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Complex hypersurfaces in direct products of Riemann surfaces

CLAUDIO LLOSA ISENRICH

We study smooth complex hypersurfaces in direct products of closed hyperbolic Riemann surfaces and
give a classification in terms of their fundamental groups. This answers a question of Delzant and Gromov
on subvarieties of products of Riemann surfaces in the smooth codimension one case. We also answer
Delzant and Gromov’s question of which subgroups of a direct product of surface groups are Kähler for
two classes: subgroups of direct products of three surface groups, and subgroups arising as the kernel
of a homomorphism from the product of surface groups to Z3. These results will be a consequence of
answering the more general question of which subgroups of a direct product of surface groups are the
image of a homomorphism from a Kähler group, which is induced by a holomorphic map, for the same
two classes. This provides new constraints on Kähler groups.

32J27; 20F65, 20J05, 32Q15

1 Introduction

A Kähler group is a group that can be realized as fundamental group of a compact Kähler manifold.

Convention Throughout this work, Sg will denote a closed orientable surface of genus g � 2 and
�g D �1.Sg/ its fundamental group. Furthermore, a surface group will always be a group isomorphic
to �g for some g � 2.

Kähler groups have attracted much interest over the last decades and have been studied from many different
points of view. An important motivation for studying them is that they are closely linked to the study
of the topology of smooth complex projective varieties. Historically, a key technique for understanding
Kähler groups is through their homomorphisms onto surface groups. For some examples of how surface
groups are used in the study of Kähler groups, as well as for general background on Kähler groups, we
refer the reader to [Amorós et al. 1996] (and also [Biswas and Mj 2017; Burger 2011] for more recent
developments).

A central objective of this work will be to develop new constraints on homomorphisms from Kähler
groups onto surface groups by studying complex hypersurfaces in direct products of Riemann surfaces.
More precisely, we will address the following questions, raised by Delzant and Gromov [2005] in their
fundamental work on cuts in Kähler groups:
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1468 Claudio Llosa Isenrich

Question 1 [Delzant and Gromov 2005] Which subgroups of direct products of surface groups are
Kähler?

Question 2 [Delzant and Gromov 2005] Given a subgroup G � �1.Sg1
/� � � � ��1.Sgr

/, when does
there exist an algebraic variety V � Sg1

� � � � �Sgr
of a given dimension n such that the image of the

fundamental group of V is G?

Question 2 can be seen as a more general version of Question 1. This is particularly apparent from the
following group-theoretic reformulation:

Question 3 When is a subgroup G � �1.Sg1
/� � � � ��1.Sgr

/ the image of a homomorphism �1.X /!

�1.Sg1
/� � � � ��1.Sgr

/ which is induced by a holomorphic map X ! Sg1
� � � � �Sgr

from a compact
Kähler manifold X ?

Answers to these questions in concrete situations provide new constraints on Kähler groups and can thus
have interesting applications. Indeed, one such application of Theorem 1.1 has been provided recently by
Llosa Isenrich and Py [2021]. They apply it to obtain constraints on Kodaira fibrations admitting more
than two fiberings, thereby making progress on the question [Salter 2015; Catanese 2017] of whether
such Kodaira fibrations can exist.

Delzant and Gromov [2005] give criteria for when a Kähler group admits a homomorphism to a direct
product of surface groups. These results have been extended by [Py 2013; Delzant and Py 2019]. A
key consequence of their works is that many actions of Kähler groups on CAT(0) cube complexes factor
through homomorphisms to direct products of surface groups. Combined with the important role that
CAT(0) cube complexes have played in recent advances in geometric group theory and low-dimensional
topology (eg [Agol 2013]), this motivates Delzant and Gromov’s questions.

The first nontrivial examples of Kähler subgroups of direct products of surface groups were constructed by
Dimca, Papadima and Suciu [Dimca et al. 2009] with the purpose of showing that there is a Kähler group
which does not have a classifying space which is a quasiprojective variety. They arise as fundamental
groups of generic fibres of holomorphic maps from a direct product of Riemann surfaces onto an elliptic
curve, which restrict to ramified coverings of degree two on the factors. These examples have been
generalized by Llosa Isenrich [2019] and Biswas, Mj and Pancholi [Biswas et al. 2014]. All of these
examples are fundamental groups of smooth complex hypersurfaces in direct products of closed Riemann
surfaces. More general classes of Kähler subgroups of direct products of surface groups have been
constructed from holomorphic maps onto higher-dimensional tori [Llosa Isenrich 2020]. They include
examples coming from subvarieties of all possible codimensions. On the other hand, Kähler subgroups of
direct products of surface groups must satisfy strong constraints and the same remains true for subgroups
arising as images of homomorphisms which are induced by holomorphic maps [Llosa Isenrich 2020]. We
will provide more details on these results in Section 2.
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The combination of the diversity of examples and constraints reveals the subtle conditions that a complete
answer to Delzant and Gromov’s question needs to satisfy. However, as discussed above, solutions even
in specific cases provide new tools for studying Kähler groups, enabling interesting applications. This
work is thus concerned with finding natural situations in which complete answers can be obtained. For
this we combine insights from previous works with Albanese maps and a careful analysis of complex
hypersurfaces in direct products of closed Riemann surfaces.

Our first result is an answer to Question 3 for direct products of three surface groups.

Definition For a direct product G1�� � ��Gr of groups, denote by pi WG1�� � ��Gr!Gi the projection
onto the i th factor. A subgroup H �G1 � � � � �Gr is called

� subdirect if pi.H /DGi for 1� i � r , and

� full if H \Gi WDH \ .1� � � � � 1�Gi � 1� � � � � 1/ is nontrivial for 1� i � r .

Theorem 1.1 Let G D �1.X / be the fundamental group of a compact Kähler manifold X, and let
� WG! �g1

��g2
��g3

be a homomorphism with finitely presented full subdirect image G WD �.G/ of
infinite index. Assume that ker.pi ı�/ is finitely generated for 1� i � 3.

Then there are finite-index subgroups �i
� �gi

, a complex elliptic curve E and a holomorphic map

f D

3X
iD1

fi W S1
�S2

�S3
!E;

induced by branched holomorphic coverings fi W Si
! E, such that G0 D ker.f�/Š �1.H / � G is a

finite-index subgroup , where H is the smooth generic fibre of f and f� W �1
��2

��3
! �1.E/ is the

induced map on fundamental groups.

We emphasize that the condition that ker.pi ı �/ is finitely generated in Theorem 1.1 implies that the
homomorphism � is induced by a holomorphic map, and, conversely, that every homomorphism to a
surface group induced by a holomorphic map will have finitely generated kernel, after possibly passing to
a finite ramified cover. Thus, our result does really provide an answer to Question 3 for direct products of
three surface groups.

Remark 1.2 Theorem 1.1 also provides constraints on homomorphisms to products of more than three
surface groups satisfying the remaining assumptions of the theorem. To see this, we use that, for subdirect
products of surface groups, finite presentability is equivalent to satisfying the virtual surjection to pairs
property (VSP) [Bridson et al. 2013, Theorem D]. Thus, finite presentability is preserved under projections
to factors, allowing us to apply Theorem 1.1 to every composition of such a homomorphism with a
projection to three of the surface group factors.

We also give a description of all possible images of homomorphisms with � as in Theorem 1.1 when the
image is not a full subdirect product (see Theorem 4.3). However, in this case the homomorphism will
not always be induced by a holomorphic map.
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As a consequence of Theorem 4.3, we obtain the following answer to Question 1 in the three factor case:

Corollary 1.3 Let G D �1.X / � �g1
��g2

��g3
for X a compact Kähler manifold. Then there is a

finite-index subgroup G0 �G such that either

(1) G0 Š Z2k ��h1
� � � � ��hs

for h1; : : : hs � 2 and 0� 2kC s � 3; or

(2) G0 is the kernel of an epimorphism  W �1
� �2

� �3
! Z2 which is induced by a surjective

holomorphic map f D
P3

iD1 fi W S1
�S2

�S3
!E with the same properties as the map f in

Theorem 1.1.

Conversely, every group which satisfies one of the conditions (1) and (2) is Kähler.

We remark that Theorem 1.1 and Corollary 1.3 will hold for any choice of compact Kähler manifold X

with G D �1.X /. However, the complex structures on E and Si
obtained in the proof will depend

on the complex structure of X, since we will make use of the fact that there is a holomorphic map
X ! Sg1

� Sg2
� Sg3

which realizes the homomorphism G ! �g1
� �g2

� �g3
. Both results will be

consequences of the more general criterion provided by Theorem 3.1. Theorem 3.1 also allows us to
classify connected smooth complex hypersurfaces in a direct product of r closed Riemann surfaces in terms
of the image of their fundamental groups, thus providing a complete answer to Question 2 for this case.

Theorem 1.4 Let X � Sg1
� � � � �Sgr

be a connected smooth complex hypersurface in a product of
closed Riemann surfaces of genus gi � 2. Then there are finite unramified covers X0!X and Si

!Sgi
,

and a holomorphic embedding � WX0 ,! S1
� � � � �Sr

such that one of the following holds:

(1) �� is surjective on fundamental groups.

(2) X0 is a direct product of r � 1 Riemann surfaces.

(3) There is 3 � s � r , an elliptic curve E and surjective holomorphic maps hi W Si
! E for

1 � i � s such that X0 D H � SgsC1
� � � � � Sgr

for H the smooth generic fibre of h DPs
iD1 hi W S1

� � � � �Ss
!E.

Moreover , if (3) holds , then h induces a short exact sequence

1! �1.H /! �1.S1
/� � � � ��1.Ss

/! �1.E/! 1:

Finally, the techniques used to prove Theorem 3.1 can be adapted to give a complete classification of
Kähler subgroups of direct products of surface groups arising as kernels of homomorphisms to Z3, hence
also answering Question 1 for this case. We refer to Section 6 for the precise statement and results.

Structure

In Section 2 we will give some additional background and motivation for this work. In Section 3 we will
prove Theorem 3.1, which is the main technical result of this work. We apply this result in Section 4 to
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prove Theorem 1.1 and Corollary 1.3 and in Section 5 to prove Theorem 1.4. In Section 6 we explain
how the techniques used in the proof of Theorem 3.1 can be applied to kernels of homomorphisms from
direct products of surface groups to Z3.
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2 Background

When approaching Delzant and Gromov’s questions, it is helpful to use our understanding of the nature of
subgroups of direct products of surface groups from geometric group theory. The work of Bridson, Howie,
Miller and Short [Bridson et al. 2009; 2013] and other authors (eg [Kochloukova 2010; Kuckuck 2014])
shows that finiteness properties play a key role in this context. We say that a group has finiteness type Fk

if it has a classifying CW–complex with finitely many cells of dimension � k. Note that type F1 is
equivalent to being finitely generated, while type F2 is equivalent to being finitely presented. A subgroup
of type Fr of a direct product of r surface groups is virtually a direct product of finitely many free groups
and surface groups [Bridson et al. 2009; 2013]. Thus, all “nontrivial” subgroups of such a product must
have exotic finiteness properties. Moreover, for groups which are not of type Fr , stronger finiteness
properties mean stronger constraints on the type of group. For more details we refer to [Bridson et al.
2009; 2013; Kochloukova 2010; Kuckuck 2014].

As explained in the introduction, finding a complete answer to Delzant and Gromov’s question is far
from trivial. However, there are interesting subclasses of direct products of surface groups in which
finding an answer seems more feasible. Indeed, a first class are the subgroups G of type F1: since any
such G is virtually a direct product of surface groups and free groups, one deduces readily that G being
Kähler is equivalent to G being virtually a product Z2k ��1.Sg1

/� � � � ��1.Sgs
/ for k � 0, s � 0 and

g1; : : : ;gs � 2.

In terms of finiteness properties, the first nontrivial class of subgroups of a direct product of r surface
groups is given by the ones which are of type Fr�1 but not Fr . The examples constructed in [Dimca
et al. 2009] show the existence of Kähler groups of this type for every r � 3. They are obtained as
fundamental groups of complex hypersurfaces in direct products of Riemann surfaces. Their construction
was subsequently generalized in [Biswas et al. 2014; Llosa Isenrich 2019]. All known examples of this
type can be obtained from the following result:
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Theorem 2.1 [Dimca et al. 2009; Llosa Isenrich 2019] Let r � 3, let E be an elliptic curve and let
fi W Sgi

!E be branched covers for 1� i � r . Define the map f WD
Pr

iD1 W Sg1
� � � � �Sgr

!E using
the additive structure in E. Assume that the induced map f� on fundamental groups is surjective and let
H be the smooth generic fibre of f. Then f induces a short exact sequence

1! �1.H /! �g1
� � � � ��gr

! �1.E/! 1:

The group �1.H / is Kähler of type Fr�1 but not of type Fr . Moreover , �1.H / � �g1
� � � � ��gr

is an
irreducible full subgroup.

When passing to subgroups with more general finiteness properties, the situation turns out to be more
subtle. Indeed, the class of Kähler subgroups of direct products of surface groups that one can then
obtain is much larger: they can attain any possible finiteness properties and can arise from subvarieties
of all codimensions [Llosa Isenrich 2020]. Moreover, there is no apparent correlation between the
codimension of a smooth subvariety realizing a subgroup and its finiteness properties (see [Llosa Isenrich
2020, Theorems 1.2 and 4.1] for precise statements of these results).

On the other hand, it is not hard to see that Kähler subgroups of a direct product of surface groups have
to satisfy many restrictions. It is well known that a Kähler subgroup of a direct product of surface groups
must be isomorphic to a subdirect product of a free abelian group of even rank and finitely many surface
groups. Even among subgroups of this form, strong constraints hold [Llosa Isenrich 2020, Sections 6–9].
For instance, every Kähler full subdirect product of r surface groups which is of type Fk with k > 1

2
r

must virtually be isomorphic to the kernel of an epimorphism �g1
� � � � ��gr

! Z2m for some m � 0

and g1; : : : ;gr � 2; a similar result holds for finitely presented images of homomorphisms from Kähler
groups to direct products of surface groups which are induced by holomorphic maps.

Given the explicit nature of Theorem 2.1, one may now wonder if these constraints can be strengthened
to show that all Kähler subgroups of direct products of r surface groups are of the form of this theorem if
they are of type Fr�1 but not Fr . Theorem 1.1, Corollary 1.3 and Theorem 6.4 show that this is indeed
the case after imposing additional assumptions and that the same remains true even when we consider
images of homomorphisms to direct products of surface groups. The common key to these results is
that our assumptions will allow us to reduce to situations in which all interesting Kähler subgroups are
fundamental groups of smooth complex hypersurfaces.

We now turn to explaining in more detail why the condition that ker.pi ı �/ is finitely generated in
Theorem 1.1 arises naturally. For this recall the following classical result about Kähler groups:

Theorem 2.2 Let G D �1.X /, for X a compact Kähler manifold. Fix h� 2. The following properties
are equivalent :

(1) There exists a surjective homomorphism � WG � �h.

(2) There exists g � h and a holomorphic map f WX ! Sg with connected fibres.
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(3) There exists g � h and a holomorphic map Of WX ! Sg;n with connected and nonmultiple fibres
such that the kernel of the induced homomorphism Of� WG!�orb

1
.Sg;n/ is finitely generated , where

Sg;n is a closed hyperbolic Riemann orbisurface with cone points of orders nD .n1; : : : ; nk/.

Moreover , if (1) is satisfied , then we can choose a map f satisfying (2) such that � factors through
f� W �1.X /! �g. Similarly, if (2) is satisfied , then we can choose a map Of satisfying (3) such that f
factors through Of.

The equivalence of (1) and (2) is due to Siu [1987] and Beauville [1988], while the orbifold version was
proved by Catanese [2003] (although it seems to have been known earlier; see [Kotschick 2012] for further
details). Conversely, every homomorphism from a Kähler group onto a closed hyperbolic orbisurface
group with finitely generated kernel is induced by a holomorphic map (see [Catanese 2008; Delzant
2016, Theorem 2]). For further background and definitions on maps from compact Kähler manifolds to
hyperbolic orbisurfaces, we refer the reader to [Delzant 2016, Section 2].

Note that every hyperbolic orbisurface group has a finite-index subgroup which is a surface group.
Considering that all of the main results in this paper require us to pass to finite-index subgroups, we will
thus restrict ourselves to considering surface groups for the remainder of this work.

We conclude this section by fixing some notation and definitions which we will require later. For a direct
product G1 � � � � �Gr of groups and 1 � i1 < � � � < ik � r , we denote by pi1;:::;ik

W G1 � � � � �Gr !

Gi1
� � � � �Gik

the projection homomorphism. We say that a subgroup K �G1 � � � � �Gr surjects onto
k–tuples if pi1;:::;ik

.K/DGi1
�� � ��Gik

, virtually surjects onto k–tuples if pi1;:::;ik
.K/�Gi1

�� � ��Gik

is a finite-index subgroup, and virtually surjects onto pairs (VSP) if K virtually surjects onto 2–tuples for
all 1� i1 < � � �< ik � r .

We call a subgroup K�G1�� � ��Gr coabelian if it is the kernel of an epimorphism WG1�� � ��Gr!Zk

for some k � 0, and coabelian of even rank if k is even.

Moreover, for a product of surfaces Sg1
� � � � � Sgr

and 1 � i1 < � � � < ik � r , we will denote by
qi1;:::;ik

W Sg1
� � � � �Sgr

! Sgi1
� � � � �Sgik

the projection. We say that a subset X � Sg1
� � � � �Sgr

geometrically surjects onto k–tuples if qi1;:::;ik
.X /D Sgi1

� � � � �Sgik
for all 1� i1 < � � �< ik � r . We

say that X is geometrically subdirect if it geometrically surjects onto 1–tuples.

3 From homomorphisms to complex hypersurfaces

In this section we will prove the main result of this work. The results described in the introduction will
be consequences of this result and the techniques developed in its proof.

Theorem 3.1 Let r � 3, let X be a compact Kähler manifold and let G D �1.X /. Let � W G !

�g1
� � � � ��gr

be a homomorphism with full subdirect image which can be realized by a holomorphic
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map f WX ! Sg1
� � � � �Sgr

. Assume that

� �.G/ is coabelian and a proper subgroup of �g1
� � � � ��gr

; and

� for 1� i1 < � � �< ir�1 � r , the composition qi1;:::;ir�1
ıf WX ! Sgi1

� � � � �Sgir�1
is surjective.

Then there is an elliptic curve B and branched covers hi W Sgi
!B such that �.G/D �1.H /, where H is

the connected smooth generic fibre of the holomorphic map hD
Pr

iD1 hi W Sg1
� � � � �Sgr

! B.

Moreover , f .X / is a (possibly singular) fibre of h.

The proof of Theorem 3.1 uses the following simple and well-known result:

Lemma 3.2 Let X and Y be complex tori and let f WX!Y be a surjective holomorphic homomorphism.
Then f�.�1.X //� �1.Y / is a finite-index subgroup.

Proof of Theorem 3.1 Let A.X / be the Albanese torus of X, let Ai DA.Sgi
/ be the Albanese torus

of Sgi
for 1 � i � r , and denote by aX W X ! A.X / and ai W Sgi

! Ai the respective Albanese maps.
By the universal property of the Albanese map, we obtain a commutative diagram

(3-1)

X
f
//

aX

��

Sg1
� � � � �Sgr

.a1;:::;ar /

��

h

%%
A.X /

Nf
// A1 � � � � �Ar

// B

where B is the complex torus .A1 � � � � �Ar /= Nf .A.X // (this quotient is well defined, since the induced
map on complex tori is a holomorphic homomorphism with image a complex subtorus). Denote by
b WA1 � � � � �Ar ! B the quotient map. It is the sum b D

Pr
iD1 bi of the restrictions bi WAi! B.

Surjectivity of the map q1;:::;r�1 ı f W X ! Sg1
� � � � � Sgr�1

implies that, for every .s1; : : : ; sr�1/ 2

Sg1
� � � � �Sgr�1

, there are x 2X and sx;r 2 Sgr
with f .x/D .s1; : : : ; sr�1; sx;r /. By commutativity

of (3-1), we obtain that

.t1; : : : ; tr�1; tx;r / WD .a1.s1/; : : : ; ar�1.sr�1/; ar .sx;r //D Nf .aX .x//:

Denote by †i WD bi.ai.Sgi
// the image of Sgi

in B. Since Nf .A.X // D ker.b/, we obtain that
b.t1; : : : ; tr�1; tx;r /D 0 2 B and hence

Pr�1
iD1 bi.ti/D�br .tx;r / 2 �†r . Irreducibility of Sgi

implies
that †i is an irreducible subvariety of dimension at most one in B. Thus, the holomorphic map

r�1X
iD1

bi W a1.Sg1
/� � � � � ar�1.Sgr�1

/!�†r ; .t1; : : : ; tr�1/ 7!

r�1X
iD1

bi.ti/;

is either trivial or surjective. It follows that the image bi.ai.Sgi
// is either a point or a translate of �†r

for 1 � i � r � 1. If, moreover, at least one of the images bi.ai.Sgi
// is nontrivial, then �†r � B is

Algebraic & Geometric Topology, Volume 24 (2024)
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nontrivial and therefore an irreducible subvariety of dimension one. A repeated application of the same
argument to all j 2 f1; : : : ; rg shows that, if at least one of the images †i of Sgi

in B is one-dimensional,
then all of the †i are one-dimensional and translates of each other.

It follows that either

(1) †i is a point for all i 2 f1; : : : ; rg, or

(2) †i is a one-dimensional irreducible projective variety and †i is a translate of †j for all i; j 2

f1; : : : ; rg.

Consider the case when the image of all of the Sgi
is one-dimensional in B. Then the restriction of the

holomorphic map
r�1X
iD1

bi ı ai W Sg1
� � � � �Sgr�1

!�†r

to f.s1; : : : ; sj�1/g�Sgj �f.sjC1; : : : ; sr�1/g is a surjective holomorphic map for every j 2f1; : : : ; r�1g,
.s1; : : : ; sj�1/ 2 Sg1

� � � � � Sgj�1
and .sjC1; : : : ; sr / 2 SgjC1

� � � � � Sgr�1
. By symmetry, the same

holds for
Pr

iD1;i¤j bi ı ai for 1� j � r .

By assumption, r � 3. It follows that, for any choice of points s1;0 2 Sg1
and sr;0 2 Sgr

, we have

�†r C br .ar .sr;0//D h.Sg1
� � � � �Sgr�1

� fsr;0g/

D h.fs1;0g �Sg2
� � � � �Sgr�1

� fsr;0g/

D h.fs1;0g �Sg2
� � � � �Sgr

/D b1.a1.s1;0//�†1:

Hence, �†r C br .ar .sr;0// D b1.a1.s1;0// � †1 is independent of s1;0 and sr;0 and therefore the
image h.Sg1

� � � � �Sgr
/D br .ar .sr;0//�†r is one-dimensional and a translate of �†r . Furthermore,

the restriction hjf.s1;:::;sj�1/g�Sgj
�f.sjC1;:::;sr /g maps onto br .ar .sr;0// �†r for every j 2 f1; : : : ; rg,

.s1; : : : ; sj�1/ 2 Sg1
� � � � �Sgj�1

and .sjC1; : : : ; sr / 2 SgjC1
� � � � �Sgr

.

Choose s1;0 2 Sg1
such that there is an open neighbourhood U � Sg1

of s1;0 in which the restriction
b1 ı a1 W U ! b1.a1.U //�†1 is biholomorphic. In particular, b1.a1.U // is a smooth one-dimensional
complex manifold.

Surjectivity of the restriction ˇjf.s1;0/g�Sg2
�f.s3;:::;sr /g for every .s3; : : : ; sr / 2 Sg3

� � � � �Sgr
implies

that, for every z 2 ar .br .sr;0//�†r , there is a point s2;z 2 Sg2
such that h.s1; s2;z; s3; : : : ; sr;0/ D z.

Then the map

U ! ar .br .sr;0//�†r ; u 7! b1.a1.u//C b2.a2.s2;z//C

rX
iD3

bi.ai.si//

is a biholomorphic map from U onto a neighbourhood of z 2†r . Hence, z is a smooth point of †r and
it follows that †r is a smooth connected projective variety of dimension one.
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The Sgi
are finite-sheeted branched coverings of the closed Riemann surface ar .br .sr;0//�†r and thus

the image of �1.Sgi
/ in �1

�
ar .br .sr;0//�†r

�
is a finite-index subgroup for 1� i � r . Since r � 2, there

is a Z2 subgroup in �1

�
ar .br .sr;0//�†r

�
and the only closed Riemann surface with a Z2 subgroup in

its fundamental group is an elliptic curve. Thus, ar .br .sr;0//�†r is an elliptic curve.

Surjectivity of the maps ai� W �1.Sgi
/! �1.Ai/ on fundamental groups and the fact that the fibres of the

quotient map A1� � � ��Ar !B are connected imply that the map h is surjective on fundamental groups.
Hence, ar .br .sr;0//�†r D B, h is surjective holomorphic, and the restrictions hjSgj

for 1� j � r are
branched covers. Theorem 2.1 implies that h induces a short exact sequence

1! �1.H /! �1.Sg1
/� � � � ��1.Sgr

/
h�
�! �1.B/D Z2

! 1

on fundamental groups, where H is the connected smooth generic fibre of h.

Since �.G/� �g1
� � � � ��gr

is coabelian, we obtain a commutative diagram

(3-2)

1 // �.G/ //

��

�g1
� � � � ��gr

//

��

Zl //

��

1

.�.G//ab // .�g1
� � � � ��gr

/ab // Zl // 1

where the lower sequence is exact by right-exactness of abelianization.

We now use the same line of argument as in the proof of [Llosa Isenrich 2020, Lemma 6.1] to show that
l D rkZ.�1.B//. Since it is short, we include it here for the readers convenience:

By definition of the Albanese map, the commutative diagram (3-1) induces a commutative diagram

(3-3)

�1.X /
f�

//

��

�g1
�� � ���gr

��

Zl// // 1

�1.A.X //D .�1.X //ab �1.A1/�� � ���1.Ar /D .�g1
�� � ���gr

/ab//
Nf�Df�;ab

�1.B/
++

h�

//

The map � W�1.X /!�g1
�� � ���gr

factors through �.G/; thus, the map .�1.X //ab! .�g1
�� � ���gr

/ab

factors through .�.G//ab. It follows that

im
�
.�1.X //ab! .�g1

� � � � ��gr
/ab
�
D im

�
.�.G//ab! .�g1

� � � � ��gr
/ab
�
;

and exactness of the bottom horizontal sequence in (3-2) implies that

.�g1
� � � � ��gr

/ab=im
�
.�1.X //ab! .�g1

� � � � ��gr
/ab
�
Š Zl :

The commutative diagram (3-3) can be extended to a commutative diagram

�1.X /
f�

//

��

�g1
� � � � ��gr

��

// Zl //

����

1

�1.A.X //D .�1.X //ab �1.A1/� � � � ��1.Ar /D .�g1
� � � � ��gr

/ab

33

//
Nf�Df�;ab

�1.B///
++
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Hence, the fundamental group �1.B/ is a quotient of Zl . By Lemma 3.2, we have rkZ
Nf�
�
�1.A.X //

�
D

rkZ�1

�
Nf .A.X //

�
. Thus, we obtain

rkZ.�1.B//D 2 � dimCB D 2 � dimC.A1 � � � � �Ar /� 2 � dimC
Nf .A.X //

D rkZ.�g1
� � � � ��gr

/ab� rkZ
Nf�
�
�1.A.X //

�
D l:

It follows that the epimorphism Zl ! �1.B/ is an isomorphism and therefore we obtain an isomorphism
of short exact sequences

1 // �.G/ //

Š

��

�g1
� � � � ��gr

//

Š

��

Zl //

Š

��

1

1 // �1.H / // �g1
� � � � ��gr

h�
// �1.B/ // 1

If †i is a point, then the same argument shows that B is a point and the isomorphism of short exact
sequences implies that �.G/Š �1.H /Š �g1

� � � � ��gr
is not a proper subgroup.

Finally, observe that, since hıf WX !B factors through the Albanese torus A.X / of X, the image of X

in B is trivial. Hence, f .X / is contained in a fibre of h. Since f .X / is the image of a smooth complex
manifold under a proper holomorphic map, it is an irreducible subvariety of a fibre of h. The map h has
isolated singularities, since the restriction of h to every surface factor is a branched covering of B, and its
fibres (singular or nonsingular) are connected.

If f .X / is contained in a smooth generic fibre of h, then it is equal to this fibre, since smooth projective
varieties are irreducible. So assume that f .X / is contained in one of the finitely many singular fibres Hs

of h and let z 2Hs be a singular point. By Milnor’s theory [1968] of isolated hypersurface singularities,
a neighbourhood of z in Hs is homeomorphic to a cone over a smooth manifold K (called the link of the
singularity). Furthermore, K is .n�2/–connected for n the complex dimension of Hs . In particular, K is
connected if n� 2. Since the complex dimension of Hs is r �1� 2, it follows that K is connected. Thus,
the complement of the cone point in the cone over K is connected. Connectedness of Hs then implies
that the complement of the finite set of singular values in Hs is a connected smooth complex manifold. It
follows that Hs is an irreducible variety and thus Hs D f .X /.

4 The three factor case

By combining Theorem 3.1 with the following results, we can complete the classification of Kähler
subgroups of direct products of three surface groups up to passing to finite-index subgroups.

Proposition 4.1 [Llosa Isenrich 2020, Proposition 9.5] Let r � 2, let X be a compact Kähler manifold
and let GD �1.X /. Let � WG!�g1

�� � ���gr
be a homomorphism with finitely presented full subdirect

image such that the projections pi ı� WG! �gi
, 1� i � r , have finitely generated kernel.

Then � is induced by a holomorphic map f W X ! Sg1
� � � � �Sgr

and the composition qi;j ı f W X !

Sgi
�Sgj is surjective for 1� i < j � r .
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Theorem 4.2 [Llosa Isenrich 2020, Theorem 6.13] Let X be a compact Kähler manifold and let
G D �1.X /. Let  WG! �g1

��g2
��g3

be a homomorphism such that the projection pi ı has finitely
generated kernel for 1� i � r and the image G WD  .G/ is finitely presented. Then one of the following
holds:

(1) G D �1.R/ for R a closed Riemann surface of genus � 0.

(2) G D Zk for k 2 f1; 2; 3g.

(3) G is virtually a direct product Zk ��h1
��h2

for h1; h2 � 2 and k 2 f0; 1g.

(4) G is virtually Zk ��h for h� 2 and k 2 f1; 2g.

(5) G is virtually subdirect and coabelian of even rank.

As a consequence one can obtain a constraint on Kähler subgroups of direct products of surface groups
by imposing the evenness condition on the first Betti number for (1)–(5) in Theorem 4.2. Note that, while
groups of the form �1.R/, �h1

��h2
and Z2��h are Kähler, the same turns out to not be true in general for

coabelian subgroups of �h1
��h2

��h3
of even rank. In fact, many such subgroups are not even the image

of a homomorphism from a Kähler group which is induced by a holomorphic map. As an application
of Theorem 3.1, we can make this statement precise and thus prove Theorem 1.1 and Corollary 1.3.

Theorem 4.3 Let G D �1.X / be Kähler and let  WG! �g1
��g2

��g3
be a homomorphism such that

the projections pi ı W G ! �gi
have finitely generated kernel for 1 � i � 3 and the image is finitely

presented. Then there is a finite-index subgroup G0 �G D  .G/ such that either

(1) G0 Š Zk ��h1
� � � � ��hs

with 0� kC s � 3; or

(2) there are finite-index subgroups �i
� �gi

, an elliptic curve E and branched holomorphic coverings
fi W Si

!E for 1� i � 3 such that G0 Š �1.H /Š ker.f�/, where H is the smooth generic fibre
of the surjective holomorphic map f D

P3
iD1 fi .

Conversely, any group satisfying one of the conditions (1) and (2) is the image of a homomorphism
satisfying the above hypotheses.

Proof By Theorem 4.2, it suffices to consider the case when G is virtually coabelian of even rank. Then
there are finite-index subgroups �i

� �gi
for l � 0 and an epimorphism � W �1

��2
��3

! Z2l such
that G0 WD ker� � G is a finite-index subgroup and G0 � �1

� �2
� �3

is a finitely presented full
subdirect product. We may further assume that G0 � �1

��2
��3

is a proper subgroup (if not, then (1)
holds with k D 0 and s D 3).

Let X0!X be the finite-sheeted holomorphic cover corresponding to the subgroup  �1.G0/�G. Then
X0 is a compact Kähler manifold with  .�1.X0//DG0 D ker� and the projections

pi ı j�1.X0/ W �1.X0/! �i

have finitely generated kernel. Proposition 4.1 implies that  j�1.X0/ is induced by a holomorphic map
f WX0!S1

�S2
�S3

with the property that qi;j ıf WX0!Si
�Sj is a surjective holomorphic map
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for 1� i < j � 3. Hence, all assumptions of Theorem 3.1 are satisfied. It follows that G0 satisfies (2). The
converse direction follows easily by taking quotients of Kähler groups of the form Z2s ��h1

� � � � ��hs

and from Theorem 2.1.

Proof of Theorem 1.1 If in Theorem 4.3 the group G is a full subdirect product, then (1) can only hold
if G0 � �g1

��g2
��g3

has finite index. Hence, we must be in case (2).

To reduce Corollary 1.3 to Theorem 4.3, we will apply the following result of Bridson and Miller:

Theorem 4.4 [Bridson and Miller 2009, Theorem 4.6] Let �g�2 be a surface group , let A be any group
and let G � �g �A. Assume that G is finitely presented and that the intersection G \�g is nontrivial.
Then G \A is finitely generated.

Proof of Corollary 1.3 Let GD�1.X /��g1
��g2

��g3
be a nontrivial Kähler group; in particular, G is

finitely presented. Let  W �1.X / ,! �g1
��g2

��g3
be the canonical inclusion. To apply Theorem 4.3,

we need to show that ker.pi ı / is finitely generated for 1� i � 3.

Assume first that G \ �gi
is nontrivial for 1 � i � 3. Then Theorem 4.4 implies that ker.p1 ı / D

G\.�g2
��g3

/ is finitely generated and that, similarly, ker.p2ı / and ker.p3ı / are finitely generated.
If some of the intersections G \ �gi

are trivial, then, by reordering factors and projecting away from
factors with trivial intersection, we may assume that G is a full subgroup of �g1

�� � ���gs
with 1� s � 2.

In particular, we may assume that the embedding of G in �g1
��g2

��g3
has trivial projection to the last

3� s factors. For s D 1, it is now trivially true that ker.pi ı / is finitely generated for 1� i � 3, and for
s D 2 the same follows from another application of Theorem 4.4.

Thus, we can apply Theorem 4.3 in all cases. The first part of the result is then a direct consequence of
the fact that Kähler groups have even first Betti number.

Conversely, groups satisfying condition (1) and having even first Betti number are clearly Kähler and
�1.H / in (2) is Kähler as the fundamental group of H.

Remark 4.5 Corollary 1.3 provides a classification of Kähler subgroups of direct products of three
surface groups up to passing to finite-index subgroups. This statement can be made more precise in the
cases corresponding to (1): when k D 0, finite extensions of these groups are Kähler if they are subdirect
products of surface groups; and when k D 2, the group G is either a finite-index subgroup of a direct
product Z2 ��h0 with h� h0 � 2 or Š Z2.

The following example shows that it may be necessary to pass to finite-index subgroups:

Example 4.6 Let �g1
��g2

be a direct product of surface groups. For m � 2, consider the canonical
epimorphisms �i WH1.�gi

;Z/!Z=mZ obtained by mapping a basis of H1.�gi
;Z/ to 12Z=mZ. Denote

by y�i W�g1
!Z=mZ the composition of �i with the abelianization map and define y� WD�1C�2 W�g1

��g2
!

Z=mZ. The finite-index subgroup ker y���g1
��g2

is Kähler and virtually a direct product ker �1�ker �2

of surface groups, but is not itself a direct product of surface groups.
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5 Complex hypersurfaces

In this section we prove Theorem 1.4. We consider an embedded connected smooth complex hypersurface
� W X ,! Sg1

� � � � �Sgr
in a direct product of closed Riemann surfaces of genus gi � 2. Observe that

we may assume that all projections qi ı � W X ! Sgi
are nonconstant. Indeed, if one of the projections

qi ı � WX ! Sgi
in Lemma 5.2 is constant, say qr ı �, then X D Sg1

� � � � �Sgr�1
is a direct product of

r � 1 surfaces. Hence, we do not lose much by excluding this case.

Lemma 5.1 Let r � 2 and let �X W X ,! Sg1
� � � � �Sgr

be a geometrically subdirect embedding of a
connected smooth complex hypersurface in a direct product of closed Riemann surfaces. Then there is
2 � s � r such that X D Y � SgsC1

� � � � � Sgr
with �Y W Y ,! Sg1

� � � � � Sgs
an embedded smooth

complex hypersurface which geometrically surjects onto .s�1/–tuples.

Proof The result follows by induction on the number of factors r � 2. For r D 2, the result holds due
to the assumption that the embedding is geometrically subdirect. If X does not geometrically surject
onto .r�1/–tuples, then there is an .r�1/–tuple 1� i1 < � � �< ir�1 � r such that the irreducible variety
X D qi1;:::;ir�1

.X / is .r�2/–dimensional; we may assume ij D j. Hence, the smooth generic fibre of
q1;:::;r�1 WX!Sg1

�� � ��Sgr�1
is one-dimensional and therefore equal to Sgr

. Let X ��X be the locus
of nonsingular values. Then X � �Sgr

�X is an open dense submanifold. It follows that X DX �Sgr

with X ,! Sg1
� � � � �Sgr�1

a connected smooth embedded hypersurface. Clearly X is geometrically
subdirect. The result follows by induction.

Lemma 5.2 Let r � 1 and let � W X ,! Sg1
� � � � �Sgr

be a connected smooth complex hypersurface
such that the projections qi ı � WX ! Sgi

are nontrivial. Then there are finite regular covers Shi
! Sgi

for 1� i � r such that � lifts to an embedding j WX ,! Sh1
� � � � �Shr

with i�.�1.X //Š j�.�1.X //�

�h1
� � � � ��hr

a subdirect product.

Proof The projections qi ı � WX !Sgi
are proper holomorphic maps between compact Kähler manifolds.

Thus, �hi
WD .qi ı �/�.�1.X //� �1.Sgi

/ is a finite-index subgroup for 1� i � r . Let fi W Shi
! Sgi

be
the associated unramified coverings. Then � factors through a continuous map j WX ! Sh1

� � � � �Shr

making the diagram
Sh1
� � � � �Shr

��

X

j

99

�
// Sg1
� � � � �Sgr

commutative. Since � and the fi are holomorphic, the map j defines a holomorphic embedding and, by
choice of the fi , the group j�.�1.X //� �h1

� � � � ��hr
is subdirect.

We may in fact assume that the image ��.�1.X //� �h1
� � � � ��hr

is full subdirect.
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Lemma 5.3 Let r � 2 and let � W X ,! Sg1
� � � � � Sgr

be an embedded connected smooth complex
hypersurface such that ƒ WD ��.�1.X // � �g1

� � � � � �gr
is a subdirect product. If ƒ is not full in

�g1
� � � � � �gr

, then (after possibly reordering factors) X is biholomorphic to R � Sg3
� � � � � Sgr

with j W R ,! Sg1
� Sg2

an embedded Riemann surface such that j�.�1.R // Š �g2
, the projection

R ! Sgi
for i D 1; 2 is a branched covering , and �g1

\ j�.�1.R //D f1g.

Proof After applying Lemma 5.1 and splitting off direct surface factors from X, we may assume that
X geometrically surjects onto .r�1/–tuples for r � 2. If ƒ is not full, then there is a factor �gi

with
�gi
\ƒD f1g, say i D 1. Hence, the projection q2;:::;r W Sg1

� � � � �Sgr
! Sg2

� � � � �Sgr
induces an

isomorphism ƒŠ q2;:::;r;�.ƒ/DW xƒ� �g2
�� � ���gr

. Since X geometrically surjects onto .r�1/–tuples,
the map q2;:::;r WX !Sg2

�� � ��Sgr
is a surjective holomorphic map between closed complex manifolds.

It follows that xƒ� �g2
� � � � ��gr

is a finite-index subgroup and thus a full subdirect product.

The epimorphism p1 W ƒ! �g1
induces an epimorphism Np1 W

xƒ! �g1
. By the universal property of

full subdirect products of limit groups (see [Bridson et al. 2013, Theorem C(3)]), Np1 is induced by a
homomorphism �g2

� � � � ��gr
! �g1

and thus factors through the projection �g2
� � � � ��gr

! �gi
for

some 2 � i � r (else the image �g1
would contain an element with noncyclic centralizer), say i D 2.

It follows that the projection ƒ! �g1
��g2

factors through the projection to �g2
and thus has image

isomorphic to �g2
. However, this contradicts geometric surjection to .r�1/–tuples unless r D 2 (since,

as above, q1;:::;r�1;�.ƒ/� �g1
� � � � ��gr�1

is a finite-index subgroup).

This leaves us with the situation when X D R is a closed Riemann surface of genus  � 2 with the
property that ƒD ��.�1.X //Š �g2

. Since ��.�1.X // is subdirect, the projections onto factors induce
finite-sheeted branched coverings R ! Sgi

for i D 1; 2.

Proof of Theorem 1.4 If X is not geometrically subdirect, then (2) holds. Hence, we can assume that
X is geometrically subdirect. By Lemma 5.1, reduce to the case that X D Y �SgsC1

� � � � �Sgr
with

j W Y ,! Sg1
� � � � �Sgs

an embedded smooth complex hypersurface that geometrically surjects onto
.s�1/–tuples. If s D 1, then Y is a point and we are in case (2). If s D 2 then Y is a smooth Riemann
surface and we are again in case (2). Hence, we may assume that s � 3. By Lemmas 5.2 and 5.3, we may
further assume that ƒ WD j�.�1.Y //� �1.Sg1

/� � � � ��1.Sgs
/ is a full subdirect product.

Since Y geometrically surjects onto .s�1/–tuples, the projections

q1;:::;i�1;iC1;:::;s ı j W Y ! Sg1
� � � � �Sgi�1

�SgiC1
� � � � �Sgs

are surjective holomorphic maps between closed complex manifolds of the same dimension. Hence,
.q1;:::;i�1;iC1;:::;s;� ı j /.�1.Y // � �g1

� � � � � �gi�1
� �giC1

� � � � � �gs
is a finite-index subgroup for

1� i � s. Hence, Corollary 3.6 of [Kuckuck 2014] implies that there are finite-index subgroups �i
� �gi

and an epimorphism � W �1
� � � � � �s

! Zk such that ƒ0 WD ker� D ƒ\ .�1
� � � � � �s

/ � ƒ is
a finite-index subgroup and the restriction of � to every factor is surjective. Note that, in particular,
ƒ0 � �1

� � � � ��s
is a full subdirect product.
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Denote by Y0! Y the finite-sheeted covering associated to the finite-index subgroup j�1
� .ƒ0/� �1.Y /.

Then there is a holomorphic embedding � W Y0 ,! S1
� � � � �Ss

making the diagram

Y0
�
//

��

S1
� � � � �Ss

��

Y
j
// Sg1
� � � � �Sgs

commutative. By construction, we have ��.�1.Y0// D ƒ0 and that Y0 geometrically surjects onto
.s�1/–tuples

If ƒ0 � �1
� � � � ��s

is a finite-index subgroup, then we are in case (1). Hence, we may assume that
ƒ0 has infinite index. In particular, k � 1 and all conditions of Theorem 3.1 are satisfied. Hence, there is
an elliptic curve E and branched covers hi W Si

!E such that Y0 is equal to a fibre of the holomorphic
map hD

Ps
iD1 hi W S1

� � � � �Ss
!E.

The map h has isolated singularities and all fibres are irreducible varieties by the proof of Theorem 3.1.
In particular, the map h is a submersion in all but finitely many points. It follows that h has reduced fibres
and thus the fibres of h over singular values are singular varieties and, in particular, cannot be smooth
manifolds (see eg [Milnor 1968, page 13]). Since Y0 is a smooth subvariety of S1

� � � � �Ss
, it follows

that Y0 is a smooth generic fibre of h.

Remark 5.4 We want to mention that case (2) in Theorem 1.4 splits into three cases (after reordering
factors):

(i) X0 has trivial image in one factor, say Sr
, and thus X0 D S1

� � � � �Sr�1
.

(ii) ��.�1.X0// � �g1
� � � � ��gr

is not full. In this case, the proof of Lemma 5.3 shows that X0 D

Rh�S3
� � � � �Sr

with Rh ,! S1
�S2

an embedded curve and ��.�1.X0//Š �2
� � � � ��r

.

(iii) s D 2, X0 DRh �S3
� � � � �Sr

with Rh ,! S1
�S2

an embedded curve and ��.�1.X0//D

�1
� � � � ��r

This happens for instance when Rh is a generic hyperplane section of Sg1
�Sg2

.
Note that in this case �� is not injective and furthermore this is precisely the case when (1) and (2)
both hold in Theorem 1.4.

Remark 5.5 In case (1) of Theorem 1.4, the epimorphism � W �1.X0/! �1
� � � ���r

is not necessarily
injective. For instance, X0 can be as in Remark 5.4(iii). However, it can be an isomorphism: Take X to
be a smooth generic hyperplane section of Sg1

� � � � �Sgr
. If r � 3 the Lefschetz hyperplane theorem

implies that X ,! Sg1
� � � � �Sgr

induces an isomorphism on fundamental groups.

Remark 5.6 In the light of Theorem 1.4, it is natural to ask if one can also classify smooth subvarieties X

of codimension k � 2 in a direct product of Riemann surfaces Sg1
�� � ��Sgr

in terms of their fundamental
groups. The examples constructed in [Llosa Isenrich 2020] show that the class of fundamental groups of
such subvarieties will be much larger. Furthermore, the Lefschetz hyperplane theorem will allow us to
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realize any fundamental group of a smooth subvariety of codimension l < k as the fundamental group of
a smooth subvariety of codimension k whenever k � r � 2. These two observations show that any such
classification will have to allow a much wider variety of fundamental groups. One observation that seems
worth mentioning is that, for k < 1

2
r , the image of �1.X / in �g1

� � � � ��gr
has to be isomorphic to a

virtually coabelian subgroup of even rank in a direct product of � r surface groups (we might need to get
rid of some factors and replace others by finite-index subgroups).

To see this, we first split off direct factors, using the same methods as above, to obtain a codimension
k subvariety X0 in a product of s � r surfaces which geometrically surjects onto .s�k/–tuples. Then
we combine results of Kuckuck [2014] with the fact that the inclusion X0 ,! Sg1

� � � � �Sgs
is holo-

morphic and thus the images qi1;:::;is�k ;�.�1.X // � �gi1
� � � � � �gis�k

are finite-index subgroups for
1� i1< � � �< is�k � s (see [Llosa Isenrich 2020, Sections 5 and 6] for details, in particular Proposition 6.3).

6 Maps to Z3

Another situation in which we can give a complete answer to Delzant and Gromov’s question is the case
of coabelian subgroups of rank two. Our proof will make use of [Bridson et al. 2013].

Theorem 6.1 [Bridson et al. 2013, Theorem D] Let G � ƒ1 � � � � �ƒr be a finitely generated full
subdirect product of nonabelian limit groups ƒi for 1� i � r .

Then G is finitely presented if and only if G virtually surjects onto pairs.

Theorem 6.2 Let X be compact Kähler , let G D �1.X / and let � W G ! �g1
� � � � � �gr

be a ho-
momorphism with finitely presented full subdirect image which is induced by a holomorphic map
f W X ! Sg1

� � � � � Sgr
. Assume that there is an epimorphism  W �g1

� � � � � �gr
! Z2 such that

ker D �.G/.

Then (after possibly reordering factors) there is s � 3, an elliptic curve E and branched covering maps
fi WSgi

!E for 1� i � s such that �.G/D�1.H /��gsC1
�� � ���gr

, where H is the connected smooth
generic fibre of the holomorphic map f D

Ps
iD1 fi W Sg1

�� � ��Sgs
!E, f�D j�g1

������gs
, and  j�gi

trivial for i � sC 1.

Proof With the same notation as in the proof of Theorem 3.1, consider the commutative diagram

X
f
//

aX

��

Sg1
� � � � �Sgr

.a1;:::;ar /

��

h

%%
A.X /

Nf
// A1 � � � � �Ar

// B

Arguing as in the proof of Theorem 3.1 (see diagram (3-3) and subsequent discussion) we obtain that
rkZ�1.B/D 2 and that the map  is induced by the holomorphic map h W Sg1

� � � � �Sgr
! B. Since

the restriction hjSgi
W Sgi

! B is a holomorphic map, either it is surjective or h.Sgi
/ is a point.
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A surjective holomorphic map between closed Riemann surfaces is a branched covering. Hence, there is
1� s � r such that (after reordering factors):

� h W Sgi
! B is a branched holomorphic covering for 1� i � s.

� h.Sgi
/ is a point for sC 1� i � r .

It follows that
�.G/D ker h� D ker..hjSg1

�����Sgs
/�/��gsC1

� � � � ��gr

D ker D ker. j�g1
������gs

/��gsC1
� � � � ��gr

:

Since �gsC1
� � � � � �gr

is finitely generated and �.G/ is finitely presented, the full subdirect product
ker. j�g1

������gs
/Š �.G/=.�gsC1

� � � � ��gr
/� �g1

� � � � ��gs
is finitely presented.

If s D 1, then being a full subdirect product implies that ker. j�g1
������gs

/ D �g1
, and, if s D 2, then

Theorem 6.1 implies that the group ker. j�g1
��g2

/� �g1
��g2

is a finite-index subgroup. However,  is
an epimorphism onto the infinite group Z2. It follows that s � 3.

Hence, the restriction hjSg1
�����Sgs

satisfies all conditions of Theorem 2.1, so ker. j�g1
������gs

/D�1.H /

for H the smooth generic fibre of the restriction hjSg1
�����Sgs

. Thus, �.G/D�1.H /��gsC1
�� � ���gr

.

As a consequence of Theorem 6.2, we can now classify all Kähler subgroups arising as kernels of
homomorphisms from a direct product of surface groups to Z3. For this we will require the following
result:

Theorem 6.3 [Llosa Isenrich 2020, Corollary 1.6] Let k�0 and g1; : : : ;gr �2. If � W�g1
�� � ���gr

!

Z2kC1 is a surjective homomorphism , then ker� is not Kähler.

Theorem 6.4 Let r � 1, let � W�g1
�� � ���gr

!Z3 be a homomorphism , let GD ker� ��g1
�� � ���gr

and let pi.G/D �i
� �gi

be the projection of G to the i th factor. Then the following are equivalent :

(1) G is Kähler.

(2) Either G D �g1
� � � � ��gr

, or there is r � s � 3, an elliptic curve E and surjective holomorphic
maps fi W Si

! E for 1 � i � s such that G D �1.H / � �gsC1
� � � � � �gr

(after possibly
reordering factors), where H is the connected smooth generic fibre of the holomorphic map
f D

Ps
iD1 fi WS1

�� � ��Ss
!E, f�D�j�1

������s
W�1
�� � ���s

!�1.E/Š�.�1
�� � ���s

/

and �j�gi
is trivial for i � sC 1.

Theorem 6.4 shows in particular that the image of � is either trivial or isomorphic to Z2.

Proof By Theorem 2.1, (2) implies (1). Assume that G is Kähler. If � is trivial, then GD �g1
�� � ���gr

is Kähler, and, if im.�/�Z3 has odd rank, then, by Theorem 6.3, G is not Kähler. Thus, we may assume
that G is a finitely presented full subdirect product of �1

�� � ���r
which is the kernel of an epimorphism

� W �1
� � � � ��r

! Z2 D im.�/, where, by slight abuse of notation, � now denotes the restriction of �
to �1

� � � � ��r
.
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Since G is finitely presented, we apply Theorem 4.4 as in the proof of Corollary 1.3 to show that
the kernels of the projections of ker.�/ to factors are finitely generated. Let X be a compact Kähler
manifold with G D �1.X /. Then Proposition 4.1 implies that � is induced by a holomorphic map
f WX ! S1

� � � � �Ss
�SgsC1

� � � � �Sgr
. Hence, all conditions of Theorem 6.2 are satisfied and we

obtain (2).
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