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Coxeter systems with 2–dimensional Davis complexes, growth rates
and Perron numbers

NAOMI BREDON

TOMOSHIGE YUKITA

We study growth rates of Coxeter systems with Davis complexes of dimension at most 2. We show that if
the Euler characteristic � of the nerve of a Coxeter system is vanishing (resp. positive), then its growth
rate is a Salem (resp. Pisot) number. In this way, we extend results due to Floyd (1992) and Parry (1993).
In the case where � is negative, we provide infinitely many nonhyperbolic Coxeter systems whose growth
rates are Perron numbers.

20F55, 20F65

1 Introduction

Let � be a finitely generated group with generating set S . For an element x 2 � , we write jxjS for the
word length with respect to S . The growth rate of .�;S/ is defined by

�.�;S/D lim sup
`!1

`
p

a`;

where a` is the number of elements of � of word length `. Gromov’s polynomial growth theorem [1981]
states that � has a nilpotent subgroup of finite index if and only if there exist positive constants C > 0

and d > 0 such that a` � C `d for ` � 0. If .�;S/ satisfies the latter property, then we say that .�;S/
has polynomial growth. In this case, one has �.�;S/D 1. The pair .�;S/ is said to have exponential
growth when �.�;S/ > 1. Note that there exist pairs of groups and finite generating sets which have
neither polynomial growth nor exponential growth (see [Grigorchuk 1984] for example).

Suppose that .�;S/ is an abstract Coxeter system; that is, � is generated by S and has the presentation

� D hs1; : : : ; sN j .sisj /
kij for 1� i; j �N i;

where kii D 1 and kij � 2 (see Section 2.1). There are three types of Coxeter systems: spherical, affine,
and otherwise. If .�;S/ is spherical or affine, then it has polynomial growth. Therefore, our interest lies
in the growth rates of nonspherical, nonaffine Coxeter systems. For instance, cofinite hyperbolic Coxeter
systems are such Coxeter systems (see Section 2.2).

In the study of the growth rates of hyperbolic Coxeter systems, three kinds of real algebraic integers
appear: Salem numbers, Pisot numbers, and Perron numbers (see Section 2.3). By results of Parry [1993],
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1788 Naomi Bredon and Tomoshige Yukita

the growth rates of 2– and 3–dimensional cocompact hyperbolic Coxeter systems are Salem numbers.
Floyd [1992] showed that the growth rates of 2–dimensional cofinite hyperbolic Coxeter systems are Pisot
numbers. Moreover, their growth rates are limits of growth rates of 2–dimensional cocompact hyperbolic
Coxeter systems. Yukita [2017; 2018] proved that the growth rates of 3–dimensional cofinite hyperbolic
Coxeter systems are Perron numbers. Kolpakov [2012] proved that the growth rates of particular 3–
dimensional cofinite hyperbolic Coxeter systems are Pisot numbers. With all the above considerations,
we are interested in the relation between the geometric properties of Coxeter systems and the arithmetic
nature of their growth rates as follows.

Let .�;S/ be an abstract Coxeter system. Its nerve L.�;S/ is the abstract simplicial complex defined
as follows (see Section 2.2). The vertex set is S . For a nonempty subset T D fsi1

; : : : ; sin
g � S , the

vertices si1
; : : : ; sin

span an .n�1/–simplex if and only if T generates a finite subgroup of � . By abuse
of notation, we write L.�;S/ for its geometric realization (see [Munkres 1984, Chapter 1, Section 3] for
details). The dimension of .�;S/ is defined as the maximal rank of a spherical parabolic subgroup of � ,
that is a subgroup generated by a subset of S . It coincides with the dimension of the Davis complex of
.�;S/; see [Davis 2008; Felikson and Tumarkin 2010].

In this paper, we study the arithmetic nature of the growth rates of nonspherical, nonaffine Coxeter systems
.�;S/ of dimension at most 2. We will prove the following main theorems.

Theorem A If �.L.�;S//D 0, then the growth rate �.�;S/ is a Salem number.

Theorem B If �.L.�;S//� 1, then the growth rate �.�;S/ is a Pisot number. Moreover , there exists
a sequence of Coxeter systems .�n;Sn/ with vanishing Euler characteristic such that the growth rate
�.�n;Sn/ converges to �.�;S/ from below.

This paper is organized as follows. In Section 2, we provide the necessary background about Coxeter
systems, their nerves, and their growth rates. Theorem A is discussed in Section 3 where we consider
Coxeter systems with vanishing Euler characteristic. This extends the result by Parry [1993]. Section 4 is
devoted to the study of Coxeter systems with positive Euler characteristic where we prove Theorem B
generalizing Floyd’s result [1992]. In Section 5, we provide some examples of infinite sequences of Coxeter
systems with negative Euler characteristic whose growth rates are Perron numbers; see Proposition 5.1.

2 Preliminaries

2.1 Coxeter systems

For a group � with generating set S D fs1; : : : ; sN g, the pair .�;S/ is called a Coxeter system if � has
the presentation

� D hs1; : : : ; sN j .sisj /
kij for 1� i; j �N i;

Algebraic & Geometric Topology, Volume 24 (2024)
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4

AN .N � 1/ BN .N � 2/ DN .N � 4/

E6 E7 E8

4 5 5 k

F4 H3 H4 I2.k/

Figure 1: Irreducible spherical Coxeter systems of rank N .

where kii D 1 and kij � 2. In the case where sisj has infinite order, we put kij D1. The rank of a
Coxeter system .�;S/ is defined as the cardinality #S of S . For a subset T � S , the subgroup �T of �
generated by T is called a parabolic subgroup of � , with �∅ D f1g by convention.

Given a Coxeter system .�;S/ of rank N , define the cosine matrix associated to .�;S/ as the symmetric
matrix C.�;S/ D .cij / 2MN .R/ with entries

cij D

�
�cos.�=kij / if kij <1;

�1 if kij D1:

The Coxeter system .�;S/ is said to be spherical (resp. affine), if C.�;S/ is positive definite (resp. positive
semidefinite).

In this paper, a graph X is said to be simple if X has no loops or multiple edges. We associate to a
Coxeter system .�;S/ two kinds of edge-labeled simple graphs: the Coxeter diagram Cox.�;S/ and the
presentation diagram X.�;S/.

The Coxeter diagram Cox.�;S/ is defined as follows. The vertex set is S . Two vertices si and sj

are connected by an edge if and only if kij � 3. The edge between si and sj is labeled by kij if
kij 2 f4; 5; : : : g[ f1g. A Coxeter system .�;S/ is said to be irreducible if the underlying graph of
Cox.�;S/ is connected. It is known that a spherical (resp. affine) Coxeter system decomposes into a

4 4 4

zAN .N � 2/ zBN .N � 3/ zCN .N � 2/ zDN .N � 4/

zE6
zE7

zE8

1 4 6

zA1
zF4

zG2

Figure 2: Irreducible affine Coxeter systems of rank N C 1.
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2 2 3 2

k k
k � 2 k D 3; 4; 5

Figure 3: The presentation diagrams of the spherical Coxeter systems of rank 3.

direct product of irreducible spherical (resp. spherical and affine) Coxeter systems. The Coxeter diagrams
of irreducible spherical and affine Coxeter systems are depicted in Figures 1 and 2, respectively (see
[Humphreys 1990, pages 32 and 34]).

The presentation diagram X.�;S/ is defined as follows. The vertex set is S . Two vertices si and sj

are connected by an edge labeled by kij when kij <1. It follows that the underlying graphs of the
presentation diagrams of spherical Coxeter systems of rank N are complete graphs with N vertices. For
example, Figure 3 shows the presentation diagrams of the spherical Coxeter systems of rank 3.

Remark 2.1 If the Coxeter diagram Cox.�;S/ (resp. the presentation diagram X.�;S/) of a Coxeter
system .�;S/ is disconnected, then .�;S/ is a direct product (resp. a free product) of the Coxeter systems
corresponding to the connected components.

2.2 Geometric Coxeter groups and nerves

For more details about geometric Coxeter groups and nerves of Coxeter systems we refer to [Davis 2008;
Ratcliffe 1994].

Let us denote by Xn the n–dimensional spherical space Sn, Euclidean space En, or hyperbolic space Hn.
An n–dimensional Coxeter polytope P �Xn is the intersection of finitely many half-spaces whose interior
is nonempty and dihedral angles are of the form �=k for k � 2 or equal to zero. Given an n–dimensional
Coxeter polytope P � Xn, the set SP of the reflections in the bounding hyperplanes of P generates a
discrete subgroup �P of Isom .Xn/. The pair .�P ;SP / is a Coxeter system, and is called an n–dimensional
geometric Coxeter system associated with P . The group �P is called the n–dimensional geometric Coxeter
group associated with P . It is known that P is a fundamental polytope for �P and the orbit fgP j g 2�P g

of P gives rise to an exact tessellation of Xn. Furthermore, �P is said to be cocompact (resp. cofinite)
when P is compact (resp. not compact but of finite volume). For a hyperbolic Coxeter polytope P , we
say that �P is ideal when every vertex of P lies on the boundary at infinity @Hn. For each irreducible
spherical (resp. affine) Coxeter system .�;S/, there exists a spherical (resp. compact Euclidean) Coxeter
polytope P such that .�;S/D .�P ;SP /. Therefore, if .�;S/ is a spherical (resp. affine) Coxeter system,
then � is finite (resp. virtually nilpotent). In contrast to this, if .�;S/ is nonspherical and nonaffine, then
� contains a free group of rank at least 2; see [de la Harpe 1987].

Let .�;S/ be an abstract Coxeter system. The nerve L.�;S/ is an abstract simplicial complex defined as
follows. The vertex set is S , and for a nonempty subset T D fsi1

; : : : ; sin
g � S , the vertices si1

; : : : ; sin

Algebraic & Geometric Topology, Volume 24 (2024)



Coxeter systems with 2–dimensional Davis complexes, growth rates and Perron numbers 1791

span an .n�1/–simplex if and only if the parabolic subgroup �T is finite. For simplicity of notation, we
continue to write L.�;S/ for its geometric realization (see [Munkres 1984, Chapter 1, Section 3] for
details). The dimension of .�;S/, denoted by dim.�;S/, is defined as the maximal rank of a spherical
parabolic subgroup of � , that is a subgroup generated by a subset of S . It coincides with the dimension
of the Davis complex of .�;S/; see [Davis 2008; Felikson and Tumarkin 2010].

In this paper, we consider Coxeter systems of dimension at most 2. In particular, such a class of Coxeter
systems contains hyperbolic Coxeter groups of dimension 2 and ideal hyperbolic Coxeter groups of
dimension 3. Indeed, for such groups, maximal spherical subgroups are of rank at most 2. For a Coxeter
system .�;S/ of dimension at most 2, it is easy to see that the underlying graph of X.�;S/ is the
geometric realization of the nerve L.�;S/. Therefore the Euler characteristic �.L.�;S// equals the one
of the underlying graph of X.�;S/. It is known that the Euler characteristic of a graph is the number of
vertices minus the number of edges.

2.3 Growth rates of Coxeter systems

Let .�;S/ be a Coxeter system. For x 2 � , we define its word length with respect to S by

jxjS Dminfn 2N j x D s1 � � � sn .s1; : : : ; sn 2 S/g:

By convention, j1jS D 0. The growth series f.�;S/.z/ of .�;S/ is defined by

f.�;S/.z/D
X
`�0

a`z
`;

where a` is the number of the elements of � of word length `. If .�;S/ is spherical, then f.�;S/.z/ is a
polynomial and called the growth polynomial of .�;S/.

By a result of Solomon [1966], the growth polynomials of spherical Coxeter systems can be computed in
terms of its exponents. For the list of exponents, see [Humphreys 1990]. For example, the exponents of
AN are given by 1; 2; : : : ;N , and those of I2.k/ are 1; k � 1. For positive integers m;m1; : : : ;mr , we
put

Œm�D 1C zC � � �C zm�1 and Œm1; : : : ;mr �D Œm1� � � � Œmr �:

Solomon’s formula states that for a spherical Coxeter system .�;S/ with the exponents m1; : : : ;mr , one
has f.�;S/.z/D Œm1C 1; : : : ;mr C 1�.

If .�;S/ is nonspherical, then the inverse of the radius of convergence of f.�;S/.z/ is called the growth
rate of .�;S/, denoted by �.�;S/. The Cauchy–Hadamard formula gives

�.�;S/D lim sup
`!1

`
p

a`:

Since free abelian groups of finite rank have polynomial growth [Wolf 1968], and any affine Coxeter
system contains a free abelian subgroup of finite rank and finite index, the growth rate of an affine Coxeter
system is 1.

Algebraic & Geometric Topology, Volume 24 (2024)
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3

3

3
3

Figure 4: The presentation diagram of .�?;S?/.

Remark 2.2 If a Coxeter system .�;S/ decomposes as .�1;S1/ � .�2;S2/ � � � � � .�l ;Sl/, then its
growth series satisfies f.�;S/ D…if.�i ;Si /. It follows for the growth rate that �.�;S/Dmaxi �.�i ;Si/.
This does not hold when .�;S/ decomposes as a free product.

The following formula, established by Steinberg, is an important tool to compute the growth series of
Coxeter systems.

Theorem 2.3 (Steinberg’s formula [1968]) Let .�;S/ be a Coxeter system. Then the identity

(2-1)
1

f.�;S/.z
�1/
D

X
T�S

#�T<1

.�1/#T

f.�T ;T /.z/

holds for the growth series f.�;S/.z/.

Steinberg’s formula implies that the growth series is a rational function and satisfies that

1

f.�;S/.z
�1/
D

P .z/

Q.z/
;

where P .z/ and Q.z/ are monic polynomials with integer coefficients. It follows that the growth rate
�.�;S/ is the real root of P .z/whose modulus is maximal among the roots of P .z/, and hence �.�;S/�1

is a real algebraic integer.

Example 2.4 Consider the abstract Coxeter system .�?;S?/ whose presentation diagram is depicted
in Figure 4. The spherical subgroups are A1 and A2, both with multiplicity four. By Steinberg’s
formula (2-1), we compute its growth series

1

f.�?;S?/.z
�1/
D 1�

4

Œ2�
C

4

Œ2; 3�
D
Œ2; 3�� 4Œ3�C 4

Œ2; 3�
:

We write P .z/ for the numerator of 1=f.�?;S?/.z
�1/; that is,

P .z/D 1� 2z� 2z2
C z3:

One easily sees that P .�1/D 0 and that the greatest positive root of P .z/ is given by

�.�?;S?/D
3C
p

5

2
D

1

.' � 1/2
;

where ' is the golden ratio.

Algebraic & Geometric Topology, Volume 24 (2024)
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Example 2.5 If .�;S/ is a Coxeter system of rank N whose presentation diagram X.�;S/ has no edges,
then �.�;S/DN � 1. Indeed, we compute by Steinberg’s formula (2-1)

1

f.�;S/.z
�1/
D 1�

N

Œ2�
D

z� .N � 1/

Œ2�
:

Example 2.6 If .�;S/ is a Coxeter system of rank N whose presentation diagram X.�;S/ is a tree
with edges labeled by 2 only, then

1

f.�;S/.z
�1/
D 1�

N

Œ2�
C

N � 1

Œ2; 2�
D
Œ2; 2��N Œ2�CN � 1

Œ2; 2�
D

z.z� .N � 2//

.1C z/2
:

Observe that the growth series does not depend on the isomorphism type of the tree, only on the number
of its vertices. Therefore, the growth rate is given by �.�;S/DN � 2.

From now on, we focus on the growth rates of nonspherical, nonaffine Coxeter systems. Three kinds
of real algebraic integers appear in the study of the growth rates of hyperbolic Coxeter systems: Salem
numbers, Pisot numbers, and Perron numbers (see [Bertin et al. 1992, page 84]).

An algebraic integer � > 1 is called a Salem number if it is a quadratic unit or is such that the inverse ��1 is
a Galois conjugate of � and the other Galois conjugates lie on the unit circle. The minimal polynomial of a
Salem number is called a Salem polynomial. Parry showed that the growth rates of 2– and 3–dimensional
cocompact hyperbolic Coxeter systems are Salem numbers [Parry 1993].

An algebraic integer � > 1 is called a Pisot number if � is an integer or if all of its other Galois
conjugates are contained in the unit open disk. The minimal polynomial of a Pisot number is called
a Pisot polynomial. Floyd showed that the growth rates of 2–dimensional cofinite hyperbolic Coxeter
systems are Pisot numbers [Parry 1993]. Moreover, for a 2–dimensional cofinite hyperbolic Coxeter
systems .�;S/, there exists a sequence of 2–dimensional cocompact hyperbolic Coxeter systems .�n;Sn/

whose growth rates �.�n;Sn/ converges to �.�;S/ from below.

An algebraic integer � > 1 is called a Perron number if � is an integer or if all of its other Galois conjugates
are strictly less than � in absolute value. Note that Salem numbers and Pisot numbers are Perron numbers.
Yukita [2017; 2018]] showed that the growth rates of 3–dimensional cofinite hyperbolic Coxeter systems
are Perron numbers. Note that Komori and Yukita [2015] and Nonaka and Kellerhals [2017] showed
that the growth rates of cofinite 3–dimensional hyperbolic ideal Coxeter systems are Perron numbers.
For a 4–dimensional cocompact Coxeter system .�P ;SP /, Kellerhals and Perren [2011] proved that the
growth rates are Perron numbers for #SP D 5 and 6. In particular, they conjectured that the growth rates
of hyperbolic Coxeter systems are Perron numbers.

This is a motivation to relate geometric properties of Coxeter systems to the arithmetic nature of their
growth rates. The aim of this paper is to extend the results of Floyd and Parry to nonspherical, nonaffine,
and nonhyperbolic Coxeter systems of dimension at most 2. Note that Charney and Davis [1991] studied
the relationship between the geometry of nerves and reciprocity of the growth series.

Algebraic & Geometric Topology, Volume 24 (2024)
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We use the partial order on the set of Coxeter systems defined by McMullen [2002]. Let .�;S/ and
.� 0;S 0/ be Coxeter systems. Write .�;S/� .� 0;S 0/ when there exists an injection � W S ! S 0 such that
k.s; t/� k 0.�.s/; �.t//, where k.s; t/ and k 0.�.s/; �.t// are the orders of st and �.s/�.t/, respectively.

Theorem 2.7 [Terragni 2016, Corollary 3.2] If .�;S/� .� 0;S 0/, then �.�;S/� �.� 0;S 0/.

For a finitely generated group � with ordered finite generating set S with #S DN , we call the pair .�;S/
an N –marked group. Given two N –marked groups .�;S/ and .� 0;S 0/ we say that they are isomorphic
as marked groups when the map � W S ! S 0 sending si to s0i extends to a group isomorphism between �
and � 0. The space of N –marked groups is the set of isomorphism classes of N –marked groups equipped
with a metric topology, given by the Chabauty–Grigorchuk topology; see [Grigorchuk 1984]. Let us
denote by CN the set of marked Coxeter systems of rank N . Yukita [2024] studied the space CN and
showed that CN is compact.

Theorem 2.8 [Yukita 2024, Theorems 3.2 and 3.5] Let f.�n;Sn/g and .�;S/ be marked Coxeter
systems of rank N . We write kij .n/ (resp. kij ) for the order of si.n/sj .n/ in �n (resp. sisj in �).

(1) The sequence f.�n;Sn/g converges to .�;S/ if and only if limn!1 kij .n/D kij for 1� i; j �N .

(2) If limn!1.�n;Sn/D .�;S/, then limn!1 �.�n;Sn/D �.�;S/.

3 Growth rates of Coxeter systems with vanishing Euler characteristic

Let .�;S/ be a nonspherical, nonaffine Coxeter system of dimension at most 2 such that �.L.�;S//D 0,
where L.�;S/ denotes the geometric realization of its nerve. In this section, we prove that the growth
rate �.�;S/ is a Salem number.

We write N (resp. E) for the number of vertices (resp. edges) of the presentation diagram X.�;S/.
Recall that the Euler characteristic of a graph is the number of vertices minus the number of edges. Since
the dimension of .�;S/ is at most 2, the underlying graph of X.�;S/ coincides with L.�;S/, and hence
N DE. Suppose that the set of labels of the edges of X.�;S/ is fk1; : : : ; kr g. Let us denote by Ei the
number of edges of X.�;S/ labeled by ki .

We obtain the equality

1

f.�;S/.z
�1/
D 1�

N

Œ2�
C

rX
iD1

Ei

Œ2; ki �
D 1�

E1C � � �CEr

Œ2�
C

rX
iD1

Ei

Œ2; ki �

D 1C

rX
iD1

Ei

Œ2�

�
1

Œki �
� 1

�

D 1C

rX
iD1

Ei

Œ2�

�
z� 1

zki � 1
� 1

�
D 1C

rX
iD1

Ei
z� zki

.zC 1/.zki � 1/

Algebraic & Geometric Topology, Volume 24 (2024)
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k1

k2

k3

Figure 5: The presentation diagram in the case N D 3.

by Steinberg’s formula (2-1); see also [Parry 1993, page 413]. Hence,

(3-1)
zC 1

.z� 1/f.�;S/.z
�1/
D

zC 1

z� 1
C

rX
iD1

Ei
z� zki

.z� 1/.zki � 1/
:

The following lemma is fundamental for the proof.

Lemma 3.1 [Parry 1993, Corollary 1.8] Given integers k1; : : : ; kr � 2 and E1; : : : ;Er � 1, suppose
that

(3-2)
rX

iD1

�
1�

1

ki

�
Ei > 2:

Let R.z/ be the rational function defined by

R.z/D
zC 1

z� 1
C

rX
iD1

Ei
z� zki

.z� 1/.zki � 1/
:

Then R.z/ D P .z/=Q.z/ where P .z/ and Q.z/ are relatively prime monic polynomials with integer
coefficients and equal degrees , and P .z/ is a product of distinct irreducible cyclotomic polynomials and
exactly one Salem polynomial.

Theorem 3.2 Let .�;S/ be a nonspherical , nonaffine Coxeter system of dimension at most 2. If
�.L.�;S//D 0, then the growth rate �.�;S/ is a Salem number.

Proof We apply Lemma 3.1 to (3-1). The proof is divided into three cases: the cases N D 3, N D 4,
and N � 5.

(i) Assume N D 3. By assumption, N DE D 3, and hence the presentation diagram of X.�;S/ is as in
Figure 5.

Since .�;S/ is nonspherical and nonaffine,

1

k1
C

1

k2
C

1

k3
< 1:

Therefore, �
1�

1

k1

�
C

�
1�

1

k2

�
C

�
1�

1

k3

�
> 2:

(ii) Assume N D 4. The presentation diagram X.�;S/ is one of the diagrams in Figure 6. We show
that one of the labels of X.�;S/ is at least 3.

Algebraic & Geometric Topology, Volume 24 (2024)
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k1 k2
k3

k4

k1

k2

k3

k4

Figure 6: The presentation diagrams in the case N D 4.

Suppose that X.�;S/ is the diagram in Figure 6, left. If k1Dk2Dk4D 2, then the vertices of the triangle
generates a spherical parabolic subgroup of � of rank 3. This contradicts the fact that the dimension of
.�;S/ is at most 2. Therefore, one of the labels is at least 3. Suppose that X.�;S/ is the diagram in
Figure 6, right. If k1D k2D k3D k4D 2, then the Coxeter diagram Cox.�;S/ is made of two connected
components zA1 (see Figure 2 for zA1). This is a contradiction to the fact that .�;S/ is nonspherical and
nonaffine. Therefore, one of the labels is at least 3. Hence,�

1�
1

k1

�
C

�
1�

1

k2

�
C

�
1�

1

k3

�
C

�
1�

1

k4

�
� 3

�
1�

1

2

�
C

�
1�

1

3

�
> 2:

(iii) Assume N � 5. It follows that
rX

iD1

�
1�

1

ki

�
Ei D

rX
iD1

Ei �

rX
iD1

Ei

ki
DN �

rX
iD1

Ei

ki
�N �

rX
iD1

Ei

2
D

N

2
�

5

2
> 2:

Therefore, (3-2) holds, and the assertion follows from Lemma 3.1.

For later use, we show the following.

Lemma 3.3 Let .�;S/ be a nonspherical , nonaffine Coxeter system of dimension at most 2. Suppose
that the growth series f.�;S/.z/ satisfies the equality

1

f.�;S/.z
�1/
D

P .z/

Œ2; k1; : : : ; kr �
;

where P .z/ is a monic polynomial with integer coefficients. If �.L.�;S//D 0, then P .z/ is a product of
cyclotomic polynomials and exactly one Salem polynomial.

Proof As in the proof of Theorem 3.2, we apply Lemma 3.1 to (3-1):

zC 1

.z� 1/f.�;S/.z
�1/
D

P0.z/

Q0.z/
;

where P0.z/ and Q0.z/ are the relatively prime polynomials with integer coefficients. P0 is a product of
distinct irreducible cyclotomic polynomials and exactly one Salem polynomial. By assumption, we have

(3-3)
P .z/

Œ2; k1; : : : ; kr �
D
.z� 1/P0.z/

.zC 1/Q0.z/
:

Since every factor of the polynomial Œ2; k1; : : : ; kr � is a cyclotomic polynomial, the equality (3-3) implies
that P .z/ is a product of cyclotomic polynomials and exactly one Salem polynomial.
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4 Growth rates of Coxeter systems with positive Euler characteristic

Let .�;S/ be a nonspherical, nonaffine Coxeter system of dimension at most 2 such that �.L.�;S//� 1,
where L.�;S/ denotes the geometric realization of its nerve. Recall that �.L.�;S// equals the Euler
characteristic of the underlying graph of X.�;S/. In this section, we prove that the growth rate �.�;S/
is a Pisot number.

Lemma 4.1 Let .�;S/ be a nonspherical , nonaffine marked Coxeter system of dimension at most 2 and
rank N . Suppose that either the presentation diagram X.�;S/ is disconnected , or has an edge labeled by
k � 3. If �.L.�;S//� 1, then there exists a sequence of marked Coxeter systems f.�n;Sn/gn�7 of rank
N such that for n� 7,

(1) .�n;Sn/� .�nC1;SnC1/� .�;S/;

(2) dim.�n;Sn/� 2;

(3) �.L.�n;Sn//D �.L.�;S//� 1;

(4) the sequence f.�n;Sn/gn�7 converges to .�;S/ in the space CN of marked Coxeter systems of
rank N .

Proof Set S D fs1; : : : ; sN g. We denote by E and kij the number of edges of X.�;S/ and the order of
the product sisj , respectively.

Suppose first that the underlying graph of the presentation diagram X.�;S/ is disconnected. Let sp and
sq be two vertices of different connected components of the underlying graph of X.�;S/. It follows that
kpq D1. For n� 7, we define a marked Coxeter system .�n;Sn/ of rank N by the presentation

�n D hs1.n/; : : : ; sN .n/ j .si.n/sj .n//
kij .n/ D 1 for 1� i; j �N i;

where
kij .n/D

�
n if fi; j g D fp; qg;
kij otherwise:

We will show that .�n;Sn/ satisfies the desired properties. For 1 � i; j � N and n � 7, we have
kij .n/� kij .nC 1/� kij , so

.�n;Sn/� .�nC1;SnC1/� .�;S/:

In order to show that dim.�n;Sn/ � 2, it is sufficient to see that the presentation diagram X.�n;Sn/

does not contain any of the diagrams depicted in Figure 3. Since dim.�;S/ � 2, no such diagram is
contained in X.�;S/. The presentation diagram X.�n;Sn/ is obtained from X.�;S/ by adding an edge
between sp and sq labeled by n (see Figure 7). In Figure 7, we do not put labels of the edges other
than the added edge for simplicity. Since the vertices sp and sq lie in different connected components
of the underlying graph of X.�;S/, every cycle of the underlying graph of X.�n;Sn/ comes from one
of X.�;S/. Hence we see that X.�n;Sn/ does not contain any of the diagrams depicted in Figure 3.
The Euler characteristics of the underlying graphs of X.�n;Sn/ and X.�;S/ are equal to �.L.�n;Sn//
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X.�;S/

sp sq

components

adding
an edge

X.�n;Sn/

n

sp.n/ sq.n/

Figure 7: Adding an edge between sp and sq .

and �.L.�;S//, respectively. This observation implies that f.�n;Sn/gn�7 satisfies the property (3). By
definition of .�n;Sn/, we have limn!1 kij .n/ D kij for 1 � i; j � N . Property (1) of Theorem 2.8
implies that f.�n;Sn/gn�7 converges to .�;S/ in CN .

Suppose next that the underlying graph of X.�;S/ is connected, and let us show that the underlying
graph is a tree. Since every connected graph with the Euler characteristic 1 is a tree, it is sufficient to show
that �.L.�;S//D 1. By the connectivity of the underlying graph of X.�;S/, there exists a spanning
tree T of the graph. We denote by NT and ET the number of vertices and of edges of T , respectively. It
follows that N DNT , ET �E, and NT �ET D 1. Since �.L.�;S//DN �E � 1,

1�N �E �N �ET DNT �ET D 1;

and hence �.L.�;S//D 1.

Since Coxeter systems of rank at most 2 are spherical or affine, our assumption implies that N � 3. Also
by assumption, there exists an edge e between vertices sp and sq of X.�;S/, labeled by kpq � 3. Since
the underlying graph of X.�;S/ is a tree with at least 3 vertices, we can find an edge e0 incident with e.
Without loss of generality we can assume that e and e0 share the vertex sq . We write sr for the endpoint
of e0 other than sq . Since the underlying graph of X.�;S/ is a tree, the vertices sp and sr are not joined
by an edge. It follows that kpr D1. For n� 7, we define a marked Coxeter system .�n;Sn/ of rank N

by the presentation

�n D hs1.n/; : : : ; sN .n/ j .si.n/sj .n//
kij .n/ D 1 for 1� i; j �N i;

where
kij .n/D

�
n if fi; j g D fp; rg;
kij otherwise:

We will show that .�n;Sn/ satisfies the desired properties. For 1 � i; j � N and n � 7, we have
kij .n/� kij .nC 1/� kij , so .�n;Sn/� .�nC1;SnC1/� .�;S/.

The presentation diagram X.�n;Sn/ is obtained from X.�;S/ by adding an edge between sp and sr

labeled by n (see Figure 8). In Figure 8, we do not put labels of the edges other than three edges joining
two of sp, sq , and sr for simplicity.

Since the underlying graph of X.�;S/ is a tree, the graph of X.�n;Sn/ has only one cycle and the cycle
consists of three edges joining two of sp , sq , and sr . Therefore, the presentation diagram X.�n;Sn/ does
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X.�;S/ X.�n;Sn/
sr sr .n/

kpq

kqr n

kpq

kqr

sp sq

adding
an edge sp.n/ sq.n/

Figure 8: Adding an edge between sp and sr .

not contain any of the diagrams in Figure 3, which is due to the fact that kpq � 3 and n� 7. It follows
that dim.�n;Sn/� 2. The same reasoning as before allows one to conclude that

�.L.�n;Sn//D �.L.�;S//� 1:

By definition of .�n;Sn/, we have limn!1 kij .n/D kij for 1� i; j � n, and Property (1) of Theorem 2.8
implies that f.�n;Sn/gn�7 converges to .�;S/ in CN .

Remark 4.2 Suppose that .�;S/ is a nonspherical, nonaffine Coxeter system of at most dimension 2

such that �.L.�;S// � 1. If .�;S/ does not satisfy the hypothesis in Lemma 4.1, the presentation
diagram X.�;S/ is connected and its edges are labeled by 2 only. As shown in the proof, in this case,
the positivity of the Euler characteristic forces X.�;S/ to be a tree.

Corollary 4.3 Let .�;S/ be a nonspherical , nonaffine marked Coxeter system of dimension at most 2 and
rank N such that �.L.�n;Sn//� 1. Suppose that either the presentation diagram X.�;S/ is disconnected ,
or has an edge labeled by k � 3. Then there exists a sequence of marked Coxeter systems f.�n;Sn/gn�7

of rank N such that for n� 7,

(1) .�n;Sn/� .�nC1;SnC1/� .�;S/;

(2) dim.�n;Sn/� 2;

(3) �.L.�n;Sn//D 0;

(4) the sequence f.�n;Sn/g converges to .�;S/ in the space CN of marked Coxeter systems of rank N .

Proof We take a sequence of marked Coxeter systems f.�n1
;Sn1

/gn1�7 of rank N as in Lemma 4.1. If
�.L.�;S//D 1, then for n1 � 7,

�.L.�n1
;Sn1

//D �.L.�;S//� 1D 0:

Hence the sequence f.�n1
;Sn1

/gn1�7 satisfies the properties in Corollary 4.3.

Suppose that �.L.�;S//� 2. The presentation diagram X.�n1
;Sn1

/ has an edge labeled by n1 � 7 and
�.L.�n1

;Sn1
// D �.L.�;S//� 1 � 1. For each n1 � 7, by applying Lemma 4.1 to .�n1

;Sn1
/, there

exists a sequence of marked Coxeter systems f.�n1;n2
;Sn1;n2

/gn2�7 of rank N satisfying the properties in
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Lemma 4.1. Moreover, we may assume that .�n1;n2
;Sn1;n2

/� .�n0
1
;n0

2
;Sn0

1
;n0

2
/ for n1 � n0

1
and n2 � n0

2
.

If �.L.�;S//D 2, then for n1; n2 � 7,

�.L.�n1;n2
;Sn1;n2

//D �.L.�n1
;Sn1

//� 1D �.L.�;S//� 2D 0:

Therefore, the diagonal subsequence f.�n;n;Sn;n/gn�7 satisfies the properties in Corollary 4.3. Repeating
this procedure until the Euler characteristic vanishes completes the proof.

Let .�;S/ be a nonspherical, nonaffine marked Coxeter system of dimension at most 2 with �.L.�;S//�1.
For simplicity, we write � instead of �.L.�;S//.

We denote by N (resp. E) the number of vertices (resp. edges) of the presentation diagram X.�;S/. It
follows that N �E D �� 1. Suppose that the set of labels of the edges of X.�;S/ is fk1; : : : ; kr g. Let
us write Ei for the number of edges of X.�;S/ labeled by ki , so E DE1C � � �CEr .

We obtain the equality

1

f.�;S/.z
�1/
D 1�

N

Œ2�
C

rX
iD1

Ei

Œ2; ki �
D 1�

EC�

Œ2�
C

rX
iD1

Ei

Œ2; ki �

by Steinberg’s formula (2-1); see also [Floyd 1992, page 479]. Therefore,

1

f.�;S/.z
�1/
D
Œ2; k1; : : : ; kr �� .EC�/Œk1; : : : ; kr �C

Pr
iD1 Ei Œk1; : : : ; Oki ; : : : ; kr �

Œ2; k1; : : : ; kr �

D
Œ2; k1; : : : ; kr �C

Pr
iD1 Ei.1� Œki �/Œk1; : : : ; Oki ; : : : ; kr ���Œk1; : : : ; kr �

Œ2; k1; : : : ; kr �

D
Œ2; k1; : : : ; kr ��

Pr
iD1 EizŒki � 1�Œk1; : : : ; Oki ; : : : ; kr ���Œk1; : : : ; kr �

Œ2; k1; : : : ; kr �

D
Œ2; k1; : : : ; kr ��

Pr
iD1 EizŒk1; : : : ; ki � 1; : : : ; kr ���Œk1; : : : ; kr �

Œ2; k1; : : : ; kr �
:

If �D 1, then

1

f.�;S/.z
�1/
D
.Œ2�� 1/Œk1; : : : ; kr ��

Pr
iD1 EizŒk1; : : : ; ki � 1; : : : ; kr �

Œ2; k1; : : : ; kr �

D
z
�
Œk1; : : : ; kr ��

Pr
iD1 Ei Œk1; : : : ; ki � 1; : : : ; kr �

�
Œ2; k1; : : : ; kr �

:

We define the polynomial P .z/ as

P .z/D

(
Œk1; : : : ; kr ��

Pr
iD1 Ei Œk1; : : : ; ki � 1; : : : ; kr � if �D 1;

Œ2; k1; : : : ; kr ��
Pr

iD1 EizŒk1; : : : ; ki � 1; : : : ; kr ���Œk1; : : : ; kr � if �� 2:

It follows that
1

f.�;S/.z
�1/
D

�
zP .z/=Œ2; k1; : : : ; kr � if �D 1;

P .z/=Œ2; k1; : : : ; kr � if �� 2:
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In order to show that P .z/ is a product of cyclotomic polynomials and exactly one Pisot polynomial, we
use the following; see [Floyd 1992].

Lemma 4.4 [Floyd 1992, Lemma 1] Let P .z/ be a monic polynomial with integer coefficients. We
denote the reciprocal polynomial of P .z/ by zP .z/; that is , zP .z/ D zdeg P P .z�1/. Suppose that P .z/

satisfies

(i) P .0/¤ 0 and P .1/ < 0;

(ii) P .z/¤ zP .z/;

(iii) for sufficiently large integer m, .zmP .z/� zP .z//=.z� 1/ is a product of cyclotomic polynomials
and exactly one Salem polynomial.

Then the polynomial P .z/ is a product of cyclotomic polynomials and exactly one Pisot polynomial.

Theorem 4.5 Let .�;S/ be a nonspherical , nonaffine Coxeter system of dimension at most 2 with
�.L.�;S//� 1. Then the growth rate �.�;S/ is a Pisot number.

Proof Assume that .�;S/ of rank N satisfies the hypothesis of the theorem. Since .�;S/ is a nonspheri-
cal, nonaffine Coxeter system, we have that N � 3. If the presentation diagram X.�;S/ has no edges, the
growth rate �.�;S/DN � 1� 2 is a Pisot number; see Example 2.5. From now on, we assume that the
presentation diagram X.�;S/ has at least one edge. Denote by E � 1 the number of edges of X.�;S/.

Considering Remark 4.2, we divide the proof into two cases: the presentation diagram X.�;S/ is a tree
all of whose edges are labeled by 2, and otherwise.

In the first case, we have E DN � 1. Without loss of generality, we can assume that N � 4 since .�;S/
is nonaffine. Therefore, by Example 2.6, the growth rate �.�;S/DN � 2� 2 is a Pisot number.

In the other case, either the presentation diagram X.�;S/ is disconnected or it has an edge labeled by
k � 3. We fix an ordering of the generating set S . Let us take a sequence of marked Coxeter systems
f.�n;Sn/gn�7 of rank N as in Corollary 4.3. It follows from property (3) that the number of edges of
X.�n;Sn/ equals EC�.L.�;S//. In particular, for every n� 7 different from k1; : : : ; kr , the number of
edges of X.�n;Sn/ labeled by n is equal to �.L.�;S//. For simplicity, we write � instead of �.L.�;S//.
By Steinberg’s formula (2-1),

1

f.�n;Sn/.z
�1/
D 1�

N

Œ2�
C

rX
iD1

Ei

Œ2; ki �
C

�

Œ2; n�
D

Pn.z/

Œ2; k1; : : : ; kr ; n�
;

where

Pn.z/D Œ2; k1; : : : ; kr ; n��N Œk1; : : : ; kr ; n�C

rX
iD1

Ei Œk1; : : : ; Oki ; : : : ; kr ; n�C�Œk1; : : : ; kr �:

From the equality N DE1C � � �CEr C�, we obtain that

Pn.z/D Œ2; k1; : : : ; kr ; n��

rX
iD1

EizŒk1; : : : ; ki � 1; : : : ; kr ; n���zŒk1; : : : ; kr ; n� 1�:
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Define the polynomials P .z/ as

P .z/D

(
Œk1; : : : ; kr ��

Pr
iD1 Ei Œk1; : : : ; ki � 1; : : : ; kr � if �D 1;

Œ2; k1; : : : ; kr ��
Pr

iD1 EizŒk1; : : : ; ki � 1; : : : ; kr ���Œk1; : : : ; kr � if �� 2;

and zP .z/D zdeg P P .z�1/. Then

.z� 1/Pn.z/D

�
znC1P .z/� zP .z/ if �D 1;

znP .z/� zP .z/ if �� 2:

Since �.L.�n;Sn//D 0, by Lemma 3.3, the polynomial Pn.z/ is a product of cyclotomic polynomials
and exactly one Salem polynomial. In order to apply Lemma 4.4 to P .z/, we need to show that P .0/¤ 0,
P .1/ < 0, and that P .z/ is not reciprocal. First,

P .0/D

�
1�E if �D 1;

1�� if �� 2:

It follows that P .0/¤ 0. Since P .z/ is monic, we also conclude that P .z/ is not reciprocal. Finally, we
see that P .1/ < 0 as follows.

In the case �D 1,

P .1/D

rY
iD1

ki �

rX
iD1

�
Ei �

rY
jD1

kj �
ki � 1

ki

�
D

rY
iD1

ki �

�
1�

rX
iD1

Ei

�
1�

1

ki

��
:

If N � 4, then
rX

iD1

Ei

�
1�

1

ki

�
�

rX
iD1

Ei

�
1�

1

2

�
D

E

2
D

N �1

2
�

3

2
> 1:

It follows that P .1/ < 0 from

1�

rX
iD1

Ei

�
1�

1

ki

�
< 0:

For N D 3, the presentation diagram is made of two edges with labels k1 and k2. We necessarily have
k1 � 3 or k2 � 3, so

1�
�
1�

1

k1

�
�

�
1�

1

k2

�
� 1�

1

2
�

2

3
D�

1

6
< 0:

Hence P .1/ < 0.

In the case �� 2,

P .1/D 2

rY
iD1

ki �

rX
iD1

�
Ei �

rY
jD1

kj �
ki � 1

ki

�
��

rY
iD1

ki D

rY
iD1

ki �

�
2���

rX
iD1

Ei

�
1�

1

ki

��
:

Since X.�;S/ has at least one edge,

P .1/ <

rY
iD1

ki � .2��/� 0:

By Lemma 4.4, the polynomial P .z/ is a product of cyclotomic polynomials and exactly one Pisot
polynomial, and hence the growth rate �.�;S/ is a Pisot number.
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2 2

s1 s2 sN�1 sN

Figure 9: The presentation diagram X.y�; yS/.

Theorem 4.6 Let .�;S/ be a nonspherical , nonaffine Coxeter system of dimension at most 2 with
�.L.�;S//� 1. Then , there exists a sequence of Coxeter systems .�n;Sn/ of dimension at most 2 with
vanishing Euler characteristic such that the growth rate �.�n;Sn/ converges to �.�;S/ from below.

Proof We denote by N the rank of .�;S/. As in the proof of Theorem 4.5, we divide the proof into
two cases: either the presentation diagram X.�;S/ is disconnected or has an edge labeled by k � 3, and
otherwise.

In the first case, we fix an ordering of S and we take a sequence of marked Coxeter systems f.�n;Sn/gn�7

of rank N as in Corollary 4.3. By combining Theorems 2.7, 2.8, and 3.2, we conclude that the growth
rate �.�n;Sn/ is a Salem number and the sequence f�.�n;Sn/gn�7 converges to �.�;S/ from below.

In the other case, by Remark 4.2, the presentation diagram X.�;S/ is a tree with all edges labeled by 2.
Since .�;S/ is nonspherical and nonaffine, it forces N � 4. It was shown in Example 2.6 that the growth
rate of .�;S/ does not depend on the isomorphism type of the tree, only on the number of its vertices,
and that �.�;S/DN � 2� 2.

Consider the marked Coxeter system .y�; yS/ of rank N whose presentation diagram X.y�; yS/ is depicted
in Figure 9.

Let .�n;Sn/ be the marked Coxeter system of rank N whose presentation diagram X.�n;Sn/ is obtained
by adding an edge labeled by n� 3 between s1 and sN . As a direct consequence, .�n;Sn/ converges to
.y�; yS/ in the space of marked Coxeter systems CN of rank N . Since �.y�; yS/D �.�;S/, by combining
Theorems 2.7, 2.8, and 3.2, the assertion follows.

Remark 4.7 We mention that for hyperbolic groups, Fujiwara and Sela [2023] have studied the conver-
gence properties of growth rates with respect to all their finite generating sets; see also [Yukita 2024].
However, they did not characterize the arithmetic nature of growth rates.

5 Examples for the growth rates of Coxeter systems with negative Euler
characteristic

In this section, we consider Coxeter systems of dimension at most 2 with negative Euler characteristic.
We provide some infinite sequences of such Coxeter systems, and prove by a classical approach that their
growth rates are Perron numbers; see also Remark 5.2.

Let .�?;S?/ be the Coxeter system with presentation diagram depicted in Figure 10. As discussed in
Example 2.4, the radius of convergence of its growth series is given by r? D 1=�.�?;S?/D .' � 1/2,
where ' is the golden ratio.
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Figure 10: The presentation diagram of .�?;S?/.

For all the Coxeter systems .�;S/ discussed below, we assume that .�?;S?/� .�;S/; see Section 2.3.

We provide examples in terms of the underlying graphs of their presentation diagrams; see Figure 11.
For terminology, we refer to [Gallian 1998]. Such Coxeter systems all satisfy �� �1. For instance, the
family of wheel graphs WN , for all N � 6, formed by a cycle of length N � 1 and a universal vertex,
that is, a central vertex linked to each other vertex. In that case the number of edges of the graph is given
by E D 2.N � 1/. The same goes for the windmill graphs of type W.4; l/, with l � 2, made of l copies
of complete graphs K4 joined at common central vertex. The family of friendship graphs Fl DW.3; l/

for l � 3 satisfies E D 3
2
.N �1/. Several variations of those graphs can be constructed. For example, we

defined the triangulated bouquet T.c; l/ as the graph formed by l copies of c–cycles glued in a common
vertex v, such that any other vertex is linked to v. In this case, v is universal and one has

E D
2c�1

c�1
.N � 1/:

Proposition 5.1 Let .�k;N ;S/ be a nonspherical , nonaffine Coxeter system of dimension at most 2 and
rank N , such that all edges of the presentation diagram X.�k;N ;S/ are labeled by the same k � 3. Denote
by E the number of edges of X.�k;N ;S/.

If .�k;N ;S/ satisfies that

(i) .�?;S?/� .�k;N ;S/,

(ii) E D a.N � 1/ for a rational number 1< a� 1
3
.1C'/2,

then the growth rate �.�k;N ;S/ is a Perron number.

Proof We give an outline of the proof, which is classical, and omit details. Assume that .�k;N ;S/

satisfies the hypothesis of Proposition 5.1. In what follows, we denote by fk;N .z/DQk;N .z/=Pk;N .z/

the growth series of .�k;N ;S/, by rk;N its radius of convergence, and by �k;N the growth rate of .�k;N ;S/.
Recall that rk;N is the smallest positive real root of Pk;N .z/.

Figure 11: The graphs W7, W.4; 2/, F4 DW.3; 4/, and T.5; 3/.
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By Steinberg’s formula (2-1),

(5-1)
1

fk;N .z
�1/
D 1�

N

Œ2�
C

a.N � 1/

Œ2; k�
D
Œ2; k��N Œk�C a.N � 1/

Œ2; k�
:

Therefore, the denominator of fk;N .z/ is given by

Pk;N .z/D 1C .2�N /.zC z2
C � � �C zk�1/C .a� 1/.N � 1/zk

D hN .z/CRk;N .z/;

where hN .z/ is the quadratic polynomial hN .z/D 1C .2�N /.zC z2/ and Rk;N .z/ is the remaining
part.

By hypothesis, .�?;S?/� .�k;N ;S/; therefore by Theorem 2.8, we conclude that �.�?;S?/� �k;N . It
follows that the associated radii of convergence all satisfy rk;N � r?. In order to prove that rk;N is the
unique root with smallest modulus of Pk;N .z/, we use Rouché’s theorem on the open disk D.0; r?/. We
first observe that hN .z/ has a unique root in D.0; r?/, and we prove jhN .z/j � jRk;N j> 0 on jzj D r?.

We assume that N � 9; the case where N � 8 can be done by applying similar reasoning. An easy analysis
of the roots shows that for any N , hN .z/ admits a unique root in the open disk D.0; r?/. Moreover, on
the circle jzj D r?, one has

(5-2) jhN .z/j � j1C .2�N /.r2
? � r?/j:

Let z be such that jzj D r?, and put �k;N .z/ D jhk;N .z/j � jRk;N .z/j. Since a > 1, by the triangle
inequality,

jRk;N .z/j � .N � 2/.r3
? C � � �C rk�1

? /C .a� 1/.N � 1/rk
? :

Also, by (5-2), one has jhN .z/j � j1C .2�N /.r2
? � r?/j � 1C .2�N /.r2

? � r?/. It follows that

�k;N .z/�N

�
1C 2r �

1� rk
?

1� r?
� .a� 1/rk

?

�
� 3� 4r?C 2

1� rk
?

1� r?
C .a� 1/rk

? :

By analysis of each term, one can prove that ƒk;N increases with respect to N for all k � 3, and that
ƒk;N decreases with respect to k for all N � 9. Therefore,

�k;N .z/� lim
k!1

ƒk;N DN
�
1C 2r?�

1

1�r?

�
� 3� 4r?C

2

1�r?
:

We obtain that �k;N .z/ > 0 when

N >
3C 4r?� 2 1

1�r?

1C 2r?�
1

1�r?

D
11C

p
45

2
:

This is true for any N � 9, which finishes the proof.

Remark 5.2 A Coxeter system is said to be1–spanned if there exists a spanning tree of its Coxeter
diagram with edges labeled1 only. Kolpakov and Talambutsa [2022] proved that the growth rate of
1–spanned Coxeter systems are Perron numbers. By the existence of a universal vertex in the presentation
diagram of the Coxeter systems discussed above, such a spanning tree cannot be found in the corresponding
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Figure 12: The presentation diagram of .�0;S0/.

Coxeter diagrams. However, the growth series of such a Coxeter system .�;S/ of dimension 2 at most
coincides with the growth series of a 1–spanned Coxeter system obtained as follows.1 Construct a
complete graph with N vertices, with E of its edges labeled by k � 3 and the remaining ones by1.
If a vertex is chosen so that all its emanating edges are labeled by 1, the resulting graph encodes a
1–spanned Coxeter system whose growth series equals the original growth series.

In Theorems 3.2 and 4.5, we proved that growth rates of Coxeter systems of dimension at most 2 with
positive and vanishing Euler characteristic are Salem and Pisot numbers respectively. By Proposition 5.1
and Remark 5.2, the growth rates of infinitely many Coxeter systems with negative Euler characteristic
are Perron numbers.

Note that, there exist Coxeter systems of dimension at most 2 such that � � �1 whose growth rates
are Perron numbers but are neither Pisot numbers nor Salem numbers. For instance, the 3–dimensional
hyperbolic ideal Coxeter system .�0;S0/ whose presentation diagram admits labels 3 only and is depicted
in Figure 12.

Inspired by these observations, we make the following claim.

Conjecture The growth rate of any Coxeter system of dimension at most 2 is a Perron number.
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1725Steenrod problem and some graded Stanley–Reisner rings

MASAHIRO TAKEDA

1739Dehn twists and the Nielsen realization problem for spin 4–manifolds

HOKUTO KONNO

1755Sequential parametrized topological complexity and related invariants

MICHAEL FARBER and JOHN OPREA

1781The multiplicative structures on motivic homotopy groups

DANIEL DUGGER, BJØRN IAN DUNDAS, DANIEL C ISAKSEN and PAUL ARNE ØSTVÆR

1787Coxeter systems with 2–dimensional Davis complexes, growth rates and Perron numbers

NAOMI BREDON and TOMOSHIGE YUKITA

A
L

G
E

B
R

A
IC

&
G

E
O

M
E

T
R

IC
T

O
P

O
L

O
G

Y
2024

Vol.24,
Issue

3
(pages

1225–1808)

http://dx.doi.org/10.2140/agt.2024.24.1225
http://dx.doi.org/10.2140/agt.2024.24.1277
http://dx.doi.org/10.2140/agt.2024.24.1321
http://dx.doi.org/10.2140/agt.2024.24.1431
http://dx.doi.org/10.2140/agt.2024.24.1467
http://dx.doi.org/10.2140/agt.2024.24.1487
http://dx.doi.org/10.2140/agt.2024.24.1505
http://dx.doi.org/10.2140/agt.2024.24.1551
http://dx.doi.org/10.2140/agt.2024.24.1569
http://dx.doi.org/10.2140/agt.2024.24.1601
http://dx.doi.org/10.2140/agt.2024.24.1623
http://dx.doi.org/10.2140/agt.2024.24.1655
http://dx.doi.org/10.2140/agt.2024.24.1691
http://dx.doi.org/10.2140/agt.2024.24.1713
http://dx.doi.org/10.2140/agt.2024.24.1725
http://dx.doi.org/10.2140/agt.2024.24.1739
http://dx.doi.org/10.2140/agt.2024.24.1755
http://dx.doi.org/10.2140/agt.2024.24.1781
http://dx.doi.org/10.2140/agt.2024.24.1787

	1. Introduction
	2. Preliminaries
	2.1. Coxeter systems
	2.2. Geometric Coxeter groups and nerves
	2.3. Growth rates of Coxeter systems

	3. Growth rates of Coxeter systems with vanishing Euler characteristic
	4. Growth rates of Coxeter systems with positive Euler characteristic
	5. Examples for the growth rates of Coxeter systems with negative Euler characteristic
	Acknowledgements

	References
	
	

