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Steenrod problem and some graded Stanley–Reisner rings

MASAHIRO TAKEDA

“What kind of ring can be represented as the singular cohomology ring of a space?” is a classic problem
in algebraic topology, posed by Steenrod. We consider this problem when rings are the graded Stanley–
Reisner rings, in other words the polynomial rings divided by an ideal generated by square-free monomials.
We give a necessary and sufficient condition that a graded Stanley–Reisner ring is realizable when there is
no pair of generators x; y such that jxj D jyj D 2n and xy ¤ 0.

55N10; 55R35, 13F55

1 Introduction

A classical problem in algebraic topology posed by Steenrod in [14] asks which graded rings occur as the
cohomology ring of a space. Especially when the graded ring is polynomial ring, this problem was studied
by many researchers, for example Adams and Wilkerson [1], Aguadé [2], Andersen and Grodal [4],
Clark and Ewing [6], Dwyer, Miller and Wilkerson [8], Dwyer and Wilkerson [9; 10], Hubbuck [11],
Sugawara and Toda [15] and Thomas [16]. This polynomial ring case was finally solved by Andersen
and Grodal [3].

On the other hand, when the graded ring is a monomial ideal ring, in other words a polynomial ring
divided by an ideal generated by monomials, some researchers studied this problem. The realizability of
Stanley–Reisner rings, square-free monomial ideal rings, generated by degree 2 elements is proved by
Davis and Januszkiewicz in [7]. Trevisan [17] generalize their construction and prove the realizability of
monomial ideal rings generated by degree 2 elements. By using polyhedral products, the realizability of
Stanley–Reisner rings of a certain class is proved by Bahri, Bendersky, Cohen and Gitler in [5]. So and
Stanley [13] prove the realizability of graded monomial ideal ring modulo torsion. Thus there are results
about the realizability of monomial ideal rings, but there are few results about necessary conditions for
monomial ideal rings to be realizable.

In this paper we obtain a necessary and sufficiently condition for a graded Stanley–Reisner ring to be
realizable when there is no pair of generators x; y such that jxj D jyj D 2n and xy ¤ 0. At first, we
define the graded Stanley–Reisner ring. A simplicial complex with the vertex set V is a subset of the
power set of V which closed under taking subsets. In this paper we allow for there to exist x 2 V such
that fxg … K, and we assume that the empty set is always a face of the simplicial complex. Let K be
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1726 Masahiro Takeda

a simplicial complex with the vertex set V , and � W V ! 2Z>0. Then the graded Stanley–Reisner ring
SR.K; �/ is defined by

SR.K; �/Š ZŒV �=I;

where ZŒV � is the polynomial ring generated by x 2 V with jxj D �.x/ and I is the ideal generated by
monomials x1x2 � � � xk with fx1; x2; : : : ; xkg …K as a simplex. When K D f∅g, there is an isomorphism
SR.K; �/Š Z.

To state the main theorem in this paper we set notation. A simplex of a simplicial complex is maximal
when the simplex is not a face of a larger simplex in the simplicial complex. For a simplicial complex K
with the vertex set V , we define a poset (not subcomplex) Pmax.K/�K, where we regardK as a subset of
the power set of V . For � 2K, � 2 Pmax.K/ if and only if there exist maximal simplices �1; : : : ; �n 2K
such that

T
�i D � . And for �; � 2 Pmax, we have � < � when � is a face of � in K.

Theorem 1.1 Let SR.K; �/ be the finitely generated graded Stanley–Reisner ring for a simplicial
complex K with the vertex set V and � W V ! 2Z>0. Suppose that the graded Stanley–Reisner ring
SR.K; �/ satisfies the following:

� If generators x; y 2 V satisfy �.x/D �.y/D 2i for some i � 2, then xy D 0 in SR.K; �/.

Then there is a space X such that H�.X IZ/Š SR.K; �/ if and only if SR.K; �/ satisfies the following
condition:

� For � 2 Pmax.K/ the set f�.x/ j x 2 �g is equal to f2; 2; : : : ; 2g, f4; 6; : : : ; 2nC 2g[ f2; 2; : : : ; 2g
or f4; 8; : : : ; 4ng[ f2; 2; : : : ; 2g as a multiset for some n.

This is the main theorem in this paper.

Remark 1.2 In the main theorem there is an artificial assumption:

� If generators x; y 2 V satisfy �.x/D �.y/D 2i for some i � 2, then xy D 0 in SR.K; �/.

We believe that this assumption in the main theorem can be replaced by the following condition:

� If generators x; y 2 V satisfy �.x/D �.y/D 4, then xy D 0 in SR.K; �/.

This condition is the case that i D 2 in the upper assumption. Andersen and Grodal proved that the degree
of the generators of realizable polynomial is a union of copies of f2g; f4; 6; : : : ; 2nC2g or f4; 8; : : : ; 4ng.
Since in polynomial case there is one generator with degree 4 except in the case f2g, this condition implies
that the tensor products of two of polynomial rings with the case f4; 6; : : : ; 2nC 2g and f4; 8; : : : ; 4ng is
not included. Therefore this condition seems natural.

But now we are not able to prove the theorem that replaces the artificial assumption with this condition.
The reason why the artificial assumption is required is in the latter part of this paper.

We can generalize the construction of a space X with H�.X IZ/ being isomorphic to the graded Stanley–
Reisner ring to a wider classes. The following theorem is proved in Section 3.
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Theorem 1.3 Let SR.K; �/ be the finitely generated graded Stanley–Reisner ring for a simplicial
complex K with vertex set V and � W V ! 2Z>0. If SR.K; �/ satisfies the following condition , we can
construct a space X as a homotopy colimit such that H�.X IZ/Š SR.K; �/:

� There is a decomposition
`
i Ai DV such that for all i and � 2Pmax.K/, the set f�.x/ j x 2 �\Aig

is equal to f2; 2; : : : ; 2g, f4; 6; : : : ; 2ng[ f2; 2; : : : ; 2g or f4; 8; : : : ; 4ng[ f2; 2; : : : ; 2g as a multiset
for some n.

In the first half of this paper, Sections 2, 3 and 4, we construct a space X with H�.X IZ/ isomorphic to a
graded Stanley–Reisner ring, and prove Theorem 1.3. In the latter half, Sections 5 and 6, we obtain the
necessary condition that graded Stanley–Reisner rings occur as the cohomology ring of a space. At last,
by combining these results, we prove the main theorem in Section 7.

Acknowledgements The author is grateful to Donald Stanley for suggesting this issue and for valuable
advice. The author is supported by JSPS KAKENHI Grant 21J10117.

2 Homotopy colimit

In this section we recall a homotopy colimit and prove some lemmas we will use.

Let P be a finite poset. The order complex of P , �.P /, is a simplicial complex whose faces are totally
ordered subsets in P . We regard P as a category. For a functor F W P ! Top, the homotopy colimit is
defined as

hocolimP F D
a

�D.x1<x2<���<xk/2�.P/

j� j �F.xk/=�;

where the equivalence is .�.x/; y/� .x; F.�/.y// for � W � ,! � and x 2 j� j, y 2 F.max.�//.

We write P<a D fp 2 P j p < ag and P�a D fp 2 P j p � ag for some a 2 P .

Lemma 2.1 Let .P;</ be a finite poset and F WP ! Top be a functor. Let a 2P be a maximal element.
Then there is a pushout diagram

hocolimP<a F //

��

hocolimPnfag F

��

hocolimP�a F // hocolimP F

where for a subset P 0 � P hocolimP 0 F means the homotopy colimit of the functor F jP 0 W P 0! Top.

Proof By the definition of homotopy colimit, we obtain that

hocolimPnfag F [ hocolimP�a F D hocolimP F;

hocolimPnfag F \ hocolimP�a F D hocolimP<a F:

Algebraic & Geometric Topology, Volume 24 (2024)
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The inclusions
hocolimP<a F ,! hocolimPnfag F;

hocolimP<a F ,! hocolimP�fag F

are cofibrations. By combining these we obtain this lemma.

Next, we see the relation between the homotopy pushout and the graded Stanley–Reisner ring. For a
subcomplex K 0 �K, let V.K 0/ be the vertex set of K 0.

Lemma 2.2 Let K be a simplicial complex with the vertex set V, and � W V ! 2Z>0. Let K1 and K2 be
subcomplexes of K. We assume the following:

� There is a space X with H�.X IZ/Š SR.K1\K2; �/.

� For i D 1; 2 there are spaces Xi with H�.Xi IZ/Š SR.Ki ; �/.

� For i D 1; 2 there are maps �i W X ! Xi such that ��i is identified with the natural projection
SR.Ki ; �/! SR.K1\K2; �/ in cohomology.

Then the cohomology ring of the homotopy pushout of the diagram

X
�1
//

�2
��

X1

X2

is isomorphic to SR.K1[K2; �/.

Proof Let pi W SR.K1[K2; �/! SR.Ki ; �/ be the natural projection for i D 1; 2. Then it is easy to
see that the following sequence is a short exact sequence as a graded module

1! SR.K1[K2; �/
p1˚p2
����! SR.K1; �/˚SR.K2; �/

��1��
�
2

����! SR.K1\K2; �/! 1:

By the Mayer–Vietoris sequence for X1 and X2 of the pushout, we obtain that the cohomology of the
homotopy pushout is isomorphic to SR.K1[K2; �/ as a graded module. Since the cohomology ring of
the homotopy pushout is a graded subring of H�.X1qX2/Š SR.K1; �/˚SR.K2; �/, this isomorphism
becomes an isomorphism as a graded ring.

3 Construction of homotopy colimit

In this section we construct a homotopy colimit representation of a space X with H�.X IZ/Š SR.K; �/
for some graded Stanley–Reisner rings SR.K; �/. This construction is an analogy to the construction
in [7]. The Davis–Januszkiewicz space that first appeared in [7] is constructed by the union of the products
of complex projective spaces. As far as looking at cohomology, our construction is like a graded version
of their construction.

Algebraic & Geometric Topology, Volume 24 (2024)
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3.1 Maps between the classifying spaces of Lie groups

We define maps between the classifying spaces of Lie groups and see some properties. Consider the
inclusions

�1 W SU.n/! SU.nC 1/; �1.A/D A˚ 1 for A 2 SU.n/;

�2 W Sp.n/! Sp.nC 1/; �2.A/D A˚ 1 for A 2 Sp.n/:

For the quaternion H and the set of complex 2� 2–matrices M.2;C/, let c WH!M.2;C/ be the map

c.zC jw/D

�
z �xw

w xz

�
for z; w 2C:

Let �3 W Sp.n/! SU.2n/ be the map such that for AD .ai;j /ij 2 Sp.n/,

�3.A/D

0B@c.a1;1/ c.a1;2/ : : :c.a2;1/ c.a2;2/
:::

: : :

1CA 2 SU.2n/:

Since �i is a homomorphism, �i induces the map between classifying map. We denote these maps as same
symbol �i . Since the diagram

Sp.n/
�2
//

�3
��

Sp.nC 1/

�3
��

SU.2n/
�1
// SU.2nC 2/

is commutative, there is a commutative diagram

BSp.n/
�2
//

�3
��

BSp.nC 1/

�3
��

BSU.2n/
�1
// BSU.2nC 2/

We recall the cohomology of these classifying spaces. There is an isomorphism

H�.BSU.n/IZ/Š ZŒc2; c3; : : : ; cn�;

where ci is the i th Chern class. For degree reasons, we obtain ��3.c2nC1/D 0, and the next lemma holds.

Lemma 3.1 (cf [12, Chapter III, Theorem 5.8]) There is an isomorphism

H�.BSp.n/IZ/Š ZŒ��3.c2/; �
�
3.c4/; : : : ; �

�
3.c2n/�:

In this paper we take the generators of H�.BSp.n/IZ/ as in this lemma. Then there are equations for
�1 W BSU.n/! BSU.nC 1/ and �2 W BSp.n/! BSp.nC 1/ (cf [12, Chapter III]):

��1.ci /D

�
ci if i � n;
0 if i D nC 1;

��2.�
�
3.c2i //D

�
��3.c2i / if i � n;
0 if i D nC 1:

In summary, �1, �2 and �3 are the maps that send each generator to its corresponding generator or 0 in
cohomology.
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3.2 Construction

We define a functor by using the maps �1, �2 and �3. Let K be a simplicial complex with the vertex set V ,
and � W V ! 2Z>0 satisfying the following condition:

� There is a decomposition
`
i Ai DV such that for all i and � 2Pmax.K/, the set f�.x/ jx 2�\Aig

is equal to f2; 2; : : : ; 2g, f4; 6; : : : 2nC 2g[ f2; : : : ; 2g or f4; 8; : : : ; 4ng[ f2; : : : ; 2g as a multiset
for some n.

The simplicial complexK can be regarded as a poset by inclusions. We define a subposet P �K satisfying

� Pmax.K/� P ,

� for any � 2P and i , the set f�.x/ jx2�\Aig is equal to f2; 2; : : : ; 2g, f4; 6; : : : 2nC2g[f2; : : : ; 2g
or f4; 8; : : : ; 4ng[ f2; : : : ; 2g as a multiset for some n.

Then we regard the poset P as a category and we define a functor F W P ! Top. For � 2K,

X� D

8̂̂̂<̂
ˆ̂:

BSp.n/�
Q

fx2� j�.x/D2g

CP1 when f�.x/ j x 2 �g D f4; 8; : : : ; 4ng[ f2; : : : ; 2g,

BSU.nC 1/�
Q

fx2� j�.x/D2g

CP1 when f�.x/ j x 2 �g D f4; 6; : : : ; 2nC 2g[ f2; : : : ; 2g,

point when � is the empty set.

For � � � 2K, let
� W

Y
fx2� j�.x/D2g

CP1!
Y

fx2� j�.x/D2g

CP1

be the inclusion such that each vertex corresponds to the same vertex. Then let f�;� WX� !X� be the
map constructed by the product of the composition of �1, �2 and �3 between BSU.n/ and BSp.n/, and
� between the products of CP1. We define a functor F W P ! Top as follows:

� For � 2 P , put F.�/D
Q
i X�\Ai .

� For �; � 2 P with � � � , the map between F.�/! F.�/ is defined by the productY
i

f�\Ai ;�\Ai W
Y
i

X�\Ai !
Y
i

X�\Ai :

We define X D hocolimP F ; then the following lemma holds.

Lemma 3.2 Under the above notation , the cohomology ring of X is isomorphic to SR.K; �/.

Proof We prove this lemma by induction on jP j. Let � be a maximal simplex in K. Let K 0 be the
simplicial complex consisting of the faces of simplices in P n f�g. Then by the assumption of the
induction,

H�.hocolimPnf�g F IZ/Š SR.K 0; �/;

H�.hocolimP�� F IZ/Š ZŒ��;

H�.hocolimP<� F IZ/Š SR.K 0; �/=.V n �/Š SR.K 00; �/;
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where K 00 is the simplicial complex consisting of the simplices that a simplex in K 0 and a face of � . By
Lemma 2.1, X is represented by the following homotopy pushout diagrams

hocolimP<� F //

��

hocolimPnf�g F

��

hocolimP�� F // X

Since �1, �2 and �3 are the maps that send each generator to its corresponding generator or 0 in cohomology,
the maps in the upper diagram satisfy the condition in Lemma 2.2. Therefore by Lemma 2.2, we obtain
that H�.X IZ/Š SR.K; �/.

Proof of Theorem 1.3 By this discussion, we apply Lemma 3.2 to the case P D Pmax.K/, completing
the proof.

When the degree of generators of SR.K; �/ are only 2 and 4, Theorem 1.3 becomes a well-known result.
This corollary is directly proved by the result of Davis and Januszkiewicz [7], and a special case of
[5, Theorem 2.34].

Corollary 3.3 Let SR.K; �/ be the finitely generated graded Stanley–Reisner ring for a simplicial
complex K with the vertex set V and � W V ! 2Z>0. When the image of � is in f2; 4g, we can construct
a space X such that H�.X IZ/Š SR.K; �/.

When, in SR.K; �/, there is no pair of generators x; y 2 V such that jxj D jyj D 4 and xy ¤ 0, we don’t
have to take the decomposition of the vertex set. In this case, we can restate Theorem 1.3 as follows.

Corollary 3.4 Let SR.K; �/ be the finitely generated graded Stanley–Reisner ring for a simplicial
complex K with the vertex set V and � W V ! 2Z>0. We assume that there is no pair of generators
x; y 2 V such that jxj D jyj D 4 and xy ¤ 0 in SR.K; �/. Then if SR.K; �/ satisfies the following
condition , we can construct a space X such that H�.X IZ/Š SR.K; �/:

� For � 2Pmax.K/, the set f�.x/ j x 2 �g is equal to f2; 2; : : : ; 2g, f4; 6; : : : ; 2nC2g[f2; 2; : : : ; 2g
or f4; 8; : : : ; 4ng[ f2; 2; : : : ; 2g as a multiset.

4 Examples

In this section we look at some examples about Corollary 3.4.

Let SRŒK; ��Š ZŒx4; x6; x8�=.x6x8/. Then the corresponding diagram is

BSU.3/ BSp.1/! BSp.2/:

Algebraic & Geometric Topology, Volume 24 (2024)
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Let SRŒK; ��Š ZŒx4; x6;1; x6;2; : : : ; x6;n; x8�=.x6;jx6;k for j ¤ k/, where jxi;j j D i . Then the corre-
sponding diagram is

BSp.2/

yy �� ## ))

BSU.4/ BSU.4/ � � � BSU.4/

Let SRŒK; ��ŠZŒx4; x6;1; x6;2; x8;1; x8;2�=.x6;1x6;2; x8;1x8;2/, where jxi;j j D i . Then the correspond-
ing diagram is

BSU.4/

BSU.3/ //

33

BSU.4/

BSp.2/

>>

��

BSp.1/

33

++

>>

  

BSp.2/

DD

  

BSU.3/ //

++

BSU.4/

BSU.4/

5 Approach from algebra over the Steenrod algebra

This section discusses when a graded polynomial ring has an unstable algebra structure over mod p
Steenrod algebra by using previous results. All of the properties in this section are similar to the properties
used by Aguadé in [2]. There, Aguadé obtains which polynomial algebras over Z are realizable as the
integral cohomology ring of a space when the orders of the generators are all different. To prove this,
Aguadé observes which polynomial rings have an unstable algebra structure over the mod p Steenrod
algebra by using the result of Adams and Wilkerson [1]. In this section, we consider which polynomial
rings have an unstable algebra structure over the mod p Steenrod algebra under the condition that there is
at most 1 generator with degree 4.

When a commutative graded algebra A� over Z=p has an action of mod p Steenrod algebra with Cartan
formula, we say A� an algebra over the mod p Steenrod algebra. An algebra over the mod p Steenrod
algebra A� with A2iC1 D 0 for all i is unstable if and only if for all homogeneous elements x 2 A2d ,
there are equations

Pk.x/D

�
xp if k D d;
0 if k > d

when p � 3; or Sq2k.x/D
�
x2 if k D d;
0 if k > d

when p D 2:
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When the odd-degree part of A� is equal to 0, the unstable condition can be defined by only these
equations. Conversely, if the odd-degree part of A� is not equal to 0, there are more equations needed to
define the unstable condition.

The following theorem can be obtained by combining Theorems 1.1 and 1.2 in Adams and Wilkerson [1].

Theorem 5.1 (cf Adams and Wilkerson [1, Theorems 1.1 and 1.2]) Let A� be a graded polynomial
algebra over Z=p for prime p. We assume that the following conditions hold :

� A� is an unstable algebra over the mod p Steenrod algebra.

� A� is evenly generated.

� A� is finitely generated as ring.

� The degrees of generators of A� are prime to p.

Then there is an isomorphism
A� ŠH�.BT nIZ=p/W

for some n and a group W generated by pseudoreflections.

By using this theorem, we can prove the next theorem.

Proposition 5.2 (cf Aguadé [2, Proposition 2]) LetA� be a graded polynomial algebra over Z satisfying
the following condition:

� There is a number N such that for all prime numbers p > N , A˝ Z=p has unstable algebra
structure over the mod p Steenrod algebra.

Then the degree of the generator of A� is the union of the following list :

� f2g � f4; 6; : : : ; 2ng � f4; 8; : : : ; 4ng

� f4; 8; : : : ; 4.n� 1/; 2ng for n� 4 � f4; 12g � f4; 12; 16; 24g

� f4; 10; 12; 16; 18; 24g � f4; 12; 16; 20; 24; 28; 36g � f4; 16; 24; 28; 36; 40; 48; 60g

� f4; 16g � f4; 24g � f4; 48g

We prove this proposition by the same method in the proof of [2, Proposition 2].

Proof Let p1; : : : ; pi be the primes larger than 7 which divide the degree of generators of A�. Then by
a theorem of Dirichlet we can take a prime number p > N such that

p � 7 mod 16; p � 2 mod 3; p � 3 mod 5; p � 3 mod 7; p � 2 mod pi :

By Theorem 5.1, A� ˝ Z=p is isomorphic to an invariant ring H�.BT nIZ=p/W for some n and a
group W generated by pseudoreflections. By the classification theorem of p–adic pseudoreflection groups
(cf Clark and Ewing [6]), we obtain this proposition.
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For a graded algebra A�, write QA� D A�=.A�
C
/2. The following lemma is proved by Thomas.

Theorem 5.3 (Thomas [16, Theorem 1.4]) Let A� be a finitely generated polynomial algebra over Z=2

and an unstable algebra over the mod 2 Steenrod algebra. Then for any number i and odd number n� 3,
the map

Sq2
i

WQA2
i .n�1/

!QA2
in

is a surjection.

Lemma 5.4 Let A� be a polynomial algebra over Z such that the degrees of generators are equal to
one of the following list as a multiset :

� f4; 8; : : : ; 4.n� 1/; 2ng[ f2; 2; : : : ; 2g with n� 4 and n is not a power of 2,

� f4; 12g[ f2; 2; : : : ; 2g,

� f4; 12; 16; 24g[ f2; 2; : : : ; 2g,

� f4; 10; 12; 16; 18; 24g[ f2; 2; : : : ; 2g,

� f4; 12; 16; 20; 24; 28; 36g[ f2; 2; : : : ; 2g,

� f4; 16; 24; 28; 36; 40; 48; 60g[ f2; 2; : : : ; 2g,

� f4; 24g[ f2; 2; : : : ; 2g,

� f4; 48g[ f2; 2; : : : ; 2g.

Then A�˝Z=2 doesn’t have an unstable algebra structure over the mod 2 Steenrod algebra.

Proof We assume that A� ˝ Z=2 has an unstable algebra over the mod 2 Steenrod algebra. By
Theorem 5.3, if there is a generator x with jxj D 12, then there must be a generator y with jyj D 8.
Therefore the second, third, fourth and fifth cases don’t have an unstable algebra structure over the mod 2
Steenrod algebra.

Similarly, if there is a generator x such that jxj D 60; 24; 48, then there must be a generator y with
jyj D 56; 16; 32, respectively. Therefore the sixth, seventh and eighth cases don’t have an unstable algebra
structure over the mod 2 Steenrod algebra.

It remains to show the first case. In this case we can denote nD 2im for an integer i and an odd number
m� 3. When i D 0, by [2, Proposition 3], A� doesn’t have an unstable algebra structure over the mod 2
Steenrod algebra. When i � 1, by Theorem 5.3 Sq2

iC1

WQA2
iC1.m�1/!QA2

iC1m must be a surjection.
But dim.QA2

iC1.m�1//D 1 and dim.QA2
iC1m/D 2; a contradiction. Therefore the first case doesn’t

have an unstable algebra structure over the mod 2 Steenrod algebra.

Combining these discussions, the proof is complete.

Lemma 5.5 Let A� be a polynomial algebra over Z such that the degrees of generators are equal to
f4; 16g [ f2; 2; : : : ; 2g as a multiset. Then A�˝Z=3 doesn’t have an unstable algebra over the mod 3
Steenrod algebra.
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Proof Let A� be the polynomial ring with the degrees of generators are equal to f4; 16g[ f2; : : : ; 2g,
and let x be the generator with degree 16 in A�. We assume that A�˝Z=3 has an unstable algebra
structure over the mod 3 Steenrod algebra. By the Adem relation, there is an equation P8 D �P1P7.
Since P8.x/D x3, it follows that x3 is in Im.P1/. On the other hand since there is no generator y with
jyj � 12 mod 16, the term xi is not included in the image P1. This is a contradiction.

Proposition 5.6 Let A� be a nontrivial graded polynomial algebra over Z such that

� there is at most one generator with degree 4, and

� for all prime numbers p, A˝Z=p has an unstable algebra structure over the mod p Steenrod
algebra.

Then the degree of the generators of A� is equal to the one of the following list as a multiset for some n:

� f2; 2; : : : ; 2g � f4; 6; : : : ; 2ng[ f2; 2; : : : ; 2g

� f4; 8; : : : ; 4ng[ f2; 2; : : : ; 2g � f4; 8; : : : ; 2nC1� 4; 2ng[ f2; 2; : : : ; 2g

Proof By Proposition 5.2 and the first condition, the degree of the generator of A� is equal to the union
of the one of the table in Proposition 5.2 and the copies of f2g. By Lemmas 5.4 and 5.5, the cases except
for the cases f4; 6; : : : ; 2ng, f4; 8; : : : ; 4ng or f4; 8; : : : ; 2nC1�4; 2ng don’t satisfies the second condition.
Thus we obtain the proposition.

Example 5.7 Let Z=2Œt1; : : : ; t2n �ŠH�.BT 2
n

IZ=2/ for n� 2. Take a subring of H�.BT 2
n

IZ=2/ as

Z=2Œt1; t2; : : : ; t2n�1�
W.Sp.2n�1//

˝Z=2Œt2n
2n�1 �;

where W.Sp.2n� 1// is the Weyl group of Sp.2n� 1/ and Z=2Œt1; t2; : : : ; t2n �W.Sp.2n�1// is the invari-
ant ring of the canonical W.Sp.2n�1//–action. Since Z=2Œt1; t2; : : : ; t2n �W.Sp.2n�1// is isomorphic to
H�.BSp.2n� 1/IZ=2/, this subring preserve the action of mod 2 Steenrod operations, and the degree
of generators of this subring is f4; 8; : : : ; 2nC1� 4; 2ng. This subring has the unstable algebra structure
over the mod 2 Steenrod algebra induced by H�.BT 2

n

IZ=2/.

When p is an odd prime number, the cohomology ring H�.BSpin.2n/IZ=p/ is isomorphic to the
polynomial ring with generator’s degree f4; 8; : : : ; 2nC1 � 4; 2ng (cf [12, Chapter III, Theorem 3.19]),
and has the unstable algebra structure over the mod p Steenrod algebra. And the ring in this example has
the unstable algebra structure over the mod 2 Steenrod algebra. Therefore by only using the method in
this section, we cannot remove the case f4; 8; : : : ; 2nC1� 4; 2ng in Proposition 5.6.

6 Stanley–Reisner ring and Steenrod algebra

Let K be a simplicial set with the vertex set V, and � W V ! 2Z>0. For a polynomial f 2 SR.K; �/ and
a monomial g, we write g < f when g ¤ 0 in SR.K; �/ and the coefficient of g in f is not equal to 0.
This notation is well-defined because the ideal I is generated by monomials.
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Lemma 6.1 Let X be a space such that H�.X IZ/Š SR.K; �/ for some graded Stanley–Reisner ring ,
and � 2 K be a maximal simplex. Then for any prime number p the ideal .V n �/ in H�.X IZ=p/ Š
SR.K; �/˝Z=p preserves the action of the mod p Steenrod algebra.

Proof We assume that the ideal .V n �/ doesn’t preserve the action of mod p Steenrod algebra. Then
by the Cartan formula, there is x 2 V n � and a monomial f 2 SR.K; �/ such that f … .V n �/ and
f < Pi .x/ for some i . Now we can take f with i being minimal, ie Pj .x/ 2 .V n �/ for j < i . We
write g D

Q
y2� y. Since f is a monomial generated by � , we get fg ¤ 0 in SR.K; �/. Then

fg < Pi .x/g;

and since i is minimal,
fg 6<

X
j>0

Pi�j .x/Pj .g/:

Therefore, by the Cartan formula,

fg < Pi .x/gC
X
j>0

Pi�j .x/Pj .g/D Pi .xg/;

and we obtain
Pi .xg/¤ 0:

Since xgD 0 in SR.K; �/, this is a contradiction, so the assumption is false. This completes the proof.

Proposition 6.2 Let X be a space such that H�.X IZ/Š SR.K; �/ for some graded Stanley–Reisner
ring. Let �1; : : : ; �m 2K be maximal simplexes. Then for any prime number p, the ring

SR.K; �/˝Z=pZ=.V n �1\ � � � \ �m/

has an unstable algebra structure over the mod p Steenrod algebra induced by the quotient map

H�.X IZ=p/Š SR.K; �/˝Z=pZ! SR.K; �/˝Z=pZ=.V n �1\ � � � \ �m/:

Proof By Lemma 6.1, for all x 2 V n �k and i , we obtain

Pi .x/ 2 .V n �k/� .V n �1\ � � � \ �n/:

Therefore the ideal .V n �1\ � � � \ �m/ preserves the action of the mod p Steenrod algebra.

Theorem 6.3 For a graded Stanley–Reisner ring SR.K; �/, let X be a space such that H�.X IZ/ Š
SR.K; �/. We assume that there is no pair of generators x; y 2 V such that �.x/D �.y/D 4 and xy ¤ 0
in SR.K; �/. Then for � 2 Pmax.K/, the set f�.x/ j x 2 �g is equal to

� f2; : : : ; 2g,

� f4; 6; : : : ; 2nC 2g[ f2; : : : ; 2g,

� f4; 8; : : : ; 4ng[ f2; : : : ; 2g, or

� f4; 8; : : : ; 2nC2� 8; 2nC2� 4; 2nC1g[ f2; : : : ; 2g

as a multiset for some n� 1.
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Proof Since � 2K, there is no relation between the generators in � . Therefore there is an isomorphism

SR.K; �/=.V n �/Š ZŒ��:

By the definition ofPmax.K/ there are maximal simplexes �1; : : : ; �m2K such that �D
T
i �i . Thus ZŒ��

satisfies the condition of Proposition 6.2. By the assumption in the statement, for any � 2Pmax.K/ there is
at most one generator with degree 4 in � . By Proposition 6.2 and this condition, the polynomial ring ZŒ��

satisfies the condition in Proposition 5.6. Therefore the set f�.x/ j x 2
T
i �ig is equal, as a multiset, to

� f2; : : : ; 2g,

� f4; 6; : : : ; 2nC 2g[ f2; : : : ; 2g,

� f4; 8; : : : ; 4ng[ f2; : : : ; 2g, or

� f4; 8; : : : ; 2nC2� 8; 2nC2� 4; 2nC1g[ f2; : : : ; 2g.

Example 6.4 Let SR.K; �/ Š ZŒx4; x6�=.x4x6/, where jxi j D i . Then Pmax.K/ D ff4g; f6gg. By
Theorem 6.3, there is no space X with H�.X IZ/Š ZŒx4; x6�=.x4x6/.

7 Proof of the main theorem

By combining Corollary 3.4 and Theorem 6.3, we can prove Theorem 1.1.

Proof of Theorem 1.1 In Corollary 3.4, we prove that if SR.K; �/ satisfies these conditions then there
is a space X such that H�.X IZ/Š SR.K; �/.

On the other hand, we assume that there is a space X such that H�.X IZ/Š SR.K; �/. By assumption,
in the statement for i D 2, SR.K; �/ satisfies the condition of Theorem 6.3. By Theorem 6.3, for any
� 2Pmax.K/ the set f�.x/ jx 2 �g is equal to f2; : : : ; 2g, f4; 6; : : : ; 2nC2g[f2; : : : ; 2g, f4; 8; : : : ; 4ng[
f2; : : : ; 2g or f4; 8; : : : ; 2nC2� 8; 2nC2� 4; 2nC1g[ f2; : : : ; 2g as a multiset. By the assumption in the
statement, there is no pair of generators x; y such that jxj D jyj D 2n for some n � 3 and xy ¤ 0 in
SR.K; �/. Since the case f4; 8; : : : ; 2nC2� 8; 2nC1� 4; 2ng[ f2; : : : ; 2g for n� 3 includes such a pair
of generators, this case doesn’t appear. Therefore for any � 2 Pmax.K/ the set f�.x/ j x 2 �g is equal to
f2; : : : ; 2g, f4; 6; : : : ; 2nC 2g[ f2; : : : ; 2g or f4; 8; : : : ; 4ng[ f2; : : : ; 2g as a multiset.

By combining these, the proof is complete.
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