3)
is an isomorphism. |

2.3 Localization triangles

Let P be a finite poset. Let u: U < P be asieve and v: V < P denote the complementary cosieve.
Lemma 2.12 For & € D(P) there is a unique distinguished triangle in D(P),

5 VW*F > F - uu*F T

such that the first two maps are the counit and unit respectively. It is functorial in % and we call it a
localization triangle.

Proof Let C denote a cone of the counit morphism vyv*% — %, so that we have a distinguished triangle
in D(P),

(6) W *F > F > C L
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By applying the triangulated functor v* to (6) and using Lemma 2.7 we get a distinguished triangle in D (V'),
v*F A p*F s p*C L
We thus have v*C = 0 and Lemma 2.9 implies that we have an isomorphism C ~ u,u*C. By applying the
triangulated functor u™* to (6) and using u*v; = 0, which follows from Lemma 2.9, we get a distinguished
triangle in D(U),
0— u*F - u*C L,

and deduce that we have an isomorphism C ~ u,u*%. This implies the existence of a distinguished
triangle whose first two edges are the counit viv*% — F and the unit ¥ — u,u*%. By adjunction and
v*u4 = 0, which follows from Lemma 2.9, we have Hompp)(v1v* %, usu*F[—1]) = 0, and [Beilinson
et al. 1982, corollaire 1.1.10] implies that the remaining edge of the triangle is unique. This implies that
the triangle is functorial in . |

Remark 2.13 The output of the above lemma, as well as the results of the rest of this section, is a
diagram in the triangulated category D (P), and is thus a partially incoherent diagram from the point
of view of derivators (see Remark 2.2). It is of course possible to lift it to a coherent diagram living in
D (P x[3]), where [n] denotes the poset ({0, 1,...,n}, <) with n consecutive arrows. We choose not to
phrase our results (and in particular Proposition 2.20 below) in this totally coherent way but rather in a
way that is more appealing to readers familiar with the setting of triangulated categories.

However, let us sketch a way to do so in the particular example of the above lemma. The first step is to
lift the counit morphism vy v*% — % to an object of D (P x [1]). For this we can consider the cosieve
v': V' < P x[1] where V' consists of those elements (x, i) such that x € V ifi = 0. If f: P x[I] > P
denotes the natural projection, then we can consider the object

)" f*F eD(P x[1])

and check that its underlying morphism in D (P) is indeed the counit morphism viv*% — %. One can
then proceed as in [Groth 2013, Section 4.2] (see also [Ayoub 2007a, remarque 2.1.38]) to produce a
coherent lift of the triangle (6), and the same arguments as in the proof above identify it to a coherent lift
of the triangle (5).

The next lemma explains the compatibility between the localization triangles and pullback.

Lemma 2.14 Let f: Q — P be a morphism of finite posets and introduce a sieve u’: f~1(U) < Q and
acosievev’: f~1(V) < Q. For ¥ € D(P) we have the following isomorphism of distinguished triangles,
where the first triangle is obtained by applying f* to (5) and the second triangle is the localization
triangle (5) of f*% with respect tou’ and v’:

1
frfo*F — f[*F —— Fuu*F LN

-l L o

WONO)* f*F —— [*F —— )W) [*F ——
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Proof It is obtained from the diagram

+1
ffo*F — [*F — [ Fuu*F ——

' )Wh*v*F ) xg*u*F
WD) [T — [5F —— () ) f*F
where the notation is borrowed from Lemma 2.10. The isomorphisms between the first and second rows

follow from Lemma 2.10. The two visible squares of the diagram commute, and the remaining square
commutes by the uniqueness statement in Lemma 2.12. O

Lemma 2.15 For %, % € D(P) we have the following isomorphism of distinguished triangles, where
the rows are (induced by) localization triangles:

+1
W*(FRF) —— FRF — uu*(FQF) ——
Ty TR
FRUVF — = FQF —— FQuar*F — s

Proof It is obtained from the diagram

1
N FRF) — = FRF — s uu* (FRF) — s

=] B

n(*F Qu*F) Ux(UW*FQu*F)
| =
FRQUUF —— FRF —— FQusu*F ———
where the isomorphisms between the second and third rows follow from Lemma 2.11, the two visible

squares of the diagram commute, and the remaining square commutes by the uniqueness statement in
Lemma 2.12. |

For x <y in P and # € D(P) let us denote by (ix<y)*F: (ix)*F— (i) )*F the corresponding morphism in
D (e) in the underlying diagram (see Remark 2.2). Recall from Section 1.3 the morphism ay : K, — Ky [1]
in Dk mod(P)-

Lemma 2.16 Assume that U and V are discrete posets. Then the connecting morphism in the localization
triangle (5) reads

wat*F ~ @ p*(ix)*FOKx - P p*(iy)*F @K, [1] =~ vp*F[1],
xeU yev

where the component indexed by x e U and y € V is p*(ix<y)*F ® a} if x <y and zero otherwise.
Note that the object p*(ix)*F ® Ky € D(P) has value (ix)*%F at x and zero at every other point.
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Proof We proceed in two steps.

(1) Assume that we work in the derivator Dk _yoq and that % = p*K € D(P) is the constant object with
values K. Since U and V are discrete posets we have, by Section 2.1.3(2), isomorphisms
usu*p*K ~ @ Ky and vv*p*K ~ EB K,.
xeU yev

For x € U and y € V, we can apply Lemma 2.14 to Z = {x, y}, to reduce the computation of the
connecting morphism to the case where P = Z has two elements. If x < y then the connecting
morphism is a by definition. Otherwise P is itself discrete and Section 2.1.3(2) implies that we have
F ~ uu* p*K & vyv* p*K, and the connecting morphism is zero.

(2) We now work in the general case of the lemma. We write ¥ = ¥ ® p*KK. By applying Lemma 2.15
for % = p*K and using the first step of the proof, we get a commutative diagram

UsU*F ———— v *F[1]

:T |=

FRQusu*p* K —— FQR uiv* p*K[1]

=] I=

Drev FOKy — @er FRK,[1]

where the component of the bottom morphism indexed by x € U and y € V is idg ® ay, if x < y and
zero otherwise. Let us now fix x € U and y € V with x < y. By 2—functoriality we have a commutative

diagram
F F
| |
(ix)!(‘l‘.x)*% (iy)*(Hl'y)*gz
() (x)* p*(ix)*F (i)« (i) p*(iy)*F

| I

PR F s p*(i))*F

P*(ix<y)*
where the values at x of the vertical arrows on the left are isomorphisms and the values at y of the vertical
arrows on the right are isomorphisms. We then conclude that we have a commutative diagram

id®ay
F Ky e FQK,[1]
P*(ix)*F K, - 2 PR (iy)*F @K, [1]
P*(lx<y)*g;®ax
and the claim follows. O
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2.4 Postnikov systems from derivators

Let P be a finite poset and let 0: P — Z>1 be a strictly increasing map. This defines a finite decreasing
filtration of P by cosieves V¥ = {x € P | o(x) = k} such that each complement V¥ \ Vk*1 is a discrete
poset (an antichain in P). We let vk vk p.

Lemma 2.17 Let # € D(P).

(1) We set FkF = (vk),(v*¥)*F. We have a Postnikov system in D (P),

| I
«

F30‘ F20‘

NN

where the graded objects are given by

G*F~ P r*i)*FRK,.
o(x)=k

(2) For every integer k, the connecting morphism G¥% — GK+1%[1] has its component indexed by x
andy witho(x) =k and o(y) =k + 1, given by
* [ *ap y
PP (i) F K, L= IO, (i ) F K, 1]
if x < y, and zero otherwise.

(3) The above Postnikov system is functorial in %

Proof (1) The morphism FKt1% — FK% is defined as the composite
@Y *F = @) (09 F - ) (06)*F

where v: V&*1 < VK j5 a cosieve with complementary sieve u : vk \ yktl s pk, According to
Lemma 2.12 this morphism fits into a distinguished triangle

FFg  Fkg — G £

with GFF = (%) uu* (v)*F. Since VK \ V5+1 is a discrete poset we have, as in the proof of
Lemma 2.16, an isomorphism

G'F~ P FoKix P pi)*FOK,.
o(x)=k o(x)=k

(2) Applying Lemma2.14to Z = {x € P |o(x) € {k,k + 1}} we are reduced to the two-step case
where o (P) C {1,2}. In this case the claim is Lemma 2.16 and we are done.

(3) The functoriality statement follows from the functoriality of localization triangles (Lemma 2.12). O
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Remark 2.18 In the spirit of Remark 2.13 let us sketch a way to lift the partially incoherent Postnikov
system of the above lemma to a totally coherent diagram.! The first step is to lift the horizontal morphisms
to an object of D (P x [n]) where n is an integer such that 6 (P) C {1, ...,n}. For this we consider the
cosieve v': V'’ < P x [n] consisting of elements (x, i) such that x € VI*1 If f: P x [n] — P denotes
the natural projection then the object (v/)(v/)* f*% € D(P x [n]) is a coherent lift of the composable
morphisms F k+1g _ FKF in D(P). One can then produce the remainder of the Postnikov system in a

coherent way as in Remark 2.13.

In the next section we will apply the functor p« to a Postnikov system as in Lemma 2.17. For this reason
we now recast poset cohomology in the context of a general monoidal triangulated derivator.
Lemma 2.19 Let P be a finite poset and let x € P. For M € D(e) we have a functorial isomorphism

p*(p*M RKyx) M ®C.+1(X).

Proof Call & € D(P) admissible if for any M € D (e), the natural morphism
7 M Q psF — px(p™M @ F)
defined in Section 2.1.4(3) is an isomorphism. Admissible objects satisfy the following properties:

(a) If P has a greatest element then for every N € D(e), p* N is admissible. Indeed by Lemma 2.6
we have p.p* >~ idp ) and (7) is isomorphic to the identity of M ® N.

(b) Ifu:U <> P isasieve and 4D (U) is admissible, then 1% is admissible. Indeed, letv: P\U < P
denote the cosieve complementary to U. Then v*(p*M Q@ u+%9) >~ v* p*M ® v*us% = 0 since
v*us = 0. By Lemma 2.9 we thus have an isomorphism

P*M @usG = uu™(p*M Qus9) ~us((pou)*M ®9),
and (7) is isomorphic to the natural morphism
M ® (pou)x§— (pou)«((pou)"M ®%),

which is an isomorphism because < is admissible by assumption.

(c) By the naturality of (7), an extension of admissible objects (and in particular a finite direct sum of
admissible objects) is admissible. A shift of an admissible object is admissible.

We now note that we have, as in the proof of Proposition 1.7, a resolution K, = R}, with

RZ = @ Kle'

[x1<w<xp<xp41=x]

For every y < x we have K<y =~ (u<y)«(p<y)*K, where u<y: P<y — P and p<y: P<y — e are the
inclusion and projection maps of the subposet P<, = {a € P |a < y}. Since y is the greatest element

IThis was suggested to us by Martin Gallauer.
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of P<,, we get by (a) above that (p<,)*K is admissible. Since P, is a sieve in P, we get by (b)
above that K<, is admissible. By (c) above we thus get that every R’ is admissible and then that K is
admissible. The claim then follows from Proposition 1.7 since px is the homotopy limit functor. O

The next proposition will be our main tool in the next section. It computes a homotopy limit in the shape
of a Postnikov system.

Proposition 2.20 Let & € D(P).

(1) We set ka*@ = Dx (v%)1(v%)*F. We have a functorial Postnikov system in D (e),

F2p.F Flp.F = piF
Gzp*@ Glp*%

where the graded objects are given by

GkpF= P ()*FeCT(x).
o(x)=k
(2) For every integer k, the connecting morphism Gk PxF — Gk+1 p«F[1] has its component indexed
by x and y with o(x) =k and o(y) = k + 1, given by

; * g ¥y
(ix)*F @ 1 (x) e TOM (j yvg @ €42 ()
if x <y, and zero otherwise.

(3) The above Postnikov system is functorial in %.

Proof This follows from applying the triangulated functor ps to the Postnikov system of Lemma 2.17
and setting F' k PxF = pu F k% and G¥ PxF = px G*%. The description of the graded objects follows
from Lemma 2.19. The description of the connecting morphisms follows from Proposition 1.10. |

Remark 2.21 The Postnikov system of Proposition 2.20 is functorial with respect to isomorphisms of
posets in the following sense. Let a: P — P’ be an isomorphism of posets; we set 0’ = o oo~ !. For
F' € D(P’) there is a natural isomorphism (p’)«F —=> p.a*%F and a natural isomorphism between
the Postnikov system corresponding to % € D(P’) and the one corresponding to «*%F € D(P). The
corresponding isomorphism at the level of graded objects has component indexed by x’ € P’ and x € P
given by

idC*t!
—_—

(ix/)*%/ ® C}o)—/i—l(xl) () (l-x)*()[*%/ ® C1.)+1(X)

if a(x) = x’ and zero otherwise, where C*T1 () was defined in Remark 1.2. This follows easily from
Remark 1.11.
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3 The main theorem

3.1 Categories of motives

3.1.1 Conventions on schemes In what follows we fix a noetherian base scheme B and write “scheme”
for “separated scheme over B”.

3.1.2 Motives over a scheme For every scheme X we have, following Morel and Voevodsky [1999]
and Ayoub [2007a; 2007b], a unital symmetric monoidal triangulated derivator DAy of étale motives
over X with coefficients in K. It is a particular case of a stable homotopical functor SHDY;I constructed
in [Ayoub 2007b, définition 4.5.21], taking for the model category 21 (the category of “coefficients”)
the category of complexes of K—modules, for 7' the Tate motive (the stabilization consists in formally
inverting the functor 7" ® —), and considering the étale topology; the axioms of a unital symmetric
monoidal triangulated derivator are proved to hold in [Ayoub 2007b, section 4.5]. Other constructions
lead to equivalent (under certain assumptions) categories of motives, such as Beilinson motives, étale
motives with transfers, and A-motives; see [Ayoub 2014b, théoreme B.1; Cisinski and Déglise 2016,
Corollary 5.5.5; 2019, Section 16.2].

Remark 3.1 By making other choices of 9t and 7" one is led to other categories such as the Morel-
Voevodsky stable A!—homotopy categories of schemes SH], where our results below still hold.

There is a natural morphism of unital symmetric monoidal triangulated derivators Dg_poq — DAy, so
that the derivator D = DAy satisfies the assumptions of Section 2.1.5. In what follows we will make an
abuse of notation and simply write DAy for the ground category DAy (e).

Let us note that X — DAy satisfies the “six functor formalism”, for which we will not give a definition
here but rather refer to Ayoub. This means that it has the same formal functoriality properties as derived
categories of sheaves in familiar contexts. In particular, it underlies a cross functor [Ayoub 2007a,
définition 1.2.12, scholie 1.4.2]. This notion (defined in [loc. cit., section 1.2]) abstracts the properties of
the exchange morphisms between ! and * pullbacks and/or pushforwards (such as the morphism appearing
in the proper base change theorem).

Another important feature that we will use is the existence of functorial localization triangles [Ayoub
2007a, section 1.4.4] for & € DAy, where i : Z — X denotes a closed immersion and j: X \ Z — X
denotes the complementary open immersion,

®) J'F > F o i *F

3.1.3 Motives over a diagram of schemes In the proof of the main theorem below we will make use
of categories of motives over diagrams of schemes, introduced by Ayoub. A diagram of schemes (P, %)
is the datum of a finite poset P along with a functor &: P°° — Sch. (Our convention is actually opposed
to Ayoub’s, see Remark 3.2 below.) For X a scheme we have the constant diagram of schemes (P, X)
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where all the transition maps are the identity of X. We view a scheme as the constant diagram of schemes
on the poset with one element: X = (e, X). Diagrams of schemes form a 2—category [Ayoub 2007a,
définition 2.4.4] in which a morphism «: (P, %) — (Q, %) consists of a morphism of posets o: P — Q
along with a natural transformation ¥ = ¥ o «.

Ayoub defines a (1-contravariant, 2—covariant) 2—functor
(P, X))~ DA(P,%)

from the 2—category of diagrams of schemes to the 2—category of triangulated categories which extends
the derivator P — DA(P, X) = DAx(P) for every scheme X. This functor satisfies the axioms
of an algebraic derivator [ Ayoub 2007a, 2.4.2] that we will not discuss here. We simply note that for
a: (P, %) — (Q,%) amorphism of diagrams of schemes, the natural morphisma*:DA(Q,%) - DA(P, %)
admits a right adjoint oy : DA(P, %) — DA(Q,%). The existence of left adjoints is more constrained.

Remark 3.2 Our convention for diagrams of schemes and for the variance of DA is opposed to Ayoub’s
but is consistent with our variance convention for derivators (see Remark 2.3) and with the convention for
posets of strata introduced in the next subsection.

3.2 The main theorem

Let X be a scheme and let Xy be a dense open subscheme of X with complement Z. We denote by
j:Xo— X andi: Z — X the corresponding open and closed immersions. Let us be given a (finite)
stratification of Z, ie a finite partition of Z by locally closed subschemes called strata such that the
Zariski closure of each stratum is a union of strata. The set P of strata is naturally endowed with the
structure of a poset where for strata S, T € P,

S<T < SOT.
We thus get a stratification of X indexed by the extended poset P= {Xo}U P with Xog < S forall S € P.

For S € P we have defined (see Section 1.1) a complex of K-modules C*(S) which computes the
reduced cohomology groups of the poset P.g. For strata S, 7 € P with S <T we have defined (see
Section 1.2) a morphism of complexes bg :C*°(S)— C*(T)[1]. We also define C*(Xp) to be the complex
K concentrated in degree zero. For a minimal stratum S € P, ie such that X¢ < .S in P , we have a natural
(iso)morphism of complexes b}?o 1 C*(Xo) = C*(S)[1].

We fix a strictly increasing map o : P — Z, and we assume that 0(Xo) = 0. Such a map always exists. If
P is graded then we may take o = rk, the rank function.

In the statement of the next theorem, we will use the following “restriction” morphisms of functors (for
strata S < T'):

©) PE )" = (el ()" = (a7
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Theorem 3.3 Let % € DAy and set § = j,j'F

(1) There is a Postnikov system in DAy,

F24 FY¢ =g

\/\/\/

where the graded objects are given by

G'e= P (HdHFeC(®).
o(S)=k

(2) For every integer k, the connecting morphism G*% — G*+14[1] has its component indexed by S
and T with 0(S) =k and o(T) =k + 1, given by

S Tgobl

()T C*(S) 22— (iX)4 (i) F @ C*(T)[1]

if S < T and zero otherwise.

(3) The above Postnikov system is functorial in &

Proof We proceed in three steps.

(a) We construct the first triangle. The (rotated) localization triangle (8) reads

ivi*F[-1] > jij'F—>F L

and provides the first triangle of the Postnikov system, with F1§ = i,i*%[—1] and G°4 = F. It is

functorial in &

(b) We work with motives over diagrams of schemes. We consider the diagram of schemes (P, %) where
%: P°P — Sch is defined by S > S and where the transition morphisms are the natural closed immersions.
We have a natural morphism of diagram of schemes s: (P, %) — Z induced by the closed immersions
S < Z. This was previously considered by Ayoub and Zucker [2012, Lemma 1.18] who proved that the
natural counit idpa , — s«s* is an isomorphism. We thus have an isomorphism in DA 7,

Il *F = igsas™ 1 F.

Let us recall that (P, X)) denotes a constant diagram of schemes. We have a natural morphism of diagrams
of schemes r: (P,%) — (P, X) induced by the closed immersions S < X. If we also denote by
p:(P,X)— (e, X) = X the projection to a point, we have the following commutative diagram:

(P, %) —— (P, X)
l l’”
Z ﬁ X
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We thus have an isomorphism
Fl4~ p,%[—1]

where we set # = ryr*p*F € DA(P, X) = DAy (P). It is easy to see, using the axiom DerAlg 3d in
[Ayoub 2007a, définition 2.4.12], that the value of ¥ at a stratum S is (i g ) (i % )*%. Moreover, for strata
S < T the transition map from the value at S to the value at T is the restriction morphism ,og@ defined
in (9).

(¢) We construct the Postnikov system. By applying Proposition 2.20(1) to the object % € DAy (P) we
get a Postnikov system in DAy,

\ Fpat F'pu3 = pu% = F'[1]
G2 p. G p.dt
with

Gipatt= P (G TRCTS).
o(S)=k

This is, up to a shift, the remainder of the Postnikov system promised in the theorem, ie we set, for k > 1,
F¥g = Fkp,%[—1] and GF4=G*p,9—1].

The description of the connecting morphisms follows from Proposition 2.20(2). (The connecting morphism
G°%F — G'F[1] needs to be treated separately; it is the composite F —> i4i *F — @U(s)zl (i%)* (ig)*?ﬁ
which is the sum of the morphisms ,o}?o%) The functoriality statement follows from Proposition 2.20(3). O

For any (B—)scheme X let us denote by ay: X — B its structural map. The next corollary expresses
the “compactly supported cohomology” of a motivic sheaf & on the open Xg in terms of “compactly
supported cohomology” of % on all the closures of strata.

Corollary 3.4 Let ¥ € DAy and set M = (aXO)|] cDAB.
(1) There is a Postnikov system in DAp,

FOM =M

\/\/\/

where the graded objects are given by
G*M = P (aghdH)*Fec(s).
o(S)=k
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(2) For every integer k, the connecting morphism G¥ M — G*+1 M 1] has its component indexed by
S and T with 0(S) =k and 6(T) =k + 1, given by

. R T5@bl . o .
(ah(X)*F @ C*(5) B2, (ap) i X)*F @ C*(T)[1]
if S < T and zero otherwise.

(3) The above Postnikov system is functorial in %.

Proof This follows from applying the functor (ax); to the Postnikov system of Theorem 3.3. By the
projection formula we have an isomorphism

@) (G *F@C*(S)) = (ax)((i5)+(F)*F® (ax)*C*(S)) = (ax ) (iF)«(iF)* F @ C*(S),
and this equals (ag)!(ig)*% ® C*(S) since (aX),(ig)* = (aX)!(ig)! = (ag). o

Remark 3.5 One can also apply the functor (ax )« to the Postnikov system of Theorem 3.3 and get a
Postnikov system expressing the relative motive of the pair (X, Z) with coefficients in a motivic sheaf %.
It is a motivic refinement of the classical long exact sequence in relative cohomology.

3.3 Localization spectral sequences
We recover the spectral sequences of [Petersen 2017] by applying realization functors.

3.3.1 Betti realization We now consider a finite type scheme X over C. We have the Betti realization

functor [Ayoub 2010]

DAX — D(X an)’
whose target is the derived category of the category of sheaves of K—-modules on the analytification X",
This functor is compatible with the operations f*, fx, fi and ®, and we thus get from Theorem 3.3

(resp. Corollary 3.4) a Postnikov system in D(X ") (resp. D(B?")). We can then derive a spectral sequence
by applying a cohomological functor such as the “cohomology sheaves” functor #°: D(B*') — Sh(B").

Remark 3.6 We may also apply other natural cohomological functors when available. For instance, if
the Betti realization of ¥ is a complex of sheaves with constructible cohomology sheaves, almost all of
which are zero (eg if & is a constant sheaf), then one can also apply the perverse cohomology functor
PHO with target the category of perverse sheaves ?Perv(B®") for any perversity function p [Beilinson
et al. 1982].

In the case B = Spec(C), the spectral sequence reads:
EP= @ HPYM(RT(H*FeC(S) = HI(Xo. j'F).
o(S)=p
We can make it more explicit under some extra assumptions as in [Petersen 2017, Section 3], and

we get for instance the following corollary [Petersen 2017, Theorem 3.3(ii)]. We recall the notation
h*(S) = H*(C*(S)) from Section 1.1.
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Corollary 3.7 Assume that K is a hereditary ring (eg K is a field or K = 7Z) and that for every stratum
S and every integer n the cohomology group h" (S) is a torsion-free K—-module. Then we have a spectral
sequence of K—modules

EP'= @@ HIS.GH*F M (S)= HIY (X0, j'F).
o(S)=p
i+j=p+q
Proof Since C*(S) is a complex of free K—modules, the tensor product by C*(S) is also the derived
tensor product. Moreover, since K is hereditary, the complex C*(.S) is quasi-isomorphic to its cohomology.
Finally, since that cohomology is assumed to be torsion-free, the Kiinneth formula applies without the
Tor correction term. O

Remark 3.8 In the context of Remark 1.6 we can simplify further since most cohomology groups A/ (S)
vanish: we get a spectral sequence

EPT = @@ HIS.(EH*P@h(S) = HI(Xo, j'F).
k(S)=p
The differential a’lp *? has component indexed by strata S and 7', with tk(S) = p and tk(T) = p + 1,
given by
_ Toaohl _
HIS. Xy ) @ h(S)Y 257805, ga(T. Xy F) @ h(T)

if § < T, and zero otherwise.

3.3.2 Hodge realization In the case K = Q, the Betti realization functor can be enriched into a
Hodge realization functor in the constructible case. Following [Ayoub 2014a, Definition 2.11] we define
DAY to be the smallest triangulated subcategory of DAy stable under direct summands and Tate twists
and containing the motives f«Ky for f:Y — X of finite presentation. Objects of ]DDA;} are called

constructible.
Thanks to [Ivorra 2016] we have Hodge realization functors
DAY — D (MHM(X))

which are compatible with the six functor formalism, where MHM (X)) is Saito’s category of mixed Hodge
modules on X [Saito 1990]. This proves that the spectral sequence of Corollary 3.7 is compatible with
mixed Hodge structures if X has finite type over Spec(C) and % is constructible, eg & = Qx the constant
sheaf. This was already noted by Petersen [2017, Theorem 3.3(ii)].

3.3.3 KEtale (and {-adic) realization Let us assume that B = Spec(k) for some field k. We fix a
prime £ invertible in k and set K = Q. By [Ayoub 2014b, sections 5 and 9; Cisinski and Déglise 2016,
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Section 7.2], we have an étale (or £-adic) realization functor
DAY — DE(x®)
compatible with the six operations, where Dé’ (X®) is Ekedahl’s triangulated category of {—adic systems

[Ekedahl 1990].

This implies that we have a spectral sequence in étale cohomology analogous to that of Corollary 3.7 with
Q¢ coefficients, with values in the category of continuous representations of the Galois group Gal(kP/ k).
This was already noted by Petersen [2017, Theorem 3.3(ii)].

3.4 The dual version

We start with the “dual” variant of Theorem 3.3, where we consider the same geometric situation but
study the object j j *% instead of jij'%. We will derive one from the other by using Verdier duality in
the motivic setting (see Remark 3.10 below for a discussion of this strategy).

For simplicity we assume that the base scheme B is of finite type over a characteristic zero field. Then
we have a Verdier duality functor [Ayoub 2014a, Theorem 3.10]

Dy: (]D)A?)OP — DA;}
which satisfies the usual compatibilities Dy o Dy ~ id and Dy o fx >~ fioDx for f: X — Y a morphism
of schemes.

Recall from Sections 1.1 and 1.2 the homological complexes C.(S), for S € P, that we now treat with
cohomological conventions (ie with negative cohomological degrees) and the connecting morphisms
bg: Cot1(T) — C,(T) for S < T, which in cohomological conventions read bg: C.(T) = C.(S)[1].
As in the previous paragraph we set C,(Xo) = K concentrated in degree 0, and for S € P a minimal
element, we consider the natural (iso)morphism b;o: C.(S) — Co(Xo)[1].

In the statement of the next theorem we will use the following “Gysin-type” morphisms of functors,
which are dual to restriction morphisms ,og (for strata § < T):

(10) vs t @GNGE) = GENENE) @ = G
Theorem 3.9 Let & € DA;} be a constructible object and let us set G = j, j*F.

(1) There is a Postnikov system in DAy,

G = Fo% F1% Fr%
Go% G1% G2%

where the graded objects are given by
Go= P HiidH'Fec.s).
a(S)=k
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(2) For every integer k, the connecting morphism Gy 1% — G%[1] has its component indexed by S
and T with 0(S) =k and o(T) =k + 1, given by

NG F @ Cu(T) 157805, FINGIEL-TANII

if § < T, and zero otherwise.

(3) The above Postnikov system is functorial in %.

Proof We apply Theorem 3.3 to the Verdier dual of & and dualize the Postnikov system obtained in this
way. The only thing that needs to be checked is the description of G;% and the connecting morphisms.
Let wx € DA§ denote the dualizing object. For any object U € DA,

Dy (U ® C*(S)) = Homp 45 (C*(S) ® U, wy) = Homp 4 (C*(S), D U) = Dy U® Co(S).

In the last step we have used the fact that C,(S) is the strong dual of C*(S) in the monoidal category
Dk _moq because it is a bounded complex of free K—modules of finite rank. By applying this to

W= (i§)x(i5)" Dx 7.
S N
using the compatibility between Verdier duality and the functors i, and iy, and the fact that Dy o Dy ¥~ &,
we get an isomorphism

Dx ((($)«()*Dx F®C*(S)) =~ (I H)'Fo C.(S),

This implies the description of G as in the statement of the theorem. The fact that the Gysin morphisms
yg: defined in (10) and the restriction morphisms pg defined in (9) are Verdier dual to each other is clear,
and the claim follows. O

Remark 3.10 Theorem 3.9 is most certainly true without the assumption that ¥ is constructible and
without the assumption that B is a finite type scheme over a characteristic zero field. In fact, as noted in the
introduction, we can prove it without the functoriality statement using only the language of triangulated
categories. However, it seems that the tools that we are using do not allow us to do it functorially. Indeed,
we cannot simply repeat the proof of Theorem 3.3 since the existence of a left adjoint to the functor s*
appearing in the proof is not guaranteed in the context of an algebraic derivator.

Remark 3.11 As in Corollary 3.4 and Remark 3.5 one may apply the functors (ax )« or (ax): to the
Postnikov system of Theorem 3.9 to get localization Postnikov systems in DA p. In the case of (ay )«
this computes (ax,)«j *%, the cohomology of X with coefficients in the restriction of %; a particularly
interesting case is when & = Ky is a constant motivic sheaf. There the main difficulty is to be able
to compute the graded objects of the Postnikov system, ie the objects (ag)« (i é( )' Ky for all strata S.
Luckily, if S is smooth of codimension ¢ in X, then by purity we have an isomorphism

- X!
(5)'Kx ~Kg[-2c](~c).
and the localization Postnikov system is expressed in terms of the motives of the closures of strata.
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Remark 3.12 By applying realization functors and cohomological functors one gets spectral sequences
from Theorem 3.9 as in Section 3.3. We only state one special case that is important for applications. Let
% = Ky, and assume that we are in the context of Corollary 3.7 and Remark 3.8. Further assume that for
every stratum S the closure S is smooth of codimension cg in X. Then we get by the previous remark a
(second quadrant) spectral sequence in mixed Hodge structures:
(1) E;P= @@ HI2S(8)(—cs) ®h(S) = HPT(Xo).

k(S)=p
A special case of interest is when the stratification is induced by a normal crossing divisor, in which case
cs = 1k(S) and i(S) has rank one for every stratum §S; one then recovers Deligne’s spectral sequence
[1971, 3.2.4.1]. The other classical spectral sequences cited in the introduction [Bibby 2016; Bjorner
and Ekedahl 1997; Cohen and Taylor 1978; Dupont 2015; Getzler 1999; Goresky and MacPherson 1988;
K¥iZ 1994; Looijenga 1993; Totaro 1996] are all special cases of (11).

3.5 Functoriality

We now turn to the functoriality of our main theorem with respect to morphisms of schemes. With a little
more work it should be easy to treat more general cases.

3.5.1 A category of stratified schemes For simplicity we restrict to morphisms between stratified
schemes whose underlying combinatorial datum is an isomorphism of posets.

Definition 3.13 Let X and X’ be two stratified schemes with posets of strata P and P’ as in Section 3.2.
A stratified morphism from X to X' is a pair («, f') where «: P — P’isan isomorphism of posets and
f:X — X’ is a morphism of schemes such that

F(S)ca(S) forall SeP.

Note that for a stratified morphism (&, f), the morphism f does not determine « in general. However,
for an isomorphism of schemes f: X — X' such that the image by f of every stratum of X is a stratum
of X', there is a unique «: P — P’ such that (e, f) is a stratified isomorphism.

Our notion of stratified morphism is more easily understood in the context of the category of diagrams of
schemes. For a stratified scheme X with poset of strata P we have a natural diagram of schemes (ﬁ, x)
where ¥: P — Sch sends S to S. A stratified morphism (&, f) as above gives rise to a morphism of
diagrams of schemes R R
(o, £): (P, %) — (P, %).

One can thus view our category of stratified schemes as a subcategory of the category of diagrams
of schemes. It is not a full subcategory since we only consider morphisms (¢, /) for which « is an
isomorphism of posets.

3.5.2 Functoriality of the localization triangle The first step in the construction of the Postnikov
system is just the localization triangle (8). So let us consider a morphism of pairs f: (X, Z) — (X', Z’),

Algebraic € Geometric Topology, Volume 24 (2024)



The localization spectral sequence in the motivic setting 1461

where Z and Z’ are closed subschemes and f(Z) C Z’. If we denote by X¢ and X|) the open complements,
then f~1(X{) C Xo. We have the diagram

J Jo

Z X Xo FHXE)
A %
Z/ s/ X/ ./ X(/)

l J

where the left square is commutative and the rectangle on the right is cartesian. Given an object % e DAy,
we want to define a morphism between the localization triangle for %’ and fi of the localization triangle

for f*%':
or f*%F .

(@)« (@) F [=1] —— (GG F 7'
Juad* [*F 1] = fujtf [F s fof *F
Let us now define the three vertical morphisms:

e The right morphism is of course the adjunction unit &% — f f*%'.
¢ The left morphism is given by the composition
iV F 1] = (O fo f 5 VT[] 2 fuini* fF 1],
where the first arrow is induced by the adjunction unit, and the isomorphism on the right follows
from the commutativity of the left square in the diagram above.

¢ The middle morphism is given by the composition

GNGY'F = GGV F = fajrGonGo)' i f*F = fujii 7
where the first arrow is induced by the adjunction unit, the second arrow induced by two exchange
morphisms (which are part of the cross functor structure; see [Ayoub 2007a, section 1.2]) for the
cartesian square on the right of the diagram above, and the third arrow is induced by the adjunction
counit.

We leave it to the reader to check that this defines indeed a morphism of triangles. The commutativity of
the left square is easy, the commutativity of the right square is a nice exercise on using the axioms of a cross
functor, and the commutativity of the third square follows from [Beilinson et al. 1982, proposition 1.1.9].

Remark 3.14 Assume that B = Spec(C) and denote by a: X — B and a’: X’ — B the structure
morphisms. If f is proper, we have a f«x = a; /i = a). Consequently, taking % = Qx, applying
the functor a; and taking the Betti realization, we get the functoriality (for proper morphisms) of the
localization long exact sequence of the introduction:

s HJ(Xg) —— HJ(X') —— HJ(Z') — HZ" (Xg) —— -

| | | |

coo —— HX(Xo) — H(X) —— H(Z) —— HC'H(XO) —
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Similarly, using a/, instead, we get the functoriality of the long exact sequence in relative cohomology:
oo —— H* X', Z)) —— H* (X)) —— H*(Z') —— H*TY (X', Z)) —— ---
oo — s H'X,Z) —— H*(X) —— H*(Z) — H*TY(X,Z) —— ---

In this case we do not need to assume that f is proper; we always have @/, fx = ax.

3.5.3 Functoriality of the localization spectral sequence To express the functoriality of Theorem 3.3
with respect to stratified morphisms, we adopt a more meaningful notation:

e For an object # € DAx(P) we denote by T1(%) the Postnikov system in DAy described in
Proposition 2.20.
¢ For an object % € DAy we denote by l'[(I3 , X; %) the Postnikov system in DAy described in
Theorem 3.3.
Borrowing notation from the proof of Theorem 3.3 we have that H(f’ , X; F) is obtained by appending
[ (rer* p*%F)[—1] to the first (localization) triangle.

We start with a general lemma explaining the compatibility between the Postnikov systems I and
certain pushforwards. We recall (see Remark 1.2) that an isomorphism of posets «: P — P’ induces
isomorphisms of complexes denoted by

C*(@): Cp.(S") > Cp(S)

for elements S € P and S’ € P’ such that S’ = «(S). If 0: P — Z is a strictly increasing map such that
0(6) =0andifa: P — P’isan isomorphism of posets then we denote by ¢”: P’ - 7 the composite
o’ =0 oa~!. In the next lemma, for # € DAy (P) and S € P we denote by #5 € DAy the value of #
at S.

Lemma 3.15 Let a: P — P’ be an isomorphism of posets, let f: X — X' be a morphism of schemes,
and let us denote by (a, f): (P, X) — (P’, X’) the corresponding morphism of (constant) diagrams of
schemes. For # € DAy (P) we have an isomorphism
(o, £)«30) => fuT1(30).
At the level of graded objects it reads
D frasH@CHIEN) = P HAHsRCFTIEN = P frdts ®CH(S),
o(S)=k o(S)=k o(S)=k

and its component indexed by S’ and S is given by id @ C*T!(«) if S = «(S’) and zero otherwise.

Proof Since («, f) = (id, f) o («, id) it is enough to do the proof in the case & = id and in the case
f =1id. In the former case it follows from the fact that (id, f)«: DAy — DAy’ is a morphism of
derivators. In the latter case it is the content of Remark 2.21. O
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In the statement of the next theorem we will use the following “pullback™ morphisms of functors in the
context of a morphism of schemes f: X — X’ and two strata S and S such that f (S) C S, where
fSLg’: S — S’ denotes the morphism induced by f:

s (f): (ED«E ) — (5 (fS)(fS)(S/) ~ fili)GE) ™

Theorem 3.16 (1) The Postnikov system of Theorem 3.3 is functorial with respect to stratified
morphisms. More precisely, for every morphism («, f): (1'3 LX) —> (13’ . X') and every object
¥ € DAy, we have a morphism of Postnikov systems

(e, £:F): (P, X F) > foll(P,X; [*F).
They satisty T1(id, id; %) = id and the equality

M(Boa,go f1F") = guIl(e, f18*F") o TI(B, g: F)
for composable morphisms
(P X) (a 1) (ﬁ/ X/) (B.g) (}’)\// X/l)
and ¥ ¢ DAX//.
(2) For every integer k, the morphism I1(c, f; %) reads, at the level of graded objects,
D ) FRC(S) > D S [T ®CHES)
o/(S)=k o(S)=k

and has its component indexed by S” and S given by ng/(f)W ® C*(a) if S’ = «(S) and zero
otherwise.

(3) The morphism T («, f; %) is functorial in F'.

Proof We proceed in three steps as in the proof of Theorem 3.3.

(a) The first triangle of the Postnikov system is the localization triangle and its functoriality follows from
the discussion of Section 3.5.2.

(b) Following the proof of Theorem 3.3 we consider the following commutative diagram in the category
of diagrams of schemes:

(P,%) —— (P, X)

l N @.f)
Z

Py (P X

Iy v

Z/.—/>X/
l
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The morphism (c, f): (P, X) — (P, X’) is induced by « at the level of posets and by f: X — X' at the
level of schemes. The morphism («, f): (P,%) — (P,%’) is induced by « at the level of posets and by
the maps S — «(S) induced by f at the level of schemes. We have the commutative diagram in DAy,

(A« @")*F Fuisi® f*F
(i/)*(s/)*(f)*(i/)*?f?/ f*z*s*sll*f*m
(P« () (r")* (P’)*W e (P« (e, fharsr™(a, f)*(P)V*F < fupsrsr™p* f*F

where the vertical arrows — are isomorphisms by [Ayoub and Zucker 2012, Lemma 1.18] as in the
proof of Theorem 3.3. We have the objects

— (r/)*(r/)*(p/)*glj;/ and % — r*r*(a’ f)*(p/)*g’j/ ~ r*r*p*f*g’j/

of DAx/(P’) and DAy (P), respectively, and the natural morphism @: # — (a, f)«H appearing
in the above diagram. For S’ € P’, the value of %’ at S’ is (z e (z V*F that of (ar, f)«JC is
f*(l—) (13() f*F, for S’ = «(S), and the value of ¢ is nS (f)%’

(c) We define the remainder of T1(c, f; %) to be the composite
) T2 fi((@. £)29) = fuT1(0)

where the second arrow is described in Lemma 3.15. The compatibility with composition is left to the
reader. The description of I(«, f; %) at the level of graded objects follows from Lemma 3.15 and the
description of the values of ¢ in (b). The functoriality in %' is obvious. a

Remark 3.17 By applying Poincaré—Verdier duality one gets the dual statement that the Postnikov
system of Theorem 3.9 is functorial with respect to stratified morphisms.
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