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Bounded subgroups of relatively finitely presented groups

EDUARD SCHESLER

Let G be a finitely generated group that is relatively finitely presented with respect to a collection Hƒ
of peripheral subgroups such that the corresponding relative Dehn function is well defined. We prove
that every infinite subgroup H of G that is bounded in the relative Cayley graph of G with respect to
Hƒ is conjugate into a peripheral subgroup. As an application, we obtain a trichotomy for subgroups of
relatively hyperbolic groups. Moreover we prove the existence of the relative exponential growth rate for
all subgroups of limit groups.

20F67

1 Introduction

The notion of a group G that is hyperbolic relative to a finite set Hƒ of its subgroups was introduced
by Gromov [10] as a generalization of a word hyperbolic group. In his definition, the groups H 2Hƒ
appear as stabilizers of points at infinity of a certain hyperbolic space X the group G acts on. Since
then, the study of relatively hyperbolic groups has remained an active field of research, and several
characterizations of relative hyperbolicity were introduced by Bowditch [2], Farb [8] and Osin [15]. In
the last work, Osin uses the concept of relative presentations in order to define the relative hyperbolicity
of a group G with respect to a set Hƒ D fH� j � 2ƒg of its subgroups. To make this more precise, let
X �G be a symmetric subset such that G is generated by

S
�2ƒH�[X . Then we obtain a canonical

epimorphism

" W F WD

� ©
�2ƒ

zH�

�
�F.X/!G;

where the groups zH� are disjoint isomorphic copies of H�, and F.X/ denotes the free group over X .
Consider a subset R � F whose normal closure is the kernel of ". Then R gives rise to a so-called
relative presentation of G with respect to Hƒ of the form

(1)
�
X;H

ˇ̌̌
S D 1; S 2

[
�2ƒ

S�; RD 1;R 2R
�
;

where H WD
S
�2ƒ.

zH� n f1g/ and S� is the set of all relations over the alphabet zH�. In this framework,
G is said to be hyperbolic relative to Hƒ if X and R can be chosen to be finite and (1) admits a linear
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1552 Eduard Schesler

relative Dehn function. That is, there is some C > 0 such that for every word w of length at most ` over
X [H that represents the identity in G, there is an equality of the form

(2) w DF

kY
iD1

f �1i R˙1i fi

that holds in F , where k �C`, fi 2F and Ri 2R. Note that in general, there is no reason to expect that
for every ` 2N and every relation w of length at most ` there is a uniform upper bound n 2N such that
w can be written as in (2) with k � n. Even if X and R are finite, in which case we say that (1) is a finite
relative presentation for G, there are easy examples where there is no such n; see [15, Example 1.3].

Here we study groups G that admit a finite relative presentation as in (1) whose relative Dehn function
ırel
G;Hƒ

is well defined. This means that for every ` 2 N there is a minimal number ırel
G;Hƒ

.`/ such
that for every relation w of length at most ` there is an expression of the form (2) with k � ırel

G;Hƒ
.`/.

Examples of relatively finitely presented groups that admit a well-defined nonlinear relative Dehn function
were considered by Hughes, Martínez-Pedroza and Sánchez Saldaña [12]. The study of groups with
a well-defined relative Dehn function typically involves considerations in the so-called relative Cayley
graph �.G;X [H/ of G. Since X [H can be (and usually is) infinite, it is natural to ask the following:

Question 1.1 Which subgroups of G have bounded diameter in �.G;X [H/?

Note that, aside from the finite subgroups of G, every subgroup of G that can be conjugated into some
of the groups H� has bounded diameter in �.G;X [H/. It turns out that for finitely generated G, the
existence of a well-defined relative Dehn function is enough to deduce that there are no further examples
of subgroups of G whose diameter in �.G;X [H/ is finite.

Theorem 1.2 Let G be a finitely generated group. Suppose that G is relatively finitely presented with
respect to a collection Hƒ D fH� j � 2ƒg of its subgroups and that the relative Dehn function ırel

G;Hƒ
is

well defined. Then every subgroup K �G satisfies exactly one of the following conditions:

(i) K is finite.

(ii) K is infinite and conjugate to a subgroup of some H�.

(iii) K is unbounded in �.G;X [H/.

Note for example that if one of the subgroups H� in Theorem 1.2 is infinite, then there is no subgroup
K �G that contains H� as a proper subgroup of finite index. This also follows from the fact that each
H� is almost malnormal, which is shown in [15, Proposition 2.36].

Remark 1.3 The condition that the relative Dehn function ırel
G;Hƒ

in Theorem 1.2 is well defined cannot
be removed. To see this, let G be the infinite cyclic group generated by an element a and let H be the
subgroup of G that is generated by a2. Then the relative Cayley graph of G with respect to Hƒ D fH g
is clearly bounded. In particular, G is a bounded subset of its relative Cayley graph while not being
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conjugate to a subgroup of H . On the other hand, it can be easily seen that G admits a finite relative
presentation with respect to H .

If the groupG in Theorem 1.2 is relatively hyperbolic with respect toHƒ, then it is known that a subgroup
K �G with infinite diameter in �.G;X [H/ contains a loxodromic element; see Osin [16, Theorem 1.1
and Proposition 5.2]. Recall that an element g 2G is called loxodromic if the map

Z! �.G;X [H/ given by n 7! gn

is a quasiisometric embedding. We therefore obtain the following classification of subgroups of relatively
hyperbolic groups which, to the best of my knowledge, was not recorded before:

Corollary 1.4 Let G be a finitely generated group. Suppose that G is relatively hyperbolic with respect
to a collection Hƒ D fH� j � 2ƒg of its subgroups. Then every subgroup K �G satisfies exactly one of
the following conditions:

(i) K is finite.

(ii) K is infinite and conjugate to a subgroup of some H�.

(iii) K contains a loxodromic element.

As an application of Corollary 1.4, we consider relative exponential growth rates in finitely generated
groups. Recall that for a finitely generated group G and a finite generating set X of G, the growth function
ˇXG WN!N of G with respect to X is defined by ˇXG .n/D jB

X
G .n/j, where BXG .n/ denotes the set of

all elements of G that are represented by words of length at most n in the generators of X and X�1.
Using Fekete’s lemma, it is easy to see that the limit limn!1

n
p
ˇXG .n/, known as the exponential growth

rate of G with respect to X , always exist; see for example Milnor [13]. Given a subgroup H � G, a
relative analogue of the exponential growth rate is obtained by counting the elements in the relative balls
BXH .n/ WD B

X
G .n/\H . The resulting function

ˇXH WN!N given by n 7! jBXH .n/j

is called the relative growth function of H with respect to X . In [14, Remark 3.1], Olshanskii pointed
out that, unlike in the nonrelative case, the limit limn!1

n
p
ˇXH .n/ does not exist in general. As a

consequence, the relative exponential growth rate of H in G with respect to X is typically defined
as lim supn!1

n
p
ˇXH .n/. Nevertheless, in many cases where the relative exponential growth rate is

studied in the literature (see for example Cohen [3], Grigorchuk [9], Olshanskii [14], Sharp [19], Coulon,
Dal’Bo and Sambusetti [5] and Dahmani, Futer and Wise [7] where G is free or hyperbolic) the limit
limn!1

n
p
ˇXH .n/ is known to exist, in which case we say that the relative exponential growth rate of H

in G exists with respect to X . In the case where G is a free group, the existence of the relative exponential
growth rate was proven by Olshanskii in [14], extending prior results of Cohen [3] and Grigorchuk [9]
who have independently proven the existence for normal subgroups of G. More recently, these existence
results were generalized by the author to the case where G is a finitely generated acylindrically hyperbolic
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group and H is a subgroup that contains a generalized loxodromic element of G; see [17]. By combining
this with Corollary 1.4, we will be able conclude the following:

Theorem 1.5 Let G be a finitely generated group that is relatively hyperbolic with respect to a collection
Hƒ D fH� j � 2ƒg of its subgroups. Suppose that each of the groups H� has subexponential growth.
Then the relative exponential growth rate of every subgroup H � G exists with respect to every finite
generating set of G.

By Osin [15, Theorem 1.1], each of the groups H� in Theorem 1.5 is finitely generated, so the assumption
on subexponential growth indeed makes sense. Relatively hyperbolic groups G as in Theorem 1.5 include
many naturally occurring examples of groups. A particularly interesting such class is given by limit
groups, which were introduced by Sela in his solution of the Tarski problems [18], and naturally generalize
the class of free groups. By work of Dahmani [6] and Alibegović [1], limit groups are known to be
relatively hyperbolic with respect to a system of representatives for the conjugacy classes of their maximal
abelian noncyclic subgroups. As a consequence, we obtain the following generalization of Olshanskii’s
existence result:

Corollary 1.6 Let G be a limit group. Then the relative exponential growth rate of every subgroup
H �G exists with respect to every finite generating set of G.

Acknowledgments I would like to thank Jason Manning for a helpful conversation regarding an alterna-
tive way of proving Corollary 1.4; see Section 4.1. The author was partially supported by the DFG grant
WI 4079/4 within the SPP 2026 Geometry at infinity.

2 Preliminaries

In this section we introduce some definitions and properties that will be relevant for our study of relatively
finitely presented groups. More information about these groups can be found in [15].

2.1 Relative presentations

Let us fix a group G and a collection Hƒ D fH� j � 2ƒg of so-called peripheral subgroups of G. Let
X �G be a symmetric subset such that G is generated by

S
�2ƒH�[X . Such an X will be referred to

as a relative generating of G with respect to Hƒ. Note that this gives us a canonical epimorphism

" W F WD

� ©
�2ƒ

zH�

�
�F.X/!G;

where the groups zH� are pairwise disjoint isomorphic copies of H� and F.X/ denotes the free group
over X . Let us also assume that zH� \X D ∅ for every � 2 ƒ. Let N denote the kernel of " and let
R� N be a subset whose normal closure in F coincides with N . For each � 2ƒ let S� be the set of
words over zH� n f1g that represent the identity in G.
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Definition 2.1 With the notation above, we say that a relative presentation of G with respect to Hƒ is a
presentation of the form

(3)
�
X;H

ˇ̌̌
S D 1; S 2

[
�2ƒ

S�; RD 1; R 2R
�
;

where H WD
S
�2ƒ.

zH� n f1g/. The relative presentation (3) is called finite if X and R are finite. In this
case G is said to be relatively finitely presented with respect to Hƒ.

The following result will be crucial for us:

Theorem 2.2 [15, Theorem 1.1] Let G be a finitely generated group and let Hƒ D fH� j � 2ƒg be a
collection of its subgroups. Suppose that G is finitely presented with respect to Hƒ. Then the following
conditions hold :

(i) The collection Hƒ is finite , ie jƒj<1.

(ii) Each subgroup H� is finitely generated.

2.2 Relative Dehn functions

Let G be a relatively finitely presented group with a finite relative presentation as in Definition 2.1. For
each ` 2N, let N` denote the set of words of length at most ` over X [H that represent the identity in G.
Given w 2N`, let vol.w/ 2N be minimal with the property that there is an expression of the form

(4) w DF

vol.w/Y
iD1

f �1i R˙1i fi ;

where the equality is taken in F , and fi 2 F and Ri 2R for every 1� i � vol.w/.

Definition 2.3 The relative Dehn function for the finite relative presentation (3) of G is defined by

ırel
G;Hƒ

WN!N [f1g given by ` 7! supfvol.w/ j w 2N`g:

We say that ırel
G;Hƒ

is well defined if ırel
G;Hƒ

.`/ <1 for every ` 2N.

An important class of relatively finitely presented groups with a well-defined Dehn function consists of
relatively hyperbolic groups, which can be defined in terms of the relative Dehn function.

Definition 2.4 A relatively finitely presented group G with a relative presentation (3) is called relatively
hyperbolic with respect to Hƒ if there is some C > 0 such that ırel

G;Hƒ
.`/� C` for every ` 2N.

Of course, the relative Dehn function ırel
G;Hƒ

depends on the finite relative presentation (3), and not just
on Hƒ. But as for ordinary (nonrelative) Dehn functions of finitely presented groups, different finite
relative presentations lead to asymptotically equivalent relative Dehn functions; see [15, Theorem 2.34].
In particular, the property of ırel

G;Hƒ
being well defined or bounded above by a linear function does not

depend on the choice of a finite relative presentation.
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2.3 Geometry of the relative Cayley graph

Let us again consider a relatively finitely presented group G with a finite relative presentation as in
Definition 2.1. The Cayley graph of G with respect to X [H is called the relative Cayley graph of G and
will be denoted by �.G;X [H/. We will study the local geometry of �.G;X [H/. In order to do so, let
us fix some terminology. Given an edge e of �.G;X [H/, we write @0.e/ to denote the initial vertex of
e and @1.e/ to denote the terminal vertex of e. A sequence p D .e1; : : : ; en/ of edges in �.G;X [H/ is
called a path if @1.ei /D @0.eiC1/ for 1� i < n. If moreover @0.e1/D @1.en/, then p is said to be cyclic.
The label of a path p will be denoted by Lab.p/. Sometimes it is useful to forget about the initial vertex
of a cyclic path pD .e1; : : : ; en/. To make this precise, we define the loop associated to p as the set Œp� of
all paths of the form .ei ; : : : ; en; e1; : : : ; eiC1/ for 1� i � n. A subpath of a loop Œp� is a subpath of some
representative p0 2 Œp�. The algebraic counterpart of a loop is the set Œw� of all cyclic conjugates of a word
w over X[H, which will be referred to as a cyclic word. Accordingly, the label of a loop Œp� is defined as
Lab.Œp�/ WD ŒLab.p/�. Up to minor notational differences, the following definitions can be found in [15].

Definition 2.5 Let w be a word over X [H. A subword v of w is a �–subword if it consists of letters
of zH�. If a �–subword v of w is not properly contained in any other �–subword of w, then v is called a
�–syllable of w. Similarly, we say that a word v over X [H is a �–subword of a cyclic word Œw� if it is
a �–subword of some cyclic conjugate of w. If a �–subword v of Œw� is not properly contained in any
other �–subword of Œw�, then v is called a �–syllable of Œw�.

Let us now translate Definition 2.5 into conditions for paths in �.G;X [H/.

Definition 2.6 Let q be a path in �.G;X [ H/. A subpath p of q is a �–subpath if Lab.p/ is a
�–subword of Lab.q/. A �–subpath p of q is called a �–component of q if Lab.p/ is a �–syllable of
Lab.q/. Suppose now that q is cyclic, and consider the loop Œq� associated to q. We say that a subpath p
of Œq� is a �–subpath of Œq� if Lab.p/ is a �–subword of Lab.Œq�/. If moreover Lab.p/ is a �–syllable of
Lab.Œq�/, then p is called a �–component of Œq�.

Definition 2.7 Let p1 and p2 be �–components of a path p (resp. a loop Œq�) in �.G;X [H/. We say
that p1 and p2 are connected, if there is a path c in �.G;X [H/ that connects a vertex of p1 with a
vertex of p2 and Lab.c/ consists of letters of zH�. We say that p1 is isolated in p (resp. Œq�) if there are
no further �–components of p (resp. Œq�) that are connected to p1.

Let us now translate the notion of an isolated component of a path (loop) into a corresponding notion for
syllables in (cyclic) words.

Definition 2.8 Let w be a word over X[H and let p be any path in �.G;X[H/ with Lab.p/Dw. We
say that two �–syllables v1 and v2 of w are connected (resp. isolated) if the corresponding �–components
p1 and p2 of p are connected (resp. isolated). If w represents the identity in G, and v1 and v2 are
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�–syllables of the cyclic word Œw�, then v1 and v2 are connected (resp. isolated) if the corresponding
�–components p1 and p2 of the loop Œp� are connected (resp. isolated).

The following lemma is a direct consequence of [15, Lemma 2.27]. It will help us study the local structure
of �.G;X [H/ and often lets us switch between the word metrics dX and dX[H.

Lemma 2.9 Let G be a finitely generated group with a finite generating set X . Suppose that G is
relatively finitely presented with respect to a collection Hƒ D fH� j � 2ƒg of its subgroups , and that the
relative Dehn function ırel

G;Hƒ
is well defined. Then for every n 2N there is a finite subset �n �G with

the property that for every cyclic path q in �.G;X[H/ of length at most n and every isolated component
p of the loop Œq�, the label Lab.p/ represents an element in �n.

3 The alternating growth condition

In this section we introduce the alternating growth condition, which will play a central role in our proof
of Theorem 1.2.

3.1 Regular neighborhoods

Let us start by defining a condition for paths in graphs that can be thought of as a strong form of having
no self-intersections.

Definition 3.1 Let � be a graph and let p be a path in � that consecutively traverses the sequence
v0; : : : ; vn of vertices in � . We say that p has a regular neighborhood in � if every two vertices vi and
vj that can be joined by an edge in � satisfy ji � j j � 1.

Example 3.2 If p is a geodesic path in a graph � then p has a regular neighborhood in � .

Example 3.3 If p is a nontrivial cyclic path in a graph � then p does not have a regular neighborhood in � .

Remark 3.4 Every path p that has a regular neighborhood in a graph � is locally 2–geodesic, ie the
restriction of p to each subpath of length at most 2 is geodesic.

It will be useful for us to translate the concept of regular neighborhoods to words over some generating
set of a group.

Definition 3.5 Let G be a group and let X be a generating set of G. A word w over X is called regular
(with respect to X ) if some path p in �.G;X/ with Lab.p/Dw has a regular neighborhood in �.G;X/.

Remark 3.6 Let G be a group and let X be a generating set of G. From the definitions, it directly
follows that a word w over X is regular if and only if every subword v of w of length at least 2 satisfies
jvjX � 2, where j � jX denotes the word metric corresponding to X .
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3.2 Sequences of alternating growth

We want to study sequences of regular words in the context of finitely generated relatively finitely
presented groups. Let us therefore fix a finitely generated group G, a finite generating set X of G, and
a collection Hƒ D fH� j � 2 ƒg of peripheral subgroups of G. Suppose that G is relatively finitely
presented with respect to Hƒ and that the relative Dehn function ırel

G;Hƒ
is well defined. As in Section 2

we write zH� to denote pairwise disjoint isomorphic copies of H� that also intersect trivially with X . Let
us fix some notation in order to avoid ambiguities concerning the length and the evaluation of a word
over X [H, where as always HD

S
�2ƒ.

zH� n f1g/.

Notation 3.7 Let w D w1 : : : w` be a word over X [H. We write kwk D ` for the word length of w.
The image of w in G will be denoted by Nw. For any subset Y � G we write j NwjY for the length of a
shortest word over Y that represents Nw. If there is no such word, then we set j NwjY D1.

Definition 3.8 A sequence of words .w.n/1 : : : w
.n/

`
/n2N of fixed length `� 2 over X [H satisfies the

alternating growth condition if the following conditions are satisfied:

(I) If w.n/i D x for some 1� i � `, n 2N and x 2X , then w.m/i D x for every m 2N. In this case
we say that i is an index of type X .

(II) If w.n/i 2 zH� for some 1� i � `, n 2N and � 2ƒ, then w.m/i 2 zH� for every m 2N. In this case
we say that i is an index of type �.

(III) The index 1 is not of type X .

(IV) Two consecutive indices are never of the same type.

(V) If i is of type �, then Nw.n/i …H� and j Nw.n/i jX � n for every � 2ƒ n f�g and every n 2N.

(VI) Each word w.n/1 : : : w
.n/

`
is regular with respect to X [H.

The following observation will be used frequently:

Remark 3.9 Given a regular word w over X [H, it directly follows from the definitions that every
syllable v in w is isolated and consists of a single edge.

3.3 Concatenating sequences of alternating growth

In what follows, we need to construct certain sequences .w.n/1 : : : w
.n/

`
/n2N of words over X [H that

satisfy the alternating growth condition so that ` can be chosen arbitrarily large. In order to do so, we
will use the following lemma, which allows us to “concatenate” two sequences of words that satisfy the
alternating growth condition so that the resulting sequence also satisfies the alternating growth condition.
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Lemma 3.10 With the notation above , suppose that there are two sequences .v.n/1 : : : v
.n/
M /n2N and

.w
.n/
1 : : : w

.n/
N /n2N of words over X [H that satisfy the alternating growth condition. Let � 2ƒ be such

that w.n/1 2 zH� for some n 2N.

(i) Suppose that Nv.n/M …H� for every n 2N. Then there is a strictly increasing sequences of natural
numbers .sn/n2N such that

.v
.sn/
1 : : : v

.sn/
M w

.sn/
1 : : : w

.sn/
N /n2N

satisfies the alternating growth condition.

(ii) Suppose that Nv.n/M 2H� for every n 2N. Then there are strictly increasing sequences of natural
numbers .sn/n2N and .tn/n2N such that the sequence

.v
.sn/
1 : : : v

.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/
N /n2N ;

where z.n/ 2 zH� is the element representing v.sn/M w
.tn/
1 2 H�, satisfies the alternating growth

condition.

Proof Let us first prove (i). Suppose that there is no such sequence .si /i2N . Then there are infinitely
many n 2N such that v.n/1 : : : v

.n/
M w

.n/
1 : : : w

.n/
N does not satisfy some of the conditions of Definition 3.8.

Since (I)–(V) are clearly satisfied, it follows that v.n/1 : : : v
.n/
M w

.n/
1 : : : w

.n/
N is not regular (with respect

to X [H) for infinitely many n 2N. By restriction to a subsequence if necessary, we can assume that
no word v.n/1 : : : v

.n/
M w

.n/
1 : : : w

.n/
N is regular. Since Nv.n/M … H� for every n 2 N, none of the subwords

v
.n/
M w

.n/
1 represent the trivial element inG. Along with the assumption that v.n/1 : : : v

.n/
M and w.n/1 : : : w

.n/
N

are regular, it follows that there is a maximal index an such that

(5) jv.n/an : : : v
.n/
M w

.n/
1 : : : w

.n/

bn
jX[H D 1

for some index bn. Suppose that each bn is chosen to be minimal with respect to an. Then there are
generators un 2X [H such that

qn D v
.n/
an
: : : v

.n/
M w

.n/
1 : : : w

.n/

bn
un

represents the identity in G for every n 2N. We want to argue that w.n/1 is an isolated �–syllable in the
cyclic word Œqn�. Suppose that this is not the case. Then there are three cases to consider:

Case 1 (v.n/i : : : v
.n/
M w

.n/
1 2H� for some an � i �N ) Then v.n/i : : : v

.n/
M 2H�, and since v.n/1 : : : v

.n/
M

is regular, i DM . Thus Nv.n/M 2H�, in contrast to our assumption Nv.n/M …H�.

Case 2 (w.n/1 : : : w
.n/
i 2H� for some 2� i � bn) This is a contradiction since w.n/1 : : : w

.n/
N is regular.

Case 3 (w.n/1 : : : w
.n/

bn
un 2H�) In this case we also have v.n/an : : : v

.n/
M 2H�. Using again the assumption

that v.n/1 : : : v
.n/
M is regular, an DM and Nv.n/M 2H�, which contradicts our assumption that Nv.n/M …H�.
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Thus w.n/1 is indeed an isolated �–syllable in Œqn�. Moreover, kqnk � M CN C 1 for every n 2 N.
From Lemma 2.9 it therefore follows that f Nw.n/1 j n 2 Ng is a finite subset of G. On the other hand,
the alternating growth condition ensures that jw.n/1 jX � n for every n 2 N. This finally gives us the
contradiction that arose from our assumption that there is no sequence .si /i2N as in (i).

Let us now prove (ii). From the alternating growth condition, jw.n/1 jX � n for every n 2N. Thus we can
choose strictly increasing sequences of natural numbers .sn/n2N and .tn/n2N such that jv.sn/M w

.tn/
1 jX � n

for every n 2N. Note that Definition 3.8(I)–(V) are clearly satisfied for

.v
.sn/
1 : : : v

.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/
N /n2N ;

where z.n/ 2 zH� is the element representing v.sn/M w
.tn/
1 . In order to prove the lemma it therefore suffices

to show that v.sn/1 : : : v
.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/
N is regular for all but finitely many n 2N. To see this, let

us first consider the subwords

v
.sn/
1 : : : v

.sn/
M�1z

.n/ and z.n/w
.tn/
2 : : : w

.tn/
N :

Suppose that there is some 1� i �M � 1 with jv.sn/i : : : v
.sn/
M�1z

.n/jX[H � 1. Then there are two cases
to consider:

Case 1 (v.sn/i : : : v
.sn/
M�1z

.n/ 2H�) Then we also have v.sn/i : : : v
.sn/
M�1 2H�, and since v.sn/1 : : : v

.sn/
M is

regular, it follows that M � 1D 1. But then v.sn/M�1 and v.sn/M both represent elements of H�, which in
turn contradicts the regularity of v.sn/1 : : : v

.sn/
M .

Case 2 (v.sn/i : : : v
.sn/
M�1z

.n/ …H�) Then there is some un 2 X [H that does not lie in zH� such that
qn WD v

.sn/
i : : : v

.sn/
M�1z

.n/un represents the identity in G. We claim that z.n/ is an isolated syllable in the
cyclic word Œqn�. Otherwise there would be some i � j �M � 1 with

v
.sn/
j : : : v

.sn/
M�1z

.n/ 2H�;

which is impossible as we have seen in Case 1. Moreover, kqnk �M . From Lemma 2.9 it therefore
follows that fNz.n/1 j n 2 Ng is a finite subset of G. Since jz.n/jX � n, there are only finitely many
n2N such that jv.sn/i : : : v

.sn/
M�1z

.n/jX[H � 1 for some 1� i �M �1. Thus v.sn/1 : : : v
.sn/
M�1z

.n/ is regular
for all but finitely many n 2N. Symmetric argument shows that z.n/w.tn/2 : : : w

.tn/
N is regular for all but

finitely many n 2N. By restriction to a subsequence if necessary, we can therefore assume that the words
v
.sn/
1 : : : v

.sn/
M�1z

.n/ and w.tn/2 : : : w
.tn/
N are regular for every n.

Now assume v.sn/1 : : : v
.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/
N is not regular, and choose 1� an�M �1 and 2� bn�N

such that v.sn/an : : : v
.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/

bn
is a minimal subword of v.sn/1 : : : v

.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/
N with

jv.sn/an
: : : v

.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/

bn
jX[H � 1:

Case 1 (qn WD v
.sn/
an : : : v

.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/

bn
represents the identity in G) Since v.sn/1 : : : v

.sn/
M�1z

.n/

and z.n/w.tn/2 : : : w
.tn/
N are regular, it follows that z.n/ is an isolated syllable in the cyclic word Œqn�. In

view of Lemma 2.9, there are only finitely many such n.
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Case 2 (v.sn/an : : : v
.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/

bn
does not represent an element of H�) Then there is some

un 2
S
�2ƒnf�g.

zH� n f1g/[X such that

qn WD v
.sn/
an

: : : v
.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/

bn
un

represents the trivial element in G. In particular, un is not part of a �–syllable in the cyclic word Œqn�.
Another application of Lemma 2.9 now reveals that there are only finitely many n 2 N such that
v
.sn/
an : : : v

.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/

bn
does not represent an element of H�.

Case 3 (v.sn/an : : : v
.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/

bn
represents a nontrivial element in H�) Then there is some

un 2 zH� such that
qn WD v

.sn/
an

: : : v
.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/

bn
un

represents the identity in G. Suppose z.n/ is connected to some further �–syllable in the cyclic word Œqn�.
Since v.sn/1 : : : v

.sn/
M�1z

.n/ and z.n/w.tn/2 : : : w
.tn/
N are regular, z.n/ has to be connected to un. Hence

z.n/w
.tn/
2 : : : w

.tn/

bn
un 2H�;

which implies
w
.tn/
2 : : : w

.tn/

bn
2H�:

From the regularity of z.n/w.tn/2 : : : w
.tn/
N it therefore follows that N D 2. But then Nw.tn/2 2H�, which

contradicts the regularity of w.tn/1 w
.tn/
2 : : : w

.tn/
N . Thus un is an isolated syllable in Œqn� and a final

application of Lemma 2.9 proves that Case 3 can only occur finitely many times.

Altogether we have shown that v.sn/1 : : : v
.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/
N is regular for all but finitely many n2N,

which proves the lemma.

Corollary 3.11 Let G be a finitely generated group with a finite generating set X . Suppose that G is
relatively finitely presented with respect to a collection of peripheral subgroups Hƒ D fH� j � 2ƒg, and
that the relative Dehn function ırel

G;Hƒ
is well defined. Let .w.n//n2N be a sequence of words over X [H

that satisfies the alternating growth condition and let K be the subgroup of G generated by f Nwn j n 2Ng.
Then there is some C 2 N that satisfies the following. For every L 2 N there is a sequence of words
.vn/n2N over X [H such that :

(i) .vn/n2N satisfies the alternating growth condition.

(ii) The length of every word vn is bounded by L� kvnk � LCC .

(iii) Every word vn represents an element of K.

Proof Let us write w.n/Dw.n/1 : : : w
.n/

`
for every n2N. From properties (II) and (III) of the alternating

growth condition there is some �2ƒ such thatw.n/1 2 zH� for every n2N. By restriction to a subsequence
if necessary, we may assume that .wn/n2N satisfies one of the following two conditions:

(i) Nw.n/
`
…H� for every n 2N.

(ii) Nw.n/
`
2H� for every n 2N.
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Suppose the first and let k 2 N. Then an inductive application of Lemma 3.10(i) provides us with
subsequences

.w
.si;n/
1 : : : w

.si;n/

`
/n2N

of w.n/ for each 1� i � k such that the sequence of concatenated words

vn WD .w
.s1;n/
1 : : : w

.s1;n/

`
/.w

.s2;n/
2 : : : w

.s2;n/

`
/ : : : .w

.sk;n/
1 : : : w

.sk;n/

`
/

has length k` and satisfies the alternating growth condition. Thus the corollary is clearly satisfied for C D`.

Let us now consider (ii), and let k 2N. Then an inductive application of Lemma 3.10(ii) provides us
with subsequences

.w
.si;n/
1 : : : w

.si;n/

`
/n2N

of w.n/ for each 1� i � k such that the sequence of words vn given by

.w
.s1;n/
1 : : : w

.s1;n/

`�1
/z.t1;n/.w

.s2;n/
2 : : : w

.s2;n/

`�1
/z.t2;n/ : : : z.tk�1;n/.w

.sk;n/
2 : : : w

.sk;n/

`
/;

where z.ti;n/ 2 zH� is the element representing w.si;n/
`

w
.siC1;n/

1 2 H�, satisfies the alternating growth
condition. In this case vn has length k.`� 1/C 1 and we see that the corollary is satisfied for C D `.

4 Dichotomy of infinite subgroups

Endowed with Corollary 3.11, we are now ready to study the subgroup of a relatively finitely presented
groupG that is generated by all the elements Nwn, where .wn/n2N is a sequence that satisfies the alternating
growth condition.

Lemma 4.1 Let G be a finitely generated group with a finite generating set X . Suppose that G is
relatively finitely presented with respect to a collection of peripheral subgroups Hƒ D fH� j � 2ƒg and
that the relative Dehn function ırel

G;Hƒ
is well defined. Suppose that .wn/n2N is a sequence of words

over X [H that satisfies the alternating growth condition. Then the subgroup K � G generated by
f Nwn 2G j n 2Ng is unbounded with respect to dX[H.

Proof Suppose that K is bounded with respect to dX[H, ie that there is some N 2N with jkjX[H �N
for every k 2 K. Due to Corollary 3.11 there is a number L � 4N and a sequence .vn/n2N of words
vn D v

.n/
1 : : : v

.n/
L over X [H that satisfies the alternating growth condition such that each vn represents

an element of K. By restriction to a subsequence, we can assume that there is some M 2 N with
jvnjX[H DM �N for every n 2N. Let u.n/1 : : : u

.n/
M be a shortest word over X [H representing Nv�1n .

Then each word qn WD v
.n/
1 : : : v

.n/
L u

.n/
1 : : : u

.n/
M represents the identity in G. The alternating growth

condition ensures v.n/1 : : : v
.n/
L is regular and that two consecutive letters of vn do not lie in X . It therefore

follows that at least every second of its letters is an isolated syllable in vn. Thus there are at least 2N
isolated syllables in vn D v

.n/
1 : : : v

.n/
L . Note that for every � 2ƒ and every �–syllable of u.n/1 : : : u

.n/
M ,

which necessarily consists of a single letter u.n/i , there is at most one �–syllable v.n/j in v.n/1 : : : v
.n/
L that
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is connected to u.n/i in the cyclic word Œqn�. Otherwise there would be a connection between two different
isolated �–syllables of v.n/1 : : : v

.n/
L by a �–word. This implies that there are at least 2N �M �N isolated

syllables in Œqn� that become arbitrarily large with respect to X as n goes to 1. But this contradicts
Lemma 2.9 since kqnk �M CL for every n 2N. Thus K is an unbounded subset of �.G;X [H/.

Lemma 4.2 Let G be a finitely generated group with a finite generating set X . Suppose that G is
relatively finitely presented with respect to a collection of peripheral subgroups Hƒ D fH� j � 2ƒg and
that the relative Dehn function ırel

G;Hƒ
is well defined. Let K �G be an infinite subgroup that is bounded

with respect to dX[H. Then there is an element g 2G and an index � 2ƒ such that jgKg�1\H�j D1.

Proof Since K is bounded with respect to dX[H, each of its conjugates gKg�1 is a bounded subset of
�.G;X [H/. Let m 2N be minimal with the following property:

.�/ There is a conjugate H WD gKg�1 of K, a finite relative generating set Y of G, and an infinite
sequence .kn/n2N of pairwise distinct elements kn 2H with jknjY[H Dm for every n 2N.

Let g, Y and .kn/n2N be as in .�/. For each n let u.n/ D u.n/1 : : : u
.n/
m be a (shortest) word over Y [H

that represents kn. Due to the minimality of m, we can extend Y to any finite relative generating set Y 0 of
G such that .�/ is still satisfied for an appropriate subsequence of .kn/n2N . Since G is finitely generated,
we can therefore assume that Y is a symmetric generating set of G.

Suppose first that mD 1. Then u.n/1 2HD
S
�2ƒ.

zH� n f1g/ for all but finitely many n 2N. Since ƒ
is finite by Theorem 2.2, there is some � 2ƒ such that infinitely many pairwise distinct letters u.n/1 lie
in zH�. It therefore follows that jgKg�1\H�j D1.

Let us now consider the case m� 2. We want to modify Y and u.n/ in such a way that some subsequence
of .u.n//n2N satisfies the alternating growth condition. This will be done inductively by going through
the letters u.n/i of u.n/.

Suppose that u.n/1 2 Y for infinitely many n 2N. Then we can choose some x1 2 Y and a subsequence
.kjn/n2N of .kn/n2N with u.jn/1 D x1 for every n. In this case we replace .kn/n2N by .kjn/n2N .

Suppose next that u.n/1 2H for all but finitely many n 2N. Since ƒ is finite, there is some �1 2ƒ with
u
.n/
1 2

zH�1 for infinitely many n 2N. We have to consider 2 cases:

Case 1 (there is some Qh1 2 zH�1 with u.n/1 D Qh1 for infinitely many n 2 N) Restrict .kn/n2N to a
subsequence .kjn/n2N such that u.jn/1 D Qh1 for every n 2 N. Moreover we add h1 and h�11 to Y and
replace the letter u.jn/1 D Qh1 2 zH�1 in u.jn/ by h1 2 Y for every n 2N. Next we replace the resulting
sequence by a subsequence that satisfies .�/, which is possible by the choice of m.

Case 2 (there is no Qh1 2 zH�1 with u.n/1 D Qh1 for infinitely many n 2 N) Replace .u.n//n2N by
a subsequence .u.jn//n2N such that j Nu.jn/1 jY > n for every n 2N.

We proceed analogously with the other indices i 2 f2; : : : ; mg. The resulting sequence of words over
Y [H will be denoted by .v.n/1 : : : v

.n/
m /n2N . Let gn 2H be the element represented by v.n/1 : : : v

.n/
m .
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Suppose that either two consecutive letters v.n/i and v.n/iC1 or v.n/1 and v.n/m both lie in Y . Then we
could add v.n/i v

.n/
iC1 and .v.n/i v

.n/
iC1/

�1 (resp. v.n/m v
.n/
1 and .v.n/m v

.n/
1 /�1) to Y in order to obtain a shorter

sequence of infinitely many pairwise distinct elements of H (resp. of v.n/
�1Hv

.n/
1 ) with respect to dY[H.

But this is a contradiction to the choice of m. Thus neither v.n/i and v.n/iC1 nor v.n/1 and v.n/m both lie
in Y . In particular, we can replace v.n/1 : : : v

.n/
m by its inverse .v.n/m /�1 : : : .v

.n/
1 /�1 to ensure that the

first letter does not lie in Y . Let us therefore assume that v.n/1 is never contained in Y . To prove that
.v
.n/
1 : : : v

.n/
m /n2N satisfies the alternative growth condition, it remains to show that each v.n/1 : : : v

.n/
m

is regular and that two consecutive letters v.n/i and v.n/iC1 cannot lie in the same group zH�. But these
properties are direct consequences of the condition jgnjY[HDm from .�/, where kn plays the role of gn.
Altogether we have shown that there is a conjugate H of K and a sequence .gn/n2N of elements in H
that can be represented by a sequence .v.n/1 : : : v

.n/
m /n2N of words over Y [H that satisfies the alternating

growth condition. In this case, Lemma 4.1 tells us that H is an unbounded subset of �.G; Y [H/, which
clearly contradicts our assumption that K is a bounded subset of �.G;X [H/. Hence mD 1, in which
case we have already proven the lemma.

We are now ready to prove our main theorem:

Theorem 4.3 Let G be a finitely generated group and let X be a finite generating set of G. Suppose that
G is relatively finitely presented with respect to a collection of peripheral subgroups Hƒ D fH� j � 2ƒg
and that the relative Dehn function ırel

G;Hƒ
is well defined. Then every subgroup K �G satisfies exactly

one of the following conditions:

(i) K is finite.

(ii) K is infinite and conjugated to a subgroup of a peripheral subgroup.

(iii) K is unbounded in �.G;X [H/.

Proof Suppose that K is infinite and bounded as a subset of �.G;X [H/. From Lemma 4.2 we know
that there is an index � 2ƒ and an element g 2G such that the gKg�1\H� is infinite. We can therefore
choose a sequence .hn/n2N of distinct nontrivial elements hn 2 gKg�1\H�. Suppose that gKg�1 is
not a subgroup of H� and let a 2 gKg�1 nH� . Let Qhn 2 zH� be the element representing hn. Then, after
adding fa; a�1g to X if necessary, we can consider the sequence of words . Qhna/n2N over X [H. We
claim that . Qhna/n2N has a subsequence that satisfies the alternating growth condition. The only property
that is not directly evident is that . Qhna/n2N has a subsequence consisting of regular words. Suppose that
this is not the case. Since ƒ is finite by Theorem 2.2, it then follows that there is some � 2ƒ such that
Qhna represents an element in H� for infinitely many n 2N. Then Qhma. Qhna/�1 D Qhm Qh�1n represents an
element in H�\H� whenever Qhma and Qhna both represent elements of H�. Since a was chosen outside
of H� , it moreover follows that Qhna can never represent an element of H� . In particular, �¤ �. But this
is a contradiction to [15, Proposition 2.36], which says that H�\H� is finite for �¤ �. Thus . Qhna/n2N

has a subsequence that satisfies the alternating growth condition. In this case Lemma 4.1 tells us that the
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subgroup hfahn j n 2Ngi of gKg�1 is unbounded in �.G;X [H/, which contradicts our assumption
that K is bounded in �.G;X [H/. Finally, this proves that gKg�1 is a subgroup of H�.

Let us now consider the important special case of Theorem 1.2 where G is relatively hyperbolic with
respect to Hƒ. Recall that an element g 2G is called loxodromic if the map

Z! �.G;X [H/ given by n 7! gn

is a quasiisometric embedding. It is known that a subgroup K �G with infinite diameter in �.G;X [H/
contains a loxodromic element. This follows from a corresponding result for acylindrically hyperbolic
groups [16, Theorem 1.1] and the fact that relatively hyperbolic groups act acylindrically on the (hyperbolic)
graph �.G;X [H/ [16, Proposition 5.2].

Corollary 4.4 Let G be a finitely generated group. Suppose that G is relatively hyperbolic with respect
to a collection Hƒ D fH� j � 2ƒg of its subgroups. Then every subgroup K �G satisfies exactly one of
the following conditions:

(i) K is finite.

(ii) K is infinite and conjugate to a subgroup of some H�.

(iii) K contains a loxodromic element.

4.1 A geometric proof of Corollary 4.4

As pointed out to the author by Jason Manning, there is a short and more geometric proof of Corollary 4.4
that uses the cusped space�D�.G;Hƒ; X/ associated toG,Hƒ and an appropriate finite generating set
X of G (see [11, Definition 3.15], where cusped spaces for relatively hyperbolic groups were introduced).
Indeed, according to [11, Remark 3.14 and Theorem 3.25], the space � is hyperbolic and admits a proper
isometric action of G. Moreover it is evident from the construction of � that for each x 2� and every
infinite subgroup K ��, the orbit K:x has infinite diameter in �. Thus K:x has at least one limit point
� 2 @�. If K:x has another limit point � 2 @�, then we can choose g; h 2 H such that the distances
of d�.g:x; x/ and d�.h:x; x/ are arbitrarily large while the Gromov product .g:x; h:x/x is bounded. In
this case, a standard argument tells us that at least one of the elements g; h; gh 2K is loxodromic; see
[4, Lemme 2.3]. In the remaining case, � is a fixed point of H and it is a consequence of the construction
of � that H is conjugate to a subgroup of some H�.

5 Applications

As an application of the classification of subgroups of relatively hyperbolic groups given in Corollary 4.4,
we prove the existence of the relative exponential growth rate for all subgroups of a large variety of
relatively hyperbolic groups.
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Definition 5.1 Let G be a finitely generated group and let X be a finite generating set of G. Given a
subgroup H �G, we define the relative growth function of H in G with respect to X by

ˇXH WN!N; n 7! jBXH .n/j;

where BXH .n/ denotes the set of elements in H that are represented by words of length at most n
over X [ X�1. The relative exponential growth rate of H in G with respect to X is defined by
lim supn!1

n
p
ˇXH .n/.

It is natural to ask whether lim sup can be replaced by lim, ie whether the limit limn!1
n
p
ˇXH .n/ exists.

Unlike in the important special case H DG, in which it is well known that this limit exists (see eg [13]),
it does not exist in general; see [14, Remark 3.1]. In the case where the limit limn!1

n
p
ˇXH .n/ does

exist, we will say that the relative exponential growth rate of H in G exists with respect to X . The
following result provides us with a large variety of finitely generated relatively hyperbolic groups G for
which the relative exponential growth rate exists for each of its subgroups and generating sets.

Theorem 5.2 Let G be a finitely generated group that is relatively hyperbolic with respect to a collection
Hƒ D fH� j � 2ƒg of its subgroups. Suppose that each of the groups H� has subexponential growth.
Then the relative exponential growth rate of every subgroup K � G exists with respect to every finite
generating set of G.

Proof Let X be a finite generating set of G. We go through the three cases of Corollary 4.4.

Suppose first thatK is finite. Then ˇXK is eventually constant and it trivially follows that limn!1
n
p
ˇXK .n/

exists and is equal to 1.

Let us next consider the case where K contains a loxodromic element k. By [16, Proposition 5.2], G acts
acylindrically on the (hyperbolic) graph �.G;X [H/. In this case, [16, Theorem 1.1] tells us that either
G is virtually cyclic, in which case the claim follows trivially, or G is acylindrically hyperbolic, in which
case the claim is covered by [17, Theorem 5.8].

Consider now the remaining case, where K is infinite and conjugated to a subgroup of some peripheral
subgroup. Thus there is some g 2 G and some � 2 ƒ such that K � gH�g�1. By Theorem 2.2
each H�, and hence gH�g�1, is finitely generated. We can therefore choose a finite generating set Y of
gH�g

�1. Moreover, it follows from [15, Lemma 5.4] that each peripheral subgroup, and hence gH�g�1,
is undistorted in G. We can therefore choose a constant C > 0 such that

(6) ˇX
gH�g�1

.n/� ˇY
gH�g�1

.Cn/

for every n 2N. By assumption, each H�, and therefore gH�g�1, has subexponential growth. Thus we
have limn!1 ˇYgH�g�1.n/=a

n D 0 for every a > 1. In view of (6), this implies that

lim
n!1

ˇX
gH�g�1

.n/=an D 0:

Then limn!1
n
p
ˇXK .n/D 1 since ˇXK .n/� ˇ

X
gH�g�1

.n/ for n 2N, and in particular the limit exists.
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