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A topological construction of families of Galois covers of the line

ALESSANDRO GHIGI

CAROLINA TAMBORINI

We describe a new construction of families of Galois coverings of the line using basic properties of config-
uration spaces, covering theory, and the Grauert–Remmert extension theorem. Our construction provides
an alternative to a previous construction due to González-Díez and Harvey (which uses Teichmüller theory
and Fuchsian groups) and, in the case the Galois group is nonabelian, corrects an inaccuracy therein. In
the opposite case where the Galois group has trivial center, we recover some results due to Fried and
Völklein.

20F36, 32G15, 32J25, 57K20

1 Introduction

The object of this note are families of Galois coverings of the line.

Let G be a finite group and let C and C 0 be smooth projective curves over the complex numbers endowed
with a G–action. We say that C and C 0 are topologically equivalent or have the same (unmarked)
topological type if there is an � 2AutG and an orientation-preserving homeomorphism f W C ! C 0 such
that f .g �x/D �.g/ �f .x/ for x 2C 0 and g 2G. We say that C and C 0 are (unmarkedly) G–isomorphic
if moreover f is a biholomorphism.

Given a G–covering C ! P1, it has been proved by González-Díez and Harvey [1992] that there exists
an algebraic family of curves with a G–action

� W C! B

such that

(1) every curve C 0 in the family is topologically equivalent to C ;

(2) every curve with an action of the given topological type is G–isomorphic to some fiber of the
family and to at most a finite number of fibers.
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1570 Alessandro Ghigi and Carolina Tamborini

This result has been subsequently used in several papers, eg [Conti et al. 2022; Frediani et al. 2015;
Frediani and Neumann 2003; Penegini 2015; Perroni 2022], just to mention a few.

The construction in [González-Díez and Harvey 1992] uses Teichmüller theory. Other approaches to this
construction include [Fried and Völklein 1991; Li 2018; Völklein 1994]. In this paper we describe an
alternative, explicit and mostly topological construction of such families. We expect this to be useful to
make explicit computations on the family. For example, we expect this to allow a better understanding of
the monodromy and the generic Hodge group for the natural variation of Hodge structure associated with
the family, generalizing the results of [Rohde 2009] carried out in the cyclic case. Our motivation comes
from the fact that these families and their variation of the Hodge structure are important in the study of
Shimura subvarieties of the moduli space Ag (of principally polarized abelian varieties of dimension g)
in relation with the Coleman–Oort conjecture; see eg [Moonen 2010; Moonen and Oort 2013; Frediani
et al. 2015; Tamborini 2022]. The results presented here are, nevertheless, of independent interest.

1.1 We give a quick glance at our construction. For n� 3 let M0;n denote the set of n–tuples

X D .x1; : : : ; xn/ 2 .P
1/n

such that xi ¤ xj for i ¤ j , xn�2 D 0, xn�1 D 1 and xn D1. Consider the group

�n D h
1; : : : ; 
n j 
1 � � � 
n D 1i:

Let G be a finite group and let � W �n! G be an epimorphism. Fix X 2M0;n. After choosing a base
point x0 2 P1�X and an isomorphism � W �n Š �1.P1�X; x0/, Riemann’s existence theorem yields a
G–covering CX ! P1 with monodromy � ı��1 and branch locus X . Nevertheless this covering depends
on the choices. Our goal is to make this construction for all X 2M0;n together, in order to get a family of
curves parametrized by M0;n. Consider the map

p WM0;nC1!M0;n; p.x0; x1; : : : ; xn/D .x1; : : : ; xn/:

We have p�1.X/D P1�X . Hence p can be thought as the universal family of genus 0 curves with n
marked points. The basic idea of our construction is that the total space of our family should be a suitable
G–covering of M0;nC1. For the construction of this covering, choose

(i) an element x D .x0; X/ 2M0;nC1;

(ii) an isomorphism � W �n! �1.P1�X; x0/.

The following sequence is exact and splits:

1! �1.P
1
�X; x0/! �1.M0;nC1; x/! �1.M0;n; X/! 1:
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Set for simplicity Nx WD �1.P1�X; x0/, HX WD �1.M0;n; X/ and f WD ��1 ı � . Assume that we can
find an extension Qf :

1 �1.P1�X; x0/ �1.M0;nC1; x/ HX 1

G

f Qf

From Qf we get a topological G–covering C�!M0;nC1. By the Grauert–Remmert extension theorem
(see Theorem 7.4 below) this compactifies to a branched covering C! P1 �M0;n of quasiprojective
varieties. Composing with the projection to M0;n we get a holomorphic family � W C!M0;n satisfying
properties (1) and (2).

1.2 Thus, if one is able to find the extension Qf , one can construct the families using only basic properties of
configuration spaces, covering theory and the Grauert–Remmert extension theorem, avoiding Teichmüller
theory and Fuchsian groups. In fact this strategy is not new, as it has already been used in exactly the
same context in various papers by Michael D Fried and Helmut Völklein; see eg [Fried 1977; Fried and
Völklein 1991; Völklein 1994].

If G is abelian, one is always able to find the extension Qf ; see Section 10. In general however the
extension Qf does not exist, contrary to what is claimed in [González-Díez and Harvey 1992]. One can at
least show that there are always finite-index subgroups Ha �HX such that f extends to a morphism
fa WNx ÌHa!G. Geometrically passing from HX to the subgroup Ha means that one builds a family
satisfying (1) and (2) over a base which is no longer M0;n, but some finite cover Ya of it. The pair
.Ha; fa/ is far from unique, there are many of them and different choices yield families differing by finite
étale pullback (see Section 7 for precise definitions.) So another problem arises: how is one supposed to
choose the pair .Ha; fa/ in order to determine the family in a canonical way?

For a special class of groups, namely for groups G with trivial center, there is a canonical choice of
.Ha; fa/, which allows to construct a canonical family of coverings. This case corresponds to the one
studied in [Fried and Völklein 1991; Völklein 1994; 1996] where the condition that G be centerless plays
a crucial role.

It is odd that for this problem the two special cases occur in opposite directions, namely for abelian and
for centerless groups.

For general G one is not able to pick out a distinguished choice in a canonical way. This problem was
already considered long ago in [Fried 1977, pages 57–58] where a cohomological interpretation of this
difficulty is given.

Our approach instead is the following. Since we are stuck with a whole collection of pairs .Ha; fa/, each
one giving rise to a family of coverings with base the cover Ya of M0;n, we decide to consider the whole
collection instead of the single families. This collection comes naturally with the structure of a directed
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1572 Alessandro Ghigi and Carolina Tamborini

set coming from the pullbacks among families. We are able to show that this collection with this structure
is well defined and depends only on the topological data.

Summing up, our construction, which builds heavily on previous approaches, corrects an inaccuracy
in [González-Díez and Harvey 1992], where it is erroneously claimed that one has always Ya DM0;n,
confirms that YaDM0;n if G is abelian (Theorem 10.1), and allows to recover at least part of the results in
the papers of Fried and Völklein quoted above, while generalizing them to arbitrary groups with nontrivial
center.

1.3 The paper is organized as follows. In Section 2 we recall basic facts about the configuration spaces
of P1. Section 3 deals with parallel transport for fiber bundles. This material is for sure known to the
experts, but rather hard to locate in the literature. Since these arguments are quite useful and we like their
geometric flavor, we prefer to expound them concisely. In Section 4 we recall some classical concepts of
surface topology. After these preliminaries, in Section 5 we study the set Tn.G/ of topological types
of G–actions; the main result is Theorem 5.6, which gives a combinatorial description of the set of
topological types. The proof of this well-known fact presents our ideas in a simple context. Section 6 is
dedicated to the description of some technical tools for the construction of the families. In Section 7 we
construct the collection of families fCa! Yaga as sketched above. In Section 8 we study the dependence
of the collection on the choices (i) and (ii), and on the epimorphism � W �n!G. Also this point becomes
quite neat using our approach. Section 9 is dedicated to the case where G has trivial center and Section 10
to case where G is abelian. Summing up our main theorem is the following:

Theorem 1.4 (1) The topological types of G–curves C with g.C /D g, g.C=G/D 0 and n branch
points are in bijection with the set .Dn.G/=AutG/=Out� �n (see Corollary 5.7, Definitions 4.8
and 5.2, and (4-1) for notation).

(2) For any topological type there is a nonempty ordered set .I;�/ and for any a 2 I there is an
algebraic family �a W Ca! Ya of genus g curves with a G–action. The following properties hold :

(a) Every curve C in the family has the given topological type.

(b) For any a2I and for anyG–curve C withC=GŠP1, there is at least one fiber of �a WCa!Ya

which is G–isomorphic to C , and there are only finitely many such fibers.

(c) Each Ya is a finite étale cover of M0;n;

(d) .I;�/ is a directed set : for any a; b 2 I there is a c with c � a and c � b.

(e) If a � b, there is an algebraic étale covering v W Ya! Yb such that Ca Š v
�Cb .

(f) All the families have the same moduli image.

(g) If Z.G/ D f1g, then .I;�/ has a minimum; hence in this case we can associate to any
topological type a single family instead of the whole collection.

(h) If G is abelian , then there exists a 2 I such that Ya DM0;n.
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The precise statement can be found in Theorems 7.8 and 8.2. Roughly speaking one can say that for any
topological type there is a “universal” family of G–curves with that topological type. Such a family is
not unique, but only unique up to the equivalence relation generated by finite étale pullbacks.

1.5 The existence problem that we address in this paper can of course be generalized: instead of
considering just Galois covers, one can ask for the construction of families satisfying (1) and (2) for all
the coverings with a fixed Galois closure (equivalently with fixed monodromy). These kinds of problems
have been studied a lot and they are extremely important also because of their relevance for the inverse
Galois problem; see [Fried 1977; 2010; Fried and Jarden 1986; Fried and Völklein 1991; 1992; Völklein
1996]. In these cases it often happens that the “universal” family has more than one component. We
stress that in this paper we restrict only to the Galois case and that in this case all families are connected.
In fact, the base of each family is a (connected) cover of M0;n.

Another variant of the problem studied in this paper is obtained by letting G� be a group such that
InnG � G� � AutG and considering two data equivalent if and only if they belong to the same
G� �Out� �n–orbit. This also has attracted a lot of attention in the literature. Our case corresponds to the
choice G� D AutG. In this paper we restrict to this case since we are interested in the topological types.

Acknowledgements The authors would like to thank Michael D Fried, Gabino González-Díez and Fabio
Perroni for useful discussions/emails related to the subject of this paper. We are very grateful to the referee
for several interesting questions, in particular for pushing us to study the case of a centerless group; see
Section 9. We also thank Federico Fallucca for pointing out an inaccuracy in an earlier draft. The authors
were partially supported by MIUR PRIN 2017 Moduli spaces and Lie theory by MIUR, Programma
Dipartimenti di Eccellenza (2018–2022) — Dipartimento di Matematica “F Casorati”, Università degli
Studi di Pavia and by INdAM (GNSAGA). Tamborini was partially supported by the Dutch Research
Council (NWO grant BM.000230.1).

2 Configuration spaces

2.1 If M is a manifold, its configuration space is

F0;nM WD f.x1; : : : ; xn/ 2M
n
j xi ¤ xj for i ¤ j g:

We use the following notation: X D .x1; : : : ; xn/ is a point of F0;nM and xD .x0; X/D .x0; x1; : : : ; xn/
is a point of F0;nC1M . We set M �X WDM �fx1; : : : ; xng. The group �1.F0;nM/ is called the pure
braid group with n strings of the manifold M .

2.2 If n � 3, then the group PGL.2;C/ acts freely and holomorphically on F0;n P1. The quotient
F0;nP1=PGL.2;C/ is the moduli space of smooth curves of genus 0 with n marked points. Setting
C�� WDC�f0; 1g, the map

F0;n�3C��! F0;nP1; .z1; : : : ; zn�3/ 7! .z1; : : : ; zn�3; 0; 1;1/;
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is a section for the action of PGL.2;C/, ie its image intersects each orbit in exactly one point and it
induces a biholomorphism of F0;n�3C�� onto the moduli space F0;nP1=PGL.2;C/. We define M0;n as
the image of the section, ie we set

M0;n WD F0;n�3C�� � f.0; 1;1/g D fX D .x1; : : : ; xn/ 2 F0;nP1 j xn�2 D 0; xn�1 D 1; xn D1g:

Points of M0;n will be denoted by X D .x1; : : : ; xn/ with the understanding that xn�2 D 0, xn�1 D 1
and xn D1. Similarly we set

M0;nC1 WD fx D .x0; : : : ; xnC1/ 2 F0;nC1 P1 j xn�2 D 0; xn�1 D 1; xn D1g:

It is often useful to compare the configuration space of P1 with that of the plane. Denote by T.2;C/ the
subset of elements of PGL.2;C/ fixing1. The group T.2;C/ acts on F0;n�1C and the map

(2-1) M0;n! F0;n�1C; X 7! .x1; : : : ; xn�3; 0; 1/;

is a section for this action; hence M0;n �T.2;C/Š F0;n�1C. In particular, �1.M0;n/� �1.F0;n�1C/.
Thus, when dealing with �1.M0;n/, we can work with the more classical braid group of the plane. The
map

(2-2) p WM0;nC1!M0;n; p.x0; X/ WDX

is a fiber bundle. In fact it is the restriction of the bundle F0;nC! F0;n�1C; see [Birman 1974]. The
fiber over X is P1�X DC���fx1; : : : ; xn�3g. Hence (2-2) is the universal family of genus 0 curves
with n ordered marked points.

2.3 Fix x D .x0; X/ 2M0;nC1 and let Qx D .x0; zX/ 2 F0;nC be the corresponding point via (2-1). We
have a commutative diagram

(2-3)

1 �1.P1�X; x0/ �1.M0;nC1; x/ �1.M0;n; X/ 1

1 �1.C� zX; x0/ �1.F0;nC; Qx/ �1.Fn�1C; zX/ 1

The rows are the split exact sequence of the fibrations p and F0;nC! F0;n�1C; see eg [Birman 1974,
Corollary 1.8.1; Fadell 1962, Theorem 3.1]. A geometric way to exhibit the splitting is to produce a cross
section as follows: given x D .x1; : : : ; xn/ 2M0;n we set

f .x/ WD 1
2

minf1; jx1j; : : : ; jxn�3jg:

Then s.x/ WD .f .x/; x1; : : : ; xn/ is a section of p WM0;nC1!M0;n. (A similar idea is used in [Fadell
1962, Theorem 3.1].) The morphism s� W �1.M0;n; X/! �1.M0;nC1; x/ is a splitting. Setting

(2-4)
" W �1.M0;n; X/! Aut.�1.P1�X; x0//;

".Œ˛�/.Œ
�/ WD s�Œ˛� � Œ
� � s�Œ˛�
�1
D Œs ı˛ � 
 � s ı i.˛/�;

we get
�1.M0;nC1; x/D �1.P

1
�X; x0//Ì" �1.M0;n; X/:
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3 Parallel transport

In this section we recall a notion of parallel transport up to homotopy on any fiber bundle. In the sequel,
we will use it for the bundle p WM0;nC1!M0;n to study the dependence of the construction of Section 7
from the choices made.

3.1 Given b0; b1 2 B let �.B; b0; b1/ denote the set of all paths ˛ in B with ˛.0/D b0 and ˛.1/D b1.
We write ˛ � ˇ if ˛ ' ˇ rel f0; 1g. Let …1.B/ denote the fundamental groupoid of B; this is the small
category whose objects are the points of B and with morphisms from b0 to b1 equal to �.B; b0; b1/=�,
composition being given by Œ˛� � Œˇ�D Œ˛ �ˇ�.

3.2 Let p WE! B be a fiber bundle (in the sense of [Spanier 1966, page 90], ie a locally trivial bundle).
Assume that the base B is Hausdorff and paracompact. Then p is a fibration [Spanier 1966, Corollary 14,
page 96], ie it has the homotopy lifting property for every topological space Z: if H WZ � Œ0; 1�! B is
any map and f W Z! E lifts H. � ; 0/, then there is a lift zH of H with zH. � ; 0/D f ; see eg [Spanier
1966, page 66]. For any fiber bundle p WE!B one can define a sort of parallel transport up to homotopy,
which is a contravariant functor T from …1.B/ to the homotopy category of topological spaces, denoted
by h�TOP. For b 2 B set T .b/ WD Eb D p�1.b/. Given Œ˛� 2 …1.B/.b0; b1/ consider the map
H W Eb0 � Œ0; 1�! B defined by H.e; t/ WD ˛.t/. The inclusion i W Eb0 ,! E is a lift of H. � ; 0/. By
the homotopy lifting property there is zH WEb0 � Œ0; 1�!E with p zH DH and zH. � ; 0/D i . Moreover
the homotopy class of zH. � ; 1/ is well defined. We call T .Œ˛�/D Œ zH. � ; 1/� 2 ŒEb0 ; Eb1 � the homotopy
parallel transport along ˛; see eg [Spanier 1966, page 100f; May 1999, page 54].

3.3 If p W E ! B is a differentiable fiber bundle one can say more. Recall the following basic fact
from differential topology. Let M and N be smooth manifolds. An isotopy of M in N is a smooth map
f WM � Œ0; 1�!N such that f . � ; t / is an embedding for any t . If M DN , f . � ; t / is a diffeomorphism
of M for any t and f . � ; 0/D idM ; we say that f is an ambient isotopy.

Theorem 3.4 If M is a compact submanifold of N , any isotopy f WM � Œ0; 1�!N such that f . � ; 0/ is
the inclusion M ,!N extends to an ambient isotopy.

For a proof, see eg [Hirsch 1976, Theorem 1.3, page 180].

Lemma 3.5 Assume that p WE! B is a differentiable bundle. Let ˛ be a path in B from b0 to b1. Let
� be a path in E with p� D ˛ and set x0 D �.0/ 2 Eb0 and x00 D �.1/ 2 Eb1 . Then there is a map
zH WEb0 � Œ0; 1�!E such that

(1) zH. � ; 0/ is the inclusion Eb0 ,!E;

(2) zH. � ; t / is a diffeomorphism of Eb0 onto E˛.t/;
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(3) zH.x0; t /D �.t/.

In particular , the map f ˛ WD zH. � ; 1/ is a diffeomorphism of Eb0 onto Eb1 such that f ˛.x0/D x00 and
T .Œ˛�/D Œf ˛�. Moreover if G is a finite group acting fiberwise on E and the fiber is compact , then f ˛

can be chosen to be G–equivariant.

Proof If the fiber of E is compact, the argument is the usual proof of the Ehresmann theorem: pullback
E to Œ0; 1�, choose a lift to E of the vector field d=dt and integrate it; see eg [Voisin 2002]. A G–invariant
lift gives the last statement. But we also need the case of noncompact fibers. This can be treated as
follows. Denote by Q̨ W ˛�E ! E the bundle map covering ˛. Since Œ0; 1� is contractible, there is a
(smooth) trivialization  WEb0 � Œ0; 1�! ˛�E such that  .x; 0/D x; see [Steenrod 1951, Corollary 11.6,
page 53]. Given any such  the composition Q̨ ı WEb0 � Œ0; 1�!E is a possible choice for the map zH
in 3.2. We now modify  so that it matches conditions (1)–(3). First notice that if fhtgt2Œ0;1� is any path
in Diff.Eb0/ starting at the identity, then  0t WD  tht is a new trivialization of ˛�E. Next observe that
t 7! �1t .�.t// is a path in Eb0 from x0 to  �11 .x00/, ie an isotopy of fx0g in Eb0 . By Theorem 3.4 there
is fhtg that extends this isotopy. Then  0t WD  tht is a trivialization and zH WD Q̨ ı 0 satisfies (1)–(3).

We now use this construction for the fiber bundle M0;nC1!M0;n and give a geometric interpretation of
the morphism (2-4) in terms of parallel transport.

Proposition 3.6 Let x; x0 2M0;nC1. Let ˇ W Œ0; 1�!M0;n be a path such that ˇ.0/DX and ˇ.1/DX 0.
Let zH , f ˇ and T .Œˇ�/ be as in Lemma 3.5. Assume that f ˇ .x0/D x00. Set Q̌.t/ WD zH.t; x0/. Then for
Œ
� 2 �1.P1�X; x0/ we have f ˇ� .Œ
�/D Q̌#.Œ
�/.

Proof Take Œ
� 2 �1.P1�X; x0/. Consider the map

F W Œ0; 1�� Œ0; 1�!M0;nC1; F .t; s/D zH.
.s/; t/:

Then F.0; s/D zH.
.s/; 0/D 
.s/, F.0; 1/D zH.
.s/; 1/D f ˇ ı 
.s/ and

F.t; 0/D F.t; 1/D zH.x0; t /D Q̌.t/:

It follows that i. Q̌/�
 � Q̌ ' f ˇ ı
 rel f0; 1g. Hence f ˇ� .Œ
�/D Q̌#.Œ
�/ for any Œ
�2�1.P1�X; x0/.

Proposition 3.7 Let Œ˛� 2 �1.M0;n; X/ and let zH , f ˛ and T .Œ˛�/ be as in Lemma 3.5. Assume that
�.t/ WD zH.t; x0/D s ı˛. Then ".Œ˛�/D f ˛� .

Proof By Proposition 3.6, we get f ˛� Œ
�D �#.Œ
�/D Œ� �
 � i.�/� for any Œ
� 2 �1.P1�X; x0/. Hence
f ˛ satisfies f ˛� Œ
�D Œs ı˛ � 
 � s ı i.˛/�D ".Œ˛�/.Œ
�/ for every Œ
� 2 �1.P1�X; x0/.
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4 Dehn–Nielsen theorems and consequences

We dedicate this section to fixing some notation and recalling some classical concepts of surface topology.

4.1 Let† be an oriented surface and set†� WD†�fyg for some y 2†. Given b0; b12† let�.†; b0; b1/
denote the set of all paths ˛ in † with ˛.0/D b0 and ˛.1/D b1. Fix x0 2†�. Let Q̨ 2�.†; x0; y/ be
such that Q̨ .t/D y only for t D 1 and let D be a small disk around y. Let ˛ be the loop that starts at x0,
travels along Q̨ till it reaches @D, then makes a complete tour of @D counterclockwise and finally goes
back to x0 again along Q̨ . An important observation is that the conjugacy class of Œ˛� in �1.†�; x0/ is
well defined. Indeed the choice of the disk does not change Œ˛�, while if a different path Q̌ 2�.†; x0; y/
is chosen, then Œˇ� and Œ˛� are conjugate by the class of a loop in †� that starts at x0 travels along Q̨ up
to @D, then along a piece of @D and finally goes back along Q̌.

4.2 Fix a point .x0; X/ 2 F0;n S
2. Consider a smooth regular arc Q̨ i joining x0 to x�i (for some

permutation �). Assume that the paths Q̨ i intersect only at x0 and that the tangent vectors at x0 are
all distinct and follow each other in counterclockwise order (we orient S2 by the outer normal). Now
consider the loops ˛i constructed as in 4.1 and assume that the circles are pairwise disjoint and that the
intersection of the interior of the i th circle with X reduces to x�i .

Definition 4.3 Let x D .x0; X/ 2 F0;nC1 S
2. We call a set of generators BD fŒ˛1�; : : : ; Œ˛n�g obtained

as above a geometric basis of �1.S2�X; x0/. We say that a geometric basis BD fŒ˛i �g
n
iD1 is adapted

to x if it respects the order of the points in X , that is ˛i turns around xi , ie the permutation � D id.

Notice that, thanks to the permutation, the definition of geometric basis depends only on the set
fx1; : : : ; xng, not on the ordering of the points. On the other hand the classes fŒ˛i �g have a fixed
order.

4.4 For n� 3, set �n WD
˝

1; : : : ; 
n j

Qn
iD1 
i D 1

˛
. From a geometric basis BD fŒ˛i �g

n
iD1 we get an

isomorphism
� W �n! �1.S

2
�X; x0/

such that �.
i / D Œ˛i �. Assume that B D fŒ˛i �g
n
iD1 and B D fŒ N̨ i �g

n
iD1 are two geometric bases for

�1.S
2�X; x0/. It follows from 4.1 that every Œ˛i � is conjugate to some Œ N̨j �. If we denote by

�; N� W �n! �1.S
2
�X; x0/

the isomorphisms corresponding to the two bases, then � WD N� ı ��1 2 Aut�1.S2 �X; x0/ has the
following properties:

(1) for every i D 1; : : : ; n, �.Œ˛i �/ is conjugate to Œ j̨ � for some j ;

(2) the induced homomorphism on H 2.�1.S
2�X; x0/;Z/ is the identity.
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Definition 4.5 We denote by Aut� �1.S2 �X; x0/ the subgroup of elements of Aut�1.S2 �X; x0/
satisfying properties (1) and (2) above. By 4.4 this definition does not depend on the choice of the
geometric basis B.

4.6 Now assume that B and B are adapted to X . In this case, for every i D 1; : : : ; n, Œ˛i � is conjugate
to Œ N̨ i �. As a consequence, the automorphism � WD N� ı��1 of �1.S2�X; x0/ belongs to the subgroup
Aut�� �1.S2�X; x0/ defined as follows.

Definition 4.7 We denote by Aut�� �1.S2�X; x0/ the subgroup of Aut� �1.S2�X; x0/ of elements
that map Œ˛i � to a conjugate of Œ˛i � for every i D 1; : : : ; n. This definition does not depend on the choice
of the geometric basis B adapted to x.

Definition 4.8 Similarly, we denote by Aut� �n � Aut�n the subgroup of automorphisms � satisfying:

(1) For i D 1; : : : ; n the element �.
i / is conjugate to 
j for some j .

(2) The automorphism of H 2.�n;Z/ induced by � is the identity.

We denote by Aut�� �n � Aut� �n the subgroup of automorphisms � such that:

(10) For i D 1; : : : ; n the element �.
i / is conjugate to 
i .

If � W �n ! �1.S
2 � X; x0/ is induced from a geometric basis (not necessarily adapted to x), then

� 2Aut� �n (resp. Aut�� �n) if and only if ����1 2Aut� �1.S2�X; x0/ (resp. Aut�� �1.S2�X; x0/).

4.9 If G is a group and a 2G, then inna WG!G denotes conjugation by a, ie inna.x/D axa�1. Notice
that if f WG!H is a morphism, then f ı inna D innf .a/ ıf . The group of inner automorphisms of G is
denoted InnG. It is a normal subgroup of AutG. We set OutG WDAutG= InnG. For .x0; X/2F0;nC1 S

2,
we observe that Inn.�1.S2�X; x0//� Out��.�1.S2�X; x0// and Inn�n � Aut�� �n, and we define

(4-1)

Out� �1.S2�X; x0/ WD
Aut� �1.S2�X; x0/
Inn �1.S2�X; x0/

;

Out�� �1.S2�X; x0/ WD
Aut�� �1.S2�X; x0/
Inn �1.S2�X; x0/

;

Out� �n WD
Aut� �n
Inn�r

:

Using a geometric basis we immediately get Out� �n Š Out� �1.S2�X; x0/.

4.10 If Sg;n is a topological surface of genus g with n punctures, the mapping class group of Sg;n
is denoted by Mod.Sg;n/, while PMod.Sg;n/ denotes the pure mapping class group of Sg;n, which is
defined to be the subgroup of Mod.Sg;n/ of elements that fix each puncture individually.
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4.11 In the sequel we will need the following variants of the Dehn–Nielsen–Baer theorem, for which
see [Farb and Margalit 2012, Theorem 8.8, page 234; Ivanov 2002, Section 2.9; Zieschang et al. 1980,
Theorem 5.7.1, page 197, and Theorem 5.13.1, page 214].

Theorem 4.12 (Dehn–Nielsen–Baer) Let x D .x0; X/ 2 F0;nC1 S
2. Then ' 2 Aut� �1.S2�X; x0/ if

and only if there exists � 2 Inn�1.S2�X; x0/ and an orientation-preserving homeomorphism

h W S2�X ! S2�X

such that h.x0/D x0 and ' D � ı h�. In other words , Mod.S2�X/Š Out�.�1.S2�X; x0//.

Corollary 4.13 Let x; y 2 F0;nC1 S
2 and ' W �1.S2 �X; x0/! �1.S

2 � Y; y0/ be a homomorphism
that sends geometric bases to geometric bases. Then there exists � 2 Inn.�1.S2 � Y; y0// and an
orientation-preserving homeomorphism h W S2�X ! S2�Y such that h.x0/D y0 and ' D � ı h�.

Proof Fix an orientation-preserving homeomorphism f W S2�Y ! S2�X such that f .y0/D x0 and
apply the Dehn–Nielsen–Baer theorem to f� ı'.

Corollary 4.14 Let x D .x0; X/ 2 F0;nC1 S
2. Then ' 2 Aut�� �1.S2 �X; x0/ if and only if there

exists � 2 Inn.�1.S2 �X; x0// and an orientation-preserving self-homeomorphism h of S2 such that
h.xi /D xi for 0� i � n and ' D � ı h�. In other words , PMod.S2�X/Š Out�� �1.S2�X; x0/.

Proof Applying the Dehn–Nielsen–Baer theorem we get the homeomorphism h of S2�X and � . It is
elementary that h extends to a homeomorphism of S2. Next assume h.x1/D xj and fix a geometric basis
BD fŒ˛i �g adapted to x. Here ˛i is a loop at x0 that makes a counterclockwise turn around xi as in 4.1.
Hence Œh˛1� is a loop making a turn around h.x1/D xj . But Œh˛1� is conjugate to �h�.Œ˛1�/D '.Œ˛1�/
which is conjugate to Œ˛1� since ' 2 Aut�� �1.S2�X; x0/. Since ˛1 makes a turn around x1 it follows
that h.x1/D xj D x1. Similarly h.xi /D xi for any i .

4.15 We conclude this section by interpreting some classical constructions in the theory of braid groups
using parallel transport. We consider the (pure version of the) generalized Birman exact sequence
associated with C�� D P1�f0; 1;1g (see [Farb and Margalit 2012, Theorem 9.1, page 245])

(4-2) 1! �1.M0;n; X/
Push
��! PMod.P1�X/ Forget

���! PMod.C��/! 1:

The map Forget is the natural homeomorphism obtained by filling in the punctures, ie it is the map
induced by the inclusion P1�X ,!C��. The map Push is defined as follows; see [Farb and Margalit
2012, Section 4.2.1]. Let ˛ D .˛1; : : : ; ˛n/ W Œ0; 1�!M0;n be a pure braid in P1, with ˛.0/D ˛.1/DX .
Thinking of ˛ as an isotopy from X to X (sending each xi to xi ) we get by Theorem 3.4 that it can be
extended to an isotopy of the whole P1. Denoting by ˆ˛ the homeomorphism of P1 obtained at the end
of the isotopy, we have that ˆ˛.xi /D ˛i .1/D xi , and thus ˆ˛ can be regarded as an homeomorphism of
P1�X . Taking its isotopy class we get Push.˛/D Œˆ˛�2 PMod.P1�X/. This map is well defined, ie it
does not depend on the choice of ˛ within its homotopy class nor on the choice of the isotopy extension.
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4.16 It is useful to reinterpret the morphism " defined in (2-4) in this setting. In particular we note that
Im "� Aut��.�1.P1�X; x0//. Fix Œ˛� 2 �1.M0;n; X/.

Arguing as in Proposition 3.7 note that f ˛ extends to a homeomorphism f ˛ W P1! P1 that fixes every
xi individually. Hence Œf ˛�2 PMod.P1�X/. Since ".Œ˛�/D f ˛� , we have ".Œ˛�/2Aut��.�1.P1�X//.

Let Q" W �1.M0;n; X/! Out��.�1.C���X; x0// denote the composition of " with the natural projection
Aut�� ! Out��. Also, denote by F W PMod.C�� �X/! Out��.�1.C�� �X; x0// the isomorphism
F W Œh� 7! Œh�� coming from Corollary 4.14 of the Dehn–Nielsen–Baer theorem. The following proposition
is the analogue of [Birman 1974, Theorem 1.10] for configurations of points in C�� (instead of C).

Proposition 4.17 For Œ˛� 2 �1.M0;n; X/, let f ˛ be the parallel transport as in Lemma 3.5. Then
Push.Œ˛�/D Œf ˛�. Moreover , the following diagram commutes:

PMod.P1�X/

�1.M0;n; X/

Out��.�1.P1�X; x0//

F

Push

Q"

Proof Let ˛ W Œ0; 1�!M0;n be a pure braid in P1, with ˛.0/D ˛.1/DX , that we think as an isotopy
from X to X . Let zH W .P1 � X/ � Œ0; 1� ! M0;nC1 and f ˛ be as in Lemma 3.5. Define a map
 W P1 � Œ0; 1� ! P1 by  .u; t/ WD zH.u; t/ for u … X and  .xi ; t / WD ˛i .t/. So  is an ambient
isotopy of P1 extending the isotopy ˛. This proves the result, since by Proposition 3.7 ".Œ˛�/D f ˛� , so
Q".Œ˛�/D f ˛� mod Inn�1.P1�X; x0/, while Push.Œ˛�/D Œf ˛�.

Remark 4.18 Considering configurations of points in C instead of C��, Proposition 4.17 corresponds
to [Birman 1974, Theorem 1.10].

Proposition 4.19 Let x D .x0; X/ 2 M0;nC1 and let � 2 Aut�� �1.P1 � X; x0/. Then there is an
Œ˛� 2 �1.M0;n; X/, a lift Q̨ of ˛ with Q̨ .0/D Q̨ .1/D x0, a parallel transport f ˛t such that f ˛t .x0/D Q̨ .t/
and z 2 �1.P1�X; x0/ such that � D innz ıf ˛� .

Proof Since PMod.C��/ is trivial — see [Farb and Margalit 2012, Proposition 2.3] — it follows from
(4-2) that Push (and thus Q") is an isomorphism. In particular, for every � 2Aut��.�1.P1�X; x0//, there
exists Œ˛�2�1.M0;n; X/ and � 2 Inn.�1.P1�X; x0// such that f ˛� D ".Œ˛�/D �ı� . Thus �D innz ıf ˛�
for some z 2 �1.P1�X; x0/.
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5 Topological types of actions

Definition 5.1 Let G be a finite group and let †1 and †2 be oriented topological surfaces both endowed
with an action of G. We say that the two actions are topologically equivalent if there is an � 2 AutG and
an orientation-preserving homeomorphism f W†1 Š†2 such that f .g � x/D �.g/ �f .x/ for any x 2†1
and any g 2G; see [González-Díez and Harvey 1992]. An equivalence class is called a topological type
of G–action (sometimes this is called unmarked topological type).

Definition 5.2 Fix on S2 the orientation by the outer normal. We let Tn.G/ denote the set of topological
types of G–actions on a topological surface † such that †=G Š S2 (as oriented surfaces) and the
projection � W†!†=G has n branch points.

Definition 5.3 If G is a finite group an n–datum is an epimorphism � W �n!G is such that �.
i /¤ 1
for i D 1; : : : ; n. We let Dn.G/ denote the set of all n–data associated with the group G.

5.4 Fix a point x D .x0; X/ 2 F0;nC1 S
2 and a geometric basis B D fŒ˛i �g

n
iD1 of �1.S2 � X; x0/.

Denote by � W �n Š �1.S2 �X; x0/ the corresponding isomorphism. If � W �n! G is a n–datum, the
epimorphism � ı��1 gives rise to a topological G–covering p W†�0! S2�X . By the topological part
of the Riemann existence theorem, this can be completed to a branched G–cover p W†� ! S2. By taking
the equivalence class of †� we get a topological type of G–action. We get a map

Fx;B W D
n.G/! Tn.G/; .� W �n!G/ 7! Œ†� �:

5.5 We now introduce an action on the set of data that will be very important for the rest of the paper. By
the Dehn–Nielsen–Baer theorem, Out� �n Š Out�.�1.S2�X; x0//ŠMod.S2�X/. The latter group
has a presentation with generators �1; : : : ; �n�1 and relations

(5-1)
�i�j D �j�i for ji � j j � 2; .�1 � � � �n�1/

n
D 1;

�iC1�i�iC1 D �i�iC1�i ; �1 � � � �n�2�
2
n�1�n�2 � � � �1 D 1:

See [Birman 1974, Theorem 4.5, page 164]. Consider the short exact sequence

1! Inn�n ,! Aut� �n
�
�! Out� �n! 1:

Let Q�i W �r ! �r be the automorphism defined by the rule

Q�i .
i /D 
iC1; Q�i .
iC1/D 

�1
iC1
i
iC1; Q�i .
j /D 
j for j ¤ i; i C 1:

These automorphisms belong to Aut� �n and satisfy the relations (5-1) up to inner automorphisms.
Moreover, �. Q�i /D �i . The group AutG �Aut� �n acts on the set Dn.G/ by the rule

.�; �/ � � WD � ı � ı ��1;
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where .�; �/ 2AutG �Aut� �n and � 2Dn.G/ is a datum. We can view this action as an iterated action:
first AutG acts on Dn.G/, then Aut� �n acts on the quotient Dn.G/=AutG. Observe also that for any
a 2 �n,

� ı .inna/�1 D inn�.a/�1 ı �:

So inner automorphisms of �n can be absorbed in the action of AutG. Since the automorphisms Q�i above
satisfy the relations (5-1) up to inner automorphisms, it follows that they do satisfy them exactly when
acting on Dn.G/=AutG. In this way one gets an action of Out� �n on Dn.G/=AutG. Finally we claim
that the actions of Aut� �n and Out� �n on Dn.G/=AutG have the same orbits; hence

Dn=.AutG �Aut� �n/D .Dn=AutG/=Aut� �n D .Dn=AutG/=Out� �n:

The reason is the same as before: inner automorphisms of �n can be absorbed in the action of AutG.

Theorem 5.6 Let G be a finite group. Choose

(1) an element x D .x0; X/ 2 F0;nC1 S
2;

(2) a geometric basis BD fŒ˛i �g
n
iD1 of �1.S2�X; x0/.

Then the map Fx;B induces a bijection between Dn.G/=.AutG �Aut� �n/ and the set Tn.G/ of topo-
logical types of G–actions. The bijection does not depend on the choices of the point x 2 F0;nC1 S

2 and
of the geometric basis B.

From the discussion in 5.5 we immediately get the following.

Corollary 5.7 The topological types of G–actions on curves of genus g are in bijection with

.Dn=AutG/=Out� �n:

The proof of Theorem 5.6 is based on the following two propositions.

Proposition 5.8 The map Fx;B is constant on the orbits of the action of AutG �Aut� �n.

Proof Let � W �n ! G be a datum and .�; �/ 2 AutG �Aut� �n. Let � 0 D � ı � ı ��1. We want to
show that †� and †�

0

have the same topological type of G–action. Set N� D � ı � ı ��1. Observe
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that N� 2 Aut�.�1.S2 �X; x0// since � 2 Aut� �n. By the Dehn–Nielsen–Baer Theorem 4.12, there is
� 2 Inn.�1.S2�X; x0// and an orientation-preserving diffeomorphism h W .S2�X; x0/! .S2�X; x0/

such that h.x0/D x0 and � ı h� D N�. Let p and p0 denote the projections

†�0 †�
0

0

.S2�X; x0/ .S2�X; x0/

p p0

h

Choose Qx0 2†�0 and Qx00 2†
� 0

0 both over x0. We have that

h�.p�.�1.†
�
0; Qx0///D .�

�1
ı N�/.ker.� ı��1//D ��1.ker.� ı��1 ı N��1//D ker.� ı��1 ı N��1/;

where the last equality holds because � is an inner automorphism. Moreover, since � 2 AutG,

ker.� ı��1 ı N��1/D ker.� ı � ı��1 ı N��1/:

Thus h�.p�.�1.†�0; Qx0/// D ker.� ı � ı ��1 ı N��1/ D .p0/�.�1.†�
0

0 //. By the lifting theorem we get
an oriented homeomorphism Qh W†�0!†�

0

0 such that the diagram commutes and which extends to the
compactifications. Hence the G–actions on †� and †�

0

have the same topological type.

Proposition 5.9 If � 2Dn.G/, then Fx;B.�/ does not depend on the choices of the point x 2F0;nC1 S
2

and of the geometric basis B.

Proof First fix x and consider two geometric bases B and B. Let �; N� W �n! �1.S
2�X; x0/ denote the

corresponding isomorphisms. Then � WD��1ı N�2Aut� �n. For a datum � , we have �ı N��1D�ı��1ı��1.
So Fx;B.�/DFx;B.� ı�

�1/. By Proposition 5.8, Fx;B.� ı�
�1/DFx;B.�/. Hence Fx;B.�/DFx;B.�/,

as desired. Now suppose that x; y 2F0;nC1 S
2. Let � W�n!�1.S

2�X; x0/ and N� W�n!�1.S
2�Y; y0/

be the isomorphisms associated with two geometric bases B and B. Then

� WD N� ı��1 W �1.S
2
�X; x0/! �1.S

2
�Y; y0/

sends a geometric basis to a geometric basis. Hence, by Corollary 4.13, there is � 2 Inn.�1.S2�Y; y0//
and an orientation-preserving homeomorphism h W .S2 �X; x0/! .S2 � Y; y0/ such that h.x0/ D y0
and � ı h� D �. Given a datum � , h� maps the kernel of � ı��1 to the kernel of � ı N��1. By the lifting
theorem there is an oriented diffeomorphism Qh that extends to the compactifications. Hence the G–actions
on †�x and †�y have the same topological type.

We recall two basic facts about monodromy maps. Let p WE!B be a topological G–covering. For b 2B
and e 2 p�1.b/, we denote by �p;e the monodromy map �p;e W �1.B; b/! G such that g D �p;eŒ˛�
maps e to ˛e.1/, where ˛e is the lift of ˛ with initial point e.

Lemma 5.10 Let p WE! B be a topological G–covering. Fix b0; b1 2 B and ei 2 p�1.bi /. Let ı be a
path from e0 to e1 and 
 D p ı ı. Then �p;e0 D �p;e1 ı
#. In particular , if b0 D b1 then �p;e0 and �p;e1
differ by an inner automorphism of �1.B; b0/ or — equivalently — of G.
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Lemma 5.11 Let p WE!B and p0 WE 0!B 0 beG–coverings. Let Qh WE!E 0 be aG–equivariant homeo-
morphism and denote by h WB!B 0 the induced homeomorphism. Fix e0 2E. Then �p;e0D�p0; Qh.e0/ıh�.

Proof of Theorem 5.6 By Proposition 5.8, Fx;B induces a map between Dn.G/= .AutG �Aut� �n/
and Tn.G/. To prove the statement we have to check that

(1) if two epimorphisms �; � 0 W �r !G give rise to the same topological type of G–action, then � and
� 0 are in the same orbit for the action of AutG �Aut� �n;

(2) every topological type of G–action with n branch points can be constructed from a datum in Dn.G/.

To prove (1), consider the branched covers p W † ! S2 and p0 W †0 ! S2 associated with � ı ��1

and � 0 ı ��1 and suppose that there exists � 2 AutG and an orientation-preserving homeomorphism
Qh W†!†0 such that Qh.g � e/D �.g/ Qh.e/. We get an induced homeomorphism h W†=G!†0=G and an
isomorphism h� W �1.S

2�X; x0/! �1.S
2�X; h.x0//. Fix e0 2 p�1.x0/. From Lemma 5.11 it follows

that �p;e0 D � ı�p0; Qh.e0/ ı h�. Now fix e00 2 .p
0/�1.x0/ and a path in †0 from Qh.e0/ to e00. Finally let


 D p0 ı ı. By Lemma 5.10 we get that �
p0; Qh.e0/

D �p0;e00
ı 
#. Thus

(5-2) �p;e0 D � ı�p0;e00
ı 
# ı h�:

Observe that, since Qh preserves the orientation, so does h; hence 
#ıh� W�1.S
2�X; x0/!�1.S

2�X; x0/

lies in Aut�.�1.S2�X; x0//. Let � WD ��1 ı .
# ıh�/ı� 2Aut� �n be the corresponding automorphism
in Aut� �n. (Again we are using that � comes from a geometric basis.) Also, observe that � ı ��1

coincides with �p;e0 up to an inner automorphism of G, and the same holds for � 0 ı��1 and for �p0;e00 .
We get that there exists � 2 AutG such that (5-2) becomes

� ı��1 D � ı � 0 ı��1 ı .
# ı h�/D � ı �
0
ı ��1 ı��1:

Thus .�; �/:� 0 D � ; that is, they are in the same orbit for the action of AutG �Aut� �n. To prove (2)
assume that G acts effectively on a surface † in such a way that †=G Š S2. Up to diffeomorphism we
can assume that the set of critical values of p W †! S2 coincides with X . Fix a point Qx0 2 p�1.x0/.
Let � WD �p; Qx0 ı � W �n! G be the monodromy of the unramified cover. Since †�0 is connected � is
surjective, and �.
i /¤ 1 since all the points of X are branch points. So it is an n–datum. By construction
the associated cover coincides with †. Finally, it follows from Proposition 5.9 that the bijection induced
by Fx;B does not depend on x and B.

6 Tools for the construction

This section is dedicated to some tools that we will need in the following section for the construction
of the families. We start with some considerations from group theory, that will be at the basis of the
construction of the ordered set .I;�/ of Theorem 1.4.
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Consider an exact sequence of groups

(�) 1!N i
�!K

p
�!H ! 1

and an epimorphism
f WN�G

onto a finite group G.

Definition 6.1 An extension a of .�; f / is a pair aD .Ha; fa/, whose first element is a subgroup Ha of
H of finite index, and whose second element is a morphism fa W p

�1.Ha/!G such that fai D f . We
denote by I.�; f / the set of all extensions.

If aD .Ha; fa/ is an extension, we set

Ka WD p
�1.Ha/:

Ka is a subgroup of K and fa is defined on Ka.

On the set I.�; f / we introduce the order relation

a � b () Ha �Hb and fa D fbjKa :

Proposition 6.2 .I.�; f /;�/ is a directed set.

Proof Given a; b 2 I.�; f /, set Hc WD fh 2Ha\Hb j fa.h/D fb.h/g. Then Hc has finite index in H
since G is finite. Set fc WD fajHc . Then c WD .Hc ; fc/ 2 I.�; f /, and c � a and c � b.

In the following lemmas we describe two natural bijections between the sets I.�; f /, when f and (�)
change under some specific rule.

Lemma 6.3 Given f WN�G and � 2 AutG, set Nf WD � ıf . Then

(6-1) ˆ W I.�; f /! I.�; Nf /; ˆ.Ha; fa/ WD .Ha; � ıfa/:

is an order-preserving bijection.

The proof is immediate.

Lemma 6.4 Consider a commutative diagram of groups

.�/

. N�/

1 N K H 1

1 N K H 1

˛

i p


 ˇ

Ni Np

with exact rows and ˛, ˇ and 
 isomorphisms. In other words , (�) and ( N�) are isomorphic short exact
sequences. Given Nf WN�G, set f WD Nf ı˛ WN�G. Then the map

(6-2) ˆ W I.�; f /! I. N�; Nf /; ˆ.Ha; fa/ WD .ˇ.Ha/; fa ı 

�1
j
.Ka//;

is an order-preserving bijection.
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Proof If aD .Ha; fa/, set Ka D p�1.Ha/ as above. Set H Na WD ˇ.Ha/. Then

K Na WD Np
�1.ˇ.Ha//D .ˇ

�1
Np/�1.Ha/D .p


�1/�1.Ha/D 
.Ka/:

Set also Nf Na WD fa ı
�1jK Na . Then it is immediate to check that Na WD .H Na; Nf Na/Dˆ.a/ belongs to I. N�; Nf /

and that ˆ is an order-preserving bijection.

Lemma 6.5 Let N , H and G be groups and let " WH !AutN , h 7! "h, be a morphism. Let f WN !G

and ' WH !G be morphisms. There is a morphism f 0 WN Ì"H !G extending both f and ' (when N
and H are included in N Ì"H in the obvious way) if and only if for any h 2H

(6-3) inn'.h/ ıf D f ı "h:

The proof is elementary.

Lemma 6.6 Let N , H , G, " WH ! AutN and f be as above. Assume that f is surjective , that N is
finitely generated and that G is finite. Then

(a) H 00 WD fh 2H j "h.ker �/D ker �g is a finite-index subgroup of H ;

(b) there is a morphism Q" WH 00! AutG such that the diagram

N N

G G

"h

f f

Q"h

commutes for h 2H 00;

(c) H 0 WD ker Q" is a finite-index subgroup of H ;

(d) there is a unique morphism f 0 WN Ì"H 0!G that extends f and such that f 0jH 0 � 1.

Proof The subgroup kerf has index d WD jGj<1 in N . Since N is finitely generated, there are a finite
number of index d subgroups of N ; see eg [Hall 1950, page 128; Kurosh 1960, page 56]. The natural
action of AutN on the subgroups of N preserves the index. Therefore the orbit of AutN through kerf
is finite. Hence .AutN/kerf has finite index in AutN . Since H=H 00 injects in AutN=.AutN/kerf , H 00

also has finite index in H . The existence of Q"h follows immediately from the inclusion "h.kerf /� kerf
for h 2H 00. Since AutG is finite, H 0 has finite index in H 00 and in H . By construction, for any h 2H 0

we have f D Q"h ıf D f ı "h, ie (6-3) holds with ' WH 0!G the trivial morphism.

Theorem 6.7 If the sequence (�) splits , then I.�; f /¤∅.

Proof By Lemma 6.4 we can assume that the split exact sequence (�) is a semidirect product. The result
then follows from Lemma 6.6.

6.8 We dedicate the second part of this section to some considerations on coverings and fiber bundles,
which will be fundamental tools for our construction.
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In the following we assume that all the spaces considered are semilocally 1–connected. Let X be
a connected space and let x 2 X . For every subgroup H � �1.X; x/ there is a pointed covering
p W .E; e/ ! .X; x/ such that Imp� D H . Moreover p is unique up to pointed isomorphism. If
ˇ 2�.X; x; x0/ and ˇ# W �1.X; x/! �1.X; x

0/ is the induced isomorphism, then the pointed coverings
of X associated with H � �1.X; x/ and with ˇ#H � �1.X; x

0/ are isomorphic. Indeed if ˇe denotes the
lift with ˇe.0/D e and e0 D ˇe.1/, then p��1.E; e0/D ˇ#H , so E is associated with both subgroups. If
X is a complex manifold, any covering has a unique complex structure such that p is holomorphic and
the coverings associated to H � �1.X; x/ and with ˇ#H � �1.X; x

0/ are biholomorphic.

Lemma 6.9 Let E, B and B be connected and locally arcwise connected topological spaces. Let
p WE!B be a fiber bundle and q WB!B be a covering. Let E WD q�E be the pullback bundle. Then in
the diagram

(6-4)
.E; e/ .E; Ne/

.B; b/ .B; Nb/

Nq

 p

q

Nq WE!E is also a covering. Moreover , if the fiber of p is arcwise connected , then

Nq��1.E; e/D p
�1
� .q��1.B; b//:

Proof Fix Ne 2E, set NbDp. Ne/ and let V �B be an evenly covered open subset of B , ie q�1.V /D
F
Ui

and qjUi is a homeomorphism of Ui onto V . We claim that p�1.V / is an evenly covered neighborhood
of e. Indeed Nq�1.p�1.V //D

F
 �1.Ui /. Moreover  �1.Ui /D .qjUi /

�E is mapped homeomorphically
on p�1.V / by Nq since qjUi is a homeomorphism onto V . This proves the first assertion. Next choose
e 2 Nq�1. Ne/ and set b D  .e/. Obviously q.b/D Nb. Set F WD p�1. Nb/ and F WD  �1. Nb/. The diagram
(6-4) induces a morphism of the homotopy exact sequences of the bundles:

�2.B/ �1.F; e/ �1.E; e/ �1.B; b/ �0.F /D 1

�2.B/ �1.F ; Ne/ �1.E; Ne/ �1. NB; Nb/ �0.F /D 1

Š Š Nq�

p�

q� Š

p�

Set H WD q��1.B; b/ � �1.B; Nb/, and K WD p�1� .H/ � �1.E; Ne/. In the lower row we can substitute
�1.B; b/ with H and �1.E; e/ with K and the row remains exact. Clearly Nq� maps into K since the
diagram commutes. So we get the diagram

�2.B/ �1.F; e/ �1.E; e/ �1.B; b/ �0.F /D 1

�2.B/ �1.F ; Ne/ K H �0.F /D 1

Š Š Nq�

p�

q� Š

p�

Now q� is an isomorphism. Applying the short five lemma [Eilenberg and Steenrod 1952, page 16], we
get that K D Im Nq�, as desired.
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The following lemma is a sort of converse which will be needed later.

Lemma 6.10 Let A, E, E, B and B be connected and locally arcwise connected topological spaces.
Consider the diagram

(6-5)
.A; a/ .E; Ne/

.B; b/ .B; Nb/

Qq

' p

q

Assume that ' W A! B and p W E ! B are fiber bundles with arcwise connected fibers , that q and Qq
are finite degree coverings , and that Qq��1.A; a/D p�1� .q��1.B; b//. Then A is isomorphic to q�E as a
fiber bundle over B .

Proof Apply Lemma 6.9. Using the same notation as in (6-4),

Nq��1.E; e/D p
�1
� .q��1.B; b//D Qq��1.A; a/:

Moreover Nq is also a covering. So there is w W .A; a/! .E; e/ such that Nq ıw D Qq. It remains to show
that  ıw D '. Combining (6-5) with (6-4) we get the commutative diagram

.A; a/ .E; e/ .E; Ne/

.B; b/ .B; Nb/

Qq

w

'

Nq

 p

q

From Nq ıwD Qq we get p ı Nq ıwD p ı Qq; hence q ı ıwD q ı'. So  ıw and ' lift the same map with
respect to the covering q. Since  ıw.a/D '.a/, we conclude that  ıw D ' and the result follows.

7 Construction of the families of G–curves

7.1 Fix an element x D .x0; X/ 2M0;nC1 and set

(7-1) Nx WD �1.P
1
�X; x0/; Kx WD �1.M0;nC1; x/; HX WD �1.M0;n; X/:

Consider the split exact sequence in the top row of (2-3), namely

(�x) 1!Nx
i�
�!Kx

p�
�!HX ! 1:

Here i W P1�X ,!M0;nC1 is the map i.x0/ WD .x0; x1; : : : ; xn/ and p WM0;nC1!M0;n is the fibration.
Now let G be a finite group and let � W �n! G be a datum. Choose a geometric basis BD fŒ˛i �g

n
iD1

of Nx . As in 4.4, let � W �n! Nx be the isomorphism induced from the basis B. We apply the group
theoretical considerations of Section 6 to the exact sequence (�x) with f WD � ı��1 WNx�G. We get
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a directed set I.�x; f /, which is nonempty since (�x) splits. To stress the dependence from the choices
made, we will set

I.x;B; �/ WD I.�x; � ı�
�1/:

Indeed � contains the same information as the basis B.

Definition 7.2 A collection of families is an indexed set fCa! Yaga2I where

(1) .I;�/ is a directed set;

(2) .Ya; ya/ is a pointed smooth complex quasiprojective variety;

(3) Ca! Ya is a family of curves;

(4) if a; b 2 I and a � b, then there is an étale cover of finite degree vab W .Ya; ya/! .Yb; yb/ such
that Ca Š v

�
ab

Cb .

In this section we construct a collection of families indexed by I.x;B; �/.

7.3 Fix a D .Ha; fa/ 2 I.x;B; �/. Let qa W .Ya; ya/ ! .M0;n; X/ be the pointed covering with
qa��1.Ya; xa/ D Ha. Endow Ya with the unique structure of a complex manifold making qa an
unramified analytic cover. Consider the diagram

(7-2)

.Ea WD q
�
aM0;nC1; ea/ .M0;nC1; x/

.Ya; ya/ .M0;n; X/

Nqa

 a p

qa

with ea WD .ya; x/. Notice that p WM0;nC1!M0;n is the universal family of lines with n holes and hence
 a WEa! Ya is also a holomorphic family of curves (lines with holes).

By Lemma 6.9 applied to the diagram (7-2), the map Nqa W Ea ! M0;nC1 is the covering such that
Nqa��1.Ea; ea/DKa WD p

�1
� .Ha/. Hence fa WKa!G gives a morphism �1.Ea; ea/!G and thus a

pointed G–covering ua W .C�a; za/! .Ea; ea/ such that Imua� D . Nqa�/
�1.kerfa/. In other words, ua is

the covering such that

(7-3) Imua� D Nq
�1
a� .kerfa/:

Composing with  a we finally get a holomorphic family of noncompact Riemann surfaces

�a D  a ıua W C
�
a! Ya:

The following diagram describes the whole situation:

.C�a; za/ .Ea; ea/ .M0;nC1; x/

.Ya; ya/ .M0;n; X/

�a

ua Nqa

 a p

qa
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It might help to compare this diagram with the corresponding diagram of groups:

kerfa Ka Kx

Ha HX

p� p�

Summing up: p is the universal family of lines with n holes, qa is a covering used as a base change,
 a is the pullback family of lines with n holes, ua is a Galois cover and �a is a family of noncompact
Riemann surfaces. Each fiber of �a covers the corresponding fiber of  a. More precisely, if y 2 Ya and
X D qa.y/ 2M0;n, looking at the fibers over y we have the unramified G–covering

(7-4) C�a;y!Ea;y D P1�X:

The last step in the construction is the fiberwise compactification, which is an application of the Grauert–
Remmert extension theorem; see [Grothendieck 1971, Chapter XII, Theorem 5.4, page 340].

Theorem 7.4 (Grauert–Remmert extension theorem) Let Y be a connected complex manifold and
Z � Y a closed analytic subset such that Y ı WD Y �Z is dense in Y . Let f ı W Xı ! Y ı be a finite
unramified cover. Then up to isomorphism there exists a unique normal analytic space X and a unique
analytic covering f WX ! Y such that Xı �X and f ı D f jXı .

Corollary 7.5 In the hypotheses above , if Z is a smooth divisor , then X is smooth.

Proof Let D be the unit disc. Using a local chart U ŠDn of Y such that U \Z DDn\fz1 D 0g we
get a finite cover of D� �Dn�1. By the topological classification of coverings disc, it is of the form
.z1; : : : ; zn/ 7! .zm1 ; z2; : : : ; zn/ for some m� 1, hence extends to an analytic cover Dn!Dn. So, by
uniqueness, f �1.U /ŠDn. In particular, f �1.U / is smooth.

Lemma 7.6 The unramified covering ua W C�a ! Ea extends uniquely to an algebraic ramified cover
ua W Ca! P1 �Ya, with Ca and Ya smooth and quasiprojective.

Proof Consider P1 �M0;n. Let x0 2 P1 and X D .x1; : : : ; xn/ 2 M0;n. Recall that this means that
xn�2 D 0, xn�1 D 1, xn D1 and .x1; : : : ; xn�3/ 2 F0;n�3C��. Let Zi � P1 �M0;n be the smooth
divisor Zi WD fx0 D xig for i D 1; : : : ; n. The divisors Z1; : : : ; Zn are pairwise disjoint, so their union,
which we denote by Z, is a smooth divisor of P1�M0;n. The map Nqa in (7-2) obviously extends to a map

Nqa W P
1
�Ya! P1 �M0;n:

Then Nq�aZ is a smooth divisor of P1 �Ya. Since M0;nC1 D .P1 �M0;n/�Z, Ea D .P1 �Ya/� Nq�aZ.
So we can apply the Grauert–Remmert extension theorem to the topological covering ua W C�a ! Ea,
which can be thus completed to a ramified cover ua W Ca ! P1 � Ya, with Ca smooth. To prove the
quasiprojectivity one uses a similar argument. An étale analytic cover of a quasiprojective variety is
quasiprojective and the covering map is algebraic; see eg [Grothendieck 1971, Chapter XII, Theorem 5.1,
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page 333]. Since M0;n and M0;nC1 are quasiprojective, and qa and Nqa are étale, we get that Ya and Ea are
quasiprojective and qa and Nqa are algebraic morphisms. Let NYa be a projective manifold containing Ya

as an open subset. Then Ea is a Zariski open subset of P1 � NYa and we can apply the Grauert–Remmert
extension theorem to ua W C�a! Ea, this time viewing Ea as an open subset of P1 �Ya. We obtain a
ramified cover Nua W Ca! P1 �Ya. Since P1 �Ya is projective, Ca is also projective. By uniqueness,
Ca D Nu

�1
a .P1 �Ya/, so it is quasiprojective.

7.7 Notice that the projection P1 �Ya! Ya extends  a in (7-2), while the composition

Ca
ua
�! P1 �Ya! Ya

extends �a. We denote the extensions by the same symbol. We claim that

�a W Ca! Ya

is a submersion. Indeed, let U ŠDn be a local chart in P1 �Ya such that

U \��Z D U \��Zi D fx0� xi D 0g

for some i D 1; : : : ; n (with xn�2 D 0, xn�1 D 1 and xn D 1). Denoting w D x0 � xi , we get that
w; x1; : : : ; xn are local coordinates on U and � 0j� 0�1.U / W �

0�1.U /! U is of the form

.w; x1; : : : ; xn/ 7! .wm; x1; : : : ; xn/

for some m� 2. We conclude that locally �a.w; x1; : : : ; xn/D .x1; : : : ; xn/. Thus �a is a submersion
onto a smooth base and its fibers are smooth curves.

If y 2 Ya, the fiber Ca;y ! P1 of �a over y is the unique smooth compactification of the unramified
cover (7-4), ie the one given by Riemann’s existence theorem.

We call
Ca P1 �Ya

Ya

ua

�a

 a

the family of G–coverings associated with the datum � 2 Dn.G/, the point x D .x0; X/ 2M0;nC1, the
geometric basis B of �1.P1�X; x0/ and the extension a 2 I.x;B; �/.

Theorem 7.8 If x 2M0;nC1, B is a basis of Nx and � is an n–datum , then

(7-5) K.x;B; �/ WD fCa! Yaga2I.x;B;�/

is a collection of families in the sense of Definition 7.2.

Proof It remains only to prove property (4). We start with an observation. If pi W .Ei ; ei /! .B; b/ are
coverings and Imp1�� Imp2�, the unique continuous map f W .E1; e1/! .E2; e2/ such that p2ıf Dp1
is a covering map. Indeed let f W .X; x/! .E2; e2/ be the covering with Imf� D p

�1
2� .Imp1�/. Then

p2 ıf is a covering isomorphic to p1, so we can assume p1 D p2 ıf .
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Now, given a D .Ha; fa/ and b D .Hb; fb/, a � b means that Ha � Hb � �1.M0;n; X/; hence
Ka D p�1� .Ha/ � Kb D p�1� .Hb/ and fa W Ka ! G is the restriction of fb . We have coverings
qi W .Yi ; yi /! .M0;n; X/ with Hi D Im qi� for i D a; b. By the observation at the beginning there is a
unique covering map v W .Ya; ya/! .Yb; yb/ such that qb ı v D qa and Im v� D q

�1
b�
.Ha/. For the same

reason, since Im Nqi� DKi for i D a; b, there is a covering Nv W .Ea; ea/! .Eb; eb/ such that Nqb ı Nv D Nqa.
We claim that

(7-6)  b Nv D v a:

Indeed, qb b Nv D p Nqb Nv D p Nqa D qa a D qbv a. Hence  b Nv and v a lift the same map with respect
to the covering qb . Since  b Nv.ea/D yb D v a.ea/ we conclude that  b Nv D v a as claimed.

Finally we have the coverings ui WC�i !Ei such that Imui�D Nq
�1
i� .kerfi /; see (7-3). Since Nv�D Nq�1b� ı Nqa�

and kerfa � kerfb we have Nv�. Nq�1a� .kerfa//D Nq�1b� .kerfa/� Nq�1b� .kerfb/. This means that

(7-7) Im. Nv ıua/� D Nv�. Nq�1a� .kerfa//� Imub�:

So we can apply once more the observation at the beginning and we get a covering Qv WC�a!C�
b

such that

(7-8) ub Qv D Nvua; Im Qv� D u�1b� .Im. Nv ıua/�/:

Composing with  a and  b and using (7-6) we get a commutative diagram

(7-9)

C�a C�
b

Ya Yb

Qv

�a �b

v

with �a and �b bundles, and Nv and Qv coverings. We claim that

(7-10) Im Qv� D ��1b� .Im v�/:

Indeed starting from (7-7) we compute

Im. Nv ıua/� D Nq�1b� .kerfa/D Nq�1b� .Ka \ kerfb/D Nq
�1
b� .Ka/\ Nq

�1
b� .kerfb/;

Nq�1b� .kerfb/D Imub�;

Ka D p
�1
� .Ha/;

Nq�1b� .Ka/D Nq
�1
b�p

�1
� .Ha/D .p Nqb�/

�1
� .Ha/D .qb� b�/

�1.Ha/D  
�1
b� .q

�1
b� .Ha//D  

�1
b� .Im v�/;

Im. Nv ıua/� D  �1b� .Im v�/\ Imub�:

So from (7-8) we get

Im Qv� D u�1b� .Im. Nv ıua/�/D u
�1
b� . 

�1
b� .Im v�/\ Imub�/D u

�1
b� . 

�1
b� .Im v�//D �

�1
b� .Im v�/:

This proves (7-10). Applying Lemma 6.10 to the diagram (7-9) we get that Qv W C�a ! v�C�
b

is an
isomorphism of bundles over Ya. The map Qv is an isomorphism of the coverings C�a ! Ea and
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v�C�
b
!Ea. By the uniqueness statement in the Grauert–Remmert extension theorem, it extends to an

isomorphism of the coverings Ca! P1 �Ya and v�Cb! P1 �Ya. This extension is an isomorphism
of the families of curves, Ca Š v

�Cb .

8 Independence from the choices

In this section, we conclude the proof of our Theorem 1.4. We present two main arguments. The first one
is Theorem 8.2, whose proof will take up most of the section. It states the independence of the collection
K.x;B; �/ on x 2M0;nC1, on the geometric basis B, and on the AutG �Aut� �n–orbit of � . Secondly,
we show (Theorem 8.6) that every curve in a family of the collection �a W Ca! Ya has the topological
type associated with � , and that, conversely, for any G–curve C with topological type Œ� �, there is at least
one fiber of Ca! Ya which is (unmarkedly) G–isomorphic to C (and there are only finitely many such
fibers).

Definition 8.1 We say that two collections of families fCa! Yaga2I and fC Na! Y Nag Na2I are equivalent
if there is an order-preserving bijection a 7! Na of I onto I and for every a 2 I a biholomorphism
wa W Ya! Y Na such that:

(1) Ca Š w
�
aC Na.

(2) If a; b 2 I and a � b, the following diagram commutes:

Ya Y Na

Yb Y Nb

vab

wa

Nv
Na Nb

wb

In the following we conclude the independence of our collection from the choices made; different choices
yield equivalent collections.

Theorem 8.2 Up to equivalence , the collection of families K.x;B; �/ is independent of the choices of x
and B and only depends on the AutG �Aut� �n–orbit of � . In particular , the collection K.x;B; �/ only
depends on the topological type Œ� �.

The proof of Theorem 8.2 is organized as follows: We start by showing that the action of AutG on � does
not change the collection (Lemma 8.3); and then we prove that changing x and B by parallel transport
leads to equivalent collections (Lemma 8.4). The combination of these two results implies that, up to
equivalence, the collection of families K.x;B; �/ does not change under the action AutG �Aut�� �n
on � (Lemma 8.5). Finally, we combine these results and complete the proof of Theorem 8.2.

Lemma 8.3 Let � 2Dn.G/ and � 2AutG. Set N� WD � ı � . Let I.x;B; �/! I.x;B; N�/, a 7! Na, be the
bijection of Lemma 6.3. Then Y Na D Ya and C Na D Ca. So K.x;B; �/ D K.x;B; N�/. In particular , for
z 2Nx , K.x;B; �/D K.x;B; � ı innz/:
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Proof Let � W �n!Nx be the isomorphism induced from the basis B. Set f WD � ı��1 and

Nf WD N� ı��1 D � ıf:

By Lemma 6.3 we get a bijective correspondence I.x;B; �/! I.x;B; N�/ which sends aD .Ha; fa/ to
Na WD .H Na; f Na/, whereH NaDHa, and f NaD �ıfa. It follows thatK NaDKa and kerf NaD kerfa. Therefore
Y Na D Ya; E Na DEa, C�

Na D C�a and C Na D Ca. For the last statement, observe that � ı innz D inn�.z/ ı� .

Lemma 8.4 Let � 2 Dn.G/ and x; x0 2M0;nC1. Let the notation be as in Proposition 3.7: ˇ is a path
in M0;n from X to X 0, f ˇ represents the parallel transport along ˇ, f ˇ .x0/D x00 and Q̌.t/D zH.t; x0/.
Then the collections K.x;B; �/ and K.x0; f

ˇ
� .B/; �/ are equivalent.

Proof Let � W �n ! Nx be the isomorphism induced from the basis B. Set f WD � ı ��1 and
Nf WD f ı .f

ˇ
� /
�1. We show that if a 2 I.x;B; �/ and Na D ˆ.a/, where ˆ is the map in (6-2),

then the families Ca! Ya and C Na! Y Na are canonically isomorphic. Consider the diagram

.�x/

.�x0/

1 Nx Kx HX 1

1 Nx0 Kx0 HX 0 1

f
ˇ
�

i� p�

Q̌# ˇ#

i� p�

Assume aD .Ha; fa/ and NaD .H Na; f Na/. By the definition of ˆ we have H Na D ˇ#.Ha/, K Na D Q̌#.Ka/,
f Na D fa ı . Q̌#/

�1 and kerf Na D Q̌#.kerfa/. It follows from 6.8 that there are canonical isomorphisms
Y Na Š Ya, E Na ŠEa and C�

Na Š C�a. By compactifying we get that the families Ca! Ya and C Na! Y Na are
isomorphic.

Lemma 8.5 Let .�; �/ 2AutG�Aut�� �n. Then the collections K.x;B; �/ and K.x;B; �ı� ı��1/ are
equivalent.

Proof We have N� WD � ı � ı ��1 2 Aut��Nx . Set N� WD � ı � ı ��1, f WD � ı ��1 W Nx � G and
Nf WD N� ı ��1 D � ı f ı N��1. By Proposition 4.19, there is an Œ˛� 2 �1.M0;n; X/, a lift Q̨ of ˛ with
Q̨ .0/D Q̨ .1/D x0, and a parallel transport f ˛t such that f ˛t .x0/D Q̨ .t/ and z 2 �1.P1 �X; x0/ such
that N� D innz ıf ˛� . Note that, in particular, f ˛.x0/ D x0. We get Nf D � ı f ı .f ˛� /

�1 ı innz�1 . The
statement follows from the previous two lemmas.

Proof of Theorem 8.2 Since changing geometric bases of Nx adapted to X corresponds to acting with
Aut�� �n, by the previous lemma it follows that if the point x is fixed, changing the adapted basis does
not matter. Next fix x; Nx 2M0;nC1. Choose a path Q̌ in M0;nC1 joining x to Nx. Set ˇ WD p ı Q̌ and let
f ˇ be a parallel transport such that f ˇ .x0/ D Nx0. Let B be an adapted basis at x. Then f ˇ� B is an
adapted basis at Nx. By Lemma 8.4 we get that K.x;B; �/ and K. Nx; f

ˇ
� B; �/ are equivalent. In other

words we have independence from x and B as long as B is adapted to x. We also have that � only
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matters through its AutG �Aut�� �n–orbit by Lemma 8.5. It remains to show independence from the
Aut� �n–orbit. It follows from the definitions in 4.4 that this is equivalent to showing that if x 2M0;nC1,
B is a basis adapted to x and B is an arbitrary basis of �1.P1�X; x0/, then the collections K.x;B; �/
and K.x;B; �/ are equivalent. Let us prove this statement. There is a permutation � 2 Sn such that B is
adapted to .x0; x�1 ; : : : ; x�n/. Define

� WM0;n!M0;n; �.x1; : : : ; xn/ WD .x�1 ; : : : ; x�n/;

Q� WM0;nC1!M0;nC1; Q�.x0; x1; : : : ; xn/ WD .x0; x�1 ; : : : ; x�n/:

Set Nx D Q�.x/ and X D �.X/. By the previous results we know that K.x;B; �/ and K. Nx;B; �/ are
equivalent. It remains to check that also K. Nx;B; �/ and K.x;B; �/ are equivalent. Consider the diagram

.�x/

.� Nx/

1 Nx Kx HX 1

1 N Nx K Nx HX 1

idNx

i� p�

Q�� ��

i� p�

To check commutativity observe that Q� sends the fiber over X to the fiber over X WD .x�1 ; : : : ; x�n/, ie
Q�.P1�X/� fXg D .P1�X/� fXg and on the first factor it is the identity map. We use this diagram
with f D Nf D � ı N��1. We get the usual correspondence a 7! Na, I.x;B; �/! I. Nx;B; �/, with

(8-1) H Na D ��.Ha/; K Na D Q��.Ka/; kerf Na D Q��.kerfa/:

Consider the diagram

.C�
Na; z Na/ .E Na; e Na/ M0;nC1

.C�a; za/ .Ea; ea/ M0;nC1

.Y Na; y Na/ .M0;n; NX/

.Ya; ya/ .M0;n; X/

u Na

 Na

Nq Na

p
ua

Owa

 a

Qwa

Nqa

Q�

q Na

wa

qa

p

�

By a repeated use of the lifting theorem and using (8-1) we can show the existence of homeomorphisms
wa, Qwa and Owa making the diagram commute. Indeed .Im.� ı qa/�/ D ��.Ha/ D Im q Na� by the first
equation in (8-1). So wa is the isomorphism between the pointed coverings � ı qa and q Na. By the same
argument, using the second equation in (8-1), we get the isomorphism Qwa. Consider the cube on the right
in the diagram. All its faces (except the left one) commute. But then

q Na Na Qwa D p Nq Na Qwa D p Q� Nqa D �p Nqa D �qa a D q Nawa a:

So  Na Qwa and wa a lift the same map with respect to q Na. Since  Na Qwa.ea/ D y Na D wa a.ea/ we
conclude that  Na Qwa D wa a.
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Finally consider the horizontal square on the left of the diagram. We want to show that

Im. Qwa ıua/� D Imu Na�:

We compose with the injective morphism Nq Na� and compute

Nq Na�.Im. Qwa ıua/�/D Q��qa�.Imua�/D Q��.kerfa/:

By the third equation in (8-1) this equals kerf NaD Nq Na�.Imu Na�/. Thus Nq Na�.Im. Qwa ıua/�/D Nq Na�.Imu Na�/

and Im. Qwa ıua/� D Imu Na�. So the lifting theorem again yields existence of an isomorphism Owa making
everything commutative. The homeomorphisms wa, Qwa and Owa are in fact biholomorphisms as observed
in 6.8. It follows that � Na Owa D wa�a. By the uniqueness statement in the Grauert–Remmert extension
theorem, Qwa extends to a biholomorphism between Ca and C Na. Thus Ca Š Qw

�
aC Na.

Property (2) in Definition 8.1 follows again by the lifting theorem:

Ya Y Na

Yb Y Nb

M0;n M0;n

vab

wa

qa

q Na

Nv
Na Nb

wb

qb q Nb

�

We have Nq Nb Nv Na Nbwa D q Nawa D �qa D �qbvab D q Nbwbvab , so Nvabwa and wavab lift the same map. More-
over, Nv

Na Nb
wa.ya/D Nvab.y Na/D y Nb D wb.yb/D wbvab.ya/, so the two maps coincide; Nvabwa D wavab .

This proves (2).

Theorem 8.6 Let G be a finite group and � 2Dn.G/. Choose a point x 2M0;nC1 and a geometric basis
B of Nx . Let �a W Ca! Ya be any family in the collection K.x;B; �/. Then every curve in the family
has the topological type given by Œ� � 2 Dn.G/=AutG �Aut� �n. Conversely, every algebraic curve with
a G–action of the topological type given by Œ� � is (unmarkedly) G–isomorphic to some fiber. Moreover ,
there are only finitely many such fibers.

Proof Consider �a WCa!Ya and let y; y0 2Ya. Let ˇ be a path in Ya from y to y0, and let f ˇ represent
the parallel transport along ˇ. By Lemma 3.5, we get a G–equivariant diffeomorphism Ca;y ! Ca;y0 .
Hence the G–actions on Ca;y and Ca;y0 have the same topological type. This proves the first statement.
Now let C be an algebraic curve such that G acts effectively on C in such a way that C=G Š P1.
We get the ramified covering � W C ! P1. By acting via PGL.2;C/, one can move any three branch
points of � to 0, 1 and1. We can thus assume that the set of critical values of � W C ! P1 coincides
with Y 2 M0;n. Set C � WD ��1.P1 � Y /. Fix a point y0 2 P1 � Y and consider the monodromy
f W �1.P1�Y; y0/!G associated with �jC� W C �! P1�Y . Finally fix a basis B0 of �1.P1�Y; y0/
to Y . Let � W�n!�1.P1�Y; y0/ denote the associated isomorphism. Denote by � 0D f ı� W�n!G the
datum associated with C . We get a collection K.y;B0; � 0/. Assume that C has the same topological type
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of G–action as Œ� �, namely that Œ� �D Œ� 0� 2Dn.G/=Aut�� �n �AutG. By Theorem 8.2 the collections
K.x;B; �/ and K.y;B0; � 0/ are equivalent. Thus there exist Na 2 I.y;B0; � 0/ and a biholomorphism
wa W Ya ! Y Na as in Definition 8.1. In particular, Ca Š w

�
aC Na. It follows that C , which is the central

fiber for � Na W C Na! Y Na, is G–isomorphic to some fiber of �a W Ca! Ya. To check that only finitely many
fibers can be G–isomorphic to C we argue as follows. For any � 2 Sn there is a unique g� 2 Aut P1

such that g� .y�n�2/D 0, g� .y�n�1/D 1 and g� .y�n/D1. If f W C ! Ca;y is a G–isomorphism for
some y 2 Ya, then f descends to an isomorphism Nf 2 Aut P1 that maps branch points to branch points.
So if X WD qa.y/, we have Nf .fy1; : : : ; yng/ D fx1; : : : ; xng. Then there is a permutation � such that
Nf .y�i /D xi for any i D 1; : : : ; n. So Nf D g� and X D .g� .y1/; : : : ; g� .yn//. This shows that there is

a finite number of possibilities for X , so a finite number of possibilities for y since qa is finite.

9 The centerless case

If the group G has trivial center, the whole discussion in Sections 6, 7 and 8 is greatly simplified.

Indeed, let us go back to the setting at the beginning of Section 6 and let us consider again the sequence (�).

Theorem 9.1 If the sequence (�) on page 1585 splits and Z.G/ D f1g, then there exists a minimum
amin 2 I.�; f / and it is unique.

Proof With the notation of Lemma 6.6, set H 000 WD fh 2H 00 j Q"h 2 InnGg. Note that H 0 �H 000 �H 00

and that H 000 has finite index in H 00 and in H . By assumption the map G ! InnG is bijective. So
for every h 2 H 000, there is a unique element of G, denoted by '.h/, such that Q"h D inn'.h/. We get
a map ' W H 000! G. Since Q" is a morphism, we have inn'.hh0/ D inn'.h/'.h0/ and, since Z.G/ D f1g,
this implies that ' is a morphism. Also, by construction, ' satisfies inn'.h/ ıf D f ı "h. Therefore,
by Lemma 6.5, there exists a morphism Qf W N Ì"H 000! G extending f such that Qf jH 000 D '. Thus
.H 000; Qf / 2 I.�; f /. Moreover, since ' is unique, so is Qf . Now let aD .Ha; fa/ 2 I.�; f / and observe
that, by Lemma 6.5, every h 2Ha satisfies (6-3). It follows that Ha �H 000 and 'a D 'jHa and thus we
conclude that aD .Ha; fa/� .H 000; Qf /. Uniqueness of the minimum in obvious in any ordered set.

Next let Nx , Kx and HX be as in (7-1) and consider the splitting exact sequence (�x). As usual, choose
a geometric basis BD fŒ˛i �g

n
iD1 of Nx , let � W �n!Nx be the isomorphism induced from the basis B,

and, for a datum � WNx!G, set f WD � ı��1 WNx!G. Theorem 9.1 applied to (�x) reads as follows:

Theorem 9.2 If G has trivial center , then there exists a minimum amin 2 I.x;B; �/ and it is unique.

Thus in this case by choosing the minimum we have a canonical choice of a family. Thus, if the center of
G is trivial, the choice of a point x 2M0;nC1, a geometric basis BD fŒ˛i �g

n
iD1, and a datum � WNx!G

yields a well-defined minimum family

�.x;B;�/ W C.x;B;�/! Y.x;B;�/;
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and we can forget about the whole collection. Moreover by Theorem 8.2 changing x or B or � inside its
AutG �Aut� �n–orbit amounts to passing from a collection to an equivalent one. Since equivalence is
order-preserving, it naturally maps the minimum to the minimum. This yields the following.

Theorem 9.3 If G has trivial center , then up to isomorphism the family �.x;B;�/ WC.x;B;�/! Y.x;B;�/ is
independent of the choices of x and B and only depends on the AutG �Aut� �n–orbit of � . In particular ,
the family �.x;B;�/ W C.x;B;�/! Y.x;B;�/ only depends on the topological type Œ� �.

10 The abelian case

We conclude looking at the special case where the group G is abelian, the opposite of G being centerless.

Theorem 10.1 If G is abelian , then there exists a 2 I.x;B; �/ such that Ya DM0;n.

Proof Let Nx , Kx and HX be as in (7-1) and consider the splitting exact sequence (�x), ie the top row
of (2-3). Let � W �n! Nx be the isomorphism induced from the basis B. Set f WD � ı��1 W Nx ! G.
Now let ' WHX !G be any morphism. Let

" W �1.M0;n/! Aut.�1.P1�X; x0//

denote the morphism giving the semidirect product in (�x). By the considerations in 2.3, " is just the
restriction to �1.M0;n/ of the morphism Q" giving the splitting of the exact sequence in the second row
of (2-3). In [Birman 1974, Corollary 1.8.3] it is explicitly described the image via Q" of the generators of
the pure braid group of n� 1 strings of the plane. To be more precise, the notation in [Birman 1974]
corresponds to identify

M0;n Š f.x1; : : : ; xn�1/ 2 F0;n�1C j x1 D 0; x2 D 1g

instead of (2-1). By this description one sees that, for a generator h of �1.M0;n/, "h sends a generator 
j
of �1.P1�X; x0/ to a conjugate of it. In the setting of Lemma 6.5 we have f ı "h.
j /D f .
j / since G
is abelian. Similarly inn'.h/ is the identity since G is abelian. It follows immediately that there exists
fa WKx!G extending both f and '. Thus .Hx; fa/ 2 I.x;B; �/.

10.2 The proof of Theorem 10.1 shows that, when G is abelian, for every morphism ' WHX!G we can
build f' WKx!G extending both f and '. We point out that this is the opposite of the uniqueness result
in Theorem 9.2. Of course, .HX ; f'/ 2 I.x;B; �/ is a minimal element for .I.x;B; �/;�/ since HX is
as big as possible, ie if b 2 I.x;B; �/ and .HX ; f'/� b, then HX DHb , so bD .Hx; f'/. But different
choices of ' yield elements in I.x;B; �/ that are not comparable with respect to the order relation �.

10.3 An important point to stress is that, in the general case, Ha ¨ HX and Ya ¤ M0;n for every
a 2 I.x;B; �/. We now show this via an easy example. As in the proof of Theorem 10.1, we use
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the description in [Birman 1974] of image via Q" of the generators of the pure braid group of the plane
and we show that, in general, there may not exist any morphism Qf W �1.P1 � X; x0/ Ì HX ! G

extending f . Thus, in this case Ha ¨ HX for any a 2 I. Let � W �4! S3 be given by �.
1/ D .12/,
�.
2/D .23/, �.
3/D .23/ and �.
4/D .12/. With the notation in [Birman 1974], �1.M0;4/ is free on
the generators A12 and A13. We have �.".A12/
1/ D .23/, �.".A12/
2/ D .13/, �.".A12/
3/ D .23/
and �.".A12/
4/D .12/. Now note that, on one side, 
1
2
3
4 D 1 and thus 
1
2
3
4 2 ker � , but on
the other side �.".A12/.
1
2
3
4//D .23/.13/D .123/¤ 1. With the notation of Lemma 6.6 it follows
that A12 …H 00, so H 00 ¤HX . It follows from Lemma 6.5 that for any a 2 I we have Ha �H 00. Thus
in particular, Ha �H 00 ¤HX . Thus there is no morphism Qf W �1.P1�X; x0/ÌHX !G extending f .
Geometrically, one can interpret this fact as follows. On M0;4ŠC�� there is the universal family of elliptic
curves E!M0;4. We denote by E� the fiber of E!M0;4 over � 2C��. The family corresponding to �
shows that every elliptic curve has an effective action of S3, which is built as follows: S3 D Z=3ÌZ=2,
where Z=2 is the multiplication by �1 on E and Z=3 is a subgroup of the translations .E;C/. So to
build such an action one has to choose a line inside E�Œ3�. If an extension Qf W �1.M0;5/! S3 exists,
then there is a family of lines l� �E�Œ3�ŠH1.E�;Z=3/ defined over M0;4. Equivalently, fixing a base
point �0 2 M0;4, there is a line l�0 � E�0 which is stable under the action of the monodromy of the
family E. But the image of this monodromy is �2, the congruence subgroup of level 2, which fixes no
line in H1.E�0 ;Z=3/.

10.4 It follows from the previous remarks that, in the general case, Ya cannot be M0;n itself, but is
necessarily a finite cover of it. As pointed out in the introduction, this corrects an inaccuracy in [González-
Díez and Harvey 1992]. There it is claimed that Y DM0;n always. As M0;n is birational to projective
space, the authors concluded that the image of the family in Mg is always a unirational variety. By
Theorem 10.1 their proof works for abelian covers, hence the moduli image of a family of abelian covers
is always unirational. In the general case this argument fails and in fact the result is false. Indeed, Michael
D Fried informed us that he recently found examples of families for which the moduli image is not
unirational. In his work in progress [Fried � 2024], Fried considers the moduli space of Galois covers of
the line with fixed datum and fixed Nielsen class. When a component of this moduli space is of general
type (ie a multiple of its canonical class gives an embedding), then the component is not unirational.
When the datum is for covers with 4 branch points, and the equivalences include reduction by the action
of Möbius transformations, there is an explicit formula for the genus of the components — see [Bailey
and Fried 2002] — which in this case are one-dimensional and covers of the j–line. When that genus
exceeds 1, these spaces have general type. For the group An, n� 1 mod 4, and the branching type of the
covers having all four conjugacy classes .nC1/=2–cycles, Fried has computed the components and their
genuses. For n large, the genus is a nonconstant multiple of n2. When the equivalence comes from the
degree n permutation representation of An, the base Ya of any family in the collection fCa! Yaga2I

associated with the datum, has a natural map to one of these components. Thus its moduli image cannot
be unirational.
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