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Parametrized motion planning algorithms have a high degree of universality and flexibility; they generate
the motion of a robotic system under a variety of external conditions. The latter are viewed as parameters
and constitute part of the input of the algorithm. The concept of sequential parametrized topological
complexity TCr Œp WE! B� is a measure of the complexity of such algorithms. It was studied by Cohen,
Farber and Weinberger (2021, 2022) for r D 2 and by Farber and Paul (2022) for r � 2. We analyze the
dependence of the complexity TCr Œp W E ! B� on an initial bundle with structure group G and on its
fibre X viewed as a G–space. Our main results estimate TCr Œp WE! B� in terms of certain invariants of
the bundle and the action on the fibre. Moreover, we also obtain estimates depending on the base and the
fibre. Finally, we develop a calculus of sectional categories featuring a new invariant secatf Œp WE! B�

which plays an important role in the study of sectional category of towers of fibrations.
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1 Introduction

Motion planning algorithms of robotics control autonomous robots in engineering; see [LaValle 2006]. A
motion planning algorithm takes as input the initial and the desired states of the system and produces
as output a motion of the system starting at the initial states and ending at the desired states. A robot is
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“told” where it needs to go and the execution of this task, including selection of a specific route of motion,
is made by the robot itself, ie by the robot’s motion planning algorithm. Typically it is understood that
the external conditions (such as the positions of the obstacles and the geometry of the enclosing domain)
are known and are constant during the motion.

In [Cohen et al. 2021; 2022], motion planning algorithms of a new type were analyzed. These are
parametrized motion planning algorithms, which, besides the initial and desired states, take as input
the parameters characterizing the external conditions. The output of a parametrized motion planning
algorithm is a continuous motion of the system from the initial to the desired state, respecting the given
external conditions. The papers [Cohen et al. 2021; 2022] laid out the new formalism and analyzed in
full detail the problem of moving an arbitrary number n of robots in the domain with m a priori unknown
obstacles.

The recent paper [Farber and Paul 2022] developed a generalization where the robot must perform a
sequence of tasks. The topological complexity of such an algorithm is called sequential parametrized
topological complexity TCr Œp W E ! B�, where r D 2; 3; : : : , and the case r D 2 corresponds to the
situations analyzed in [Cohen et al. 2021; 2022]. Formally, TCr Œp WE! B� is an integer associated with
a fibration p WE!B where the points of the base b 2B parametrize the external conditions (for example,
positions of the obstacles) and for each b 2 B the fibre Xb D p�1.b/�E is the space of all admissible
configurations of the system under the external conditions b. To make the present work independent, we
include the definition of the concept TCr Œp WE! B� and its major properties in Section 2.

In this paper we further analyze the invariant TCr Œp W E! B� trying to understand its dependence on
classical invariants of the initial bundle p WE!B; in particular, on its base B and on its fibre X . As with
all such invariants, exact calculation is generally hard and the development of lower and upper bounds is
an essential part of the subject. This is the focus of our work.

We first show that, if the bundle p W E ! B has structure group G with fibre X a G–space, then the
equivariant sequential topological complexity of X — developed in [Bayeh and Sarkar 2020; Colman
and Grant 2012] — serves as an upper bound for TCr Œp WE! B�; see (9). The case when G acts freely
on X is especially interesting and leads to several somewhat surprising estimates. But using equivariant
topological complexity as an upper bound is fraught with danger since it can be infinite in what appear to
be innocuous situations.

As an alternative we develop the notion of weak sequential equivariant complexity, denoted by TCwr;G.X/,
and its variant TCwr;G.X IP / which we are tempted (but loathe) to call weak sequential equivariant
complexity with coefficients P (see Section 7). We will give several examples showing that these
invariants are finite even when equivariant topological complexity is infinite, so they offer the opportunity
for effective estimation in many situations. Indeed, our main result Theorem 8.1 gives lower and upper
bounds for TCr Œp WE! B� in terms of these invariants. To state it one needs to recall the invariant

G–catŒp WE! B�
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introduced by I M James [1978, page 342]. It is defined as the smallest integer k � 0 such that the base
B admits an open cover B D U0[U1[ � � � [Uk with the property that over each set Ui the bundle E is
trivial as a G–bundle. Clearly, G–catŒp WE! B� equals the sectional category secatŒ� W P ! B� of the
associated principal bundle that constructs p WE! B . In general,

(1) G–catŒp WE! B�� cat.B/� dimB

and if the group G is 2–connected (as is the case for simply connected compact Lie groups for instance)
then we can say

(2) G–catŒp WE! B��
˙
1
4
.dimB � 3/

�
as follows by applying [Schwartz 1962, Theorem 5] to secatŒ� W P ! B�. If the structure group G is
discrete then instead of (1) one has a stronger inequality

(3) G–catŒp WE! B�� cat1.B/;

where cat1.B/ is the sectional category of the universal cover zB! B . Our main result (Theorem 8.1)
then is the following.

Theorem For a locally trivial bundle p WE DX �G P ! B D P=G one has the inequalities

(4) TCwr;G.X IP /� TCr Œp WE! B��G–catŒp WE! B�CTCwr;G.X/:

Note that the first summand in the right-hand side of (4) is independent of r and is bounded above by
the Lusternik–Schnirelmann category of the base B; the second term is the weak equivariant sequential
topological complexity of the fibre X . In our view, this estimate gets at the heart of the matter. After
all, what is a bundle? It is just a principal bundle together with an action of the structure group on the
fibre and our upper bound is expressed exactly in numerical quantities derived from these objects. In
Example 8.4 we shall see that the right-hand side can be an equality, so at least in some cases the upper
bound can be sharp. Such a posteriori knowledge then warrants a deeper study of the invariants TCwr;G.X/
and TCwr;G.X IP / and we hope the present work elicits this.

Beyond defining and applying the new invariants TCwr;G.X/ and TCwr;G.X IP /, in Sections 4, 5 and 6 we
develop a calculus of sectional categories, including a new notion denoted by secatf Œp WE! B� where
f W B ! C is a continuous map. It is this notion that allows us to estimate the sectional category of
towers of fibrations which serves as the crucial technical tool in the proof of our main results. We believe
that secatf Œp WE! B� holds independent interest and should find application in many situations orbiting
the twin galaxies of Lusternik–Schnirelmann category and topological complexity.

Acknowledgements It is a pleasure to thank Amit Paul, Debasis Sen and the referee for several useful
comments. Farber was partially supported by a grant from the EPSRC.
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2 The concept of sequential parametrized topological complexity

In this section we recall the notion of sequential parametrized topological complexity introduced in
[Farber and Paul 2022]. It is a generalization of the concept of topological complexity [Farber 2003] and
its parametrized version [Cohen et al. 2021].

Let p WE! B be a Hurewicz fibration with fibre X . Fix an integer r � 2 and set

ErB D f.e1; : : : ; er/ 2E
r
j p.e1/D � � � D p.er/g:

The symbol I D Œ0; 1� denotes the unit interval. Let EIB �E
I be the space of all paths  W I !E such

that the path p ı  W I ! B is constant. Fix r points

0� t1 < t2 < � � �< tr � 1

and consider the evaluation map

(5) …r WE
I
B !ErB ; …r./D ..t1/; .t2/; : : : ; .tr//:

…r is a Hurewicz fibration; see [Cohen et al. 2022, Appendix]. The fibre of …r is .�X/r�1, the
Cartesian .r�1/st power of the based loop space �X . A section s WErB !EIB of the fibration …r can be
interpreted as a parametrized motion planning algorithm, ie a function which assigns to every sequence of
points .e1; e2; : : : ; er/ 2ErB a continuous path  W I !E (representing motion of the system) satisfying
.ti /D ei for every i D 1; 2; : : : ; r and such that the path p ı  W I ! B is constant. The latter condition
means that the system moves under constant external conditions (such as positions of the obstacles etc).

Typically, the fibration …r does not admit continuous sections; see [Farber and Weinberger 2023a,
Corollary 1 and Lemma 1], which deal with the case r D 2; when r > 2 the arguments are similar.
Therefore the motion planning algorithms are necessarily discontinuous in most situations.

The following definition [Farber and Paul 2022] gives a measure of complexity of sequential parametrized
motion planning algorithms.

Definition 2.1 The r th sequential parametrized topological complexity of the fibration p W E ! B ,
denoted by TCr Œp WE! B�, is defined as the sectional category of the fibration …r , ie

(6) TCr Œp WE! B� WD secat.…r/:

In more detail, TCr Œp WE!B� is the minimal integer k such that there is an open cover fU0; U1; : : : ; Ukg
of ErB with the property that each open set Ui admits a continuous section si W Ui !EIB of …r .

Under some mild assumptions, instead of open covers one can consider totally general partitions:
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Proposition 2.2 [Farber and Paul 2022, Proposition 3.6] Let E and B be metrizable separable ANRs
and let p WE! B be a locally trivial fibration. Then the sequential parametrized topological complexity
TCr Œp WE! B� equals the smallest integer n such that ErB admits a partition

ErB D F0 tF1 t � � � tFn; Fi \Fj D∅ for i ¤ j;

with the property that on each set Fi there exists a continuous section si W Fi !EIB of …r .

If two fibrations p WE! B and p0 WE 0! B are fibrewise homotopy equivalent then

TCr Œp WE! B�D TCr Œp
0
WE 0! B�I

see [Farber and Paul 2022, Corollary 4.2].

The following upper bound is a reformulation of [Farber and Paul 2022, Proposition 6.1]:

Proposition 2.3 Let p W E ! B be a locally trivial fibration with fibre X , where E, B and X are
CW–complexes. Assume that the fibre X is k–connected , where k � 0. Then

(7) TCr Œp WE! B��
l
r dimXCdimB�k

1Ck

m
:

We refer the reader to [Farber and Paul 2022] for proofs and further detail.

3 Relation with the equivariant sequential topological complexity

In this section we show that TCr Œp W E ! B� admits as an upper bound the sequential equivariant
topological complexity [Bayeh and Sarkar 2020; Colman and Grant 2012] of the fibre X . This leads to
simple estimates in terms of the dimension of the fibre in the case when the structure group G of the
fibration acts freely on X ; see Lemma 3.5 and Corollary 3.6.

3.1 Equivariant topological complexity

We shall recall a sequential analogue of the notion of equivariant topological complexity introduced by
M Bayeh and S Sarkar [2020]; it generalizes the concept of equivariant topological complexity originally
introduced and studied by H Colman and M Grant [2012].

Let G be a topological group acting on a topological space X from the left. The papers [Bayeh and
Sarkar 2020; Colman and Grant 2012] require G to be compact but we do not impose this assumption at
this stage.

The symbol XI denotes the space of all continuous paths  W I !X where I D Œ0; 1� is equipped with
the compact–open topology. The group G acts naturally on XI , where .g/.t/D g.t/ for t 2 I .

Fix an integer r � 2 and consider the Cartesian power Xr DX �X �� � ��X (r times). We shall consider
the diagonal action of G on Xr .

Algebraic & Geometric Topology, Volume 24 (2024)
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Fix r points 0D t1 < t2 < � � �< tr D 1 in the unit interval I D Œ0; 1� and consider the evaluation map

(8) �r WX
I
!Xr ;

where �r./D ..t1/; : : : ; .tr//. Clearly, �r a G–equivariant map.

Definition 3.1 For a path-connected G–space X , we denote by TCr;G.X/ the smallest integer k� 0 such
that the Cartesian power Xr DX �X �� � ��X (r times) admits an open cover Xr DU0[U1[� � �[Uk
with the following properties: each set Ui is G–invariant and admits a continuous G–equivariant section
si W Ui !XI of the fibration �r . If no such cover exists we set TCr;G.X/D1.

The invariant TC2;G.X/ coincides with the equivariant topological complexity TCG.X/ of Colman and
Grant [2012].

It is obvious from Definition 3.1 that

TCr.X/� TCr;G.X/;

where TCr.X/ is the sequential topological complexity of X introduced by Rudyak [2010].

An alternative definition of TCr;G.X/ is obtained as follows (compare [Farber and Paul 2022, Lemma 3.5]).
Let K be a path-connected locally compact metrizable space and let k1; k2; : : : ; kr 2 K be a set of r
pairwise distinct points. Consider the setXK of continuous maps ˛ WK!X equipped with compact–open
topology. The evaluation map

�Kr WX
K
!Xr ;

where …Kr .˛/D .˛.k1/; : : : ; ˛.kr// 2X
r , is continuous and G–equivariant, where we view Xr with the

diagonal action of G.

Lemma 3.2 For any path-connected locally compact metrizable space K, the number TCr;G.X/ equals
the smallest integer k� 0 such that the Cartesian powerXr admits an open coverXr DU0[U1[� � �[Uk
with the following properties: each set Ui is G–invariant and admits a continuous G–equivariant section
si W Ui !XK of �Kr .

Proof Consider the commutative diagram

XI
F 0

//

�r !!

XK
F

oo

�K
r}}

Xr

where the maps F WXK!XI and F 0 WXI !XK are defined as follows. Fix a path  W I !K satisfying
.ti /D ki for all i D 1; : : : ; r . Then F.˛/D ˛ ı  W I !X , where ˛ 2XK .
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To define the map F 0 WXI!XK we first construct a continuous function f WK! I satisfying f .ki /D ti
for all i D 1; : : : ; r . Applying the Tietze extension theorem we find continuous functions  j WK! Œ0; 1�

with  j .ti /D ıij where j D 1; : : : ; r . Then the function f Dmin
˚
1;
Pr
iD1 ti r

	
, f WK! I , has the

required properties. The map F 0 WXI !XK is defined by F 0.˛/D ˛ ıf where ˛ 2XI .

Clearly the maps F and F 0 areG–equivariant. For an openG–invariant subset U �Xr anyG–equivariant
section s WU !XI of �r defines the G–equivariant section s0D F 0 ı s WU !XK of �Kr . And vice versa,
any G–equivariant section s0 W U !XK defines s D F ı s0 W U !XI , an equivariant section of �r .

Yet another equivalent characterization of TCr;G.X/ is given by the following (see [Bayeh and Sarkar
2020]):

Lemma 3.3 For a G–space X and r � 2 the integer TCr;G.X/ equals the smallest k � 0 such that Xr

admits an open cover Xr D U0[U1[ � � � [Uk by G–invariant open sets Ui with the property that each
inclusion Uj !Xr is G–homotopic to a map with values in the diagonal X �Xr.

Now we can state our result relating the sequential parametrized topological complexity of a fibration
with the equivariant sequential topological complexity of the fibre:

Theorem 3.4 Consider a locally trivial bundle p W E ! B with path-connected fibre X and structure
group G. Let � W P ! B be a G–principal bundle such that p W E ! B coincides with the associated
bundle p W E D X �G P D .X � P /=G ! P=G D B . Then the sequential parametrized topological
complexity TCr Œp WE! B� is bounded above by TCr;G.X/, ie

(9) TCr Œp WE! B�� TCr;G.X/:

Note that the right-hand side of inequality (9) depends only on the fibre X viewed as a G–space, where
G is the structure group of the bundle.

Proof First we note that there exists the commutative diagram

XI �G P
˛
//

�r�G1

��

EIB

…r

��

Xr �G P
ˇ

// ErB

where ˛ and ˇ are homeomorphisms. Therefore,

TCr Œp WE! B�D secatŒ…r WE
I
B !ErB �D secatŒ�r �G 1 WX

I
�G P !Xr �G P �:

For k D TCr;G.X/ let Xr D U0[U1[ � � � [Uk be an open cover as in Definition 3.1. Consider the sets

Wi D .Ui �P /=G � .X
r
�P /=G:

Algebraic & Geometric Topology, Volume 24 (2024)
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They are open and cover .Xr � P /=G. Any G–equivariant section si W Ui ! XI of the fibration �r
obviously defines the section �i WWi ! .XI �P /=G of the orbit spaces; here �i is the map induced by
si � 1P on the spaces of orbits. This shows that

TCr Œp WE! B�D secatŒ�r �G 1 WX
I
�G P !Xr �G P �� k:

As mentioned in [Bayeh and Sarkar 2020; Colman and Grant 2012], in some cases the number TCr;G.X/
is infinite. In particular, one has TCr;G.X/ D1 if for a subgroup H � G the fixed-point set XH is
not path-connected. In such situations the upper bound (9) becomes meaningless. We discuss below
situations when the number TCr;G.X/ is finite and admits useful upper bounds.

The following lemma uses the notion of G–equivariant homotopy lifting property (G–HLP) applied to a
map q WX !X=G. This property means that the commutative diagram

Y
f

//

inc
��

X

q

��

Y � I
F
// X=G

where X and Y are separable metric spaces and the map f W Y !X is G–equivariant, can be completed
by a G–equivariant map H W Y � I !X extending f and such that q ıH D F . A theorem of R Palais
(see [Bredon 1972, Theorem II.7.3]) states that this property is automatically satisfied for free actions of
compact Lie groups.

Lemma 3.5 Consider a locally trivial bundle p WE!B with fibre X (a path-connected separable metric
space) and structure group G. Assume that the group G acts freely on X and , moreover , that the quotient
map qr WXr !Xr=G possesses the G–HLP. Then

TCr Œp WE! B�� TCr;G.X/� cat.Xr=G/� dim.Xr=G/:

Proof In view of Theorem 3.4 we only need to prove the inequality TCr;G.X/� cat.Xr=G/. Consider
an open covering Xr=G D V0[V1[ � � � [Vk , where k D cat.Xr=G/ and each inclusion Ui �Xr=G
is homotopic to the constant map into a point x0 2 X=G � Xr=G; here X � Xr is the diagonal.
By our assumption, the projection qr W Xr ! Xr=G has the G–homotopy lifting property. The sets
Ui Dq

�1
r .Vi /�X

r areG–invariant, where iD0; 1; : : : ; k, and applying theG–homotopy lifting property
to the homotopy of Vi to x0 we find a homotopy hit W Ui ! Xr (where t 2 Œ0; 1� and i 2 f0; 1; : : : ; rg)
such that hi0 is the inclusion Ui !Xr , each map hit is G–equivariant and hi1.Ui /�X �X

r . Applying
Lemma 3.3 we obtain TCr;G.X/� k.

Corollary 3.6 Consider a locally trivial bundle p W E ! B with fibre X (which is a path-connected
separable metric space) and a compact Lie group G acting freely on X , as the structure group. Then for
any r � 2,

(10) TCr Œp WE! B�� cat.Xr=G/� r dimX � dimG:

Algebraic & Geometric Topology, Volume 24 (2024)
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Proof First we note that due to the theorem of Palais [Bredon 1972, Theorem II.7.3] the assumptions of
Lemma 3.5 are satisfied. We are only left to note that dimXr=G D dimXr �dimG � r dimX �dimG;
see [Palais 1960, Corollary 1.7.32].

One can use Lemma 3.5 to give an alternative proof of [Farber and Paul 2022, Proposition 3.3] — see
also [Cohen et al. 2021, Proposition 4.3] — with some minor additional assumptions:

Corollary 3.7 Let G! P �
�! B be a principal bundle , where G is a path-connected topological group

which has the topology of a separable metric space. Then

TCr Œ� W P ! B�D cat.Gr�1/ for any r � 2:

Proof By [Farber and Paul 2022, Section 3] we know that TCr Œ� WP !B�� TCr.G/D cat.Gr�1/. We
view the fibre G as acting on itself by left translations and acting diagonally on Gr . The quotient map
qr WG

r !Gr=G admits a section s WGr=G!Gr , given by

s.g1; g2; : : : ; gr/D .e; g
�1
1 g2; g

�1
1 g3; : : : ; g

�1
1 gr/:

Therefore, we explicitly obtain a G–homeomorphism Gr Š Gr=G � G, so qr is a trivial bundle
Gr=G � G ! Gr=G and, as such, has the G–HLP. Lemma 3.5 then applies and gives the upper
bound TCr Œ� W P ! B� � cat.Gr=G/ D cat.Gr�1/. Comparing, we see that both bounds are in fact
equalities.

4 Calculus of sectional categories

In this section we introduce a new invariant secatf Œp WE!B� which generalizes the concept of sectional
category of a fibration. This invariant plays a role in estimating sectional category of towers of fibrations,
see Theorem 5.1.

Let p WE! B be a fibration and let f W B! C be a continuous map.

Definition 4.1 We define the invariant

secatf Œp WE! B�

to be the smallest integer k � 0 such that C admits a family of open subsets U0; U1; : : : ; Uk with the
properties

(a) U0[U1[ � � � [Uk � f .B/ or, equivalently, B D
Sk
iD1 f

�1.Ui /;

(b) the fibration p WE!B admits a continuous section over each open set f �1.Ui / for i D 0; 1; : : : ; k.

We set secatf Œp WE! B�D1 if no such family exists.

Open sets of the form f �1.U / � B , where U � C , can be called f –saturated. Definition 4.1 can be
rephrased as dealing with covers of the base B by f –saturated open sets admitting continuous sections
of the fibration p WE! B .

Algebraic & Geometric Topology, Volume 24 (2024)
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4.1 Finiteness

The following lemma summarizes information about finiteness of the invariant secatf Œp WE! B�.

Lemma 4.2 Let p WE! B be a fibration and let f W B! C be a continuous map.

(A) If secatŒp W p�1f �1.x/! f �1.x/� > 0 for some x 2 f .B/� C then secatf Œp WE! B�D1.

(B) If B is compact and every point x 2 f .B/ � C has an open neighbourhood U � C such that
secatŒp W p�1f �1.U /! f �1.U /�D 0 then secatf Œp WE! B� <1.

Proof Under assumption (A) there is no open set U �C containing x with f �1.U / having a continuous
section. Statement (B) is obvious.

In our applications we shall typically have the map f WB!C be surjective, and more specifically, it will
often be the quotient map with respect to a group action. However, it is convenient to make no additional
assumptions at this stage.

4.2 Dependence on f

In the special case when the map f W B ! C D B is the identity map, the number secatf Œp W E ! B�

turns into the usual sectional category secatŒp WE! B�. In general, obviously,

(11) secatŒp WE! B�� secatf Œp WE! B�

and

(12) secatŒp WE! B�D secatf Œp WE! B�

assuming that secatŒp WE! B�D 0.

Moreover, for B f
�! C

g
�! C 0 one clearly has

(13) secatf Œp WE! B�� secatgf Œp WE! B�:

Lemma 4.3 Let p WE! B be a fibration and let f W B! C and f 0 W B! C 0 be two continuous maps.

(a) If there is a continuous map h W C ! C 0 such that f 0 D h ıf , then

secatf Œp WE! B�� secatf 0 Œp WE! B�:

(b) Moreover , if the restriction of h W C ! C 0 induces a homeomorphism f .B/! f 0.B/, then

secatf Œp WE! B�D secatf 0 Œp WE! B�:

Proof Statement (a) follows from inequality (13). To prove (b) assume that U � C is an open subset
with the property that f �1.U / admits a section of p. Then

h.U \f .B//D U 0 � f 0.B/

is an open subset of f 0.B/ and hence there exists an open subset V � C 0 with V \ f 0.B/D U 0. Then
f 0�1.V /D f �1.U / admits a section of p. Thus any family of open sets U0 [U1 [ � � � [Uk � f .B/
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such that f �1.Ui / admits a section of p determines a family of open subsets of the same cardinality,
V0[V1[� � �[Vk � f

0.B/ with the preimages f 0�1.Vj / admitting sections of p. This shows the inverse
inequality secatf Œp WE! B�� secatf 0 Œp WE! B�.

4.3 Induced fibrations

Lemma 4.4 Assume that a fibration p WE 0! B 0 is induced from the fibration p WE! B via the map
˛ W B 0! B as shown on the diagram

E 0
ˇ
//

p0
��

E

p
��

B 0
˛
// B

f

// C

For f W B! C set f 0 D f ı˛. Then

secatf 0 Œp
0
WE 0! B 0�� secatf Œp WE! B�:

Proof Assuming that there is a continuous section s Wf �1.U /!E of p WE!B , for U �C open, define
� Wf 0�1.U /!E by �D sı˛. Then we have pı�D˛ and by the pullback property there is a continuous
map s0 W f 0�1.U /!E 0 with p0 ı s0 D inclusion, ie s0 is a section of p0. Since f 0.B/� f .B/� C , we
see that the statement of the lemma follows.

Lemma 4.5 (maps of fibrations) If for two fibrations p WE! B and p0 WE 0! B over the same base B
there exists a map � WE!E 0 such that the diagram

E

p %%

�
// E 0

p0yy
B

commutes up to homotopy, then secatf Œp
0 WE 0! B�� secatf Œp WE! B�.

Proof If U � C is such that p admits a continuous section s over f �1.U / � B then p0 admits a
homotopy section � ı s over the same subset. Since p0 satisfies the homotopy lifting property, the
homotopy section can be made a genuine section. The statement now follows from the definition.

Lemma 4.6 Suppose that for two fibrations p WE! B and p0 WE 0! B 0 there exist continuous maps G,
˛, ˇ and Ǫ shown on the diagram

E 0

p0
��

G
// E

p
��

B
˛
//

f
��

B 0
ˇ

//

f 0
��

B

C
Ǫ

// C 0

such that the bottom left square is commutative , the upper right square is homotopy commutative and
ˇ ı˛ WB!B is homotopic to the identity IdB WB!B . Then secatf Œp WE!B�� secatf 0 Œp

0 WE 0!B 0�.
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Proof Consider the fibration q WE! B induced by the map ˛ W B! B 0 from p0 WE 0! B 0. It appears
in the commutative diagram

E
 
//

q
��

E 0

p0
��

B
˛
// B 0

Using Lemmas 4.3 and 4.4 one obtains

(14) secatf Œq WE! B�� secat Ǫ ıf Œq WE! B�� secatf 0 Œp
0
WE 0! B 0�:

Next we note that the diagram
E

Gı 
//

q ##

E

p{{
B

homotopy commutes:
p ıG ı ' ˇ ıp0 ı D ˇ ı˛ ı q ' q:

Applying Lemma 4.5 we obtain the inequality secatf Œp W E! B�� secatf Œq W E! B� which together
with (14) implies secatf Œp WE! B�� secatf 0 Œp

0 WE 0! B 0�, as claimed.

Corollary 4.7 Assume that in the diagram

E
F
//

p
��

E 0

p0
��

G
// E

p
��

B
˛
//

f
��

B 0
ˇ

//

f 0
��

B

f
��

C
Ǫ

// C 0
Ǒ

// C

the maps p and p0 are fibrations , the lower squares are commutative , the upper squares are homotopy
commutative and the maps ˛ and ˇ are mutually inverse homotopy equivalences. Then

secatf Œp WE! B�D secatf 0 Œp
0
WE 0! B 0�:

Proof This follows from applying Lemma 4.6 twice: to the diagram

E

p
��

F
// E 0

p0
��

B 0
ˇ

//

f 0
��

B
˛
//

f
��

B 0

C 0
Ǒ

// C

and to the diagram of Lemma 4.6.
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Corollary 4.8 Suppose that in the commutative diagram

E
F
//

p

��

E 0

p0

��

B
˛
//

f

��

B 0

f 0

��

C
Ǫ
// C 0

the maps p0, f and f 0 are fibrations and p is the induced fibration. If ˛ and Ǫ are homotopy equivalences
then

secatf Œp WE! B�D secatf 0 Œp
0
WE 0! B 0�:

Proof By Lemmas 4.3 and 4.4 we have secatf 0 Œp
0 WE 0!B 0�� secat Ǫf Œp WE!B�� secatf Œp WE!B�

so we must only show the inverse inequality. Since f and f 0 are fibrations and ˛ and Ǫ are homotopy
equivalences, applying the proposition on page 53 of [May 1999] we see that there exist homotopy
inverses ˇ and Ǒ for ˛ and Ǫ , respectively, such that the diagram

B 0
ˇ
//

f 0

��

B

f

��

C 0
Ǒ
// C

commutes. We obtain the commutative diagram

E

p

��

F
// E 0

p0

��

B 0
ˇ

//

f 0

��

B
˛
//

f
��

B 0

C 0
Ǒ

// C

with the composition ˛ ıˇ W B 0! B 0 homotopic to the identity map. Lemma 4.6 now gives

secatf 0 Œp
0
WE 0! B 0�� secatf Œp WE! B�:

4.4 Homotopical dimension

For a topological space A having the homotopy type of a finite-dimensional CW–complex we shall denote
by hdim.A/ the homotopical dimension of A; it is defined as the minimal dimension of a CW–complex
homotopy equivalent to A.

The following lemma will be used later.
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Lemma 4.9 Consider a locally trivial bundle p W E ! B where E and B are separable metric spaces
and the base B and the fibre F have the homotopy type of finite-dimensional CW–complexes. Assume
also that the fibre F of p WE! B has finite covering dimension dimF . Then the total space E has the
homotopy type of a finite-dimensional CW–complex and , moreover ,

(15) hdim.E/� hdim.B/C dimF:

Proof Let g WB 0!B be a homotopy equivalence whereB 0 is a CW–complex satisfying dimB 0D hdimB .
Consider the diagram

E 0
G
//

p0

��

E

p

��

B 0
g
// B

where p0 WE 0! B 0 is the fibration induced by g. Clearly G is a homotopy equivalence and

dimE 0 � dimB 0C dimF:

By [Fritsch and Piccinini 1990, Theorem 5.4.2] the space E 0 has homotopy type of a CW–complex.
Hence,

hdim.E/D hdim.E 0/� dim.E 0/� dimB 0C dimF D hdim.B/C dimF:

4.5 An upper bound

The following statement gives a useful upper bound for the invariant secatf Œp WE! B�.

Proposition 4.10 Assume that E, B and C are separable metric spaces. Let p W E! B be a fibration
and let f W B! C be a locally trivial bundle such that

(a) the space C and the fibre F0 of f W B! C have the homotopy type of CW–complexes;

(b) the fibre F1 of the fibration p WE! B is .k�1/–connected , where k � 0;

(c) the fibre F0 of the fibration f W B! C is d–dimensional , where 0� d � k.

Then one has

(16) secatf Œp WE! B��
ldimB�k

1Ck�d

m
:

Proof First we shall prove the statement under an additional assumption that C is a simplicial complex.
We shall remove this assumption afterwards.

Consider the skeleta C .i/ �C of C , where i D 0; 1; : : : . We know that for any two integers 0� i < j the
complement C .i/�C .j / is homotopy equivalent to a simplicial complex of dimension at most i � j � 1;
see for example [Farber et al. 2019, Corollary 5.3].
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We may find a chain of open subsets U0 � U1 � U2 � � � � of C such that each set Ui contains C .i/ as a
strong deformation retract.

Setting r D k� d , consider the skeleta

C .r/ � C .2rC1/ � C .3rC2/ � � � � � C ..cC1/rCc/;

where c is the smallest integer satisfying dimC � .cC 1/r C c, ie

c D
ldimC�r

1Cr

m
D

ldimB�k

1Ck�d

m
:

Each complement,
Xi D C

..iC1/rCi/
�C .irCi�1/; i D 0; 1; : : : ; c;

has the homotopy type of a simplicial complex of dimension � r . The open set

Yi D U.iC1/rCi �C
.irCi�1/

� C

deformation retracts onto Xi and therefore hdim.Yi /� r . Applying Lemma 4.9 we obtain

hdim.Vi /� r C d D k;

where
Vi D f

�1.Yi /� B; i D 0; 1; : : : ; c:

The fibre F1 of p W E ! B is .k�1/–connected, and thus we may apply the well-known result of the
obstruction theory stating that the fibration p WE! B admits a continuous section over each open set Vi ,
where i D 0; 1; : : : ; c. Since B D V0[V1[� � �[Vc , it shows that secatf Œp WE!B�� c. This completes
the proof in the case when C is a simplicial complex.

Consider now the general case, ie we shall only assume that C has the homotopy type of a CW–complex.
We can find a simplicial complex C 0 and a homotopy equivalence Ǫ W C 0! C ; see [Fritsch and Piccinini
1990, Theorem 5.2.1]. Consider the fibration f 0 W B 0! C 0 induced by Ǫ from f W B! C . The map ˛
shown on the diagram

E 0
F
//

p0

��

E

p

��

B 0
˛
//

f 0

��

B

f
��

C 0
Ǫ

// C

is a homotopy equivalence. The map ˛ induces the fibration p0 WE 0! B 0. Applying Corollary 4.8 we
obtain that

secatf 0 Œp
0
WE 0! B 0�D secatf Œp WE! B�:

Hence the upper bound (16) which we proved above for secatf 0 Œp0 WE 0!B 0� applies to secatf Œp WE!B�

as well.
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Remark 4.11 In [Farber et al. 2019] an upper bound for topological complexity was derived that made
use of an invariant which was calledfTC.X/D esecat.E p

�!X
q
�!X/

there, but which we recognize in fact to be secatqŒp W E ! X� here. In [Farber et al. 2019] it was
further shown that fTC.X/ could be identified with the notion of strongly invariant topological complexity
TC��.

zX/ introduced by A Dranishnikov [2015] earlier. A K Paul and D Sen [2020] extended both the
invariant fTC.X/ and the strongly invariant topological complexity to the realm of sequential topological
complexity and proved the analogous identification. This identification, in some sense, was the genesis
of our calculus of sectional categories and together with Theorem 3.4 begs the question of exactly
how parametrized topological complexity and various forms of equivariant topological complexity are
intertwined, especially in the case of locally trivial fibre bundles.

5 Sectional category of towers of fibrations

Consider a tower of fibrations

Er
pr
�!Er�1

pr�1
��!Er�2! � � �

p1
�!E0

and the total fibration
p D p1p2 � � �pr WEr !E0:

We shall assume that all spaces Ei are normal.

Theorem 5.1 The sectional category secatŒp WEr !E0� of the total fibration admits the lower and upper
bounds

(17) secatŒp1 WE1!E0�� secatŒp WEr !E0�

� secatŒp1 WE1!E0�C

r�1X
iD1

secat.p1p2���pi /ŒpiC1 WEiC1!Ei �:

Here p1p2 � � �pi WEi !E0 denotes the composition.

Lemma 5.2 below will be used in the proof of Theorem 5.1.

Lemma 5.2 Let C be a normal space. Consider properties A1; A2; : : : ; Ar of open subsets of C , such
that each propertyAi is inherited by open subsets and disjoint unions. Assume that for each i D 1; 2; : : : ; r
C admits an open cover consisting of ni C1 open sets satisfying the property Ai . Then C admits an open
cover consisting of N C 1 open sets , where N D

Pr
iD1 ni , satisfying all the properties A1; : : : ; Ar .

Proof For r D 2 this statement was proven in [Oprea and Strom 2011, Lemma 4.3]. The case r > 2
follows from this by induction.
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Proof of Theorem 5.1 Since the left inequality in (17) is obvious we shall concentrate on the right
one and use Lemma 5.2 to prove it. Consider the following properties A1; A2; : : : ; Ar of open subsets
of E0. We shall say that an open subset U � E0 satisfies A1 if U has a continuous section of the
fibration p1. For 2 � i � r , we shall say that an open subset U � E0 satisfies the property Ai if
the open set p�1i�1 � � �p

�1
2 p�11 .U / � Ei�1 admits a continuous section of pi . By definition, for any

i D 1; 2; : : : ; r , the set E0 admits an open cover of cardinality secat.p1p2���pi�1/Œpi WEi!Ei�1�C1 with
each set satisfying Ai . Applying Lemma 5.2, we obtain that E0 admits an open cover fUj g of cardinalityPr
iD1 ni C 1 such that each set Uj satisfies all the properties A1; : : : ; Ar . This means that there exists a

continuous section s0 W Uj !E1 of p1 and for any i D 1; 2; : : : ; r � 1, there exists a continuous section

si W p
�1
i � � �p

�1
2 p�11 .Uj /!EiC1

of the fibration pi . Hence, the composition

s D sr�1sr�2 � � � s1s0 W Uj !Er

is a well-defined continuous section of the composition p D p1p2 � � �pr W Er ! E0. This gives the
inequality (17).

For convenience of references, we state below the special case r D 2 of Theorem 5.1 which we combine
with the dimension-connectivity upper bound of Proposition 4.10:

Corollary 5.3 Consider a tower of fibrations E2
p2
�! E1

p1
�! E0 of separable metric spaces. Assume

that p1 WE1!E0 is locally trivial. Then the sectional category secatŒp WE2!E0� of the total bundle

p D p2 ıp1 WE2!E0

lies between secatŒp1 WE1!E0� and

(18) secatŒp1 WE1!E0�C secatp1
Œp2 WE2!E1�:

Moreover , under the additional assumptions that

(a) the fibre of p2 WE2!E1 is .k�1/–connected ,

(b) the space E0 and the fibre of p1 WE1!E0 have the homotopy type of CW–complexes ,

(c) the fibre of p1 WE1!E0 has dimension � d where 0� d � k,

one has

(19) secatp1
Œp2 WE2!E1��

�
dimE1� k

1C k� d

�
:

6 Product inequalities

Lemma 5.2 distills the main results of [Dranishnikov 2009; 2010; Oprea and Strom 2011; Ostrand 1965],
but for the product inequalities which we describe below we need more specific information about open
covers.
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An open cover WD fW0; : : : ; WmCkg of a space C is an .mC1/–cover if every subcollection

fWj0
; Wj1

; : : : ; Wjm
g

of mC 1 sets from W also covers C . The following simple observation (see [Farber et al. 2019] for
instance) is the basis for many arguments in this approach.

Lemma 6.1 A cover WD fW0; W1; : : : ; WkCmg is an .mC1/–cover of C if and only if each x 2 C is
contained in at least kC 1 sets of W.

An open cover can be lengthened to a .kC1/–cover, while retaining certain essential properties of the
sets in the cover.

Theorem 6.2 [Dranishnikov 2009; Ostrand 1965] Let UD fU0; : : : ; Ukg be an open cover of a normal
space C . Then , for any m D k; k C 1; : : : ;1, there is an open .kC1/–cover of C , fU0; : : : ; Umg,
extending U such that for n > k, Un is a disjoint union of open sets that are subsets of the Uj , 0� j � k.

We use these facts to obtain inequalities for product fibrations.

Lemma 6.3 (product inequality, I) Let p W E! B and p0 W E 0! B 0 be fibrations and let f W B ! C

and f 0 W B 0! C 0 be continuous maps. Assume that the spaces f .B/ and f 0.B 0/ with topology induced
from C and C 0, respectively, are normal. Then the sectional category of the product fibration

secatf �f 0 Œp�p
0
WE �E 0! B �B 0�

is bounded above by the sum

secatf Œp WE! B�C secatf 0 Œp
0
WE 0! B 0�

and it is bounded below by

maxfsecatf Œp WE! B�; secatf 0 Œp
0
WE 0! B 0�g:

Proof First we deal with the lower bounds. Fix a point b00 2B
0 and embed B into B�B 0 via b 7! .b; b00/;

also, embed C into C �C 0 via x 7! .x; x00/ where x00D f
0.b00/. For an open subset U �C �C 0, a section

of p�p0 over .f �f 0/�1.U /� B �B 0 determines obviously a section of p over f �1.U \ .C � x00//.
This implies the inequality secatf �f 0 Œp �p

0 W E �E 0! B �B 0� � secatf Œp W E ! B�. Similarly, one
obtains secatf �f 0 Œp�p

0 WE �E 0! B �B 0�� secatf 0 Œp
0 WE 0! B 0�.

Now we prove the upper bound. Let secatf Œp W E! B�D k be realized by open sets U0; : : : ; Uk � C
covering f .B/�C , with continuous sections sj W f �1.Uj /!E of p, and let secatf 0 Œp0 WE 0!B 0�Dm

be realized by open sets V0; : : : ; Vm � C 0 covering f 0.B 0/, with sections s0j W f
0�1.Vj /!E 0 of p0. By

Theorem 6.2 we can extend the family U0; : : : ; Uk to a family of open subsets U0; : : : ; UkCm of C such
that any kC 1 members of this family cover f .B/. Similarly, we can find a family V0; : : : ; VkCm of
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open subsets of C 0 extending the initial family V0; : : : ; Vm such that any mC1 members of this extended
family cover f 0.B 0/. Theorem 6.2 guarantees that every set of the form f �1.Uj / or f 0�1.Vj / admits a
continuous section of p or p0 respectively, where j D 0; 1; : : : ; kCm.

LettingWj DUj�Vj , where j D0; : : : ; kCm, we see that each set .f �f 0/�1.Wj /Df �1.Uj /�f 0�1.Vj /
admits a continuous section of p � p0. We show below that the sets Wj cover f .B/� f 0.B 0/, which
implies that secatf �f 0 Œp�p0 WE �E 0! B �B 0�� kCm.

Suppose that a point .x; y/ 2 f .B/�f 0.B 0/ is not in any of the sets Wj , where j D 0; : : : ; kCm. Since
any k C 1 sets Uj cover f .B/, we know that x belongs to at least mC 1 of the Uj , by Lemma 6.1.
Without loss of generality, we may assume that x 2 U0\U1\ � � �\Um. Then y … V0[V1[ � � �[Vm, in
view of our assumption. Therefore, y can only lie in the sets VmC1; : : : ; VkCm which is a contradiction
since y belongs to at least kC 1 of the sets Vj , by Lemma 6.1.

Next we state another product inequality dealing with fibrations over the same base.

Lemma 6.4 (product inequality, II) Let p WE!B and p0 WE 0!B be two fibrations , and let f WB!C .
We shall assume that f .B/ is normal in the topology induced from C . Then the sectional category

secatf Œp�B p
0
WE �B E

0
! B�

of the fibrewise product is bounded below by

maxfsecatf Œp WE! B�; secatf Œp
0
WE 0! B�g

and is bounded above by the sum

secatf Œp WE! B�C secatf Œp
0
WE 0! B�:

Moreover ,
secatf Œp�B p

0
WE �B E

0
! B�D secatf Œp WE! B�

if secatŒp0 WE 0! B�D 0, ie if p0 admits a section.

Proof The projection pr WE �B E 0!E appears in the commutative diagram

E �B E
0

p�Bp
0

##

pr
// E

p
��

B

and Lemma 4.5 gives secatf Œp�B p0 WE �B E 0!B�� secatf Œp WE!B�. Similarly one gets the lower
bound using secatf Œp

0 WE 0! B�, which proves the statement concerning the lower bound. Next we note
that

(20) secatf Œp�B p
0
WE �B E

0
! B�� secatf �f Œp�p

0
WE �E 0! B �B�:

Algebraic & Geometric Topology, Volume 24 (2024)



1774 Michael Farber and John Oprea

Indeed, the fibration p�B p0 WE�BE 0!B is induced from the product fibration p�p0 WE�E 0!B�B

by the diagonal map � W C ! C �C . Lemma 4.4 gives the inequality

secat.f �f /ı�Œp�B p
0
WE �B E

0
! B�� secatf �f Œp�p

0
WE �E 0! B �B�:

Finally, we can apply Lemma 4.3 and replace .f �f / ı� by f . Combining (20) with Lemma 6.3 we
obtain the upper bound.

The last statement obviously follows by combining the lower and upper bounds.

7 Weak equivariant topological complexity TCw
r;G

.X/

Let p WE! B be a bundle with fibre X and structure group G which is associated to a principal bundle
� W P ! B . In other words, E DX �G P .

As in Section 2, we fix r � 2 points 0D t1 < t2 < � � �< tr D 1 and consider the evaluation map

�r WX
I
!Xr ; �r./D ..t1/; .t2/; : : : ; .tr//; where  2XI:

Consider also the quotient map
qr WX

r
!Xr=G;

where we view G acting diagonally on Xr .

The following invariant plays an important role in our main Theorem 8.1:

(21) TCwr;G.X/D secatqr
Œ�r WX

I
!Xr �:

Explicitly, we have:

Definition 7.1 The invariant TCwr;G.X/ equals the smallest integer k � 0 such that Xr admits an open
cover Xr D U0 [U1 [ � � � [Uk by G–invariant open sets such that for each i D 0; 1; : : : ; k there is a
continuous section si W Ui !XI of �r .

Note that the section si in Definition 7.1 is not required to be G–equivariant, unlike in the case of
TCr;G.X/. This explain the adjective “weak” and the symbol “w” in the notation. We obviously have

(22) TCr.X/� TCwr;G.X/� TCr;G.X/;

where the left inequality is a special case of (11). All these inequalities become equalities when the action
of G is trivial.

Lemma 7.2 For any G–space P ,

TCwr;G.X/D secatqr��Œ�r � 1 WX
I
�P !Xr �P �;

where � W P !� is the map onto a singleton.

Proof This follows from Lemma 6.3 since clearly secat�Œ1 W P ! P �D 0.
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Next we state the dimension-connectivity upper bound:

Lemma 7.3 Assume that X is a k–connected simplicial complex and G is a topological group homeo-
morphic to a CW–complex acting freely on X and such that the map qr WXr !Xr=G is a locally trivial
bundle. If dimG � k then

(23) TCwr;G.X/�
l
r dimX�k

1Ck�dimG

m
:

Proof We apply Proposition 4.10 having in mind that the fibre .�X/r�1 of fibration �r is .k�1/–
connected.

As a special case of Lemma 7.3 we mention:

Corollary 7.4 If X is k–connected , where k � 0, and the group G is discrete and the quotient map
qr WX

r !Xr=G is a covering map then

(24) TCwr;G.X/�
l
r dimX�k

1Ck

m
:

We shall be discussing yet another invariant TCwr;G.X IP / given by

(25) TCwr;G.X IP /D secatQŒ�r � 1 WX
I
�P !Xr �P �

with Q W Xr �P ! Xr �G P being the natural projection; here X and P are G–spaces and �r is the
fibration (8). Comparing with Lemma 7.2 we see that it is similar to TCwr;G.X/ with the only distinction
that the map qr � � is replaced by Q.

Lemma 7.5 One has

(26) TCr.X/� TCwr;G.X IP /� TCwr;G.X/:

Proof Consider the commutative diagram

XI �P
�r�1

//

p1

��

Xr �P

p2

��

Q
// Xr �G P

p3

��

XI
�r

// Xr
qr

// Xr=G

where the maps p1, p2 and p3 are projections on the first factor. Since the fibration �r � 1 is induced
from �r via p2, we may apply Lemma 4.4 to conclude

TCwr;G.X/D secatqr
Œ�r WX

I
!Xr �

� secatqrıp2
Œ�r � 1 WX

I
�P !Xr �P �

D secatp3ıQŒ�r � 1 WX
I
�P !Xr �P �

� secatQŒ�r � 1 WX
I
�P !Xr �P �

D TCwr;G.X IP /:
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On the third line we used Lemma 4.3(a). This proves the right inequality in (26). The left inequality
follows from

TCwr;G.X IP /D secatQŒ�r � 1 WX
I
�P !Xr �P �

� secatŒ�r � 1 WX
I
�P !Xr �P �

D secatŒ�r WX
I
!Xr �

D TCr.X/;

where on the second line we used inequality (11) and on the third line Lemma 6.3.

The next result gives a dimension-connectivity upper bound for TCwr;G.X IP / which holds for weaker
assumptions on X compared to Lemma 7.3.

Lemma 7.6 Assume that X is a k–connected simplicial complex and G is a topological group homeo-
morphic to a CW–complex. Suppose that P ! P=G is a locally trivial bundle. If dimG � k then

(27) TCwr;G.X IP /�
l
r dimXCdimP�k

1Ck�dimG

m
:

Proof This follows by applying Proposition 4.10 to the definition (25).

Example 7.7 Consider the unit circle S1 �C with the action of the cyclic group of order two G D Z2
acting as the complex conjugation, z 7! Nz. We know from [Colman and Grant 2012] that in this case
TC2;G.S

1/ is infinite due to the fact that the set of fixed points is disconnected.

On the other hand one can consider the open cover S1�S1DU0[U1 where U0D f.z1; z2/ j z1¤�z2g
and U1 D f.z1; z2/ j z1 ¤ z2g. These sets are G–invariant and over each of these sets one has the
well-known continuous sections. Thus, TCw2;G.S

1/D 1.

Example 7.8 Consider the more general case of a sphere Sn, where n� 1, with an action of a discrete
group G. First we apply the upper bound (24) with k D n� 1 to obtain

TCwr;G.S
n/� r for any r � 2:

Second, using (26) and the result of Y Rudyak [2010] (stating that TCr.Sn/ equals r for n even and r �1
for n odd), we obtain that for any even n

(28) TCwr;G.S
n/D r:

For n odd our inequalities imply that TCwr;G.S
n/ equals either r � 1 or r .

Example 7.9 Let S1 act on S2 by rotations about the z–axis. The fixed-point set of the action is the
disconnected set fN;Sg, where N and S are the north and south poles, respectively, so the equivariant
topological complexity is infinite: TCr;S1.S2/D1 for all r � 2.

Algebraic & Geometric Topology, Volume 24 (2024)



Sequential parametrized topological complexity and related invariants 1777

Let us now examine the weak equivariant topological complexity TCw
2;S1.S

2/. Fix an orbit O � S2 given
by the equator and fix an orientation of O . Consider the open cover S2 �S2 D U0[U1[U2 where

U0 D f.x; y/ j x ¤�yg;

U1 D f.x; y/ j x ¤ yg� f.N; S/; .S;N /g;

U2 D f.x; y/ j x …O and y …Og:

Clearly, the sets U0, U1 and U2 are S1–invariant. We may define the motion planning rules over each of
the sets Ui as follows. For .x; y/ 2 U0, go from x to y along the shortest geodesic arc. For .x; y/ 2 U1
the point x moves along the shortest geodesic arc first to the closest point of O , then along O in the
positive direction to the point closest to y, and finally to y. For .x; y/ 2 U2 the point x moves along the
shortest geodesic arc to the closest pole (N or S), then to the closest pole to y along a fixed path and
then to y; the first and the third portions are along the shortest geodesic arc on the sphere S2. Hence
TCw

2;S1.S
2/� 2. Since 2D TC.S2/� TCw

2;S1.S
2/, we see that TCw

2;S1.S
2/D 2.

8 Bounds for the sequential parametrized topological complexity

Finally we are in position to state and prove the main result of this paper:

Theorem 8.1 Let p W E ! B be a locally trivial fibre bundle with structure group G, the fibre X and
the associated principal bundle � W P ! B . Then the sequential parametrized topological complexity
TCr Œp WE! B� admits the upper and lower bounds

(29) TCwr;G.X IP /� TCr Œp WE! B��G–catŒp WE! B�CTCwr;G.X IP /:

Proof Since E DX �G P ,

ErB DX
r
�G P and EIB DX

I
�G P for any r � 2:

The map …r W EIB ! ErB becomes �r � 1 W XI �G P ! Xr �G P , where �r./ D ..t0/; : : : ; .tr//.
Consider the commutative diagram

(30)

XI �P
Q0
//

�r�1
��

XI �G P

�r�G1
��

Xr �P
Q
// Xr �G P

whereQ WXr�P !Xr�GP andQ0 WXI �P !XI �GP are the natural projections. Using Lemma 4.5
and Theorem 5.1,

TCr Œp WE! B�D secatŒ�r �G 1 WX
I
�G P !Xr �G P �

� secatŒ.�r �G 1/ ıQ
0
WXI �P !Xr �G P �

D secatŒ.Q ı .�r � 1/ WX
I
�P !Xr �G P �

� secatŒQ WXr �P !Xr �G P �C secatQŒ�r � 1 WX
I
�P !Xr �P �:
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Next we observe that

secatŒXr �P !Xr �G P �� secatŒ� W P ! B�DG–catŒp WE! B�

and
secatQŒX

I
�P !Xr �P �D TCwr;G.X IP /:

Thus, we obtain the right inequality in (29).

For the left inequality in (29) we consider again diagram (30) and observe that the fibration

�r � 1 WX
I
�P !Xr �P

is induced from �r �G 1 WX
I �G P !Xr �G P via Q. Therefore, using Lemma 4.4 we obtain

TCr Œp WE! B�D secatŒ�r � 1 WX
I
�G P !Xr �G P �

� secatQŒ�r � 1 WX
I
�P !Xr �P �

D TCwr;G.X IP /:

Remark 8.2 Due to the right inequality in (26), the upper bound in (29) gives

(31) TCr Œp WE! B��G–catŒp WE! B�CTCwr;G.X/:

The right-hand side of this inequality has two terms, one depending only on the initial bundle p WE! B

and the other depending only on the fibre, X viewed as a G–space.

Theorem 8.1 implies that for the trivial bundle p WE!B with fibreX one has TCr Œp WE!B�DTCr.X/;
see [Farber and Paul 2022, Example 3.2]. Indeed, in this case

G–catŒp WE! B�D 0 and TCwr;G.X; P /D TCr.X/I

hence the statement follows from (29).

Example 8.3 The Klein bottle K is the total space of the bundle p W K D S1 �Z=2 S
1 ! S1 with

the associated principal bundle the 2–fold covering � W S1 ! S1 and the action of G D Z=2 on the
fibre S1 being given by reflection in the last coordinate. The inequality (31) with r D 2 and the result of
Example 7.7 give

(32) TCŒp WK! S1�D TC2Œp WK! S1�� 1C 1D 2:

Mark Grant observed that (32) is in fact an equality. The inequality TCŒp WK! S1�� 2 can be obtained
by applying [Farber and Weinberger 2023a, Theorem 2]. The bundle p W K ! S1 is the unit sphere
bundle of a rank 2 vector bundle � over the circle S1. One has w2.�/ D 0 (for dimensional reasons)
and w1.�/¤ 0 (since � is not orientable) and therefore the relative height h.w1.�/ j w2.�// equals one.
Theorem 2 from [Farber and Weinberger 2023a] now applies and gives an equality TCŒp WK! S1�D 2.

Example 8.4 Consider the principal G–bundle � W P ! B where G D S1, P D S2nC1 and B DCPn

(the Hopf bundle). Here the sphere S2nC1 is viewed as the unit sphere in CnC1 and the circle S1 acts
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on it by complex multiplication. Let X D S2 with S1–action given by rotations about the z–axis, as in
Example 7.9. Consider the fibre bundle p W E! B with fibre X D S2 where E DX �G P . Applying
(31) with r D 2 we obtain

(33) TCŒp WE! B�D TC2Œp WE! B�� secatŒ� W P ! B�CTCw2;G.X/

and from Example 7.9 we know that TCw2;G.X/D 2. On the other hand, since cat.CPn/D n, we have
secatŒ� W P ! B�� cat.B/D n (in fact, this is an equality by a cup-length argument). Thus, (33) gives
TCŒp WE! B�� nC 2.

In [Farber and Weinberger 2023b] the authors studied parametrized topological complexity of sphere
bundles. The sphere bundle p WE! B which was discussed in the previous paragraph is the unit sphere
bundle associated with the rank 3 vector bundle over B DCPn which is the Whitney sum �˚ � where �
is the canonical complex line bundle over CPn and � is a trivial real line bundle. The result of [Farber and
Weinberger 2023b, Example 20] states that TCŒp WE!B�� nC2 and moreover TCŒp WE!B�D nC2

for any even n.

Here the point is that, in the example above, the upper bound (31) is in fact sharp; that is, we have an
equality

TCŒp WE! B�DG–catŒp WE! B�CTCw2;G.S
2/:

In fact, since in general TCwr;G.X IP /�TCwr;G.X/, we see that (29) in this case is an equality as well. This
emphasizes the fact that these upper bounds can sometimes detect parametrized topological complexity
precisely.
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