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Manifolds with small topological complexity

PETAR PAVEŠIĆ

We study closed orientable manifolds whose topological complexity is at most 3 and determine their
cohomology rings. For some of the admissible cohomology rings we are also able to identify corresponding
manifolds up to a homeomorphism.

55M30; 57N65

1 Introduction

Topological complexity of a (path-connected) space X , denoted by TC.X /, is a numerical homotopy
invariant introduced by M Farber [8] as a quantitative measure for the complexity of motion planning
in a configuration space X of some robot device. Although configuration spaces of robots can be quite
general topological spaces (see Kapovich and Millson [16] and Pavešić [20]), of particular importance are
those that have the structure of a manifold (eg ordered configuration spaces of manifolds, see Cohen [3];
configuration spaces of spidery linkages, see O’Hara [19]; and of general parallel mechanisms, see Shvalb,
Shoham and Blanc [24]). It is thus of interest to determine which closed manifolds M have a given value
of TC.M /. The case TC.M /D 1 is void, because a nontrivial closed manifold cannot be contractible.
Grant, Lupton and Oprea [10, Corollary 1.2] showed that the only closed manifolds with topological
complexity equal to 2 are the odd-dimensional spheres. In this paper we study closed oriented manifolds
M with TC.M /D 3. Some examples immediately spring to mind: even-dimensional spheres S2n by [8,
Theorem 8] and products of two odd-dimensional spheres, by [8, Theorems 8 and 11]. Are there any
other examples? Our main result is Theorem 3.2 in which we give an exact description of admissible
cohomology rings of manifolds whose topological complexity is at most 3.

Theorem 3.2 If M is a closed , orientable manifold with TC.M / � 3, then �1.M / is either trivial or
isomorphic to Z, and one of the following alternatives holds:

(1) H�.M IZ/Š
V
.xm/, or

(2) H�.M IZ/Š
V
.xk ;xl/ with k and l odd , k � 1, l � 3 and kC l Dm, or

(3) Hi.M IZ/D 0 for i ¤ 0; k;m with k � 2 and mD 2kC1, and H�.M IF2/Š
V
.xk ;xkC1/˝F2.

The conditions in the theorem are necessary but not sufficient to guarantee that TC.M /D 3, as illustrated
by the case of the symplectic group Sp.2/ whose cohomology is of type (2), but TC.Sp.2// D 4 (see
Section 4).
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1714 Petar Pavešić

In the next section we recall the definition and the main properties of the topological complexity. In
Section 3 we state and prove our main result. Finally, in Section 4 we discuss specific manifolds whose
cohomology ring is described in the mentioned theorem. We also obtain some specific results for closed
orientable manifolds M that admit cellular decompositions with at most four cells: if TC.M /� 3, then
certain Hopf invariants must vanish (Proposition 4.2); if in addition M is smooth and its dimension
is even and smaller than 12, then M is the total space of an orthogonal sphere bundle over a sphere
(Proposition 4.3).

2 Preliminaries on topological complexity

For a topological space X let X I denote the space of continuous paths ˛ W I!X , and let � WX I!X �X

be the evaluation map �.˛/ WD .˛.0/; ˛.1//. Topological complexity of a path-connected topological
space X is the least integer TC.X /D n for which there exists a covering U1; : : : ;Un of X �X , where
each Ui is open and admits a continuous section to the map � W X I ! X �X [8, Definition 2]. Note
that the topological complexity of X is not defined if X is not path-connected, because in that case the
map � is not onto. We will thus assume throughout the paper that X (or M ) is a path-connected space.
Moreover, if X is a compact ANR space (which includes closed manifolds) then the requirement that the
sets in the covering are open is superfluous, since by [21, Theorem 4.6], one can consider coverings of
X �X by arbitrary subsets.

The main properties of topological complexity are listed in the following proposition, where the value
of TC.X / is related to the Lusternik–Schnirelmann category cat.X / (for which we refer to the classical
monograph [5]), and to the nilpotency of certain ideal in the cohomology ring of X �X .

Note that in this work we use the nonnormalized versions of category and topological complexity for
which cat.X / D TC.X / D 1 if X is a contractible space. Many authors use a normalized or reduced
category and topological complexity, which is one less than in our definition, so that the category and
the topological complexity of a contractible space are equal to 0. This holds in particular for the above
mentioned monograph [5] and the article [10], so the reader should be careful when comparing results
stated under different conventions.

Proposition 2.1 (1) TC.X /D 1 if and only if X is contractible.

(2) Homotopy invariance:
X ' Y D) TC.X /D TC.Y /:

(3) Category estimate:
cat.X /� TC.X /� cat.X �X /:

(4) If X is a topological group , then TC.X /D cat.X /.

(5) Cohomological estimate:
TC.X /� nil.Ker��/;
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Manifolds with small topological complexity 1715

where �� W H�.X � X IR/ ! H�.X IR/ is the homomorphism induced by the diagonal map
� WX !X �X on the cohomology with coefficients in a ring R, and nil.Ker��/ is the minimal
integer k for which all k–fold products in Ker�� are zero.

(6) Product formula: if X and Y are ANR spaces , then

TC.X �Y /� TC.X /CTC.Y /� 1:

Recall that the value of �� on the cross product u� v 2H�.X �X IR/ of elements u; v 2H�.X IR/

can be given in terms of their cup product as

��.u� v/D u � v;

and the cup product of elements u� v and u0 � v0 is given as

.u� v/ � .u0 � v0/D .�1/jvj�ju
0j.u �u0/� .v � v0/;

where jvj and ju0j are the dimensions of cohomology classes v and u0; see [11, pages 215–216]. This
explains why Farber [8, Definition 6] called Ker�� the ideal of zero-divisors of H�.X IR/. For every
u 2H�.X IR/ we have

��.u� 1� 1�u/D u � 1� 1 �uD 0;

therefore .u� 1� 1�u/ 2 Ker��. Indeed, if H�.X IR/ is a finitely generated free R–module (which
implies that H�.X�X IR/ŠH�.X IR/˝H�.X IR/ by the Künneth theorem), then Ker�� is generated
as an ideal by elements of the form .u� 1� 1�u/ because ��

�P
ui � vi

�
D
P

ui � vi D 0 impliesX
ui � vi D

X
.ui � vi � 1�uivi/D

X
.ui � 1� 1�ui/ � .1� vi/ :

3 Admissible cohomology rings

Computation of topological complexity of closed surfaces was completed in the orientable case by Farber
[8, Theorem 9] and in the nonorientable case by Dranishnikov [6] and Cohen and Vandembroucq [4].
Thus we know that the only closed surfaces whose topological complexity is 3 are the sphere S2 and
the torus S1 �S1. To avoid making unnecessary exceptions, for the rest of this section let M denote a
closed, orientable m–dimensional manifold with m� 3.

In this section we show that the condition TC.M /� 3 poses strong restrictions on the fundamental group
and the cohomology ring of M . As a starting point we take the following consequence of a deep theorem
proved by Dranishnikov, Katz and Rudyak [7].

Theorem 3.1 If TC.M /� 3, then �1.M / is either trivial or isomorphic to Z.

Proof If TC.M /� 3, then cat.M /� 3 by Proposition 2.1(3), which by [7, Theorem 1.1] implies that
�1.M / is a free group. Let us assume that the rank of �1.M / is at least 2 and consider the cup product
pairing

H 1.M IZ/�H m�1.M IZ/ ��!H m.M IZ/

Algebraic & Geometric Topology, Volume 24 (2024)



1716 Petar Pavešić

which is nonsingular by [11, Proposition 3.38]. Indeed, by the Hurewicz theorem H1.M IZ/ is free
abelian; therefore H 1.M IZ/ and H m�1.M IZ/ are also free by the universal coefficients theorem and
by Poincaré duality, respectively. Since the rank of H 1.M IZ/ is at least 2, nonsingularity of the pairing
implies that there exist linearly independent elements u; v 2H 1.M IZ/ and u0; v0 2H m�1.M IZ/ such
that u �u0 D v � v0 D g, where g is a generator of H m.M IZ/, and furthermore u � v0 D v �u0 D 0. Then
we obtain by direct computation a nontrivial four-fold product of zero-divisors,

.u� 1� 1�u/ � .u0 � 1� 1�u0/ � .v� 1� 1� v/ � .v0 � 1� 1� v0/D 2.g�g/¤ 0:

Therefore by Proposition 2.1(6), if rank.�1.M // � 2, then TC.M / � 5. Thus, if TC.M / � 3, then
�1.M / is a free group or rank 0 or 1, as claimed.

In the following theorem we determine all admissible cohomology rings for a manifold whose topological
complexity is at most 3.

Theorem 3.2 Assume that M is a closed , orientable manifold with TC.M / � 3 � dim.M /. Then
�1.M / is either trivial or isomorphic to Z and one of the following alternatives holds:

(1) H�.M IZ/Š
V
.xm/, or

(2) H�.M IZ/Š
V
.xk ;xl/ with k and l odd , k � 1, l � 3 and kC l Dm, or

(3) Hi.M IZ/D 0 for i ¤ 0; k;m with k � 2 and mD 2kC1, and H�.M IF2/Š
V
.xk ;xkC1/˝F2.

Proof In order to prove the theorem we need to consider several cases and subcases. Let g denote the
generator of the top-dimensional cohomology H m.M IR/ and for every u 2H�.M IR/ let

Ou WD u� 1� 1�u 2H�.M �M IR/

be the shorthand for the corresponding zero-divisor. By Theorem 3.1 we must consider two possibilities,
�1.M /Š Z or �1.M /D 0.

(1) If �1.M / Š Z, let u be a generator of H 1.M IZ/ Š Z and let, as in the proof of Theorem 3.1,
v 2H m�1.M IZ/ be such that u � v D g. If m� 1 is even, then

Ov2
� OuD�2.v� v/ � OuD�2.g�u�u�g/¤ 0

(note that v2 D 0 for dimensional reasons), and thus TC.M / � 4 by Proposition 2.1(6). On the other
hand, if m� 1 is odd, and if there exists a nonzero element w 2H i.M IZ/ for some 2� i �m� 2, then

Ou � Ov � Ow D w�g�g�w˙uw� v� v�uw ¤ 0;

so again TC.M /� 4.

We conclude that if �1.M /Š Z and TC.M /D 3, then H�.M IZ/ is multiplicatively generated by two
cohomology classes in dimensions 1 and m� 1, which are Poincaré duals to each other, and furthermore
m� 1 must be odd. In other words, H�.M IZ/Š

V
.x1;xk/ for some odd integer k > 1.

Algebraic & Geometric Topology, Volume 24 (2024)



Manifolds with small topological complexity 1717

(2) If M is simply connected, then we consider four subcases depending on the structure of the group

yH .M IR/ WD

m�2M
iD2

Hi.M IR/:

(2a) If yH .M IQ/¤ 0 we argue similarly as in case (1). First of all we note that yH .M IZ/ is not all
torsion, so by [11, Corollary 3.39] we may find homogeneous elements u; v 2 yH .M IZ/ of infinite order,
such that u � v D g. As in case (1), if either u or v is of even degree, then we can find a nontrivial product
of three zero-divisors, and then TC.M /� 4. Therefore, if TC.M /� 3, then both u and v must be of odd
degree, which as before implies that H�.M IZ/ contains a subring of the form

V
.xk ;xl/ where k and l

are odd integers and 1< k � l <m�1. Furthermore, if there exists an element w 2H�.M IZ/ which is
not contained in the mentioned subring, then Ou � Ov � Ow¤ 0 similarly as in the second part of case (1). Thus,
yH .M IQ/¤ 0 and TC.M /D 3 imply H�.M IZ/Š

V
.xk ;xl/.

(2b) Let us now assume that yH .M IQ/D 0 but yH .M IFp/¤ 0 for some odd prime p, and let k be the
minimal k � 2 for which Hk.M IZ/ has p–torsion. By the universal coefficient theorem for cohomology
(see [11, Theorem 3.2]) H i.M IFp/ ¤ 0 for i D k; k C 1. It then follows by Poincaré duality that
H i.M IFp/ ¤ 0 for i D m� k � 1;m� k. Therefore, H i.M IFp/ ¤ 0 in three different dimensions,
unless mD 2kC 1. In the first case, we may find (as in case (1)) three nontrivial cohomology classes u,
v and w of different dimension (with u � v D g by [11, Corollary 3.39]), for which Ou � Ov � Ow ¤ 0 and thus
TC.M /� 4.

On the other hand, if mD 2kC1, then let u 2H k.M IFp/ and v 2H kC1.M IFp/ be such that u �vD g.
If k is even, then

Ou2
� Ov D 2.u�g�g�u/C v�u2

�u2
� v ¤ 0:

Similarly, if k is odd, then Ou � Ov2 ¤ 0, so in both cases TC.M /� 4.

(2c) The next subcase arises if yH .M IQ/D 0 and yH .M IFp/D 0 for p odd but yH .M IF2/¤ 0. The
argument is similar as in (2b), except if mD 2kC1, since in that case the proof that Ou2 � Ov¤ 0 for k even
(or that Ou � Ov2 ¤ 0 for k odd) breaks down because of 2–torsion. On the other hand, if u 2H k.M IF2/

and v 2H kC1.M IF2/ such that u � v D g, and if additionally u2 ¤ 0, then

Ou2
� Ov D u2

� vC v�u2
¤ 0;

so TC.M /�4. Thus, under the assumptions of (2c), if TC.M /�3 then H�.M IF2/Š
V
.xk ;xkC1/˝F2.

(2d) The final possibility is that yH .M IR/D 0 for all coefficient rings R, which clearly implies that
H�.M IZ/Š

V
.xk/.

4 Some manifolds with small TC

Theorem 3.2 shows that the condition TC.M /� 3 is much more restrictive than the analogous condition
cat.M /� 3. Indeed the class of manifolds whose Lusternik–Schnirelmann category is at most 3 includes
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1718 Petar Pavešić

all surfaces, two-fold products of spheres, all .n�1/–connected 2n–manifolds and a variety of other
examples. In this section we study the actual manifolds M satisfying TC.M /� 3 (without the restriction
that dim.M / � 3). For some admissible cohomology rings we describe exactly the corresponding
manifolds, while in other cases we are only able to present suitable candidates and compute their
Lusternik–Schnirelmann category.

(1) The simplest case to consider are manifolds whose cohomology ring is given by Theorem 3.2(1).
In fact, since the fundamental group of M is free, M must be simply connected (except in the trivial
case M D S1). This fact, together with H�.M IZ/Š

V
.xk/ immediately yields that M is homotopy

equivalent to Sk . Finally, the positive solution to the Poincaré conjecture implies that M is actually
homeomorphic to Sk .

(2) If H�.M IZ/Š
V
.x1;xk/ as in Theorem 3.2(2), then we can use the fact that S1'K.Z; 1/ to find

a map f1 WM ! S1 which represents the cohomology class

x1 2H 1.M IZ/Š ŒM;S1�:

Similarly, there is a map fk WM !K.Z; k/ representing the cohomology class

xk 2H k.M IZ/Š ŒM;K.Z; k/�:

It is well known that K.Z; k/ can be constructed by attaching cells of dimension bigger or equal to kC2

to the sphere Sk . Since the dimension of M is mD kC 1, we may assume by cellular approximation
theorem that the image of fk is contained in Sk . Thus we obtain a map

.f1; fk/ WM ! S1
�Sk ;

which is clearly an isomorphism on the integral cohomology and is thus a homotopy equivalence, because
�1.M /Š Z. By a rigidity theorem of Kreck and Lück [17, Theorem 0.13(a)] we conclude that M is
actually homeomorphic to S1 �Sk .

(3) If H�.M IZ/Š
V
.xk ;xk/ with k odd, then M is a .k�1/–connected 2k–dimensional manifold.

Thus we may invoke C T C Wall’s classification [27] by which M �Sk�Sk provided k�3; 5; 7 .mod 8/;
see also [2, Theorem 3.1].

(4) The instances of Theorem 3.2(2) when H�.M IZ/Š
V
.xk ;xl/ for 1< k < l with k and l odd are

more complicated. First of all, they include products of odd spheres of the form Sk�S l and we know that
TC.Sk �S l/D 3. Moreover, by the above-mentioned theorem of Kreck and Lück [17, Theorem 0.13(a)],
a manifold that is homotopy equivalent to a product of odd spheres is actually homeomorphic to that
product.

The first example that is not a product of spheres is the special unitary group SU.3/ whose cohomology
is H�.SU.3/IZ/ Š

V
.x3;x5/. Singhof [25, Theorem 1(a)] proved that cat.SU.3// D 3; therefore by

Proposition 2.1(4), we conclude that TC.SU.3//D 3, as well.
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The cohomology ring of the symplectic group Sp.2/ is H�.Sp.2/IZ/Š
V
.x3;x7/. However, Schweitzer

[23] used secondary cohomology operations to prove that cat.Sp.2// D 4, which in turn implies that
TC.Sp.2//D 4. Hilton and Roitberg [13] discovered three more examples of H–spaces whose cohomology
is isomorphic to

V
.x3;x7/, which are usually denoted by E3! , E4! and E5! (and Sp.2/ corresponds

to E!). Their Lusternik–Schnirelmann category (and thus topological complexity) is equal to 4; see [5,
Chapter 4].

In fact, we have a complete description of manifolds that admit H–space structure and whose topological
complexity is equal to 3. First observe, that by the classification of H–spaces of low rank (Hilton
and Roitberg [14]; see also [12, Section III.2]), the following list exhausts all (homotopy types of)
H–spaces whose cohomology ring is isomorphic to one of the rings listed in Theorem 3.2: spheres Sk

for k 2 f1; 3; 7g, products Sk � S l for k; l 2 f1; 3; 7g, SU.3/, Ek! for k D 1; 3; 4; 5 and RP3. By a
cup-length argument, TC.RP3/D cat.RP3/D 4, which together with the above discussion yields:

Proposition 4.1 Let M be a closed orientable manifold with TC.M / D 3. If M admits an H–space
structure , then M is either SU.3/ or Sk �S l for k; l 2 f1; 3; 7g.

More generally, let us consider fibre bundles p WM ! S l with fibre Sk for some odd integers 1< k < l .
The cohomology of M is easily computed using Gysin sequence, so we obtain H�.M IZ/Š

V
.xk ;xl/

and the manifold itself admits a CW–decomposition of the form

M D Sk
[˛ el

[ˇ ekCl ;

with attaching maps ˛ W S l�1! Sk and ˇ W SkCl�1! Sk [˛ el . If ˛ is a suspension or more generally
a coH–map (eg if l < 2k � 1 so that �l�1.S

k/ is in the stable range), then Sk [˛ el is a coH–space and
cat.Sk [˛ el/D 2 (see [5]). Therefore, cat.M /� 3 but, since the cup length of M equals 2, we have that
cat.M /D 3. This yields many important examples like the complex and quaternionic Stiefel manifolds,
V2.C

n/DU.n/=U.n�2/ whose cohomology ring is given as H�.V2.C
n/IZ/Š

V
.x2n�1;x2n�3/, and

V2.H
n/D Sp.n/=Sp.n�2/ with H�.V2.H

n/IZ/Š
V
.x4n�1;x2n�5/. It is known (see [15]) that except

for the case V2.C
4/D S5 �S7, the spaces V2.C

n/ and V2.H
n/ do not split as products of spheres.

If the attaching map ˛ is not a coH–map, then cat.Sk [˛ el/D 3. In that case cat.M /D 3 if and only if
certain set of Hopf invariants H.ˇ/ contains the zero class (see [5, Chapter 6], in particular Theorem 6.19
therein).

As we have seen, there are many sphere bundles over spheres whose category is 3. Unfortunately, we
are currently lacking a general method to determine their topological complexity, so this remains an
interesting open problem. Some cases can be settled by applying a method that was recently developed
by Gonzalez, Grant and Vandembroucq [9] and which uses higher Hopf invariants. They computed
topological complexity of many two-cell complexes, but the technical details are quite formidable, and the
full analysis of three-cell complexes seems to be beyond reach at this point. Nevertheless, we were able
to combine some of their computations with results from Pavešić [22] that relate topological complexity
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of a space with topological complexity of its skeleta, to show that some sphere bundles over spheres
have topological complexity at least 4. We will work in the so-called metastable range and assume that
2k < l < 3k � 1. Under this assumption one can associate to every map ˛ W S l�1! Sk a generalized
Hopf invariant H0.˛/ W S

l�1! S2k�1 (see [9, Section 5] for relevant definitions and results), which
allows us to determine TC.Sk [˛ el/� 4.

Proposition 4.2 Let k be an odd integer and let 2k< l<3k�1. Assume that M has a CW–decomposition
of the form M D Sk [˛ el [ˇ ekCl with attaching maps ˛ W S l�1! Sk and ˇ W SkCl�1! Sk [˛ el

(this in particular applies if M is an S l–bundle over Sk). If H0.˛/¤ 0, then TC.M /� 4.

Proof Note that the inclusion Sk [˛ el ,! M is a .kCl�1/–equivalence because Sk [˛ el is the
.kCl�1/–skeleton of M . The topological complexity of Sk [˛ el was bounded from below in [9,
Theorem 5.6]: TC.Sk [˛ el/� 4. On the other hand, [22, Theorem 3.6] implies that

cat.M /� cat.Sk
[˛ el/D 3:

Therefore TC.M /� 3. Then we may apply [22, Theorem 3.1], which states that if

2 dim.Sk
[˛ el/ < k.TC.M /� 1/C .kC l � 1/

(which is clearly satisfied if l < 3k � 1), then TC.M /� TC.Sk [˛ el/� 4.

It turns out that up to dimension 10 the case of sphere bundles over spheres is generic for smooth,
even-dimensional manifolds (that is quite relevant if one is mainly interested in configuration spaces of
specific mechanical systems). In fact, we have the following result.

Proposition 4.3 Let M be a smooth , orientable , closed manifold with TC.M / � 3. If M is even-
dimensional and dim.M /� 10, then M is homotopy equivalent to the total space of an orthogonal sphere
bundle over a sphere.

Proof By the assumptions, the cohomology of M is given by cases (1) or (2) of Theorem 3.2. If M is
not simply connected, then we already proved that M is homeomorphic to a product of spheres. If M is
simply connected, then dim.M /� 10 implies that its cohomology is isomorphic to either

V
.x3;x5/ or

to
V
.x3;x7/. Thus we may apply [14, Theorem 6.1] to conclude that M is homotopy equivalent to the

total space of an orthogonal S3–bundle with base S5 or S7.

For manifolds of dimension higher than 10 we may describe a convenient Morse decomposition of M .
Smale [26, Theorem G] showed that if the dimension of M is at least 6, then it has a Morse decomposition
with the minimal number of handles compatible with its homology. Therefore, if H�.M IZ/Š

V
.xk ;xl/,

then M admits a decomposition with four handles whose indices are 0, k, l and kC l , respectively. The
union of the 0– and k–handles depends on the framing which is given by an element of �k�1.O.l//.
This group is known to be trivial for k 6� 1 .mod 8/, therefore the union of the first two handles is
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Manifolds with small topological complexity 1721

homeomorphic to Sk �Dl . By the same argument, the union of the l– and .kCl/–handles is also
homeomorphic to Sk �Dl .

Proposition 4.4 Let M be a smooth , orientable , closed manifold with dim.M / > 10 and TC.M /D 3.
If H�.M IZ/Š

V
.xk ;xl/ with k 6� 1 .mod 8/, then M can be obtained by glueing together two copies

of Sk �Dl along the common boundary Sk �S l�1.

(5) Let us finally consider manifolds that satisfy condition (3) of Theorem 3.2. The lowest-dimensional
case is a simply connected 5–dimensional manifold whose F2 cohomology is

H�.M IF2/Š
V
.x2;x3/˝F2:

Barden [1] showed that every simply connected 5–dimensional manifolds can be decomposed as a
connected sum of certain basic 5–manifolds. We are not dwelling into details but one can easily check that
the only 5–manifold that satisfies the above condition is the famous Wu manifold SU.3/=SO.3/. It admits
a CW–decomposition SU.3/=SO.3/ D S2 [ e3 [ e5, where the 3–cell is attached by a degree 2 map;
therefore the 3–skeleton of SU.3/=SO.3/ is the Moore space M.Z=2; 2/. The category of a Moore space
is 2; therefore the category of the Wu manifold is 3. However, we were not able to determine whether its
topological complexity is also 3. One can construct higher analogues of the Wu manifold using handle
decompositions, for example by gluing together two copies of a (twisted or untwisted, depending on the
dimension) DkC1–bundle over Sk along a suitable homeomorphism of the boundary. All of these spaces
have a CW–decomposition with the top-cell attached to a suspension, so their category is equal to 3.

We should also mention an interesting result that was recently proved by S Mescher [18, Proposition 6.2].
He used weighted cohomology classes to show that a closed oriented manifold M with TC.M /�3 is either
a rational homology sphere or it admits a degree 1 map from a closed oriented manifold of the form S1�P

(in other words, it is 1–dominated by a product of a .dim.M /�1/–dimensional manifold with a circle).

Let us conclude with a brief discussion on two possible extensions of the presented results. Theorem 3.2
gives a precise description of cohomology rings of closed orientable manifolds whose topological
complexity is at most 3, so it is natural to ask what can be said about nonorientable closed manifolds
M with TC.M /� 3. As in the orientable case, the fundamental group �1.M / must be free. That rank
of �1.M / cannot exceed 1 can be seen similarly as in Section 2. On the other hand, �1.M / cannot be
trivial, because M is nonorientable. We thus conclude that H�.M IF2/Š

V
.x1;xm�1/˝F2, and the

corresponding manifolds are the generalized Klein-bottles (nonorientable Sm�1–bundles over S1). Their
category is 3 but we do not know whether their topological complexity can be, at least in some cases,
also equal to 3.

Another extension that could be pursued is determination of manifolds whose topological complexity is
at most 4. Although the general case seems to be beyond reach because we have very little information
on manifolds whose category is 4, we believe that some reasonable progress could be achieved on closed
manifolds M satisfying TC.M /� 4 and cat.M /� 3.
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