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The localization spectral sequence in the motivic setting

CLÉMENT DUPONT

DANIEL JUTEAU

We construct and study a motivic lift of a spectral sequence associated to a stratified scheme, recently
discovered by Petersen in the context of mixed Hodge theory and `–adic Galois representations. The
original spectral sequence expresses the compactly supported cohomology of an open stratum in terms
of the compactly supported cohomology of the closures of strata and the combinatorics of the poset
underlying the stratification. Some of its special cases are classical tools in the study of arrangements of
subvarieties and configuration spaces. Our motivic lift lives in the triangulated category of étale motives
and takes the shape of a Postnikov system. We describe its connecting morphisms and study some of its
functoriality properties.

18N40; 14F42, 14N20

Introduction

For a topological space X , an open subspace U and a complementary closed subspace Z, the compactly
supported cohomology groups of X , U and Z are related by a localization long exact sequence

(1) � � � !H �c .U /!H �c .X/!H �c .Z/!H �C1c .U /! � � � :

This can typically be used for two different purposes: either to compute the compactly supported
cohomology of X knowing that of U and Z, or to compute the compactly supported cohomology of U
knowing that of X and Z.

More generally, let X be a topological space equipped with a stratification, ie a partition by locally closed
subspaces called strata such that the closure of a stratum is a union of strata; we assume for simplicity
that there is a unique open stratum X0. The specialization relation turns the set of strata into a finite poset
whose least element is X0. One may either want to understand the space X in terms of the strata, or to
understand the open stratum X0 in terms of the closures of the strata. In the former case, the localization
long exact sequence can be generalized to a spectral sequence in an obvious way. In the latter case,
however, this was explained only recently by Petersen [2017] who devised a spectral sequence converging
to the compactly supported cohomology of X0, whose first page is expressed in terms of the compactly
supported cohomology of the closures of strata, and of the combinatorics of the poset of strata. We refer
the reader to the introduction of [loc. cit.] for a clear interpretation in terms of inclusion-exclusion.
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1432 Clément Dupont and Daniel Juteau

A precursor of Petersen’s spectral sequence (or rather, of its Poincaré dual version) is Deligne’s spectral
sequence appearing in mixed Hodge theory [Deligne 1971, 3.2.4.1] where the stratification is induced
by a normal crossing divisor inside a smooth projective complex variety. Several other special cases are
classical tools in the study of more combinatorially involved contexts such as arrangements of subvarieties
[Bibby 2016; Björner and Ekedahl 1997; Dupont 2015; Goresky and MacPherson 1988; Looijenga 1993]
and configuration spaces [Cohen and Taylor 1978; Getzler 1999; Kříž 1994; Totaro 1996]. In the general
case, Petersen proves that his spectral sequence is compatible with mixed Hodge structures when X is a
complex algebraic variety equipped with an algebraic stratification. It also has an étale `–adic variant
which is compatible with Galois actions. The proofs are sheaf-theoretic and involve filtering well-chosen
resolutions in abelian categories of sheaves.

The goal of this article is to lift Petersen’s spectral sequence to a motivic setting. Let now X be a scheme
equipped with a stratification (see Section 3 for the relevant assumptions) with a unique open stratum X0,
and let j WX0 ,!X denote the open immersion. We also denote by iX

S
W S ,!X the closed immersion of

the closure of a stratum S . We denote by yP the poset of strata and fix a strictly increasing map � W yP !Z

such that �.X0/D 0. We fix a ring of coefficients K. To every stratum S 2 yP is associated a cochain
complex of K–modules C �.S/ which computes the reduced cohomology of the open interval .X0; S/ in
the poset yP .

We work in the context of the triangulated category of étale motives (or motivic sheaves) over X with
coefficients in K, denoted by DAX [Ayoub 2007a; 2007b; 2014a; Cisinski and Déglise 2016; 2019]. The
lack of an abelian-categorical formalism for motivic sheaves forces us to depart from Petersen’s original
techniques. In the triangulated setting, the notion of a filtration has to be replaced with that of a Postnikov
system, that is, a sequence of distinguished triangles where each triangle has a vertex in common with
the next one. The main result of this article is as follows (see Theorems 3.3 and 3.16 for more precise
statements).

Main Theorem For F 2DAX there is a Postnikov system in DAX ,

� � � // F 2 //

~~

F 1 //

~~

F 0 D jŠj
ŠF

~~

G2
C1

aa

G1
C1

``

G0
C1

``

where the graded objects are given by

Gk D
M
S2 yP
�.S/Dk

.iX
S
/�.i

X

S
/�F˝C �.S/:

The connecting morphisms Gk!GkC1Œ1� are explicitly computed. This Postnikov system is functorial
in F and functorial with respect to a class of stratified morphisms.
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The localization spectral sequence in the motivic setting 1433

In the case of the constant motivic sheaf FDKX , this theorem expresses the compactly supported motive
of X0 in terms of the compactly supported motives of the closures of strata S and the complexes C �.S/.
For instance, if the stratification consists of an open j W U ,!X and its closed complement i WZ ,!X ,
the Postnikov system reduces to the localization triangle

jŠKU !KX ! i�KZ
C1
�!

which is the motivic lift of the localization long exact sequence (1).

One can recover Petersen’s spectral sequence(s) along with a description of the d1 differential from our
main theorem, by applying (compactly supported) cohomological realization functors. In a genuinely
motivic setting, an application to the study of classical polylogarithm motives will appear as a joint article
of the first author with J Fresán [Dupont and Fresán 2023]. There, it is crucial to have a Postnikov system
that is functorial with respect to a group action on a stratified scheme, which is a special case of the
functoriality statement in our theorem.

One of the main difficulties in the proof of our main theorem is to construct the Postnikov system in a
way that makes it obviously functorial. For this we cannot simply work in the context of a triangulated
category, where cones are not functorial. Rather, we are led to work in the enhanced setting of triangulated
derivators. Another reason for this choice is that we rely on the six functor formalism for étale motives,
developed by Ayoub [2007a; 2007b] and written in the language of algebraic derivators, a geometric
enrichment of the notion of a triangulated derivator. From the standpoint of homotopy theory, it is
natural to expect our main theorem to lift to the stable1–category of motives; this would require an
1–categorical enhancement of Ayoub’s six functor formalism.

We also study a dual version of our main theorem (Theorem 3.9) where we are interested in describing the
object j�j �F. Due to the lack of duality in the general setting of algebraic derivators, we cannot simply
repeat the proof. Instead, we rely on applying Poincaré–Verdier duality, but the latter is available at the
motivic level only under certain assumptions (see Section 3.4). Note that, if we gave up on functoriality,
then we would not need to work in the setting of algebraic derivators and could prove the dual statement
(without functoriality) in full generality. This strongly suggests that the dual statement (with functoriality)
is true in full generality, even though we are not able to prove it with our methods. In any case, if one is
only interested in working with realizations, one can first apply a realization functor to the main theorem
and then dualize.

Perspectives

A natural direction of research would be to try and apply our main theorem to prove motivic representation
stability results in the spirit of the homological representation stability results of Petersen [2017]. Also, it
would be desirable to clarify the general functoriality properties of our construction, beyond those already
explored here.
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1434 Clément Dupont and Daniel Juteau

A motivation for this project is the possibility to study a more general geometric setting mixing jŠ and j�
extensions, depending on the strata. The corresponding motives can be viewed as relative cohomology
motives on some blow-up of the ambient variety and are ubiquitous in the geometric study of periods
(see eg [Goncharov 2002] and the introduction of [Dupont 2017]).

Outline

In Section 1 we review classical definitions and properties of poset (co)homology; to the best of our knowl-
edge, the only original content is the introduction of connecting morphisms relating poset (co)homology
complexes of different intervals in a poset. In Section 2 we work in the setting of triangulated derivators
and collect some tools to produce and study functorial Postnikov systems. In Section 3 we apply those
tools to our geometric setting and prove the main results.
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1 Poset (co)homology

In this section we review poset (co)homology. To the best of our knowledge, the only original content is
the introduction of connecting morphisms relating poset (co)homology complexes of different intervals
in a poset. We fix a commutative ring with unit K for the rest of this article, that will serve as a ring of
coefficients.

1.1 Definition

Let P be a finite poset. We will sometimes make use of the extension yP D fO0g[P where O0 < p for all
p 2 P . For any element x 2 P we let C�.x/, denoted by CP

�
.x/ when we want to make dependence on

P explicit, be the chain complex whose degree n component is the free K–module on chains

Œx1 < � � �< xn�1 < xn D x�;

and whose differential @ W Cn.x/! Cn�1.x/ is given by

@Œx1 < � � �< xn�1 < xn D x�D

n�1X
iD1

.�1/i�1Œx1 < � � �< Oxi < � � �< xn�1 < xn D x�:

Algebraic & Geometric Topology, Volume 24 (2024)



The localization spectral sequence in the motivic setting 1435

We let h�.x/ denote the homology of C�.x/. Up to a shift, C�.x/ is the (reduced) normalized chain
complex of the nerve of the poset P<x D fp 2 P j p < xg and thus we have

hn.x/DHn.C�.x//D zHn�2.P<x/:

We let C �.x/, or C �P .x/ when we want to make dependence on P explicit, denote the cochain complex
dual to C�.x/ and use the same notation for the basis of chains and the (dual) basis of cochains. The
differential d W C n.x/! C nC1.x/ is given by

dŒx1< � � �<xn�1<xnD x�D

nX
iD1

.�1/i�1
X

xi�1<y<xi

Œx1< � � �<xi�1<y <xi < � � �<xn�1<xnD x�;

where by convention we have x0 D O0 in yP . We let h�.x/ denote the cohomology of C �.x/ and we have

hn.x/DHn.C �.x//D zHn�2.P<x/:

The following lemma is classical.

Lemma 1.1 If P has a least element a then C�.x/ and C �.x/ are contractible for all x > a.

Proof The nerve of P<xD Œa; x/ is a cone over the nerve of the open interval .a; x/ and thus contractible.
Concretely, a contracting homotopy c W C�.x/! C�C1.x/ is provided by the formula

cŒx1 < � � �< xn�1 < xn D x�D

�
0 if x1 D a;
Œa < x1 < � � �< xn�1 < xn D x� if x1 > a:

The transpose of c is a contracting homotopy for C �.x/.

It is sometimes convenient to extend the definitions to yP by defining C�.O0/ and C �.O0/ to be K concentrated
in degree zero.

Remark 1.2 The complexes C� have a certain functoriality property with respect to morphisms of
posets. In this article we will only deal with functoriality with respect to isomorphisms (and in particular
with respect to group actions). For ˛ W P ! P 0 an isomorphism of posets we have for every x 2 P
a natural isomorphism of chain complexes C�.˛/ W CP� .x/ ! CP

0

�
.x0/ for x0 D ˛.x/. They satisfy

C�.id/D id and C�.ˇ ı˛/D C�.ˇ/ıC�.˛/. Dually we have natural isomorphisms of cochain complexes
C �.˛/ W C �P 0.x

0/! C �P .x/ that satisfy C �.id/D id and C �.ˇ ı˛/D C �.˛/ ıC �.ˇ/.

1.2 The connecting maps

For x < y in P we define a map
byx W C�C1.y/! C�.x/

by setting

byx Œx1 < � � �< xn < xnC1 D y�D

�
.�1/nŒx1 < � � �< xn D x� if xn D x;
0 otherwise:
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Lemma 1.3 .@byx C b
y
x@/Œx1 < � � �< xn < xnC1 D y�D

�
Œx1 < � � �< xn�1 D x� if xn�1 D x;
0 otherwise:

Proof We compute, for X D Œx1 < � � �< xn < xnC1 D y�,

byx@XD

n�1X
iD1

.�1/i�1byx Œx1< � � �< Oxi < � � �<xn<xnC1Dy�C.�1/
n�1byx Œx1< � � �<xn�1<xnC1Dy�:

If xn�1D x then xn¤ x and we have byx@X D Œx1 < � � �<xn�1D x� and @byxX D @0D 0, which proves
the first part of the claim. If xn�1 ¤ x and xn ¤ x then all terms vanish and we get byx@X D @b

y
xX D 0.

If xn�1 ¤ x and xn D x then

byx@X D

n�1X
iD1

.�1/n�i Œx1 < � � �< Oxi < � � �< xn D x�D�@b
y
xX:

We write xÉy when y covers x in P , ie when x < y and there is no z 2 P such that x < z < y.

Lemma 1.4 (1) For xÉy in P , byx W C�C1.y/! C�.x/ is a morphism of complexes.

(2) Let x < z in P be such that every y 2 .x; z/ satisfies xÉyÉ z. Then the morphism of complexesX
x<y<z

byxb
z
y W C�C2.z/! C�.x/

is homotopic to zero.

The first part of the lemma implies that we get connecting morphisms byx W h�C1.y/! h�.x/ in homology,
for xÉy.

Proof (1) For xn�1 < xn < xnC1 D y we cannot have xn�1 D x since y covers x. Then Lemma 1.3
implies that @byx D�b

y
x@, thus byx is a morphism of complexes.

(2) We haveX
x<y<z

byxb
z
y Œx1 < � � �< xnC1 < xnC2 D z�D

�
�Œx1 < � � �< xn D x� if xn D x;
0 otherwise:

Thanks to Lemma 1.3 this can be rewritten asX
x<y<z

byxb
z
y D�@b

z
x � b

z
x@:

By duality we get a map that we denote by the same symbol, since there is no risk of confusion,

byx W C
�.x/! C �C1.y/:

It is defined by the formula

byx Œx1 < � � �< xn D x�D .�1/
nŒx1 < � � �< xn D x < xnC1 D y�:
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Lemma 1.5 (1) For xÉy in P , byx W C �.x/! C �C1.y/ is a morphism of complexes.

(2) Let x < z in P be such that every y 2 .x; z/ satisfies xÉyÉ z. Then the morphism of complexesX
x<y<z

bzyb
y
x W C

�.x/! C �C2.z/

is homotopic to zero.

Proof This is the dual of Lemma 1.4.

It is sometimes convenient to extend the definitions to yP . Indeed, for O0É y, ie for y a minimal element
of P , we can define by

O0
WC�C1.y/!C�.O0/ to be the natural (iso)morphism of complexes. The same goes

in cohomology for by
O0
W C �.O0/! C �C1.y/. One easily checks that Lemmas 1.4 and 1.5 also apply to the

case x D O0.

Remark 1.6 Let us assume for simplicity that the poset yP is graded, ie any two maximal chains between
two elements x < y in yP have the same length. For x 2 yP let rk.x/ denote the length of a maximal chain
from O0 to x. In many geometric cases we have, for every x 2 yP ,

hn.x/D 0 for n¤ rk.x/;

and we simply write h.x/D hrk.x/.x/. (This implies that the cohomology of C �.x/ is concentrated in
degree rk.x/ and that hrk.x/.x/'h.x/_.) This condition is satisfied, eg if the poset yP is Cohen–Macaulay
[Baclawski 1980; Björner et al. 1982]. In this case we get a chain complex .h; b/ where

hn D
M
x2 yP

rk.x/Dn

h.x/

and b W hnC1 ! hn is induced by the connecting maps byx for x < y. One can also prove that these
connecting maps induce acyclic complexes of K–modules, for every x 2 P ,

0! h.x/!
M

y2 yP;y<x
rk.y/Drk.x/�1

h.y/!
M

z2 yP;z<x
rk.z/Drk.x/�2

h.z/! � � � ! h.O0/! 0:

This allows one to define h.x/ together with the connecting morphisms bxu by induction on rk.x/.

A typical example of a Cohen–Macaulay poset is the poset of flats of a matroid (for instance, the poset of
strata of a central hyperplane arrangement); in this case .h; b/ is the underlying chain complex of the
Orlik–Solomon algebra of the matroid [Orlik and Solomon 1980; Orlik and Terao 1992].

1.3 Interpretation of poset cohomology as homotopy limit

We will now consider the abelian category of representations of the finite poset P , ie the category
.K–Mod/P of functors from P viewed as a category to the category of K–modules. Since K–Mod is
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abelian, it admits finite limits, so we have a limit functor limP W .K–Mod/P !K–Mod, which is right
adjoint to the constant functor K–Mod! .K–Mod/P ; since it has a left adjoint, it is left exact, and we
may consider the right derived functor R limP W D..K–Mod/P /! D.K–Mod/. In anticipation of the
next section, we will call it homotopy limit and denote it by holimP . We now prove and discuss the
following interpretation of the complexes C �.x/ (see also [Tosteson 2016] for a similar discussion).

Proposition 1.7 For x 2 P we denote by Kx the representation of P defined by Kx.y/DK if y D x
and zero otherwise. We have a canonical isomorphism in D.K–Mod/,

holimP Kx ' C
�C1.x/:

In order to compute the functor holimP we introduce convenient limP –acyclic representations of P . For
x 2 P and M 2K–Mod, we let M6x 2 .K–Mod/P denote the representation given by M6x.y/DM if
y 6 x and zero otherwise, the transition morphisms being the identity of M or zero.

Lemma 1.8 The representation M6x is limP –acyclic.

Proof The functor
.�/6x WK–Mod! .K–Mod/P ; M 7!M6x;

is exact and sends injectives to injectives. Indeed, for T 2 .K–Mod/P we have an isomorphism

Hom.K–Mod/P .T;M6x/' HomK–Mod.T .x/;M/;

and thus the functor Hom.K–Mod/P .�;M6x/ is exact if M is injective. Thus, we have isomorphisms

R limP .M6x/' R limP ıR.�/6x.M/'R.limP ı.�/6x/.M/'M ' limP .M6x/:

The first isomorphism follows from the fact that .�/6x is exact, the second follows from the fact that it
sends injectives to injectives, the third and fourth from the equality limP ı.�/6x D IdK–Mod.

Proof of Proposition 1.7 For z 6 y we have a canonical morphism K6y ! K6z . Moreover, those
morphisms compose functorially. Using them we can form a resolution

0!Kx!K6x!
M
y<x

K6y!
M
z<y<x

K6z! � � � :

More precisely, we set
Rnx D

M
Œx1<���<xn<xnC1Dx�

K6x1
:

In analogy with the construction of the complexes C �.x/ of Section 1.1, we define a differential
d W Rnx ! RnC1x . Its component indexed by chains Œx1 < � � � < xn < xnC1 D x� on the source and
Œx1 < � � � < xi�1 < y < xi < � � � < xn < xnC1 D x� on the target equals .�1/i times the natural map
(the latter being the identity for i > 1 and the canonical morphism K6x1

!K6y for i D 1). The other
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components are zero. One easily checks that we get a complex R�x of representations of P which is such
that

R�x.a/D

8<:
K if aD x;
C �C1
Œa;x�

.x/ if a < x;
0 otherwise:

By Lemma 1.1, the complex C �
Œa;x�

.x/ is contractible and we thus get a resolution Kx ��!R�x .

By Lemma 1.8 this resolution is limP –acyclic. Hence, it can be used to compute holimP KxDR limP Kx .
Since each limP K6x1

is just K, applying limP to the resolution gives limP R�x ' C
�C1.x/, and the

result follows.

Remark 1.9 The resolution appearing in the proof of Proposition 1.7 is a Bousfield–Kan resolution
[1972, Chapter XI].

We now turn to the interpretation of the connecting morphisms byx . For x < y in P we let Kyx denote
the representation of P defined by Kyx.z/DK if z 2 fx; yg and zero otherwise, the transition morphism
Kyx.x/!Kyx.y/ being the identity. We have a short exact sequence in .K–Mod/P ,

0!Ky!Kyx !Kx! 0;

which induces a distinguished triangle Ky!Kyx !Kx
C1
�! in D..K–Mod/P /. We denote by

ayx WKx!Ky Œ1�

the connecting morphism.

Proposition 1.10 Assume that xÉy. We have a commutative square in D.K–Mod/,

holimP Kx
holimP a

y
x
//

'
��

holimP Ky Œ1�

'
��

C �C1.x/
b

y
x Œ1�

// C �C2.y/

where the vertical isomorphisms are those of Proposition 1.7.

Proof Let R�x and R�y denote the resolutions of Kx and Ky described in the proof of Proposition 1.7.
By mimicking the definition of byx and the proof of Lemma 1.5 1) we get a morphism of complexes
R�x!R�C1y . We let S� denote its cone shifted by �1, so that S�DR�x˚R

�

y as graded P –representations.
We consider the commutative diagram

0 // Ky //

��

Kyx //

��

Kx //

��

0

0 // R�y
// S� // R�x

// 0

where both rows are short exact sequences. The dotted arrow Kyx ! S0 DK6x˚K6y is defined so that
its value at y is the identity of K and its value at x is the diagonal morphism K!K˚K. It is a morphism
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of representations of P because xÉy. The composite Kyx ! S0! S1 is zero, as one can check on the
values at x and y. In the above commutative diagram, the bottom row is thus a limP –acyclic resolution of
the top row, by the five lemma. This implies that the connecting morphism holimP Kx! holimP Ky Œ1�

is computed by the connecting morphism in the long exact sequence associated to the short exact sequence

0! limP R�y! limP S�! limP R�x! 0:

By construction, this is nothing but the short exact sequence for the cone of the morphism

byx Œ�1� W C
��1.x/! C �.y/;

and the connecting morphism is byx .

Remark 1.11 Let ˛ W P ! P 0 be an isomorphism of posets, let x 2 P and x0 D ˛.x/ 2 P 0. One easily
proves that the natural isomorphism

C �C1P 0 .x
0/' holimP 0 Kx0 ' holimP Kx ' C

�C1
P .x/

is the isomorphism of complexes denoted by C �C1.˛/ in Remark 1.2.

2 Triangulated derivators

In this section we collect some tools about triangulated derivators and natural Postnikov systems arising
in this context. The main result is Proposition 2.20.

2.1 The framework of triangulated derivators

We work within the framework of triangulated derivators, introduced by Grothendieck [1991] and
developed by several authors; see [Ayoub 2007a; Cisinski and Neeman 2008; Franke 1996; Groth 2013;
Heller 1988; Maltsiniotis 2001]. Broadly speaking, triangulated derivators are like triangulated categories
with well-defined homotopy limits and colimits (and more generally homotopy Kan extensions).

We work with Ayoub’s notion [2007a] of a triangulated derivator in order to be able to use the notion
of an algebraic derivator from [loc. cit.] in the next section. There a 2–category of “diagrams” is fixed,
which is a full 2–subcategory of the 2–category of (small) categories satisfying the axioms D0, D1 and
D2 of [Ayoub 2007a, section 2.1.2]; we choose it to be the 2–category of finite posets, since those are the
only diagrams that we will need. All 2–categories in this paper are strict, and our notion of a 2–functor
between two 2–categories is the weak one, ie that of a pseudofunctor in the sense of [Borceux 1994, 7.5].

2.1.1 Finite posets A finite poset P is viewed as a category with a unique morphism from x to y if
x 6 y, and none otherwise. Finite posets thus form a full 2–subcategory of the 2–category of (small)
categories. A functor between finite posets is an order-preserving map and is simply called a morphism
of posets. For two such morphisms f; g W P !Q, there is a unique natural transformation from f to g if
f .x/6 g.x/ for every x 2 P , and none otherwise.
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We denote by e the poset with one element. For P a finite poset, we denote by p or pP W P ! e the
morphism to a point. An inclusion between posets Q � P is denoted iPQ WQ! P . For P a finite poset
and x 2 P , we use the notation ix or iPx W e! P for the inclusion of x.

2.1.2 Triangulated prederivators

Definition 2.1 A triangulated prederivator D is a 1–contravariant and 2–covariant 2–functor from the
2–category of finite posets to the 2–category of triangulated categories. In other words, it associates

(0) to every finite poset P , a triangulated category D.P /;

(1) to every morphism f W P !Q of finite posets, a triangulated functor f � WD.Q/!D.P /;

(2) to every pair of morphisms f; g W P ! Q such that f .x/ 6 g.x/ for every x 2 P , a natural
transformation of triangulated functors f �! g�;

in a way that is compatible with horizontal and vertical composition.

Remark 2.2 The triangulated category D.e/ is called the ground category. For a finite poset P , an
element x 2 P and an object F 2D.P /, the pullback .ix/�F 2D.e/ is called the value of F at x. For
elements x; y 2P such that x6 y we have two morphisms ix; iy W e!P such that ix. � /6 iy. � / and thus
a natural transformation .ix/�! .iy/

�. Thus, the functors .ix/� induce an underlying diagram functor

(2) D.P /!D.e/P

which is not an equivalence in general. The category D.P / should be thought of as the category of
“homotopy coherent” P –shaped diagrams of objects of the ground category D.e/, whereas the category
D.e/P consists of “homotopy incoherent” diagrams. More generally we have “partial” underlying diagram
functors, for finite posets P and E,

D.E �P /!D.E/P

and diagrams in D.E/P can be called “partially homotopy incoherent”.

Remark 2.3 Our variance convention slightly differs from that of [Ayoub 2007a] since there prederivators
are 1–contravariant and 2–contravariant, which makes the underlying diagram functor land in D.e/P

op
.

2.1.3 Triangulated derivators A triangulated derivator [Ayoub 2007a, définition 2.1.34] is a triangu-
lated prederivator that satisfies a certain number of axioms, including the following that we mention for
future reference:

(1) We have D.¿/D 0.

(2) The underlying diagram functor (2) is conservative for every finite poset P ; it is a triangulated
equivalence if P is discrete.

(3) For every morphism f W P !Q of finite posets, the functor f � WD.Q/!D.P / admits right and
left adjoints,

f� WD.P /!D.Q/; fŠ WD.P /!D.Q/;

Algebraic & Geometric Topology, Volume 24 (2024)



1442 Clément Dupont and Daniel Juteau

respectively, which are automatically triangulated functors. They play the role of homotopy right and left
Kan extension functors; in the special case of p W P ! e, the projection to a point, they are a homotopy
limit and colimit functors and we write p� D holim and pŠ D hocolim.

(4) For a morphism f W P !Q and some element y 2Q, let y=P � P denote the subposet consisting
of elements x 2 P such that y 6 f .x/. We have a natural transformation

.py=P /
�.iQy /

�
! .iPy=P /

�f �

associated by 2–functoriality to the two morphisms .iQy / ı py=P and f ı .iP
y=P

/ from y=P to Q. By
using the units and counits of the adjunctions we can obtain from it a natural transformation

.iQy /
�f�! .py=P /�.i

P
y=P /

�

which is .iQy /�f�! .py=P /�.py=P /
�.i

Q
y /
�f�! .py=P /�.i

P
y=P

/�f �f�! .py=P /�.i
P
y=P

/�. We require
this last natural transformation to be invertible. In the same vein, let P=y � P denote the subposet
consisting of elements x 2 P such that f .x/6 y. Then we have a natural transformation

.pP=y/Š.i
P
P=y/

�
! .iQy /

�fŠ

that we require to be invertible.

Remark 2.4 The axioms listed above are similar to the axioms 1–4 of [Ayoub 2007a, définition 2.1.34],
albeit slightly less complete for (2) and (4). In [loc. cit.] two more axioms, 5 and 6, relate the triangulated
structures on the categories D.P / with the homotopy Kan extension functors f� and fŠ and will not be
used in the rest of this article.

Remark 2.5 If A is a Grothendieck abelian category, eg ADK–Mod , then we have a derivator DA such
that DA.P / is the derived category of the diagram category AP for every finite poset P . The pullback
functors f � are the obvious ones and their adjoints are obtained by deriving the usual Kan extension
functors.

2.1.4 Monoidal structure The triangulated derivators that we will deal with all have a unital symmetric
monoidal structure in the sense of [Ayoub 2007a, section 2.1.6]. This means that for every finite poset P
the triangulated category D.P / is endowed with the structure of a unital symmetric monoidal triangulated
category and that for every morphism f W P ! Q the functor f � W D.Q/! D.P / is endowed with
the structure of a unital symmetric monoidal functor. The triangulated derivator DK–Mod of the abelian
category K–Mod is symmetric monoidal.

Let D be a unital symmetric monoidal derivator. Then we have, for every morphism of finite posets
f W P !Q and for F 2D.P /, G 2D.Q/, a natural morphism

(3) G˝f�F! f�.f
�G˝F/:
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It is obtained as the composition G˝f�F! f�f
�.G˝f�F/ ��! f�.f

�G˝f �f�F/! f�.f
�G˝F/,

where the first and last steps involve the unit and the counit of the adjunction, and the middle step uses
that f � is monoidal. In the same way, we have a natural morphism

(4) fŠ.f
�G˝F/! G˝fŠF:

Neither (3) nor (4) is an isomorphism in general.

2.1.5 Coefficients In the remainder of this section we fix a unital symmetric monoidal triangulated
derivator D equipped with a morphism of unital symmetric monoidal triangulated derivators DK–Mod!D.
Such an object can be called a unital symmetric monoidal triangulated derivator with coefficients in K.

We will allow ourselves to interpret complexes of K–modules as objects of D.e/ without specific reference
to the morphism DK–Mod!D.

2.2 Extension by zero

We start with a classical lemma.

Lemma 2.6 Let P be a finite poset with projection p W P ! e.

(1) If P has a least element x then we have isomorphisms p� ' .ix/� and p� ' .ix/Š. The natural
morphism pŠp

�! idD.e/ is an isomorphism.

(2) If P has a greatest element y then we have isomorphisms pŠ ' .iy/� and p� ' .iy/�. The natural
morphism idD.e/! p�p

� is an isomorphism.

Proof We prove the first point (the second is proved dually). The fact that x is the least element of P
may be expressed by the fact that .ix; p/ is an adjoint pair of functors. It follows that .p�; .ix/�/ is also
an adjoint pair of functors. Now .ix/

� being a right adjoint to p� means that it is equal to p�, and p�

being a left adjoint to .ix/� means that it is equal to .ix/Š.

For the second assertion, note that pix D ide, hence pŠ.ix/Š ' idD.e/, and the isomorphism p� D .ix/Š

identifies this with the adjunction morphism pŠp
�! idD.e/.

Lemma 2.7 Let i W Q ,! P denote the inclusion of a subposet. For every G 2 D.Q/ the natural
morphisms

i�i�G! G and G! i�iŠG

are isomorphisms.

Proof We prove that the first morphism is an isomorphism (the second case is proved dually). For every
x 2Q we have a sequence of isomorphisms

.iQx /
�i�i�G' .iPx /

�i�G' .px=Q/�.i
Q

x=Q
/�G' .ix=Qx /�.i

Q

x=Q
/�G' .iQx /

�G;
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where the second isomorphism follows from Section 2.1.3(4) and the third isomorphism follows from
Lemma 2.6 since x is the least element of x=Q. One checks that the composition of these isomorphisms
is the composition of .iQx /� with the natural morphism i�i�G! G. By Section 2.1.3(2) this proves the
claim.

Definition 2.8 Let P be a finite poset.

(1) A sieve in P is a subset U � P such that for every x 6 y in P , y 2 U implies x 2 U .

(2) A cosieve in P is a subset V � P such that for every x 6 y in P , x 2 V implies y 2 V .

The complement of a sieve is a cosieve and the complement of a cosieve is a sieve. We also call a sieve
(resp. cosieve) the functor of posets given by the inclusion of a sieve (resp. cosieve). The following lemma
is classical and says that the functor u� (resp. vŠ) deserves the name “extension by zero” if u is a sieve
(resp. if v is a cosieve).

Lemma 2.9 Let P be a finite poset.

(1) Let u WU ,! P be a sieve. For F 2D.P /, the natural morphism F! u�u
�F is an isomorphism if

and only if .ix/�FD 0 for all x 2 P nU .

(2) Let v W V ,! P be a cosieve. For F 2D.P /, the natural morphism vŠv
�F! F is an isomorphism

if and only if .ix/�FD 0 for all x 2 P nV .

Proof We prove the first point (the second is proved dually). Let us assume that the natural morphism
F! u�u

�F is an isomorphism. Then for x 2 P nU we have an isomorphism

.ix/
�F' .ix/

�u�u
�F' .px=U /�.i

U
x=U /

�u�F;

where the second isomorphism follows from Section 2.1.3(4). By assumption, we have x=U D¿ and
Section 2.1.3(1) implies that .ix/�F D 0. Conversely, if .ix/�F D 0 for all x 2 P nU then the same
argument shows that the natural morphism .ix/

�F! .ix/
�u�u

�F is an isomorphism. The fact that it is
an isomorphism also for x 2 U follows from the same kind of reasoning as in the proof of Lemma 2.7.
Thanks to Section 2.1.3(2) we conclude that the morphism F! u�u

�F is an isomorphism.

The next lemma explains the compatibility between extension by zero and pullback.

Lemma 2.10 (1) Consider the cartesian diagram in the category of finite posets ,

f �1.U /
u0
//

g

��

Q

f

��

U
u

// P

where u is a sieve. Then we have a canonical isomorphism f �u�
��! .u0/�g

�.
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(2) Consider the cartesian diagram in the category of posets ,

f �1.V /
v0
//

h
��

Q

f

��

V
v

// P

where v is a cosieve. Then we have a canonical isomorphism .v0/Šh
� ��! f �vŠ.

Proof We prove the first point (the second is proved dually). The morphism f �u�! .u0/�g
� is the

composite f �u�! .u0/�.u
0/�f �u�

��! .u0/�g
�u�u�

��! .u0/�g
�. The fact that it is an isomorphism

follows from Lemma 2.9 and the fact that u and u0 are sieves.

The next lemma provides a projection formula for the “extension by zero” functors.

Lemma 2.11 Let P be a finite poset.

(1) Let u W U ,! P be a sieve. For F 2D.P / and G 2D.U /, the natural morphism

F˝u�G! u�.u
�F˝G/

defined in Section 2.1.4(3) is an isomorphism.

(2) Let v W V ,! P be a cosieve. For F 2D.P / and G 2D.V /, the a natural morphism

vŠ.v
�F˝G/! F˝ vŠG

defined in Section 2.1.4(4) is an isomorphism.

Proof We prove the first point (the second is proved dually). Let c W P nU ,! P denote the cosieve
complementary to u. Then c�.F˝u�G/' c�F˝c�u�GD 0 since c�u�D 0 by Lemma 2.9. Using that
same lemma and also Lemma 2.7, we see that each step in the definition of the morphism Section 2.1.4(3)
is an isomorphism.

2.3 Localization triangles

Let P be a finite poset. Let u W U ,! P be a sieve and v W V ,! P denote the complementary cosieve.

Lemma 2.12 For F 2D.P / there is a unique distinguished triangle in D.P /,

(5) vŠv
�F! F! u�u

�F C1�!;

such that the first two maps are the counit and unit respectively. It is functorial in F and we call it a
localization triangle.

Proof Let C denote a cone of the counit morphism vŠv
�F!F, so that we have a distinguished triangle

in D.P /,

(6) vŠv
�F! F! C C1�!:
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By applying the triangulated functor v� to (6) and using Lemma 2.7 we get a distinguished triangle in D.V /,

v�F id
�! v�F! v�C C1�!:

We thus have v�C D0 and Lemma 2.9 implies that we have an isomorphism C 'u�u
�C . By applying the

triangulated functor u� to (6) and using u�vŠD 0, which follows from Lemma 2.9, we get a distinguished
triangle in D.U /,

0! u�F! u�C C1�!;

and deduce that we have an isomorphism C ' u�u
�F. This implies the existence of a distinguished

triangle whose first two edges are the counit vŠv�F! F and the unit F! u�u
�F. By adjunction and

v�u� D 0, which follows from Lemma 2.9, we have HomD.P /.vŠv
�F; u�u

�FŒ�1�/D 0, and [Beı̆linson
et al. 1982, corollaire 1.1.10] implies that the remaining edge of the triangle is unique. This implies that
the triangle is functorial in F.

Remark 2.13 The output of the above lemma, as well as the results of the rest of this section, is a
diagram in the triangulated category D.P /, and is thus a partially incoherent diagram from the point
of view of derivators (see Remark 2.2). It is of course possible to lift it to a coherent diagram living in
D.P � Œ3�/, where Œn� denotes the poset .f0; 1; : : : ; ng;6/ with n consecutive arrows. We choose not to
phrase our results (and in particular Proposition 2.20 below) in this totally coherent way but rather in a
way that is more appealing to readers familiar with the setting of triangulated categories.

However, let us sketch a way to do so in the particular example of the above lemma. The first step is to
lift the counit morphism vŠv

�F! F to an object of D.P � Œ1�/. For this we can consider the cosieve
v0 W V 0 ,! P � Œ1� where V 0 consists of those elements .x; i/ such that x 2 V if i D 0. If f W P � Œ1�! P

denotes the natural projection, then we can consider the object

.v0/Š.v
0/�f �F 2D.P � Œ1�/

and check that its underlying morphism in D.P / is indeed the counit morphism vŠv
�F! F. One can

then proceed as in [Groth 2013, Section 4.2] (see also [Ayoub 2007a, remarque 2.1.38]) to produce a
coherent lift of the triangle (6), and the same arguments as in the proof above identify it to a coherent lift
of the triangle (5).

The next lemma explains the compatibility between the localization triangles and pullback.

Lemma 2.14 Let f WQ!P be a morphism of finite posets and introduce a sieve u0 W f �1.U / ,!Q and
a cosieve v0 Wf �1.V / ,!Q. For F2D.P / we have the following isomorphism of distinguished triangles ,
where the first triangle is obtained by applying f � to (5) and the second triangle is the localization
triangle (5) of f �F with respect to u0 and v0:

f �vŠv
�F // f �F // f �u�u

�F
C1

//

'
��

.v0/Š.v
0/�f �F

'

OO

// f �F // .u0/�.u
0/�f �F

C1
//
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Proof It is obtained from the diagram

f �vŠv
�F // f �F // f �u�u

�F
C1

//

'
��

.v0/Šh
�v�F
OO

'
��

'

OO

.u0/�g
�u�F

.v0/Š.v
0/�f �F // f �F // .u0/�.u

0/�f �F
C1
//

��
'

OO

where the notation is borrowed from Lemma 2.10. The isomorphisms between the first and second rows
follow from Lemma 2.10. The two visible squares of the diagram commute, and the remaining square
commutes by the uniqueness statement in Lemma 2.12.

Lemma 2.15 For F;F0 2D.P / we have the following isomorphism of distinguished triangles , where
the rows are (induced by) localization triangles:

vŠv
�.F˝F0/ //

'
��

F˝F0 // u�u
�.F˝F0/

C1
//

F˝ vŠv
�F0 // F˝F0 // F˝u�u

�F0
C1

//

'

OO

Proof It is obtained from the diagram

vŠv
�.F˝F0/ //

OO

'
��

F˝F0 // u�u
�.F˝F0/
OO

'
��

C1
//

vŠ.v
�F˝ v�F0/

'
��

u�.u
�F˝u�F0/

F˝ vŠv
�F0 // F˝F0 // F˝u�u

�F0
C1

//

'

OO

where the isomorphisms between the second and third rows follow from Lemma 2.11, the two visible
squares of the diagram commute, and the remaining square commutes by the uniqueness statement in
Lemma 2.12.

For x<y inP and F2D.P / let us denote by .ix<y/�F W .ix/
�F! .iy/

�F the corresponding morphism in
D.e/ in the underlying diagram (see Remark 2.2). Recall from Section 1.3 the morphism a

y
x WKx!Ky Œ1�

in DK–Mod.P /.

Lemma 2.16 Assume that U and V are discrete posets. Then the connecting morphism in the localization
triangle (5) reads

u�u
�F'

M
x2U

p�.ix/
�F˝Kx!

M
y2V

p�.iy/
�F˝Ky Œ1�' vŠv

�FŒ1�;

where the component indexed by x 2 U and y 2 V is p�.ix<y/�F˝ a
y
x if x < y and zero otherwise.

Note that the object p�.ix/�F˝Kx 2D.P / has value .ix/�F at x and zero at every other point.
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Proof We proceed in two steps.

(1) Assume that we work in the derivator DK–Mod and that FD p�K 2D.P / is the constant object with
values K. Since U and V are discrete posets we have, by Section 2.1.3(2), isomorphisms

u�u
�p�K'

M
x2U

Kx and vŠv
�p�K'

M
y2V

Ky :

For x 2 U and y 2 V , we can apply Lemma 2.14 to Z D fx; yg, to reduce the computation of the
connecting morphism to the case where P D Z has two elements. If x < y then the connecting
morphism is ayx by definition. Otherwise P is itself discrete and Section 2.1.3(2) implies that we have
F' u�u

�p�K˚ vŠv
�p�K, and the connecting morphism is zero.

(2) We now work in the general case of the lemma. We write FD F˝p�K. By applying Lemma 2.15
for F0 D p�K and using the first step of the proof, we get a commutative diagram

u�u
�F // vŠv

�FŒ1�

'
��

F˝u�u
�p�K

'

OO

OO

'
��

// F˝ vŠv
�p�KŒ1�
OO

'
��L

x2U F˝Kx //
L
y2V F˝Ky Œ1�

where the component of the bottom morphism indexed by x 2 U and y 2 V is idF˝ a
y
x if x < y and

zero otherwise. Let us now fix x 2 U and y 2 V with x < y. By 2–functoriality we have a commutative
diagram

F F

��

.ix/Š.ix/
�F

OO

.iy/�.iy/
�F

.ix/Š.ix/
�p�.ix/

�F

��

.iy/�.iy/
�p�.iy/

�F

p�.ix/
�F

p�.ix<y/
�F

// p�.iy/
�F

OO

where the values at x of the vertical arrows on the left are isomorphisms and the values at y of the vertical
arrows on the right are isomorphisms. We then conclude that we have a commutative diagram

F˝Kx
id˝ay

x
//

OO

'

��

F˝Ky Œ1�

p�.ix/
�F˝Kx

p�.ix<y/
�F˝a

y
x

// p�.iy/
�F˝Ky Œ1�
��

'

OO

and the claim follows.
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2.4 Postnikov systems from derivators

Let P be a finite poset and let � W P ! Z>1 be a strictly increasing map. This defines a finite decreasing
filtration of P by cosieves V k D fx 2 P j �.x/> kg such that each complement V k nV kC1 is a discrete
poset (an antichain in P ). We let vk W V k ,! P .

Lemma 2.17 Let F 2D.P /.

(1) We set F kFD .vk/Š.v
k/�F. We have a Postnikov system in D.P /,

� � � // F 3F //

{{

F 2F //

{{

F 1FD F

{{

G3F

C1

cc

G2F

C1

cc

G1F

C1

cc

where the graded objects are given by

GkF'
M

�.x/Dk

p�.ix/
�F˝Kx :

(2) For every integer k, the connecting morphism GkF!GkC1FŒ1� has its component indexed by x
and y with �.x/D k and �.y/D kC 1, given by

p�.ix/
�F˝Kx

p�.ix<y/
�F˝a

y
x

����������! p�.iy/
�F˝Ky Œ1�

if x < y, and zero otherwise.

(3) The above Postnikov system is functorial in F.

Proof (1) The morphism F kC1F! F kF is defined as the composite

.vkC1/Š.v
kC1/�F' .vk/ŠvŠv

�.vk/�F! .vk/Š.v
k/�F

where v W V kC1 ,! V k is a cosieve with complementary sieve u W V k nV kC1 ,! V k . According to
Lemma 2.12 this morphism fits into a distinguished triangle

F kC1F! F kF!GkF C1�!

with GkFD .vk/Šu�u
�.vk/�F. Since V k nV kC1 is a discrete poset we have, as in the proof of

Lemma 2.16, an isomorphism

GkF'
M

�.x/Dk

F˝Kx '
M

�.x/Dk

p�.ix/
�F˝Kx :

(2) Applying Lemma 2.14 to Z D fx 2 P j �.x/ 2 fk; kC 1gg we are reduced to the two-step case
where �.P /� f1; 2g. In this case the claim is Lemma 2.16 and we are done.

(3) The functoriality statement follows from the functoriality of localization triangles (Lemma 2.12).
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Remark 2.18 In the spirit of Remark 2.13 let us sketch a way to lift the partially incoherent Postnikov
system of the above lemma to a totally coherent diagram.1 The first step is to lift the horizontal morphisms
to an object of D.P � Œn�/ where n is an integer such that �.P /� f1; : : : ; ng. For this we consider the
cosieve v0 W V 0 ,! P � Œn� consisting of elements .x; i/ such that x 2 V iC1. If f W P � Œn�! P denotes
the natural projection then the object .v0/Š.v0/�f �F 2D.P � Œn�/ is a coherent lift of the composable
morphisms F kC1F! F kF in D.P /. One can then produce the remainder of the Postnikov system in a
coherent way as in Remark 2.13.

In the next section we will apply the functor p� to a Postnikov system as in Lemma 2.17. For this reason
we now recast poset cohomology in the context of a general monoidal triangulated derivator.

Lemma 2.19 Let P be a finite poset and let x 2 P . For M 2D.e/ we have a functorial isomorphism

p�.p
�M ˝Kx/'M ˝C

�C1.x/:

Proof Call F 2D.P / admissible if for any M 2D.e/, the natural morphism

(7) M ˝p�F! p�.p
�M ˝F/

defined in Section 2.1.4(3) is an isomorphism. Admissible objects satisfy the following properties:

(a) If P has a greatest element then for every N 2D.e/, p�N is admissible. Indeed by Lemma 2.6
we have p�p� ' idD.e/ and (7) is isomorphic to the identity of M ˝N .

(b) If u WU ,!P is a sieve and G2D.U / is admissible, then u�G is admissible. Indeed, let v WP nU ,!P

denote the cosieve complementary to U . Then v�.p�M ˝u�G/' v�p�M ˝ v�u�GD 0 since
v�u� D 0. By Lemma 2.9 we thus have an isomorphism

p�M ˝u�G' u�u
�.p�M ˝u�G/' u�..p ıu/

�M ˝G/;

and (7) is isomorphic to the natural morphism

M ˝ .p ıu/�G! .p ıu/�..p ıu/
�M ˝G/;

which is an isomorphism because G is admissible by assumption.

(c) By the naturality of (7), an extension of admissible objects (and in particular a finite direct sum of
admissible objects) is admissible. A shift of an admissible object is admissible.

We now note that we have, as in the proof of Proposition 1.7, a resolution Kx ��!R�x with

Rnx D
M

Œx1<���<xn<xnC1Dx�

K6x1
:

For every y 6 x we have K6y ' .u6y/�.p6y/�K, where u6y W P6y ,! P and p6y W P6y! e are the
inclusion and projection maps of the subposet P6y D fa 2 P j a 6 yg. Since y is the greatest element

1This was suggested to us by Martin Gallauer.
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of P6y , we get by (a) above that .p6y/�K is admissible. Since P6y is a sieve in P , we get by (b)
above that K6y is admissible. By (c) above we thus get that every Rnx is admissible and then that Kx is
admissible. The claim then follows from Proposition 1.7 since p� is the homotopy limit functor.

The next proposition will be our main tool in the next section. It computes a homotopy limit in the shape
of a Postnikov system.

Proposition 2.20 Let F 2D.P /.

(1) We set F kp�FD p�.v
k/Š.v

k/�F. We have a functorial Postnikov system in D.e/,

� � � // F 2p�F //

yy

F 1p�FD p�F

yy

G2p�F

C1

dd

G1p�F

C1

ee

where the graded objects are given by

Gkp�F'
M

�.x/Dk

.ix/
�F˝C �C1.x/:

(2) For every integer k, the connecting morphism Gkp�F!GkC1p�FŒ1� has its component indexed
by x and y with �.x/D k and �.y/D kC 1, given by

.ix/
�F˝C �C1.x/

.ix<y/
�F˝b

y
x Œ1�

����������! .iy/
�F˝C �C2.y/

if x < y, and zero otherwise.

(3) The above Postnikov system is functorial in F.

Proof This follows from applying the triangulated functor p� to the Postnikov system of Lemma 2.17
and setting F kp�F WD p�F

kF and Gkp�F WD p�G
kF. The description of the graded objects follows

from Lemma 2.19. The description of the connecting morphisms follows from Proposition 1.10.

Remark 2.21 The Postnikov system of Proposition 2.20 is functorial with respect to isomorphisms of
posets in the following sense. Let ˛ W P ! P 0 be an isomorphism of posets; we set � 0 D � ı ˛�1. For
F0 2 D.P 0/ there is a natural isomorphism .p0/�F0 ��! p�˛

�F0 and a natural isomorphism between
the Postnikov system corresponding to F0 2 D.P 0/ and the one corresponding to ˛�F0 2 D.P /. The
corresponding isomorphism at the level of graded objects has component indexed by x0 2 P 0 and x 2 P
given by

.ix0/
�F0˝C �C1P 0 .x

0/
id˝C �C1.˛/

�
�������! .ix/

�˛�F0˝C �C1P .x/

if ˛.x/D x0 and zero otherwise, where C �C1.˛/ was defined in Remark 1.2. This follows easily from
Remark 1.11.
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3 The main theorem

3.1 Categories of motives

3.1.1 Conventions on schemes In what follows we fix a noetherian base scheme B and write “scheme”
for “separated scheme over B”.

3.1.2 Motives over a scheme For every scheme X we have, following Morel and Voevodsky [1999]
and Ayoub [2007a; 2007b], a unital symmetric monoidal triangulated derivator DAX of étale motives
over X with coefficients in K. It is a particular case of a stable homotopical functor SHT

M constructed
in [Ayoub 2007b, définition 4.5.21], taking for the model category M (the category of “coefficients”)
the category of complexes of K–modules, for T the Tate motive (the stabilization consists in formally
inverting the functor T ˝�), and considering the étale topology; the axioms of a unital symmetric
monoidal triangulated derivator are proved to hold in [Ayoub 2007b, section 4.5]. Other constructions
lead to equivalent (under certain assumptions) categories of motives, such as Beilinson motives, étale
motives with transfers, and h–motives; see [Ayoub 2014b, théorème B.1; Cisinski and Déglise 2016,
Corollary 5.5.5; 2019, Section 16.2].

Remark 3.1 By making other choices of M and T one is led to other categories such as the Morel–
Voevodsky stable A1–homotopy categories of schemes SH, where our results below still hold.

There is a natural morphism of unital symmetric monoidal triangulated derivators DK–Mod!DAX , so
that the derivator D DDAX satisfies the assumptions of Section 2.1.5. In what follows we will make an
abuse of notation and simply write DAX for the ground category DAX .e/.

Let us note that X 7!DAX satisfies the “six functor formalism”, for which we will not give a definition
here but rather refer to Ayoub. This means that it has the same formal functoriality properties as derived
categories of sheaves in familiar contexts. In particular, it underlies a cross functor [Ayoub 2007a,
définition 1.2.12, scholie 1.4.2]. This notion (defined in [loc. cit., section 1.2]) abstracts the properties of
the exchange morphisms between Š and � pullbacks and/or pushforwards (such as the morphism appearing
in the proper base change theorem).

Another important feature that we will use is the existence of functorial localization triangles [Ayoub
2007a, section 1.4.4] for F 2DAX , where i WZ ,!X denotes a closed immersion and j WX nZ ,!X

denotes the complementary open immersion,

(8) jŠj
ŠF! F! i�i

�F C1�! :

3.1.3 Motives over a diagram of schemes In the proof of the main theorem below we will make use
of categories of motives over diagrams of schemes, introduced by Ayoub. A diagram of schemes .P;X/
is the datum of a finite poset P along with a functor X W P op! Sch. (Our convention is actually opposed
to Ayoub’s, see Remark 3.2 below.) For X a scheme we have the constant diagram of schemes .P;X/
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where all the transition maps are the identity of X . We view a scheme as the constant diagram of schemes
on the poset with one element: X D .e; X/. Diagrams of schemes form a 2–category [Ayoub 2007a,
définition 2.4.4] in which a morphism ˛ W .P;X/! .Q;Y/ consists of a morphism of posets ˛ W P !Q

along with a natural transformation X) Y ı˛.

Ayoub defines a (1–contravariant, 2–covariant) 2–functor

.P;X/ 7!DA.P;X/

from the 2–category of diagrams of schemes to the 2–category of triangulated categories which extends
the derivator P 7! DA.P;X/ D DAX .P / for every scheme X . This functor satisfies the axioms
of an algebraic derivator [Ayoub 2007a, 2.4.2] that we will not discuss here. We simply note that for
˛ W.P;X/!.Q;Y/ a morphism of diagrams of schemes, the natural morphism ˛� WDA.Q;Y/!DA.P;X/

admits a right adjoint ˛� WDA.P;X/!DA.Q;Y/. The existence of left adjoints is more constrained.

Remark 3.2 Our convention for diagrams of schemes and for the variance of DA is opposed to Ayoub’s
but is consistent with our variance convention for derivators (see Remark 2.3) and with the convention for
posets of strata introduced in the next subsection.

3.2 The main theorem

Let X be a scheme and let X0 be a dense open subscheme of X with complement Z. We denote by
j W X0 ,! X and i W Z ,! X the corresponding open and closed immersions. Let us be given a (finite)
stratification of Z, ie a finite partition of Z by locally closed subschemes called strata such that the
Zariski closure of each stratum is a union of strata. The set P of strata is naturally endowed with the
structure of a poset where for strata S; T 2 P ,

S 6 T () S � T:

We thus get a stratification of X indexed by the extended poset yP D fX0g[P with X0 <S for all S 2P .

For S 2 P we have defined (see Section 1.1) a complex of K–modules C �.S/ which computes the
reduced cohomology groups of the poset P<S . For strata S; T 2 P with S É T we have defined (see
Section 1.2) a morphism of complexes bTS WC

�.S/!C �.T /Œ1�. We also define C �.X0/ to be the complex
K concentrated in degree zero. For a minimal stratum S 2P , ie such that X0ÉS in yP , we have a natural
(iso)morphism of complexes bSX0

W C �.X0/! C �.S/Œ1�.

We fix a strictly increasing map � W yP !Z, and we assume that �.X0/D 0. Such a map always exists. If
P is graded then we may take � D rk, the rank function.

In the statement of the next theorem, we will use the following “restriction” morphisms of functors (for
strata S 6 T ):

(9) �TS W .i
X

S
/�.i

X

S
/�! .iX

S
/�.i

S

T
/�.i

S

T
/�.iX

S
/� ' .iX

T
/�.i

X

T
/�:
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Theorem 3.3 Let F 2DAX and set GD jŠj
ŠF.

(1) There is a Postnikov system in DAX ,

� � � // F 2G //

{{

F 1G //

{{

F 0GD G

{{

G2G

C1

cc

G1G

C1

cc

G0G

C1

cc

where the graded objects are given by

GkGD
M

�.S/Dk

.iX
S
/�.i

X

S
/�F˝C �.S/:

(2) For every integer k, the connecting morphism GkG!GkC1GŒ1� has its component indexed by S
and T with �.S/D k and �.T /D kC 1, given by

.iX
S
/�.i

X

S
/�F˝C �.S/

�T
S F˝bT

S
�����! .iX

T
/�.i

X

T
/�F˝C �.T /Œ1�

if S < T and zero otherwise.

(3) The above Postnikov system is functorial in F.

Proof We proceed in three steps.

(a) We construct the first triangle. The (rotated) localization triangle (8) reads

i�i
�FŒ�1�! jŠj

ŠF! F C1�!

and provides the first triangle of the Postnikov system, with F 1G D i�i
�FŒ�1� and G0G D F. It is

functorial in F.

(b) We work with motives over diagrams of schemes. We consider the diagram of schemes .P;Z/ where
Z WP op! Sch is defined by S 7!S and where the transition morphisms are the natural closed immersions.
We have a natural morphism of diagram of schemes s W .P;Z/!Z induced by the closed immersions
S ,!Z. This was previously considered by Ayoub and Zucker [2012, Lemma 1.18] who proved that the
natural counit idDAZ

! s�s
� is an isomorphism. We thus have an isomorphism in DAZ ,

i�i
�F' i�s�s

�i�F:

Let us recall that .P;X/ denotes a constant diagram of schemes. We have a natural morphism of diagrams
of schemes r W .P;Z/ ! .P;X/ induced by the closed immersions S ,! X . If we also denote by
p W .P;X/! .e; X/DX the projection to a point, we have the following commutative diagram:

.P;Z/
r
//

s

��

.P;X/

p

��

Z
i

// X
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We thus have an isomorphism

F 1G' p�HŒ�1�

where we set HD r�r
�p�F 2DA.P;X/DDAX .P /. It is easy to see, using the axiom DerAlg 3d in

[Ayoub 2007a, définition 2.4.12], that the value of H at a stratum S is .iX
S
/�.i

X

S
/�F. Moreover, for strata

S 6 T the transition map from the value at S to the value at T is the restriction morphism �TSF defined
in (9).

(c) We construct the Postnikov system. By applying Proposition 2.20(1) to the object H 2DAX .P / we
get a Postnikov system in DAX ,

� � � // F 2p�H //

yy

F 1p�HD p�HD F 1GŒ1�

yy

G2p�H

C1

dd

G1p�H

C1

ee

with

Gkp�H'
M

�.S/Dk

.iX
S
/�.i

X

S
/�F˝C �C1.S/:

This is, up to a shift, the remainder of the Postnikov system promised in the theorem, ie we set, for k > 1,

F kGD F kp�HŒ�1� and GkGDGkp�HŒ�1�:

The description of the connecting morphisms follows from Proposition 2.20(2). (The connecting morphism
G0F!G1FŒ1� needs to be treated separately; it is the composite F! i�i

�F!
L
�.S/D1.i

X

S
/�.i

X

S
/�F

which is the sum of the morphisms �SX0
F.) The functoriality statement follows from Proposition 2.20(3).

For any (B–)scheme X let us denote by aX W X ! B its structural map. The next corollary expresses
the “compactly supported cohomology” of a motivic sheaf F on the open X0 in terms of “compactly
supported cohomology” of F on all the closures of strata.

Corollary 3.4 Let F 2DAX and set M D .aX0
/Šj

ŠF 2DAB .

(1) There is a Postnikov system in DAB ,

� � � // F 2M //

zz

F 1M //

zz

F 0M DM

zz

G2M

C1

cc

G1M

C1

dd

G0M

C1

dd

where the graded objects are given by

GkM D
M

�.S/Dk

.aS /Š.i
X

S
/�F˝C �.S/:
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(2) For every integer k, the connecting morphism GkM !GkC1MŒ1� has its component indexed by
S and T with �.S/D k and �.T /D kC 1, given by

.aS /Š.i
X

S
/�F˝C �.S/

�T
S F˝bT

S
�����! .aT /Š.i

X

T
/�F˝C �.T /Œ1�

if S < T and zero otherwise.

(3) The above Postnikov system is functorial in F.

Proof This follows from applying the functor .aX /Š to the Postnikov system of Theorem 3.3. By the
projection formula we have an isomorphism

.aX /Š
�
.iX
S
/�.i

X

S
/�F˝C �.S/

�
D .aX /Š

�
.iX
S
/�.i

X

S
/�F˝ .aX /

�C �.S/
�
' .aX /Š.i

X

S
/�.i

X

S
/�F˝C �.S/;

and this equals .aS /Š.i
X

S
/�F˝C �.S/ since .aX /Š.iXS /� D .aX /Š.i

X

S
/Š D .aS /Š.

Remark 3.5 One can also apply the functor .aX /� to the Postnikov system of Theorem 3.3 and get a
Postnikov system expressing the relative motive of the pair .X;Z/ with coefficients in a motivic sheaf F.
It is a motivic refinement of the classical long exact sequence in relative cohomology.

3.3 Localization spectral sequences

We recover the spectral sequences of [Petersen 2017] by applying realization functors.

3.3.1 Betti realization We now consider a finite type scheme X over C. We have the Betti realization
functor [Ayoub 2010]

DAX !D.X an/;

whose target is the derived category of the category of sheaves of K–modules on the analytification X an.
This functor is compatible with the operations f �, f�, fŠ and ˝, and we thus get from Theorem 3.3
(resp. Corollary 3.4) a Postnikov system inD.X an/ (resp.D.Ban/). We can then derive a spectral sequence
by applying a cohomological functor such as the “cohomology sheaves” functor H0 WD.Ban/! Sh.Ban/.

Remark 3.6 We may also apply other natural cohomological functors when available. For instance, if
the Betti realization of F is a complex of sheaves with constructible cohomology sheaves, almost all of
which are zero (eg if F is a constant sheaf), then one can also apply the perverse cohomology functor
pH0 with target the category of perverse sheaves pPerv.Ban/ for any perversity function p [Beı̆linson
et al. 1982].

In the case B D Spec.C/, the spectral sequence reads:

E
p;q
1 D

M
�.S/Dp

HpCq.R�c.i
X

S
/�F˝C �.S//)HpCq

c .X0; j
ŠF/:

We can make it more explicit under some extra assumptions as in [Petersen 2017, Section 3], and
we get for instance the following corollary [Petersen 2017, Theorem 3.3(ii)]. We recall the notation
hn.S/DHn.C �.S// from Section 1.1.
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Corollary 3.7 Assume that K is a hereditary ring (eg K is a field or KD Z) and that for every stratum
S and every integer n the cohomology group hn.S/ is a torsion-free K–module. Then we have a spectral
sequence of K–modules

E
p;q
1 D

M
�.S/Dp
iCjDpCq

H i
c .S; .i

X

S
/�F/˝ hj .S/)HpCq

c .X0; j
ŠF/:

Proof Since C �.S/ is a complex of free K–modules, the tensor product by C �.S/ is also the derived
tensor product. Moreover, since K is hereditary, the complex C �.S/ is quasi-isomorphic to its cohomology.
Finally, since that cohomology is assumed to be torsion-free, the Künneth formula applies without the
Tor correction term.

Remark 3.8 In the context of Remark 1.6 we can simplify further since most cohomology groups hj .S/
vanish: we get a spectral sequence

E
p;q
1 D

M
rk.S/Dp

H q
c .S; .i

X

S
/�F/˝ h.S/_)HpCq

c .X0; j
ŠF/:

The differential dp;q1 has component indexed by strata S and T , with rk.S/ D p and rk.T / D pC 1,
given by

H q
c .S; .i

X

S
/�F/˝ h.S/_

�T
S F˝bT

S
�����!H q

c .T ; .i
X

T
/�F/˝ h.T /_

if S < T , and zero otherwise.

3.3.2 Hodge realization In the case K D Q, the Betti realization functor can be enriched into a
Hodge realization functor in the constructible case. Following [Ayoub 2014a, Definition 2.11] we define
DAct

X to be the smallest triangulated subcategory of DAX stable under direct summands and Tate twists
and containing the motives f�KY for f W Y ! X of finite presentation. Objects of DAct

X are called
constructible.

Thanks to [Ivorra 2016] we have Hodge realization functors

DAct
X !Db.MHM.X//

which are compatible with the six functor formalism, where MHM.X/ is Saito’s category of mixed Hodge
modules on X [Saito 1990]. This proves that the spectral sequence of Corollary 3.7 is compatible with
mixed Hodge structures if X has finite type over Spec.C/ and F is constructible, eg FDQX the constant
sheaf. This was already noted by Petersen [2017, Theorem 3.3(ii)].

3.3.3 Étale (and `–adic) realization Let us assume that B D Spec.k/ for some field k. We fix a
prime ` invertible in k and set KDQ`. By [Ayoub 2014b, sections 5 and 9; Cisinski and Déglise 2016,
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Section 7.2], we have an étale (or `–adic) realization functor

DAct
X !Dbc .X

ét/

compatible with the six operations, where Dbc .X
ét/ is Ekedahl’s triangulated category of `–adic systems

[Ekedahl 1990].

This implies that we have a spectral sequence in étale cohomology analogous to that of Corollary 3.7 with
Q` coefficients, with values in the category of continuous representations of the Galois group Gal.ksep=k/.
This was already noted by Petersen [2017, Theorem 3.3(ii)].

3.4 The dual version

We start with the “dual” variant of Theorem 3.3, where we consider the same geometric situation but
study the object j�j �F instead of jŠj ŠF. We will derive one from the other by using Verdier duality in
the motivic setting (see Remark 3.10 below for a discussion of this strategy).

For simplicity we assume that the base scheme B is of finite type over a characteristic zero field. Then
we have a Verdier duality functor [Ayoub 2014a, Theorem 3.10]

DX W .DAct
X /

op
!DAct

X

which satisfies the usual compatibilities DX ıDX ' id and DY ıf�' fŠ ıDX for f WX! Y a morphism
of schemes.

Recall from Sections 1.1 and 1.2 the homological complexes C�.S/, for S 2 P , that we now treat with
cohomological conventions (ie with negative cohomological degrees) and the connecting morphisms
bTS W C�C1.T /! C�.T / for S É T , which in cohomological conventions read bTS W C�.T /! C�.S/Œ1�.
As in the previous paragraph we set C�.X0/ D K concentrated in degree 0, and for S 2 P a minimal
element, we consider the natural (iso)morphism bSX0

W C�.S/! C�.X0/Œ1�.

In the statement of the next theorem we will use the following “Gysin-type” morphisms of functors,
which are dual to restriction morphisms �TS (for strata S 6 T ):

(10) 
TS W .i
X

T
/Š.i

X

T
/Š ' .iX

S
/Š.i

S

T
/Š.i

S

T
/Š.iX

S
/Š! .iX

S
/Š.i

X

S
/Š:

Theorem 3.9 Let F 2DAct
X be a constructible object and let us set GD j�j

�F.

(1) There is a Postnikov system in DAX ,

GD F0G // F1G

C1||

// F2G

C1||

// � � �

C1{{

G0G

bb

G1G

bb

G2G

bb

where the graded objects are given by

GkGD
M

�.S/Dk

.iX
S
/Š.i

X

S
/ŠF˝C�.S/:
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(2) For every integer k, the connecting morphism GkC1G!GkGŒ1� has its component indexed by S
and T with �.S/D k and �.T /D kC 1, given by

.iX
T
/Š.i

X

T
/ŠF˝C�.T /


T
S F˝bT

S
�����! .iX

S
/Š.i

X

S
/ŠF˝C�.S/Œ1�

if S < T , and zero otherwise.

(3) The above Postnikov system is functorial in F.

Proof We apply Theorem 3.3 to the Verdier dual of F and dualize the Postnikov system obtained in this
way. The only thing that needs to be checked is the description of GkG and the connecting morphisms.
Let !X 2DAct

X denote the dualizing object. For any object U 2DAct
X ,

DX .U˝C �.S//D HomDAct
X
.C �.S/˝U; !X /' HomDAct

X
.C �.S/;DX U/' DX U˝C�.S/:

In the last step we have used the fact that C�.S/ is the strong dual of C �.S/ in the monoidal category
DK–Mod because it is a bounded complex of free K–modules of finite rank. By applying this to

UD .iX
S
/�.i

X

S
/�DX F;

using the compatibility between Verdier duality and the functors i� and iŠ, and the fact that DX ıDX F'F,
we get an isomorphism

DX
�
.iX
S
/�.i

X

S
/�DX F˝C �.S/

�
' .iX

S
/Š.i

X

S
/ŠF˝C�.S/:

This implies the description of GkG as in the statement of the theorem. The fact that the Gysin morphisms

TS defined in (10) and the restriction morphisms �TS defined in (9) are Verdier dual to each other is clear,
and the claim follows.

Remark 3.10 Theorem 3.9 is most certainly true without the assumption that F is constructible and
without the assumption that B is a finite type scheme over a characteristic zero field. In fact, as noted in the
introduction, we can prove it without the functoriality statement using only the language of triangulated
categories. However, it seems that the tools that we are using do not allow us to do it functorially. Indeed,
we cannot simply repeat the proof of Theorem 3.3 since the existence of a left adjoint to the functor s�

appearing in the proof is not guaranteed in the context of an algebraic derivator.

Remark 3.11 As in Corollary 3.4 and Remark 3.5 one may apply the functors .aX /� or .aX /Š to the
Postnikov system of Theorem 3.9 to get localization Postnikov systems in DAB . In the case of .aX /�
this computes .aX0

/�j
�F, the cohomology of X0 with coefficients in the restriction of F; a particularly

interesting case is when F D KX is a constant motivic sheaf. There the main difficulty is to be able
to compute the graded objects of the Postnikov system, ie the objects .aS /�.i

X

S
/ŠKX for all strata S .

Luckily, if S is smooth of codimension c in X , then by purity we have an isomorphism

.iX
S
/ŠKX 'KS Œ�2c�.�c/;

and the localization Postnikov system is expressed in terms of the motives of the closures of strata.
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Remark 3.12 By applying realization functors and cohomological functors one gets spectral sequences
from Theorem 3.9 as in Section 3.3. We only state one special case that is important for applications. Let
FDKX , and assume that we are in the context of Corollary 3.7 and Remark 3.8. Further assume that for
every stratum S the closure S is smooth of codimension cS in X . Then we get by the previous remark a
(second quadrant) spectral sequence in mixed Hodge structures:

(11) E
�p;q
1 D

M
rk.S/Dp

H q�2cS .S/.�cS /˝ h.S/)H�pCq.X0/:

A special case of interest is when the stratification is induced by a normal crossing divisor, in which case
cS D rk.S/ and h.S/ has rank one for every stratum S ; one then recovers Deligne’s spectral sequence
[1971, 3.2.4.1]. The other classical spectral sequences cited in the introduction [Bibby 2016; Björner
and Ekedahl 1997; Cohen and Taylor 1978; Dupont 2015; Getzler 1999; Goresky and MacPherson 1988;
Kříž 1994; Looijenga 1993; Totaro 1996] are all special cases of (11).

3.5 Functoriality

We now turn to the functoriality of our main theorem with respect to morphisms of schemes. With a little
more work it should be easy to treat more general cases.

3.5.1 A category of stratified schemes For simplicity we restrict to morphisms between stratified
schemes whose underlying combinatorial datum is an isomorphism of posets.

Definition 3.13 Let X and X 0 be two stratified schemes with posets of strata yP and yP 0 as in Section 3.2.
A stratified morphism from X to X 0 is a pair .˛; f / where ˛ W yP ! yP 0 is an isomorphism of posets and
f WX !X 0 is a morphism of schemes such that

f .S/� ˛.S/ for all S 2 yP :

Note that for a stratified morphism .˛; f /, the morphism f does not determine ˛ in general. However,
for an isomorphism of schemes f WX !X 0 such that the image by f of every stratum of X is a stratum
of X 0, there is a unique ˛ W yP ! yP 0 such that .˛; f / is a stratified isomorphism.

Our notion of stratified morphism is more easily understood in the context of the category of diagrams of
schemes. For a stratified scheme X with poset of strata yP we have a natural diagram of schemes . yP ;X/
where X W yP op! Sch sends S to S . A stratified morphism .˛; f / as above gives rise to a morphism of
diagrams of schemes

.˛; f / W . yP ;X/! . yP 0;X0/:

One can thus view our category of stratified schemes as a subcategory of the category of diagrams
of schemes. It is not a full subcategory since we only consider morphisms .˛; f / for which ˛ is an
isomorphism of posets.

3.5.2 Functoriality of the localization triangle The first step in the construction of the Postnikov
system is just the localization triangle (8). So let us consider a morphism of pairs f W .X;Z/! .X 0; Z0/,
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whereZ andZ0 are closed subschemes and f .Z/�Z0. If we denote byX0 andX 00 the open complements,
then f �1.X 00/�X0. We have the diagram

Z
i
//

f
��

X

f
��

X0
j

oo f �1.X 00/
j0
oo

f
��

Z0
i 0
// X 0 X 00j 0
oo

where the left square is commutative and the rectangle on the right is cartesian. Given an object F0 2DAX 0 ,
we want to define a morphism between the localization triangle for F0 and f� of the localization triangle
for f �F0:

.i 0/�.i
0/�F0Œ�1� //

��

.j 0/Š.j
0/ŠF0 //

��

F0
C1
//

��

f�i�i
�f �F0Œ�1� // f�jŠj

Šf �F0 // f�f
�F0

C1
//

Let us now define the three vertical morphisms:

� The right morphism is of course the adjunction unit F0! f�f
�F0.

� The left morphism is given by the composition

.i 0/�.i
0/�F0Œ�1�! .i 0/�f�f

�.i 0/�F0Œ�1� ��! f�i�i
�f �F0Œ�1�;

where the first arrow is induced by the adjunction unit, and the isomorphism on the right follows
from the commutativity of the left square in the diagram above.

� The middle morphism is given by the composition

.j 0/Š.j
0/ŠF0! .j 0/Šf�f

�.j 0/ŠF0! f�jŠ.j0/Š.j0/
Šj Šf �F0! f�jŠj

Šf �F0;

where the first arrow is induced by the adjunction unit, the second arrow induced by two exchange
morphisms (which are part of the cross functor structure; see [Ayoub 2007a, section 1.2]) for the
cartesian square on the right of the diagram above, and the third arrow is induced by the adjunction
counit.

We leave it to the reader to check that this defines indeed a morphism of triangles. The commutativity of
the left square is easy, the commutativity of the right square is a nice exercise on using the axioms of a cross
functor, and the commutativity of the third square follows from [Beı̆linson et al. 1982, proposition 1.1.9].

Remark 3.14 Assume that B D Spec.C/ and denote by a W X ! B and a0 W X 0 ! B the structure
morphisms. If f is proper, we have a0

Š
f� D a0

Š
fŠ D aŠ. Consequently, taking F0 D QX 0 , applying

the functor a0
Š

and taking the Betti realization, we get the functoriality (for proper morphisms) of the
localization long exact sequence of the introduction:

� � � // H �c .X
0
0/

//

��

H �c .X
0/ //

��

H �c .Z
0/ //

��

H �C1c .X 00/
//

��

� � �

� � � // H �c .X0/
// H �c .X/

// H �c .Z/
// H �C1c .X0/ // � � �
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Similarly, using a0� instead, we get the functoriality of the long exact sequence in relative cohomology:

� � � // H �.X 0; Z0/ //

��

H �.X 0/ //

��

H �.Z0/ //

��

H �C1.X 0; Z0/ //

��

� � �

� � � // H �.X;Z/ // H �.X/ // H �.Z/ // H �C1.X;Z/ // � � �

In this case we do not need to assume that f is proper; we always have a0�f� D a�.

3.5.3 Functoriality of the localization spectral sequence To express the functoriality of Theorem 3.3
with respect to stratified morphisms, we adopt a more meaningful notation:

� For an object H 2 DAX .P / we denote by z….H/ the Postnikov system in DAX described in
Proposition 2.20.

� For an object F 2 DAX we denote by …. yP ;X IF/ the Postnikov system in DAX described in
Theorem 3.3.

Borrowing notation from the proof of Theorem 3.3 we have that …. yP ;X IF/ is obtained by appending
z….r�r

�p�F/Œ�1� to the first (localization) triangle.

We start with a general lemma explaining the compatibility between the Postnikov systems z… and
certain pushforwards. We recall (see Remark 1.2) that an isomorphism of posets ˛ W P ! P 0 induces
isomorphisms of complexes denoted by

C �.˛/ W C �P 0.S
0/! C �P .S/

for elements S 2 P and S 0 2 P 0 such that S 0 D ˛.S/. If � W yP !Z is a strictly increasing map such that
�.O0/D 0 and if ˛ W yP ! yP 0 is an isomorphism of posets then we denote by � 0 W yP 0! Z the composite
� 0 D � ı˛�1. In the next lemma, for H 2DAX .P / and S 2 P we denote by HS 2DAX the value of H

at S .

Lemma 3.15 Let ˛ W P ! P 0 be an isomorphism of posets , let f WX !X 0 be a morphism of schemes ,
and let us denote by .˛; f / W .P;X/! .P 0; X 0/ the corresponding morphism of (constant) diagrams of
schemes. For H 2DAX .P / we have an isomorphism

z…..˛; f /�H/ ��! f� z….H/:

At the level of graded objects it readsM
�.S 0/Dk

f�H˛�1.S 0/˝C
�C1
P 0 .S

0/ ��!
M

�.S/Dk

f�.HS ˝C
�C1
P .S//'

M
�.S/Dk

f�HS ˝C
�C1
P .S/;

and its component indexed by S 0 and S is given by id˝C �C1.˛/ if S D ˛.S 0/ and zero otherwise.

Proof Since .˛; f /D .id; f / ı .˛; id/ it is enough to do the proof in the case ˛ D id and in the case
f D id. In the former case it follows from the fact that .id; f /� W DAX ! DAX 0 is a morphism of
derivators. In the latter case it is the content of Remark 2.21.
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In the statement of the next theorem we will use the following “pullback” morphisms of functors in the
context of a morphism of schemes f W X ! X 0 and two strata S and S 0 such that f .S/ � S 0, where
f S
0

S
W S ! S 0 denotes the morphism induced by f :

�S
0

S .f / W .i
X 0

S 0
/�.i

X 0

S 0
/�! .iX

0

S 0
/�.f

S 0

S
/�.f

S 0

S
/�.iX

0

S 0
/� ' f�.i

X

S
/�.i

X

S
/�f �:

Theorem 3.16 (1) The Postnikov system of Theorem 3.3 is functorial with respect to stratified
morphisms. More precisely , for every morphism .˛; f / W . yP ;X/! . yP 0; X 0/ and every object
F0 2DAX 0 we have a morphism of Postnikov systems

….˛; f IF0/ W…. yP 0; X 0IF0/! f�…. yP ;X If
�F0/:

They satisfy ….id; idIF0/D id and the equality

….ˇ ı˛; g ıf IF00/D g�….˛; f Ig
�F00/ ı….ˇ; gIF00/

for composable morphisms

. yP ;X/
.˛;f /
��! . yP 0; X 0/

.ˇ;g/
��! . yP 00; X 00/

and F00 2DAX 00 .

(2) For every integer k, the morphism ….˛; f IF0/ reads , at the level of graded objects ,M
� 0.S 0/Dk

.iX
0

S 0
/�.i

X 0

S 0
/�F0˝C �P 0.S

0/!
M

�.S/Dk

f�.i
X

S
/�.i

X

S
/�f �F0˝C �P .S/

and has its component indexed by S 0 and S given by �S
0

S .f /F
0˝C �.˛/ if S 0 D ˛.S/ and zero

otherwise.

(3) The morphism ….˛; f IF0/ is functorial in F0.

Proof We proceed in three steps as in the proof of Theorem 3.3.

(a) The first triangle of the Postnikov system is the localization triangle and its functoriality follows from
the discussion of Section 3.5.2.

(b) Following the proof of Theorem 3.3 we consider the following commutative diagram in the category
of diagrams of schemes:

.P;Z/
r
//

s

��

.P;X/

�
p

��

.˛;f /

((

Z
i

//

f

''

X

� f

''

.P 0;Z0/
r 0
//

s0

��

''

.˛;f /

.P 0; X 0/

p0

��

Z0
i 0

// X 0
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The morphism .˛; f / W .P;X/! .P;X 0/ is induced by ˛ at the level of posets and by f WX!X 0 at the
level of schemes. The morphism .˛; f / W .P;Z/! .P;Z0/ is induced by ˛ at the level of posets and by
the maps S ! ˛.S/ induced by f at the level of schemes. We have the commutative diagram in DAX 0 ,

.i 0/�.i
0/�F0 //

�

��

f�i�i
�f �F0

�

��

.i 0/�.s
0/�.s

0/�.i 0/�F0
OO

�

��

f�i�s�s
�i�f �F0
OO

�

��

.p0/�.r
0/�.r

0/�.p0/�F0
.p0/�'

// .p0/�.˛; f /�r�r
�.˛; f /�.p0/�F0 oo

�
// f�p�r�r

�p�f �F0

where the vertical arrows ��! are isomorphisms by [Ayoub and Zucker 2012, Lemma 1.18] as in the
proof of Theorem 3.3. We have the objects

H0 D .r 0/�.r
0/�.p0/�F0 and HD r�r

�.˛; f /�.p0/�F0 ' r�r
�p�f �F0

of DAX 0.P 0/ and DAX .P /, respectively, and the natural morphism ' W H0 ! .˛; f /�H appearing
in the above diagram. For S 0 2 P 0, the value of H0 at S 0 is .iX

0

S 0
/�.i

X 0

S 0
/�F0, that of .˛; f /�H is

f�.i
X

S
/�.i

X

S
/�f �F0, for S 0 D ˛.S/, and the value of ' is �S

0

S .f /F
0.

(c) We define the remainder of ….˛; f IF0/ to be the composite

z….H0/
z….'/
��! z…..˛; f /�H/ ��! f� z….H/

where the second arrow is described in Lemma 3.15. The compatibility with composition is left to the
reader. The description of ….˛; f IF0/ at the level of graded objects follows from Lemma 3.15 and the
description of the values of ' in (b). The functoriality in F0 is obvious.

Remark 3.17 By applying Poincaré–Verdier duality one gets the dual statement that the Postnikov
system of Theorem 3.9 is functorial with respect to stratified morphisms.
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1725Steenrod problem and some graded Stanley–Reisner rings

MASAHIRO TAKEDA

1739Dehn twists and the Nielsen realization problem for spin 4–manifolds

HOKUTO KONNO

1755Sequential parametrized topological complexity and related invariants

MICHAEL FARBER and JOHN OPREA

1781The multiplicative structures on motivic homotopy groups

DANIEL DUGGER, BJØRN IAN DUNDAS, DANIEL C ISAKSEN and PAUL ARNE ØSTVÆR

1787Coxeter systems with 2–dimensional Davis complexes, growth rates and Perron numbers

NAOMI BREDON and TOMOSHIGE YUKITA

A
L

G
E

B
R

A
IC

&
G

E
O

M
E

T
R

IC
T

O
P

O
L

O
G

Y
2024

Vol.24,
Issue

3
(pages

1225–1808)

http://dx.doi.org/10.2140/agt.2024.24.1225
http://dx.doi.org/10.2140/agt.2024.24.1277
http://dx.doi.org/10.2140/agt.2024.24.1321
http://dx.doi.org/10.2140/agt.2024.24.1431
http://dx.doi.org/10.2140/agt.2024.24.1467
http://dx.doi.org/10.2140/agt.2024.24.1487
http://dx.doi.org/10.2140/agt.2024.24.1505
http://dx.doi.org/10.2140/agt.2024.24.1551
http://dx.doi.org/10.2140/agt.2024.24.1569
http://dx.doi.org/10.2140/agt.2024.24.1601
http://dx.doi.org/10.2140/agt.2024.24.1623
http://dx.doi.org/10.2140/agt.2024.24.1655
http://dx.doi.org/10.2140/agt.2024.24.1691
http://dx.doi.org/10.2140/agt.2024.24.1713
http://dx.doi.org/10.2140/agt.2024.24.1725
http://dx.doi.org/10.2140/agt.2024.24.1739
http://dx.doi.org/10.2140/agt.2024.24.1755
http://dx.doi.org/10.2140/agt.2024.24.1781
http://dx.doi.org/10.2140/agt.2024.24.1787

	Introduction
	Perspectives
	Outline
	Acknowledgements

	1. Poset (co)homology
	1.1. Definition
	1.2. The connecting maps
	1.3. Interpretation of poset cohomology as homotopy limit

	2. Triangulated derivators
	2.1. The framework of triangulated derivators
	2.1.1. Finite posets
	2.1.2. Triangulated prederivators
	2.1.3. Triangulated derivators
	2.1.4. Monoidal structure
	2.1.5. Coefficients

	2.2. Extension by zero
	2.3. Localization triangles
	2.4. Postnikov systems from derivators

	3. The main theorem
	3.1. Categories of motives
	3.1.1. Conventions on schemes
	3.1.2. Motives over a scheme
	3.1.3. Motives over a diagram of schemes

	3.2. The main theorem
	3.3. Localization spectral sequences
	3.3.1. Betti realization
	3.3.2. Hodge realization
	3.3.3. Étale (and –adic) realization

	3.4. The dual version
	3.5. Functoriality
	3.5.1. A category of stratified schemes
	3.5.2. Functoriality of the localization triangle
	3.5.3. Functoriality of the localization spectral sequence


	References
	
	

