
ATG

Algebraic & Geometric
Topology

msp

Volume 24 (2024)

Dehn twists and the Nielsen realization problem for spin 4–manifolds

HOKUTO KONNO



msp

Algebraic & Geometric Topology 24:3 (2024) 1739–1753
DOI: 10.2140/agt.2024.24.1739

Published: 28 June 2024

Dehn twists and the Nielsen realization problem for spin 4–manifolds

HOKUTO KONNO

We prove that for a closed oriented smooth spin 4–manifold X with nonzero signature, the Dehn twist
about a .C2/– or .�2/–sphere in X is not homotopic to any finite-order diffeomorphism. In particular,
we negatively answer the Nielsen realization problem for each group generated by the mapping class of a
Dehn twist. We also show that there is a discrepancy between the Nielsen realization problems in the
topological category and smooth category for connected sums of copies of K3 and S2 �S2. The main
ingredients of the proofs are Y Kato’s 10=8–type inequality for involutions and a refinement of it.

57S17

1 Main results

Given a smooth manifold X , let Diff.X / denote the group of diffeomorphisms. The Nielsen realization
problem asks whether a given finite subgroup G of the mapping class group �0.Diff.X // can be realized
as a subgroup of Diff.X /, ie whether there exists a (group-theoretic) section s W G ! Diff.X / of the
natural map Diff.X /! �0.Diff.X // over G. If there is a section, we say that G is realizable in Diff.X /.
When X is of dimD 2 and oriented closed, which is the classical case of the Nielsen realization problem,
Kerckhoff [18] proved that every G is realizable.

In contrast, Raymond and Scott [30] showed that, in every dimension � 3, there are nilmanifolds for
which the Nielsen realization fails essentially using their nontrivial fundamental groups. Focusing on
dimension 4 and simply connected manifolds, it was recently proven by Baraglia and the author [4] and
Farb and Looijenga [9] that the Nielsen realization fails for K3, the underlying smooth 4–manifold of a
K3 surface. However, to the best of the author’s knowledge, the nilmanifolds in [30] and K3 are the
only examples of 4–manifolds X that are shown to admit finite subgroups of �0.Diff.X // that are not
realizable in Diff.X /. The purpose of this paper is to expand the list of such 4–manifolds considerably. In
particular, we give infinitely many examples of simply connected 4–manifolds with distinct intersection
forms for which the Nielsen realization fails.

For a general 4–manifold, it is not obvious to find a potential example of nonrealizable finite subgroups
of the mapping class group. Following Farb and Looijenga [9], we consider Dehn twists, which are
sources of interesting examples. Given a .C2/– or .�2/–sphere S embedded in a 4–manifold X , one has
a diffeomorphism TS W X ! X called the Dehn twist, whose mapping class ŒTS � generates an order-2
subgroup of �0.Diff.X // (see Section 5.1). Our first main result is:
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1740 Hokuto Konno

Theorem 1.1 Let X be a closed oriented smooth spin 4–manifold with nonzero signature and S be
a smoothly embedded 2–sphere in X with ŒS �2 D 2 or ŒS �2 D �2. Then the Dehn twist TS W X ! X

about S is not homotopic to any finite-order diffeomorphism of X . In particular , the order-2 subgroup of
�0.Diff.X // generated by the mapping class ŒTS � is not realizable in Diff.X /.

Theorem 1.1 generalizes the case when X D K3 due to Farb and Looijenga [9, Corollary 1.10] (see
Remark 5.2 for the comparison), and Theorem 1.1 immediately implies that the Nielsen realization fails
for quite many 4–manifolds, such as #mK3 #n S2 �S2 with m> 0 and also infinitely many examples of
irreducible 4–manifolds. See Example 5.3 for details.

Theorem 1.1 makes a striking contrast to a recent result by Lee [21, Corollary 1.5, Remark 1.7], which
implies that the Dehn twist about every .˙2/–sphere in CP2 # n.�CP2/ with n � 8 is topologically
isotopic (hence homotopic) to a smooth involution. This means that an analogous statement to Theorem 1.1
does not hold for nonspin 4–manifolds.

Another result of this paper concerns a comparison between the Nielsen realization problems in the
topological category and the smooth category. Let Homeo.X / denote the group of homeomorphisms of a
manifold X . As well as the smooth Nielsen realization, we say that a subgroup G of �0.Homeo.X // is
realizable in Homeo.X / if there is a section s WG! Homeo.X / of the natural map

Homeo.X /! �0.Homeo.X //

over G. In [4, Theorem 1.2], Baraglia and the author showed that some order-2 subgroup of �0.Diff.K3//

is not realizable in Diff.K3/, even when the corresponding subgroup in �0.Homeo.K3// is realizable in
Homeo.K3/. We generalize this result to connected sums of copies of K3 and S2 �S2:

Theorem 1.2 For m> 0 and n� 0, set X DmK3 # nS2 �S2. Then there exists an order-2 subgroup
G of �0.Diff.X // with the following properties:

� The group G is not realizable in Diff.X /. Moreover , a representative of the generator of G is not
homotopic to any finite-order diffeomorphism of X .

� The subgroup G0 � �0.Homeo.X // defined as the image o G under the natural map

�0.Diff.X //! �0.Homeo.X //

is a nontrivial group , and G0 is realizable in Homeo.X /.

In other words, a representative g 2Diff.X / of the generator of G in Theorem 1.2 is not homotopic to any
finite-order diffeomorphism, although g2 is smoothly isotopic to the identity and g is topologically isotopic
to some topological involution with nontrivial mapping class. Theorem 1.2 gives also an alternative proof
of a result by Baraglia [2, Proposition 1.2] about the realization problem along Diff.X /!Aut.H2.X IZ//

(see Section 7).

Theorems 1.1 and 1.2 shall be derived from the following constraint on the induced actions of finite-
order diffeomorphisms on homology. Let �.X / denote the signature of an oriented closed 4–manifold
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X and bC.X / denote the maximal-dimension of positive-definite subspaces of H2.X IR/. For an
involution ' on the intersection lattice, we denote by b

'
C.X / (resp. b'�.X /) the maximal-dimension

of positive-definite (resp. negative-definite) subspaces of the '–invariant part H2.X IR/
' , and we set

�'.X /D b
'
C.X /� b'�.X /.

Theorem 1.3 Let X be a closed oriented smooth 4–manifold with �.X /< 0, and let s be a spin structure
on X . Let g W X ! X be a finite-order diffeomorphism that preserves orientation of X and s, and let
' WH2.X IZ/=Tor!H2.X IZ/=Tor denote the action on homology induced from g. Suppose that ' is
of order 2 and that �'.X /¤ �.X /=2. Then

(1) �
1

16
�.X /� bC.X /� b

'
C.X /:

Moreover , if bC.X /� b
'
C.X / > 0, then

�
1

16
�.X /C 1� bC.X /� b

'
C.X /:

The main ingredients of the proof of Theorem 1.3 are Y Kato’s 10=8–type inequality for involutions [17]
(Theorem 2.2) coming from Seiberg–Witten theory and a refinement of it (Theorem 3.1). This refinement
is necessary to show the “moreover” part of Theorem 1.3, which shall be used to obtain the results on
Dehn twists (Theorem 1.1) for both .C2/– and .�2/–spheres.

Here is an outline of the contents of this paper. In Section 2, we recall Kato’s 10=8–type inequality for a
smooth involution on a spin 4–manifold. In Section 3, we give a refinement of Kato’s inequality by proving
a new Borsuk–Ulam-type theorem using equivariant K–theory. In Section 4, we prove Theorem 1.3
based on Kato’s inequality and the refinement of it in Section 3. Sections 5 and 6 are devoted to prove
Theorems 1.1 and 1.2 respectively. We conclude by giving remarks on another kind of Dehn twist and
other variants of the Nielsen realization problem in Section 7.

2 Kato’s 10=8–type inequality for involutions

Henceforth, for an oriented closed 4–manifold X , we identify H2.X / with H 2.X / via Poincaré duality.
For an involution � on X , we set b�C.X /D b

��
C .X /, and similarly define b��.X / and � �.X /. Note that, if

X has nonvanishing signature, all diffeomorphisms of X are orientation-preserving, namely, we have
Diff.X /D DiffC.X /, the group of orientation-preserving diffeomorphisms.

First, we recall the notion of even and odd involutions following [1; 6]. Let X be an oriented closed smooth
4–manifold and s be a spin structure on X . Let � WX !X be an orientation-preserving diffeomorphism
of order 2, and suppose that � preserves (the isomorphism class of) s. Then there are exactly two lifts of �
to s as automorphisms of the spin structure. We have either both lifts are of order 2 or both are of order 4.
We say that the involution � is of even type if the lifts are of order 2, and say that � is of odd type if the lifts
are of order 4. When the fixed-point set X � is nonempty, the codimension of all components of X � are the
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same, which is either 4 or 2, and the parity of � determines which of them arises: X � is of codimension-4
if � is of even type, and X � is of codimension-2 if � is of odd type [1, Proposition 8.46]; see also [31].

Lemma 2.1 Let X be an oriented closed smooth 4–manifold and s be a spin structure on X . Let
� W X ! X be an orientation-preserving diffeomorphism of order 2, and suppose that � preserves (the
isomorphism class of ) s and is of even type. Then � �.X /D �.X /=2.

Proof By Hirzebruch’s signature theorem (see for example [16, equation (12), page 177]), � �.X / can be
obtained by adding �.X /=2 to contributions from fixed surfaces of �. (Note that, for a general involution,
the contribution from isolated fixed points is zero.) However, X � does not contain surfaces since � is
even.

An important ingredient of this paper is the following 10=8–type constraint on odd smooth involutions,
proven by Y Kato [17] using Seiberg–Witten theory and Z=4–equivariant K–theory:

Theorem 2.2 (Kato [17, Theorem 2.3]) Let .X; s/ be a smooth closed oriented spin 4–manifold. Let
� W X ! X be a smooth orientation-preserving involution , and suppose that � preserves s and is of odd
type. Then

(2) �
1

16
�.X /� bC.X /� b�C.X /:

Remark 2.3 In [17], the result corresponding to Theorem 2.2 is stated using a quantity bI
C.X /, where I

acts on H 2.X IR/ as I D���. By Poincaré duality, it immediately follows that bI
C.X /DbC.X /�b�C.X /.

3 A refinement of Kato’s inequality

To deal with Dehn twists about both .C2/– and .�2/–spheres in Theorem 1.1, we shall need the following
refinement of Kato’s inequality (Theorem 2.2), which we call the refined Kato’s inequality:

Theorem 3.1 Let .X; s/ be a smooth closed oriented spin 4–manifold. Let � W X ! X be a smooth
orientation-preserving involution , and suppose that � preserves s and is of odd type. Suppose that
bC.X /� b�C.X / > 0. Then

�
1

16
�.X /C 1� bC.X /� b�C.X /:

This shall be proven in Section 3.2 using a Borsuk–Ulam-type theorem (Theorem 3.3), which we first
give in Section 3.1.

3.1 Z=4–equivariant K–theory

To show Theorem 3.1, we prove a new Borsuk–Ulam-type theorem using Z=4–equivariant K–theory.
As in Kato’s argument [17], the following approach is modeled on Bryan’s argument [6] for Pin.2/–
equivariant K–theory. A difference from Kato’s argument is that we shall use the structure of the whole
representation ring R.Z=4/.
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Set GDZ=4 and let j denote a generator; GDf1; j ;�1;�j g. (The symbol j stands for a unit quaternion
j 2 Pin.2/�H, which is a symmetry that the Seiberg–Witten equations admit.) Let C, CC and C� be
complex 1–dimensional representations of G determined by

trj C D 1; trj CC D i; trj C� D�i;

where trj denotes the trace of the action of j and i D
p
�1. Namely, C is the trivial 1–dimensional

representation, and C˙ are representations given as ˙i–multiplication of the fixed generator of G. Let zR
denote a real 1–dimensional representation of G defined through the surjective homomorphism G!Z=2

and multiplication of Z=2D f˙1g. Set zC D zR˝R C. Recall that the complex representation ring R.G/

is given by

(3) R.G/D ZŒt �=.t4
� 1/;

where t DCC.

Here we recall a general fact, which holds for any compact Lie group G, called tom Dieck’s formula by
Bryan [6]. Let V and W be finite-dimensional unitary representations of G. Let V C denote the one-point
compactification of V , naturally acted by G. We regard the point at infinity as the base point of V C. Let
f W V C!W C be a pointed G–continuous map. By the equivariant K–theoretic Thom isomorphism,
we have that zKG.V

C/ and zKG.W
C/ are free zKG.S

0/DR.G/–modules generated by the equivariant
K–theoretic Thom classes �K

G
.V / and �K

G
.W / respectively, and thus one may define the equivariant

K–theoretic mapping degree f̨ 2R.G/ of f characterized by

f ��K
G .W /D f̨ �

K
G .V /:

For an element g 2G, let V g and W g denote the fixed-point set for g, and let .V g/? and .W g/? denote
the orthogonal complement of V g and W g in V and W respectively. Let d.f g/ 2Z denote the mapping
degree, defined using just the ordinary cohomology, of the fixed-point set map f g W .V g/C! .W g/C.
For ˇ 2R.G/, define ��1ˇ 2R.G/ to be

P
i�0.�1/iƒiˇ. Then tom Dieck’s formula is:

Proposition 3.2 ([7, Proposition 9.7.2], see also [6, Theorem 3.3]) In the above setup , we have

trg. f̨ /D d.f g/ trg.��1..W
g/?� .V g/?//:

Now we are ready to prove the Borsuk–Ulam-type theorem we need:

Theorem 3.3 Let G D Z=4. For natural numbers m0;m1; n0; n1 � 0 with m0 <m1, suppose that there
exists a G–equivariant pointed continuous map

(4) f W .zCm0 ˚ .CC˚C�/
n0/C! .zCm1 ˚ .CC˚C�/

n1/C

with f .0/D 0. Then

(5) n0� n1C 1�m1�m0:
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Remark 3.4 This Borsuk–Ulam-type theorem, Theorem 3.3, may be of independent interest. Especially,
it is worth noting that Theorem 3.3 allows us to give a proof of Furuta’s celebrated 10=8–inequality [11]
using only the Z=4–symmetry of the Seiberg–Witten equations, while the original proof used a bigger
symmetry, Pin.2/. See Remark 3.5 for further comments on this.

Also, Theorem 3.3 generalizes a result by Pfister and Stolz [28, Theorem, page 286], where they proved
Theorem 3.3 for the case that m0 D 0 and n1 D 0. The argument of Pfister and Stolz is also based on
K–theory, but in a slightly different way than ours.

Proof of Theorem 3.3 Let ˛ D f̨ 2R.G/ denote the equivariant K–theoretic mapping degree of f .
We shall obtain constraints on ˛ from the actions of �1 and j . First, note that the .�1/–fixed point set
map for f is given by f �1 W .zCm0/C! .zCm1/C, and thus the assumption m0 <m1 implies d.f �1/D 0.
Hence it follows from Proposition 3.2 that tr�1.˛/D 0. Thanks to the ring structure (3) of R.G/, ˛ can
be expressed in the form

(6) ˛ D

3X
kD0

ak tk ;

where ak 2 Z. Since tr�1.t/D�1, it follows that tr�1.˛/D a0� a1C a2� a3. Thus,

(7) a0� a1C a2� a3 D 0:

Next, let us consider the j –action on ˛. First, note that f j is just the identity map on S0 D f0g[ f1g,
and hence d.f j /D 1. In general, for complex rank 1 (virtual) representations L1; : : : ;LN 2R.G/, one
has ��1

�PN
iD1 Li

�
D
QN

iD1 ��1Li . Thus, again using Proposition 3.2,

(8) trj .˛/D trj
�
��1.zC

m1�m0 ˚ .CC˚C�/
n1�n0/

�
D trj

�
��1..m1�m0/t

2
C .n1� n0/t C .n1� n0/t

3/
�

D trj
�
.1� t2/m1�m0.1� t/n1�n0.1� t3/n1�n0

�
D .1C 1/m1�m0.1� i/n1�n0.1C i/n1�n0

D 2m1�m0Cn1�n0 :

On the other hand, from the expression (6) of ˛, we have trj .˛/D a0�a2C .a1�a3/i . Since trj .˛/ 2R

by (8), we have a1� a3 D 0, and this combined with (7) implies that

(9) trj .˛/D a0� a2 D 2.a1� a2/:

Since a1� a2 2 Z, the desired inequality (5) follows from (8) and (9).

Note that the divisibility by 2 over Z of the right-hand side of (9) contributes to the “C1” term in the
inequality (5), which is the source of the refined Kato’s inequality.
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3.2 Proof of Theorem 3.1

Now we are ready to prove the refined Kato’s inequality:

Proof of Theorem 3.1 Set G D Z=4. Kato proved in [17] that the odd involution � gives rise to an
involutive symmetry I on the Seiberg–Witten equations on .X; s/, and the complexification of a finite-
dimensional approximation of the I–invariant part of the Seiberg–Witten equations is a G–equivariant
pointed continuous map f of the form (4) with f .0/D 0, where the natural numbers m0, m1, n0 and n1

in (4) satisfy
m1�m0 D bC.X /� b�C.X /; n0� n1 D�

1
16
�.X /:

By the assumption bC.X /� b�C.X / > 0, we may apply Theorem 3.3 to this f .

Remark 3.5 Furuta’s 10=8–inequality [11] was proved using the Pin.2/–symmetry of the Seiberg–Witten
equations for a closed spin 4–manifold X . Using our Borsuk–Ulam-type theorem, Theorem 3.3, we
may recover Furuta’s 10=8–inequality using only the Z=4–symmetry of the Seiberg–Witten equations
as follows. Note that G D Z=4D hj i is a subgroup of Pin.2/D S1[ jS1 �H. Restricting the Pin.2/–
symmetry to the Z=4–symmetry in Furuta’s construction [11], we have that the complexification of a
finite-dimensional approximation of the Seiberg–Witten equations is a G–equivariant pointed continuous
map f of the form (4) with f .0/D 0 for natural numbers m0, m1, n0 and n1 with

m1�m0 D bC.X /; n0� n1 D�
1
8
�.X /:

Applying Theorem 3.3 to f , we obtain

�
1
8
�.X /C 1� bC.X /

provided that bC.X / > 0. This inequality is equivalent to the 10=8–inequality [11, Theorem 1].

4 Proof of Theorem 1.3

Proof of Theorem 1.3 First, we reduce the problem to involutions following [9, Proof of Corollary 1.10].
Since the subgroup of Diff.X / generated by g has a surjective homomorphism onto h'i ŠZ=2, the order
of g is even. Let 2m be the order of g; then gm is a smooth involution. Set �D gm. Since g� D ' is of
order 2, either �� D ' or �� D id. By the condition that g�sŠ s, � also preserves s.

If �� D ', we have � �.X /¤ �.X /=2 from the assumption that �'.X /¤ �.X /=2. If �� D id, we have
� �.X /¤ �.X /=2 since we supposed �.X /¤ 0. Thus, in any of these cases, � �.X /¤ �.X /=2, and hence
it follows from Lemma 2.1 that � is of odd type. It then follows from Kato’s inequality, Theorem 2.2, that

(10) �
1

16
�.X /� bC.X /� b�C.X /� bC.X /� b

'
C.X /:

To see the “moreover” part of the theorem, suppose that bC.X /� b�C.X / > 0. Then we can replace the
left-hand side of (10) with ��.X /=16C 1 by the refined Kato’s inequality, Theorem 3.1.
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5 Proof of Theorem 1.1

5.1 Dehn twists about .˙2/–spheres

First, we recall 4–dimensional Dehn twists associated with .˙2/–spheres. We refer readers to a lecture
note by Seidel [32, Section 2] for details. While the construction of the Dehn twist in [32] is described for
a Lagrangian sphere in a symplectic 4–manifold, which is always a .�2/–sphere, the construction works
for any .�2/–sphere in a general 4–manifold without any change, and it is easy to obtain an analogous
diffeomorphism for a .C2/–sphere, described below.

Given a .�2/–sphere S in an oriented 4–manifold X , namely a smoothly embedded 2–dimensional sphere
S with ŒS �2D�2, one may construct a diffeomorphism TS WX!X called the Dehn twist about S , which
is supported in a tubular neighborhood of S in X , as follows. First, note that a tubular neighborhood
of S is diffeomorphic to T �S2 since S is a .�2/–sphere, and fix an embedding T �S2 ,! X . The
Dehn twist TS is the extension by the identity of some compactly supported diffeomorphism � of T �S2

called the model Dehn twist, which is given as the monodromy around the nodal singular fiber of the
family C3 ! C, .z1; z2; z3/ 7! z2

1
C z2

2
C z2

3
over the origin of C. The model Dehn twist � acts on

the zero-section S2 as the antipodal map and �2 is smoothly isotopic to the identity through compactly
supported diffeomorphisms of T �S2 [32, Proposition 2.1]. Hence the induced action of TS on homology
is nontrivial, more precisely, .TS /� WH2.X IZ/!H2.X IZ/ is given as

.TS /�.x/D xC .x � ŒS �/ŒS �;

and T 2
S

is smoothly isotopic to the identity. Thus the mapping class ŒTS � is nontrivial and it generates an
order-2 subgroup of �0.Diff.X //.

Next, consider the situation that a .C2/–sphere S in an oriented 4–manifold X is given. Then a tubular
neighborhood of S is diffeomorphic to TS2. Via an isomorphism between TS2 and T �S2 obtained by
fixing a metric on S2, we may implant the model Dehn twist into X as well as the .�2/–sphere case
above. We denote by TS W X ! X also this diffeomorphism, and call TS the Dehn twist as well. This
Dehn twist also generates an order-2 subgroup of �0.Diff.X //, since the corresponding statement for a
.�2/–sphere follows just from a property of the model Dehn twist, and the action on H2.X / is given by

.TS /�.x/D x� .x � ŒS �/ŒS �:

We note that every Dehn twist preserves every spin structure:

Lemma 5.1 Let X be a closed oriented smooth 4–manifold , and suppose that X admits a spin structure s.
Let S be a .C2/– or .�2/–sphere in X . Then the Dehn twist TS preserves s.

Proof Recall that TS is just the identity map on the complement of a tubular neighborhood of S in X ,
which is diffeomorphic to the disk cotangent bundle D.T �S2/. Thus it suffices to show that, given a
spin structure t on @D.T �S2/ D S.T �S2/, an extension of t to D.T �S2/ is unique. By the relative
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obstruction theory for a natural fibration B.Z=2/! B Spin.4/! BSO.4/, it follows that the extensions
of t are classified by H 1.D.T �S2/;S.T �S2/IZ=2/, which is the trivial group by the mod 2 Thom
isomorphism for T �S2! S2.

5.2 Proof of Theorem 1.1

Now we are ready to prove our main result on Dehn twists:

Proof of Theorem 1.1 By reversing the orientation, we may suppose that �.X / < 0. Note that a
.˙2/–sphere turns into a .�2/–sphere if we reverse the orientation of X . First we consider the case
that a .�2/–sphere is given in X with �.X / < 0. Let S be a .�2/–sphere, and let ' denote the induced
automorphism of H2.X IZ/ from the Dehn twist TS . Let us calculate b

'
C, b'� and �' . As described

above, ' is given by '.x/D xC.x � ŒS �/ŒS �, namely, ' acts on H2.X / as the reflection with respect to the
orthogonal complement of the subspace generated by ŒS �. Here the orthogonal complement is with respect
to the intersection form, and hence the complement contains a maximal-dimensional positive-definite
subspace. Thus,

b
'
C.X /D bC.X /; b'�.X /D b�.X /� 1; �'.X /D �.X /C 1:

From this we have that �'.X /¤ �.X /=2, since we supposed that �.X / < 0 and hence j�.X /j � 8 since
H2.X IZ/ is an even lattice. Moreover, we also have ��.X /=16> bC.X /�b

'
C.X /, again by �.X / < 0.

Now the claim of Theorem 1.1 for .�2/–spheres in X with �.X /< 0 follows from Theorem 1.3 combined
with Lemma 5.1.

Next, we consider the case that a .C2/–sphere S in X with �.X / < 0 is given. Note that, as in the
.�2/–sphere case above, ' D .TS /� is the reflection with respect to the orthogonal complement of the
subspace generated by ŒS �, but now ŒS � has positive self-intersection. Thus,

b
'
C.X /D bC.X /� 1; b'�.X /D b�.X /; �'.X /D �.X /� 1:

Again because j�.X /j � 8, it follows that �'.X /¤ �.X /=2. Moreover,

bC.X /� b
'
C.X /D 1< � 1

16
�.X /C 1:

Now the desired claim follows from the “moreover” part of Theorem 1.3 combined with Lemma 5.1.

Note that the “moreover” part of Theorem 1.3, which was derived from the refined Kato’s inequality
(Theorem 3.1), was effectively used to deal with .C2/–spheres in X with �.X / < 0 in the above proof of
Theorem 1.1.

Remark 5.2 For X DK3, the above proof of Theorem 1.1 gives an alternative proof of [9, Corollary 1.10]
by Farb and Looijenga. They gave two different proofs of [9, Corollary 1.10], and one of them is based
on Seiberg–Witten theory. We also used Seiberg–Witten theory, but in a slightly different manner: our
proof uses Kato’s result [17], rather than a result due to Bryan [6] used by Farb and Looijenga.
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Kato’s inequality (2) is useful to obtain a result for general spin 4–manifolds as in Theorem 1.1, not
only K3. This is essentially because bC is replaced with bC� b�C in Kato’s inequality (2).

Example 5.3 Theorem 1.1 tells us that quite many spin 4–manifolds X have (many) nonrealizable
order-2 subgroups of �0.Diff.X //. Indeed, there are many spin 4–manifolds that admit .˙2/–spheres.
For example, S2 � S2 admits both .C2/– and .�2/–spheres. A K3 surface, more generally, a spin
complete intersection surface M admits a .�2/–sphere. Except for M D S2�S2 we have �.M / < 0 for
such M , and thus we may apply Theorem 1.1 to M and obtain a nonrealizable subgroup, and, of course,
we may apply Theorem 1.1 also to the connected sum of M with any spin 4–manifold with � � 0. (For
the fact that M contains a .�2/–sphere, see the proof of Theorem 1.5 in [32, page 255]. In fact, one may
find a Lagrangian sphere in M , whose self-intersection is always �2. See also [15, pages 23–24] for the
topology of M , including when a complete intersection is spin.)

6 Proof of Theorem 1.2

Given an oriented closed simply connected smooth 4–manifold X , let Aut.H2.X IZ// denote the automor-
phism group of H2.X IZ/ equipped with the intersection form. Since the space of maximal-dimensional
positive-definite subspaces of H 2.X IR/ is known to be contractible, it makes sense whether a given
' 2 Aut.H2.X IZ// preserves a given orientation of the positive part of H 2.X IR/. Let us recall the
following classical fact:

Theorem 6.1 [5; 8; 23] Let �.K3/� Aut.H2.K3IZ// denote the image of the natural map

�0.Diff.K3//! Aut.H2.K3IZ//:

Then �.K3/ is the index-2 subgroup of Aut.H2.K3IZ// which consists of automorphisms that preserve
a given orientation of HC.K3/.

We shall also use:

Theorem 6.2 [4, Theorem 1.1] There exists a (group-theoretic) section s W �.K3/! �0.Diff.K3// of
the natural map �0.Diff.K3//! Aut.H2.K3IZ//.

Proof of Theorem 1.2 First, we recall a construction of a topological involution fK on K3 (ie order-2
element of Homeo.K3/) in [4, Section 3]. Let �E8 denote the negative-definite E8–manifold, namely,
simply connected closed oriented topological 4–manifold whose intersection form is the negative-definite
E8–lattice. Let fS W S

2 � S2 ! S2 � S2 be the diffeomorphism defined by .x;y/ 7! .y;x/. Since
fS has nonempty fixed-point set, which is of codimension-2, we can form an equivariant connected
sum of three copies of .S2 �S2; fS /. Take a point x0 of 3S2 �S2 outside the fixed-point set of #3fS ,
and attach two copies of �E8 with 3S2 � S2 at x0 and .#3fS /.x0/. Now we have got a topological
involution Qf W 3S2 � S2 # 2.�E8/ ! 3S2 � S2 # 2.�E8/. Let h W K3 ! 3S2 � S2 # 2.�E8/ be a
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homeomorphism obtained from Freedman theory [10], and define fK WK3!K3 by fK D h�1 ı Qf ı h,
which is a topological involution on K3.

Define a topological involution f W X ! X by an equivariant connected sum f D #mfK #n fS on
X DmK3 # nS2�S2 along fixed points, which acts on homology as follows. Recall that HC.S2�S2/

is generated by ŒS2�pt�C Œpt�S2� and H�.S2�S2/ is generated by ŒS2�pt�� Œpt�S2�. Hence f0 acts
trivially on HC.S2 �S2/, and acts on H�.S2 �S2/ by .�1/–multiplication. Thus, b

fS

C .S2 �S2/D 1

and bfS
� .S2 �S2/D 0, and hence

b
fK

C .K3/D 3; bfK
� .K3/D 8; �fK .K3/D�5;(11)

b
f
C.X /D 3mC n; bf� .X /D 8m; �f .X /D�5mC n:(12)

It follows from (11) that .fK /� preserves an orientation of HC.K3/, and hence .fK /� lies in �.K3/

by Theorem 6.1. Using the section s W �.K3/! �0.Diff.K3// given in Theorem 6.2, set ˆD s..fK /�/.
Then ˆ is a nontrivial element of �0.Diff.K3// of order 2, and hence a representative gK WK3!K3 of
ˆ is a diffeomorphism whose square g2

K
is smoothly isotopic to the identity. By smooth isotopy, we may

take gK such that gK pointwise fixes a 4–disk in K3. Similarly, we may obtain a diffeomorphism gS

of S2 �S2 which is smoothly isotopic to fS and which fixes a 4–disk pointwise. Fixing disjoint disks
D4

1
; : : : ;D4

mCn in S4, form a diffeomorphism

g D #mgK #n gS WX !X

by attaching gK ’s and gS ’s with .S4; idS4/ along the fixed disks of the gK ’s and gS ’s and D4
1
; : : : ;D4

mCn.
It is clear that g is supported outside S4

0
WD S4 n

FmCn
iD1 D4

i .

We claim that g2 is smoothly isotopic to the identity. First, for a simply connected closed oriented
4–manifold M , let Diff.M;D4/ denote the group of diffeomorphisms fixing pointwise an embedded
4–disk D4 in M . It follows from [12, Proposition 3.1] that we have an exact sequence

1! ker p! �0.Diff.M;D4//
p
�! �0.Diff.M //! 1;

where p is an obvious homomorphism and ker p is isomorphic to either Z=2 or 0, which is generated
by the mapping class of the Dehn twist �M along the 3–sphere parallel to the boundary. Set �K D �K3

and �S D �S2�S2 . Note that the relative mapping class Œ�K �@ is nontrivial in �0.Diff.K3;D4// by [19,
Proposition 1.2], while Œ�S �@ is trivial since �S can be absorbed into the S1–action on S2 �S2 given by
the rotation of one S2–component. Thus we obtain from ŒgK �

2D 1 and ŒgS �
2D 1 that ŒgK �

2
@
D Œ�K �@¤ 1

and ŒgS �
2
@
D 1. Hence Œg�2 is the product of the Dehn twists along necks between m–copies of K3 and S4

0
.

On the other hand, let �S4
0
WS4

0
!S4

0
be the diffeomorphism defined as the simultaneous Dehn twists near

all @D4
i . It follows from Lemma 6.3 below that �S4

0
is smoothly isotopic to the identity relative to @S4

0
.

Thus, Œg�2 D Œ.�S4
0

# idX nS4
0
/ ıg2�. Note that �S4

0
restricted to the neck between each K3 and S4

0
cancels

the Dehn twist �K , but �S4
0

yields the Dehn twist on each of the necks between the S2�S2’s and S4
0

. As
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a result, Œg�2 is the product of the Dehn twists along the necks between all of the S2 �S2 and S4
0

. But
each of these Dehn twists can be absorbed into the rotation of S2 �S2 as above. Thus we get Œg�2 D 1.

Let G be the subgroup of �0.Diff.X // generated by the mapping class Œg�. We claim that this group
G is the desired one. First, by construction, g� D f� on H2.X IZ/. By a theorem of Quinn [29] and
Perron [27], this implies that g and f are topologically isotopic to each other. Thus the image G0 of
G under the map �0.Diff.X //! �0.Homeo.X // lifts to the order-2 subgroup of Homeo.X / generated
by f. Since G0 is a nontrivial group as g acts homology nontrivially, this proves the statement on G0 in
the theorem.

What remains to prove is that g is not homotopic to any finite-order diffeomorphism of X . However,
using g� D f�, (12), and m> 0, it is straightforward to see that ' D g� violates the inequality (1) and
that �'.X /¤ �.X /=2. Thus the desired assertion follows from Theorem 1.3.

The following lemma and how to use it in the proof of Theorem 1.2 were suggested to the author by
David Baraglia:

Lemma 6.3 Let N > 0 and S4
0

be an N –punctured 4–sphere , S4
0
D S4 n

FN
iD1 D4

i . Let �S4
0
W S4

0
! S4

0

be the diffeomorphism defined as the simultaneous Dehn twists near all @D4
i . Then �S4

0
is smoothly

isotopic to the identity relative to @S4
0

.

Proof Regard S4 as the unit sphere of R5 DR2˚R3, and let S1 act on S4 by the standard rotation
of the R2–component. The fixed-point set † of the S1–action is given by S.0˚R3/Š S2. We may
assume that D4

i are embedded disks in S4 whose centers pi are on †. Then the normal tangent space
Npi

of † at pi in S4 is acted on by S1 as the standard rotation.

Pick a disk yD4
i in S4 that contains D4

i such that yD4
i nD4

i is diffeomorphic to the annulus S3� Œ0; 1�. Set
yS4

0
D S4 n

FN
iD1
yD4

i . The S1–action on S4 gives rise to an isotopy f'tgt2Œ0;1� � Diff. yS4
0
/ from id yS4

0
to

itself such that f't j@ yD4
i

gt gives the homotopically nontrivial loop in SO.4/� Diff.S3/Š Diff.@ yD4
i /.

On the other hand, recall that the Dehn twist � on S3 � Œ0; 1� is defined by �.y; t/D .g.t/ �y; t/, where
g W Œ0; 1�! SO.4/ is the homotopically nontrivial loop in SO.4/. By definition, � is isotopic to idS3�Œ0;1�

by an isotopy
 t 2 Diff.S3

� Œ0; 1�;S3
� f1g/;

through the diffeomorphism group fixing S3 �f1g pointwise, such that f t jS3�f0ggt gives the homotopi-
cally nontrivial loop in DiffC.S3/.

Let  i
t be copies of  t , regarded as isotopies on yD4

i nD4
i . By gluing 't with  i

t along
FN

iD1 @
yD4

i , we
obtain an isotopy from �S4

0
to idS4

0
relative to @S4

0
.

Remark 6.4 For X D K3, the above proof of Theorem 1.2 gives a slight alternative proof of [4,
Theorem 1.2], which used the adjunction inequality rather than Kato’s result [17].
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7 Additional remarks

7.1 Another kind of Dehn twist

A kind of Dehn twist different from that in Theorem 1.1 is the Dehn twist along an embedded annulus
S3� Œ0; 1� in a 4–manifold, defined using the generator of �1.SO.4//ŠZ=2, as described in the previous
section. The square of the Dehn twist of this kind is smoothly isotopic to the identity. Recently, Kronheimer
and Mrowka [19] proved that the Dehn twist � along the neck of K3 # K3 is not smoothly isotopic to the
identity, and J Lin [22] showed that the extension of � to K3 # K3 # S2 �S2 by the identity of S2 �S2

is also not smoothly isotopic to the identity. Hence it turns out that these Dehn twists generate order-2
subgroups of the mapping class groups. We remark that these subgroups also give counterexamples to the
Nielsen realization problem:

Proposition 7.1 (i) Let � be the Dehn twist along the neck of K3 # K3. Then the order-2 subgroup
of �0.Diff.K3 # K3// generated by the mapping class of � is not realized in Diff.K3 # K3/.

(ii) Let � 0 be the extension of � by the identity to K3 # K3 # S2 � S2. Then the order-2 sub-
group of �0.Diff.K3 # K3 # S2 � S2// generated by the mapping class of � 0 is not realized in
Diff.K3 # K3 # S2 �S2/.

Proof By a result of Matumoto [24] and Ruberman [31], a simply connected closed spin 4–manifold
with nonzero signature does not admit a homologically trivial locally linear involution. Since the Dehn
twist � is homologically trivial, the claim of the proposition immediately follows.

7.2 Other variants of the realization problem

Given a manifold X of any dimension, one may also consider the realization problem for infinite
subgroups of �0.Diff.X // along Diff.X /! �0.Diff.X // (or along DiffC.X /! �0.DiffC.X // when
Diff.X / ¤ DiffC.X /). To answer this problem negatively, several authors developed cohomological
obstructions, which can be thought of as descendants of an argument started by Morita [25] for surfaces.
In dimension 4, concrete results on the nonrealization were obtained in [14; 33] in this direction (see
also [13]). Concretely, Giansiracusa, Kupers and Tshishiku [14] studied X DK3, and Tshishiku [33]
considered manifolds of any dimension, but especially the result [33, Theorem 9.1] treated 4–manifolds
whose fundamental groups are isomorphic to nontrivial lattices, which does not have overlap with
4–manifolds that we considered in this paper.

Another variant of the realization problem is about the realization along the natural map

DiffC.X /! �0.HomeoC.X //

for a subgroup of the image of this map. If X is a simply connected 4–manifold, the natural map
�0.HomeoC.X //!Aut.H2.X IZ// is isomorphic [27; 29], and hence this version of realization problem
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is equivalent to the realization along the map DiffC.X /! Aut.H2.X IZ//, which has been extensively
studied by Nakamura [26], Baraglia [2; 3], and Lee [20; 21]. As noted in Section 1, Theorem 1.2 gives
an alternative proof of [2, Proposition 1.2] about the realization of an involution of H2.X IZ/.
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