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Models of G–spectra as presheaves of spectra

BERTRAND J GUILLOU

J PETER MAY

Let G be a finite group. We give Quillen equivalent models for the category of G–spectra as categories
of spectrally enriched functors from explicitly described domain categories to nonequivariant spectra.
Our preferred model is based on equivariant infinite loop space theory applied to elementary categorical
data. It recasts equivariant stable homotopy theory in terms of point–set-level categories of G–spans and
nonequivariant spectra. We also give a more topologically grounded model based on equivariant Atiyah
duality.
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Introduction

The equivariant stable homotopy category is of fundamental importance in algebraic topology. It is the
natural home in which to study equivariant stable homotopy theory, a subject that has powerful and
unexpected nonequivariant applications and is also of great intrinsic interest. The foundations were well
established by the mid-1980s, and by then the importance of working with equivariant spectra had already
become abundantly clear, especially with Carlsson’s proof [1984] of the Segal conjecture. The following
decade saw much further progress; Mackey functor and RO.G/–graded cohomology theories came of
age, the Tate square and norm maps were introduced and given their first applications [Greenlees and
May 1995b; 1997], and THH, TC and their applications to algebraic K–theory had made their appearance
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1226 Bertrand J Guillou and J Peter May

[Bökstedt et al. 1993]. Summary accounts of where the subject stood in the mid-1990s are given in
[Carlsson 1992; Greenlees and May 1995a; May 1996]. While there was continued work in the following
decade, the subject really took hold in the mainstream of algebraic topology with its unexpected role in
the 2009 solution of the Kervaire invariant problem by Hill, Hopkins and Ravenel [Hill et al. 2016]. For
example, on a foundational level, understanding norms as maps of equivariant spectra plays a key role.

The first draft of this paper appeared in 2011, and the subject has truly blossomed in the decade since.
Formally, just as the category of G–spaces is Quillen equivalent to the presheaf category of contravariant
functors from the orbit category of G to spaces, the category of G–spectra is Quillen equivalent to the
presheaf category of spectrally enriched contravariant functors from its full subcategory of suspension
spectra of orbits to spectra. We shall say more about that shortly. The purpose of this paper is to replace
the target presheaf category by one that is Quillen equivalent and yet is accessible to concrete constructions
on the level of related presheaf categories of spaces and categories.

Setting up the equivariant stable homotopy category with its attendant model structures takes a fair amount
of work. The first version was due to Lewis and May [Lewis et al. 1986b], and more modern versions
that we shall start from are given in [Mandell and May 2002; Hill et al. 2016]. A result of Schwede and
Shipley [2003] (reworked in [Guillou and May 2020] to give the starting point of this paper) asserts that
any stable model category M is equivalent to a category Pre.D ;S / of spectrally enriched presheaves with
values in a chosen category S of spectra. However, the domain S –category D is a full S –subcategory
of M and typically is as inexplicit and mysterious as M itself. From the point of view of applications
and calculations, this is therefore only a starting point. One wants a more concrete understanding of the
category D. We shall give explicit equivalents to the domain category D in the case when M DGS is
the category of G–spectra for a finite group G, and we fix a finite group G throughout.

We shall define an S –category (or spectral category) GA by applying a suitable infinite loop space
machine to simply defined categories of finite G–sets. The spectral category GA is a spectrally enriched
version of the Burnside category of G. We shall prove the following result:

Theorem 0.1 (main theorem) There is a zigzag of Quillen equivalences

GS ' Pre.GA ;S /

relating the category of G–spectra to the category of spectrally enriched contravariant functors GA !S.

Such functors are often called presheaves. We reemphasize the simplicity of our spectral category GA :
no prior knowledge of G–spectra is required to define it.

We give a precise description of the relevant categorical input and restate the main theorem more
precisely in Section 1. The central point of the proof is to use equivariant infinite loop space theory to
construct the spectral category GA from elementary categories of finite G–sets. We prove our main
theorem in Section 2, using the equivariant Barratt–Priddy–Quillen (BPQ) theorem to compare GA to
the spectral category GDAll given by the suspension G–spectra †1G .AC/ of based finite G–sets AC,
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Models of G–spectra as presheaves of spectra 1227

which is a standard choice for application of the theorem of Schwede and Shipley to GS. The classical
Burnside category of isomorphism classes of spans of finite G–sets leads to a calculation of the homotopy
category HoGDAll (see Theorem 1.12 below), and GA starts from the bicategory of such spans, in which
isomorphisms of spans give the 2–cells.

Intuitively, (algebraic) Mackey functors can be viewed as functors from HoGDAll to abelian groups, and
the result of Schwede and Shipley says that G–spectra can be viewed as functors from GDAll to spectra.
We are lifting the standard purely algebraic understanding of Mackey functors to obtain an analogous
algebraic understanding of G–spectra as functors from GA to spectra. Thus, the slogan is that G–spectra
are spectral Mackey functors.

It is crucial to our work that theG–spectra†1G .AC/ are self-dual. Our original proof took this as a special
case of equivariant Atiyah duality (Section 4.2), thinking of A as a trivial example of a smooth closed
G–manifold. We later found a direct categorical proof (Section 2.3) of this duality based on equivariant
infinite loop space theory and the equivariant BPQ theorem. This allows us to give an illuminating
new proof of the required self-duality as we go along. We give presheaf versions of a few standard
constructions on G–spectra in Section 3. Switching gears, we give an alternative presheaf model for
the category of G–spectra in terms of classical Atiyah duality in Section 4. Appendix A provides some
background on the two model categories of G–spectra used here, equivariant orthogonal spectra and
equivariant S–modules, and describes and compares the specialization of [Guillou and May 2020] to
those categories that provides the starting point for our work.

We take what we need from equivariant infinite loop space theory as a black box in this paper. The
additive and multiplicative space-level theories are worked out in [May et al. 2017] and [Guillou et al.
2019], respectively. The generalization from space-level to category-level input is based on general (and
not necessarily equivariant) categorical coherence theory that is worked out in [Guillou et al. 2023]. What
is needed for this paper is a small part of the full story there.

Acknowledgements We thank a first diligent referee for demanding a reorganization of our original
paper. We thank a second diligent referee for an incredibly detailed list of sixty-one incisive suggestions
for improving the exposition. We also thank Angélica Osorno and Inna Zakharevich for very helpful
comments, and we especially thank Osorno and Anna Marie Bohmann for catching an error in the
handling of pairings in earlier versions of this work. That error is one reason for the very long delay in
the publication of this paper, which was first posted on arXiv on August 21, 2011. The delay is no fault
of this journal.

In the interim, we teamed with Osorno and Mona Merling to fully work out the relevant infinite loop
space theory, which turned out to be both surprisingly demanding and unexpectedly interesting. Also in
the interim, Bohmann and Osorno [2015] introduced categorical Mackey functors and used these, together
with our main result, to produce a functorial construction of equivariant Eilenberg–Mac Lane spectra for
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1228 Bertrand J Guillou and J Peter May

Mackey functors. The prospect of applications like theirs was a major motivation for our variant of the
Schwede and Shipley model for the homotopy category of G–spectra. A small error1 in [Bohmann and
Osorno 2015] is corrected in the short Appendix B, of this paper. Further applications to the concrete
construction of genuine G–spectra are in development in their work and in work of Cary Malkiewich and
Merling [2019; 2022]. During the delay, Jonathan Rubin combed through our draft and caught a great
many errors of detail and infelicities. Needless to say, we are responsible for all that remain.

During the revision process of this work, Guillou was partially supported by Simons Collaboration Grant
282316 and NSF grants DMS-1710379 and DMS-2003204.

Comparison with alternative approaches We also note that, since this article first appeared online
in 2011, several alternative approaches have been given by other authors. First among these was the
work of Barwick [2017]. A notable difference is that our spectral Burnside category GA is a group
completion of Barwick’s effective Burnside category. A second difference is that Barwick is working in
the1–categorical setting, so that questions of strictness, such as those necessitating our Appendix B,
do not arise. Moreover, Barwick’s work provides a conceptual generalization that applies to handle the
case of profinite groups, as well as other applications. Later, streamlined alternative approaches were
given in [Nardin 2016; Clausen et al. 2020, Appendix A]. The version described in [Clausen et al. 2020]
has the advantage of providing a monoidal equivalence (see also [Barwick et al. 2020, Section 11]). See
Remark 3.9 for further discussion.

1 The bicategory GE and S –category GA

In this paper, S denotes the category of (nonequivariant) orthogonal spectra, andGS denotes the category
of orthogonal G–spectra. For most of the paper, we index GS on a complete universe, but in Appendix A
we allow a more general universe. See Appendix A for some discussion of the comparison between
models of G–spectra. We first define the S –category GA (Definition 1.13) and restate our main theorem.
Conceptually GA can be viewed as obtained by applying a nonequivariant infinite loop space machine K

to a category GE “enriched in permutative categories”.2 The term in quotes can be made categorically
precise [Guillou 2010; Hyland and Power 2002; Schmitt 2007], but we shall use it just as an informal
slogan since no real categorical background is necessary to our work here: we shall give direct elementary
definitions of the examples we use, and they do satisfy the axioms specified in the cited sources. We then
define (Definition 1.29) a G–category3 EG “enriched in permutative G–categories”, from which GE is
obtained by passage to G–fixed subcategories. Section 1.5 contains a discussion of duality that will be
needed in Section 2 for the proof of our main theorem.

1We are grateful to Angélica Osorno for helping us discover and fix this error.
2A permutative category is a symmetric strict monoidal category.
3In general, we understand a G–category to be a category internal and not just enriched in G–sets, meaning that G can act on
both objects and morphisms.

Algebraic & Geometric Topology, Volume 24 (2024)



Models of G–spectra as presheaves of spectra 1229

1.1 The bicategory GE of G–spans

In any category C with pullbacks, the bicategory of spans in C has 0–cells the objects of C. The 1–cells
from A to B are zigzags B D! A of morphisms in C, and 2–cells between two such are diagrams

.1.1/

D

yy %%
Š

��

B A

E

ee 99

Composites of 1–cells are given by (chosen) pullbacks

.1.2/

F

yy %%
E

yy %%

D

yy %%
C B A

The identity 1–cells are the diagrams A D
 �A D

�!A. The associativity and unit constraints are determined
by the universal property of pullbacks. Observe that the 1–cells A! B can just as well be viewed as
objects over B �A. Viewed this way, the identity 1–cells are given by the diagonal maps � W A! A�A,
and the composition can be displayed in the diagram

.1.3/

E �D

��

Foo

&&��

C �B �B �A C �B �A
id���id

oo
�
// C �A

where the square is a pullback and � is the projection. That is, composition is obtained from the obvious
composition of maps to products by pulling back contravariantly along id��� id and then pushing
forward covariantly along � . See [Ponto and Shulman 2012, Theorem 5.2] for an illuminating discussion
of bicategories of spans from this point of view.

Our starting point is the bicategory of spans of (unbased) finite G–sets. Here the disjoint union of G–sets
over B �A gives us a symmetric monoidal structure on the category of 1–cells and 2–cells A! B

for each pair .A;B/. We can think of the bicategory of spans as a category “enriched in the category
of symmetric monoidal categories”. Again, the notion in quotes does not make obvious mathematical
sense since there is no obvious monoidal structure on the category of symmetric monoidal categories, but
category theory due to [Guillou 2010] (see also [Hyland and Power 2002; Schmitt 2007]) explains what
these objects are and how to rigidify them to categories enriched in permutative categories.

We repeat that we have no need to go into such categorical detail. Rather than apply such category theory,
we give a direct elementary construction of a strict structure that is equivalent to the intuitive notion of
the category “enriched in symmetric monoidal categories” of spans of finite G–sets. We first define a
bipermutative category GE .1/ that is equivalent to the symmetric bimonoidal groupoid of finite G–sets.

Algebraic & Geometric Topology, Volume 24 (2024)



1230 Bertrand J Guillou and J Peter May

Definition 1.4 Any finite G–set is isomorphic to one of the form AD n˛ , where nD f1; : : : ; ng, ˛ is a
homomorphism G!†n, and G acts on n by g � i D ˛.g/.i/ for 1� i � n. We understand finite G–sets
to be of this restricted form from now on. A G–map f W m˛ ! nˇ is a function f W m! n such that
f ı˛.g/D ˇ.g/ ıf for g 2G. The morphisms of GE .1/ are the isomorphisms n˛! nˇ of G–sets.

The disjoint union DqE of finite G–sets D D s� and E D t� is sC t�˚� , with �˚ � being the evident
block sum G!†sCt . With the evident commutativity isomorphism, this gives the permutative groupoid4

GE .1/ of finite G–sets; the empty finite G–set is the unit forq. To define the cartesian product, for each
s and t , let �s;t W st ! s � t denote the lexicographic ordering. Then D �E is st�˝� , where � ˝ � is the
permutation

st
�s;t
��! s � t

���
���! s � t

��1
s;t
��! st

as in [Guillou et al. 2023, (3.6)]. There is again an evident commutativity isomorphism, and q and �
give GE .1/ the structure of a bipermutative category in the sense of [May 1977]; the multiplicative unit
is the trivial G–set 1D .1; "/, where ".g/D 1 for g 2G.

As we will need it later, we also introduce the reordering permutation �s;t 2†st , defined as the composition

st
�s;t
��! s � t Š�! t � s

��1
t;s
��! ts D st

as in [Guillou et al. 2023, Definition 3.8].

We may view GE .1/ as the groupoid of finite G–sets over the one-point G–set 1, and we generalize the
definition as follows.

Definition 1.5 For a finite G–set A, we define a permutative groupoid GE .A/ of finite G–sets over A.
The objects of GE .A/ are the G–maps p W D ! A. The morphisms p ! q, with q W E ! A, are the
G–isomorphisms f W D ! E such that q ı f D p. Disjoint union of G–sets over A gives GE .A/

the structure of a permutative category; its unit is the empty set over A. When A D 1, GE .A/ is the
(“additive”) permutative category of the previous definition.

Remark 1.6 There is also a product �W GE .A/�GE .B/! GE .A�B/. It takes .D;E/ to D �E,
where D and E are finite G–sets over A and B, respectively. This product is also strictly associative
and unital, with unit the unit of GE .1/, and it has an evident commutativity isomorphism. Restriction to
the object 1 gives the “multiplicative” permutative category of Definition 1.4. This product distributes
over q and almost makes the enriched category GE of the next definition into a “category enriched in
permutative categories”, in the sense defined in [Guillou 2010]. The “almost” refers to the fact that the
category we define does not have a strict unit, a problem that was encountered in [Bohmann and Osorno
2015] and is fixed in Appendix B below.

4Though the terminology “permutative category” is more prevalent than “permutative groupoid”, we find it useful to remind the
reader that we are only considering isomorphisms.
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Models of G–spectra as presheaves of spectra 1231

Definition 1.7 We define a bicategory GE with a permutative hom groupoid for each pair of objects as
follows. The 0–cells of GE are the finite G–sets, which may be thought of as the categories GE .A/. The
permutative groupoid GE .A;B/ of 1–cells and 2–cells A!B is GE .B�A/, as defined in Definition 1.5.
The 1–cells are thought of as spans and the 2–cells as isomorphisms of spans. The composition

ıWGE .B; C /�GE .A;B/!GE .A; C /

is defined via pullbacks, as in the diagram (1.2). Precisely, following [Bohmann and Osorno 2015,
Definition 7.2], we choose the pullback F in (1.2) to be the G–subset of E�D, ordered lexicographically,
consisting of the elements .e; d/ such that d and e map to the same element of B. The diagonal map
�A W A ! A � A serves as a unit 1–cell, and it is helpful to reinterpret composition in terms of the
diagram (1.3).

Remark 1.8 This bicategory is almost a 2–category. The composition of spans is strictly associative, but
if jAj � 2 then �A WA!A�A acts as a strict unit only on the right and so should be called a pseudounit
1–cell. The point is that, with our chosen model for the pullback, the left map in the span composition

�B ıEp1

ww

p2

''
B E

f

ww

g

%%
B B A

must be order-preserving. Therefore, if f is not order-preserving, then �B ıE ¤E. However, in view of
the evident commutative diagram

�B ıE
p1

{{

gıp2

##

p2

��

B E
f

oo
g

// A

the function p2 specifies a reordering isomorphism of spans

.1.9/ �B ıE
`B;E
��!E:

In Appendix B, we show how to whisker the pseudounit 1–cells to obtain an equivalent construction GE 0

that still has a strictly associative composition but now has strict two-sided unit 1–cells. The construction
is closely analogous to the usual whiskering of a degenerate basepoint in a space to obtain a nondegenerate
basepoint.

Remark 1.10 We are suppressing some categorical details that are irrelevant to our work. The composi-
tion distributes over coproducts, and it should be defined on a “tensor product” rather than a cartesian
product of permutative categories. Such a tensor product does in fact exist, in the sense that the 2–category
of permutative categories has a pseudomonoidal structure [Hyland and Power 2002, Section 2.3]; however,
we will not use this. Rather, we will use that composition is a pairing that gives rise to a pairing defined on
the smash product of the spectra constructed from GE .B; C / and GE .A;B/. This passage from pairings
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1232 Bertrand J Guillou and J Peter May

of permutative categories to pairings of spectra has a checkered history even nonequivariantly,5 and it
is here that a mistake occurred in earlier versions of this paper. As explained in [Guillou et al. 2023],
categorical strictification and the full development of multiplicative equivariant infinite loop space theory
resolve the relevant issues.

Before beginning work, we recall an old result that motivated this paper. The category ŒGE � of isomorphism
classes of G–spans is obtained from the bicategory GE of G–spans by identifying spans from A to B if
there is an isomorphism between them. Composition is again by pullbacks. We add spans from A to B
by taking disjoint unions, which gives the morphism set ŒGE �.A;B/ the structure of an abelian monoid.
We apply the Grothendieck construction to obtain an abelian group of morphisms A! B. This gives an
additive category A bŒGE �.

Definition 1.11 Define GDAll to be the full subcategory of GS whose objects are fibrant replacements
of the G–spectra †1G .AC/ in the stable model structure [Mandell and May 2002], where A runs over the
finite G–sets, and let HoGDAll � HoGS denote its homotopy category.

Theorem 1.12 [Lewis et al. 1986a, Proposition 9.6]6 The categories HoGDAll and A bŒGE � are
isomorphic.

1.2 The precise statement of the main theorem

Infinite loop space theory associates a spectrum KA to a permutative category A . There are several
machines available and all are equivalent [May 1978]. Since it is especially convenient for the equivariant
generalization, we require K to take values in the category S of orthogonal spectra [Mandell et al.
2001], but symmetric spectra would also work. Slightly modifying the axiomatization of [May 1978], we
require K to take values in positive7 �–spectra and we require a natural map � W BA ! .KA /0 whose
composition with .KA /0!�.KA /1 gives a group completion.

Since S is closed symmetric monoidal under the smash product, it makes sense to enrich categories
in S. Our preferred version of spectral categories is categories enriched in S, abbreviated S –categories.
Model-theoretically, S is a particularly nice enriching category since its unit S is cofibrant in the stable
model structure and S satisfies the monoid axiom [Mandell et al. 2001, Proposition 12.5].

When a spectral category D is used as the domain category of a presheaf category, the objects and maps
of the underlying category are unimportant. The important data are the morphism spectra D.A;B/, the
unit maps S ! D.A;A/ and the composition maps

D.B; C /^D.A;B/! D.A; C /:

5This starts from [May 1980], which is modernized, corrected and generalized in [Guillou et al. 2023], where pairings are
subsumed as 2–ary morphisms in multicategories.
6All G–spectra in [Lewis et al. 1986b] are fibrant, but we are using orthogonal G–spectra here. The homotopy categories are
equivalent.
7This means that E0!�E1 need not be an equivalence.

Algebraic & Geometric Topology, Volume 24 (2024)
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The presheaves Dop!S can be thought of as (right) D–modules.

Recall that an object a in a permutative category A determines a point of BA and hence, via �, a point
of .KA /0. Therefore, each a 2 A determines a map S !KA . We will use this to specify unit maps for
spectral categories.

Definition 1.13 We define a spectral category GA . Its objects are the finite G–sets A, which may be
viewed as the spectra KGE .A/. Its morphism spectra are defined by GA .A;B/DKGE 0.A;B/, where
GE 0.A;B/ is as defined in Definition B.2. Its unit maps S ! GA .A;A/ are induced by the identity
1–cells in GE 0.A;A/, and its composition

GA .B; C /^GA .A;B/!GA .A; C /

is induced by composition in GE 0.

As written, the definition makes little sense: to make the word “induced” meaningful requires a suitably
behaved machine K, as we will spell out in Section 2.2. For the purpose of Definition 1.13, the machine
of [Elmendorf and Mandell 2009] would be sufficient, although it takes values in symmetric rather
than orthogonal spectra. However, the proof of our main theorem, given in Section 2.4, will use the
equivariant machine of [Guillou et al. 2023], and we will therefore use the same machine to make sense
of Definition 1.13. Once this is done, we will have the presheaf category Pre.GA ;S / of S –functors
.GA /op!S and S –natural transformations. As shown for example in [Guillou and May 2020], it is
a cofibrantly generated model category enriched in S, or an S –model category for short. As shown
in [Mandell and May 2002], the category GS of (genuine) orthogonal G–spectra is also an S –model
category. Our main theorem can be restated as follows:

Theorem 1.14 (main theorem) There is a zigzag of enriched Quillen equivalences connecting the
S –model categories GS and Pre.GA ;S /.

Therefore, G–spectra can be thought of as constructed from the very elementary category GE enriched
in permutative categories, ordinary nonequivariant spectra and the black box of infinite loop space theory.

We have chosen to take all finite G–sets A as the objects of GA . As we discuss in Theorem A.1,
Theorem 1.14 holds just as well if we allow A to instead range only over the orbits G=H for subgroups
H �G (or even over one H in each conjugacy class). As discussed in Remark A.4, this can be viewed as
a consequence of the fact that the spectral enrichment forces additivity. Intuitively, a G–spectrum is then
described by its fixed-point spectra XH, together with enriched restriction and transfer data. A bit more
precisely, let OG denote the category of orbits G=H and G–maps between them. For a G–spectrum X,
passage to fixed-point spectra specifies a contravariant functor X .�/ W OG!S. The following reassuring
result falls out of the proof of Theorem 1.14. We shall be more precise about this in Corollary 3.7.
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Corollary 1.15 The zigzag of equivalences induces a natural zigzag of equivalences between the fixed-
point orbit functor , X 7! fG=H 7!XH g, on G–spectra and the functor given by restricting presheaves
GA !S to the (unenriched ) orbit category.

Thus, if X is a fibrant G–spectrum that corresponds to the presheaf Y, then XH is equivalent to Y.G=H/.

Remark 1.16 For any n, the homotopy groups �n.XH / define a Mackey functor, and so do the homotopy
groups �n.Y.G=H//. The corollary implies an isomorphism between these Mackey functors.

We view Theorem 1.14 as a G–spectrum analogue of the standard equivalence between G–spaces and
space-valued presheaves on OG ; see eg [Piacenza 1996]. As there, we do not in any sense view the
theorem as giving a replacement for the category of G–spectra. We regard G–spectra as natural objects of
intrinsic interest, and their presheaf descriptions as an illuminating perspective. We give some comparisons
of functors to illustrate this in the brief Section 3.

1.3 The G–bicategory EG of spans: intuitive definition

Everything we do depends on first working equivariantly and then passing to fixed points. We fix some
generic notation. For a category C, let GC be the category of G–objects in C and G–maps between
them. Let CG be the G–category of G–objects and nonequivariant maps, with G acting on morphisms by
conjugation. The two categories are related conceptually by GC D .CG/

G. The objects, being G–objects,
are already G–fixed; we apply the G–fixed-point functor to hom sets. The reader may prefer to think
of CG as a category enriched in G–categories, with enriched hom objects the G–categories CG.A;B/ for
G–objects A and B.

We apply this framework to the category of finite G–sets. We have already defined the G–fixed bi-
category GE, and we shall give two definitions of G–bicategories EG with fixed-point bicategories
equivalent to GE. The first, given in this section, is more intuitive, but the second is more convenient for
the proof of our main theorem.

Let U be a countable G–set that contains all orbit types G=H infinitely many times. Again let A, B
and C denote finite G–sets, but now think of the D, E and F of (1.1) and (1.2) as finite subsets of the
G–set U ; these subsets need not be G–subsets. The action of G on U gives rise to an action of G on the
finite subsets of U : for a finite subset D of U and g 2G, gD is another finite subset of U.

Definition 1.17 We define a G–groupoid EUG .A/. The objects of EUG .A/ are the nonequivariant maps
p W D! A, where A is a finite G–set and D is a finite subset of U. The morphisms f W p! q, with
q WE!A, are the bijections f WD!E such that qıf Dp. The group G acts on objects and morphisms
by sending D to gD and sending a bijection f WD!E over A to the bijection gf W gD! gE over A
given by .gf /.gd/D g.f .d//.
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Definition 1.18 We define a bicategory EUG with objects the finite G–sets and with G–groupoids of
morphisms between objects given by EUG .A;B/D EUG .B �A/. Thinking of the objects of EUG .A;B/ as
nonequivariant spans B D! A, composition and units are defined as in Definition 1.7.

Observe that taking disjoint unions of finite sets over A will not keep us in U and is thus not well defined.
Therefore, the EUG .A/ are not even symmetric monoidal (let alone permutative) G–categories in the naive
sense of symmetric monoidal categories with G acting compatibly on all data.

1.4 The G–bicategory EG of spans: working definition

We shall work with a less intuitive definition of EG , one that solves the problem of disjoint unions by
avoiding any explicit use of them. It uses an especially convenient E1 operad of G–categories, denoted
by PG . We recall it from [Guillou and May 2017], where we define a genuine permutative G–category to
be an algebra over PG . More generally, in [Guillou et al. 2020] we define a genuine symmetric monoidal
G–category to be a pseudoalgebra over PG , but we will not need that notion here. Such pseudoalgebras
provide input for an equivariant infinite loop space machine.

To define PG , we apply our general point of view on equivariant categories to the category Cat of small
categories. Thus, for G–categories A and B, let CatG.A ;B/ be the G–category of functors A !B

and natural transformations, with G acting by conjugation, and let GCat.A ;B/D CatG.A ;B/G be the
category of G–functors and G–natural transformations.

Definition 1.19 Let EG be the groupoid8 with object set G and a unique morphism, denoted by .h; k/,
from k to h for each pair of objects. Let G act from the right on EG by h � g D hg on objects and
.h; k/ �g D .hg; kg/ on morphisms. Define P.j /D E†j ; this is the j th category of an E1 operad of
categories whose algebras are the permutative categories [Dunn 1994; May 1974]. Define PG.j / to be
the G–category

PG.j /D CatG.EG;E†j /D CatG.EG;P.j //:

Here G acts trivially on E†j . The left action of G on PG.j / is induced by the right action of G on EG,
and the right action of †j is induced by the right action of †j on E†j . The functor CatG.EG;�/ is
product-preserving and the operad structure maps are induced from those of P. We interpret P.0/ and
PG.0/ to be trivial categories; PG.1/ is also trivial, with unique object denoted by 1.

Definition 1.20 Regard a finite G–set A as a discrete G–groupoid (identity morphisms only). Define the
G–groupoid EG.A/ by

.1.21/ EG.A/D
a
n�0

PG.n/�†n
An D

�a
n�1

PG.n/�†n
An
�
C

:

We interpret the term with nD 0 to be a trivial base category �, which explains the second equality, and
we identify the nD 1 term with A.

8While EG is isomorphic as a G–category to the translation category of G, the action of G on that category is defined differently,
as is explained in [Guillou et al. 2017, Proposition 1.8]. Our EG is the chaotic category of G, sometimes denoted by zG.
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In the language of [Guillou and May 2017, Definition 4.5], EG.A/ is the free genuine permutative
G–groupoid generated by the G–set A; its unit can be thought of as given by a disjoint trivial base
category implicitly added to A. This is made precise by (1.24).

The following result is neither obvious nor difficult. It is proven in [Guillou and May 2017], where it is
one ingredient in a categorical proof of the tom Dieck splitting theorem.

Theorem 1.22 [Guillou and May 2017, Theorem 5.9] The G–fixed permutative groupoid EG.A/
G is

naturally isomorphic to the permutative groupoid GE .A/ of Definition 1.5.

The starting point of the proof is the observation that a functor EG ! E†n is uniquely determined
by its object function G ! †n. In particular, for a finite G–set B D nˇ , we may view the group
homomorphism ˇ WG!†n as an object of the category PG.n/. With a little care, we see that a G–fixed
object .ˇI a1; : : : ; an/ of PG.n/�†n

An can be interpreted as a G–map B!A and that all finite G–sets
over A are of this form.

Remark 1.23 Conceptually, Definition 1.20 hides an important identification and extension of functori-
ality that will be used crucially in Definition 1.28. A priori, EG is a functor on unbased finite G–sets, but
an alternative reformulation is

.1.24/ EG.A/D PG.AC/;

where PG is the monad on the category of based G–categories, not just G–groupoids, whose algebras are
the same as the PG–algebras. Thus, equation (1.24) exhibits EG as a special case of the more general
functor PG . With this reinterpretation, EG.A/ extends to a functor on all based finite G–sets and all based
G–maps, not just those of the form fC.

We need to be more precise about this identification and extended functoriality.

Definition 1.25 Let ƒ be the category of finite based sets n and based injections.9 For a finite based
G–set A, regarded as a discrete based G–category, insertion of basepoints makes the powers An into a
covariant functor A� from ƒ to based G–categories. Then PG.A/ is the categorical tensor product

PG.A/DPG.�/˝ƒ A�:

Since any based injection � 2ƒ.m;n/ can be written uniquely as the composition of a permutation of m

followed by an order-preserving injection, the contravariant functoriality of PG.�/ on based injections is
given by combining the right †m–action on PG.m/ with the contravariant functoriality with regards to
ordered injections described in [May 1972, Notations 2.3]. Thus,

.1.26/ PG.A/D

�a
n�0

PG.n/�An

�.
�;

9The category ƒ is isomorphic to the category of finite (unbased) sets and injections. We use based here both for historical
reasons and because it fits better into the machinery of infinite loop space theory.
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where
.���I a/� .�I ��a/ for � 2PG.n/; � 2ƒ.m;n/ and a 2Am:

As in [May 1972, Notations 2.3], we can first pass to orbits using the permutations in ƒ and then use the
equivalence relation induced by the proper injections to rewrite this as

.1.27/ PG.A/D

�a
n�0

PG.n/�†n
An

�.
�;

thus highlighting the comparison with (1.21).

Definition 1.28 For a based G–map f W AC! BC, define a functor

fŠ W EG.A/! EG.B/

using the identification (1.24) and the functoriality of PG on based maps.10 In the case that f �1.�/D �,
so that f is in the image of the disjoint basepoint functor X 7!XC, the functor fŠ is given by the disjoint
union over n of the functors

PG.n/�†n
An

id�†nf
n

������!PG.n/�†n
Bn:

If i W A! B is an injection of unbased finite G–sets, define an associated retraction r W BC! AC of
based finite G–sets by setting ri.a/D a and r.b/D � if b … im.i/. Then define11

i� D rŠ W EG.B/! EG.A/:

By Remark 2.21 below, we may think of i� as the dual of i .

The following definition gives the G–category analogue of Definition 1.7. It specifies a G–category
(almost) “enriched in permutative G–categories”.

Definition 1.29 We define a G–bicategory12 EG with a permutative G–groupoid hom object for each
pair of objects as follows. The 0–cells of EG are the finite G–sets A, which may be thought of as the
G–categories EG.A/. The permutativeG–groupoid EG.A;B/ of 1–cells and 2–cells A!B is EG.B�A/,
as defined in Definition 1.20. The composition

ıW EG.B; C /� EG.A;B/! EG.A; C /

is given by the diagram

.1.30/

EG.C �B/^ EG.B �A/

!

��

ı
// EG.C �A/

EG.C �B �B �A/
.id���id/�

// EG.C �B �A/

�Š

OO

10With the intuitive version of EG described in Section 1.3, fŠ W EG.A/! EG.B/ is then just the pushforward functor obtained
by composing maps over A with f.
11With the intuitive version of EG described in Section 1.3, i� W EG.B/! EG.A/ is just the functor obtained by using i to pull
back maps over B to maps over A.
12As in Remark 1.8, the bicategory EG is almost a 2–category. It is just missing strict units, as we shall explain shortly.
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Its first map ! is a pairing of free PG–algebras that will be made precise in Definition 1.35. Its second
and third maps implement composition from the point of view of (1.3). They are specializations of the
contravariant functoriality of EG on injections and its covariant functoriality on surjections, as is made
precise in Definition 1.28.

This composition is strictly associative, as we indicate in Remark 1.36. With AD n˛; EG.A;A/ has a
pseudounit 1–cell

.1.31/ �A D .˛I�A/ 2 EG.A�A/DPG.n/�†n
.A�A/n;

where
�A D ..1; 1/; : : : ; .n; n// 2 .A�A/

n:

It is a strict right unit, but it is not a strict left unit (see Remark 1.36).

To rectify to obtain a strict unit, we need whiskered G–categories E 0G analogous to the whiskered
categories GE 0, and we define them in Appendix B. They are defined in such a way that Theorem 1.22
has the following corollary by direct comparison of definitions:

Corollary 1.32 The G–fixed category .E 0G/
G enriched in permutative categories is isomorphic to the

category GE 0 enriched in permutative categories.

In Definition 1.35 we will give an ad hoc definition of the pairing ! that is required in Definition 1.29. We
place ! in a general multicategorical context in [Guillou et al. 2023, Definition 3.20]. We first comment
on its domain; compare Remark 1.10.

Remark 1.33 We can define the smash product of based G–categories in the same way as the smash
product of based G–spaces (see [Elmendorf and Mandell 2009, Lemma 4.20]). We are most interested
in examples of the form AC and BC for unbased G–categories A and B, and then AC ^BC can be
identified with .A �B/C. Therefore,

.1.34/ EG.A/^ EG.B/D

� a
m�1

PG.m/�†m
Am

�
C

^

�a
n�1

PG.n/�†n
Bn
�
C

Š�!

� a
m�1
n�1

PG.m/�†m
Am �PG.n/�†n

Bn
�
C

Š�!

� a
m�1
n�1

PG.m/�PG.n/�†m�†n
Am �Bn

�
C

:

Note that this smash product does not have a PG–algebra structure.

Definition 1.35 The homomorphism ˝W †m �†n ! †mn defined using lexicographic ordering in
Definition 1.4 is the object function of a functor

E†m �E†n! E†mn:
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Applying the functor CatG.EG;�/, we obtain pairings

˝WPG.m/�PG.n/!PG.mn/I

on objects of EG, .�˝ �/.g/D �.g/˝ �.g/. For G–sets A and B, we have the injection

� W Am �Bn! .A�B/mn

that sends .a1; : : : ; am/� .b1; : : : ; bn/ to the set of pairs .ai ; bj /, ordered lexicographically. Combining,
there result functors

!m;n W .PG.m/�†m
Am/� .PG.n/�†n

Bn/!PG.mn/�†mn
.A�B/mn;

!m;n..�; a/; .�; b//D .�˝ �; a� b/:

Using the description (1.34), the functors !m;n specify pairings of G–categories

! W EG.A/^ EG.B/! EG.A�B/:

While EG.A/^ EG.B/ is not a PG–algebra, we show in [Guillou et al. 2023, Proposition 3.25] that !
is an example of a bilinear, or 2–ary, morphism in the multicategory of PG–algebras. The machine of
[Guillou et al. 2023] then produces from this bilinear map a pairing of G–spectra, as we will discuss in
Section 2.2 below.

Remark 1.36 The associativity of the composition ı defined in Definition 1.29 is an easy diagram chase,
starting from the associativity of the pairing on PG . We illustrate how Definition 1.28 works by considering
composites with the pseudounit objects �A. Let E be a 1–cell in EG.A;B/ and choose an object

.�I .b1; a1/; : : : ; .bm; am// of PG.m/� .B �A/
m

in the †m–orbit E.

We first prove that E ı�A DE. Suppose that AD n˛. Then the object�
�˝˛I ..bi ; ai ; j; j //

�
of PG.mn/� .B �A�A�A/

mn

is in the †mn–orbit !.E;�A/. The ordering of the four-tuples is lexicographic on i and j. The four-tuple
.bi ; ai ; j; j / is in the image of id��� id if and only if ai D j. The retraction corresponding to this
injection maps such a .bi ; ai ; j; j / to .bi ; ai ; j /D .bi ; ai ; ai / and all other .bi ; ai ; j; j / to the basepoint.
Applying �Š, we arrive at

��..b1; a1/; : : : ; .bm; am// 2 .B �A/
mn;

where � Wm!mn is the ordered injection that sends i to ��1m;n.i; ai /. Therefore,

E ı�A D
�
�˝˛I ��..b1; a1/; : : : ; .bm; am//

�
D .��.�˝˛/I .b1; a1/; : : : ; .bm; am//:

Since �� reverses the lexicographic ordering used to define �˝˛, we have the relation ��.�˝˛/D �.

Now let B D pˇ and consider �B ıE. Then the object�
ˇ˝�I ..k; k; bi ; ai //

�
of PG.pm/� .B �B �B �A/

pm
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is in the †pm–orbit !.�B ; E/. The ordering of the four-tuples is lexicographic on k and i . The four-tuple
.k; k; bi ; ai / is in the image of id��� id if and only if k D bi . The retraction corresponding to this
injection maps all other .k; k; bi ; ai / to the basepoint. Applying �Š, we arrive at

��..b1; a1/; : : : ; .bm; am// 2 .B �A/
pm;

where � Wm! pm is the injection that sends i to ��1p;m.bi ; i/. We have

�B ıE D
�
ˇ˝�; ��..b1; a1/; : : : ; .bm; am//

�
D .��.ˇ˝�/I .b1; a1/; : : : ; .bm; am//;

but the injection � is not ordered and ��.ˇ˝�/ is not equal to �. We define

.1.37/ `B;E W�B ıE!E

to be the 2–cell induced by the (unique) morphism ��.ˇ˝ �/! � in PG.m/. The structure EG is
only a bicategory, while E 0G , defined in Appendix B, is a strict 2–category. The inclusion EG ! E 0G is
a pseudofunctor with unit constraint given by � of Definition B.1. In [Guillou et al. 2023], the category
of PG–algebras is given the structure of a multicategory. The composition functors in both EG and E 0G
are examples of bilinear maps in the multicategorical sense.

1.5 The categorical duality maps

Since various specializations are central to our work, we briefly recall how duality works categorically,
following [Lewis and May 1986a, Section 1] for example. We then define maps of PG–algebras that will
lead in Section 2.3 to the proof that the objects of GA are self-dual.

Let V be a closed symmetric monoidal category with product ^, unit S and hom objects F.X; Y /; write
DX D F.X; S/. A pair of objects .X; Y / in V is a dual pair if there are maps � W S ! X ^ Y and
" W Y ^X ! S such that the composites

X Š S ^X
�^id
���!X ^Y ^X

id^"
���!X ^S ŠX; Y Š Y ^S

id^�
���! Y ^X ^Y

"^id
���! S ^Y Š Y

are identity maps. For any such pair, the adjoint Q" W Y !DX of " is an isomorphism. When .X; Y / and
.X 0; Y 0/ are dual pairs, the dual of a map f WX !X 0 is the composite

.1.38/ Y 0 Š Y 0 ^SG
id^�
���! Y 0 ^X ^Y

id^f ^id
�����! Y 0 ^X 0 ^Y

"0^id
���! SG ^Y Š Y:

For any pair of objects X and Z, we have a natural map

.1.39/ � WZ ^DX DZ ^F.X; S/! F.X;Z/

in V , namely the adjoint of
id^ " WZ ^DX ^X !Z ^S ŠZ;

where " is the evident evaluation map. The map � is an isomorphism when either X or Z is dualizable
[Lewis and May 1986a, Proposition 1.3]. When X is self-dual and Z is arbitrary, we have the composite
isomorphism

.1.40/ ı D � ı .id^ Q"/ WZ ^X !Z ^DX ! F.X;Z/:
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This map in various categories will play an important role in our work.

In Definitions 1.41 and 1.42, we will define two maps of PG–algebras that are central to duality and
therefore to everything we do. Let S0 D f�; 1g, where � is the basepoint and 1 is not. We think of S0

as 1C, where 1 is the one-point G–set. In line with this convention, we also think of 1 as a trivial category
with object 1. Remember that EG.A/D PG.AC/ is the free PG–algebra generated by AC, where we
view finite G–sets as categories with only identity morphisms.

Definition 1.41 For a finite G–set AD n˛, define based G–maps

" W .A�A/C! S0; r W .A�A/C! AC and � W AC! S0

by r.a; b/ D � if a ¤ b and r.a; a/ D a, �.a/ D 1 and " D � ı r , so that ".a; b/ D � if a ¤ b and
".a; a/D 1. Note that r ı�C D idAC . We agree to again write " for the induced map of PG–algebras

"D EG" W EG.A�A/! EG.1/:

Definition 1.42 For a finiteG–set ADn˛ , regard the object�A 2 EG.A�A/ as the map ofG–categories
iA W 1! EG.A�A/ that sends the object 1 of the trivial category to the object �A. By freeness, there
results a map of PG–algebras

� W EG.1/! EG.A�A/:

Explicitly,13 � is the disjoint union over m of the maps

PG.m/�†m
1m!PG.mn/�†mn

.A�A/mn

given by
�.�; 1m/D .�˝˛I .�A/

m/:

The following categorical observation will lead to our proof in Section 2.3 that the G–spectra †1G .AC/
are self-dual. Since care of basepoints is crucial, we use the alternative notation PG.AC/. Remember that
.A�A/C can be identified with AC ^AC. We identify 1C ^AC and AC ^ 1C with AC at the bottom
center of our diagrams.

Proposition 1.43 In the diagrams below, square (1) commutes up to isomorphism , and the other three
squares commute on the nose:

PG.AC ^AC/^PG.AC/
!
//

�� .1/

PG.AC ^AC ^AC/

PG.id^"/
��

PG.AC/^PG.AC ^AC/

id^"
��

!
oo

PG.1C/^PG.AC/
!

//

�^id

OO

PG.AC/ PG.AC/^PG.1C/
!

oo

PG.AC/^PG.AC ^AC/
!
//

.2/

PG.AC ^AC ^AC/

PG."^id/
��

PG.AC ^AC/^PG.AC/

"^id
��

!
oo

PG.AC/^PG.1C/
!

//

id^�

OO

PG.AC/ PG.1C/^PG.AC/
!

oo

13This uses that .�I˛n/D�˝˛, where  WPG.m/�PG.n/
m!PG.mn/, as explained in [Guillou et al. 2023, Section 3.1].
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Proof In the right vertical arrows, " means PG."/. Both right squares are naturality diagrams, so it
remains to consider the squares on the left. The difference between squares (1) and (2) is closely analogous
to the difference between left and right composition with �A, as explained in Remark 1.36. Let AD n˛

and consider objects .�; 1m/ of P.m/�1m and .�; a/ of P.q/�Aq . We consider square (2) first, paying
close attention to the order in which variables appear.

By Definitions 1.35 and 1.42,

!..�; a/; .�; 1m//D .�˝�; a� 1m/ in P.qm/�Aqm and

! ı .id^ �/..�; a/; .�; 1m//D .�˝�˝˛I a� .�A/m/ in PG.qmn/�†qmn
.A3/qmn:

Identifying qm with q �m lexicographically, the .k; i/th coordinate of a� 1m is ak . Identifying qmn
with q �m�n lexicographically, the .k; j; i/th coordinate of a� .�A/m is .ak; i; i/. By Definition 1.41,
"^ id sends this coordinate to the basepoint unless ak D i , when it sends it to i . Noticing the agreement
of lexicographic orderings, we see as in Remark 1.36 that the injection � W qm! qmn such that

��.a� 1m/D ."^ id/�.a� .�A/m/

is ordered and satisfies ��.�˝�˝˛/D �˝�.

Now consider square (1). By Definitions 1.35 and 1.42,

!..�; 1m/; .�; a//D .�˝ �; 1m� a/ in P.mq/�†mq
Amq and

! ı .�^ id/..�; 1m/; .�; a//D ..�I˛n/˝ �I .�A/m� a/ in PG.mnq/�†mnq
.A3/mnq:

Identifying mq with m� q lexicographically, the .i; k/th coordinate of 1m� a is ak . Identifying mnq
with m�n�q lexicographically, the .i; j; k/th coordinate of .�A/m�a is .j; j; ak/. By Definition 1.41,
id^ " sends this coordinate to the basepoint unless j D ak , when it sends it to j. Here the injection
� Wmq!mnq such that

�.1m� a/D .id^ "/�..�A/m� a/

is not ordered and ��.�˝˛˝�/ is not equal to �˝� in PG.mq/. As in Remark 1.36, there is a unique
2–cell, necessarily an isomorphism,

# W .�˝ �/) ��.�˝˛˝ �/

in PG.mq/. As the input varies, the 2–cells

.#; id/ W .�˝ �I 1m� a/) .��.�˝˛˝ �/; 1m� a/

specify the 2–natural isomorphism in the square (1).

2 The proof of the main theorem

2.1 The equivariant approach to Theorem 1.14

As we explain in [Guillou et al. 2023], following [Guillou and May 2017], equivariant infinite loop space
theory associates an orthogonal G–spectrum KGCG to a genuine permutative (or, more generally, genuine

Algebraic & Geometric Topology, Volume 24 (2024)



Models of G–spectra as presheaves of spectra 1243

symmetric monoidal) G–category CG . The map BCG D .KGCG/0 ! �.KGCG/1 is an equivariant
group completion.14

Notation 2.1 We denote by GS the (closed symmetric monoidal) category of orthogonal G–spectra,
indexed on a complete universe, and maps of such. A category enriched over GS will be referred to as a
GS –category.

The categoryGS has two further relevant enrichments. Using the closed structure yields a self-enrichment,
which we write as SG . Thus, for G–spectra X and Y, the G–spectrum SG.X; Y / is the mapping G–
spectrum FG.X; Y /. Applying fixed points to the mapping G–spectra gives an S –enriched category,
which we again write as GS. This parallels the discussion at the start of Section 1.3.

Applying the functor KG to EG (Definition 1.29), we obtain the following equivariant analogue of
Definition 1.13:

Definition 2.2 We define a G–spectral category, or GS –category, AG . Its objects are the finite G–
sets A, which may be viewed as the G–spectra KGEG.A/. Its morphism G–spectra AG.A;B/ are
the KGE 0G.B �A/. Its unit G–maps SG ! AG.A;A/ are induced by the points IA 2 GE 0.A;A/ (see
Appendix B) and its composition G–maps

AG.B; C /^AG.A;B/! AG.A; C /

are induced by composition in E 0G .

Again, as written, the definition makes little sense: to make the word “induced” meaningful requires
properties of the equivariant infinite loop space machine KG that we will spell out in Section 2.2. This
depends on having a functor that takes pairings (alias bilinear maps) of free PG–algebras to pairings of
G–spectra.

The equivariant and nonequivariant infinite loop space functors are related by the following result:

Theorem 2.3 [Guillou and May 2017] There is a natural equivalence of spectra

� WK.GC /! .KGCG/
G

for permutative G–categories CG with G–fixed permutative categories GC.

In view of Corollary 1.32, there results an equivalence of S –categories

GA '
�! .AG/

G :

14The papers from around 1990, such as [Costenoble and Waner 1991; Shimakawa 1989], are not adequate, in part because
genuine permutative G–categories were not explicitly defined and the group completion property was not worked out rigorously,
but more substantially because a symmetric monoidal category of G–spectra had not yet been discovered. A key feature of the
version of the Segal machine [Guillou et al. 2019] used in our proofs is that it is given by a symmetric monoidal functor, a claim
that would not have made sense in 1990.
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The proof of Theorem 1.14 goes as follows. We now write GDAll for the spectral version of the category
introduced in Definition 1.11. We start with the following Theorem 2.4, which is a specialization of
[Guillou and May 2020, Lemma 1.35]; it is discussed in Section A.1. The essential point is that the
collection f†1G ACg is a set of generators for HoGS.

Theorem 2.4 There is an S –enriched Quillen adjunction

Pre.GDAll;S /
T
// GS ;

U
oo

and it is a Quillen equivalence.

Remark 2.5 Instead of using GDAll, we can use its full subcategory GDOrb obtained by restricting the A
to be orbits G=H, and then the result generalizes to compact Lie groups G; see Theorem A.1. We define
GDOrb as we defined GDAll in Definition 1.11, again using fibrant replacements. Then GDAll and GDOrb

are the G–fixed S –categories obtained from full GS –subcategories DAll and DOrb of SG .

We will prove the following result in Section 2.4.

Theorem 2.6 (equivariant version of the main theorem) There is a zigzag of weak equivalences
connecting the GS -categories AG and DAll.

A weak equivalence betweenGS –categories with the same object sets is just anGS –enriched functor that
induces weak equivalences on morphism G–spectra.15 On passage to G–fixed categories, this equivariant
zigzag induces a zigzag of weak S –equivalences connecting the S –categories GA and GDAll. In turn,
by [Guillou and May 2020, Proposition 2.4], this zigzag induces a zigzag of Quillen equivalences between
Pre.GA ;S / and Pre.GDAll;S /. Since Pre.GDAll;S / is Quillen equivalent to GS, it follows that
Theorem 2.6 implies Theorem 1.14.

Remark 2.7 For a G–spectrum X, the functor U.X/ (of Theorem 2.4) sends an orbit G=H to

FG.†
1
G G=HC; X/

G
ŠXH :

Keeping that fact in mind shows why Corollary 1.15 follows from the proof of Theorem 1.14.

To understand GS as an S –category, we must first understand SG as a GS –category. That is, to
understand the G–fixed spectra FG.X; Y /G, we must first understand the function G–spectra FG.X; Y /.
Using infinite loop space theory to model function spectra implicitly raises a conceptual issue: there is no
known infinite loop space machine that knows about function spectra. That is, given input data X and Y
(permutative G–categories, E1–G–spaces, �–G–spaces, etc) for an infinite loop space machine KG , we
do not know what input data will have as output the function G–spectra FG.KGX;KGY /. The problem

15A more general definition is given in [Guillou and May 2020, Definition 2.3].
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does not even make sense as just stated because the output G–spectra KGX are always connective,
whereas FG.KGX;KGY / is generally not. The most that one could hope for in general is to detect the
connective cover of F.KGX;KGY /. In our case, the relevant function G–spectra are connective since
the suspension G–spectra †1G .AC/ are self-dual, as we shall reprove in Section 2.3.

2.2 Results from equivariant infinite loop space theory

The proof of Theorem 2.6 is the heart of this paper, and of course it depends on equivariant infinite loop
space theory and in particular on the relationship between the G–spectra AG.A/DKGEG.A/ and the
suspension G–spectra †1G .AC/. We collect the results that we need from [Guillou et al. 2023] in this
section. We warn the skeptical reader that the results of this paper depend fundamentally on Theorems 2.8
and 2.12. However, the proofs of those results require work far afield from the applications in this paper.

In fact, Theorem 2.6 is an application of a categorical version of the equivariant Barratt–Priddy–Quillen
(BPQ) theorem for the identification of suspension G–spectra.16 We state the theorem in full generality
before restricting our attention to finite G–sets. We shall find use for the full generality in Section 2.5.

Recall from Remark 1.23 that EG.A/ can be identified with the category PG.AC/, where PG is the free
PG–category functor on basedG–categories. The functor PG applies equally well to based topologicalG–
categories.17 We view a based G–space X as a topological G–category that is discrete in the categorical
sense: its morphism and object G–spaces are both X, and its source, target, identity and composition maps
are all its identity map. Thus, we have the topological PG–category PG.X/. The geometric realization
of its nerve is the free E1–G–space generated by X.

Henceforward, we use the term stable equivalence, rather than weak equivalence, for the weak equivalences
in our model categories of spectra and G–spectra. Guillou and May [2017, Theorem 6.2] established an
equivariant version of the BPQ theorem, giving a natural equivalence between †1G XC and KGPG.X/.
However, in order to produce our spectral category AG , we require a more structured version of that
result.

First, it is essential that we have a machine with good multiplicative properties. The following result,
which is proven in [Guillou et al. 2023], gives far more than we need. As explained in [Guillou et al.
2023, Section 3], we have a multicategory Mult.PG/ of (strict) PG–algebras and pseudomorphisms
between them; it is a submulticategory of a multicategory Mult.PG–PsAlg/ of PG–pseudoalgebras. The
multilinear maps of Mult.PG/ require PG–pseudomaps despite the restriction to strict PG–algebras as
objects. We also have the multicategory Mult.GS / associated to the symmetric monoidal category of
orthogonal G–spectra under the smash product.

16For AD �, Carlsson [1992, page 6] mentions a space-level version of the BPQ theorem. Shimakawa [1989, page 242] states
and gives a sketch proof of a G–spectrum-level version.
17We understand a topological G–category to mean an internal category in the category of G–spaces.
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Theorem 2.8 [Guillou et al. 2023] KG extends to a multifunctor

KG WMult.PG/!Mult.GS /:

Remark 2.9 At one place in the duality proof of Section 2.3 below, we use from [Guillou et al. 2023,
Proposition 9.24] that KG converts 2–cells, such as # in the proof of Proposition 1.43, to homotopies
between maps of G–spectra.

Remark 2.10 In the proof of Theorem 2.6, we will use the fact that KG takes values in positive
�–G–spectra [Guillou et al. 2023].

Corollary 2.11 The construction AG given in Definition 2.2 defines a GS –category.

Proof It is shown in [Guillou et al. 2023, Section 3.5] that the pairing ! of Definition 1.35 is a bilinear
morphism in Mult.PG/. Moreover, the functors .id��� id/� and �Š of (1.30) are maps of PG–algebras.
It follows that the composition EG.B; C /� EG.A;B/

ı
�! EG.A; C / is also bilinear. This remains true

after applying the whiskering construction of Appendix B. Therefore, the multifunctor KG produces a
map of G–spectra AG.B; C /^AG.A;B/!AG.A; C /, as desired. The fact that the composition in E 0G
is strictly associative and unital ensures that the same is true in AG .

Theorem 2.8 yields another important consequence. Observe that the pairing ! of Definition 1.35
generalizes from G–sets A and B to G–spaces X and Y, giving a natural pairing

! W PG.XC/^PG.YC/! PG.XC ^YC/:

Then Theorem 2.8 produces a map of G–spectra

^WKGPG.XC/^KGPG.YC/!KGPG.XC ^YC/:

This makes the assignment X 7!KGPG.XC/ into a lax monoidal functor from (unbased) G–spaces to
orthogonal G–spectra.

With this multiplicative machine in hand, it now makes sense to ask for a BPQ comparison that is also
compatible with the multiplicative structure. That is another main result of [Guillou et al. 2023]. Recall
that the assignment X 7!†1G XC is a strong monoidal functor from (unbased) G–spaces to orthogonal
G–spectra.

Theorem 2.12 [Guillou et al. 2023] There is a monoidal natural transformation

˛ W†1G .XC/!KGPG.XC/

of functors from (unbased ) G–spaces to orthogonal G–spectra , which restricts to a natural stable equiva-
lence on the subcategory of G–CW complexes.

For the remainder of this section, we restrict our attention to the case when X is a finite G–set A, although
we will return to the generality of G–spaces X in Section 2.5. We therefore use the identification (1.24)
to rewrite PG.AC/ as EG.A/.
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That the transformation of Theorem 2.12 is monoidal means that we have a commutative diagram

.2.13/

†1G .AC/^†
1
G .BC/

^ Š

��

˛^˛
// KGEG.A/^KGEG.B/

^

��

†1G .A�B/C
˛

// KGEG.A�B/

We restate the naturality of ˛ with respect to G–maps f W A! B in the diagram

.2.14/

†1G .AC/

†1G fC
��

˛
// KGEG.A/

KGfŠ

��

†1G .BC/
˛
// KGEG.B/

If i W A! B is an injection with retraction r W BC! AC, we have the induced map of G–spectra

KGi
�
DKGrŠ WKGEG.B/!KGEG.A/;

and (2.14) specializes to

.2.15/

†1G .BC/

†1G r

��

˛
// KGEG.B/

KG i
�

��

†1G .AC/
˛
// KGEG.A/

By Remark 2.21 below, we may identify KGi� as the dual of KGi and thus †1G r as the dual of †1G iC.

We combine these diagrams to construct those that we need to prove Theorem 2.6. Let A, B and C be
finite G–sets and recall Definition 1.29.

Proposition 2.16 The following diagram of G–spectra commutes:

.2.17/

†1G .C �B/C ^†
1
G .B �A/C

^ Š

��

˛^˛
// KGEG.C �B/^KGEG.B �A/

^

��

†1.C �B �B �A/C
˛

//

†1G r
��

KGEG.C �B �B �A/

KG.id���id/�
��

†1.C �B �A/C
˛

//

†1�
��

KGEG.C �B �A/

KG�Š

��

†1G .C �A/C
˛

// KGEG.C �A/

Here r is the retraction which sends the complement of the image of id��� id to the basepoint.

The diagram (2.17) relates the composition pairing of the GS -category AG to remarkably simple and
explicit maps between suspensionG–spectra. In fact, recalling Definition 1.41 and again writing "D†1G ",
we see that the left vertical composite in (2.17) can be identified with id^ "^ id. We have proven the
following result, where we abuse notation by writing ˛ for the composite

†1G .B �A/C!KGEG.B �A/!KGE 0G.B �A/:
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Theorem 2.18 The following diagram of G–spectra commutes in HoGS :

†1G .C �B/C ^†
1
G .B �A/C

Š

��

˛^˛
// AG.B; C /^AG.A;B/

ı

��

†1G .CC/^†
1
G .B �B/C ^†

1
G .AC/

id^"^id
��

†1G .CC/^SG ^†
1
G .AC/

Š

��

†1G .C �A/C
˛

// AG.A; C /

2.3 The self-duality of †1

G
.AC/

Let A be a finite G–set and write AD†1G .AC/ for brevity of notation. As recalled in Section 1.5, in
order to show that A is self-dual in HoGS, we must define maps � W SG!A^A and " WA^A! SG in
the stable homotopy category HoGS such that the composites

.2.19/ A
�^id
���!A^A^A

id^"
���!A and A

id^�
���!A^A^A

"^id
���!A

are the identity map in HoGS. Using the stable equivalence ˛ and the definitions of � and " from
Definitions 1.41 and 1.42, we let � and " be the composites

SG
˛
�!KGEG.1/

KG�
���!KGEG.A�A/

˛�1

��!†1G .A�A/C ŠA^A

and
A^AŠ†1G .A�A/C

˛
�!KGEG.A�A/

KG"
���!KGEG.1/

˛�1

��! SG :

Abbreviate notation by setting AG DKGEG . The commutative diagram

AG.A
2/^A

id^˛

''

.A2/^AŠA3 ŠA^ .A2/
˛^id

oo
id^˛

//

˛
��

A^AG.A
2/

˛^id

ww

id^KG�

��

AG.A
2/^AGA

^
// AG.A

3/

KG.id��/

��

AGA^AG.A
2/

^
oo

id^KG�

��

AG1^A
KG�^˛

77
KG�^id

OO

A^AG1
˛^id

ww

AG1^AGA

KG�^id

OO

^
// AGA AGA^AG1

^
oo

SG ^A
˛^˛

77

Š
//

˛^id

OO

A

˛

OO

A^SG

˛^˛

gg

Š
oo

id^˛

OO
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proves that the first composite in (2.19) is the identity map in HoGS ; the second is dealt with similarly.
Remembering that EG.A/ D PG.AC/, the center two squares are derived by use of the diagrams in
Proposition 1.43.

Given Theorem 2.12, it is trivial that the outer parts of the diagram commute. The right central diagram
is just a naturality diagram, as in Proposition 1.43. The left central diagram commutes up to homotopy by
that result and Remark 2.9.

Specializing general observations about duality recalled in Section 1.5, we have the following corollary.
This homotopical input is the crux of the proof of Theorem 2.6.

Corollary 2.20 For finite G–sets A and B, the canonical map

ı D � ı .id^ Q"/ W B^A! B^DA! FG.A;B/

of (1.40) is a stable equivalence.

We insert a mild digression concerning the identification of some of our maps.

Remark 2.21 For an injection i W A! B of finite G–sets, the composite (1.38) and the precise con-
structions of � and " starting from Definitions 1.41 and 1.42 imply that the dual of i is the map B!A

induced by the evident retraction r W BC! AC. A G–map � W G=H ! G=K is a bundle, and the dual
of †1�C is the associated transfer map (see eg [Lewis and May 1986c, pages 182 and 192]). It can be
identified explicitly by a similar (but not especially illuminating) inspection of definitions.

2.4 The proof that AG is equivalent to DAll

We will have to chase large diagrams, and we again abbreviate notation by writing

AD†1G .AC/; BD†1G .BC/ and C D†1G .CC/

for finite G–sets A, B and C. We also abbreviate notation by writing

AG.A/D AG.�; A/:

This is the G–spectrum AG.A/DKGEG.A/, which is equivalent to A by Theorem 2.12. Remember that
we are free to choose any bifibrant equivalents of the G–spectra A as the objects of DAll.

Proof of Theorem 2.6 We use model-categorical arguments, and we work with the stable model structure
on GS. We use [Guillou and May 2020, Section 2.4] to obtain a model structure on the category GS O–
Cat of GS –categories with the same object set O as GE. We emphasize that this is a model structure
on a category of categories. Maps are weak equivalences or fibrations if they induce weak equivalences
or fibrations on hom objects in GS. Here the nature of the objects is irrelevant; we are concerned with
GS –categories with one object for each finite G–set A.

Let � WQAG ! AG be a cofibrant approximation of AG . By [Guillou and May 2020, Theorem 2.16],
since SG is cofibrant in the stable model structure each morphism G–spectrum QAG.A;B/ is cofibrant
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in GS. The maps � W QAG.A;B/! AG.A;B/ are stable acyclic fibrations. Digressively, since the
AG.A;B/ are fibrant in the positive stable model structure (see Remark 2.10), that is also true of the
QAG.A;B/; we will use this fact in Section 2.5.

Let � WQAG!RQAG be a fibrant approximation of QAG . The morphism G–spectra RQAG.A;B/

are then bifibrant in the stable model structure. Therefore, RQAG.A/ is bifibrant for each A, and it is
stably equivalent to A. We take the RQAG.A/ as the bifibrant approximations of the A that we use to
define the full GS –subcategory DAll of GS.

We now have a zigzag
AG

�
 �
�
QAG

�
�!
�
RQAG

of stable equivalences of GS –categories. It remains to find a stable equivalence RQAG ! DAll. To
abbreviate notation, let us write RQAG.�; A/DRQAGA; and let

 WRQAG.A;B/! DAll.A;B/D FG.RQAGA;RQAGB/

be the adjoint of the composition map

ıWRQAG.A;B/^RQAGA!RQAGB:

By [Guillou and May 2020, Construction 5.6], this defines a GS –functor

 WRQAG! DAll:

It suffices to prove that each of the maps  is a stable equivalence.

We define QG to be the full GS –subcategory of SG with objects the QAG.A/. It will play a role in our
proof that  is a stable equivalence. To abbreviate notation, we agree to write QAG.�; A/DQAGA.
For finite G–sets A and B, let

ˇ WQAG.A;B/! QG.A;B/D FG.QAGA;QAGB/

be the adjoint of the composition map

ıWQAG.A;B/^QAGA!QAGB:

This defines a GS –functor
ˇ WQAG! QG :

For each finite G–set A, A is cofibrant and � WQAGA!AGA is an acyclic fibration in the stable model
structure on GS. Therefore, there is a map � WA!QAGA such that the diagram

QAGA

�
��

A

�
;;

˛
// AGA
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commutes. Since ˛ and � are stable equivalences, so is �. In the same way, we get a stable equivalence
� W B^A!QAG.A;B/.

For the remainder of the proof, we work in the homotopy category HoGS. In particular, the distinction
between KGEG and KGE 0G vanishes. We claim that the following diagram of G–spectra commutes
in HoGS :

RQAG.A;B/


// FG.RQAGA;RQAGB/
FG.�;id/

'
// FG.QAGA;RQAGB/

FG.�;id/'

��

QAG.A;B/

� '

OO

ˇ
// FG.QAGA;QAGB/

FG.id;�/

55

FG.�;id/

))

FG.A; RQAGB/

B^A

� '

OO

ı

'
// FG.A;B/

FG.id;�/

'
// FG.A;QAGB/

FG.id;�/'

OO

Indeed, modulo inversion of maps which are stable equivalences, it commutes on the nose. As before,
we identify B ^A D †1G BC ^†

1
G AC with †1G .B � A/C. The map ı is the stable equivalence of

Corollary 2.20. The maps � and � are also stable equivalences. The maps FG.�; id/ and FG.�; id/ that
are labeled ' are stable equivalences by [Guillou and May 2020, Lemma 1.22] since � and � are maps
between cofibrant objects and RQAGB is fibrant. The maps FG.id; �/ and FG.id; �/ that are labeled '
are stable equivalences by [Mandell and May 2002, Proposition III.3.9], which shows that the functor
FG.A;�/ preserves stable equivalences. Provided that the diagram commutes, it follows that  is a stable
equivalence since all of the other outer arrows of the diagram are stable equivalences.

The top pentagon commutes since � is a map of GS -categories, and both composites on the right give
FG.�; �/. It therefore remains to consider the lower pentagon. To prove that the diagram commutes in
HoGS, we consider its adjoint, which is displayed as the outer rectangle of the diagram

QAG.A;B/^QAGA
ı

//

�^�

**

QAGB

�

zz

AG.A;B/^AGA
ı
// AGB

B^A^A
id^†1G "

//

˛^˛
44

�^�

OO

B

˛

dd
�

OO

Here we have inserted the map ıW AG.A;B/^AGA! AGB and arrows � into its source and target for
purposes of the proof.

Since � is a map of GS –categories, it is apparent that all parts of the diagram commute except for the
bottom trapezoid. Taking .A;B; C /D .�; A; B/ in Theorem 2.18, we see that the trapezoid commutes.
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Since the wrong-way map � is a stable equivalence and can be inverted upon passage to the homotopy
category, this diagram and its adjoint commute there.

2.5 The identification of suspension G–spectra

We expand the adjoint S –equivalences in Theorem 1.14 more explicitly as follows, using [Guillou and
May 2020, Proposition 2.4]:

.2.22/

GS
U

// Pre.GDAll;S /
�
//

T
oo Pre..RQAG/

G ;S /

��

��

Š
oo

Pre.GA ;S /
�Š
// Pre..AG/G ;S /

��
//

��
oo Pre..QAG/

G ;S /
�Š
oo

�Š

OO

The map � W GA ! .AG/
G is the equivalence of Theorem 2.3. Before passage to G–fixed points, the

proof in Section 2.4 gives stable equivalences of GS –categories

� WQAG!RQAG ;  WRQAG! DAll and � WQAG! AG :

These maps give stable equivalences of S –categories after passage to fixed points. Seeing this uses that
the hom G–spectra in RQAG and DAll are fibrant, while those in QAG and AG are positive fibrant, as
discussed in the proof of Theorem 2.6.

For a finite G–set B, †1G BC corresponds under this zigzag to the presheaf B that sends A to GA .A;B/.
This is almost a tautology since, for E 2GS, U.E/ is the presheaf represented by E, while GE .�; B/

is the functor represented by B. In the proof of Theorem 2.6, we chose the bifibrant approximation
of †1G BC in DAll to be RQAG.B/. With B fixed, that proof shows that  gives an equivalence of
presheaves

RQAG.�; B/! �URQAG.B/

(before passage to G–fixed points). The functors �� and �Š and the isomorphism �� preserve representable
functors, and therefore ���Š��RQAG.�; B/'KGEG.�; B/.

This observation can be generalized from finite based G–sets BC to arbitrary based G–spaces X. To see
this, we mix general based G–spaces X with finite based G–sets AC to obtain a functorial construction
of a presheaf PrG.X/.

Definition 2.23 For a based G–space X, define a presheaf PrG.X/ W .AG/op!SG by letting

PrG.X/.A/DKGPG.X ^AC/:

The contravariant functoriality map

PrG.X/ W AG.A;B/! FG.PrG.X/.B/;PrG.X/.A//
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is the composite of the retraction AG.A;B/ D KGE 0G.A;B/! KG.EG.B �A// (see Definition B.2)
with the adjoint of the right vertical composite in the commutative diagram

.2.24/

†1G .X ^BC/^†
1
G .BC ^AC/

^ Š

��

˛^˛
// KGPG.X ^BC/^KGPG.BC ^AC/

^

��

†1.X ^BC ^BC ^AC/
˛

//

†1G r

��

KGPG.X ^BC ^BC ^AC/

KGPG.r/

��

†1.X ^BC ^AC/
˛

//

†1�

��

KGPG.X ^BC ^AC/

KGPG�

��

†1G .X ^AC/
˛

// KGPG.X ^AC/

Here r is the retraction of based G–sets associated to the diagonal inclusion and � is the projection. The
diagram commutes by the same concatenation of commutative diagrams as in Proposition 2.16. Note that
there is no need to whisker the G–categories PG.X ^AC/ in order to get a strict functor. The spans in
PG.X ^AC/ are only composed on the right with spans in AG in this construction, and the �B were
already strict units on the right. Therefore, use of the retraction does not destroy functoriality.

Theorem 2.25 Let X be a based G–space. Under our zigzag of equivalences , †1G X corresponds
naturally to the presheaf .PrG.X//G that sends A to K.PG.X ^AC/G/.

Proof Note that KGPG.X ^�C/ is no longer a representable presheaf. We again work with G–spectra
and obtain the conclusion after passage to G–fixed spectra. According to Theorem 2.12, we may replace
†1G X by the positive fibrant G–spectrum KGPG.X/, which we abbreviate to AG.X/ by a slight abuse
of notation. After this replacement, the presheaf U.†1G X/ may be computed as

U.†1G X/.A/D FG.RQAG.A/;AG.X//:

Therefore, following the chain of (2.22), we may compute ���U.†1G X/ as

���U.†1G X/' FG.QAG.�/;AG.X//:

Replacing .B;A/ by .A; 1/ in (2.24) and recalling that 1C D S0, the right column gives the second map
in the composite

.2.26/ PrG.X/.A/^QAG.A/
id^�
���! PrG.X/.A/^AG.A/

ı
�! PrG.X/.1/:

Its target is the G–spectrum AG.X/, and its adjoint gives a map of presheaves

.2.27/ ��PrG.X/! FG.QAG.�/;AG.X//
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with domain QAG . It remains to show that this map is an equivalence. To compute the adjoint (2.27),
observe that (2.26) is the top horizontal composite in the diagram

PrG.X/.A/^QAG.A/
id^�

// PrG.X/.A/^AG.A/
ı
// PrG.X/.1/

†1G .X ^AC/^QAG.A/

˛^id

OO

PrG.X/.A/^†1G AC

id^˛

OO

†1G .X ^AC/^†
1
G AC

id^�

OO

˛^id

44

Š
// †1G X ^†

1
G .AC ^AC/ id^"

// †1G X

˛

OO

The left pentagon commutes since �ı�D ˛ and the right pentagon is a special case of (2.24). Therefore,
the map (2.27) is the top horizontal composite in the diagram

PrG.X/.A/ // FG.AG.A/;AG.X//
FG.�;id/

// FG.QAG.A/;AG.X//

FG.�;id/
��

†1G .X ^AC/

˛

OO

ı

// FG.†
1
G AC; †

1
G X/ FG.id;˛/

// FG.†
1
G AC;AG.X//

The map ˛ is a stable equivalence by Theorem 2.12. The map ı is the stable equivalence of (1.40). The
map FG.id; ˛/ is a stable equivalence by [Mandell and May 2002, Proposition III.3.9]. Finally, the map
FG.�; id/ is a stable equivalence by [Guillou and May 2020, Lemma 1.22].

3 Some comparisons of functors

3.1 Change-of-groups and fixed-point functors

We discuss several constructions on G–spectra from the point of view of Theorem 1.14. Categorical fixed
points are already built into the setup: for any subgroup H �G, the functor of H–fixed points is given
by evaluating presheaves at the orbit G=H. We will return to this in Construction 3.5.

Construction 3.1 (restriction to subgroups) Let H � G be a subgroup. Then induction of G–sets
provides a strong monoidal (in other words, coproduct-preserving) bifunctorG�H .�/ WHE !GE. Using
our models for HE and GE, we must declare a preferred ordering for an induced G–set G�H A, given an
ordering of the H–set A. For this, we choose an ordering of G=H as well as a set of coset representatives
for H in G. The choice of coset representatives gives a bijection of sets G �H AŠG=H �A, and we
use the lexicographic ordering of G=H �A to order the induced G–set G �H A.

This extends to a (strict) 2–functor G �H �WHE 0!GE 0 if, recalling that the 1–cell IA 2HE 0.A;A/ is
the identity of A as in Definition B.1, we then define G �H IA D IG�HA for all H–sets A. For finite
H–sets A and B, there is a unique G–equivariant isomorphism G�H .AqB/Š .G�H A/q .G�H B/,
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though it is not order-preserving in general. It follows that the induction functor gives rise to a spectral
functor K.G �H �/ WHA !GA . Then

K.G �H �/
�
W Pre.GA ;S /! Pre.HA ;S /

gives a model for the restriction GS !HS.

Construction 3.2 (induction) Let H � G be a subgroup. The spectrum-level induction functor
GC ^H �W HS ! GS is left adjoint to restriction. Given the description of restriction provided in
Construction 3.1, it follows that induction can be described as the enriched Kan extension (as in [Guillou
and May 2020, Lemma 2.2])

K.G �H �/Š W Pre.HA ;S /! Pre.GA ;S /

along the spectral functor K.G �H �/ WHA !GA .

Construction 3.3 (geometric inflation along a quotient) Let N E G be a normal subgroup. Then
passage to N–fixed points defines a functor FixN WGE !G=NE. Note that since FixN .A/ is a subset
of A, the G=N–set FixN .A/ inherits an ordering from that of A. Moreover, FixN preserves pullbacks
and coproducts. It follows that FixN gives rise to a spectral functor K.FixN / WGA !G=NA . Then

K.FixN /� W Pre.G=NA ;S /! Pre.GA ;S /

gives a model for the geometric inflation functor, whose image consists of G–spectra “concentrated
over N ”. In the language of [Mandell and May 2002, Section VI.5], this is the functor X 7! fEFŒN �^"#X,
where " WG!G=N is the quotient homomorphism and "# is left adjoint to the N–fixed-point functor
from G–spectra to G=N–spectra.

Construction 3.4 (geometric fixed points) Let N E G be a normal subgroup. Then the geometric
N –fixed-point functor is left adjoint to geometric inflation. Given the description of geometric inflation
provided in Construction 3.3, the enriched Kan extension (as in [Guillou and May 2020, Lemma 2.2])

K.FixN /Š W Pre.GA ;S /! Pre.G=NA ;S /

gives a model for the geometric N –fixed-point functor ˆN WGS !G=NS.

This construction extends to arbitrary subgroups as follows. For a subgroup H �G, the H–fixed-point
functor FixH W GE ! E gives rise to a spectral functor K.FixH / W GA ! A , and the enriched Kan
extension

K.FixH /Š W Pre.GA ;S /! Pre.A ;S /

gives a model for the geometric H–fixed-point functor ˆH WGS !S. We leave it to the reader to verify
that, in the case of a normal subgroup, the two versions agree after restricting from G=N–spectra to
underlying spectra.
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Construction 3.5 (categorical fixed points) There is an inclusion � W E ,!GE of the finite sets as the
G–trivial finite G–sets. This functor preserves pullbacks and coproducts and therefore induces a spectral
functor K.�/ W A ,!GA . As generalized equivariantly in Remark A.4, spectrally enriched presheaves on
finite sets are determined by their value at a one-point set, and

K.�/� W Pre.GA ;S /! Pre.A ;S /'S

gives a model for the (categorical) G–fixed-point functor .�/G WGS !S. For a subgroup H �G, the
H–fixed-point functor is given by first using the restriction functor of Construction 3.1 and then passing
to fixed points.

Construction 3.6 (G–trivialG–spectra) Left adjoint to theG–fixed-point functor is the trivialG–action
functor. Given the description of G–fixed points provided in Construction 3.5, the enriched Kan extension
(as in [Guillou and May 2020, Lemma 2.2])

K.�/Š WS ' Pre.A ;S /! Pre.GA ;S /

gives a model for the trivial G–spectrum functor "# WS !GS (using the notation of [Mandell and May
2002, Section VI.3]). This functor describes the tensoring of G–spectra over nonequivariant spectra. We
return to this in Section 3.3.

3.2 Fixed-point orbit functors

We return to Corollary 1.15 and give a more precise formulation. We know from Construction 3.5 how to
pass to H–fixed points for each H, but a more functorial perspective may be illuminating. Again let OG

denote the orbit category of G. For a G–spectrum X, passage to H–fixed-point spectra for H �G gives
a functor X� W Oop

G !S. Recall Remark 2.5. By definition, GDOrb is the image of the composition j of
†1G;C W OG!GS with our bifibrant replacement functor. Pulling back along j defines a functor

GS
U
�! Pre.GDOrb;S /

j�

��! Pre.OG ;S /;

where the target denotes ordinary (ie unenriched) presheaves. On the other hand, we have the functor
k W OG!GE that associates to a map of finite G–sets its graph, considered as a span. This gives rise to
a functor OG!GA , which we also denote by k. Now pullback along k gives a functor

Pre.GA ;S /
k�
��! Pre.OG ;S /:

Corollary 3.7 The zigzag of equivalences of Theorem 1.14 identifies the composition j � ıU with k� up
to equivalence.

3.3 Tensors with spectra and smash products

There is another visible identification. The category GS and our presheaf categories are S –complete,
so they have tensors and cotensors over S (see [Guillou and May 2020, Section 5.1]). It is formal that
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the left adjoint of an S –adjunction preserves tensors and the right adjoint preserves cotensors. A quick
chase of our zigzag of Quillen S –equivalences gives the following conclusion:

Proposition 3.8 For a G–spectrum Y and a spectrum X, if Y corresponds to a presheaf PY under our
zigzag of weak equivalences , then the tensor Y ˇX corresponds to the tensor PY ˇX.

Remark 3.9 (smash products) We have not described the behavior of smash products under the
equivalences of Theorem 1.14. On the presheaf side, one would expect to use Day convolution to describe
the smash product, starting from the cartesian product of finite G–sets. Indeed, this is the approach taken
in [Clausen et al. 2020], where a symmetric monoidal version of Theorem 1.14 is given. We warn the
reader, however, of two notable differences in their approach. First, in the approach of [Clausen et al.
2020], the functor from G–spectra to presheaves is a left adjoint, so their right adjoint plays the role
of our T in Theorem 2.4. Secondly, they produce a monoidal functor on the category of G–spectra by
using that the category of G–spectra can be obtained as a monoidal category from the category of based
G–spaces by inverting smash products with representation spheres [Clausen et al. 2020, Theorem A.2].

Remark 3.10 We here give a sketch of an approach to a monoidal version of Theorem 1.14. Starting from
an enriched symmetric monoidal structure on GDAll, Day convolution provides a symmetric monoidal
structure on our category of spectral presheaves, and Theorem 2.3 can be promoted to a monoidal Quillen
equivalence, as in [Arone et al. 2022, Theorem 4.3]. It then remains to equip the spectral category GA

with an enriched monoidal structure and promote Theorem 2.6 to a zigzag of monoidal weak equivalences.

However, there are several difficulties with this approach. First, starting with the enriched monoidal
structure on GDAll, it is clear what to do on objects, since they are in bijective correspondence with finite
G–sets. Namely, again employing the notation of Section 2.4, the objects are of the form RADR†1G AC,
and we define a product ˝ on GDAll by letting RA˝RB be R.A^B/ŠR†1G .A�B/C.

We next require a map of spectra

.3.11/ F.RA; RB/^F.RC; RD/! F.RA˝RC; RB˝RD/:

If we had a strong monoidal fibrant replacement functor R, this would provide isomorphisms RA^RBŠ

R.A^B/DRA˝RB. These could then be combined with the map

F.RA; RB/^F.RC; RD/! F.RA^RC; RB^RD/

to obtain the map (3.11). However, absent such a strong monoidal functor R, we do not see a way to
define (3.11). We shall say a bit more fibrant replacement in Section A.3. One way around this problem
would be to rework the entire theory with orthogonal G–spectra replaced by the SG–modules of the
equivariant version [Mandell and May 2002] of Elmendorf, Kriz, Mandell and May [Elmendorf et al.
1997]. Since all SG–modules are fibrant, that would get around this problem; some relevant details are
discussed in Sections 4.1 and A.4.
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Another problem is that it is not straightforward to equip GA with an enriched monoidal structure. Again,
it is clear what to do on objects. The machine developed in [Guillou et al. 2023] does convert the product
functors

.3.12/ GE .B �A/�GE .D �C/ ��!GE .B �A�D �C/ Š�!GE .B �D �A�C/

of Remark 1.6 to morphisms of spectra

KGE .B �A/^KGE .D �C/!KGE .B �D �A�C/:

However, recall from Definition 1.13 that the morphism spectra of GA are defined using GE 0 rather
than GE, so some care is required to handle that change. A little more seriously, even if we ignore the
difference between GE and GE 0, the functors (3.12) do not give a strict 2–functor GE 0 �GE 0 ��!GE 0

since the evident diagram relating products to composition (of 1–cells) only commutes up to isomorphism.
We have not pursued this idea further, but we do not believe that the difficulties to this approach are
insurmountable.

4 Atiyah duality for finite G–sets

It is illuminating to see that we can come very close to constructing an alternative model for the
spectrally enriched category GDAll just by applying the suspension G–spectrum functor †1G to the
category of based finite G–sets and G–maps and then passing to G–fixed points. This is based on a close
inspection of classical Atiyah duality specialized to finite G–sets. However, it depends on working in the
alternative category GZ of SG–modules [Elmendorf et al. 1997; Mandell and May 2002] rather than in
the category GS of orthogonal G–spectra. Because every object of GZ is fibrant and its suspension
G–spectra are easily understood, it is considerably more convenient than GS for comparison with
space-level constructions. This leads us to a variant, Theorem 4.19, of Theorem 0.1 that does not invoke
infinite loop space theory. It is more topological and less categorical, and it best captures the geometric
intuition behind our results. It is also more elementary.

4.1 The categories GZ , GDZ
All and DZ

All

Relevant background about GZ appears in Section A.4, and we just give a minimum of notation here.
We alert the reader to one nonstandard notation. We indicate the tensor of a based G–space X and
a G–spectrum E by X ˇE D †1G X ^E. Similarly, we later denote the tensor of a nonequivariant
spectrum D and a G–spectrum E by DˇE.

In analogy with Theorem 2.4, we have the following specialization of the same general result [Guillou
and May 2020, Theorem 1.36] about stable model categories. It is discussed in Section A.1.

Theorem 4.1 Let GDZ
All be the full Z –subcategory of GZ whose objects are cofibrant approximations

of the suspension G–spectra †1G .AC/, where A runs through the finite G–sets. Then there is an enriched
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Quillen adjunction
Pre.GDZ

All;Z /
T
// GZ ;

U
oo

and it is a Quillen equivalence.

We must be explicit about cofibrant approximation here. The construction of the category GZ of SG–
modules starts from the Lewis–May category GSp of G–spectra, and SG–modules are G–spectra with
additional structure. We have an elementary suspension G–spectrum functor †1G W GT ! GSp. As
we recall in Section A.4, a suspension G–spectrum has a canonical SG–module structure, so we may
view †1G as a functor GT ! GZ . Moreover, with codomain GZ , this becomes a strong symmetric
monoidal functor. However, the †1G X are not cofibrant. As explained in Section A.4 below, there is a
left Quillen equivalence F W GSp! GZ such that the composite †1G D F ı†1G takes based G–CW
complexes X, such as AC for a finite G–set A, to cofibrant SG–modules. Therefore, †1G may be viewed
as a cofibrant replacement functor for †1G . In particular, we write SG D†1G S

0 and have a cofibrant
approximation  W SG! SG of the unit object SG . Moreover, the cofibrant approximation †1G .AC/ is
isomorphic over †1G .AC/ to SG ^†

1
G .AC/.

As before, we consider finite G–sets A, B and C, but we now agree to write

AD†1G AC; BD†1G BC and C D†1G CC:

These are bifibrant objects of GZ and we let GDZ
All and DZ

All be the full subcategories of GZ and ZG

whose objects are the SG–modules A, where A runs over the finite G–sets. Then DZ
All is enriched in GZ

and GDZ
All D .D

Z
All/

G is enriched in the category Z of S–modules. The functor †1G is almost strong
symmetric monoidal. Precisely, by Proposition A.10 below, there is a natural isomorphism

.4.2/ A^BŠ SG ^†1G .A�B/C

with appropriate coherence properties with respect to associativity and commutativity. Since SG is the
unit for the smash product, we can compose with

 ^ id W SG ^†1G .A�B/C!†1G .A^B/C

to give a pairing as if †1G were a lax symmetric monoidal functor. However, the map  WSG! SG points
the wrong way for the unit map of such a functor.

4.2 Space-level Atiyah duality for finite G–sets

To lift the self-duality of Ho DAll to obtain a new model for GDZ
All, we need representatives in GZ for

the maps
� W SG!A^A and " WA^A! SG

in HoGZ that express the duality there. The map " is induced from the elementary map " of Definition 1.41.
The observation that it plays a key role in Atiyah duality seems to be new. The definition of � requires
desuspension by representation spheres.
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Let A be a finite G–set and let V D RŒA� be the real representation generated by A, with its standard
inner product, so that jaj D 1 for a 2A. Since we are working on the space level, we may view AC^S

V

as the wedge over a 2 A of the spaces (not G–spaces) fagC ^SV, with G acting by g.a; v/D .ga; gv/.
There is no such wedge decomposition after passage to G–spectra.

Definition 4.3 Recall that " W .A � A/C ! S0 is the G–map defined by ".a; b/ D � if a ¤ b and
".a; a/D 1. Recall too that .A�B/C can be identified with AC^BC and that the functor †1G is almost
strong symmetric monoidal. We shall also write " for the composite map of SG–modules

.4.4/ A^AŠ SG ^†1G .A�A/C
id^†1G "
������! SG ^SG

^
���! SG ^SG Š SG ;

where the first unlabeled isomorphism is an instance of (4.2).

Definition 4.5 Embed A as the basis of the real representation V D RŒA�. The normal bundle of the
embedding is just A�V, and its Thom complex is AC ^SV. We obtain an explicit tubular embedding
� W A�V ! V by setting

�.a; v/D aC
�.jvj/

jvj
v;

where � W Œ0;1/! Œ0; d/ is a homeomorphism for some d < 1
2

; � is a G–map since jgvj D jvj for all g
and v. Applying the Pontryagin–Thom construction, we obtain a G–map t W SV !AC^S

V, which is an
equivariant pinch map

SV !
W
a2A S

V
Š AC ^S

V :

To be more precise, after collapsing the complement of the tubular embedding to a point, we use ��1 to
expand each small homeomorphic copy of SV to the canonical full-sized one; explicitly, if jwj< d , then

��1.aCw/D

�
a;
��1.jwj/

jwj
w

�
:

The diagonal map on A induces the Thom diagonal � W AC ^SV ! AC ^AC ^S
V, and we let

.4.6/ �D �A W S
V
! AC ^AC ^S

V

be the composite � ı t . Explicitly,

.4.7/ �.v/D

��
a; a; .��1.jwj/=jwj/w

�
if v D aCw, where a 2 A and jwj< d;

� otherwise.

The negative sphere G–spectrum S�V in GSp is obtained by applying the left adjoint of the V th space
functor to S0, and SG is isomorphic (on the point–set level) to SV ˇS�V as is noted nonequivariantly
in [Lewis and May 1986b, Proposition 4.2].18 Taking the tensor of � with S�V, we obtain a map of
G–spectra

SG Š S
V
ˇS�V ! .AC ^AC ^S

V /ˇS�V Š .AC ^AC/ˇSG Š†
1
G .AC ^AC/:

18The relevant display there has a typo, �1 for †1.
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Applying the functor F to this map and smashing with SG on the left, we obtain the map denoted by O�A
in the diagram

.4.8/ SG Š SG ^SG
^
 ��� SG ^SG

O�A
�! SG ^†1G .A�A/C ŠA^A:

The following result is a reminder about space-level Atiyah duality. The notion of a V –duality was defined
and explained for smooth G–manifolds in [Lewis and May 1986a, Section 5]. Essentially, this states
that the space-level maps � and " make AC into a self-dual G–space, modulo inverting the G–space SV.
While our maps are specified precisely on the point–set level, we now pass to the homotopy category.

Proposition 4.9 The maps

� W SV ! AC ^AC ^S
V and "^ id W AC ^AC ^SV ! SV

specify a V –duality between AC and itself.

Proof This could be proven from scratch by proving the required triangle identities, but in fact it is a
special case of equivariant Atiyah duality for smooth G–manifolds, A being a 0–dimensional example.
Our specification of � is a precise point–set-level specialization of the description of � for a general
smooth G–manifold M given in [Lewis and May 1986a, page 152]. Similarly, we claim that our "^ id
is a precise point–set-level specialization of the definition of " for a general smooth G–manifold given
there. Indeed, letting s be the zero section of the normal bundle � of the embedding A�RŒA�D V, we
have the composite embedding

A �
�! A�A s�id

��! .A�V /�AŠ A�A�V:

The normal bundle of this embedding is A�V, and we may view

�� id W A�V ! A�A�V

as giving a big tubular neighborhood. The Pontryagin–Thom map here is obtained by smashing the map
r W .A�A/C!AC that sends .a; b/ to a if aDb and to � if a¤b with the identity map of SV. Composing
with the map induced by the projection � W AC! S0 that sends a to 1, this gives "^ id. We observed
this factorization of " in Definition 1.41 and we have used it before, in the proof of Theorem 2.18.

We obtain the spectrum-level duality maps displayed in (4.4) and (4.8) by tensoring with S�V, applying
the functor SG ^F , and composing with  .

4.3 The weakly unital categories GB and BG

Since the G–spectra A are self-dual, FG.A;B/ is naturally isomorphic to B ^A in HoGZ , and the
composition and unit

.4.10/ FG.B;C/^FG.A;B/! FG.A;C/ and SG! FG.B;B/
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can be expressed as maps

.4.11/ C ^B^B^A!C ^A and SG!A^A

in HoGZ . We want to understand these maps in terms of duality in GZ , without use of infinite loop
space theory. However, since we are working in GZ , we must take the isomorphisms (4.2) and the
cofibrant approximation  W SG! SG into account, and we cannot expect to have strict units. The notion
of a weakly unital enriched category was introduced in [Guillou and May 2020, Section 3.5] to formalize
what we see here.

Thus, we shall construct a weakly unital GZ –category BG , analogous to AG , and compare it with DZ
All.

The G–fixed category GB will be a weakly unital Z –category. The objects of BG and GB are the
SG–modules A for finiteG–setsA, as in Section 4.1. The morphism SG–modules of BG are BG.A;B/D

B^A. Composition is given by the maps

.4.12/ id^ "^ id WC ^B^B^A!C ^A;

where " is the map of (4.4); compare Theorem 2.18.

As recalled in Section 1.5, the adjoint Q" W A!DAD FG.A; SG/ of " is a stable equivalence, and we
have the composite stable equivalence

.4.13/ ı D � ı .id^ Q"/ W B^A! B^DA! FG.A;B/:

Formal properties of the adjunction (^,FG) give the following commutative diagram in GZ , which uses
ı to compare composition in BG with composition in DZ

All:

.4.14/

C ^B^B^A
id^"^id

//

id^Q"^id^Q"
��

C ^A

id^Q"
��

C ^DB^B^DA
id^"^id

//

�^�
��

C ^DA

�
��

FG.B;C/^FG.A;B/
ı

// FG.A;C/

At the bottom, we do not know that the function SG–modules or their smash product are cofibrant, but all
objects at the top are cofibrant and thus bifibrant. In general, to compute the smash product of G–spectra
X and Y in the homotopy category, we should take the smash product of cofibrant approximations QX

and QY of X and Y. Since all objects of GZ are fibrant, to compute a map X ^Y !Z in the homotopy
category, we should represent it by a map QX ^QY !QZ and take its homotopy class. The diagram
displays such a cofibrant approximation of the composition in DZ

All.

Specialized to our context of a category with self-dual objects, the definition [Guillou and May 2020,
Definition 3.25] of a weakly unital GZ –category requires, for each object A, a “weak unit map”
O�A W QSG ! A ^A for some chosen cofibrant approximation  W QSG ! SG , together with a weak
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equivalence O�A WA
'
�!A such that certain unit diagrams relating O�A, O�A and composition commute. We

are led by (4.8) to choose our cofibrant approximation  to be  ^ W SG ^SG! SG ^SG Š SG , and to
take O�A WSG^SG!A^A to be the map displayed in (4.8). After composing with ı WA^A!FG.A;A/,
O�A is a representative in GZ for the unit map SG! FG.A;A/ that exists in HoGZ . Finally, we specify
the required equivalence O�A WA

'
�!A.

Definition 4.15 Let V DRŒA�. For a 2 A, define �a W fagC ^SV ! fagC ^SV by

.4.16/ �a.a; v/D

��
a; .��1.jwj/=jwj/w

�
if v D aCw and jwj< d;

� otherwise,

where � is as in Definition 4.5. Then the wedge of the �a is a G–map

.4.17/ �A W AC ^S
V
! AC ^S

V
I

�A is G–homotopic to the identity map of AC ^SV via the explicit G–homotopy

h.a; v; t/D

8<:
.a; v/ if t D 0 or v D a;�
a; .1� t /vC t .��1.t jwj/=jwj/w

�
if v D aCw and t jwj< d;

� otherwise.

Tensoring with S�V and using the natural isomorphisms

.X ^SV /ˇS�V ŠX ˇSG Š†
1
G X

for based G–spaces X, we see that the space-level G–equivalence �A induces a spectrum-level G–
equivalence O�A WA!A.

It is a bit tedious to verify that our definitions make BG into a weakly unital GZ –category, in the sense
specified in [Guillou and May 2020, Definition 3.25]. Here are the details.

With �A as specified in (4.6), easy and perhaps illuminating inspections show that the following unit
diagrams already commute in GT , before passage to homotopy:

BC ^AC ^S
V id^�A

//

id^�A

��

BC ^A
3
C
^SV

id^"^idvv

BC ^AC ^S
V

and

SW ^BC ^AC

�B^idA

��

�B^id
// SW ^B3

C
^AC

id^"^idvv

SW ^BC ^AC

In both, A and B are finite G–sets. In the first, V D RŒA�. In the second, W D RŒB� and we have
moved SW from the right to the left for clarity.

Tensoring with S�V and S�W and using (4.2) to pass to smash products of SG–modules, a little diagram
chase shows that the previous pair of diagrams in GT gives rise to the following pair of commutative
diagrams in GZ . These express the unit laws for a weakly unital GZ –category BG [Guillou and May
2020, Definition 3.25] with objects the A and composition as specified in (4.12). Again, the cited unit
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laws allow us to start with any chosen cofibrant approximation  WQSG! SG of the unit SG , and we
were led by (4.8) to choose our cofibrant approximation  to be  ^  W SG ^SG! SG ^SG Š SG . The
space-level diagrams above induce the required spectrum-level diagrams

B^A^QSG

id^O�A^
��

id^ O�A
// B^A^A^A

ı

��

B^A^SG
Š

// B^A

and

QSG ^B^A

^O�B^id
��

O�B^id
// B^B^B^A

ı

��

SG ^B^A
Š

// B^A

Taking AD S0 in our second space-level diagram and changing B to A, we also obtain the following
commutative diagrams in GZ , where the second diagram is adjoint to the first:

.4.18/

QSG ^A

^O�A

��

O�A^id
// A^A^A

id^"
��

SG ^A
Š

// A

and

QSG



��

O�A
// A^A

id^Q"
// A^DA

�
��

SG �
// FG.A;A/

FG. O�A;id/

// FG.A;A/

Here � at the bottom left of the right diagram is adjoint to the identity map of A. In effect, this uses
ıD � ı .id^ Q"/ to compare the unit SG

�
�!FG.A;A/ in DZ

All with the “weak unit” SG QSG!A^A

in BG .

4.4 The category of presheaves with domain GB

The diagrams (4.14) and (4.18) show that the maps ı WA^B! FG.A;B/ specify a map of weakly unital
GZ –categories from the weakly unital GZ –category BG to the (unital) GZ –category DZ

All. Passing to
G–fixed points, we obtain a weakly unital Z –category GB and a map ı WGB!GDZ

All of weakly unital
Z –categories. Weakly unital presheaves and presheaf categories are defined in [Guillou and May 2020,
Definition 3.25]. By [Guillou and May 2020, Remark 3.26], we obtain the same category of presheaves
Pre.GDZ

All;Z / using unital or weakly unital presheaves. Since ı is an equivalence, we can adapt the
methodology of [Guillou and May 2020, Section 2] to complete the proof of the following theorem, using
the details relating the functor †1G to smash products from Section A.4. Since we find the use of weakly
unital categories unpleasant and our main result Theorem 1.14 more satisfactory, we shall leave the details
to the interested reader.

Theorem 4.19 The categories Pre.GB;Z / and Pre.GDZ
All;Z / are Quillen equivalent.

Appendix A Enriched model categories of G–spectra

The results in this section show how to model categories of G–spectra as categories of presheaves of
spectra, where G is any compact Lie group. We specialize results of [Guillou and May 2020] to provide
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and compare two such models. More precisely, in Section A.1, we establish Theorems 2.4 and 4.1, which
state that G–spectra can be modeled as presheaves of spectra in both the orthogonal and S–module
contexts. In Section A.2, we compare these two presheaf models. In Sections A.3 and A.4, we discuss
suspension spectra for orthogonal spectra and S–modules, respectively, in order to be precise about the
domain categories for our presheaves. We shall rely on [Elmendorf et al. 1997; Lewis et al. 1986b;
Mandell and May 2002; Mandell et al. 2001] for definitions of the relevant categories.

A.1 Presheaf models for categories of G–spectra

We focus on two categories of G–spectra treated in detail in [Mandell and May 2002]. We have the
closed symmetric monoidal category S of nonequivariant orthogonal spectra [Mandell et al. 2001]. Its
function spectra are denoted by F.X; Y /. We also have the closed symmetric monoidal category GS

of orthogonal G–spectra for a fixed G–universe U [Mandell and May 2002]. Its function G–spectra
are denoted by FG.X; Y /. In contrast to the previous sections, in this subsection and the next we allow
G–spectra to be indexed over any G–universe. The homotopy type of FG.X; Y / very much depends on
the choice of universe. Then GS is enriched over S via the G–fixed-point spectra FG.X; Y /G. In terms
of the general context of [Guillou and May 2020], we are taking V DS and M DGS. We have stable
model structures on S and GS [Mandell and May 2002; Mandell et al. 2001].

Then [Guillou and May 2020, Theorem 1.36] specializes to give Theorem 2.4. It also gives the following
more general result, in which G can be a compact Lie group and G–spectra can be indexed on any
universe. (See also [Schwede and Shipley 2003, Example 3.4(i)]).

Theorem A.1 Let GDS be the full S –subcategory of GS whose objects are fibrant approximations
of the suspension G–spectra †1XC for all X in any set S of compact G–spaces that contains G=H
for at least one H in each conjugacy class of closed subgroups of G. Then there is an enriched Quillen
adjunction

Pre.GDS ;S /
T
// GS ;

U
oo

and it is a Quillen equivalence. If S � T are as prescribed and

R W Pre.GDT ;S /! Pre.GDS ;S /

is the restriction along the inclusion GDS ! GDT , then R ıUT D US and therefore R induces an
equivalence of presheaf homotopy categories.

Remark A.2 Adapting our work for finite groups to incomplete universes would require us to use
incomplete Mackey functors and to reconcile the conflict between needing to use all orbits G=H to obtain
generators for HoGS and needing to use only those orbits G=H that embed in the given universe to
have self-duality of orbits, which is vital to our theory but irrelevant to Theorem A.1.
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We have a second specialization of [Guillou and May 2020, Theorem 1.36]. We have the closed symmetric
monoidal category Z of nonequivariant S–modules [Elmendorf et al. 1997].19 Its function spectra are
again denoted by F.X; Y /. We also have the closed symmetric monoidal category GZ of SG–modules
(for a fixed G–universe U as above) [Mandell and May 2002]. Its function G–spectra are denoted
by FG.X; Y /. Then GZ is enriched over Z via the G–fixed-point spectra FG.X; Y /G. We are taking
V DZ and M DGZ . We have stable model structures on Z and GZ [Elmendorf et al. 1997; Mandell
and May 2002]. Again, Theorem 1.36 of [Guillou and May 2020] specializes to give Theorem 4.1. It also
gives the following more general result, in which G can be a compact Lie group and G–spectra can be
indexed on any universe:

Theorem A.3 Let GDZ
S be the full S –subcategory of GZ whose objects are cofibrant approximations

of the suspension G–spectra †1XC for all X in any set S of compact G–spaces that contains G=H
for at least one H in each conjugacy class of closed subgroups of G. Then there is an enriched Quillen
adjunction

Pre.GDZ
S ;Z /

T
// GZ ;

U
oo

and it is a Quillen equivalence. If S � T are as prescribed and

R W Pre.GDT ;Z /! Pre.GDS ;Z /

is the restriction along the inclusion GDZ
S ! GDZ

T , then R ıUT D US and therefore R induces an
equivalence of presheaf homotopy categories.

Remark A.4 When G is finite, we focus on the set S DOrb of all orbit G–sets G=H and the set T DAll
of all finite G–sets. Here we can obtain an inverse equivalence to R by sending a presheaf defined on
S to an additive presheaf defined on T, where additivity requires a presheaf that sends disjoint unions
in T to finite products in GS or in GZ . Thus, an interpretation of the equivalence of presheaves on
GDOrb with presheaves on GDAll is that presheaves on GDAll are equivalent to additive presheaves. The
intuition is that the spectral enrichment builds in additivity, just as functors enriched over abelian groups
automatically preserve coproducts.

Homotopically, Theorems A.1 and A.3 are essentially the same result since GS and GZ are Quillen
equivalent. On the point–set level they are quite different, and they have different virtues and defects.

We say just a bit about the proofs of these theorems. By [Guillou and May 2020, Theorem 4.32], the
presheaf categories used in them are well-behaved model categories. The acyclicity condition there holds
in Theorem A.1 because S satisfies the monoid axiom, by [Mandell et al. 2001, Proposition 12.5]. It
holds in Theorem A.3 by use of the “cofibration hypothesis” of [Elmendorf et al. 1997, page 146], which

19The notation S is short for I S and the notation Z is short for MS in the original sources; as a silly mnemonic device, Z

stands for the Z in the middle of [Elmendorf et al. 1997].
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also holds equivariantly. The orbit G–spectra give compact generating sets in both Ho.GS / and Ho.GZ /.
We require bifibrant representatives. In Theorem A.1, the orbit G–spectra are cofibrant, and fibrant
approximation makes them bifibrant.

By contrast, in Theorem A.3, all SG–modules are fibrant, and cofibrant approximation makes them
bifibrant. Here cofibrant approximation is given by a well-understood left adjoint that very nearly
preserves smash products, as we shall explain in Section A.4.

Technically, Theorem 1.36 of [Guillou and May 2020] requires either that the unit object of the enriching
category V be cofibrant or that every object in V be fibrant. The first hypothesis holds in S and the
second holds in Z . It is impossible to have both of these conditions in the same symmetric monoidal
model category for the stable homotopy category [Lewis 1991; May 2009]. That is a key reason that both
of these results are of interest.

A.2 Comparison of presheaf models of G–spectra

Theorems A.1 and A.3 are related by the following result, which is [Mandell and May 2002, Theorem
IV.1.1]; the nonequivariant special case is [Mandell and May 2002, Theorem I.1.1]. In this result, GS is
given its positive stable model structure from [Mandell and May 2002] and is denoted byGSpos to indicate
the distinction; in that model structure, the sphere G–spectrum in GS, like the sphere G–spectrum in GZ ,
is not cofibrant. In [Mandell and May 2002], the result is proven for genuine G–spectra for compact
Lie groups G. For arbitrary topological groups G, the same proof applies to classical G–spectra, that is
G–spectra indexed on a universe with trivial G–action.

Theorem A.5 There is a Quillen equivalence

GSpos
N
// GZ :

N#
oo

The functor N is strong symmetric monoidal , hence N# is lax symmetric monoidal.

The identity functor is a left Quillen equivalence GSpos!GS. Therefore, Theorems A.1, A.3 and A.5,
have the following immediate consequence:

Corollary A.6 The categories Pre.GDOrb;S / and Pre.GDZ
Orb;Z / are Quillen equivalent. More pre-

cisely, there are left Quillen equivalences

Pre.GDOrb;S /!GS  GSpos!GZ  Pre.GDZ
Orb;Z /:

In fact, we can compare the S –category GDOrb with the Z –category GDZ
Orb via the right adjoint N#.

The adjunction
GSpos

N
// GZ

N#
oo

is tensored over the adjunction
Spos

N
// Z

N#
oo
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in the sense of [Guillou and May 2020, Definition 3.20]. Indeed, since GS is a bicomplete S –category, it
is tensored over S. While a more explicit definition is easy enough, for a spectrum X and G–spectrum Y,
we can define the G–spectrum Y ˇX to be Y ^ i�"�X, where i�"� WS !GS is the change-of-groups
and universe functor associated to " W G ! e that assigns a genuine G–spectrum to a nonequivariant
spectrum. The same is true with S replaced by Z . These functors are discussed in both contexts and
compared in [Mandell and May 2002]. Results there (see [Mandell and May 2002, Theorem IV.1.1])
imply that

NY ˇNX ŠN.Y ˇX/;

which is the defining condition for a tensored adjunction. Now Corollary 3.24 of [Guillou and May
2020] gives that the S –category N#GDZ

Orb is quasiequivalent to GDOrb. Using [Guillou and May 2020,
Remark 2.15 and Theorem 3.17], this implies a direct proof of the Quillen equivalence of Corollary A.6.
Therefore, Theorems A.1 and A.3 are equivalent: each implies the other.

We reiterate the generality: the results above do not require G to be finite. In that generality, we do
not know how to simplify the description of the domain category GDOrb to transform it into a weakly
equivalent S –category or Z –category that is intuitive and perhaps even familiar, something accessible
to study independent of knowledge of the category of G–spectra that we seek to understand. Our main
theorem shows how to do just that when G is finite.

A.3 Suspension spectra and fibrant replacement functors in GS

We here give some observations relevant to understanding the category GDOrb of Theorem A.1. From
now on, the group G is finite and the universe is complete unless otherwise specified.

For an inner product space V and a based G–space X, the V th space of the orthogonal G–spectrum †1G X

isX^SV. The functor†1G , also denoted by F0, is left adjoint to the zeroth space functor .�/0 WGS!GT .
Nonequivariantly, it is part of [Mandell et al. 2001, Lemma 1.8] that, for based spacesX and Y, F0X^F0Y
is naturally isomorphic to F0.X ^ Y /. The categorical proof of that result in [Mandell et al. 2001,
Section 21] applies equally well equivariantly to give the following result:

Proposition A.7 The functor †1G WGT !GS is strong symmetric monoidal.

Therefore, the zeroth space functor is lax symmetric monoidal, but of course that functor is not homo-
topically meaningful except on objects that are fibrant in the stable model structure. There is no known
fibrant replacement functor in that model structure that is well behaved with respect to smash products.
Recall from Remark 3.10 that the existence of a monoidal fibrant replacement functor is relevant to a
monoidal version of our main result.

Although it is less useful for our purposes, we point out two different constructions of monoidal fibrant
replacement functors in the positive stable model structure. The first is immediate from Theorem A.5 but
does not appear in the literature.
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Proposition A.8 The unit � W E ! N#NE of the adjunction between GS and GZ specifies a lax
monoidal fibrant replacement functor on cofibrant objects for the positive stable model structure GSpos.

Remark A.9 Nonequivariantly, Kro [2007] has given a different lax monoidal positive fibrant replace-
ment functor for orthogonal spectra. His construction does not require restriction to cofibrant objects.
Parenthetically, as he notes, it does not apply to symmetric spectra. However, by [Mandell et al. 2001,
Proposition 3.3], the unit E!N]UPNE of the composite of the adjunction .P ;U/ between symmetric
and orthogonal spectra and the adjunction .N;N]/ gives a lax monoidal positive fibrant replacement
functor for symmetric spectra.

Unfortunately the restriction to the positive model structure in Proposition A.8 is necessary, and the
only fibrant approximation functor we know of for use with the stable model structure employed in
Theorem A.1 is that given by the small-object argument. The point is that the suspension G–spectra
†1G .G=HC/ are cofibrant but not positive cofibrant.

Nonequivariantly, a homotopically meaningful version of the adjunction .†1; �1/ has been worked out
for symmetric spectra by Sagave and Schlichtkrull [2012] and for symmetric and orthogonal spectra by
Lind [2013], who compares his constructions with the adjunction .†1; �1/ in Sp (see below) and with
its analogue for Z . This generalizes to the equivariant context, although details have not been written down.

A.4 Suspension spectra and smash products in GZ

We here give some observations relevant to understanding the category GDZ
Orb of Theorem A.3. In

particular, we give properties of cofibrant approximations of suspension spectra that are used in Section 4.
For more information, see [Elmendorf et al. 1996; Mandell and May 2002, Section IV.2] and the
nonequivariant precursor [Elmendorf et al. 1997].

We have a category GP of (coordinate-free)-prespectra. Its objects Y are based G–spaces Y.V / and
based G–maps Y.V /^SW ! Y.W �V / for V �W. Here V and W are sub-inner product spaces of a
G–universe U. A G–spectrum is a G–prespectrum Y whose adjoint G–maps Y.V /!�W�V Y.W / are
homeomorphisms. The (Lewis–May) category GSp of G–spectra is the full subcategory of G–spectra
in GP. The suspension G–prespectrum functor … sends a based G–space X to fX ^SV g. There is a left
adjoint spectrification functorL WGP!GSp, and the suspensionG–spectrum functor†1G WGT !GSp

is L ı…. Explicitly, let
QGX D colim�V†VX;

where V runs over the finite-dimensional subspaces of a complete G–universe U. Then the V th G–space
of †1G X is QG†VX.

All objects of GSp are fibrant, and the zeroth space functor �1G W GSp! GT is now homotopically
meaningful. For a based G–CW complex X (with based attaching maps), †1G X is cofibrant in GSp.
In particular, the sphere G–spectrum SG D †

1
G S

0 is cofibrant. Since G is a compact Lie group, the
orbitsG=H areG–CW complexes, hence the†1G .G=HC/ are cofibrant. However, GSp is not symmetric
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monoidal under the smash product. The implicit trade off here is intrinsic to the mathematics, as was
explained by Lewis [1991]; see [May 2009] for a more recent discussion.

We summarize some constructions in [Elmendorf et al. 1997] that work in exactly the same fashion
equivariantly as nonequivariantly. We have the G–space L .j / of linear isometries U j ! U, with G
acting by conjugation. These spaces form an E1 G–operad when U is complete. The G–monoid L .1/

gives rise to a monad L on GSp. Its algebras are called L–spectra, and we have the category GSpŒL� of
L–spectra. It has a smash product ^L which is associative and commutative but not unital. The action
map � W LY ! Y of an L–spectrum Y is a stable equivalence.

SuspensionG–spectra are naturally L–spectra. In particular, the sphereG–spectrum SG is an L–spectrum.
There is a natural stable equivalence

� W SG ^L Y ! Y

for L–spectra Y. The SG–modules are those Y for which � is an isomorphism, and they are the objects
of GZ . All suspension G–spectra are SG–modules, and so are all L–spectra of the form SG ^L Y. The
smash product ^ on SG–modules is just the restriction of the smash product ^L , and it gives GZ its
symmetric monoidal structure.

We have a sequence of Quillen left adjoints

GT
†1G
�!GSp L

�!GSpŒL� J
�!GZ ;

where LX is the free L–spectrum generated by a G–spectrum X and JY D SG ^L Y is the SG–module
generated by an L–spectrum Y. We let F D JL; then L, J and F are Quillen equivalences. The composite
 D � ı � W FY ! Y is a stable equivalence for any L–spectrum Y. We have defined †1G to be the
composite functor F†1G , and we have the natural stable equivalence of SG–modules  W†1G X !†1G X.

The tensor Y ˇX of a G–prespectrum and a based G–space X has V th G–space Y.V /^X. When Y is
a G–spectrum, the G–spectrum Y ˇX is L.`Y ˇX/, where `Y is the underlying G–prespectrum of Y
[Lewis and May 1986b, Definition 3.1]. Tensors in GSpŒL� and GZ are inherited from those in GSp.
All of our left adjoints are enriched in T and preserve tensors. This leads to the following relationship
between ^ and †1G :

Proposition A.10 For based G–spaces X and Y, there are natural isomorphisms

†1G X ^†1G Y Š .SG ^SG/ˇ .X ^Y /Š SG ^†1G .X ^Y /:

Proof We have †1G X Š SG ˇX and therefore

†1G X D F†1G X Š F.SG ˇX/Š .FSG/ˇX D SG ˇX:

We also have
.SG ˇX/^ .SG ˇY /Š .SG ^SG/ˇ .X ^Y /;

and the conclusion follows.
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Appendix B Whiskering GE to obtain strict unit 1–cells

The bicategory GE of Definition 1.7 narrowly misses being a strict 2–category, and we whisker the unit
1–cells to obtain a strict 2–category GE 0.20 Before focusing on specifics, we give an elementary general
definition.

Definition B.1 For a category D with a privileged object �, define the whiskering D 0 of D at � by
adjoining a new object I and an isomorphism � W I !�. We have the inclusion i WD!D 0, and we define
a retraction functor r W D 0! D by r.I /D� and r.�/D id�. Thus, r ı i D IdD and the isomorphism �

on the object I together with the identity map on all other objects of D 0 defines a natural isomorphism
IdD 0 ! i ı r . If D is a G–category and � is G–fixed, then D 0 is a G–category with I and � fixed by G,
and then D and D 0 are G–equivalent.

The whiskered category GE 0 “enriched in permutative categories” and the whiskered G–category E 0G
“enriched in permutative G–categories” are defined to have the same objects, or 0–cells, as GE and EG ,
namely the finite G–sets A in both cases.

Definition B.2 If A¤ B or if jAj � 1 and AD B, we define GE 0.A;B/ to be the permutative category
GE .A;B/. For each A of cardinality at least 2, we define

GE 0.A;A/DGE .A;A/0;

where the whiskering is performed at the 1–cell�A. We denote the adjoined 1–cell by IA and the adjoined
isomorphism 2–cell by �A W IA!�A. We specify a permutative structure on GE 0.A;A/ by setting

EqF D

�
IA if .E; F /D .IA;∅/ or .∅; IA/;
i.r.E/q r.F // otherwise.

We have denoted the monoidal product by q since the product in GE .A�A/ is given by the disjoint
union of spans. As the only 2–cell in GE 0.A;A/ with source or target ∅ is id∅, this product extends
uniquely to a functor. Since the retraction

r WGE 0.A;A/!GE .A;A/

is strict monoidal and an equivalence of categories, the symmetry isomorphism  W qŠq� on GE .A;A/

lifts uniquely to a symmetry isomorphism  W q Š q� on GE 0.A;A/. Observe that the inclusion
i WGE .A;A/!GE 0.A;A/ is strict monoidal.

To extend composition to functors

GE 0.B; C /�GE 0.A;B/ ı�!GE 0.A; C /;

we declare IA to be a strict 2–sided unit. It remains to define composition with a 2–cell with source
or target IA. Since every such 2–cell factors through �A and composition with �A is already defined,

20We thank Angélica Osorno for help with the material in this section.
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it suffices to define composition with �A. Since �A is a strict right unit, for a span B  E ! A,
abbreviated E, we may define E ı �A W E ı IA ! E ı �A to be the identity 2–cell idE . We define
�B ıE W IB ıE!�B ıE to be `�1B;E , where `B;E is the 2–cell defined in (1.9).

Remark B.3 In [Bohmann and Osorno 2015], and also in a previous version of this article, a different
strictification of GE was proposed, namely just redefining composition with �A to force this to be a unit
1–cell. Unfortunately, this breaks associativity, since the 1–cell �A is decomposable under composition
if jAj � 2.

We have a precisely analogous definition on the level of G–categories, obtaining a strict 2–category E 0G
from EG .

Definition B.4 If A¤B or if jAj � 1 and ADB, we define E 0G.A;B/ to be the permutative G–category
EG.A;B/. For each A of cardinality at least 2, we define

E 0G.A;A/D EG.A;A/
0:

We denote the adjoined 1–cell by IA and the adjoined isomorphism 2–cell by �A. We specify a G–
permutative structure on E 0G.A;A/ by setting

�.�IE1; : : : ; En/D

�
IA if Ei D IA and Ej D∅ for all j ¤ i;
�.�I r.E1/; : : : ; r.En// otherwise.

Observe that the inclusion i W EG.A;A/! E 0G.A;A/ is a map of PG–algebras.

To extend composition to a functor

E 0G.B; C /� E 0G.A;B/
ı
�! E 0G.A; C /;

we declare the object IA 2 E 0G.A;A/ to be a strict 2–sided unit. We define composition with a 2–cell
whose source or target is of the form IA exactly as in Definition B.2, except that to define �B ıE we now
use the `B;E defined in (1.37).
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Milnor invariants of braids and welded braids up to homotopy

JACQUES DARNÉ

We consider the group of pure welded braids (also known as loop braids) up to (link-)homotopy. The
pure welded braid group classically identifies, via the Artin action, with the group of basis-conjugating
automorphisms of the free group, also known as the McCool group P†n. It has been shown recently that
its quotient by the homotopy relation identifies with the group hP†n of basis-conjugating automorphisms
of the reduced free group. We describe a decomposition of this quotient as an iterated semidirect product
which allows us to solve the Andreadakis problem for this group, and to give a presentation by generators
and relations. The Andreadakis equality can be understood, in this context, as a statement about Milnor
invariants; a discussion of this question for classical braids up to homotopy is also included.
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Introduction

The present paper is a contribution to the theory of loop braids (also called welded braids), via the study
of their finite-type invariants. Finite-type invariants were defined by Vassiliev [1990] and were much
studied during the 1990s (see for instance [Gusarov 1994; Kontsevich 1993]), giving birth to a whole field
of research, which is still very active nowadays. Finite-type invariants of string-links and braids have been
the focus of several papers in the late 1990s, by Stanford [1996; 1998], Mostovoy and Willerton [2002],
and Habegger and Masbaum [2000]. By then, finite-type invariants of braids were fairly well understood.
Meanwhile, a generalization of finite-type invariants to virtual knotted objects was introduced in [Gusarov
et al. 2000]. However, it was only much later that this definition was used and studied for welded knotted

© 2024 The Author, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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objects [Bar-Natan and Dancso 2016; 2017]. In the meantime, the interest for welded knotted objects
had grown, as the link between welded diagrams, four-dimensional topology and automorphisms of the
free group had become more apparent [Baez et al. 2007; Fenn et al. 1997; Satoh 2000]; see [Damiani
2017] for a survey of welded braids. In recent years, the study of these objects has been flourishing; see
for instance [Audoux 2016; Bardakov and Bellingeri 2014; Damiani 2019; Kamada 2007; Meilhan and
Yasuhara 2019; Nakamura et al. 2018]. In particular, link-homotopy for these objects (corresponding to
self-virtualization moves in welded diagrams) has been the focus of several recent papers [Audoux et al.
2017a; 2017b; Audoux and Meilhan 2019].

The invariants under scrutiny in this paper appear naturally as filtrations on groups. Precisely, suppose
G is a group whose elements are the objects one is interested in. For example, these could be mapping
classes of a manifold, automorphisms of a group, (welded) braids up to isotopy, (welded) braids up to
homotopy, etc. Suppose we are also given a filtration of G by subgroups: G DG1 �G2 � � � � . Then one
can consider the class Œg�d of an element g 2G inside G=GdC1 and hope to understand g through its
approximations Œg�d , which become finer and finer as d grows to infinity. These approximation are often
easier to understand than g. For instance, Œg�d could be described by a finite family of integers (or other
simple mathematical objects), that we would call invariants of degree at most d .

With this point of view, the question of comparing different filtrations on the same group (such as the
Andreadakis problem — see Section 0.1) can be interpreted as a problem of comparison between different
kinds of invariants. Conversely, comparing different notions of invariants on elements of a group can
often be interpreted as a problem of comparison between different filtrations on the group, provided that
these invariants are indexed by some kind of degree measuring their accuracy, and that they possess some
compatibility with the group structure. It is mainly the latter point of view that we adopt below, working
with filtrations on groups, with a rather algebraic point of view, getting back to the language of invariants
only to interpret our results. This is motivated by the fact that the invariants we consider are strongly
compatible with the group structures: not only do they come from filtrations by subgroups, as described
above, but these filtrations are strongly central, a very nice property allowing us to study them using Lie
algebras. Moreover, all the filtrations we consider do have a natural algebraic definition.

We consider mainly three kinds of filtrations (or invariants):

� Minor invariants correspond to Andreadakis-like filtrations (or the Johnson filtration for the
mapping class group). These are defined for automorphism groups of groups, and their subgroups.

� Finite-type (or Vassiliev) invariants with coefficients in a fixed commutative ring k correspond
to the dimension filtration Dk

�G DG \ .1C I
�/, where I is the augmentation ideal of the group

ring kG.

� The lower central series on G is the minimal strongly central filtration on G.

The minimality of the lower central series means that the corresponding invariants of degree d contain as
much information as possible for invariants possessing this compatibility with the group structure. Since
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the two other filtrations are also strongly central, and the Milnor invariants are of finite type, the above
list goes from the coarsest invariants to the finest ones. Thus, although we will not always emphasize this
in the sequel, the reader should keep in mind that a statement of the form “Milnor invariants of degree at
most d distinguish classes of elements g 2G modulo �dC1G” implies that Milnor invariants of degree at
most d are universal finite-type invariants of degree at most d , and that finite-type invariants of degree at
most d distinguish classes of elements g 2G modulo �dC1G.

Main results

We are interested in the group of pure welded braids (or pure welded string-links) up to homotopy. This
group identifies, through a version of the Artin action up to homotopy, with the group hP†n of (pure)
basis-conjugating automorphisms of the reduced free group RFn (see Definition 1.2). The key result of
this paper is the decomposition theorem:

Theorem 3.1 There is a decomposition of hP†n into a semidirect product

hP†n Š

��Y
i<n

N.xn/=xi

�
Ì .RFn=xn/

�
Ì hP†n�1;

where N.xn/=xi is the normal closure of xn inside RFn=xi , and the action of RFn=xn Š RFn�1 on the
product is the diagonal one. Moreover , the semidirect product on the right is an almost direct one.

The reduced free group is studied in Section 1. In particular, using the version of the Magnus expansion
for the reduced free groups introduced by Milnor, which takes values in the reduced free algebra, we are
able to show an analogue of Magnus’s theorem:

Theorem 1.12 The Lie ring of the reduced free group identifies with the reduced free Lie algebra on
the same set of generators.

The restriction hP†n\A�.RFn/ of the Andreadakis filtration A�.RFn/ of RFn encodes Milnor invariants
of pure welded braids. We are able to determine the structure of the associated graded Lie algebra in
Section 2.1:

Theorem 2.9 The Lie algebra L.hP†n\A�.RFn// identifies , via the Johnson morphism , to the algebra
of tangential derivations of the reduced free algebra.

On the other hand, the decomposition of hP†n (Theorem 3.1) induces a decomposition of its lower
central series, which in turn gives a decomposition of the associated Lie algebra (Theorem 3.8). We are
thus able to compare the lower central series and the Andreadakis filtrations via a comparison of their
associated graded Lie algebras, getting the promised comparison result, which we also show for the group
hPn of classical pure braids up to homotopy, embedded into Aut.RFn/ via the Artin action:

Theorem 3.9 The Andreadakis equality holds for G D hPn and G D hP†n; that is ,

G \A�.RFn/D ��G:
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In other words , Milnor invariants of degree at most d classify braids up to homotopy (resp. welded braids
up to homotopy) up to elements of �dC1.hPn/ (resp. �dC1.hP†n/).

Notice that there is no obvious link between this theorem and its analogue up to isotopy. On the one hand,
for classical braids up to isotopy, the fact that Milnor invariants can detect the lower central series of Pn
has been known for a long time [Habegger and Masbaum 2000; Mostovoy and Willerton 2002], but the
result up to homotopy is new, and cannot be deduced from the former (as far as I know). On the other
hand, for (pure) welded braids (that is, for basis-conjugating automorphisms of the free group), the result
up to isotopy is still open. In fact, although [Bardakov 2003, Theorem 1] gives a decomposition of P†n
similar to our decomposition theorem (see also Remarks 3.4 and 3.6), the pieces of this decomposition
are poorly understood, far from the fairly complete description in our setting. Besides, one feature of
hPn and hP†n which makes them very different from Pn and P†n (and in fact, much easier to handle)
is their nilpotence, which is used throughout the paper.

Finally, we use our methods to give a presentation of the group hP†n. A classical result of McCool
[1986] asserts that the group P†n of (pure) basis-conjugating automorphisms of the free group Fn is the
group generated by generators �ij .i ¤ j / submitted to the McCool relations:

Œ�ik�jk; �ij �D 1 for i; j; k pairwise distinct;

Œ�ik; �jk�D 1 for i; j; k pairwise distinct;

Œ�ij ; �kl �D 1 if fi; j g\ fk; lg D¿:

We show that we need to add three families of relation to get its quotient hP†n:

Theorem 5.8 The pure loop braid group up to homotopy hP†n is the group generated by generators
�ij .i ¤ j / submitted to the McCool relations on the �ij , and the three families of relations ,

Œ�mi ; w; �mi �D Œ�im; w; �jm�D Œ�im; w; �mi �D 1;

for i; j < m, i ¤ j , and w 2 h�mkik<m.

The method used for the group can be adapted to the Lie algebra associated to the lower central series
of hP†n. We show in Section 5.3 that it admits a similar presentation. We also give a presentation of the
Lie algebra of hPn in Corollary 3.12.
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0 Reminders: strongly central series and Lie rings

We give here a short introduction to the theory of strongly central filtrations and their associated Lie rings,
whose foundations were laid by M Lazard [1954]. Details may be found in [Darné 2019; 2021].

0.1 A very short introduction to the Andreadakis problem

LetG be an arbitrary group. The left and right action ofG on itself by conjugation are denoted respectively
by xy D y�1xy and yxD yxy�1. The commutator of two elements x and y in G is Œx; y� WD xyx�1y�1.
If A and B are subsets of G, we denote by ŒA; B� the subgroup generated by all commutators Œa; b�
with .a; b/ 2 A�B . We denote the abelianization of G by Gab WDG=ŒG;G� and its lower central series
by ��.G/; that is,

G D �1.G/� ŒG;G�D �2.G/� ŒG; �2.G/�D �3.G/� � � � :

The lower central series is a fundamental example of a strongly central filtration (or N–series) on a
group G:

Definition 0.1 A strongly central filtration G� on a group G is a nested sequence of subgroups

G DG1 �G2 �G3 � � � �

such that ŒGi ; Gj ��GiCj for all i; j > 1.

In fact, the lower central series is the minimal such filtration on a given group G, as is easily shown by
induction.

Recall that when G� is a strongly central filtration, the quotients Li .G�/ WDGi=GiC1 are abelian groups,
and the whole graded abelian group L.G�/ WD

L
Gi=GiC1 is a Lie ring (ie a Lie algebra over Z), where

Lie brackets are induced by group commutators. The lower central series of a group is usually difficult
to understand, but we are often helped by the fact that its associated Lie algebra is always generated in
degree one.

Convention 0.2 If g is an element of a group G endowed with a (strongly central) filtration G�, the
degree of g with respect to G� is the minimal integer d such that g 2 Gd �GdC1. Since most of the
filtrations we consider satisfy

T
Gi D f1g, this is well defined (if not, we could just say that d D1 for

elements of
T
Gi ). We often speak of the class Ng of g in the Lie algebra L.G�/, by which we mean the

only nontrivial one, in Ld .G�/D Gd=GdC1, where d is the degree of g with respect to G�, unless a
fixed degree is specified.

When G� is a strongly central filtration on G DG1, there is a universal way of defining a strongly central
filtration on a group of automorphisms of G. Precisely, we get a strongly central filtration on a subgroup
of Aut.G�/, the latter being the group of automorphisms of G preserving the filtration G�:

(0-1) Aj .G�/ WD f� 2 Aut.G�/ j 8i > 1; Œ�;Gi ��GiCj g:
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The commutator is computed inGÌAut.G/, which means that for � 2Aut.G/ and g2G, Œ�; g�D�.g/g�1.
Thus, Aj .G�/ is the group of automorphisms of G� acting trivially on the quotients Gi=GiCj (i > 1).
For instance, A1.G�/ is the group of automorphisms of G� acting trivially on L.G�/. When G� is the
lower central series of a group G, then L.G/ WDL.��.G// is generated (as a Lie ring) by L1.G/DG

ab,
so A1.G/ identifies with the group IAG of automorphisms of G acting trivially on its abelianization Gab.
Thus A�.G/ WDA�.��.G// is a strongly central filtration on IAG , and we can try to understand how it
compares to the minimal such filtration on IAG , which is its lower central series:

Problem 1 (Andreadakis) For a given group G, how close is the inclusion of ��.IAG/ into A�.G/ to
being an equality?

One way to attack this problem is to restrict to subgroups of IAG . Precisely, if K � IAG is a subgroup,
we can consider the following three strongly central filtrations on K:

��.K/�K \��.IAG/�K \A�.G/:

Definition 0.3 We say that the Andreadakis equality holds for a subgroup K of IAG when

��.K/DK \A�.G/:

Our three main tools in calculating Lie algebras are the following:

Lazard’s theorem [1954, Theorem 3.1] (see also [Darné 2019, Theorem 1.36]) If A is a filtered
ring (that is, A is filtered by ideals A D A0 � A1 � A2 � � � � such that AiAj � AiCj ), the subgroup
A�\ .1CA1/ of A� inherits a strongly central filtration A�� WD A

�\ .1CA�/ whose Lie ring embeds
into the graded ring gr.A�/, via

L.A�� / ,! gr.A�/; Nx 7! x� 1:

If G is any group endowed with a morphism ˛ WG! A�, then we can pull the filtration A�� back to G,
and L.˛�1.A�� // embeds into L.A�� /, thus into gr.A�/.

Semidirect product decompositions [Darné 2021, Section 3.1] If G� is a strongly central filtration,
G� D H� ÌK� is a semidirect product of strongly central filtrations if Gi D Hi ÌKi is a semidirect
product of groups for all i , and ŒKi ;Hj ��HiCj for all i and j . Then the strong centrality of G� implies
that H� and K� must be strongly central. This kind of decomposition is useful because it induces a
decomposition of Lie algebras

L.G�/D L.H�/ÌL.K�/:

Now, if G DH ÌK is any semidirect product of groups, then its lower central series decomposes into a
semidirect product ��.G/D �K� .H/Ì��.K/ of strongly central filtrations, where �K� .H/ is defined by

H D �K1 .H/� ŒG;H�D �
K
2 .H/� ŒG; �

K
2 .H/�D �

K
3 .H/� � � � :
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When the semidirect product is an almost-direct one, which means that K acts trivially on H ab, then
�K� .H/D ��.H/, so in this case

L.H ÌK/D L.H/ÌL.K/:

The Johnson morphism [Darné 2019, Section 1.4] A very useful tool to study a filtration of the
form A�.G�/ is the Johnson morphism, which encodes the fact that the associated graded Lie algebra
L.Aj .G�// acts faithfully on the graded Lie algebra L.G�/. It is defined by

� W L.A�.G�// ,! Der.L.G�//; N� 7! Œ�;��;

which means that it is induced by � 7! .x 7! �.x/x�1/. Its injectivity comes from the universality of the
filtration A�.G�/.

If we want to compare the filtration A�.G�/ with another one, we can do so using comparison morphisms.
For example, if K is a subgroup of Aut.G�/, the inclusion of ��K into K\A�.G�/ induces a morphism
i� W L.K/! L.K \A�.G�// which is injective if and only if ��K DK \A�.G�/. Thus we can show
the Andreadakis equality by showing the injectivity of the morphism � 0 WD � ı i� (� 0 is also sometimes
called the Johnson morphism).

0.2 The case of the free group

Before beginning our study of the Andreadakis problem for the reduced free group, it may be useful
to recall some basic facts about the free group case. Here Fn denotes the free group on n generators
x1; : : : ; xn.

Magnus expansions The assignment xi 7!1CXi defines an embedding of Fn into the group of invertible
power series on n noncommuting indeterminates X1; : : : ; Xn with integral coefficients. In fact, it is easy
to see that it defines a morphism to 1C .X1; : : : ; Xn/, and that this induces (using universal properties)
an isomorphism of completed rings,

bZFn Š bT Œn�;
where the group ring ZFn is completed with respect to the filtration by the powers of its augmentation
ideal, and the tensor algebra T Œn� on n generators X1; : : : ; Xn is completed with respect to the usual
valuation. One shows that the above morphism from Fn to this ring is injective by showing directly that
the image of a reduced nontrivial word must be nontrivial.

Magnus’s theorem Using Lazard’s theorem, we can get a surjection of L.Fn/ onto the Lie ring generated
in degree one inside gr.bT Œn�/Š T Œn�, which is the free Lie ring LŒn� on n generators. Using freeness,
one shows that this surjection has to be injective as well;

L.Fn/Š LŒn�:

The Andreadakis problem and the Johnson morphism In the case of the free group, the Johnson
morphism defines an embedding of L.A�.Fn// into the Lie ring of derivations of the free Lie ring.
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The Andreadakis problem for automorphisms of free groups is a difficult problem. The two filtrations were
first conjectured to be equal [Andreadakis 1965, page 253]. This was disproved very recently [Bartholdi
2016], but the methods used do not give a good understanding of what is going on. The Andreadakis
equality is known to hold for certain well-behaved subgroups, such as the pure braid group Pn [Darné
2021; Satoh 2017]. However, the problem stays largely open in general. In particular, it is open for the
group P†n of basis-conjugating automorphisms (that is, for the group of pure welded braids), of which
our group hP†n is a simpler version.

1 The reduced free group and its Lie algebra

In this first section, we introduce and study the reduced free group, which was first introduced by Milnor
[1954] as the link group of the trivial link with n components. Using the Magnus expansion defined in
[Milnor 1954], we determine its Lie ring.

Notation 1.1 Several of our constructions are functors on the category of sets. For such a functor ˆ, we
denote by ˆŒX� its value at a set X . When X is finite with n elements, we will often denote ˆŒX� by
ˆŒn� or by ˆn.

1.1 The reduced free group

Definition 1.2 The reduced free group on a set X is the group defined by the presentation

RFŒX� WD hX j 8x 2X; 8w 2 F ŒX�; Œx; xw �D 1i:

This means that it is the largest group generated by X such that each element of X commutes with all its
conjugates.

Since any x commutes with itself, the relations Œx; xw � of Definition 1.2 can also be written Œx; Œx; w��.
The next result and its proof are taken from [Habegger and Lin 1990, Lemma 1.3]:

Proposition 1.3 For any integer n, the group RFn is n–nilpotent. For any set X , the group RFŒX� is
residually nilpotent.

Proof We use the fact that RFŒ�� is a functor on pointed sets. First, for a finite set X , we show by
induction on nD jX j that RFn D RFŒX� is n–nilpotent. This is obvious for nD 1, because RF1 Š Z.
Suppose that RFn�1 is .n�1/–nilpotent. If x 2X , the normal subgroup N.x/ of RFŒX� generated by x
is the kernel of the projection px from RFŒX� to RFŒX �fxg� sending x to 1. We have an exact sequence

1!
\
x2X

N.x/! RFŒX� pD.px/����!

Y
x2X

RFŒX �fxg�:

Since the group on the right is .n�1/–nilpotent by the induction hypothesis, the morphism p must send
�n.RFŒX�/ to 1, so that �n.RFŒX�/ is inside the kernel

T
N.x/. Moreover, by definition of the reduced

Algebraic & Geometric Topology, Volume 24 (2024)



Milnor invariants of braids and welded braids up to homotopy 1285

free group, for every x 2X , all elements of N.x/ commute with x. Thus, an element of
T

N.x/ commutes
with all x 2X , so it is in the center Z.RFŒX�/. As a conclusion, �n.RFŒX�/� Z.RFŒX�/, which means
exactly that RFŒX� is n–nilpotent.

Suppose now X infinite. Let w be an element of RFŒX�. It can be written as a product of a finite number
of elements of X and their inverses. Denote be W such a finite subset of X . Then w is inside the image of
the canonical injection RFŒW � ,! RFŒX�, which is split by the projection from RFŒX� to RFŒW � sending
X �W to 1. Since RFŒW � is jW j–nilpotent, this construction provides a nilpotent quotient of RFŒX� in
which the image of w is nontrivial, whence the residual nilpotence of RFŒX�.

1.2 The reduced free algebra

Definition 1.4 Let Y be a set. If s > 2 is an integer, let us define �s.Y / by

�s.Y / WD f.yi / 2 Y
s
j 9i ¤ j; yi D yj g:

The reduced free algebra on Y is the unitary associative ring defined by the presentation

AŒY � WD hY j 8s; 8.yi / 2�s.Y /; y1 � � �ys D 0i:

For short, we often forget the mention of Y when it is clear from the context, and write only A for AŒY �.

Fact 1.5 The algebra AŒY � is graded by the degree of monomials. As a Z–module , AŒY � is a direct
factor of the tensor algebra T ŒY �; a (finite) basis of AŒY � is given by monomials without repetition on
the generators y 2 Y , which are monomials of the form y1 � � �ys with .yi / …�s.Y /.

Proof Let R be the (free) Z–submodule of T ŒY � generated by the y1 � � �ys such that .yi / 2 �s.Y /
(monomials with repetition). This module is clearly a homogeneous ideal of T ŒY �. As a consequence,
AD T=R. Moreover, if we denote by S the (free) Z–submodule of T generated by monomials without
repetition, then T D S ˚R as a Z–module, so AŠ S .

Definition 1.6 Let Y be a set. The reduced free Lie algebra on Y is the Lie algebra defined by the
presentation

RLŒY � WD hY j 8s; 8.yi / 2�s.Y /; Œy1; : : : ; ys�D 0i;

where Œy1; : : : ; ys� denotes Œy1; Œy2; Œ � � � Œys�1; ys� � � � ���.

The following result uses some of the combinatorics of the free Lie ring recalled in the appendix:

Proposition 1.7 The Lie subalgebra of AŒY � generated by Y identifies with RLŒY �.

Proof We need to prove that the intersection of the ideal R of relations defining AŒY � with the free Lie
algebra LŒY �� T ŒY � is exactly the module S of relations defining RLŒY �. The inclusion of S into R is
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clear: when we decompose a relation in S on the basis of T V , only monomials with exactly the same
letters appear, counting repetitions. For the converse, let us first remark that thanks to Lemma A.14, S
is the submodule of LŒY � generated by all Lie monomials with repetition. Let p ¤ 0 be an element of
R\LŒY �, and let us consider its decomposition pD

P
�wPw on the Lyndon basis of LŒY �. Let w be the

smallest Lyndon word such that �w ¤ 0. It follows from Lemma A.7 that �w must be the coefficient of w
in the decomposition of p into a linear combination of monomials of T V . Since p 2R, the word w must
be with repetition, so Pw 2 S . Then p��wPw 2R\LŒY � has less terms than p in its decomposition
on the Lyndon basis, giving us the result by induction.

Remark 1.8 When Y is a finite set with n elements, we can extract finite presentations from the above
presentations. Indeed, the ideal R and the Lie ideal S are both generated in degrees at most nC 1, since
RnC1 D T Œn�nC1 and SnC1 D LŒn�nC1 (a word of length nC 1 must possess at least a repetition). As a
consequence, the relations of degree at most nC 1 are enough do describe AŒn� (resp. RLŒn�), and there
are finitely many of them.

Proposition 1.9 Lyndon monomials without repetition on the yi are a basis of RLŒY �. The rank of the
degree-k part RLŒn�k of RLŒn� is .k� 1/Š

�
n
k

�
.

Proof Lemma A.14 implies that the module S in the proof of Proposition 1.7 is the submodule generated
by all Lyndon monomials with repetition, which are thus a basis of S . As a consequence, Lyndon
monomials without repetition give a basis of the quotient RLŒY �D LŒY �=S .

In order to determine the ranks, we need to count Lyndon words without repetition of length k in
y1; : : : ; yn. A word without repetition is Lyndon if and only if its first letter is the smallest one. Such a
word is determined by the choice of k letters, and a choice of ordering of the .k� 1/ letters left when the
smallest one is removed. This gives .k� 1/Š

�
n
k

�
such words, as announced.

Proposition 1.10 In AŒY ��, each element of 1CY commutes with all its conjugates.

Proof Let y be an element of Y . From the relation y2 D 0, we deduce that 1C y is invertible, with
1�y as its inverse. Let u 2 A�. Then u.1Cy/u�1 D 1Cuyu�1. Since yAy D 0, we can write

.1Cy/.1Cuyu�1/D 1CyCuyu�1 D .1Cuyu�1/.1Cy/;

which is the desired conclusion.

Notation 1.11 From now on, we denote by X and Y two sets endowed with a bijection X Š Y that we
will denote by xi 7! yi (we consider both X and Y indexed by a bijection from a set of indices I ). This
notation will allow us to distinguish between the group-theoretic world and its algebraic counterpart.

From Proposition 1.10, we get a well-defined morphism, which is an analogue of the Magnus expansion,
and was introduced by Milnor [1954, Section 4],

(1-1) � W RFŒX�! AŒY ��; xi 7! 1Cyi :
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From Lazard’s theorem [1954, Theorem 3.1] (see also [Darné 2019, Theorem 1.36]), we get an associated
morphism between graded Lie algebras,

(1-2) N� W L.RFŒX�/! gr.AŒY �/Š AŒY �; Nxi 7! yi :

From this we deduce our first main theorem:

Theorem 1.12 The above morphism (1-2) induces a canonical isomorphism between the Lie algebra of
the reduced free group and the reduced free algebra ,

L.RFŒX�/ŠRLŒY �:

Proof Since L.RFŒX�/ is generated in degree 1 [Darné 2019, Proposition 1.19] (that is, generated by
the Nxi ), the morphism (1-2) defines a surjection from L.RFŒX�/ onto the Lie subalgebra of A generated
by Y , which is RLŒY � (Proposition 1.7). But L.RFŒX�/ is a reduced Lie algebra on X , by which we mean
that the relations on the yi definingRLŒY � are true for the classes Nxi . Indeed, in RFŒX�, the normal closure
N.x/ of a generator x 2X is commutative. As a consequence, if u is any element of N.x/, then Œx; u�D 1.
Applying this to u D ŒxrC1; : : : ; xs; x; w� 2 N.x/ (where our notation for iterated commutators is the
same as above for iterated brackets in Lie algebras), we see that any Œx1; : : : ; xr ; x; xrC1; : : : ; xs; x; w�
is trivial in the group, hence so is its class in the Lie algebra. Thus yi 7! Nxi defines an inverse to our
surjection, which has to be an isomorphism.

Corollary 1.13 The morphism � W xi 7! 1Cyi (1-1) from RFŒX� to AŒY �� is injective.

Proof Let w be an element of ker.�/. If w¤ 1, then, by residual nilpotence of RFŒX� (Proposition 1.3),
there exists an integer k such that w 2 �k ��kC1. Thus, xw is a nontrivial element of Lk.RFŒX�/, sent to
0 by N�. But N� is an isomorphism (Theorem 1.12), so this is not possible; our element w must be trivial.

Remark 1.14 This statement also appears in [Bar-Natan 1995]; compare Proposition 5.2 therein.

Some remarks on finite presentations of nilpotent groups Every nilpotent group of finite type admits
a finite presentation. This fact is easy to prove, by induction on the nilpotency class, using that finitely
generated abelian groups are finitely presented, and that an extension of finitely presented groups is finitely
presented. As a consequence, the reduced free group RFn on x1; : : : ; xn must admit a finite presentation.
Can we find a simple one? Considering that we have a finite presentation of the associated Lie algebra, the
problem does not seem to be difficult, at first glance. Indeed, let Gn is the group admitting the same finite
presentation as RLn (see Remark 1.8), where brackets are replaced by commutators. These relations
are true in RFn (see the proof of Theorem 1.12), thus there is a map � from Gn onto RFn, which must
induce an isomorphism at the level of Lie rings. However, we can deduce that � is an isomorphism only
if we know that both these groups are nilpotent. Which raises the question: do the relations defining Gn
imply that it is nilpotent?
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Thus we are led to ask ourselves: what finite set of relation is needed to ensure that a group is nilpotent?
This question is strongly related to the following question: can we give a simple finite presentation of
the free nilpotent group of class c (where “simple” is taken in some naive sense)?. This question is
surprisingly difficult. The reader can convince himself that killing commutators of the form Œxi0 ; : : : ; xic �

(or even Œx˙i0 ; : : : ; x
˙
ic
�) does not seem to be enough, because the usual formulas of commutator calculus

seem not to allow one to reduce to commutators of this particular form and length. Even killing all iterated
commutators of length cC 1 of the generators is only conjectured to be enough [Jackson 2008; Sims
1987].

To get a presentation known to work in general, we must take a much larger one. For instance, one can kill
all iterated commutators of the generators of length between cC 1 and 2c. This can be improved slightly
by killing only relations of the form Œx; y�, where x and y are iterated commutators of the generators of
length at most c, whose length add up to at least cC 1. Indeed, all iterated commutators of length greater
than c can be written as a product of conjugates of iterated commutators of the generators of length
greater than c (by repeated use of the formulas Œa; bc�D Œa; b� � Œa; c� � ŒŒc; a�; b� and Œa; b�1�D Œb; a�b).
And every such commutator has a subcommutator of the given form (to see that, it can help to think of
commutator words as rooted planar binary trees).

In order to avoid these problems, and to keep our presentations simple, we will only give a presentation
of RFn as a nilpotent group, that is, we assume that the group Gn in the reasoning above is nilpotent,
thus obtaining:

Proposition 1.15 The reduced free group RFn is the quotient of the free n–nilpotent group on x1; : : : ; xn
by the finite set of relations

8s 6 n 8.xi / 2�s.X/ Œx1; : : : ; xs�D 1;

where Œx1; : : : ; xs� denotes Œx1; Œx2; Œ � � � Œxs�1; xs� � � � ���.

The subtlety of this situation was not perceived in [Cohen 1995], where it was assumed that this presentation
(with nC1 commutators included) would automatically define a nilpotent group. Note that several results
of the present paper give some insight on the group-theoretic results of [Cohen 1995], which were stated
only in terms of the underlying abelian groups, and become simpler when taking into account the Lie
ring structure.

1.3 Centralizers

We will use Corollary 1.13 to compute the centralizers of generators in RFŒX�. First, we show a lemma
about commutation relations in AŒY �:

Lemma 1.16 Let y 2 Y , and let � be an integer. Define the �–centralizer C�.y/ of y in AŒY � to be

C�.y/ WD fu 2 AŒY � j uy D �yug:
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If �¤ 1, then C�.y/ is exactly hyi. If �D 1, then C�.y/DZ �1˚hyi. As a consequence , Z �1˚hyi is
the centralizer C.y/ of y. Also , hyi is the annihilator Ann.y/ of y, and it is also the set of elements u
satisfying uy D�yu.

Proof If u is an element of hyi, then uy D �yuD 0. Moreover, obviously, 1 2 C1.y/. This proves one
inclusion. Let us prove the converse. Let u be an element of C�.y/. Let us decompose u as a sum of
monomials without repetition

P
�˛m˛ in A, and consider a monomial m˛ ¤ 1 not containing y. Then

�˛ is the coefficient of m˛y in 0D uy � �yu, so it must be zero. Also, if � is the coefficient of 1 in
m, then the coefficient of y in uy � �yu is .1� �/�, hence � D 0 if � ¤ 1. Thus all the monomials
appearing in the decomposition of u (except possibly 1 if �D 1) must contain y, so that u belongs to hyi
(resp. to Z˚hyi if �D 1).

The next lemma is [Habegger and Lin 1990, Lemma 1.10]:

Lemma 1.17 Let x 2 X . Let C.x/ be the centralizer of x in RFŒX�. Then C.x/ is exactly the normal
closure N.x/ of x.

Proof The inclusion N.x/�C.x/ follows from the definition of RFŒX�. Let us prove the converse. From
Corollary 1.13, we know that C.x/DC.1Cy/\RFŒX�D .Z˚hyi/\RFŒX�. Moreover, RFŒX� ,!AŒY �

takes values in 1CAŒY � (where A is the augmentation ideal of A, that is, the set of polynomials with no
constant term). As a consequence, this intersection is .1Chyi/\RFŒX�. But 1Chyi is exactly the set
of elements sent to 1 by the projection AŒY �� AŒY �fyg�. This projection induces the projection from
RFŒX� to RFŒX �fxg�, whose kernel is N.x/, whence the result.

Lemma 1.18 Let y 2 Y . Let CL.y/ be the centralizer of y in RLŒY �. Then CL.y/ is exactly the Lie
ideal hyi generated by y.

Proof If we now denote by hyiA the ideal generated by y in A (denoted by hyi above), we have that
CL.y/D C1.y/\RLŒY �D hyiA\RLŒY � is the submodule of RLŒY � generated by Lie monomials in
which y appears, which is exactly hyi.

Proposition 1.19 The center of RFn is the intersection of the N.xi /, and also coincides with �n.RFn/; it
is free abelian of rank .n� 1/Š

Proof The inclusions �n.RFn/�
T

N.xi /� Z.RFn/ were established in the proof of Proposition 1.3.
Let w be a nontrivial element of Z.RFn/. Since RFn is nilpotent, w 2 �k ��kC1 for some k, and xw is a
nontrivial element in the center of L.RFn/ŠRLn (see Theorem 1.12). From Lemma 1.18, we deduce
that xw is in the Lie ideal hy1i \ � � � \ hyni. As a consequence, all yi appear at least once in each Lie
monomial of the decomposition of xw. Thus its degree must be at least n, which means that w 2 �n.RFn/.

Moreover, �n.RFn/ D �n.RFn/=�nC1.RFn/ D Ln.RFn/ identifies with the degree-n part RLŒn�n
of RLŒn�, which is free abelian of rank .n� 1/Š by Proposition 1.9.
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2 Derivations and the Johnson morphism

In order to tackle the Andreadakis problem for RFn, we need to understand the associated Johnson
morphism, whose target is the algebra of derivations of the reduced free Lie algebra.

2.1 Derivations

We begin our study of derivations by those of AŒY �, which are quite easy to handle.

Proposition 2.1 Any derivation d of AŒY � sends each element y of Y to an element of the ideal hyi.
Conversely, any application dY W Y ! AŒY � sending each y into hyi extends uniquely to a derivation
of AŒY �.

Proof First, given a derivation d , we can apply it to the relation y2D 0. We get that .dy/yCy.dy/D 0.
Thus dy 2 C�1.y/, which means that dy 2 hyi by Lemma 1.16.

Suppose now that we are given a map dY W Y !AŒY � sending each y into hyi. Then dY extends uniquely
to a derivation dT from T ŒY � to AŒY � (the latter being a T ŒY �–bimodule in the obvious sense) in the
usual way,

dT .yi1 � � �yil / WD

lX
jD1

yi1 � � �yij�1 � dY .yij / �yij�1 � � �yil :

From the hypothesis on dY , we deduce that d vanishes on the monomials with repetition (the sum on
the left being a sum of monomials with repetition in this case), so it induces a well-defined derivation
d W AŒY �! AŒY � extending dY . Unicity is obvious from the fact that Y generates the ring AŒY �.

We now turn to the study of derivations of RLŒY �. We consider only derivations (strictly) increasing
the degree, that is, sending Y into RLŒY �>2. In fact, we will mostly be concerned with homogeneous
such derivations (which raise the degree by a fixed amount), but we will see that this distinction is not
important for RLŒY � (Corollary 2.3).

Proposition 2.2 Let d be a derivation of RLŒY �. Then for any y 2 Y ,

dy 2 hyiC
\
y0¤y

hy0i DW Jy ;

where hyi is the Lie ideal generated by y. Conversely , any map from Y to RLŒY �>2 satisfying this
condition can be extended uniquely to a derivation of RLŒY �.

Let us remark that the homogeneous ideal Jy differs from hyi only in degree jY j � 1 (in particular,
only when Y is finite), since the second term is generated by Lie monomials without repetition where
all y0 appear, save possibly y. Moreover, one easily sees that, for jY j D n, the ideal Jy contains all
of RLŒn�n�1.
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Proof of Proposition 2.2 For jY j D 2, remark that RLŒY �2 � hy1i \ hy2i and RLŒY �>3 D f0g. As a
consequence, any linear map raising the degree satisfies the condition and defines a derivation, so we
have nothing to show.

Let us suppose that Y has at least three elements. Let d be a derivation of RLŒY �, and let y 2 Y . Take
z 2 Y � fyg, and consider the relation 0D d.Œy; z; y�/D Œdy; z; y�C Œy; z; dy�. Let us decompose dy
as a sum of monomials in AŒY �. Let m be a monomial which contains neither y nor z, and let � be the
coefficient of m in dy. Then the monomial mzy appears with coefficient 2� in the decomposition of
Œdy; z; y�C Œy; z; dy�, so � must be trivial. Since this is true for any z ¤ y, the only monomials without
repetition not containing y that can appear in dy are the ones containing every element of Y save y,
which are exactly the generators of Jy modulo hyi. This shows that dy 2 Jy .

To show the converse, we can restrict to homogeneous maps, since any map from Y to RLŒY �>2 is
a sum of homogeneous ones, and a sum of derivations is a derivation. Suppose that we are given a
homogeneous map dY W Y ! RLŒY �>2 sending each y into Jy . If dY is not of degree jY j � 2, this
condition amounts to dY .y/ 2 hyi. This Lie ideal stands inside the associative ideal hyi � AŒY �. We can
thus use Proposition 2.1 to extend this map to a derivation of AŒY �. This derivation sends Y into RLŒY �,
hence it preserves RLŒY �� AŒY �. As a consequence, it restricts to a derivation of RLŒY � extending dY .

We are left to study the case when Y has n elements and dY is of degree n� 2. Then the conditions
on the elements dY .y/ are empty. We can still extend dY to a derivation from T ŒY � to AŒY �, as in the
proof of Proposition 2.1, but it does not vanish on the relations defining AŒY �. However, the induced Lie
derivation from LŒY � to RLŒY � does vanish on the Lie monomials with repetition. Indeed, it vanishes
on all elements of degree at least 3 (sent to RLŒY �>nC1 D f0g), and there are no such monomials in
degree 2, since the elements Œy; y� are already trivial in LŒY �. As a consequence, it induces a well-defined
derivation from RLŒY � to itself. This derivation extends dy and is the only one to do so, since RLŒY � is
generated by Y .

Corollary 2.3 Any derivation of RLn is the sum of homogeneous components ,

Der.Ln/Š
M
k>1

Derk.RLn/:

Proof If d is such a derivation, Proposition 2.2 shows that the homogeneous components of its restriction
to Y extend uniquely to derivations of RLn, whose sum coincides with d on Y , hence everywhere. Note
that it makes sense to speak of this sum, because Y is finite, so that the number of nontrivial homogeneous
components of d jY is finite.

The following theorem is an analogue of [Darné 2019, Proposition 2.41], replacing free nilpotent groups
by reduced free groups.

Theorem 2.4 Let n> 2 be an integer. The Johnson morphism is an isomorphism:

L.A�.RFn//Š Der.RLn/:
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Proof Take jX j D jY j D n. Let d be a derivation of RLŒY �, of degree k. We need to lift it to an automor-
phism ' of RFŒX�. We first suppose that k ¤ n� 2. Since d.yi / 2 hyi i \RLkC1ŒY � (Proposition 2.2),
we can write each d.yi / as a linear combination of Lie monomials of length kC 1 containing yi . The
corresponding product of brackets in RFŒX� lifts d.yi / to an element wi of �kC1.RFŒX�/\N.xi /. The
element wixi belongs to N.xi /, so it commutes with all its conjugates. As a consequence, xi 7! wixi

defines an endomorphism ' of RFŒX�. Since ' acts trivially on the abelianization of RFŒX�, which is
nilpotent, it is an automorphism [Darné 2019, Lemma 2.38]. Moreover, by construction, �. N'/D d .

Suppose now that k D n � 2. Then d.yi / can be any element of RLn�1ŒY �. Choose any lift wi in
�n�1.RFŒX�/ of d.yi /. Using the usual formulas of commutator calculus, we see that for any w 2RFŒX�,
Œwixi ; w;wixi � � Œxi ; w; xi � .mod �nC1/. Since Œxi ; w; xi � D 1 and �nC1.RFn/ D f1g, we conclude
that Œwixi ; w;wixi � D 1, which means exactly that wixi commutes with all its conjugate. The same
construction as in the first case then gives an automorphism ' 2An�2 such that �. N'/D d .

2.2 Tangential derivations

Definition 2.5 A tangential derivation of RLŒY � is a derivation sending each y 2 Y to an element of the
form Œy; wy � (for some wy 2RLŒY �).

Fact 2.6 The subset Der� .RLŒY �/ of tangential derivations is a Lie subalgebra of Der.RLŒY �/.

Proof Let d W y 7! Œy; wy � and d 0 W y 7! Œy; w0y �. Then an elementary calculation gives

(2-1) Œd; d 0�.y/D Œy; Œwy ; w
0
y �C d.w

0
y/� d

0.wy/�;

whence the result.

Proposition 2.7 Let n> 2 be an integer. The Lie subalgebra of Der.RLn/ generated in degree 1 is the
subalgebra Der� .RLn/ of tangential derivations.

Proof Consider the derivation dij sending yi to Œyi ; yj � and all the other yk to 0. From Proposition 2.2,
we know that these generate the module of derivations of degree 1. They are tangential derivations, so the
Lie subalgebra they generate is inside Der� .RLŒY �/. Let us show that it is all of Der� .RLŒY �/. Consider
the set Di of tangential derivations sending all yk to 0, save the i th one. Such derivations vanish on all
monomials which are not in hyi i, and preserve hyi i. Since elements of hyi i commute with yi , formula
(2-1) implies that

ci WRLŒY �!Di ; t 7! .yi 7! Œyi ; t �/;

is a morphism. It is obviously surjective, so Di is a Lie subalgebra of Der� .RLŒY �/. Moreover, its kernel
is hyi i (Lemma 1.18), so Di ŠRLŒY �=yi is in fact the free reduced Lie algebra on the ci .yj /D dij (for
j ¤ i). Since Der� .RLŒY �/ is the (linear) finite direct sum of the Di , it is indeed generated (as a Lie
algebra) by the dij .
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Recall that the McCool group P†X is the group of automorphisms of the free group F ŒX� on a set X
fixing the conjugacy class of each generator x 2X .

Definition 2.8 The reduced McCool group hP†X is the subgroup of Aut.RFŒX�/ preserving the conju-
gacy class of each generator x 2X of RFŒX�.

This group hP†X is also called AutC .RFX /, but we prefer to think of it as version of P†X up to
homotopy (this terminology will be explained in Section 4). When X is finite, we denote its elements by
x1; : : : ; xn and hP†X by hP†n.

Consider the filtration A�.RFn/ on Aut.RFn/. It restricts to a filtration hP†n \A�.RFn/ on hP†X .
Moreover, since A�.RFn/ is strongly central on the subgroup A1.RFn/ of automorphisms acting trivially
on RFab

n , and hP†n �A1.RFn/, this induced filtration is strongly central on hP†n.

Theorem 2.9 Let n> 2 be an integer. The Johnson morphism induces an isomorphism

L.hP†n\A�.RFn//Š Der� .RLn/:

Proof Let ' W xi 7! x
wi
i be a basis-conjugating automorphism belonging to Ak �AkC1. Then

�.'/.yi /D Œyi ; xwi �

(where xwi is the class of wi in �k=�kC1), so the Johnson morphism sends L.hP†n \A�.RFn// into
Der� . Moreover, it is injective by Theorem 2.4, and since �.�ij /D dij , Proposition 2.7 implies that it is
surjective.

Theorem 2.9, together with Proposition 2.7, have an interesting consequence: the group hP†n is
maximal among subgroups of Aut.RFn/ for which the Andreadakis equality can be true. Indeed, let
hP†n ¨G �Aut.RFn/, and consider the comparison morphism i� WL.G/!L.G\A�/ obtained from
the inclusion of ��G into G\A�. On the one hand, the Lie algebra L.G\A�/ contains L.hP†n\A�/,
and this inclusion must be strict, otherwise we could argue as in the proof of Lemma 5.3 to show that
G D hP†n. On the other hand, L.G/ is generated in degree 1, so that i�.L.G//�L.hP†n\A�/, the
latter being the subalgebra of L.A�.RFn//Š Der.RLn/ generated by its degree one. As a consequence,
i� cannot be surjective, whence the conclusion.

Here is another consequence of these theorems:

Corollary 2.10 The group hP†n is generated by the �ij (i ¤ j ), and hP†ab
n identifies with the free

abelian group generated by the N�ij .

In particular, the canonical morphism from P†n to hP†n is surjective. This means that when it comes
to basis-conjugating automorphisms, all automorphisms of RFn are tame. This is in striking contrast
with the case of free nilpotent groups [Darné 2019, Section 2.6]. This fact is in fact obvious from the
geometrical interpretation (recalled in Section 4), but we give an algebraic proof here, using much less
machinery.

Algebraic & Geometric Topology, Volume 24 (2024)



1294 Jacques Darné

Proof of Corollary 2.10 Thanks to Proposition 2.7 and Theorem 2.9, we know that the classes of the
�ij in L.A�\hP†n/ generate this Lie ring. By applying Lemma 5.3 to the finite filtration A�\hP†n,
we deduce that the �ij generate hP†n.

As a consequence, the N�ij generate its abelianization. Moreover, the Johnson morphism from hP†ab
n

to Der1.RLn/ sends the N�ij to the linearly independent elements dij of Der1.RLn/. Thus the N�ij are a
basis of hP†ab

n .

We can also use the proof of Proposition 2.7 to compute the Hirsch rank of the nilpotent group hP†n
(which is the rank of any associated Lie algebra). We recover the formula of [Audoux et al. 2017b,
Remark 4.9]:

Corollary 2.11 The Hirsch rank of the reduced McCool group is

rk.hP†n/D rk.Der� .RLn//D n � rk.RLn�1/D
n�1X
kD1

nŠ

.n� k� 1/Š � k
�

Proof The first equality is a direct consequence of Theorem 2.9. The second one stems from the proof
of Proposition 2.7, where we have shown that Der� .RLn/ is (linearly) a direct sum of n copies Di of
RLn�1. The last one is a direct application of Proposition 1.9.

3 The Andreadakis problem

The McCool group P†n�Aut.Fn/ is generated by the elements �ij Wxi 7!x
xj
i (�ij fixes all the other xt ).

The following relations, called the McCool relations, are known to define a presentation of the McCool
group P†n [1986]. The reader can easily check that they are satisfied in P†n:

Œ�ik�jk; �ij �D 1 for i; j; k pairwise distinct;

Œ�ik; �jk�D 1 for i; j; k pairwise distinct;

Œ�ij ; �kl �D 1 if fi; j g\ fk; lg D¿:

Thanks to Corollary 2.10, we know that hP†n is naturally a quotient of P†n. We will give in Section 5
three families of relations that need to be added to a presentation of P†n in order to get a presentation of
hP†n. This will rely on the semidirect product decomposition that we now describe.

3.1 A semidirect product decomposition

The following decomposition theorem is the central result of the present paper. From it we will deduce
the Andreadakis equality for hP†n (Section 3.3) and a presentation of this group and of its Lie ring
(Section 5):
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Theorem 3.1 There is a decomposition of hP†n as a semidirect product ,

hP†n Š

��Y
i<n

N.xn/=xi

�
Ì .RFn=xn/

�
Ì hP†n�1;

where N.xn/=xi is the normal closure of xn inside RFn=xi , and the action of RFn=xn Š RFn�1 on the
product is the diagonal one. Moreover , the semidirect product on the right is an almost direct one.

We prove this theorem in three steps. First, we show that hP†n decomposes into a semidirect product
Kn ÌhP†n�1. Then we investigate the structure of Kn, which decomposes as K0n ÌRFn�1. Finally, we
investigate the structure of K0n, which is abelian and decomposes as the direct product of the N.xn/=xi .

Step 1: decomposition of hP†n Elements of hP†n preserve the conjugacy class of xn, so they
preserve its normal closure N.xn/. As a consequence, any of these automorphisms induces a well-defined
automorphism of RFn=N.xn/Š RFn�1. In other words, the projection xn 7! 1 from RFn onto RFn�1
induces a well-defined morphism pn from hP†n to hP†n�1. Moreover, this morphism is a split
projection, a splitting sn being the map extending automorphisms by making them fix xn. Let us denote
by Kn the kernel of pn. We thus get our first decomposition,

(3-1) hP†n Š Kn Ì hP†n�1:

Moreover, it will follow from Lemma 3.3 below that this is indeed an almost direct product: Kab
n is

generated by the classes of the �in and the �ni . From Corollary 2.10, we know that these are sent
to linearly independent elements in hP†ab

n , so they freely generate Kab
n . We thus get a direct product

decomposition hP†ab
n Š Kab

n ˚ hP†
ab
n�1, as announced.

Step 2: structure of Kn We first state an easy result on generators of factors in semidirect products.

Lemma 3.2 Let G D H ÌK be a semidirect product of groups. Suppose we are given a family .hi /
of elements of H , and a family .kj / of elements of K such that their reunion generates G. Then K is
generated by the kj , and H is generated by the hki , for k 2K.

Proof Take an element g 2G and write it as a product of h˙1i and k˙1j . Then use the formula khD .kh/k
to push the kj to the right. We obtain a decomposition g D h0k, where h0 2H is a product of conjugates
of the h˙1i by elements of K, and k 2K is a product of the k˙1j . This decomposition has to be the unique
decomposition of g into a product of an element of H followed by and element of K. As a consequence,
if g 2H , then g D h0, whereas if g 2K, then g D k, proving our claim.

We can apply Lemma 3.2 to the �ij in hP†n Š Kn Ì hP†n�1. Indeed, the �in and the �ni are in Kn,
and the other �ij belong to hP†n�1. Hence, Kn is generated by the conjugates of the �in and the �ni
by products of the other �ij and their inverses. In fact, more is true:

Lemma 3.3 The group Kn is generated by the �in and the �ni .
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Proof We use the above relations to show that the subgroup H of Kn generated by the �in and the �ni
is normal in hP†n, that is, ŒhP†n;H ��H .

The commutator Œ�in; �˛ˇ � is obviously in H if ˛ D n or ˇ D n. Otherwise, it is trivial, except possibly
when ˛ D i or ˇ D i . In the first case (since �nˇ and �iˇ commute),

1D Œ�in; �nˇ�iˇ �D Œ�in; �nˇ �.
�nˇŒ�in; �iˇ �/;

whence Œ�in; �iˇ � 2H . In the second case,

1D Œ�in�˛n; �˛i �D .
�inŒ�˛n; �˛i �/Œ�in; �˛i �;

so, using the first case, Œ�in; �˛i � 2H .

In a similar fashion, the bracket Œ�ni ; �˛ˇ � belongs to G if ˛D n or ˇD n. Otherwise, it is trivial, except
when ˛ D i . But in this case,

1D Œ�ni ; �iˇ�nˇ �D Œ�ni ; �iˇ �.
�nˇŒ�in; �nˇ �/;

so Œ�ni ; �iˇ � 2 H . Thus, H is stable under conjugation by all generators of hP†n, so it is normal
in hP†n.

Remark 3.4 We have used only the McCool relations here, so the analogue of Lemma 3.3 is also true
in P†n.

By looking at how elements of Kn act on xn, we get a split projection qn from Kn onto RFn�1. Namely,
if ' 2Kn is an automorphism sending each xi to xwii , qn sends ' onto the class xwn 2 RFn=xn Š RFn�1.
This is well defined, because of Lemma 1.17,

xvn D x
w
n () xvw

�1

n D 1 () vw�1 2 C.xn/D N.xn/ () Nv D xw:

Moreover, this defines a morphism. Indeed, if ' and  send xn respectively to xwnn and xvnn , then

 '.xn/D  .x
wn
n /D xvn .wn/n ;

and since  2 Kn, we have  .wn/D xwn, whence

qn. '/D vn .wn/D Nvn xwn D qn. /qn.'/:

This morphism qn is a retraction of the inclusion tn of RFn�1 Š RFn=xn into Kn sending w 2 RFn to
the automorphism fixing all xi save xn, which is sent to xwn . If we call K0n the kernel of qn, we thus get a
decomposition

(3-2) Kn D K0n ÌRFn�1:

Lemma 3.5 The above decomposition is hP†n�1–equivariant , with respect to the action of hP†n�1
on Kn (and on K0n � Kn) coming from conjugation in hP†n, and to the canonical action of hP†n�1 on
RFn�1. Precisely, qn and tn are hP†n�1–equivariant morphisms.
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Proof If ' 2 Kn sends xi to xwii as above, and � 2 hP†n�1, then �'��1 sends xn to x�.wn/n , so

qn.�'�
�1/D �.wn/D �. xwn/D �.qn.'//:

As for the equivariance of tn, if w 2RFn�1, both � � tn.w/ ���1 and tn.�.w// fix all xi save xn, the latter
being sent to x�.w/n , hence they are equal.

Remark 3.6 A similar decomposition holds in P†n, replacing RFn�1 by Fn�1. The same proof works,
replacing the equality C.xn/D N.xn/ (which is not true in this case) by the inclusion C.xn/� N.xn/.

Step 3: structure of K0
n So far, we have not really used the fact that we consider welded braids up

to homotopy (that is, automorphisms of RFn, not of Fn). In fact, the analogues of the decomposition
results above are true in the group P†n of welded braids (see Remarks 3.4 and 3.6). We now come to the
part where the homotopy relation plays a crucial role. That is, we are going to use the relations defining
RFn in a crucial way. These relations, saying that each element xi of the fixed basis commutes with its
conjugates, can be rewritten as

8i 6 n 8s; t 2 RFn x
sxi t
i D xsti :

In other words, for w 2 RFn, xwi depends only on the class of w modulo xi (that is, modulo the normal
closure of xi ). These relations allow us to say more about the above decomposition of Kn:

Lemma 3.7 The kernel K0n of the projection qn W Kn� RFn�1 is an abelian group , isomorphic to the
product of the N.xn/=xi , where N.xn/=xi is the normal closure of xn inside RFn=xi ŠRFn�1. Precisely ,
the identification of N.xn/=xi with a factor of K0n is induced by the map

ci W N.xn/! K0n; u 7!

�
xj 7!

�
xui if j D i
xj otherwise

�
;

which is a well-defined group morphism. Furthermore , ci is RFn�1–equivariant , where RFn�1 Š h�nj ij
acts via automorphisms on the source , and via conjugation on the target.

Proof We identify elements w 2RFn�1 with their image by tn WRFn�1!Kn, that is, we denote by w the
automorphism fixing all xi save xn, which is sent to xwn . Applying Lemma 3.2 to the semidirect product
decomposition (3-2), we see that K0n is generated by the elements �win, which we now compute. The
automorphism �win fixes x˛ if ˛ … fi; ng. On xi and xn, using that �in.w/� w .mod xn/, we compute

�win W xi 7! xi 7! x
xn
i 7! x

xwn
i ; �win W xn 7!

wxn 7!
�in.w/xn D

wxn 7! xn:

From this calculation, we see that all �D �win commute with every �0 D �vjn, showing that K0n is indeed
abelian. If j ¤ i , this is a consequence of the fact that these automorphisms act trivially modulo xn,

�0.x
xwn
i /D x

x
�0.w/
n

i D x
xwn
i :

For i D j , it follows from the fact that the conjugates of xn commute.
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Consider now Ni the subgroup generated by the �win, for w 2 RFn�1. The elements of Ni are auto-
morphisms fixing all xj save xi , and sending xi to an element xui , for some u2N.xn/. As a consequence,
the map ci is a surjection from N.xn/ onto Ni . Since, by definition of the reduced free group, xsxi ti D xsti
for all s; t 2 RFn, we see that ci .v/ depends only on the class Nv of v in RFn�1=xi . We use this to show
that ci is a morphism,

ci .u/ci .v/ W xi 7! ci .u/.x
Nv
i /D .x

Nu
i /
ci .u/. Nv/ D xuvi D ci .uv/.xi /:

Now, the kernel of ci is C.xi / \ N.xn/ D N.xi / \ N.xn/ (using Lemma 1.17). It thus induces an
isomorphism between N.xn/=.N.xi / \ N.xn// and Ni . Moreover, since it is the image of N.xn/ in
RFn=N.xi /, this group identifies with the normal closure of xn inside RFn=xi Š RFn�1.

We are left to show that ci is RFn�1–equivariant. It is enough to show that it commutes with the actions
of the generators. If ' 2 h�nj ij¤i , then xi does not appear in '.xn/, so

ci .u/
'
W xi 7! xi 7! xui 7! x

'.u/
i ; ci .u/

'
W xn 7! '.xn/ 7! '.xn/ 7! xn;

showing that ci .u/' D ci .'.u//. It remains to check that ci .u/�ni D ci .�ni .u//; ci .�ni .u// identifies
with ci .u/, since �ni acts trivially modulo xi . We thus need to check that �ni commutes with all the
ci .u/ (which are all elements in Ni ). This comes from the two relations xxin D x

xu
i
n (because u 2N.xn/)

and x�ni .u/i D xui (because �ni acts trivially modulo xi ). This finishes the proof of the lemma, and of
Theorem 3.1.

3.2 The Lie algebra of the reduced McCool group

The decomposition of hP†n described in Theorem 3.1 induces a decomposition of its Lie algebra:

Theorem 3.8 The Lie algebra L.hP†n/ decomposes into a semidirect product ,

L.hP†n/Š

��Y
i<n

hyi i

�
ÌRLn�1

�
ÌL.hP†n�1/;

where hyi i is the ideal generated by yi inside RLn�1, and the action of RLn�1 on the product is the
diagonal one.

Proof From the almost-direct product decomposition hP†n Š Kn Ì hP†n�1, comes a decomposition
of the Lie algebra L.hP†n/Š L.Kn/ÌL.hP†n�1/. In the decomposition of Kn described in (3-2),
we can replace the normal closure N.xn/=xi of xn in RFn=xi by the normal closure N.xi /=xn of xi in
RFn=xn Š RFn�1. Indeed, the automorphism of RFn exchanging xi and xn induces an isomorphism
between these two, which is RFn�1–equivariant, since xi acts trivially on both of them. We thus have to
compute

L.Kn/Š L

��Y
i<n

N.xi /

�
ÌRFn�1

�
:
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Since this is not a decomposition into an almost direct product, we have to use Section 3.1 of [Darné
2021]: we need to compute �RFn�1

�

�Q
N.xi /

�
, which is the product

Q
�

RFn�1
� .N.xi //, since RFn�1 acts

diagonally. In order to do this, consider the split short exact sequence of groups,

N.xi / ,! RFn�1� RFn�1=xi Š RFn�2:

From [Darné 2021, Proposition 3.4], this gives rise to a decomposition of ��.RFn�1/ into a semidirect
product �RFn�2

� .N.xi // Ì ��.RFn�2/, where �RFn�2
� .N.xi // is defined by taking commutators with

N.xi / Ì RFn�2 Š RFn�1 at each step, so is equal to �RFn�1
� .N.xi //. As a consequence, N�.xi / WD

�
RFn�1
� .N.xi // is the intersection of ��.RFn�1/ with N.xi /. Its associated Lie algebra fits into the short

exact sequence
L.N�.xi // ,! L.RFn�1/� L.RFn�2/:

Theorem 1.12 ensures that the projection on the right identifies with the projection of RLn�1 onto RLn�2
sending yi to 0, whose kernel is hyi i. Thus L.N�.xi //Š hyi i, and

L.N.xi /ÌRFn�1/Š L.N�.xi //ÌL.RFn�1/Š hyi iÌRLn�1:

3.3 The Andreadakis equality

Theorem 3.8 gives a complete description of the graded Lie ring associated to ��.hP†n/. On the other
hand, Theorem 2.9 describes the Lie ring associated with the Andreadakis filtration hP†n\A�.RFn/.
Using these two results, we are now able to show:

Theorem 3.9 The Andreadakis equality holds for hP†n.

Proof We want to show that the Johnson morphism � 0 WL.hP†n/!Der.RLn/ is injective (see the end
of Section 0.1). We make use of the commutative diagram

L.Kn/ L.hP†n/ L.hP†n�1/

� Der� .RLn/ Der� .RLn�1/

� 0 � 0 � 0

where the bottom projection is the one induced by yn 7! 0. By induction (beginning at nD 2), using the
snake lemma, we only have to prove that the left map is injective, that is, that � 0 WL.Kn/! Der.RLn/ is.
Take an element

' D ..wi /; wn/ 2 �j .Kn/D

�Y
j<n

.�j .RFn/\N.xn//=xi

�
Ì�j .RFn�1/;

meaning that ' is the automorphism conjugating xn by wn 2�j .RFn�1/ and xi by wi 2�j .RFn/\N.xn/

for i < n, which depends only on the class of each wi modulo N.xi /. Then � 0j . N'/ sends each yi (i 6 n)
to Œyi ; xwi � 2 LjC1.RFn/. As a consequence, the equality � 0j . N'/D 0 would mean that each xwi commutes
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with yi in L.RFn/Š RLn. By Lemma 1.18, this would imply that xwi 2 hyi i. However, in the course
of the proof of Theorem 3.8, we have shown that hyi i D L.��.RFn/\N.xi //. Thus there exists vi in
�j .RFn/\N.xi / such that Nvi D xwi , that is, wi � vi .mod �jC1.RFn//. But we can replace wi by wiv�1i
without changing ', so all the wi can be chosen to be in �jC1.RFn/. This implies that ' 2 �jC1.hP†n/,
which means that N' D 0 in Lj .hP†n/. This ends the proof that the kernel of � 0 is trivial, and the proof
of the theorem.

3.4 Braids up to homotopy

Consider the (classical) pure braid group Pn. It can be embedded into the monoid of string-links on n
strands. These string-links can be considered up to (link-)homotopy, which means that one adds to the
isotopy relation the possibility for each strand to cross itself. This relation is obviously compatible with
the monoid structure, and since every string-link is in fact homotopic to a braid, this quotient is a quotient
of the pure braid group, called the group of braids up to homotopy, denoted by hPn.

3.4.1 Decomposition and Lie algebra Goldsmith [1974] described hPn as a quotient of Pn by a
finite set of relations. These relations say exactly that for j < k, the generators Ajk commute with their
conjugates by elements of hAikii<kŠFk�1. This means exactly that the free factors in the decomposition
of Pn are replaced by reduced free groups,

hPnC1 Š RFn Ì hPn:

This decomposition first appeared explicitly in [Habegger and Lin 1990], where a more topological proof
is described.

Such a decomposition is compatible with the decomposition of the (classical) pure braid group, which
means that the canonical projections give a morphism of semidirect products:

(3-3)

Fn PnC1 Pn

RFn hPnC1 hPn

Since Goldsmith’s relations are commutation relations, the projection from PnC1 onto hPnC1 induces an
isomorphism between P ab

nC1 onto hP ab
nC1. As a consequence, since the decomposition PnC1ŠFnÌPn is

an almost-direct product decomposition, the decomposition hPnC1 Š RFn Ì hPn also is. It then induces
a decomposition of the lower central series and of the corresponding Lie ring. Precisely, we get iterated
semidirect product decompositions,

(3-4) �j .hPnC1/D �j .RFn/Ì�j .hPn/;

inducing such decompositions of the associated graded Lie rings. Thus we get:

Algebraic & Geometric Topology, Volume 24 (2024)



Milnor invariants of braids and welded braids up to homotopy 1301

Proposition 3.10 The group hPnC1 is n–nilpotent , and its Lie algebra decomposes as an iterated
semidirect product of reduced free Lie algebras ,

L.hPnC1/Š L.RFn/ÌL.hPn/ŠRLn ÌL.hPn/:

From this, we can deduce the Hirsch rank of hPn, recovering Milnor’s formula, as quoted in [Habegger
and Lin 1990, Section 3]:

Corollary 3.11 The group hPn has no torsion and its Hirsch rank is

rk.hPn/D
n�1X
kD1

.k� 1/Š
� n

kC1

�
:

Proof That it has no torsion (even no torsion in its lower central series) comes from the fact that the
RLŒm� do not, according to Proposition 1.9. The same proposition gives us the ranks of the RLŒm�k ,
allowing us to compute

rk.Lk.hPn//D
n�1X
mD1

rk.RLŒm�k/D .k� 1/Š
n�1X
mD1

�m
k

�
D .k� 1/Š

� n

kC1

�
;

the last equality being obtained by iterating Pascal’s formula, or by a combinatorial proof (replacing the
choice of k elements t1; : : : ; tk among m elements, with m ranging from k to n� 1, by the choice of
kC 1 elements t1; : : : ; tk; mC 1 among n elements).

Let us also mention that we can deduce from the decomposition of L.hPn/ described in Proposition 3.10
and from the usual presentation of the pure braid group a presentation of this Lie ring, which is a quotient
of the Drinfeld–Kohno Lie ring L.Pn/ of infinitesimal braids (whose rational version was introduced in
[Kohno 1985]).

Corollary 3.12 The Lie ring of hPn is generated by tij (1 6 i; j 6 n), under the Drinfeld–Kohno
relations

tij D tj i and ti i D 0 for all i; j;

Œtij ; tikC tkj �D 0 for all i; j; k;

Œtij ; tkl �D 0 if fi; j g\ fk; lg D¿;

to which are added , for each m, the vanishing of Lie monomials in the tim (i < m) with repetition.

Proof The proof in the classical case (see for instance the appendix of [Darné 2021]) adapts verbatim,
by considering reduced free Lie rings instead of free Lie rings.

Notice that as in the definition of the reduced free Lie ring (Definition 1.6 — see also Remark 1.8), one
can give a simpler finite presentation by considering, for each m, only linear Lie monomials in the tim
(i < m) of length at most m.
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3.4.2 The Andreadakis problem The semidirect product RFnÌhPn described above is the same thing
as an action of hPn on RFn, also described by a morphism from hPn to Aut.RFn/. This is the homotopy
Artin action, that we now study, using the fact that it is encoded by conjugation inside hPnC1DRFnÌhPn.

First, we remark that this action is by basis-conjugating automorphisms. In fact, the compatibility diagram
(3-3) gives rise to a commutative diagram

Pn AutC .Fn/

hPn AutC .RFn/
a

where the morphism on the left is surjective by Corollary 2.10. The top map, which is the Artin
action, is injective (the action is faithful) and its image is exactly the subgroup of basis-conjugating
automorphisms fixing the boundary element x1 � � � xn [Birman 1974, Theorem 1.9]. Habegger and Lin
[1990, Theorem 1.7] have shown that the analogous statements are true for hPn: the homotopy Artin action
induces an isomorphism between hPn and the group Aut@C .RFn/ of basis-conjugating automorphisms of
RFn preserving the product x1 � � � xn. Precisely, they show that the latter admits the same decomposition
as hPn, and that the pieces of these decompositions are identified under the Artin morphism. We recover
the faithfulness of the homotopy Artin action as part of our answer to the Andreadakis problem for
hPn � AutC .RFn/ (see Corollary 3.14 below).

Theorem 3.13 The Andreadakis equality holds for the image of the Artin action a W hPn! Aut.RFn/.
Namely, ��.hPn/D a�1.A�.RFn//.

Proof We adapt the proof for Pn given in [Darné 2021]. Let w 2 hPn, and suppose that w acts on RFn
as an element of Aj . We want to show that it belongs to �j .hPn/. Our hypothesis can be written as

Œw;RFn�� �jC1.RFn/;

where the bracket is computed in RFnÌhPn, which is exactly hPnC1. Moreover, from the decomposition
of the lower central series of hPnC1 described above (Section 3.4.1), we deduce that

�j .hPn/D hPn\�j .hPnC1/;

so the conclusion we seek is in fact w 2 �j .hPnC1/. Let us comb w: we write

w D ˇn � � �ˇ2 2 RFn�1 Ì .RFn�2 Ì . � � �ÌRF1//D hPn:

Again, because of the decomposition of the lower central series of hPn, we need to show that each ˇi is in
�j .PnC1/. In the rest of the proof, we often write �k for �k.hPnC1/, its intersection with the subgroups
under consideration being their own �k , because of (3-4).

Let us suppose that w … �j .hPnC1/. Then w 2 �k � �kC1 for some k < j . Let i be maximal such
that ˇi … �kC1. On the one hand, the generator Ai;nC1 2 RFn commutes with every ˇk with k < i ,

Algebraic & Geometric Topology, Volume 24 (2024)



Milnor invariants of braids and welded braids up to homotopy 1303

so Œw;Ai;nC1� � Œˇi ; Ai;nC1� .mod �kC2/. Moreover, by hypothesis, Œw;Ai;nC1� 2 �jC1 � �kC2, so
Œˇi ; Ai;nC1� 2 �kC2. Since ˇi has degree k and Ai;nC1 has degree 1 in the lower central series, this
means that Œ Ňi ; Ai;nC1�D 0 in the Lie algebra. On the other hand, ˇi and Ai;nC1 belong to another copy
of RFn inside hPnC1, namely hA1;i ; : : : ; Ai�1;i ; Ai;iC1; : : : ; Ai;nC1i. We denote this copy by fRFn. We
remark that the equality ��.fRFn/DfRFn\��.hPnC1/ is also true for this copy of RFn, as one sees by
switching the strands i and nC 1 in the reasoning above. But then we can apply Lemma 1.18: since
Ň
i commutes with the generator Ai;nC1 of L.fRFn/Š RLn, it must belong to the Lie ideal of L.fRFn/

generated by Ai;nC1. But this is impossible: by definition of ˇi , the generator Ai;nC1 cannot appear
in Ňi . We thus get a contradiction, and our conclusion.

From this, we can recover the injectivity part of the result of Habegger and Lin:

Corollary 3.14 [Habegger and Lin 1990, Theorem 1.7] The homotopy Artin action is faithful.

Proof If w 2 hPn acts trivially on RFn, then a.w/ 2 f1g DAn.RFn/, so w 2 �n.hPn/ by Theorem 3.13.
But �n.hPn/D f1g (Proposition 3.10), whence w D 1.

This injectivity of a W hPn ! hP†n D AutC .RFn/ is weaker than our statement, which says that the
lower central series are in fact compatible, since they both are the trace of the Andreadakis filtration
A�.RFn/:

Corollary 3.15 For all n, hPn\��.hP†n/D ��.hPn/.

Proof Combine Theorems 3.13 and 3.9.

Remark 3.16 The rationalization of the Lie ring L.Pn/ is exactly Phsl of [Bar-Natan 1995, Theorem 3],
where different diagramatic descriptions for its enveloping algebra are discussed.

4 Topological interpretation

Consider the group Pn of pure braids. Via the decomposition PnC1 Š Fn ÌPn, we get an action of Pn
on the free group Fn, which is the classical Artin action. Geometrically, it is best understood as the action
of Pn, which is the motion group of n points in a plane, on the fundamental group of the plane with n
points removed. As mentioned above (Section 3.4.2), this action is faithful, giving an embedding of Pn
into Aut.Fn/, whose image is exactly the subgroup Aut@C .Fn/ of automorphisms fixing the conjugacy
class of each generator xi , and preserving the boundary element x1 � � � xn [Birman 1974, Theorem 1.9].

An analogous statement is true for the group P†n of pure welded braids. This group is a group of
tube-shaped braids in R4, and can also be seen as the (pure) motion group of n unknotted circles in R3

(see [Damiani 2017] on the different definitions on this group). It acts on the fundamental group of R3
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with n unknotted circles removed, which is again the free group Fn. This Artin action is again faithful,
and its image is exactly the subgroup AutC .Fn/ of automorphisms fixing the conjugacy class of each
generator xi [Goldsmith 1981].

The same statements are true up to (link-)homotopy. These have been recalled for braids in Section 3.4. For
welded braids, link-homotopy of string links also makes sense (in R4), and for welded diagrams (which
are another point of view on these objects), this relation corresponds to virtualization of self-crossings. It
has been shown in [Audoux et al. 2017a, Theorem 2.34] that the group of welded braids up to homotopy
is isomorphic to the group AutC .RFn/D hP†n of automorphisms of RFn fixing the conjugacy class of
each generator xi .

We sum up the situation with the following diagrams:

(4-1)

up to isotopy up to homotopy

Pn Aut@C .Fn/

P†n AutC .Fn/

Š

Š

hPn Aut@C .RFn/

hP†n AutC .RFn/

Š

Š

4.1 Milnor invariants

Here we interpret our work in terms of Milnor invariants of welded braids up to homotopy. Milnor
invariants were first defined in [Milnor 1957] for links, as integers with some indeterminacy. It appeared
later that they were more naturally defined for string links, for which they are proper integers, the
indeterminacy previously observed corresponding exactly to a choice of presentation of a link as the
closure of a string-link. Here we focus on their definition for braids, which is not a restrictive choice
when working up to homotopy.

If ˇ is a pure braid, we can look at its image via the Artin action, which is a basis-conjugating automorphism
xi 7! x

wi
i . The element wi is well defined up to left multiplication by x˙1i , so it is well defined if we

suppose that xi does not appear in the class xwi 2 F ab
n . For each i , one can look at the image of the

element wi 2 Fn by the Magnus expansion � W Fn ,! bT Œn�, getting an element of the completion of the
free associative ring bT Œn� on n generators X1; : : : ; Xn, which can be seen as the ring of noncommutative
power series on these generators. Recall that the Magnus expansion is defined by xi 7! 1CXi , and
it is an injection of the free group Fn into bT Œn��. Then the Milnor invariants are the coefficients of
the �.wi /. Precisely, if i 6 n is an integer, and I D .i1; : : : ; id / is any list of positive integers, then
�I;i .ˇ/ is the coefficient of the monomial Xi1 � � �Xid in �.wi /. Moreover, we call d the degree of the
Milnor invariant �I;i .

The first nontrivial Milnor invariants of ˇ can also be obtained through the Johnson morphism. Namely,
let d be the greatest integer such that ˇ 2Ad .Fn/ (we identify ˇ with its image via the Artin action).
By definition of wi , xi does not appear in the class xwi 2 F ab

n . Thus, we deduce from [Darné 2021,
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Lemma 6.3] that for all j > 1, Œxi ; wi � 2 �jC1.Fn/ if and only if wi 2 �d .Fn/. This implies that d is
maximal such that all wi belong to �j .Fn/. The image of Ň 2Ad=AdC1 by the Johnson morphism is
the derivation of the free Lie algebra LŒn� given by xi 7! Œxi ; xwi �, where xwi 2 �d=�dC1.Fn/Š LŒn�d is
the class of wi , possibly trivial (but nontrivial for at least one i ).

Now, we can consider the element xwi as being inside T Œn�d , and the inclusion of LŒn� into T Œn� is exactly
the graded map induced by the Magnus expansion �. Precisely, if we call yT d1 the ideal of T Œn� defined by
elements of valuation at least d (the valuation of a power series being the total degree of its least nontrivial
monomial), then �d .Fn/D��1.1C yT d1 /, and the induced map N� W�d=�dC1.Fn/ ,! yT d1 = yT

dC1
1 identifies

with the canonical inclusion of LŒn�d into T Œn�d . As a consequence, the class xwi is the degree-d part
of �.wi /, which has valuation at least d . We sum this up in the following:

Proposition 4.1 The group Ad .Fn/\Pn is the set of braids with vanishing Milnor invariants of degree
at most d � 1. Moreover , Milnor invariants of degree d of these braids can be recovered from their image
by the Johnson morphism � WAd=AdC1 ,! Derd .LŒn�/.

Obviously, since we have not used anywhere that the automorphism ˇ preserves the boundary element,
these constructions work for all welded braids (that is, for all basis-conjugating automorphisms of Fn).

Let us now explain how to define Milnor invariants for (welded) braids up to homotopy. First, we need to
replace Fn by RFn. Then we can assume that xi does not appear in wi (since xuxivi D xuvi in the reduced
free group). The Magnus expansion must be replaced by the morphism (1-1), and we get only Milnor
invariants without repetitions (that is, I must be without repetition in order to define a nontrivial �I;i ).
Everything works as described above (using the work done in Section 1.2), so Ad .Fn/ is exactly the
subgroup where invariants of degree at most d � 1 vanish. So we can reformulate Theorems 3.9 and 3.13
as:

Theorem 4.2 Homotopy Milnor invariants of degree at most d classify braids (resp. welded braids) up
to homotopy up to elements of �dC1.hPn/ (resp. �dC1.hP†n/).

Remark 4.3 The group �dC1.hPn/ can also be seen as the set of braids which are homotopic to elements
of �dC1.Pn/.

4.2 Arrow calculus

We now explain briefly the precise link between our work and the work of Meilhan and Yasuhara [2019].
We will not give any definition here; the reader is referred to their paper for basic definitions and details.

Our understanding of the link between our work and theirs relies on the following remark: calculus of
arrows and w–trees is the same thing as commutator calculus in the welded braid group P†n. Precisely,
when attaching a tree T to a diagram D, one has to select the points where the root and leaves of T are
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attached. If we consider a little arc around each of these points, we see that doing so consists of choosing
n strands (which inherit their orientation from D). Then the data of T describes an element of the braid
group on these strands, and doing the surgery along T is exactly the same as inserting the braid described
by T at the chosen spot on D, to get the new diagram DT . Namely, a single arrow from a strand j to
a strand i describes the insertion of the braid �ij , and a tree with root at i describes the insertion of a
commutator between the �ij , for varying j (note that any number of strands can be added).

In the light of this remark, we can see that many relations they describe correspond to algebraic relations
written in the present paper. Also, two diagrams arewk–equivalent if and only if they can be obtained from
one another by inserting braids in �k.Pn/ (for varying n). And we can in fact deduce our Andreadakis
equality (Theorem 4.2) from their classification theorem of welded string links up to homotopy [Meilhan
and Yasuhara 2019, Theorem 9.4]. They fell short of doing so, stating only their weaker Corollary 9.5. In
fact, they did not look for the precise identification between trees and commutator calculus described here.
They only knew that something of the sort should be true, but were interested in other matters at the time.

5 A presentation of the homotopy loop braid group

Goldsmith [1974] gave a presentation of the braid group up to homotopy (see also Section 3.4). She
proved that, to a presentation of the pure braid group with generators Aij , one has to add the family of
relations making each hA1k; : : : ; Ak�1;ki into a reduced free group. The goal of the present section is to
give a similar presentation of the loop braid group up to homotopy. The situation here it more intricate;
to a presentation of P†n with generators �ij , we have to add three families of relations:

(R1) the relations saying that for all m, h�mkik<m is reduced;

(R2) Œ�im; w; �jm�D 1, for i; j < m and w 2 h�mkik<m;

(R3) Œ�im; w; �mi �D 1, for i < m and w 2 h�mkik<m;k¤i .

We remark that because of the symmetry with respect to the generators of RFn, these relations are still
true if we replace each symbol “<” by a symbol “¤”, which would give a more symmetric (but bigger)
set of relations.

Remark 5.1 These relations also describe the quotient of the group wBn of all welded braids by the
homotopy relation. Indeed, performing a homotopy cannot move endpoints of string links, so the subgroup
of relations must be a subgroup of the pure welded braid group, like in the classical setting [Goldsmith
1974, Lemma 1].

5.1 Generators of nilpotent groups

One key argument in the determination of a presentation of hP†n consists in lifting generators from
Lie rings to groups. Such generators will be obtained from combinatorics in the free Lie ring (see the
appendix), and lifting them will use the nilpotence of the groups involved.

Algebraic & Geometric Topology, Volume 24 (2024)



Milnor invariants of braids and welded braids up to homotopy 1307

Convention 5.2 By a finite filtration, we always mean a separating one; a strongly central series G� is
finite if there exists a i > 1 such that Gi D f1g. In particular, if there exists a finite strongly central series
on G, then G must be nilpotent (recall that Gi � �iG).

Lemma 5.3 Let G� be a finite strongly central filtration on a (nilpotent) group G. Suppose that the x˛
are elements of G such that their classes Nx˛ generate the Lie ring L.G�/. Then the x˛ generate G.

Proof Consider the subgroup K of G generated by the x˛ . The canonical morphism from L.G�\K/ to
L.G�/ comes from an injection between filtrations, so it is injective. By hypothesis, it is also surjective.
By induction (using the five lemma), we deduce that K=.Gj \K/DG=Gj , for all j . Since there exists
j such that Gj D f1g, this proves that K DG.

The definition of the Lyndon monomials Pw (Section A.2) makes sense in any group, if we interpret
letters as elements of the group, and brackets as commutators.

Proposition 5.4 Let G be a nilpotent group generated by a set X , and x 2X . Then the normal closure
N.x/ of x in G is generated by Lyndon monomials Pw , for Lyndon words w 2X� containing x.

Proof By taking images inG, it is enough to show this for the free nilpotent group Fj ŒX� WDF ŒX�=�jC1.
In this case, N.x/ is the kernel of the canonical projection from Fj ŒX� to Fj ŒX �fxg�. Setting N�.x/ WD

N.x/\��.Fj ŒX�/, we get a short exact sequence of filtrations translating into a short exact sequence of
Lie rings

L.N�.x// ,! L.Fj ŒX�/� L.Fj ŒX �fxg�/:

Since L.Fj ŒX�/ is the j th truncation of the free Lie algebra on Y DX , and the projection is the canonical
one (sending yD Nx to 0), the subring L.N�.x// identifies with the j th truncation of the ideal hyi of LŒY �.
This ideal is linearly generated by Lyndon Lie monomials on Y containing y. Since these are the classes
of the corresponding monomials in the group Fj ŒX�, Lemma 5.3 gives the desired conclusion.

Corollary 5.5 Let X be a set , and x 2X . The normal closure N.x/ of x in RFŒX� is free abelian on the
Lyndon monomials Pw , for Lyndon words without repetition w 2X� containing x.

Proof It is enough to show this for X finite. Then RFŒX� is nilpotent, and we can apply Proposition 5.4
to show that Lyndon monomials without repetition containing x generate N.x/. Indeed, in RFŒX�, the
only nontrivial Lyndon monomials in elements of X are those without repetition. Moreover, N.x/ is
abelian, by definition of RFŒX�. We are thus left with proving that these elements are linearly independent.
But any nontrivial linear relation between them would give a nontrivial linear relation between Lyndon
monomials without repetition in L.RFŒX�/ (take l to be the minimal length of the monomials involved,
and project the relation into �l=�lC1). Such a relation cannot hold (Proposition 1.9), so this proves the
corollary.
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If g; g1; : : : ; gm are elements of a group, let us denote by Lynd.gIg1; : : : ; gm/ the family of Lyndon
monomials .Pw/, where w runs through Lyndon words without repetition on the letters g; g1; : : : ; gm
which contain g. When considering these sets, we will choose an order on the letters making all gi greater
than g. In that case, elements of Lynd.gIg1; : : : ; gm/ are of the form ŒŒg; Pv�; Pw �, where neither v nor
w contains g. As usual, we denote by .g1; : : : ; Ogi ; : : : ; gm/ the .m�1/–tuple obtained from .g1; : : : ; gm/

by removing the i th component.

We now use Corollary 5.5 in order to get a basis of the group K0n introduced in Section 3 from the
decomposition obtained in Lemma 3.7.

Lemma 5.6 A basis of the abelian group K0n is given by[
i

Lynd.�inI�n1; : : : ; O�ni ; : : : ; �n;n�1/:

Proof We use notation from the proof of Lemma 3.7. Equivariance of the isomorphism ci ensures that c�1i
sends the set Lynd.�inI�n1; : : : ; O�ni ; : : : ; �n;n�1/ to the set B WD Lynd.xnI�n1; : : : ; O�ni ; : : : ; �n;n�1/,
the latter brackets being computed in the semidirect product .N.xn/=xi /Ì h�nj ij . If v 2 RFn�1, we
denote by �v the automorphism of RFn sending xn to xvn and fixing all other generators (�v was denoted
by tn.v/ above). Elements of B are of the form ŒŒxn; �v�; �w �, where �v and �w are Lyndon monomials
in the �nj (j ¤ i ), which means exactly that v and w are Lyndon monomials in the xj (j ¤ i; n), since
tn W v 7! �v is a morphism. Recall that the class of �v in the Lie algebra L.A�.RFn// acts on the Lie
algebra RLn via the tangential derivation �. N�v/ induced by Œ�v;��, sending xn to Œxn; v� and all other
xi to 0. As a consequence, the class of ŒŒxn; �v�; �w � in the Lie algebra L.N�.xn/=xi /�RLn is

�. N�w/�. N�v/.xn/D �. N�w/.Œv; xn�/D Œv; Œw; xn��D ŒŒxn; w�; v�;

since the derivation �. N�w/ vanishes on v. As a consequence, the family B is another lift of the basis of
L.N�.xn/=xi / considered above, and the same proof as the proof of Corollary 5.5 (in RFn=xi Š RFn�1)
shows that it is a basis of N.xn/=xi , whence the result.

Remark 5.7 In the semidirect product .N.xn/=xi /Ìh�nj ij which appears in the proof, the group h�nj ij
is isomorphic to RFn�1 but its action is not the conjugation action.

5.2 The presentation

Let us recall the relations on the �ij that will give a presentation of hP†n:

(R0) the McCool relations on the �ij (see the introduction);

(R1) Œ�mi ; w; �mi �D 1, for i < m and w 2 h�mkik<m;

(R2) Œ�im; w; �jm�D 1, for i; j < m and w 2 h�mkik<m;

(R3) Œ�im; w; �mi �D 1, for i < m and w 2 h�mkik<m;k¤i .

We now show that they indeed give the presentation that we were looking for:
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Theorem 5.8 The pure loop braid group up to homotopy hP†n is the quotient of P†n by relations
(R1), (R2) and (R3). As a consequence , it admits the presentation

hP†n Š h�ij .i ¤ j / j (R0); (R1); (R2); (R3)i:

Proof Let Gn be the group defined by the presentation of the theorem. The �ij in hP†n satisfy the
above relations. As a consequence, there is and obvious morphism � from Gn to hP†n. Since the �ij
generate hP†n (Corollary 2.10), this morphism is surjective. We need to show that it is an isomorphism.
We will do that by showing that Gn admits a decomposition similar to that of hP†n, and that the pieces
in the two decompositions are isomorphic via � . We do this in three steps, parallel to the proof of
Theorem 3.1.

Step 1 We define a projection Qpn from Gn to Gn�1 by sending �ij to �ij if n … fi; j g, and �in and �nj
to 1. This morphism is well defined (from the presentations), and so is its obvious section Qsn WGn�1 ,!Gn.
If we denote by zKn the kernel of Qpn, we get a semidirect product decomposition Gn D zKn ÌGn�1 that
fits in the following diagram:

zKn Gn Gn�1

Kn hP†n hP†n�1

Qpn

� �

Qsn

pn

sn

By induction (using the five lemma), beginning with the isomorphism G2 Š hP†2 Š Z2 (which is the
group h�12; �21i of inner automorphisms of RF2), we only need to show that the induced morphism
between the kernels are isomorphisms.

Step 2 We can apply Lemma 3.2 to the above decomposition of Gn; the proof of Lemma 3.3 only used
the McCool relations, so it carries over without change to show that zKn is generated by the �in together
with the �nj . This shows directly that the map from zKn to Kn is surjective (this fact also comes from the
snake lemma and the induction hypothesis). Consider the map zKn!Kn� RFn, where the second map
is the projection qn from Kn to RFn�1 defined in the proof of Theorem 3.1. This map sends the �in to 1
and the �nj to the xj . From the relations (R1), we know that the assignment xj 7! �nj defines a section
Qtn from RFn�1 to zKn. This shows that the �nj generate a reduced free group inside zKn. If we denote
by zK0n the kernel of Qqn D qn ı� , we get a semidirect product decomposition zKn D zK0n ÌRFn�1, similar
to (3-2), that fits in the following diagram:

zK0n zKn RFn�1

K0n Kn RFn�1

Qqn

� Š

Qtn

qn

tn
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Step 3 In order to show that the induced projection � W zK0n ! K0n is an isomorphism, we need to
investigate the structure of zK0n. By Lemma 3.2, it is generated by the �win for w 2 h�nj i ŠRFn�1, and the
relations (R2) say exactly that these commute with each other. Thus zK0n is abelian. Let us fix i and denote
by zNi the subgroup generated by the �win. It is the normal closure of �in in the subgroup zMi generated
by �in and the �nj . Relations (R1) and (R2) imply that �in and the �nj commute with their conjugates
in Mi , which is thus a quotient of RFn. In particular, zMi is nilpotent, and we can apply Proposition 5.4
to get that zNi is generated by Lyndon monomials in �in and the �nj containing �in. We can even limit
ourselves to the subset Lynd.�inI .�nj /j / of monomials without repetitions, the other ones being trivial
by the argument above. Furthermore, the relations (R3) say exactly that among these, the ones containing
�ni vanish. Thus, the abelian group zNi is generated by Lynd.�inI�n1; : : : ; O�ni ; : : : ; �n;n�1/. Because
of Lemma 5.6, we know that these monomials are sent to linearly independent elements in Ni (in fact, to
a basis of this abelian group), so they must be a basis of zNi , and the projection � induced a isomorphism
between zNi and Ni . The projection � W zK0n!K0n, being the direct product of these isomorphisms, is thus
an isomorphism, which is the desired conclusion.

Remark 5.9 The same remarks made at the end of Section 1.2 for RFn hold true for hP†n: it is finitely
generated and nilpotent (of class n� 1), so it has a finite presentation. However, in order to write down
such a finite presentation, we need a presentation of the free .n�1/–nilpotent group on n2 generators �ij .
We can then add to such a presentation the relations similar to (R1), (R2) and (R3) that are iterated
brackets of the generators (of any shape) of length at most n� 1 to get an explicit finite presentation
of hP†n. In other words, the latter relations give a finite presentation of hP†n as an .n�1/–nilpotent
group.

5.3 A presentation of the associated Lie ring

Using the above methods, one can also find a presentation of the Lie ring associated to hP†n, similar to
the presentation of L.hPn/ given in Corollary 3.12.

Proposition 5.10 The Lie ring of hP†n is generated by xij (16 i ¤ j 6 n), under the relations

ŒxikC xjk; xij �D 0 for i; j; k pairwise distinct;

Œxik; xjk�D 0 for i; j; k pairwise distinct;

Œxij ; xkl �D 0 if fi; j g\ fk; lg D¿;
to which are added , for each m, the families of relations

Œxim; Œxmi ; t ��D 0; Œxim; Œxjm; t ��D 0; Œxim; Œxmi ; t ��D 0;

where , in each case , t describes Lie monomials in the xmk (k < m).

Proof Since it is very similar to the proof of Theorem 5.8, we only outline the proof. Let hpn be the
Lie ring defined by the presentation of the theorem. The relations are true for the classes of the �ij in
L.hP†n/ (as direct consequences of the relations in the group hP†n), so xij 7! N�ij defines a projection
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� from hpn onto L.hP†n/. One shows that hpn admits a decomposition similar to the decomposition
of L.hP†n/ described in Theorem 3.8. Indeed, the morphism from hpn to hpn�1 sending xij on xij
if n … fi; j g and to 0 else is a well-defined projection p, which is split. From the relations, reasoning
as in the proof of Lemma 3.3, one checks that the xin together with the xni generate an ideal of hpn,
which has to be the kernel kn of p. They one argues exactly as in the proof of Theorem 5.8 to show
(using the first family of relations) that kn decomposes as a semidirect product k0n ÌRLn�1. Moreover,
the projection � is compatible with the decompositions of hpn and L.hP†n/. Using the five lemma, we
see that we only have to check that � induces an isomorphism between k0n and

Q
hyi i. Since we know a

basis of the target, whose elements are Lie monomials on the N�in and N�ni , we are left with showing that
the corresponding Lie monomials on the xin and xni generate k0n. Like in the proof of Theorem 5.8, the
last two families of relations ensure exactly that, so � is indeed an isomorphism.

Remark 5.11 In the presentation, one can consider only the relations where t is a linear monomial of
length at most m.

Remark 5.12 It is a difficult open question, very much related to the Andreadakis problem for P†n, to
decide whether the first three relations (the linearized McCool relations) define a presentation of the Lie
ring of P†n. It is only known to hold rationally [Berceanu and Papadima 2009].

Appendix Lyndon words and the free Lie algebra

For the comfort of the reader, we gather here some basic facts about Lyndon words. These describe
a basis of the free Lie algebra, and we give a self-contained proof of this classical result involving as
little machinery as possible. Our main sources for this appendix were Serre’s lecture notes [1965] and
Reutenauer’s book [2003, 5.1].

A.1 Lyndon words

Let A be a set (called an alphabet) endowed with a fixed total order. We denote by A� the free monoid
generated by A. Elements of A� are words in A, that is, finite sequence of elements of A. The set A� is
endowed with the usual dictionary order induced by the order on A.

The length of a word w is denoted by jwj. If v and w are words, v is a suffix (resp. a prefix) of w if there
exists a word u such that w D uv (resp. w D vu). It is called proper when it is nonempty and different
from w.

Definition A.1 The standard factorization of a word w of length at least 2 is the factorization w D uv,
where v is the smallest proper suffix of w.

Definition A.2 A Lyndon word is a nonempty word that is minimal among its nonempty suffixes.
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Lemma A.3 If w D uv is a standard factorization , then v is a Lyndon word , and if w is Lyndon then so
is u.

Proof The fact that v is a Lyndon word is clear. Suppose that w is a Lyndon word. Let x be any proper
suffix of u. Since uv D w < xv, if x is not a prefix of u, then u < x. Otherwise, u D xy for some
nonempty y, but then xyv < xv implies yv < v, which contradicts the definition of v.

The following proposition is the most basic result in the theory of Lyndon words:

Proposition A.4 Every word w 2A� factorizes uniquely as a product l1 � � � ln where n is an integer , the
li are Lyndon words and l1 > l2 > � � �> ln. We call this the Lyndon factorization of w.

Proof We first prove unicity, by proving that in a factorization wD l1 � � � ln into a nonincreasing product
of Lyndon words, ln is the smallest nonempty suffix of w. Indeed, let v be a suffix of w. Decompose v
as ylkC1 � � � ln, where y is a nonempty suffix of lk (possibly equal to lk). Then v > y > lk > ln.

We show existence by induction on the length of w. Take ln to be the smallest nonempty suffix of w.
Then w D w0ln, and ln is a Lyndon word. Moreover, a nonempty suffix of w0 cannot be strictly smaller
than ln. Indeed, if y is a nonempty suffix of w0 such that y < ln, then either y is a (proper) prefix of ln or
yln < ln. The second case contradicts the definition of ln. In the first case, by definition of ln, we get
yln > ln D yu, whence ln > u. Thus both cases contradict the definition of ln; we must have y > ln. As
a consequence, a factorization of w0 satisfying the conditions of the proposition gives such a factorization
for w, whence the conclusion.

Proposition A.4 allows us to identify the abelian group ZA� with the symmetric algebra S�Z.Lynd/. Note
that this linear identification does not preserve the ring structure, since the Lyndon factorization of a
product uv need not be the product of the Lyndon factorization of u with that of v.

A.2 The Lyndon basis of the free Lie algebra

In the sequel, V D ZfAg is the free abelian group generated by the alphabet A. We denote by LV the
free Lie algebra on V and by T V the free associative algebra on V . Recall that their universal properties
imply that T V is the enveloping algebra of LV . We denote by � W LV ! T V the canonical Lie morphism
between them. Note that we do not know a priori that this map is injective (we do not assume the PBW
theorem to be known).

Define an application w 7! Pw from the set Lynd of Lyndon word on A to LV as follows:

� Take Pa WD a 2 V for any letter a 2A.

� Ifw is a Lyndon word, consider its standard factorizationwDuv and definePw to be ŒPu; Pv�2LV .
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Lemma A.5 (standard factorization of a product of Lyndon words) Let u and v be Lyndon words.
Then uv is a Lyndon word if and only if u < v. Moreover , suppose that u < v, and denote by uD xy the
standard factorization of u, if u is not a letter. Then the standard factorization of uv is u � v if and only if
u is a letter or v 6 y.

Proof If uv is a Lyndon word, then u < uv < v. Conversely, suppose that u < v. Then either uv < v
or u is a prefix of v. But in this second case, v D uw, and v < w implies that uv < uw D v, so in both
cases uv < v. Now, take a proper suffix w of uv. If w is a suffix of v, then w > v > uv. If not, then
wDw0v with w0 a proper suffix of u. Then u <w0 implies uv < w0vDw, finishing the proof that uv is
a Lyndon word.

If u is a letter, then v is clearly the smallest proper suffix of uv. Let us assume that u is not a letter.
Suppose that v 6 y. A proper suffix of uv is either a suffix of v, which is greater than v, or of the form
wv, where w is a proper suffix of u. In the latter case, since y is the smallest proper suffix of u, we have
v 6 y 6 w < wv. This shows that v is the smallest proper suffix of uv in this case. Conversely, if v > y,
then yv is a Lyndon word by the first part of the proof. Hence yv < v, so v is not the smallest proper
suffix of uv in this case.

The following proposition and its proof are adapted from [Serre 1965, Theorem 5.3]. The proof is arguably
the most technical one in the present appendix:

Proposition A.6 The Pw for w 2 Lynd linearly generate LV .

Proof We only need to show that the Z–module generated by the Pw is a Lie subalgebra. We show
that if u and v are Lyndon words, then ŒPu; Pv� is a linear combination of Pw , with jwj D jujC jvj and
w <max.u; v/, by induction on jujC jvj and on max.u; v/. To begin with, if u and v are letters, then we
can suppose that u < v (otherwise, use the antisymmetry relation). Then ŒPu; Pv�D Puv, and uv < v.

Now, take .u; v/ such that juj C jvj > 2, and suppose that our claim is proven for every .u0; v0/ such
that ju0jC jv0j< jujC jvj, or ju0jC jv0j D jujC jvj and max.u0; v0/ <max.u; v/. Using antisymmetry if
needed, we can assume that u< v. We then use Lemma A.5. When u is not a letter, consider the standard
factorization uD xy of u. If u is a letter or y > v, then u � v is the standard factorization of uv, whence
ŒPu; Pv�D Puv, and uv < v, proving our claim. Suppose that y < v. Then

ŒPu; Pv�D ŒŒPx; Py �; Pv�D ŒŒPx; Pv�; Py �C ŒPx; ŒPy ; Pv��:

Since jxj; jyj < juj, we can use the induction hypothesis to write ŒPx; Pv� (resp. ŒPy ; Pv�) as a linear
combination of Pw (resp. Pt ) such that jwj D jxj C jvj (resp. jt j D jyj C jvj), and w < v (resp. t < v).
Then, using that x; y < v (since x < xy D u< y < v), we can apply the induction hypothesis to ŒPw ; Py �
(resp. to ŒPx; Pt �) to prove our claim, ending the proof of the proposition.
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The application w 7! Pw extends to a map from A� to T V defined as follows:

� Take Pa WD a 2 V for any letter a 2A.

� Ifw is a Lyndon word, consider its standard factorizationwDuv and definePw to be ŒPu; Pv�2LV .

� If w is any word, consider its Lyndon factorization wD l1 � � � ln. Define Pw to be Pl1 � � �Pln 2 T V .

The next lemma [Reutenauer 2003, Theorem 5.1], which says that the expression of the Pw in terms of
associative monomials is governed by a triangular matrix, will play a key role in what follows.

Lemma A.7 For any word w, the polynomial Pw is the sum of w and a linear combination of (strictly)
greater words having the same length as w.

Proof Note that if l is a Lyndon word and l D uv with u and v nonempty, then uv D l < v < vu.

We use this to show the lemma for Lyndon words, by induction on their length. For letters, the result
is obvious. Let l be a Lyndon word, and consider its standard factorization l D uv. Then u and v are
Lyndon words, and u < v (Lemmas A.3 and A.5). If the result is true for u and v, then Pl D ŒPu; Pv� is
a linear combination of elements of the form Œs; t �D st � ts, where jsj D juj, jt j D jvj, s > u and t > v.
Then ts > vu > uv, and st > uv, with equality if and only if s D u and t D v. Thus the word l D uv
appears with coefficient 1 in the decomposition of Pl , and Pl � l is a linear combination of greater words,
of the same length as l , which proves our claim.

Now, if w is any word, consider its Lyndon factorization w D l1 � � � ln. Then Pw WD Pl1 � � �Pln is a linear
combination of x1 � � � xn, where each xi is a word satisfying jxi j D jli j and xi > li . As a consequence,
jx1 � � � xnj D jl1 � � � lnj, and x1 � � � xn > l1 � � � ln, with equality if and only if each xi is equal to li . This
last case only appears with coefficient 1, so the lemma is proved.

The above application extends to a linear map P W ZA�! T V .

Proposition A.8 The application P W ZA�! T V defined above is injective.

Proof Let m be a linear combination of words in the kernel of P . Suppose that w is such that no word
smaller that w appears in m. Let � be the coefficient of w in m. Then by Lemma A.7, � is also the
coefficient of w in Pm D 0, so it must be trivial. Thus, by induction, all coefficients of m have to be
trivial, whence mD 0 and P is injective.

We can now sum this up as the main result of this appendix:

Theorem A.9 The map P induces a graded linear isomorphism

ZfLyndg Š LV:

Otherwise said , the family .Pw/w2Lynd is a linear basis of LV .

Proof The Pw generate LV (Proposition A.6) and, since their images in T V are linearly independent
(Proposition A.8), they must be linearly independent.
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A.3 Primitive elements and the Milnor–Moore theorem

In proving the previous result, we have only used basic linear algebra, and the combinatorics of Lyndon
words. In order to convince the reader of how powerful these techniques are, we will now recover the
Milnor–Moore theorem for the algebra T V , using not much more machinery. The only additional tools
we need are coalgebra structures and primitive elements.

The free commutative ring on the free abelian group V is denoted by S�.V /. It is endowed with its usual
Hopf algebra structure, whose coproduct is the only algebra morphism � W S�.V /! S�.V /˝S�.V /

sending each element v of V to v˝ 1C 1˝ v. That is, it is the only bialgebra structure on S�.V / such
that V consists of primitive elements. In fact, these are the only primitive elements in S�.V / [Serre 1965,
Theorem 5.4]:

Proposition A.10 The set of primitive elements of S�.V / is V .

Proof By definition of the coproduct of S�.V /, the subspace V is made of primitive elements. To show
the converse, it is helpful to see S�.V / as the algebra ZŒXi � of polynomials in indeterminates Xi . Then
S�.V /˝S�.V / identifies with ZŒX 0i ; X

00
i �, and the coproduct sends Xi to X 0iCX

00
i . Since it is an algebra

morphism, it sends a polynomial f .Xi / to f .X 0i CX
00
i /. Thus primitive elements are those f such that

f .X 0i CX
00
i /D f .X

0
i /C f .X

00
i /, ie additive ones. But since we work over Z, these are only the linear

ones, which is the desired conclusion.

The algebra T V is endowed with a Hopf structure defined exactly as the one for S�V : it is the unique
bialgebra structure such that elements of V are primitive ones. Since primitive elements are a Lie
subalgebra, they contain the Lie subalgebra generated by V (which is the image �.LV / of the canonical
morphism � W LV ! T V ).

Recall that Proposition A.4 allows us to identify ZA� with the symmetric algebra S�Z.Lynd/. We will
show the following:

Theorem A.11 (Milnor–Moore) The application P W S�Z.Lynd/! T V defined in Section A.2 is an
isomorphism of coalgebras.

Proof Injectivity has already been shown (Proposition A.8). Let us first prove surjectivity. Let p ¤ 0
be a homogeneous element of T V . Let w be the smallest monomial appearing in p, with coefficient �.
Then p � �Pw is homogeneous and contains only monomials greater than w (see Lemma A.7). By
repeating this process, we can write p as a linear combination of Pw . Indeed, this process stops, since
we consider only the finite set of words of fixed length (equal to the degree of p) whose letters appear in
some monomial of p. This proves that P is surjective.
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We are left to show that the application P W w 7! Pw preserves the coproduct. We first remark that if l is
a Lyndon word, then l is primitive in S�Z.Lynd/, and Pl 2 �.LV / is primitive in T V . For any word w,
consider its Lyndon factorization w D l1 � � � ln. Then we can write

�.Pw/D�.Pl1/ � � ��.Pln/D .Pl1 ˝ 1C 1˝Pl1/ � � � .Pln ˝ 1C 1˝Pln/

D

X
nDXtY

Plx1
� � �Plxp ˝Ply1

� � �Plyq ;

where the sum is over all partitions of the set nD f1; : : : ; ng into two subsets X D fx1 < � � �< xpg and
Y D fy1 < � � �< yqg. As a consequence,

�.Pw/D
X

nDXtY

Plx1 ���lxp
˝Ply1 ���lyq

D .P ˝P /

� X
nDXtY

lx1 � � � lxp ˝ ly1 � � � lyq

�
D .P ˝P /.�.l1/ � � ��.ln//D .P ˝P /.�.w//:

Corollary A.12 The canonical map � W LV ! T V identify LV with the Lie algebra of primitive elements
in T V .

Proof Thanks to Theorems A.9 and A.11, this map identifies with ZfLyndg ! S�Z.Lynd/. But
Proposition A.10 ensures that the set of primitive elements of the coalgebra S�Z.Lynd/ is exactly ZfLyndg,
whence the result.

Remark A.13 Neither our identification of the free abelian group ZfLyndg with the primitives of T V nor
our proof of Theorem A.11 requires the use of the fact that Lyndon words generate LV (Proposition A.6);
we only used that they are linearly independent (Proposition A.8) for that. The full strength of Theorem A.9
is only used to see that P W ZA� ,! T V coincides with � W LV ! T V (whence Corollary A.12).

A.4 Linear trees

The free Lie algebra can be seen as a quotient of the free abelian group ZM.A/ on the free magma M.A/

on A by antisymmetry and the Jacobi identity. Elements of the free magma can be seen as parenthesized
words in A, or as finite rooted planar binary trees, whose leaves are indexed by elements of A. The
images of elements of the free magma in LV are called Lie monomials.

Lyndon words encode a family of rooted binary trees whose leaves are indexed by letters. Precisely, if w
is a Lyndon word, the tree T .w/ is just one leaf indexed by w, if w is a letter. If not, take the standard
factorization w D uv. Then T .w/ is given by a root, a left son T .u/ and a right son T .v/:

T .uv/D

T u T v
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The Lyndon basis of the free Lie algebras are the Lie monomials Pw obtained from such trees by
interpreting nodes as Lie brackets. We call these Lyndon monomials

One can consider another family of Lie monomials, called linear Lie monomials, given by linear trees,
that is, monomials which are letters or of the form Œy1; : : : ; yn� (D Œy1; Œy2; Œ: : : Œyn�1; yn� : : :���). It is
easy to see, by induction, using the Jacobi identity, that these generate LV . In fact, the Jacobi identity
can be written as

(A-1)

A B

C D A

B C

� B

A C

Using this as a rewriting rule (from left to right), one can write any tree (that is, any Lie monomial) as a
linear combination of trees whose left son is a leaf. Applying the induction hypothesis to the right sons,
one gets a linear combination of linear trees.

There are nŠ linear Lie monomials in degree n, which is clearly strictly greater than the number of Lyndon
words of length n, so they must be linearly dependent. It is the need to control this redundancy that leads
us to consider Lyndon words (or, more generally, Hall sets).

Lemma A.14 Any Lie monomial is a linear combination of linear Lie monomials with the same letters
(counted with repetitions). Also , it is a linear combination of Lyndon monomials with the same letters.

Proof The first part follows from the rewriting process that we have just described. The second one is
a bit trickier: although we know that a decomposition into a linear combination of Lyndon monomials
exists (Proposition A.6), we did not give an algorithm to compute it. However, we can use a homogeneity
argument as follows: ZM.A/ is NfAg–graded, the degree of an element of the free magma M.A/ being
its image in the free commutative monoid NfAg (which counts the number of appearance of each letter
in a given nonassociative word). Moreover, the antisymmetry and the Jacobi relations are homogeneous
with respect to this degree, so that the quotient LŒA� is again a graded abelian group with respect to this
degree. As a consequence, if we write a Lie monomial m of degree d as a linear combination of Lyndon
monomials, taking the homogeneous component of degree d results in an expression of m as a linear
combination of Lyndon monomials of degree d 2NfAg, as claimed.

We remark that the expression of m obtained in the proof by taking the homogeneous component must in
fact must be the same as the first one, because of Theorem A.9.

Linear trees can be used to define a basis of the reduced free Lie ring RLŒn� which could be used to
replace the Lyndon basis in all our work (this is in fact the point of view used in [Meilhan and Yasuhara
2019]):
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Lemma A.15 For all integer k > 2, a basis of RLŒn�k is given by Lie monomials which are letters or of
the form Œyi1 ; : : : ; yik � where the ij 6 n are pairwise distinct and satisfy ik Dmaxj .ij /.

Proof Using antisymmetry, one sees that up to a sign, any Lie monomial without repetition is equal to a
Lie monomial with the same letter where the right-most factor (the right-most leaf of the corresponding
tree) bears the maximal index. Then we can use the rewriting rule (A-1) to get a linear combination
of linear trees, and the right-most leaf stays the same throughout the process, as does the set of letters
used. This shows that Lie monomials of the form described in the lemma generate the abelian group
RLŒn�k . Moreover, there are .k � 1/Š

�
n
k

�
such monomials, which is already known to be the rank of

RLŒn�k (Proposition 1.9); hence this family must be a basis of RLŒn�k .
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Morse–Bott cohomology from homological perturbation theory

ZHENGYI ZHOU

We construct cochain complexes generated by the cohomology of critical manifolds in the abstract setup
of flow categories for Morse–Bott theories under minimum transversality assumptions. We discuss
the relations between different constructions of Morse–Bott theories. In particular, we explain how
homological perturbation theory is used in Morse–Bott theories, and both our construction and the
cascades construction can be interpreted as applications of homological perturbations. In the presence of
group actions, we construct cochain complexes for the equivariant theory. Expected properties like the
independence of approximations of classifying spaces and the existence of the action spectral sequence are
proven. We carry out our construction for Morse–Bott functions on closed manifolds and prove it recovers
the regular cohomology. We outline the project of combining our construction with polyfold theory.
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1 Introduction

Morse theory [59] enables one to analyze the topology of a manifold by studying Morse functions on
that manifold, or more explicitly by studying critical points and gradient flow lines. Although Morse
functions are generic among all differentiable functions, sometimes it is more convenient to work with
more special functions. Morse–Bott functions were introduced by Bott in [8] as generalizations of Morse
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functions, and have proven to be extremely useful for studying spaces in the presence of symmetries;
see Bott [9] and Bott and Samelson [10]. Inspired by ideas of Witten [76] and Gromov [37], Floer
generalized Morse theory to various infinite-dimensional settings [27; 28; 29; 30]. Now there are many
invariants in symplectic geometry, contact geometry and low-dimensional topology based on Floer’s
construction. Many of them have a “Morse theoretical” background, eg Dostoglou and Salamon [22],
Kronheimer and Mrowka [50], Ozsváth and Szabó [62] and Seidel [70]. Many other invariants (see
Eliashberg, Givental and Hofer [23], Fukaya, Oh, Ohta and Ono [34] and Seidel [71]) are closely related
to Morse theory. Usually invariants are defined in the “Morse” case, ie critical points are isolated, and
invariants or structural maps are defined by counting zero-dimensional moduli spaces. However, often it
is more convenient to study the Morse–Bott case, where we need to “count” higher-dimensional moduli
spaces, since there are several benefits:

(1) Morse–Bott functions usually reflect some extra symmetries of the problem, and computations in
Morse–Bott theory are usually simpler because of the extra symmetries (see Bourgeois [12] and
Diogo and Lisi [20]).

(2) Morse–Bott theories appear in equivariant theories; see Austin and Braam [3], Bourgeois and
Oancea [14] and Lin [53].

There are two aspects of Morse–Bott theories in applications. First, we need to construct compactified
moduli spaces of gradient flow lines/Floer trajectories from one critical manifold to another critical
manifold. Moreover, we need the moduli spaces to be equipped with smooth structures so that the moduli
spaces are manifolds or orbifolds. To achieve that, there are three main methods:

(1) geometric perturbations (see McDuff and Salamon [56]), where one perturbs geometric data like
almost-compact structures or metrics (such methods were used in many classical treatments of
Floer theories),

(2) the Kuranishi method (see [34], as well as Joyce [48] and McDuff and Wehrheim [57]),

(3) the polyfold method (see Hofer, Wysocki and Zehnder [44]).

There are many other methods for specific geometric settings (see Cieliebak and Mohnke [17], Ionel and
Parker [46], Li and Tian [52] and Ruan and Tian [67]) and algebraic treatments; see Pardon [63]. Second,
from critical manifolds and compactified moduli spaces of gradient flow lines/Floer trajectories we need
to construct cochain complexes. We focus on the second part. In particular, we explain how to count when
the dimension of moduli spaces is positive, assuming the moduli spaces are reasonably nice. However, we
will discuss the transversality problem for the finite-dimensional Morse–Bott theory in Section 8 using
geometric perturbations, and outline the polyfold method for the general case in Section 9.

1.1 Cohomology of flow categories

It turns out that all critical manifolds and compactified moduli spaces from a Morse–Bott setting determine
a category, namely a flow category, which was first introduced by Cohen, Jones and Segal in [19] to
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organize all the moduli spaces of flow lines in Morse/Floer theories. Roughly speaking, the objects of a
flow category come from critical points, and the morphisms are (broken) flow lines.

In the Morse case, the cochain complex is constructed by counting points in the zero-dimensional moduli
spaces (the morphism space). However, in a general Morse–Bott case, higher-dimensional moduli spaces
should contribute nontrivially to the construction. Given a general abstract Morse–Bott flow category,
there are several methods to get a chain or cochain complex:

(1) Austin and Braam’s model [3] The cochain complex is generated by differential forms of the
critical manifolds, and the differential is defined by the pullback and pushforward of differential
forms through the compactified moduli spaces.

(2) Fukaya’s model [33] The chain complex is generated by a certain subcomplex of the singular
chain complex of the critical manifolds, and the differential is defined by the pushforward and
pullback of singular chains through the compactified moduli spaces.

(3) The cascades model of Bourgeois [12] and Frauenfelder [32] The cochain complex is generated
by Morse cochain complexes of critical manifolds after we assign suitable Morse functions to each
critical manifold. The differential is defined by counting “cascades”.1

All of the methods above have to make some assumptions on the compactified moduli spaces of Morse/Floer
trajectories. In the Morse–Bott setting, Morse/Floer trajectories can break into pieces with ends matched.
Hence the boundary of a compactified moduli space consists of fiber products over critical manifolds. The
minimal transversality requirement is that these fiber products are cut out transversely. Such a requirement
is natural using any reasonable virtual technique. We work in the context of flow categories under such
fiber products transversality assumptions.

Our first goal is to unify the three methods and provide a simple and clean construction, called the minimal
Morse–Bott construction, to every Morse–Bott flow category. Moreover, we will explain the following
guiding principle in Morse–Bott constructions:

Claim Formal applications of the homological perturbation lemma tend to give well-defined constructions.

It turns out that both cascades and the minimal construction fit into this principle, and the relations are
described in the following diagram:

cascades construction minimal construction

homological pertubation lemma

Austin and Braam’s
model/Fukaya’s model

1Strictly speaking, the original cascades model [12; 32] was phrased using homological conventions; the abovementioned
cochain complex is the linear dual of the homological cascades model.
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In applications of the homological perturbation theory, one needs to choose some perturbation data
(projections and homotopies). For the cascades model, the projections and homotopies are provided
by Harvey and Lawson’s work [39] on Morse theory. The minimal construction is based on a more
direct construction of the projections and homotopies. For example, one can choose the projection to
harmonic forms and the associated Green operator (as the homotopy) as the perturbation data. The
principle above also works for structures more general than a “linear structure” like flow categories, as
long as all the relevant moduli spaces satisfy the fiber products transversality assumption; see eg Cieliebak
and Volkov [18]. However, this has gone beyond our scope here.

Our main theorem is that, with suitable orientations, one can associate a well-defined cochain complex
generated by the cohomology of the object space (critical manifolds) to a flow category:

Theorem To every oriented flow category we can assign a minimal Morse–Bott cochain complex
.BC; dBC/ over R generated by the cohomology of the object space (with a suitable completion) in a
functorial way.

Of course, this theorem bears no meaning yet. We point out here that:

(1) When the flow category arises from a Morse–Bott function on a closed manifold, the cohomology
of the minimal Morse–Bott cochain complex is the cohomology of the manifold.

(2) When the flow category arises from a Morse case (critical points are nondegenerate and hence
isolated), the cochain complex is the usual cochain complex with differential defined by counting
rigid points in the morphism space.

(3) There are analogous constructions for continuation maps and homotopies, which, in applications,
will yield invariance with respect to various auxiliary geometric data (Hamiltonians, almost-complex
structures, metrics etc).

The construction provides explicit formulae for how higher-dimensional moduli spaces contribute in the
construction; in particular, there are error-correcting terms from moduli spaces related to the boundaries
and corners. Like the cascades construction, to write down an explicit cochain complex we need to
make some choices on each critical manifold. One of the advantages of the minimal construction is that
the choices do not require any compatibility condition with the morphism space (moduli spaces). The
cohomology theory on the level of flow categories in this paper simplifies many geometric constructions
including products (Section 7.1.1), quotients (Section 7.2.1) and fibrations (Section 6.2.1), as such
constructions are natural on the level of flow categories.

The theorem above is the simplest version. We also discuss several generalizations: the critical manifold
Ci can be noncompact, the critical manifold Ci can be equipped with local systems and does not have
to be orientable, and it is not necessary that the cochain complex is generated by the cohomology, any
finite-dimensional subspace of differential forms satisfying a cohomological relation is sufficient. Such
flexibility allows us to prove a Gysin exact sequence for sphere bundles over flow categories. In [79], we
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use the Gysin exact sequence to show that any exact filling of a simply connected flexibly fillable contact
manifold has the same cohomology ring structure on even degrees.

1.2 Equivariant theories

Our second goal is developing an equivariant theory on the level of flow categories, which would serve as
a model for defining equivariant Floer theory. When there is a group G symmetry on the Morse–Bott
theory, the cohomology theory should be enriched to a G–equivariant theory. One typical method is
approximating the homotopy quotient. Bourgeois and Oancea [16] used a construction inspired by
the cascades method to define the S1–equivariant symplectic homology in this spirit. In our case, the
homotopy quotient construction is very natural on the level of flow categories. Hence we can combine
the Borel construction and our minimal construction, and realize the equivariant cochain complex as a
homotopy limit.

Theorem Assume a compact Lie group G acts on an oriented flow category C and preserves the
orientations. Then there is a cochain complex .BCG ; dGBC/, whose homotopy type is unique , ie independent
of all the choices in the construction , particularly the choice of finite-dimensional approximations of the
classifying space EG! BG.

1.3 Constructions of flow categories

The remaining obstacle to using the minimal construction in applications is constructing a flow category.
In Section 8, we construct flow categories for the finite-dimensional Morse–Bott theory using geometric
methods. In general, geometric perturbations (perturbing metrics in Morse theory and perturbing almost-
complex structures in Floer theory), may not be enough to guarantee the transversality assumption, and
hence one needs to apply some abstract perturbations. In fact, our minimal construction is applicable
to polyfold theory. We can enrich a flow category (a system of manifolds) to a system of polyfolds
with sc–Fredholm sections, and the boundaries/corners of the polyfolds come from transverse fiber
products of polyfolds. We will refer this system as a polyflow category. Then we can find a coherent
perturbation scheme and apply the abstract perturbation theorem for polyfolds of Hofer, Wysocki and
Zehnder [44] to get a flow category. In the presence of a group action, the theorem above on equivariant
cohomology requires G–equivariant transversality. But we know that G–equivariant transversality is
typically obstructed. In general, we need to apply the Borel construction using quotient theorems of
Zhou [78] to the whole polyflow category instead of the flow category.

Organization

Section 2 discusses the motivation of the minimal construction from homological perturbation theory and
interprets the cascades construction as an example of an application of the homological perturbation theory.
Section 3 defines the minimal cochain complex, as well as continuation maps and homotopies explicitly,
and proves that they satisfy the desired properties. Section 4 discusses the action spectral sequence.
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Section 5 explains how the orientations used in Section 3 arise in Morse/Floer theories. Section 5 also
generalizes the construction to the case with local systems and nonorientable manifolds. Section 6
generalizes the construction to flow categories with noncompact critical manifolds, and also provides
a more general setup which allows us to prove statements like the Gysin exact sequence. Section 7
discusses the equivariant theory. Section 8 is devoted to the Morse–Bott theory on finite-dimensional
manifolds (both open and closed) and proves that the minimal construction recovers the cohomology of the
underlying manifold. Section 9 outlines the project of combining our construction with polyfold theory.
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2 Motivation from homological perturbation theory

2.1 Differential topology notation

We first set up some notation and transversality theory for manifolds with boundaries and corners, and
orientation conventions.

2.1.1 Manifolds and submanifolds with boundaries and corners Unless stated otherwise, all mani-
folds we consider are manifolds possibly with boundaries and corners [58, Definition 1.6.1], ie for every
point in the manifold there is an open neighborhood diffeomorphic to an open subset of Rn

C
, where

RC WD Œ0;1/. A closed manifold is a compact manifold without boundary.

Definition 2.1 Let M be a manifold and x 2M a point. Choosing a chart � WRn
C
�U !M near x 2M ,

the degeneracy index d.x/ of the point x is defined to be #fvi j vi D 0g, where .v1; : : : ; vn/ 2Rn
C

and
�.v1; : : : ; vn/D x 2M .

The degeneracy index d does not depend on the local chart � [58, Corollary 1.5.1]. For i � 0, we define
the depth-i boundary @iM to be

(2-1) @iM WD fx 2M j d.x/D ig:

Then @0M is the set of interior points of M . Note that all @iM are manifolds without boundary, and
in most cases they are noncompact. Submanifolds of manifolds should be compatible with structures
defined in (2-1):
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Definition 2.2 A closed subset N �M is a submanifold of M if and only if N is a manifold such that
the inclusion N !M is a smooth embedding and, for all i � 0, we have @iN D N \ @iM . In other
words, .M;N / near x is locally modeled on .Rk

C
�Rn�k;Rk

C
�Rn�m�f0gm�k/ near 0 for every x 2N .

An instant corollary is that if N is submanifold of M and M is submanifold of K, then N is also a
submanifold of K. Unless stated otherwise, we will only consider submanifolds defined as above. In
particular, when M has no boundary, a submanifold does not have boundary either. Note that @iM is not
a submanifold of M in the sense of Definition 2.2 unless dimM D 0.

Remark 2.3 (1) Some authors require, in the definition of manifolds with boundaries and corners, the
additional property that faces (the closure of connected components of @1M ) are submanifolds (not in
the sense of Definition 2.2 but a weaker sense, eg t–submanifolds in [58, Definition 1.7.3]); for example,
[58, Definition 1.8.5]. Such a definition will rule out the “teardrop” shape. Although we do not use this
definition, we note here that in Floer/Morse cohomology theories, which are the main applications of
our abstract construction, the compactified moduli spaces of Floer/Morse trajectories are manifolds with
boundaries and corners in this stronger sense. However, if we were to consider more general algebraic
structures (more complicated than a cochain complex) arising from the compactified moduli spaces of
pseudoholomorphic curves, a “teardrop” moduli space may appear; see for example [64, Figure 8].

(2) There are different notions of submanifolds in a manifold with boundaries and corners depending on
the purpose. For example, there are notions of t–, d–, and p–submanifolds [58, Section 1.7] depending
on the compatibility of tangent spaces at the boundary. However, our notion of submanifolds is stronger
than any of that, as we require that l D k in the definition of p–submanifolds [58, Definition 1.7.4]. This
is equivalent to requiring that .M;N / near x is locally modeled on .Rk

C
�Rn�k;Rk

C
�Rn�m�f0gm�k/

near 0 for x 2N .

(3) Submanifolds in the sense of Definition 2.2 arise naturally as zero sets of sections s WM !E of a
vector bundle E over a manifold M with boundaries and corners, if sj@iM is transverse to 0 for all i . This
can be viewed as a prototype of how compactified moduli spaces of Floer cylinders/holomorphic curves
can be equipped with the structure of a manifold with boundaries and corners in the polyfold perspective.
The transversality requirements above are equivalent to s being in general position [44, Definition 5.3.9].

Definition 2.4 Transversality is defined as follows, to accommodate the boundary and corner structures:

(1) Let C be a manifold without boundary, B a submanifold of C and M a manifold possibly with
boundaries and corners. A smooth map f WM ! C is transverse to B if and only if f j@iM t B
for all i in the classical sense, ie Dfx.T @iM/C Tf .x/B D Tf .x/C for all x 2 @iM such that
f .x/ 2 B .

(2) Let M be a manifold, and N1 and N2 two submanifolds. Then we say N1 is transverse to N2 if
and only if, for all i � 0 and every x 2 @iN1 \ @iN2, we have that @iN1 is transverse to @iN2
in @iM in the classical sense, ie Tx@iN1CTx@iN2 D Tx@iM .
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Proposition 2.5 We have the following implicit function theorems:

(1) Let C be a manifold without boundary and B be a submanifold. Given a manifold M along with
a smooth map f , assume that f WM !C is transverse to B in the sense of Definition 2.4(1). Then
f �1.B/ is a submanifold of M (in the sense of Definition 2.2).

(2) Let N1 and N2 be two submanifolds of a manifold M such that N1 is transverse to N2 in the sense
of Definition 2.4(2). Then N1\N2 is a submanifold of M . The codimension of N1\N2 is the
sum of the codimensions of N1 and N2.

Proof The first claim is standard. We sketch a proof of the second claim using the first claim (but not
the “obvious” one, as we cannot assume C DM and B D N2 in the first claim since M and N2 have
nonempty boundaries). Let x 2N2 with d.x/D k; we may assume the pair .M;N2; x/\U , for an open
set U �M , is modeled on .Rk

C
�Rn�k;Rk

C
�Rm�k � f0gn�m; 0/, following Remark 2.3. We consider

f W N1 \U ! Rn�m, the projection to the last n�m coordinates. It is straightforward to check that
transversality in Definition 2.4(2) implies (and is actually equivalent to) that 0 is a regular value of f . Since
f �1.0/DN1\N2\U , we endowN1\N2 with the structure of submanifold with boundaries and corners
in N1 by the first claim, and hence the structure of submanifold with boundaries and corners in M .

Since measure-zero sets on differentiable manifolds are well defined and our construction is based
on integration, errors over a measure-zero set can be tolerated. In particular, we have the following
useful notion:

Definition 2.6 Let M and N be two manifolds. A smooth map f WM ! N is a diffeomorphism up
to zero-measure if and only if there exist measure-zero closed sets M1 � M and N1 � N such that
f jMnM1 WMnM1!NnN1 is a diffeomorphism.

2.1.2 Orientations Given an oriented vector bundle E over a manifold M , the determinant bundle
detE is a trivial line bundle, which can be reduced further to a trivial Z=2–bundle signE. Moreover,
we can assign to signE a Z=2 grading jsignEj D rankE. The fiber of signE over x 2M is the set
of equivalence classes of ordered bases Œ.e1; : : : ; en/� of the fiber Ex , where .e1; : : : ; en/ is equivalent
to .e01; : : : ; e

0
n/ if and only if the transformation matrix between them has positive determinant. Then

the orientation of E induces a continuous section of signE, and we use ŒE� 2 �.signE/ to denote the
section induced by the orientation.

Given two vector bundles E and F over M , we fix a bundle isomorphism:

mE;F W sign.E/˝Z=2 sign.F /! sign.E˚F /;

Œ.e1; : : : ; en/�˝ Œ.f1; : : : ; fm/� 7! Œ.e1; : : : ; en; f1; : : : ; fm/�:

Therefore orientations ŒE� and ŒF � determine an orientation of E ˚ F through mE;F , and hence we
denote the induced orientation by

(2-2) ŒE�ŒF � WDmE;F .ŒE�; ŒF �/:
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Since Œ.e1; : : : ; en; f1; : : : ; fm/�D .�1/nmŒ.f1; : : : ; fm; e1; : : : ; en/�, we have

ŒE�ŒF �D .�1/jF jjE jŒF �ŒE�:

Definition 2.7 For simplicity of notation, we introduce the following:

� A manifold M is oriented if and only if the tangent bundle TM is oriented, and we use ŒM � to denote
the orientation.

� @ŒM� denotes the induced orientation (in the usual sense, so that Stokes’ theorem holds without extra
sign) on the depth-1 boundary @1M for an oriented manifold M .

� Let E !M and F ! N be two oriented vector bundles. We use ŒE�C ŒF � to denote the induced
orientation on E [F !M [N , and �ŒE� to denote the opposite orientation.

� Unless stated otherwise, the product M �N is oriented by the product orientation of M and N , and
we use ŒM �N� to denote the product orientation. Then

(2-3) @ŒM �N�D @ŒM�� ŒN �C .�1/dimM ŒM �� @ŒN �:

� If f WM !N is a diffeomorphism, we use f�ŒM � as the orientation on N induced by Df W TM! TN
and ŒM �.

� Let E ! N be an oriented vector bundle and f W M ! N a smooth map. Then the bundle map
f �E!E induces a bundle map sign.f �E/! sign.E/. Through this map, the orientation ŒE� induces
an orientation on f �E over M ; the induced orientation is denoted by f �ŒE�.

Example 2.8 Let C be a closed oriented manifold. We now explain our orientation convention for the
normal bundle N of the diagonal �� C �C D C1 �C2 using the notation introduced in Definition 2.7:
� is oriented by the condition2 �1�Œ��D ŒC1�, where �1 W C1 �C2! C1 is the projection. Then there
exists a unique orientation of N such that, when restricted to �, we have

Œ��ŒN �D ŒTC1�ŒTC2�j�:

For simplicity, we suppress the restrictions and the subscripts,3 and the equation becomes

(2-4) Œ��ŒN �D ŒC �ŒC � or equivalently ŒN �Œ��D .�1/.dimC/2 ŒC �ŒC �:

This determines our orientation convention for the normal bundle N .

2.2 Flow categories

Flow categories was introduced by Cohen, Jones and Segal [19] to organize the moduli spaces in Floer
(co)homology, and were used to construct a stable homotopy type for Floer theories. Our construction
will be based on the concept of flow categories, and hence we recall the definition first:

Definition 2.9 A flow category is a small category C with the following properties:

2This condition is equivalent to �2�Œ��D ŒC2�.
3We will never switch the order of the two copies of C .
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(1) The object space Obj.C/D
F
i2Z Ci is a disjoint union of closed manifolds Ci , ie Ci is a compact

manifold without boundary. The morphism space Mor.C/ DM is a manifold. The source and target
maps s; t WM! C are smooth.

(2) Let Mi;j denote .s� t /�1.Ci �Cj /. Then Mi;i DCi , corresponding to the identity morphisms, and
s and t restricted to Mi;i are identities. Mi;j D∅ for j < i , and Mi;j is a compact manifold for j > i .

(3) Let si;j and ti;j denote sjMi;j
and t jMi;j

. For every strictly increasing sequence i0 < i1 < � � �< ik ,
ti0;i1�si1;i2�ti1;i2�� � ��sik�1;ik WMi0;i1�Mi1;i2�� � ��Mik�1;ik!Ci1�Ci1�Ci2�Ci2�� � ��Cik�1�Cik�1
is transverse to the submanifold�i1�� � ���ik�1 in the sense of Definition 2.4. Therefore the fiber product

Mi0;i1�i1Mi1;i2�i2 � � ��ik�1Mik�1;ik

WD .ti0;i1�si1;i2� ti1;i2�� � ��sik�1;ik /
�1.�i1��i2�� � ���ik�1/�Mi0;i1�Mi1;i2�� � ��Mik�1;ik

is a submanifold by Proposition 2.5.

(4) The composition m WMi;j �j Mj;k!Mi;k is a smooth map such that

m W
G

i<j<k

Mi;j �j Mj;k! @Mi;k

is a diffeomorphism up to zero-measure.

Example 2.10 Fix a Morse–Bott function f on a closed manifold M . Then there are finitely many
critical values v1 < � � �< vn. Let Ci denote the critical manifold corresponding to the critical value vi ,
and Mi;j the compactified moduli space of unparametrized gradient flow lines from Ci to Cj . Since the
function value increases along a gradient flow line, Mi;j D∅ when i > j . The source map s WMi;j !Ci

and target map t WMi;j ! Cj are defined to be the evaluation maps at the negative/positive ends of the
flow line in Mi;j . The composition map m is the concatenation of flow lines. It’s a folklore theorem that
the Mi;j are smooth manifolds with boundaries and corners if one chooses a suitable metric; see [3; 33]
and Section 8. Therefore fCi ;Mi;j g forms a flow category. We emphasize here that the subscript i
in Ci has nothing to do with Morse–Bott indices. Similar constructions also exist in Floer theories, as
long as there is a background “Morse–Bott” functional and all the transversality conditions are met. For
example, [19] gives an explicit construction of the flow category for the Hamiltonian Floer cohomology
theory on CPn, where the background Morse–Bott functional is the symplectic action functional with the
Hamiltonian4 H D 0. There are also flow categories without obvious background Morse–Bott functionals,
for example, the flow category for Khovanov homology [54].

We associate a natural cochain complex to each (oriented) flow category in a functorial way. The main
application would be defining Hamiltonian–Floer cohomology or Morse cohomology under Morse–Bott
nondegenerate conditions. Although we will be discussing the abstract notion of flow categories, it
would be helpful to keep Example 2.10 in mind. In view of this, with a bit abuse of notation, we will
refer to elements of Mi;j as Morse (or Floer) trajectories from Ci to Cj . Inspired by Example 2.10,

4[19] used homological convention, which gave the opposite category of a flow category in the sense of Definition 2.9.
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Definition 2.9(2) is usually the consequence of the existence of some background functional, and the
morphism space Mi;j is the compactified moduli space of “gradient flow lines”,5 that is, the space of
possibly broken “gradient flow lines”. Definition 2.9(3) is necessary for the smoothness of the composition
map m. Roughly speaking, Definition 2.9(4) requires that the boundary of the morphism space is the
space of nontrivial compositions of morphisms, although it is only about an essential portion of the
correspondence. In applications, we can stratify Mi;j in a cell-like manner by a poset similar to the
construction in [64] such that m respects the structure, but we will not need that level of precision here.

Remark 2.11 (1) A flow category is called Morse if C is a discrete set. Then the fiber product
transversality becomes tautological, and it recovers the definition of a flow category in [19], up to taking
the opposite category.

(2) In the context of Floer theories, the moduli spaces may not be manifolds in general, but instead some
weighted objects with local symmetries, eg weighted branched orbifolds in [42]. All of our arguments hold
for weighted branched orbifolds, since there is a well-behaved integration theory with Stokes’ theorem [43].

(3) When the flow category comes from a Morse–Bott functional f , but f is not single valued,6 we
need to lift f to Qf over the cyclic cover [19] to guarantee Definition 2.9(2). Such modification was
already reflected in the usual construction by introducing the Novikov coefficient.

(4) In Definition 2.9, we require Ci to be compact and without boundary. However, the compactness
assumption can be dropped: Ci could be a disjoint union of infinitely many closed manifolds or Ci
could have noncompact components.7 In such generalizations, compactness of Mi;j can be weakened to
requiring that the target maps t WMi;j ! Cj are proper;8 see Section 6.1 for details.

(5) For a background Morse–Bott function f , sometimes it is impossible to partition the critical manifolds
by Z and in the order of increasing critical values; critical values may accumulate. For example,
Hamiltonian Floer cohomology with Novikov coefficients will have this problem if the symplectic form
is irrational. However, Gromov compactness for the Hamiltonian Floer equation implies that there is an
action gap „ such that there are no nonconstant flow lines when the action difference (energy) is smaller
than „. Therefore we can still divide all the critical manifolds into groups indexed by Z so that there
are no nonconstant flow lines inside each group. Then the flow category can still be defined using the
generalization in (4).

(6) We will mostly work with oriented Ci ; see Definition 2.15. This assumption can be dropped at the
price of working with local systems. We discuss this generalization in Section 5.

(7) The requirement of the partition of Obj.C/ by Z is not necessary. We can certainly work with Obj.C/
indexed by any set I , as long as we require that Mi;j has only finitely many degenerations for any

5It could be Floer flow lines, which, strictly speaking, are not gradient flow lines.
6For example, Hamiltonian Floer cohomology on .M;!/ with !j�2.M/ ¤ 0 has this property.
7But those noncompact manifolds should have finite topology; see Section 6.1 for details.
8One can instead ask s WMi;j !Ci to be proper, but this will result in a theory analogous to the compactly supported cohomology.

Algebraic & Geometric Topology, Volume 24 (2024)



1332 Zhengyi Zhou

i; j 2 I , and the finite set of degeneration configurations is equipped with a partial order, whose minimum
elements are built from Mi;j without boundary. This is precisely the setup in [63, Section 7], and is
satisfied by more general constructions in [64]. When Obj.C/ is indexed by Z with the properties in
Definition 2.9, the set of degeneration configurations of Mi;j is precisely the set of strictly increasing
sequences S WD fi < � � �<j g, where the partial order is given by S1�S2 if and only if S2�S1. Then the
minimum element is fi < i C 1 < � � �< j � 1 < j g, which corresponds to the fiber product of manifolds
M�;�C1 without boundary. However, this level of generalization does not add much to the applications
we have in mind, and hence we choose to work with the more down-to-earth version (Definition 2.9) to
avoid more complication in notation.

Flow categories can be equipped with extra structures. For our construction, the most relevant structures
are gradings and orientations. Given a flow category C D fCi ;Mi;j g, for simplicity of notation, we
assume through out this paper that dimMi;j and dimCi are well defined. This requirement usually holds
when each Ci has one component.

Remark 2.12 When dimCi and dimMi;j are not well defined, then we need to work componentwise.
For example, if a function f in Example 2.10 is Morse and Ci contains critical points of different Morse
indices, then Mi;iC1 has multiple connected components of different dimension. This generalization
only results in complexity of notation; it is straightforward to see that our proofs still hold, and they can
be viewed as formulae on one component.

Let mi;j WD dimMi;j for i < j and ci WD dimCi . We formally define mi;i WD ci �1. By Definition 2.9(3)
and (4) and Proposition 2.5, ti;j � sj;k WMi;j �Mj;k! Cj �Cj is transverse to �j and an open dense
part of Mi;j �j Mj;k can be identified with part of the boundary of Mi;k . Then

(2-5) mi;j Cmj;k � cj C 1Dmi;k for all i � j � k:

Definition 2.13 A flow category is graded if there is an integer di such that di D dj C cj �mi;j � 1 for
each i 2 Z and all i < j . We will refer to fdig as the grading structure.9 Similarly, we define a Z=k

grading structure if di 2 Z=k and the relation holds in Z=k.

Remark 2.14 The Z=k grading structure on a flow category is used to equip the Morse–Bott cochain
complex with a Z=k grading. In the finite-dimensional Morse–Bott theory, a Z grading structure exists, ie
di can be the dimension of the negative eigenspace of Hess.f / on Ci . For Hamiltonian Floer cohomology,
a Z=2 grading structure always exists and a Z grading structure exists if the first Chern class of the
symplectic manifold vanishes; then di is related to the generalized Conley–Zehnder index [66].

Next, we define orientations on a flow category. Since ti;j �sj;k WMi;j �Mj;k!Cj �Cj is transverse to
the diagonal �j , the pullback .ti;j � sj;k/�Nj of the normal bundle Nj of �j by ti;j � sj;k is the normal

9When dimMi;j or dimCi are not well defined, a grading is an assignment of integers to each component of Ci satisfying
similar relations.
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bundle of Mi;j �j Mj;k WD .ti;j � sj;k/
�1.�j / in Mi;j �Mj;k . If Nj is oriented, then we can pull back

this orientation to orient the normal bundle of Mi;j �j Mj;k . We define a coherent orientation on a flow
category as follows:

Definition 2.15 A coherent orientation on a flow category is an assignment of orientations for each Ci ,
Mi;j and Mi;j �j Mj;k such that:

(1) The normal bundleNi of�i �Ci�Ci is oriented by ŒNi �Œ�i �D .�1/c
2
i ŒCi �ŒCi �, as in Example 2.8.

(2) .ti;j � sj;k/
�ŒNj �ŒMi;j �j Mj;k�D .�1/

cjmi;j ŒMi;j �ŒMj;k�.

(3) @ŒMi;k�D
P
j .�1/

mi;jm.ŒMi;j �j Mj;k�/.

More precisely, (3) holds on where m is a diffeomorphism. One can combine (2) and (3) as

.ti;j � sj;k/
�ŒNj �m

�1.@ŒMi;k�jm.Mi;j�jMj;k//D .�1/
.cjC1/mi;j ŒMi;j �ŒMj;k�:

Remark 2.16 Orientation conventions are by no means unique; however they typically differ by a global
change. For example, in the context of Morse theory, Definition 3.3 differs from [65] by an opposite sign
on the orientation of every Mi;j . Although our orientation conventions for fiber products are different
from [47], our conventions also enjoy the associativity property [47, Proposition 7.5(a)], and hence the
uniqueness property in [47, Remark 7.6(iii)] holds.

We will discuss how coherent orientations arise in applications in Section 5.1. When the flow category is
oriented as in Definition 2.15, we have the following form of Stokes’ theorem:Z

Mi;k

d˛ D
X
i<j<k

.�1/mi;j
Z
Mi;j�jMj;k

m�˛:

Suppose that ˛ 2 ��.Ci /, ˇ 2 ��.Ck/ and i < j < k. Because si;k ımjMi;j�jMj;k
D si;j ı �1 and

ti;k ımjMi;j�jMj;k
D tj;k ı�2, where �1 and �2 are natural projections, we have

(2-6)
Z
m.Mi;j�jMj;k/

s�i;k˛^t
�
i;kˇD

Z
Mi;j�jMj;k

m�s�i;k˛^m
�t�i;kˇD

Z
Mi;j�jMj;k

��1 s
�
i;j˛^�

�
2 t
�
j;kˇ:

Since we will only consider pullbacks of forms by source and target maps, it is convenient to think of
Mi;j �j Mj;k as contained in @Mi;k , and suppress the composition map m.

2.2.1 Conventions for cochain complexes In a typical homological algebra textbook, for example [75],
a cochain complex is Z graded or Z=k graded for k � 2. As mentioned in Remark 2.14, the grading of
the Morse–Bott cochain complex is a consequence of the grading structure in Definition 2.13, which is an
extra piece of data on flow categories. Although the applications in our mind always have at least a Z=2

grading structure, we will not assume this, and only work with Definition 2.9. As a result, our cochain
complex is simply a vector space C with an operator d W C ! C such that d2 D 0. Then the cohomology
H.C; d/ is defined as ker d=im d . The definitions of cochain maps and homotopies are similar and have
the usual properties. It is clear that by forgetting the grading on a Z=k graded cochain complex we get a
cochain complex in the above sense. Many basic properties in homological algebra survive for ungraded
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cochain complexes, eg the spectral sequence from a filtration, the exact triangle10 from a short exact
sequence, the mapping cone and mapping cylinder constructions.

2.3 Review of existing constructions

Throughout this subsection we fix a flow category C WD fCi ;Mi;j g such that there are finitely many
nonempty Ci , for simplicity (for example, one can take the flow category from Example 2.10). Before
giving our construction of the minimal Morse–Bott cochain complex in Section 3.2, we review the three
constructions in the existing literature: Austin and Braam’s pull–push construction, Fukaya’s push–pull
construction and the cascades construction. For simplicity, we completely neglect the issue of signs11

and orientations.

2.3.1 Austin and Braam’s Morse–Bott cochain complex .BCAB; dAB/ Austin and Braam [3] defined
the Morse–Bott cochain complex of a flow category to be�

BCAB
WD

M
i

��.Ci /; d
AB
�
;

where ��.Ci /D
LdimCi
jD0 �j .Ci / is the space of differential forms on Ci . The differential dAB is defined

as
P
k�0 dk , where dk is defined by

(2-7)
d0 D d W��.Ci /!��.Ci /;

dk W�
�.Ci /! D�.CiCk/ given by ˛ 7! ti;iCk� ı s

�
i;iCk.˛/ for k � 1;

where d is the usual exterior differential on differential forms. Here D�.C / is the space of currents on C .
The operator dk taking values in D�.C / instead of ��.C / causes difficulties getting a well-defined
ungraded cochain complex .BCAB; dAB/. Thus, to make it well-defined, the target maps ti;j are assumed
to be fibrations in Austin and Braam’s model. Under such assumptions, ti;j � is integration along the fiber,
and hence dk actually lands in ��.CiCk/. However, it was noticed in [51, Remark 2.4] that the fibration
condition is obstructed for some Morse–Bott functions. That is, there exists a Morse Bott function f
such that the fibration property fails for all metrics.

Remark 2.17 An equivalent form of the fibration condition was studied by Banyaga and Hurtubise
under the name the Morse–Bott–Smale condition [4, Definition 3.4]. More precisely, let �t be the
gradient flow of f . The Morse–Bott–Smale condition holds if and only if the unstable manifold U.Ci /D
fx jx2M and limt!�1 �t .x/2Cig and the stable manifold S.p/Dfx jx2M and limt!1 �t .x/Dpg

forp2Cj intersect transversely12 for allCi ,Cj andp2Cj . Note that .U.Ci /\S.p//=R is the intersection

10When we have a Z grading, the exact triangle is a long exact sequence.
11For curious readers who would like to verify those constructions, we point out that Austin and Braam [3] have incorrect
orientations and signs. Although our construction is motivated by theirs, we will not appeal to any of their specific formulae in
our proofs.
12Note that we use (un)stable manifolds of the positive gradient flow; this explains the discrepancy with [4, Definition 3.4].
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of the preimage t�1i;j .p/ with the open stratum of Mi;j (the space of unbroken flow lines); it is easy to
check that U.Ci / is transverse to S.p/ if and only if p is a regular value of ti;j restricted to the open
stratum. In particular, the fibration condition implies the Morse–Bott–Smale condition. On the other hand,
the Morse–Bott–Smale condition implies the fibration condition by [4, Corollary 5.20] and Ehresmann’s
theorem. Latschev introduced another even stronger condition [51, Definition 2.3] to make sure the
generalization of Harvey and Lawson’s method [39] works in the context of Morse–Bott functions. The
existence of a flow category only requires that U.Ci / and S.Cj /— the stable manifold of Cj — intersect
transversely, and the iterated source and target maps from these transverse intersections are transverse for
all i and j ; see Section 8 (this holds automatically when the Morse–Bott–Smale condition holds). We refer
to such a pair .f; g/ of a function and a metric as a Morse–Bott–Smale pair in Section 8. It is important
to note that the Morse–Bott–Smale pair condition is much weaker than the Morse–Bott–Smale condition
(namely transversality vs pointwise transversality in a family). Moreover, Morse–Bott–Smale pairs always
exist. In particular, there is a metric for Latschev’s example that forms a Morse–Bott–Smale pair.

Remark 2.18 One way to get the fibration property is to fatten up all moduli spaces systematically; a
construction in this spirit was carried out in [35] using CF–perturbations.

Remark 2.19 The Austin–Braam cochain complex .BCAB; dAB/ explained here is ungraded. However,
we can grade ˛ 2 �j .Ci / by j C di , where di the dimension of the negative eigenspace of Hess.f /
on Ci , (the grading structure in Remark 2.14). Then .BCAB; dAB/ is graded by Z and the degree of dAB

is 1. It is clear that BCAB is equipped with an (action) filtration Fi WD
L1
jDi �

�.Cj /� Fi�1 compatible
with the differential, which induces a spectral sequence. This structure does not depend on the grading and
always exists for all flow categories; we will discuss the induced spectral sequence in Section 4. On the
other hand, if there is a Z grading structure then the cochain complex has the structure of a multicomplex
studied in [45], which can decompose the spectral sequence further by the grading.

2.3.2 Fukaya’s Morse–Bott chain complex Fukaya [33] used “singular” chains of critical manifolds
to model the homology of the manifold for the flow category in Example 2.10, and the Austin–Braam
model can be viewed as the dual of Fukaya’s model. The chain complex is defined to be�

BCF
WD

M
i

C�.Ci /; @
F
�
:

Here C�.Ci / is the space of singular chains on Ci and @F WD
P
k�0 @k , with @k defined by

@0 D @ W C�.Ci /! C�.Ci /;

@k W C�.CiCk/! C�.Ci / given by P 7! si;iCk� ı t
�
i;iCk.P / for k � 1;

where @ is the usual boundary operator on singular chains. Now pushforward is well defined. Pullback is
defined as follows. Let P W�! CiCk be a singular chain and assume the fiber product ��CiCk Mi;iCk
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is cut out transversely in the sense of Definition 2.4, and hence is a manifold with boundaries and corners.
Then the projection to the second factor,13

�Mi;iCk
W��CiCk Mi;iCk!Mi;iCk;

is defined to be the pullback t�
i;iCk

.P /.

To guarantee this pullback is well defined for all singular chains in CiCk , one also needs to assume the
target map ti;iCk is a fibration. To drop this constraint, Fukaya constructed a quasi-isomorphic subset
Cgeo.Ci /� C�.Ci / such that the fiber products in the definition of pullbacks are defined over Cgeo.Ci /

and the operators @k are closed on Cgeo.Ci /. Then
�L

i Cgeo.Ci /;
P
k�0 @k

�
defines a chain complex. It

is important to note that the construction of Cgeo.Ci / depends on Mi;j , si;j and ti;j .

2.3.3 The cascades model The cascades construction was first introduced by Bourgeois [12] and
Frauenfelder [32]. In the following, we review their constructions, but in the cohomology context to align
with Austin and Braam’s construction. For each Ci , we choose a Morse–Smale pair .fi ; gi /.14 Then the
cascade cochain complex is defined to be�

BCC
WD

M
i

MC.fi ; gi /; dC
�
;

where MC.fi ; gi / is the Morse cochain complex of Ci using the Morse–Smale pair .fi ; gi /. The
differential dC is defined to be

P
k�0 d

C
k

, where dC
k

is defined by

dC
0 D dM WMC.fi ; gi /!MC.fi ; gi /;

for dM the usual Morse differential for .fi ; gi /, and

dC
k WMC.fi ; gi /!MC.fiCk; giCk/;

which is defined by the number of rigid cascades from Ci to CiCk for all k � 1. A 0–cascade is an
unparametrized gradient flow line for .fi ; gi /. For k � 1, a k–cascade from a 2 Crit.fi / to b 2 Crit.fj /
for i < j is a tuple for i < r1 < � � �< rk < j ,

.i ; mi;r1 ; r1 ; tr1 ; : : : ; mrk�1;rk ; rk ; trk ; mrk ;j ; j /;

where � is a gradient flow line in C�, m�;� is a point in M�;�, and the t� are positive real numbers,
satisfying i .�1/D a, i .0/D s.mi;r1/, j .C1/D b, j .0/D t .mrk ;j /, rs .trs /D s.mrs ;rsC1/ and
rs .0/D t .mrs�1;rs /.

When appropriate transversality assumptions are met, the moduli space of all cascades from a to b
form a manifold. Moreover, there is a natural compactification of the moduli space by including the
“broken” cascades. Then the differential dC for the cascades cochain complex comes from counting the
zero-dimensional compactified moduli spaces of cascades.

13To be more precise, we need to choose a triangulation of ��CiCk Mi;iCk .
14That is, stable manifolds and unstable manifolds of rgi fi intersect transversely.
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C1

C2

C3

a

b

rg1f1

rg2f2

rg3f3

2M1;2

2M2;3

Figure 1: A 2–cascade.

Remark 2.20 The transversality for all compactified moduli spaces of cascades will become tautological if
we assume ti;j is a fibration. In principle, we can obtain transversality for the cascades moduli spaces with
generic choices of .fi ; gi /. However, the choice depends on Mi;j , si;j and ti;j , just like Fukaya’s model.

Remark 2.21 The cascades construction is very popular and has been deployed in many applications;
see [7; 12; 21; 32; 68]. One advantage of the cascades model, besides being locally finite-dimensional, is
the clear relation with the Morse model. More precisely, the additional Morse function fi can be used
to perturb the Morse–Bott function into a Morse function whose gradient flow lines can be identified
with cascades. This identification was carried out by Banyaga and Hurtubise [5] in the context of finite-
dimensional Morse–Bott theory, and Bourgeois and Oancea [15] in the context of symplectic homology
with autonomous Hamiltonians.

2.4 Homological perturbation theory

The fibration condition in Austin and Braam’s construction plays an important role in resolving the
problem of the differential dk taking values in the space of currents. Since fibration conditions are usually
stronger than what one can get in any virtual techniques, we want to replace the fibration condition with a
weaker transversality requirement, ie the fiber product transversality condition in Definition 2.9, which is
generic in every reasonable virtual technique. Note that the operator dk is defined using the pushforward
of differential forms. Since pushforward is defined as the dual operator of pullback, the problem is rooted
in the fact that the dual space of differential forms��.Ci / is the space of currents D�.Ci / instead of itself.
However, this problem never appears for finite-dimensional vector spaces; whenever a finite-dimensional
space is equipped with a nondegenerate bilinear form, the dual space is identified with itself. To make use
of this fact, we use the homological perturbation lemma, which is a method of constructing small cochain
complexes from larger ones. The strategy is to formally apply the homological perturbation lemma to the
almost-existing Austin–Braam cochain complex, and then directly verify that the formula suggested by
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the perturbation lemma is well defined and gives the desired algebraic relations. The theme of this paper
can be summarized by the following slogan:

Formal applications of the homological perturbation lemma can resolve the technical difficulty
of infinite-dimensional cochain models.

2.4.1 A homological perturbation theorem Roughly speaking, the homological perturbation lemma
takes in a cochain complex and perturbation data (in most cases projections and homotopies) and produces
another cochain complex which is quasi-isomorphic to the input cochain complex. For simplicity, we
consider a cochain complex AD

Ln
iD1Ai , where the Ai are Z=2–linear spaces (ungraded as usual — i

is not the grading!). Assume the differential d is in the form of
P
k�0 dk with dk WAi !AiCk for k � 0.

Then d2 D 0 implies that .Ai ; d0/ is also a cochain complex for all i . The perturbation data consists of,
for each 1� i � n, projections pi WAi !Ai and homotopies Hi WAi !Ai between the identity and pi :

(2-8) id�pi D d0 ıHi CHi ı d0:

With this perturbation data, we have the following homological perturbation lemma:

Lemma 2.22 There is a differential on
L
i pi .Ai / such that

L
i pi .Ai / is quasi-isomorphic to A.

The lemma holds for general coefficient rings and graded complexes, once appropriate signs are assigned.
Since we only use Lemma 2.22 to explain the motivation behind the formulae we give in Section 3, we will
not go into the details of the signs nor the proof. What is more relevant to our purpose is the pattern of the
formula for the differential on

L
pi .Ai /, which can be viewed as an analog of the perturbation theorem for

A1 structures proved in [49]. For a strictly increasing sequence of integers T Dfi0D 0; i1; : : : ; irC1Dkg
for r � 0, we define the an operator Dk;T W pi .Ai /! piCk.AiCk/ for all integers i by

(2-9) Dk;T D piCk ı dirC1�ir ıHiCir ı � � � ıHiCi2 ı di2�i1 ıHiCi1 ı di1�i0 ı �i ;

where �i W pi .Ai /! Ai denotes the inclusion. Dk;T can be schematically explained as follows:

Ai
AiCi1 AiCi2 AiCir

AiCk

pi .Ai / piCk.AiCk/

�i piCk

di1 di2�i1 dirC1�ir

HiCi1 HiCi2 HiCir

The new differential D on
L
i pi .Ai / is defined as

D D

1X
kD0

Dk;

where Dk D
P
T Dk;T is the summation over all strictly increasing sequences T from 0 to k.
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2.4.2 Cascades from homological perturbation In this section, we explain how to heuristically
interpret the cascades cochain complex as a homological perturbation on the Austin–Braam cochain
complex. The feature that the cascades construction does not require the fibration condition also reflects
the theme of the paper.

We first explain the perturbation data used to get the cascades cochain complex, that is, a pair of projection
and homotopy .pi ;Hi / on ��.Ci / for every i . We require that the image impi is a finite-dimensional
subspace of��.Ci /. Given such perturbation data, we can formally write down operatorsDk;T from (2-9).
Note that in the cascades construction we choose a Morse–Smale pair .fi ; gi / on each critical manifold Ci .
The perturbation data is then given by such a Morse–Smale pair using the construction in [39]. Before
giving the construction, we first set up some notation. We will not be precise about signs and orientations.

Definition 2.23 Let C be an oriented closed manifold.

(1) D�.C / denotes the space of currents15 onC . There is a natural inclusion � W��.C /!D�.C / given by

�.˛/.ˇ/D

Z
C

˛^ˇ for all ˛ 2��.C /:

(2) Let �2D�.C�C/ be a current. Then the induced integral operator I� W��.C /!D�.C / is defined as

(2-10) I�.˛/.ˇ/ WD .�1/
dimC �.��1˛^�

�
2ˇ/ for all ˛; ˇ 2��.C /;

where �1 and �2 are projections of C �C to the first and second factors, respectively. We make the signs
in (1) and (2) precise for the sake of Section 3.

(3) Let B be an oriented compact manifold and i W B! C a smooth inclusion. Then we can define a
current ŒB� 2 D�.C / by

ŒB�.˛/ WD ˙

Z
B

i�˛ for all ˛ 2��.C /:

In general, one can define a current ŒB� for any oriented singular chain B .

Let Crit.fi / be the set of critical points of the Morse function fi on Ci . We use �it WCi!Ci to denote the
time-t flow of the gradient vector field rgifi on Ci . Then the pullback operator �i�t

�
W��.Ci /!��.Ci /

can be understood as the integral operator IŒgraph�it �
of the current of graph�it WD f.x; �

i
t .x//g � Ci �Ci .

The manifold
S
0<t 0<t graph�it 0 � Ci � Ci defines an integral operator H i

t WD IŒ
S
0<t0<t graph�i

t0
� D

IŒ
S
0�t0�t graph�i

t0
�. Since @

�S
0�t 0�t graph�it 0

�
D�i [ graph�it , Stokes’ theorem implies that

(2-11) id��i�t
�
D d ıH i

t CH
i
t ı d:

It was proven in [39] that when t !1, (2-11) converges to a projection–homotopy relation. To be more
specific, let Ux and Sx denote the unstable and stable manifolds of the critical point x 2 Crit.fi /:

(2-12) Ux WD
˚
y 2 Ci j lim

t!�1
�it .y/D x

	
and Sx WD

˚
y 2 Ci j lim

t!1
�it .y/D x

	
:

15For basics of currents, we refer readers to [36].
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In the sense of currents, we have the following:

(2-13) lim
t!1

Œgraph�it �D
X

x2Crit.fi /

ŒSx �Ux�; and lim
t!1

� [
0<t 0<t

graph�it 0
�
D

� [
0<t 0<1

graph�it 0
�
:

See [39, Theorems 2.3 and 3.3] for details.

Remark 2.24 Importantly, [39] studied limt!1 �
�
t (where ��t is represented by f.�it .x/; x/g �Ci �Ci )

and [39, Theorem 3.3] stated that limt!1 �
�
t can be represented by

P
x2Crit.fi /ŒUx�� ŒSx�. Then (2-11)

projects ��.Ci / to the Morse chain complex [39, Proposition 4.5], or equivalently the Morse cochain
complex of �fi . Since we need a projection to the Morse cochain complex of fi to explain the cascades
model, we need to work with limt!1 �

�
�t instead. This explains the discrepancy with [39].

Hence (2-13) defines two integral operators �i�1
�
;H i
1 W�

�.Ci /! D�.Ci / such that

(2-14) ���i�1
�
D d ıH i

1CH
i
1 ı d;

where � is the natural embedding ��.Ci / ,! D�.Ci /; see [39, Theorems 2.3 and 3.3]. Note that

(2-15) �i�1
�
.˛/D

X
x2Crit.fi /

�Z
Ci

˛^ ŒSx�

�
� ŒUx�D

X
x2Crit.fi /

�Z
Sx

˛jSx

�
� ŒUx�

can be viewed as the projection from ��.Ci / to the Morse cochain complex; see [39, Theorem 4.1]. By
(2-14), H i

1 defines a homotopy between � and the projection �i�1
�.

Remark 2.25 Strictly speaking, (2-14) is not a genuine projection–homotopy relation, since �i�1
� lands

in space of currents instead of differential forms. To get an honest projection–homotopy relation, we need
to enlarge ��.C / by adding some currents of singular chains. Roughly speaking, the enlargement is the
minimal extension which contains ŒUx� and ŒSx� for x 2 Crit.fi / such that it is closed under �i�1

�, H i
1

and d. Such an enlargement depends on Mi;j , si;j and ti;j , which leads to the choices in Remark 2.20.

From now on, we will neglect the issue in Remark 2.25 and show formally that the cascades construction
can be understood as applying the construction in (2-9) to the Austin–Braam cochain complex using the
perturbation data .�i�1

�
;H i
1/. Before “proving” the claim, we first “define” the integration of pullbacks

of currents from singular chains:

Definition 2.26 Let M be a compact manifold with two smooth maps s; t WM! C1; C2. Assume
B1 � C1 and B2 � C2 are two submanifolds without boundary.16 If s is transverse to B1, t is transverse
to B2 and s�1.B1/ is transverse to t�1.B2/ with finite intersections, then we defineZ

M
s�.ŒB1�/^ t

�.ŒB2�/ WD
X

p2s�1.B1/\t�1.B2/

˙1:

16The inclusion B� �C� is not required to be proper, and hence B� may not be closed. We only require that B� is the interior of
a compact manifold with boundaries and corners B� so that the inclusion B� ,!C� is the restriction of a smooth map B�!C�.
Therefore Definition 2.23(3) makes sense for B1. In particular, the (un)stable manifolds satisfy the condition.

Algebraic & Geometric Topology, Volume 24 (2024)



Morse–Bott cohomology from homological perturbation theory 1341

Definition 2.26 is natural in the sense that if we approximate the current ŒB1� by differential forms
supported in a tubular neighborhood [36, Chapter 3, Section 1], then the limit of the integration of the
pullbacks of the approximations is indeed the number of intersection points counted with sign.17

Now we apply (2-9). For x 2 Crit.fi /, the first term D0 in D D
P
k�0Dk is defined by

D0.ŒUx�/ WD �
i
�1

�
.d0.ŒUx�//D �

i
�1

�
.d.ŒUx�//D

P
y2Crit.fi /

�Z
Ci

d.ŒUx�/^ ŒSy �
�
� ŒUy �:

It was proven in [39, Proposition 4.5] that when the Morse–Smale condition holds,
R
Ci

d.ŒUx�/^ ŒSy �
equals the signed counts of rigid gradient flow lines from x to y. Therefore D0 recovers the Morse
differential on Ci . Next, we study the higher operators in D. Letting x 2 Crit.fi /,

D1.ŒUx�/D �
iC1
�1

�
d1ŒUx�D

P
y2Crit.fiC1/

�Z
CiC1

d1ŒUx�^ ŒSy �
�
� ŒUy � .by (2-15)/

D
P

y2Crit.fiC1/

�Z
Mi;iC1

s�i;iC1ŒUx�^ t
�
i;iC1ŒSy �

�
� ŒUy � .by (2-7)/

D
P

y2Crit.fiC1/
#.s�1i;iC1.Ux/\ t

�1
i;iC1.Sy// � ŒUy � .by Definition 2.26/:

The last equality requires that s�1i;iC1.Ux/ t t
�1
i;iC1.Sy/. So D1 counts points in s�1i;iC1.Ux/\ t

�1
i;iC1.Sy/,

which is exactly the 1–cascades in [12; 32]. By the same argument, D2;f0;2g counts rigid 1–cascades
from Ci to CiC2. Next we consider the operator D2;f0;1;2g:

D2;f0;1;2g.ŒUx�/D �
iC2
�1

�
ıd1ıH

iC1
1 ıd1.ŒUx�/

D
P

y2Crit.fiC2/

�Z
CiC2

.d1ıH
iC1
1 ıd1ŒUx�/^ŒSy �

�
�ŒUy � .by (2-15)/

D
P

y2Crit.fiC2/

�Z
MiC1;iC2

s�iC1;iC2.H
iC1
1 ıd1ŒUx�/^t

�
iC1;iC2ŒSy �

�
�ŒUy � .by (2-7)/:

Let us treat currents just like differential forms for simplicity. By definition,Z
CiC1

H iC1
1 ıd1.ŒUx�/^˛ D

Z
CiC1�CiC1

��1 .d1.ŒUx�//^
h S
0<t 0<1

graph�iC1t 0

i
^��2˛

D

Z
Mi;iC1�CiC1

s�i;iC1ŒUx�^.ti;iC1�idCiC1/
�
h S
0<t 0<1

graph�iC1t 0

i
^��2˛:

Then
H iC1
1 ı d1.ŒUx�/D

Z
Mi;iC1

s�i;iC1ŒUx�^ .ti;iC1 � idCiC1/
�
h S
0<t 0<1

graph�iC1t 0

i
:

The right-hand side is the integration along the fiber Mi;iC1 in the trivial fibration Mi;iC1 � CiC1.
Therefore D2;f0;1;2g.ŒUx�/ equalsP
y2Crit.fiC2/

�Z
Mi;iC1�MiC1;iC2

s�i;iC1ŒUx�^.ti;iC1�siC1;iC2/
�
h S
0<t 0<1

graph�iC1t 0

i
^t�iC1;iC2ŒSy �

�
�ŒUy �:

17The sign is determined by the orientations of B1, B2, C1, C2 and M.
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When transversality holds, by Definition 2.26 this equalsP
y2Crit.fiC2/

#
�
.s�1i;iC1.Ux/� t

�1
iC1;iC2.Sy// t

�
.ti;iC1 � siC1;iC2/

�1
� S
0<t 0<1

graph�iC1t 0

���
� ŒUy �;

which can be interpreted as the counting of 2–cascades from Ci to CiC2 staying on CiC1 for finite time.
Therefore D2 DD2;f0;2gCD2;f0;1;2g counts all rigid cascades from Ci to CiC2. In general, assuming
transversality for the cascade moduli spaces, we recover the whole cascades construction from (2-9).
Hence the cascades construction fits into the homological perturbation philosophy.

3 The minimal Morse–Bott cochain complexes

In this section, we carry out the construction of the minimal Morse–Bott cochain complex for an abstract
oriented flow category, which is applicable to both finite-dimensional Morse–Bott theory and Floer
theories. The motivation of the construction comes from Lemma 2.22 and (2-9) with different perturbation
data. We still need to make some choices (Definition 3.3) in the construction of the perturbation data.
However, unlike the cascades construction, the choices in the minimal construction only depend on Ci ,
that is, there is no compatibility requirement with the morphism spaces Mi;j .

This section is organized as follows: Section 3.1 constructs the perturbation data for the minimal Morse–
Bott cochain complex. Section 3.2 constructs the Morse–Bott cochain complexes for every oriented
flow category. Section 3.3 defines flow morphisms which can be viewed as the geometric analog of
the continuation maps and shows that flow morphisms induce morphisms between Morse–Bott cochain
complexes. Section 3.4 explains the compositions of flow morphisms. Section 3.5 defines flow homotopies
and proves that flow homotopies induce homotopies between morphisms. Section 3.6 establishes that our
construction is canonical on the cochain complex level, ie it is independent of all choices. Section 3.7
introduces flow subcategories and quotient categories, which are the geometric analogs of subcomplexes
and quotient complexes, respectively. From now on, we will be very specific about the orientations and
signs and provide rigorous arguments. Proofs in this section involve a lot of sign computations; we
provide a detailed proof of d2BC D 0 for the coboundary map dBC in Section 3.2. Proofs of other results in
Sections 3.3, 3.4 and 3.5 will only be sketched.

3.1 Perturbation data for the minimal Morse–Bott cochain complex

In this subsection, we construct the perturbation data f.pi ;Hi /g for the minimal Morse–Bott cochain
complex of an oriented flow category C WD fCi ;Mi;j g. Then (2-9) will motivate the definition of Dk;T
for the differential. We will show in the next subsection that they indeed define a cochain complex.

3.1.1 The projection pi We start by defining a projection pi on ��.Ci / D
LdimCi
jD1 �j .Ci /. First

note that we have bilinear form on ��.Ci / given by

(3-1) h˛; ˇii WD .�1/
dimCi �jˇ j

Z
Ci

˛^ˇ for all ˛; ˇ 2��.Ci /:
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We can pick representatives f�i;ag1�a�dimH�.Ci / � �
�.Ci / of a basis of H�.Ci /, ie �i;a are closed

forms such that the corresponding cohomology classes form a basis of H�.Ci /. Such a choice gives us a
quasi-isomorphic embedding H�.Ci /!��.Ci /. Let h.i/ denote the image of the embedding above,
so h.i/ WD h�i;1; : : : ; �i;dimH�.Ci /i ��

�.Ci /. Note that (3-1) is nondegenerate on cohomology, and let
f��i;ag1�a�dimH�.Ci / � h.i/ be the dual basis to the basis f�i;ag in the sense that

(3-2) h��i;a; �i;bii D ıab:

Then we can define a projection pi W��.Ci /! h.i/���.Ci / by

(3-3) pi .˛/ WD

dimH�.Ci /X
aD1

h˛; �i;aii � �
�
i;a:

If we identify H�.Ci / with h.i/, then pi can be thought of as a projection from ��.Ci / to H�.Ci /.

3.1.2 The homotopy Hi We now explain the related homotopy Hi . First note that the Poincaré dual of
the diagonal �i � Ci �Ci can be represented by Thom classes. We can identify a tubular neighborhood
of the diagonal �i with the unit disk bundle of the normal bundle Ni of �i . Then one way of writing
Thom classes of the diagonal �i is

(3-4) ıni WD d.�n i /;

where  i is the angular form of the sphere bundle S.Ni / [11, Section 6] using the orientation in
Example 2.8 and �n WRC!R are smooth functions such that �n is increasing, supported in Œ0; 1=n� and
is �1 near 0. For details of this construction, we refer readers to [11, Section 6]. We also include a brief
discussion of this construction and its properties in Appendix A. The most important property of ıni is
that it converges to the Dirac current of �i .

Lemma 3.1 The Thom classes ıni converge to the Dirac current ıi of the diagonal �i in the sense of
currents: for all ˛ 2��.Ci �Ci /,

lim
n!1

Z
Ci�Ci

˛^ ıni D

Z
Ci�Ci

˛^ ıi WD

Z
�i

˛j�i :

r

�n.r/

�1

1

n 1

Figure 2: The graph of �n.
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We will prove Lemma 3.1 in Appendix A. By (2-10), for ˛; ˇ2��.Ci /, we have
R
Ci�Ci

��1˛^�
�
2ˇ^ı

n
i D

.�1/.dimCi /2
R
Ci�Ci

ıni ^�
�
1˛^�

�
2ˇD .�1/

dimCi
R
Ci�Ci

ıni ^�
�
1˛^�

�
2ˇD Iıni

.˛/.ˇ/. Then Lemma 3.1
can be rewritten as

lim
n!1

Iın
i
D Iıi D id W��.Ci /!��.Ci /

in the weak topology. On the other hand, under the orientation convention (2-4) we have another
representative of the Poincaré dual of the diagonal by

P
a �
�
1 �i;a ^ �

�
2 �
�
i;a, where �1 and �2 are the

projections to the first and second factors of Ci �Ci , respectively.

Proposition 3.2
P
a �
�
1 �i;a ^�

�
2 �
�
i;a is cohomologous to ıni for all n.

Proof Since the pairing (3-1) is nondegenerate on H�.Ci �Ci /, it suffices to prove thatZ
Ci�Ci

˛^ ıni D
Z
Ci�Ci

˛^
P
a
��1 �i;a ^�

�
2 �
�
i;a

for any closed form ˛. Since all ıni are cohomologous to each other for different n, Lemma 3.1 implies
that if ˛ 2��.Ci �Ci / is closed, then for all nZ

Ci�Ci
˛^ ıni D

Z
�i
˛j�i :

Therefore it suffices to show that, for all closed forms ˛ 2��.Ci �Ci /,

(3-5)
Z
Ci�Ci

˛^
�P
a
��1 �i;a ^�

�
2 �
�
i;a

�
D

Z
�i
˛j�i :

Since the cohomology of Ci �Ci is spanned by f��1 �
�
i;c^�

�
2 �i;d g1�c;d�dimH�.Ci /, it is enough to verify

(3-5) for ˛ D ��1 �
�
i;c ^�

�
2 �i;d . By definition h��i;a; �i;bii D ıab . Then if c ¤ d ,Z

Ci�Ci
��1 �

�
i;c ^�

�
2 �i;d ^

�P
a
��1 �i;a ^�

�
2 �
�
i;a

�
D
P
a
˙

Z
Ci�Ci

��1 �
�
i;c ^�

�
1 �i;a ^�

�
2 �i;d ^�

�
2 �
�
i;a

D
P
a
˙ıcaıda D 0:

Similarly, when c D d ,Z
Ci�Ci

��1 �
�
i;c ^�

�
2 �i;c ^

�P
a
��1 �i;a ^�

�
2 �
�
i;a

�
D

Z
Ci�Ci

��1 �
�
i;c ^�

�
2 �i;c ^�

�
1 �i;c ^�

�
2 �
�
i;c C

P
a¤c

˙ıcaıca

D .�1/j�i;c j
2Cj�i;c j�j�

�
i;c
j
Z
Ci�Ci

��1 �
�
i;c ^�

�
1 �i;c ^�

�
2 �
�
i;c ^�

�
2 �i;c

D .�1/j�i;c j
2Cj�i;c j�j�

�
i;c
jCdimCi j�i;c j

�Z
Ci
��i;c ^ �i;c

�
h��i;c ; �i;cii

D

Z
Ci
��i;c ^ �i;c D

Z
�i
.��1 �

�
i;c ^�

�
2 �i;c/j�i :

Thus (3-5) is proven.
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As a consequence of Proposition 3.2, there exist primitives f ni 2�
�.Ci �Ci / such that

df ni D ı
n
i �

X
a

��1 �i;a ^�
�
2 �
�
i;a;(3-6)

f ni �f
m
i D .�n� �m/ i :(3-7)

Note that the integral operator Iıi of the Dirac current ıi is the identity map from ��.Ci / to itself. The
integral operator IP

a �
�
1 �i;a^�

�
2 �
�
i;a

is the projection pi in (3-3). Therefore, by (3-6), the integral operator
If n
i

of the primitive f ni satisfies

(3-8) Iın
i
� IP

a �
�
1 �i;a^�

�
2 �
�
i;a
D Idf n

i
D d ı If n

i
C If n

i
ı d:

It is proven in Appendix A that f ni converges to a current fi 2 D�.Ci � Ci /, and the corresponding
integral operator Ifi satisfies

(3-9) id�pi D d ı Ifi C Ifi ı d;

which is the limit of (3-8). Therefore the integral operator Ifi D lim If n
i

gives us the homotopy Hi for the
projection pi . This explains the perturbation data, which shall motivate the differential on the minimal
Morse–Bott cochain complex. However, we will not use (3-9) to avoid working with currents (fi is only
a current), and always work with the approximation (3-8) and then take limits. More precisely, we will
only use the “classical relation” (3-6).

From the discussion above, we have the following definition:

Definition 3.3 Defining data ‚ for an oriented flow category C consists of

� quasi-isomorphic embeddings H�.Ci /!��.Ci /, where the image is denoted by h.C; i/ and we
fix a basis f�i;ag of h.C; i/ and a dual basis f��i;ag in the sense that h��i;a; �i;bii D ıab ,

� a sequence of Thom classes with form ıni D d.�n i / of the diagonal �i � Ci �Ci for all i ,

� primitives f ni such that df ni D ı
n
i �

P
a �
�
1 �i;a ^�

�
2 �
�
i;a and f ni �f

m
i D .�n� �m/ i for all i .

Remark 3.4 The form
P
a �
�
1 �i;a ^�

�
2 �
�
i;a in Definition 3.3 does not depend on the basis f�i;ag for a

fixed quasi-isomorphic embedding H�.Ci /!��.Ci /.

3.1.3 The perturbed operator Dk;T;‚ Given defining data ‚, we are able to write down the operator
Dk;T;‚ from (2-9) using the perturbation data introduced above. Those Dk;T;‚ will then be assembled
to the differential on the minimal Morse–Bott cochain complex. To simplify the presentation, we first
introduce the following notation:

(1) We use Œ˛� to denote the cohomology class of a closed form ˛ 2 h.C; i/ and j˛j to denote the degree
of the differential form.

(2) We write Mv;k
i1;:::;ir

WDMv;vCi1 � � � � �MvCir ;vCk for 0D i0 < i1 < i2 < � � � < ir < irC1 D k for
r � 0, with the product orientation.
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(3) For ˛ 2 ��.Cv/,  2 ��.CvCk/ and fvCij 2 �
�.CvCij � CvCij / for 1 � j � r , we define the

pairing Mv;k
i1;:::;ir

Œ˛; fvCi1 ; : : : ; fvCir ; � to be

(3-10)
Z
Mv;k
i1;:::;ir

s�v;vCi1˛^ .tv;vCi1 � svCi1;vCi2/
�fvCi1 ^ � � �

^ .tvCir�1;vCir � svCir ;vCk/
�fvCir ^ t

�
vCir ;vCk

:

Strictly speaking, before taking the wedge product we need to pullback s�v;vCi1˛, t�
vCir ;vCk

 and
.tvCij�1;vCij � svCij ;vCijC1/

�fvCij to Mv;k
i1;:::;ir

through the natural projections. This also applies
to all similar formulae in this paper.

(4) For ˛ 2 h.C; v/ and k � 1, we define

�.C; ˛; k/ WD .j˛jCmv;vCk/.cvCkC 1/;(3-11)

�.C; ˛; k/ WD .j˛jCmv;vCkC 1/.cvCkC 1/;(3-12)

where ci WD dimCi , mi;j WD dimMi;j when i < j , and mi;i WD ci � 1.

Then the perturbation data in Section 3.1 and (2-9) motivate the following definition:

Definition 3.5 Given defining data‚ and an increasing sequence T WDf0D i0<i1< � � �<ir <irC1Dkg,
we define a linear map Dk;T;‚ WH�.Cv/' h.C; v/! h.C; vC k/'H�.CvCk/ such that

(3-13) hDk;T;‚Œ˛�; Œ�ivCk WD .�1/
? lim
n!1

Mv;k
i1;:::;ir

Œ˛; f nvCi1 ; : : : ; f
n
vCir

; �

for any  2 h.C; vC k/, where ? WD
Pr
jD0 �.C; ˛; ij /. In other words, by (3-2), we can write

(3-14) Dk;T;‚.Œ˛�/D
X
a

.�1/? lim
n!1

Mv;k
i1;:::;ir

Œ˛; f nvCi1 ; : : : ; f
n
vCir

; �vCk;a� � Œ�
�
vCk;a�:

Remark 3.6 One way to understand the signs in (3-13) is to treat Dk;T;‚ as a composition of certain
operators. Let ˛ 2��.Ci / and f 2��.Cj �Cj /. Then Mi;j defines an operator

Mi;j .˛; f / WD .�1/
�.C;˛;0/

Z
Mi;j

s�i;j˛^ .ti;j � idj /�f 2��.Cj /;

where ti;j � idj WMi;j �Cj ! Cj �Cj . Here, by omitting the pullback of projections for simplicity,
s�i;j˛^ .ti;j � idj /�f is a differential form on Mi;j �Cj . Integrating along the Mi;j fiber in the trivial
fibration Mi;j �Cj , we obtain a form on Cj . If jf j D cj �1, then jMi;j .˛; f /j D j˛jCcj �1�mi;j , so

�.C;Mi;j .˛; f /; 0/D .j˛jC cj � 1�mi;j Cmj;j C 1/.cj C 1/D .j˛jC cj � 1�mi;j C cj /.cj C 1/

� �.C; ˛; j / mod 2:

Then for g 2��.Ck �Ck/,

Mj;k.Mi;j .˛; f /; g/D .�1/
�.C;˛;0/C�.C;˛;j /

Z
Mi;j�Mj;k

s�i;j˛^ .ti;j � sj;k/
�f ^ .tj;k � idk/

�g:

In general, .�1/?Ms;k
i1;:::;ir

Œ˛; f nsCi1 ; : : : ; f
n
sCir

; � is the integral of the wedge product of compositions of
such operators with t�

sCir ;sCk
 on MsCir ;sCk . When f is f nj for n� 0, Mi;j .˛; f / should be viewed
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as an approximation of Hj ıdj�i ı �i .˛/ in (2-9). In general, (3-14) can be viewed as (2-9) applied to the
Austin–Braam complex using the perturbation data in this subsection.

The following lemma asserts that (3-13) is well defined and will be used in the proof of the main theorem;
we prove it in Appendix A.

Lemma 3.7 We have that limn!1Ms;k
i1;:::;ir

Œ˛; f nsCi1 ; : : : ; f
n
sCir

; � 2 R exists for every ˛ 2��.Cs/,
 2��.CsCk/ and any defining data.

3.2 The minimal Morse–Bott cochain complex

The main theorem of this subsection is that we can get a well-defined cochain complex out of an oriented
flow category with any defining data. The cochain complex is generated by the cohomology H�.Ci / of
the flow category, and hence it is called the minimal Morse–Bott cochain complex.

Definition 3.8 Given defining data ‚, the minimal Morse–Bott complex of an oriented flow category
C WD fCi ;Mi;j g is defined by

BC.C; ‚/ WD BC WD lim
��!

q!�1

1Y
jDq

H�.Cj /;

ie the direct sum near the negative end and direct product near the positive end.18 To be more precise,
every element in BC is a function A W Z!

Q1
iD�1H

�.Ci / such that A.i/ 2H�.Ci /, and there exists
NA 2 Z such that A.i/D 0 for all i < NA. The differential dBC;‚ W BC! BC is defined as

Q
k�1 dk;‚,

where dk;‚ WH�.Cv/!H�.CvCk/ is defined as

dk;‚ WD
X
T

Dk;T;‚

for all increasing sequence T D f0D i0 < i1 < � � �< ir < irC1 D kg with r � 0. In other words,

(3-15) hdk;‚Œ˛�; Œ�ivCk D lim
n!1

X
T

.�1/?Mv;k
i1;:::;ir

Œ˛; f nvCi1 ; : : : ; f
n
vCir

; �

for ˛ 2 h.C; v/,  2 h.C; vCk/ and ?D
Pr
jD0 �.C; ˛; ij /. Defining di;‚D 0 for i � 0, then for A 2 BC,

.dBC;‚A/.i/ WD
X
j2Z

di�j ;‚A.j /:

Note that it is a finite sum. If moreover the flow category has a grading structure fdig, then BC is also
graded. The grading of an element ˛ 2H�.Ci / is j˛jC di , which shall be viewed as in Z=k if fdig is
only a grading structure in Z=k.

Remark 3.9 The degree of dk;‚Œ˛� in H�.CvCk/ is j˛j C cvCk � mv;vCk under the simplifying
assumption after Remark 2.11 that ci and mi;j are well defined. If the assumption is not satisfied, then

18Assume C arises from a Morse–Bott function f on a noncompact manifold (but Mi;j is still compact, so it cannot be any
Morse–Bott function on any noncompact manifold). The differential in the cochain complex should increase the value of f ,
which forces the cochain complex to take the direct limit in the positive direction.
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dk;T;‚ can be decomposed with respect to the connected components of Mv;k
i1;:::;ir

so that each component
has a well-defined degree in H�.CvCk/. Then we need to keep track of the connected component in the
proofs, which only results in complication of notation.

The main result of this section in the following:

Theorem 3.10 Given an oriented flow category C and defining data‚, .BC; dBC;‚/ is a cochain complex.
The cohomology H.BC; dBC;‚/ is independent of the defining data ‚. If in addition the flow category is
graded , then BC is also graded and the degree of dBC;‚ is 1.

Remark 3.11 (1) We prove in Section 8 that when the flow category comes from a Morse–Bott
function f on a closed manifold M , the cohomology of the minimal Morse–Bott cochain complex is
the regular cohomology H�.M;R/. This follows from the definition if f is constant: since the flow
category is fC0 DM g with only identities in the morphism space, BCDH�.C0;R/DH�.M IR/ with
dBC D 0. Therefore it suffices to show that the cohomology of the minimal Morse–Bott cochain complex
is independent of the Morse–Bott function f .

(2) If all the critical manifolds Ci are discrete, then the defining data‚ is unique. Assume, for simplicity,
that each Ci consists of one point. The minimal Morse–Bott cochain complex BC is generated by the
critical points and equals the usual Morse cochain complex:

(3-16) BCD lim
��!

q!�1

1Y
jDq

H�.Cj /D lim
��!

q!�1

1Y
jDq

R:

Since jf ni j D �1, we have that dk;‚ WH�.Cv/!H�.CvCk/ only has the leading term

(3-17) hdk;‚Œ1�; Œ1�ivCk DMv;kŒ1; 1�D

Z
Mv;vCk

1:

Therefore the differential dBC;‚ WD
P
k�1 dk;‚0 is just the signed counting of all zero-dimensional moduli

spaces Mv;vCk , which is the usual cochain differential in a nondegenerate Morse/Floer theory.

Remark 3.12 Theorem 3.10 is the simplest version. We generalize Theorem 3.10 in Sections 5 and 6 to
the cases where Ci is not oriented, Ci is not compact, and the defining data is not minimal, ie the rank of
the projection in the perturbation data is larger than dimH�.Ci /.

Corollary 3.13 If the oriented flow category C has the property that dimCi � k for all i , then the
minimal Morse–Bott cochain complex BC.C/ only depends on Mi;j with dimMi;j � 2k.

Proof Since jf ni j D dimCi�1� k�1 and j˛j; j j � k, if Mi;j appears in an integral in the definition of
the differential with dimMi;j > 2k, there is no way the pullbacks of those forms can contain a nontrivial
component in

VdimMi;j Mi;j . Therefore the integral must be zero. Note that when kD 0, this amounts to
saying that the cochain complex only depends on zero-dimensional moduli spaces (although the existence
of 1–dimensional moduli spaces is needed to show that d2 D 0).
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We first show that .BC; dBC;‚/ is a cochain complex; the invariance is deferred to the next subsection.
For simplicity, we first introduce notation:

(1) For 0 < i1 < i2 � � �< ir < k, define

(3-18) Mv;k

i1;:::;Nip;:::;ir
WDMv;vCi1 � � � � � .MvCip�1;vCip �vCip MvCip;vCipC1/� � � � �MvCir ;vCk

with the product orientation.

(2) Define Mv;k
i1;:::;ir

Œd.˛; fvCi1 ; : : : ; fvCir ; /� to beZ
Mv;k
i1;:::;ir

d.s�v;vCi1˛^.tv;vCi1�svCi1;vCi2/
�fvCi1^� � �^.tvCir�1;vCir�svCir ;vCk/

�fvCir^t
�
vCir ;vCk

/

for ˛ 2��.Cv/,  2��.CvCk/ and fvCij 2�
�.CvCij �CvCij /.

(3) Define the pairing Mv;k

i1;:::;Nip;:::;ir
Œ˛; fvCi1 ; : : : ; fvCip�1 ; fvCipC1 ; : : : ; fvCir ; � over Mv;k

i1;:::;Nip;:::;ir
to beZ
Mv;k

i1;:::;
Nip;:::;ir

s�v;vCi1˛^.tv;vCi1�svCi1;vCi2/
�fvCi1^� � �^.tvCip�2;vCip�1�svCip�1;vCipC1/

�fvCip�1

^.tvCip�1;vCipC1�svCipC1;vCipC2/
�fvCipC1^� � �^.tvCir�1;vCir �svCir ;vCk/

�fvCir ^ t
�
vCir ;vCk

:

(4) When we compose two operators, a trace term will appear. Therefore we introduce

(3-19) TrvCip Mv;k
i1;:::;ir

Œ˛; fvCi1 ; : : : ; fvCip�1 ; ��
�
vCip

; fvCipC1 ; : : : ; fvCir ; �

to denoteZ
Mv;k
i1;:::;ir

s�v;vCi1˛^.tv;vCi1�svCi1;vCi2/
�fvCi1^� � �

^.tvCip�1;vCip �svCip;vCipC1/
�
�P
a
��1 �vCip;a^�

�
2 �
�
vCip;a

�
^� � �^.tvCir �svCir /

�fvCir ^ t
�
vCk;

where �1 and �2 are the projections of CvCip �CvCip to the first and second factors, respectively.

Heuristically speaking, the “Thom class” of Mv;k

i1;:::;ip�1;Nip;ipC1;:::;ir
�Mv;k

i1;:::;ir
is given by the pullback of

.tvCip�1;vCip � svCip;vCipC1/
�ınvCip 2�

�.MvCip�1;vCip �MvCip;vCipC1/ to Mv;k
i1;:::;ir

by the natural
projection. Hence we have the following lemma, which is crucial to the proof that d2BC;‚ D 0, and will be
proven in Appendix A.

Lemma 3.14 For an oriented flow category C and any defining data , we have

lim
n!1

Mv;k
i1;:::;ir

Œ˛; f nvCi1 ; : : : ; ı
n
vCip

; : : : ; f nvCir ; �

D .�1/� lim
n!1

Mv;k

i1;:::;ip�1;Nip;ipC1;:::;ir
Œ˛; f nvCi1 ; : : : ; f

n
vCir

; �;

where � D .j˛jCmv;vCip /cvCip .

Proposition 3.15 We have that .BC; dBC;‚/ is a cochain complex, that is , d2BC;‚ D 0.
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Proof For simplicity, we will suppress the subscript ‚ in the proof. It suffices to show that for all
˛ 2 h.C; v/ and  2 h.C; vC k/,

(3-20)
D k�1P
iD1

dk�i ı di Œ˛�; Œ�
E
vCk
D 0:

We first prove the following lemma:

Lemma 3.16 For r � 1,

(3-21) 0D .�1/j˛jcv
Z
@Mv;vCk

s�v;vCk˛^ t
�
v;vCk

D lim
n!1

P
0<i1<���<ir<k

.�1/?1Mv;k
i1;:::;ir

Œd.˛;f nvCi1 ; : : : ;f
n
vCir

;/�

C lim
n!1

P
1�p�q�r

0<i1<���<iq<k

.�1/?2 TrvCipMv;k
i1;:::;iq

� Œ˛;f nvCi1 ; : : : ;f
n
vCip�1

;���vCip ;f
n
vCipC1

; : : : ;f nvCiq ;�;

where

(3-22) ?1 D j˛jcvC
rP

jD1

�.C; ˛; ij / and ?2 D j˛j.cvC 1/C
p�1P
jD1

�.C; ˛; ij /C
qP

jDp

�.C; ˛; ij /:

Proof Step 1 (r D 1) In this case, since p D q D r D 1 for the second term, we write i D i1. Then
?2 D j˛j.cvC 1/C �.C; ˛; i/. Using the equation ın� �

P
a �
�
1 ��;a ^�

�
2 �
�
�;a D df n� for any n 2N,

(3-23)

.�1/?2 TrvCi Mv;k
i Œ˛; ���vCi ; �

D
P
i

.�1/?2Mv;k
i Œ˛; ınvCi � df nvCi ; �

D lim
n!1

P
i

.�1/?2Mv;k
i Œ˛; ınvCi � df nvCi ; �

D lim
n!1

P
i

.�1/?2Mv;k
i Œ˛; ınvCi ; �C lim

n!1

P
i

.�1/?2C1Mv;k
i Œ˛; df nvCi ; �:

By Lemma 3.14,

(3-24) lim
n!1

P
i

.�1/?2Mv;k
i Œ˛; ınvCi ; �D

P
i

.�1/?2C.j˛jCmv;vCi /cvCiMv;k
Ni
Œ˛; �:

Since .�1/?2C.j˛jCmv;vCi /cvCi D .�1/j˛jcvCmv;vCi and @ŒMik�D
P
.�1/mi;j ŒMij ��j ŒMjk�, by Stokes’

theorem this equalsP
i

.�1/j˛jcvCmv;vCi
Z
Mv;vCi�vCiMvCi;vCk

s�v;vCi˛^ t
�
vCi;vCk

D .�1/j˛jcv
Z
@Mv;vCk

s�v;vCk˛^ t
�
v;vCk D .�1/

j˛jcv
Z
Mv;vCk

d.s�v;vCk˛^ t
�
v;vCk/D 0:

Now, the second summand in (3-23) equals

lim
n!1

P
i

.�1/?2C1Cj˛jMv;k
i Œd.˛; f nvCi ; /�:

Note that the difference between ?1 and ?2 in the r D 1 case is indeed j˛j. This proves the r D 1 case.
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Step 2 (independence of r) We need to prove that the value of the right-hand side does not change
from r to r C 1. To do this, we apply Stokes’ theorem to the exact term in (3-21) in the r case. The
boundary @.Mv;vCi1 � � � � �MvCir ;vCk/ comes from fiber product at vCw for all t and w such that
0 < i1 < � � � < it < w < itC1 < � � � < ir < k. Consider the boundary coming from the fiber product at
vCw. After applying Stokes’ theorem to the exact term in (3-21), the contribution from integration over
the Mv;k

i1;:::;it ; Nw;:::;ir
�Mv;k

i1;:::;ir
is

(3-25) .�1/?3 lim
n!1

Mv;k
i1;:::;it ; Nw;:::;ir

Œ˛; f nvCi1 ; : : : ; f
n
vCir

; �;

where ?3 D j˛jcvC
Pr
jD1 �.C; ˛; ij /Cmv;vCi1 C � � � CmvCit ;vCw . By replacing the fiber product in

Mv;k
i1;:::;it ; Nw;:::;ir

with the Cartesian product Mv;k
i1;:::;it ;w;:::;ir

, Lemma 3.14 gives that (3-25) equals

(3-26) .�1/?3C.j˛jCmv;vCw/cvCw lim
n!1

Mv;k
i1;:::;it ;w;:::;ir

Œ˛; f nvCi1 ; : : : ; ı
n
vCw ; : : : ; f

n
vCir

; �:

We replace the Thom class ın� by
P
a �
�
1 ��;a ^�

�
2 �
�
�;aC df n� to get

.�1/?3C.j˛jCmv;vCw/cvCw lim
n!1

TrvCw Mv;k
i1;:::;it ;w;:::;ir

Œ˛; f nvCi1 ; : : : ; ��
�
vCw ; : : : ; f

n
vCir

; �(3-27)

C .�1/?3C.j˛jCmv;vCw/cvCw lim
n!1

Mv;k
i1;:::;it ;w;:::;ir

Œ˛; f nvCi1 ; : : : ; df
n
vCw ; : : : ; f

n
vCir

; �:(3-28)

Let ?4 denote ?3C .j˛jCmv;vCw/cvCw . By (2-5),

?4 D j˛j.cvC 1/C
tP

jD1

�.C; ˛; ij /C �.C; ˛; w/C
rP

jDtC1

�.C; ˛; ij / mod 2:

Because ?5 WD?4Cj˛jC
Pt
jD1.cvCijC1/�j˛jcvC

Pr
jD1 �.C; ˛; ij /C�.C; ˛; w/ mod 2 and jf nvCij j�

cvCij C 1 mod 2, (3-28) equals

(3-29) lim
n!1

P
0<i1<���<it<w<itC1<ir<k

.�1/?5Mv;k
i1;:::;it ;w;itC1;:::;ir

Œd.˛;f nvCi1 ; : : : ;f
n
vCw ; : : : ;f

n
vCir

; /�:

Therefore, the right-hand side equals

lim
n!1

P
1�p�q�r

0<i1<���<iq<k

.�1/?2 TrvCip Ms;k
i1;:::;iq

Œ˛; f nvCi1 ; : : : ; f
n
vCip�1

; ���vCip ; f
n
vCipC1

; : : : ; f nvCiq ; �

C lim
n!1

P
0<i1<���<it<w<itC1<ir<k

.�1/?4 TrvCw Ms;k
i1;:::;it ;w;itC1;:::;ir

Œ˛; f nvCi1 ; : : : ; ��
�
vCw ; : : : ; f

n
vCir

; �

C lim
n!1

P
0<i1<���<it<w<itC1<ir<k

.�1/?5Mv;k
i1;:::;it ;w;itC1;:::;ir

Œd.˛; f nvCi1 ; : : : ; f
n
vCw ; : : : ; f

n
vCir

; /�:

This is the r C 1 case, so we have proved the claim.

Going back to the proof of Proposition 3.15, in the case of r D k� 1 in Lemma 3.16, the terms

(3-30) lim
n!1

.�1/?1Mv;k
1;:::;k�1

Œd.˛; f nvC1; : : : ; f
n
vCk�1; /�;
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and

(3-31) lim
n!1

P
1�p�q�k�1
0<i1<���<iq<k

.�1/?2 TrvCipMv;k
i1;:::;iq

Œ˛;f nvCi1 ; : : : ;f
n
vCip�1

;���vCip ;f
n
vCipC1

; : : : ;f nvCiq ;�

sum to zero, where

?1 D j˛jcvC
k�1P
jD1

�.C; ˛; j / and ?2 D j˛j.cvC 1/C
p�1P
jD1

�.C; ˛; ij /C
qP

jDp

�.C; ˛; ij /:

Since Mv;k
1;:::;k�1

is a closed manifold, (3-30) is 0 by Stokes’ theorem. For the remaining term, we claim
that (3-31) equals

(3-32)
D k�1P
iD1

dk�i ı di Œ˛�; Œ�
E
vCk

:

Since jdi˛j D j˛jCmv;vCi C cvCi mod 2,

�.C; di˛; j /D �.C; ˛; i C j / mod 2:

Then the claim simply follows from the definition of di .

Remark 3.17 From the proof of Proposition 3.15, we see that there is no harm in suppressing the index n
and limn!1 by Lemmas 3.7 and 3.14. If we write fi as the limit of f ni in the space of currents such that

(3-33) ıi D �
�
1 �i;a ^�

�
2 �
�
i;aC dfi ;

where ıi is the Dirac current, then we can use (3-33) to do formal computations.

3.3 Flow morphisms induce cochain morphisms

Section 3.2 shows that a flow category carries enough geometric structure to define a cochain complex.
In the following subsections, we study the analogous geometric data for cochain complex morphisms
and homotopies. In this subsection, we introduce flow morphisms between flow categories, which is
the underlying geometric data for defining continuation maps [2, Chapter 11]. We show that every flow
category has an identity flow morphism from the flow category to itself. Using the identity flow morphism,
we show that H.BC; dBC;‚/ is independent of the defining data ‚, finishing the proof of Theorem 3.10.

3.3.1 Flow morphisms

Definition 3.18 An oriented flow morphism H from an oriented flow category C WD fCi ;MC
i;j g to another

oriented flow category D WD fDi ;MD
i;j g is a family of compact oriented manifolds fHi;j gi;j2Z such that:

(1) There are two smooth maps s WHi;j ! Ci and t WHi;j !Dj .

(2) There exists N 2 Z, such that Hi;j D∅ when i � j > N .

(3) For every i0 < i1 < � � �< ik , j0 < � � �< jm�1 < jm, the fiber product

MC
i0;i1
�i1 � � � �ik Hik ;j0 �j0 � � � �jm�1 M

D
jm�1;jm

is cut out transversely.
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(4) There are smooth maps mL WMC
i;j �j Hj;k!Hi;k and mR WHi;j �j MD

j;k
!Hi;k such that

s ımL.a; b/D s
C .a/; t ımL.a; b/D t .b/; s ımR.a; b/D s.a/ and t ımR.a; b/D t

D.b/;

where sC is the source map for the flow category C and tD is the target map for the flow category D.

(5) The map mL[mR W
�S

j M
C
i;j �j Hj;k

�
[
�S

j Hi;j �j M
D
j;k

�
! @Hi;k is a diffeomorphism up to

zero-measure (Definition 2.6).

(6) The orientation ŒHi;j � has the following properties:

@ŒHi;j �D
X
p>0

.�1/m
C
i;iCpmL.ŒMC

i;iCp �iCp HiCp;j �/C
X
p>0

.�1/hi;jmR.ŒHi;j�p �j�pMD
j�p;j �/;

.tC � s/�ŒNj �ŒMC
i;j �j Hj;k�D .�1/

cjm
C
i;j ŒMC

i;j �ŒHj;k�;

.t � sD/�ŒNj �ŒHi;j �j MD
j;k�D .�1/

djhi;j ŒHi;j �ŒMD
j;k�:

Here ci WD dimCi , mCi;j WD dimMC
i;j , dj WD dimDj and hi;j D dimHi;j .

By (4), we have a formula similar to (2-6). Thus it is convenient to usemL andmR to identify MC
i;j�jHj;k

and Hi;j �j MD
j;k

with the corresponding parts of @Hi;k . Hence in the following, we will suppress mL
and mR, and treat MC

i;j �j Hj;k and Hi;j �j MD
j;k

as though they are contained in @Hi;k .

Remark 3.19 Condition (2) is important in obtaining a finite sum in the definition of the induced cochain
morphism. In the context of Morse/Floer theories, the existence of N usually comes from some energy
estimates. More precisely, Hi;j is typically the compactification of the space of solutions to parametrized
Floer equations/gradient flow equations interpolating the geometric data for C and D. Then there is
usually some notion of energy E.u/ for a Floer cylinder/gradient flow u in the moduli space Hi;j such
that E.u/ � 0. Now we assume that the energy E.u/ satisfies inequality E.u/ � g.Dj /� f .Ci /CC ,
where f and g are the background Morse–Bott functionals for C and D, and C is a universal constant
depending on the interpolating data we use to define the moduli space Hi;j . Assuming the critical values
do not accumulate for simplicity,19 then if j � i we have E.u/ < 0, ie there are no curves in Hi;j .

Remark 3.20 Similar to Definition 2.13, we say H is compatible with the grading structures on C and D
if and only if d.Ci /D d.Dj /Cdj �hi;j , where fd.Ci /g and fd.Dj /g are grading structures on C and D,
respectively. When this holds, the cochain morphism �H below will have degree 0.

The main result of this subsection is that oriented flow morphisms induce cochain morphisms between
the minimal Morse–Bott cochain complexes. Let C WD fCi ;MC

i;j g and D WD fDi ;MD
i;j g be two oriented

flow categories and assume HD fHi;j g is an oriented flow morphism from C to D. Then we introduce
the following:

19When critical values accumulate see Remark 2.11.
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(1) We write ci WD dimCi , di WD dimDi , mCi;j WD dimMC
i;j , mDi;j WD dimMD

i;j and hi;j WD dimHi;j .
We formally define mCi;i D ci � 1 and mDi;i D di � 1 as before. We assume, as before, that those numbers
are well defined. Then

hi;j Cm
D
j;k � dj C 1D hi;k for j � k and mCi;j C hj;k � ci C 1D hi;k for i � j

by Definition 3.18.

(2) For v; k 2 Z, 0 < i1 < � � �< ip and j1 < � � �< jq < k, we define

Hv;k
i1;:::;ip jj1;:::;jq

WDMC
v;vCi1

� � � � �MC
vCip�1;vCip

�HvCip;vCj1 �MD
vCj1;vCj2

� � � � �MD
vCjq ;vCk

with the product orientation.

(3) H�;�
:::j:::

Œ˛; f�; : : : ; f�; : : : ; � is defined similarly to M�;�::: Œ˛; f�; : : : ; � in (3-10).

(4) We define �.H; ˛; k/D .j˛jChv;vCk/.dvCkC 1/ and �.H; ˛; k/ WD .j˛jChv;vCkC 1/.dvCkC 1/
for ˛ 2��.Cv/.

Let ‚1 WD fh.C; i/; f C;ni g and ‚2 WD fh.D; i/; f D;ni g be defining data for flow categories C and D,
respectively. Let H WD fHi;j g be an oriented flow morphism from C to D. The counterparts of Lemmas 3.7
and 3.14 hold for H by the same argument. Then define a linear operator �H

k;‚1;‚2
WH�.Cv/!H�.DvCk/

for every v; k 2 Z by

(3-34) h�Hk;‚1;‚2 Œ˛�; Œ�ivCk

WD
P

p;q�0
0Di0<i1<���<ip

j1<���<jq<jqC1Dk

.�1/�Hv;k
i1;:::;ip jj1;:::;jq

Œ˛; f CvCi1 ; : : : ; f
C
vCip

; f DvCj1 ; : : : ; f
D
vCjq

; �

WD lim
n!1

P
p;q�0

0Di0<i1<���<ip
j1<���<jq<jqC1Dk

.�1/�Hv;k
i1;:::;ip jj1;:::;jq

Œ˛; f
C;n
vCi1

; : : : ; f
C;n
vCip

; f
D;n
vCj1

; : : : ; f
D;n
vCjq

; �;

where

� WD j˛jcvC hv;vCj1 C
pP

wD1

�.C; ˛; iw/C
qP

wD1

�.H; ˛; jw/:

The existence of N in Definition 3.18(2) implies that (3-34) is a finite sum and �H
k;‚1;‚2

D 0 for k <�N .

Theorem 3.21 Let H WC)D be an oriented flow morphism. If we fix defining data‚1 WDfh.C; i/; f C;ni g

and ‚2 WD fh.D; i/; f D;ni g for C and D, respectively, then there is a linear map

�H‚1;‚2 D
Q
k2Z

�Hk;‚1;‚2 W BC.C; ‚1/! BC.D; ‚2/

given by (3-34) such that
�H‚1;‚2 ı d

C
BC;‚1 � d

D
BC;‚2 ı�

H
‚1;‚2

D 0:

In particular , �H‚1;‚2 induces a map H.BC.C/; dCBC;‚1
/!H.BC.D/; dDBC;‚2

/ on cohomology.
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Proof Similar to the proof of Proposition 3.15, this theorem follows from the claim that, for ˛ 2 h.C; v/,
 2 h.C; vC k/ with k 2 Z, and any r � 1, we have

0D .�1/1Cj˛jcvChv;vCk
Z
@Hv;vCk

s�˛^ t�

D
P

0�p�r
0<i1<���<ip

j1<���<jr�p<k

.�1/�1Hv;k
i1;:::;ip jj1;:::;jr�p

Œd.˛; f CvCi1 ; : : : ; f
C
vCip

; f DvCj1 ; : : : ; f
D
vCjr�p

; /�

C
P

0�p�q�r;1�t�p
0<i1<���<ip

j1<:::<jq�p<k

.�1/�2 TrvCit Hv;k
i1;:::;ip jj1;:::;jq�p

Œ˛; f CvCi1 ; : : : ; �
C �CvCit

�
; : : : ; f DvCiq�p ; �

C
P

0�p�q�r;1�t�q�p
0<i1<:::<ip

j1<:::<jq�p<k

.�1/�3 TrvCjt Hv;k
i1;:::;ip jj1;:::;jq�p

Œ˛; f CvCi1 ; : : : ; �
D�DvCjt

�
; : : : ; f DvCiq�p ; �:

Here
�1 D 1Cj˛j.cvC 1/C hv;vCj1 C

pP
wD1

�.C; ˛; iw/C
r�pP
wD1

�.H; ˛; jw/;

�2 D 1Cj˛jcvC hv;vCj1 C
t�1P
wD1

�.C; ˛; iw/C
pP
wDt

�.C; ˛; iw/C
q�pP
wD1

�.H; ˛; jw/;

�3 D 1Cj˛jcvC hv;vCj1 C
pP

wD1

�.C; ˛; iw/C
t�1P
wD1

�.H; ˛; jw/C
q�pP
wDt

�.H; ˛; jw/:

The proof is again by induction, and we omit it. Then for r > kCN , the first exact term is zero, as
Hv;k
i1;:::;ip jj1;:::;jr�p

is necessarily empty by Definition 3.18(2). We can directly check that the remaining
terms are exactly h.�H ı dC � dD ı�H /˛; ivCk , and hence the theorem holds.

Similar to Corollary 3.13, we have the following:

Corollary 3.22 Assume that oriented flow categories C and D have the property that dimCi ; dimDi � k

for all i . If H W C) D is an oriented flow morphism , then �H W BC.C; ‚1/! BC.D; ‚2/ only depends
on those MC

i;j , Hi;j and MD
i;j of dimension � 2k.

3.3.2 The identity flow morphism Next we show that, for every oriented flow category C, there is
an oriented flow morphism I W C ) C, which is referred to as the identity flow morphism. Roughly
speaking, when the flow category has a background Morse–Bott function, the identity flow morphism
comes from the compactified moduli space of parametrized gradient flow lines, (flow lines not modulo
the R translation action). Using the identity flow morphism, we show the Morse–Bott cohomology is
independent of the defining data.

Definition/Lemma 3.23 For an oriented flow category C, there is a canonical oriented flow morphism
I W C) C given by Ii;j DMi;j � Œ0; j � i � with the product orientation for i � j , and Ii;j D∅ for i > j .
The source and target maps s; t W Ii;j ! Ci ; Cj are defined as

s D sC ı�1 and t D tC ı�1;
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where �1 is the projection to the M component. The compositions mL and mR are defined by

mL WMi;k �k Ik;j ! Ii;j ; .a; b; t/ 7! .m.a; b/; t C k� i/;

mR W Ii;k �kMk;j ! Ii;j ; .a; t; b/ 7! .m.a; b/; t/;

where m is the composition in C.

Before giving the proof, we will first use Definition/Lemma 3.23 to finish the proof of Theorem 3.10:

Proof of Theorem 3.10 Let ‚1 and ‚2 be defining data for the oriented flow category C. We have
shown in Proposition 3.15 that .BC; dBC;‚1/ and .BC; dBC;‚2/ are cochain complexes. By (3-34), the
cochain morphism �I‚1;‚2 W .BC; dBC;‚1/! .BC; dBC;‚2/ induced by the identity flow morphism I can
be written as idCN , where N is strictly upper triangular, ie N sends H�.Cs/ to

Q1
tDsC1H

�.Ct /. Note
that

P1
nD0.�N/

n is well defined on the cochain complex BC, and
P1
nD0.�N/

n is the inverse to idCN .
Thus �I‚1;‚2 is an isomorphism, and hence induces an isomorphism on cohomology.

Remark 3.24 When ‚1 D‚2, we show in Section 3.6 that �I‚1;‚2 is homotopic to the identity map. In
particular, we will show that the construction, up to homotopy, is functorial with respect to the choice of
defining data.

Proof of Definition/Lemma 3.23 Definition 3.18(2) follows from Ii;j D ∅ for i > j . Condition (3)
holds for I due to the transversality property of the flow category C. Since mL.Mi;k �k Ik;j / D
Mi;k �kMk;j � Œk� i; j � i � and mR.Ii;k �kMk:j /DMi;k �kMk;j � Œ0; k� i �, the flow morphism
conditions (4) and (5) are satisfied by I. Therefore we need only check (6), the orientation condition.

Unless stated otherwise, products of manifolds are always equipped with the product orientation. For i <j ,

@ŒIi;j �(3-35)

D@ŒMi;j�Œ0;j�i ��

D.�1/mi;jC1ŒMi;j�f0g�C.�1/
mi;j ŒMi;j�fj�ig�C

X
i<k<j

.�1/mi;k ŒMi;k�kMk;j�Œ0;j�i ��

D.�1/mi;jC1ŒMi;j�f0g�C.�1/
mi;j ŒMi;j�fj�ig�(3-36)

C

X
i<k<j

.�1/mi;k ŒMi;k�kMk;j�Œ0;k�i ��C
X
i<k<j

.�1/mi;k ŒMi;k�kMk;j�Œk�i;j�i ��:(3-37)

Since the flow category C is oriented, for i < k < j

(3-38) .tC � sC /�ŒNk�ŒMi;k �kMk;j �D .�1/
ckmi;k ŒMi;k�ŒMk;j �:

Let � be the projection Ii;j !Mi;j for i < j . Then

.t � sC /�Nk D �
�.tC � sC /�NkjMi;k�kMk;j�Œ0;k�i�;

.tC � s/�Nk D �
�.tC � sC /�NkjMi;k�kMk;j�Œk�i;j�i�:
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Therefore (3-38) implies

.t � sC /�ŒNk�ŒMi;k �kMk;j � Œ0; k� i ��D .�1/
ci;kmi;kCmk;j ŒMi;k � Œ0; k� i ��ŒMk;j �(3-39)

D .�1/ci;kmi;kCmk;j ŒIi;k�ŒMj;k�;

.tC � s/�ŒNk�ŒMi;k �kMk;j � Œk� i; j � i ��D .�1/
ckmi;j ŒMi;k�ŒMk;j � Œk� i; j � i ��(3-40)

D .�1/ckmi;j ŒMi;k�ŒIk;j �:

If we orient Ii;k �k Mk;j by .�1/mk;jCck ŒMi;k �k Mk;j �ŒŒ0; k � i �� and orient ŒMi;k �k Ik;j � by
ŒMi;k �kMk;j �ŒŒk� i; j � i ��, then (3-39) implies that the first summand in (3-37) equals

(3-41) .�1/mi;k ŒMi;k �kMk;j � Œ0; k� i ��D .�1/
mi;jC1ŒIi;k �kMk;j �

and that

(3-42) .t � sC /�ŒNk�ŒMi;k �j Ik;j �D .�1/ck.mi;kC1/ŒIi;k�ŒMk;j �:

And (3-40) implies that the second summand in (3-37) equals

(3-43) .�1/mi;k ŒMi;k �kMk;j � Œk� i; j � i ��D .�1/
mi;k ŒMi;k �k Ik;j �

and that

(3-44) .tC � s/�ŒNk�ŒMi;k �k Ik;j �D .�1/ckmi;k ŒMi;k�ŒIk;j �:

We still have to consider the first two copies of Mi;j in (3-36). Since mL W Ii;i �i Mi;j ! Mi;j

and mR WMi;j �j Ij;j !Mi;j are diffeomorphisms, we can orient Ii;i �i Mi;j D Ci �i Mi;j and
Mi;j �j Ij;j DMi;j �j Cj by m�1L .ŒMi;j �/ and m�1R .ŒMi;j �/. Then by Lemma 3.25 below and the
discussion after,

.t � sC /�ŒNi �ŒCi �Mi;j �D .�1/
c2
i ŒCi �ŒMi;j �;(3-45)

.tC � s/�ŒNj �ŒMi;j �j Cj �D .�1/
cjmi;j ŒMi;j �ŒCj �:(3-46)

Therefore

(3-47)

.�1/mi;jC1ŒMi;j � f0g�D .�1/
mi;jC1mR.ŒIi;i �i Mi;j �/;

Œ.t � sC /�Nj �ŒIi;i �i Mi;j �D .�1/
c2
i ŒIi;i �ŒMi;j �;

.�1/mi;j ŒMi;j � fj � ig�D .�1/
mi;jmL.ŒMi;j �j Ij;j �/;

Œ.tC � s/�Ni �ŒMi;j �j Ij;j �D .�1/cjmi;j ŒMi;j �ŒIj;j �:

To sum up, (3-41), (3-42), (3-43), (3-44) and (3-47) prove the orientation condition, Definition 3.18(6).

To state Lemma 3.25 we need some notation. LetE and F be two oriented finite-dimensional vector spaces
and l WE! F be a linear map. We denote by �F the diagonal subspace of F �F . Suppose the ordered
basis .f1; : : : ; fn/ represents the orientation ŒF � of F and the ordered basis .e1; : : : ; em/ represents the
orientation of E. Then ..f1; f1/; : : : ; .fn; fn// determines an orientation Œ�F � of �F . Like (2-4), we
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orient the quotient bundle, ie the normal bundle, .F �F /=�F so that Œ�F �Œ.F �F /=�F �D ŒF �ŒF �. The
fiber productE�lF is the graph of l inE�F , so

�
.e1; l.e1//; : : : ; .em; l.em//

�
determines an orientation

ŒE�l F � on E�l F D graph l . The projection � WE�l F !E is an isomorphism and the orientation we
put onE�lF has the property that �.ŒE�lF �/D ŒE�. Since .l; id/ W .E�F /=.E�lF /! .F �F /=�F is
an isomorphism, we can orient .E�F /=.E�lF / by .l; id/.Œ.E�F /=.E�lF /�/D Œ.F �F /=�F �. What
we describe here is the tangent picture of Mi;j �j Cj : letting .m; c/ 2Mi;j �j Cj , the correspondences
are E D TmMi;j , F D TcCj and l DDsjm, and the orientations match up.

Lemma 3.25 Following the notation above , we have

Œ.E �F /=.E �l F /�ŒE �l F �D .�1/
dimE dimF ŒE�ŒF �:

Proof The ordered basis ..0F ; f1/; : : : ; .0F ; fn// represents a basis for .F � F /=�F as well as the
orientation Œ.F �F /=�F �. Note that ..0E ; f1/; : : : ; .0E ; fn// represents a basis for .E �F /=.E �l F /,
and is mapped to ..0F ; f1/; : : : ; .0F ; fn// through the map .l; id/; thus ..0E ; f1/; : : : ; .0E ; fn// repre-
sents the orientation on .E �F /=E �l F . Since

�
.e1; l.e1//; : : : ; .em; l.em//; .0E ; f1/; : : : ; .0E ; fn/

�
represents the orientation ŒE�ŒF �,

ŒE �l F �Œ.E �F /=.E �l F /�D ŒE�ŒF � or Œ.E �F /=E �l F �Œ.E �l F /�D .�1/
dimE dimF ŒE�ŒF �;

which yields (3-46).

Similarly, consider F �l E oriented by
�
.l.e1/; e1/; : : : ; .l.em/; em/

�
. If we orient .F �E/=.F �l E/ by

.id; l/.Œ.F �E/=.F �l E/�/D Œ.F �F /=�F �, then

Œ.F �E/=.F �l E/�ŒF �l E�D .�1/
.dimF /2 ŒF �ŒE�;

which yields (3-45).

3.4 Compositions of flow morphisms

Roughly speaking, the composition of flow morphisms is taking fiber products. Hence, in the Morse–Bott
case, not every flow morphism can be composed, and we introduce the following concept:

Definition 3.26 Two flow morphisms H W C ! D and F W D ! E are composable if and only if the
fiber products MC

i1;i2
�i2 � � � �ip�1MC

ip�1;ip
�ip Hip;j1 �j1MD

j1;j2
�j2 � � � �jq�1MD

jq�1;jq
�jq Fjq ;k1 �k1

ME
k1;k2

�k2 � � � �kr�1 M
E
kr�1;kr

are cut out transversely.

Heuristically, one can define the composition F ı H of two composable morphisms F and H to be
.F ıH/i;k D

S
j Hi;j �j Fj;k , where the orientation is determined by

(3-48) .tH � sF /�ŒNj �ŒHi;j �j Fj;k�D .�1/djhi;j ŒHi;j �ŒFj;k�:
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By Definition 3.18(2), .F ıH/i;k is a compact manifold. However, this is no longer a flow morphism,
since the boundary can come from fiber products in the middle in addition to fiber products at the two
ends,20 violating Definition 3.18(5). Hence we introduce the following definition.

Definition 3.27 An oriented flow premorphism F W C)D is a family of compact oriented manifolds Fi;j
with smooth maps s W Fi;j ! Ci and t W Fi;j !Dj . Moreover, there exists N such that, for i � j > N ,
Fi;j D∅ and the fiber products MC

i0;i1
�i1 � � � �ik Fik ;j0 �j0 � � � �jl�1 MD

jl�1;jl
are cut out transversely

for all i0 < � � �< ik and j0 < � � �< jl .

Given a flow premorphism F, one can still define �F by (3-34), which may not be a cochain morphism.
Let H and F be two composable flow morphisms. Then F ıH is a flow premorphism by definition. We
need to understand the relation between �F ıH and �F ı�H . The main result of this subsection is that
they differ by a homotopy. Before stating the theorem, we first introduce some notation:

(1) E WD fEi ;ME
i;j g is an oriented flow category, ei WD dimEi ,mEi;j WD dimME

i;j and fi;j WD dimFi;j .
These are again assumed to be well defined for simplicity.

(2) For k2Z, 0<i1< � � �<ip , j1< � � �<jq and k1< � � �<kr<k, we define F�Hv;k
i1;:::;ip jj1;:::;jq jk1;:::;kr

to be

MC
v;vCi1

� � � � �HvCip;vCj1 �MD
vCj1;vCj2

� � � � �FvCjq ;vCk1 � � � � �ME
vCkr ;vCk

:

Note that we must have q � 1 for this to be defined.

(3) .F�H/v;k
i1;:::;ip jj1;:::;jq jk1;:::;kr

Œ˛; f CvCi1 ; : : : ; f
C
vCip

; f DvCj1 ; : : : ; f
D
vCjq

; f E
vCk1

; : : : ; f E
vCkr

; � is de-
fined similarly to (3-10).

To define the homotopy operator P‚1;‚2;‚3 , or P for simplicity, for k 2Z, ˛2h.C; v/ and  2h.E ; vCk/,
we define P by

(3-49) hP Œ˛�; Œ�ivCk

D

X
p;r�0;q�1

0Di0<i1<���<ip;j1<���<jq
k1����<krC1Dk

.�1/FF

�H
v;k
i1;:::;ip jj1;:::;jq jk1;:::;kr

Œ˛; f CvCi1 ; : : : ; f
C
vCip

; f DvCj1 ; : : : ; f
D
vCjq

; f EvCk1 ; : : : ; f
E
vCkr

; �;

where

FWD1Cj˛j.cvC1/Cdim.FıH/v;vCk1C
pX

wD1

�.C;˛; iw/Chv;vCj1C
qX

wD1

�.H;˛;jw/C

rX
wD1

�.FıH;˛;kw/:

20Although, in this case, the breaking from fiber products in the middle should pair up and “cancel” with each other; this is
morally why we have Theorem 3.28.
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Theorem 3.28 Let H and F be composable oriented flow morphisms from C to D and from D to E ,
respectively. If we fix defining data ‚1, ‚2 and ‚3 for C, D and E , then there exists an operator
P‚1;‚2;‚3 W BC.C/! BC.E/ defined by (3-49) such that

�F ıH‚1;‚3
��F‚2;‚3 ı�

H
‚1;‚2

CP‚1;‚2;‚3 ı d
C
BC;‚1 C d

E
BC;‚3 ıP‚1;‚2;‚3 D 0:

Proof For ˛ 2 h.C; v/,  2 h.E ; vC k/ with k 2 Z, and any l � 1, we have

0D
P
r�l

P
pCqDr�1

.�1/F1.FıH/v;k
i1;:::;ip jk1;:::;kq

Œ˛; : : : ;f CvCi� ; : : : ;f
E
vCk�

; : : : ;�

C
P

pCrCwDl

.�1/F2.F�H/v;k
i1;:::;ip jj1;:::;jr jk1;:::;kw

Œd.˛; : : : ;f CvCi� ; : : : ;f
D
vCj�

; : : : ;f EvCk� ; : : : ;/�

C
P

pCqCw�l;
u�1

.�1/F3 TrvCiu.F�H/v;k
i1;:::;ip jj1;:::;jq jk1;:::;kw

Œ˛; : : : ;f CvCi� ; : : : ;��
C
vCiu

�
; : : : ;f DvCj� ; : : : ;f

E
vCk�

; : : : ;�

C
P

pCqCw�l;
u�1

.�1/F4 TrvCju F�Hv;k
i1;:::;ip jj1;:::;jq jk1;:::;kw

Œ˛; : : : ;f CvCi� ; : : : ;f
D
vCj�

; : : : ;��DvCju
�
; : : : ;f EvCk� ; : : : ;�

C
P

pCqCw�l;
u�1

.�1/F5 TrvCku F�Hv;k
i1;:::;ip jj1;:::;jq jk1;:::;kw

Œ˛; : : : ;f CvCi� ; : : : ;f
D
vCj�

; : : : ;f EvCk� ; : : : ;��
E
vCku

�
; : : : ;�

where we omit the obvious constraints 0 < i1 < � � � < ip, j1 < � � � < jq and k1 < � � � < kw < k. The
indices for signs are

F1 D 1Cj˛jcvC dim.F ıH/v;vCk1 C
pP
sD1

�.C;˛; is/C
qP
sD1

�.F ıH;˛;ks/;

F2 D j˛jcvC dim.F ıH/v;vCk1 C
pP
sD1

�.C;˛; is/C hv;vCj1 C
rP
sD1

�.H;˛;js/C
wP
sD1

�.F ıH;˛;ks/;

F3Dj˛j.cvC1/Cdim.FıH/v;vCk1C
u�1P
sD1

�.C;˛; is/C
pP
sDu

�.C;˛; is/Chv;vCj1C
rP
sD1

�.H;˛;js/C
wP
sD1

�.FıH;˛;ks/;

F4Dj˛j.cvC1/Cdim.FıH/v;vCk1C
pP
sD1

�.C;˛; is/Chv;vCj1C
u�1P
sD1

�.H;˛;js/C
rP
sDu

�.H;˛;js/C
wP
sD1

�.FıH;˛;ks/;

F5 D j˛j.cvC 1/C dim.F ıH/v;vCk1 C
pP
sD1

�.C;˛; is/C hv;vCj1 C
rP
sD1

�.H;˛;js/C
u�1P
sD1

�.F ıH;˛;ks/

C

wP
sDu

�.F ıH;˛;ks/:

The proof is again by induction on l , which we omit. Then for l � 0, the exact term is zero. It is direct
to check that the first term is �h�F ıH˛; ivCk , the third term is �hP ı dC˛; ivCk , the fourth term is
h�F ı�H˛; ivCk and the last term is �hdE ıP˛; ivCk; hence the theorem follows.

As a corollary, �F ıH‚1;‚3
is a cochain map between .BC.C/; dCBC;‚1

/ and .BC.E/; dEBC;‚3
/, and is homotopic

to �F‚2;‚3 ı�
H
‚1;‚2

.
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3.5 Flow homotopies induce cochain homotopies

In this subsection, we introduce the flow homotopies between flow premorphisms. Such structures can be
viewed as the analog of the geometric data needed to define homotopies between continuation maps in
Floer theories [2, Chapter 11].

Definition 3.29 An oriented flow homotopy Y between two flow premorphisms FD fFi;j g and HD

fHi;j g from C to D is a family of oriented compact manifolds fYi;j g with smooth source and target maps
s W Yi;j ! Ci and t W Yi;j !Dj such that:

(1) There are smooth maps �F ; �H W Fi;j ;Hi;j ! Yi;j such that s ı �F D sF , s ı �H D sH , t ı �F D tF

and t ı �H D tH where sF , sH , tF and tH are the source and target maps for F and H, respectively.

(2) There exists N 2N such that when i � j > N , we have Yi;j D∅.

(3) For all i0< � � �<ik and j0< � � �<jl , the fiber products MC
i0;i1
�i1 � � ��ikYik ;j0�j0 � � ��jl�1MD

jl�1;jl

are cut out transversely.

(4) There are smooth maps mL WMC
i;j �j Yj;k! Yi;k and mR W Yi;j �j MD

j;k
! Yi;k such that

s ımL.a; b/D s
C .a/; t ımL.a; b/D t .b/; s ımR.a; b/D s.a/ and t ımR.a; b/D t

D.b/:

Here sC is the source map for C and tD is the target map for D.

(5) The map �F [ �H [mL[mR W Fi;k [Hi;k [
�S

j M
C
i;j �j Yj;k

�
[
�S

j Yi;j �j M
D
j;k

�
! @Yi;k is a

diffeomorphism up to measure-zero sets.

(6) The orientation ŒYi;j � has the following properties:

@ŒYi;j �D �F .ŒFi;j �/� �H .ŒHi;j �/C
X
p>0

.�1/ciCpC1mL.ŒMC
i;iCp �iCp YiCp;j �/

C

X
p>0

.�1/yi;jmR.ŒYi;j�p �j�pMD
j�p;j �/;

.tC � s/�ŒNj �ŒMC
i;j �j Yj;k�D .�1/

cjm
C
i;j ŒMC

i;j �ŒYj;k�;

.t � sD/�ŒNj �ŒHi;j �j MD
j;k�D .�1/

djyi;j ŒYi;j �ŒMD
j;k�;

where yi;j WD dimYi;j .

The main result of this subsection is that flow homotopies induce homotopies between the maps induced
by the boundary flow premorphisms (which are not necessarily cochain morphisms). Before stating the
theorem, we introduce the following notation:

(1) For k 2 Z, 0 < i1 < � � �< ip and j1 < � � �< jq < k,

Yv;k
i1;:::;ip jj1;:::;jq

WDMC
v;vCi1

�� � ��MC
vCip�1;sCip

�YvCip;vCj1�M
D
vCj1;vCj2

�� � ��MD
vCjq ;vCk

:

(2) Y�;�::: Œ˛; f C� ; : : : ; f D� ; : : : ; � is defined similarly to (3-10).
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(3) For ˛ 2 h.C; v/, we define

�.Y ; ˛; k/ WD .j˛jCyv;vCk/.dvCkC 1/ and � .Y ; ˛; k/ WD .j˛jCyv;vCkC 1/.dvCkC 1/:

To state the formula for the homotopy operator ƒY , we suppress the subscripts ‚1 and ‚2 for simplicity.
Let ˛ 2 h.C; v/ and  2 h.D; vC k/. Then hƒY Œ˛�; Œ�ivCk is defined to be

(3-50)
P

p;q�0
0Di0<���<ip

j1<���<jqC1Dk

.�1/|Yv;k
i1;:::;ip jj1;:::;jq

Œ˛; f CvCi1 ; : : : ; f
D
vCjq

; �;

where

| WD j˛j.cvC 1/CyvCip;vCj1 C
pP

wD1

�.C; ˛; iw/C
qP

wD1

�.Y ; ˛; jw/:

Theorem 3.30 Suppose Y is an oriented flow homotopy between two oriented flow premorphisms
F;H W C) D. After fixing defining data ‚1 and ‚2 for C and D, respectively, there exists an operator
ƒY‚1;‚2 W BC.C/! BC.D/ defined by (3-50) such that

dDBC;‚2 ıƒ
Y
‚1;‚2

CƒY‚1;‚2 ı d
C
BC;‚1 C�

F
‚1;‚2

��H‚1;‚2 D 0:

Proof Similar to the proofs of Proposition 3.15 and Theorem 3.21, this theorem follows from the
following claim, whose proof is again by induction and will be omitted.

For ˛ 2 h.C; v/,  2 h.D; vC k/ with k 2 Z, and any r � 0,

0D
P

0�p�r

.�1/|1Yv;k
i1;:::;ip jj1;:::;jr�p

Œd.˛; f CvCi1 ; : : : ; f
D
vCjr�p

; /�

C
P

0�p�q�r
1�u�p

.�1/|2 TrvCiu Yv;k
i1;:::;ip jj1;:::;jq�p

Œ˛; f CvCi1 ; : : : ; ��
C
vCiu

�
; : : : ; f DvCiq�p ; �

C
P

0�p�q�r
1�u�q�p

.�1/|3 TrvCju Yv;k
i1;:::;ip jj1;:::;jq�p

Œ˛; f CvCi1 ; : : : ; ��
D
vCju

�
; : : : ; f DvCiq�p ; �

C
P

0�p�q<r

.�1/|4.Fv;kji1;:::;ip jj1;:::;jq�p �Hv;kji1;:::;ip jj1;:::;jq�p /Œ˛; f
C
vCi1

; : : : ; f DvCjq�p ; �:

Here

|1 D j˛jcvCyvCip;vCj1 C
pP

wD1

�.C; ˛; iw/C
r�pP
wD1

�.Y ; ˛; jw/;

|2 D j˛j.cvC 1/CyvCip;vCj1 C
u�1P
wD1

�.C; ˛; iw/C
pP

wDu
�.C; ˛; iw/C

q�pP
wD1

�.Y ; ˛; jw/;

|3 D j˛j.cvC 1/CyvCip;vCj1 C
pP

wD1

�.C; ˛; iw/C
u�1P
wD1

�.Y ; ˛; jw/C
q�pP
wDu

�.Y ; ˛; jw/;

|4 D j˛jcvCyv;vCj1 C
pP

wD1

�.C; ˛; iw/C
q�pP
wD1

�.Y ; ˛; jw/:
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Remark 3.31 Theorem 3.30 does not require that ˆF‚1;‚2 or ˆH‚1;‚2 is a cochain morphism. When
they are (in fact, that one of them is a cochain morphism would imply the other is also by Theorem 3.30),
Theorem 3.30 implies that they are homotopic to each other.

3.6 The minimal Morse–Bott cochain complex is canonical

Unlike the Morse case, where the defining data is unique, there is a lot of freedom in choosing the defining
data for the minimal Morse–Bott cochain complex: choices of quasi-isomorphic embeddings, choices of
Thom classes and choices of f ni . The cochain morphism �H‚;‚0 induced from the flow morphism H by
(3-34) also depends on ‚ and ‚0. Although Theorem 3.10 asserts that the cohomology is independent of
the defining data, it is important to have the isomorphism be canonical in a functorial way with respect to
the choice of defining data. In this section, we prove that the construction of the minimal Morse–Bott
cochain complex .BC; dBC;‚/ is natural with respect to the defining data ‚. Moreover, we will show that
the cochain morphism �H‚;‚0 from (3-34) is also canonical in a suitable sense. To explain the claim above
in more detail, we introduce the following category of defining data of an oriented flow category:

Definition 3.32 Given an oriented flow category C, Data.C/ is defined to be the category whose objects
are defining data of C, and there is exactly one morphism between any two objects.

For every object ‚ in Data.C/, we can associate it with a cochain complex .BC; dBC;‚/. The following
theorem says that such an assignment can be completed to a functor Data.C/! K.Ch/, where K.Ch/ is
the homotopy category of cochain complexes.

Theorem 3.33 There is a functor BC.C/ W Data.C/! K.Ch/ defined by

‚ 7! .BC; dBC;‚/ and .‚1!‚2/ 7! .�I‚1;‚2 W .BC; dBC;‚1/! .BC; dBC;‚2//;

where I is the identity flow morphism used to define �I‚1;‚2 by (3-34).

Proof Step 1 (�I‚;‚ is homotopic to the identity) It is not hard to check that �IıI‚;‚ can be written as
idCM with M strictly upper triangular. Note that for i < j , Ii;j DMi;j � Œ0; j � i � and .I ı I /i;j DS
k;i�k�j Ii;k �k Ik;j have an interval direction. Since the pullback of differential forms by source and

target maps cannot cover that interval direction, we have

I
v;k
:::;pjq;:::

Œ : : : ; fvCp; fvCq; : : : �D .I ı I /
v;k
:::;pjq;:::

Œ : : : ; fvCp; fvCq; : : : �D 0 if p ¤ q;

I
v;k
:::;pj
D .I ı I /

v;k
:::;pj
D 0 if p ¤ k;

I
v;k
jq;:::
D .I ı I /

v;k
jq;:::
D 0 if q ¤ 0:
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Therefore, for k 2NC, ˛ 2 h.C; v/ and  2 h.C; vC k/, we have

hMŒ˛�; Œ�ivCk D
P

1�p�q�k
0<i1<���<iq<k

.�1/�1I ı I
v;k
i1;:::;ip jip;:::;iq

Œ˛; fvCi1 ; : : : ; fvCip ; fvCip ; : : : ; fvCiq ; �

C
P
1�p

0<i1<���<ipDk

.�1/�2I ı I
v;k
i1;:::;ip j

Œ˛; fvCi1 ; : : : ; fvCip ; fvCip ; �

C
P
1�p

0Di1<���<ip<k

.�1/�3I ı I
v;k
ji1;:::;ip

Œ˛; fvCi1 ; fvCi1 ; : : : ; fvCip ; �;

where �1, �2 and �3 are determined according to (3-34).

Similarly, we have a decomposition �I‚;‚ D id C N with N strictly upper triangular. Note that
.I ı I /vCip;vCip D IvCip;vCip D CvCip , and hence

.I ı I /
v;k
i1;:::;ip jip;:::;iq

Œ˛; fvCi1 ; : : : ; fvCip ; fvCip ; : : : ; fvCiq ; �

D I
v;k
i1;:::;ip jip;:::;iq

Œ˛; fvCi1 ; : : : ; fvCip ; fvCip ; : : : ; fvCiq ; �:

Similarly for the remaining two terms of M and N . Thus we have N DM . Then by Theorem 3.28,

.idCM/� .idCM/2 D P ı dBC;‚C dBC;‚ ıP:

Since idCM is a cochain isomorphism,

id� .idCM/D .idCM/�1 ıP ı dBC;‚C dBC;‚ ı .idCM/�1 ıP:

Thus idCM D idCN D �I‚;‚ is homotopic to the identity.

Step 2 (functoriality) Given three defining data ‚1, ‚2 and ‚3, by the same argument as above we
have, up to homotopy, that

�I‚1;‚3 D �
IıI
‚1;‚3

:

By Theorem 3.28,

�IıI‚1;‚3
��I‚2;‚3 ı�

I
‚1;‚2

CP ı dBC;‚1 C dBC;‚3 ıP D 0:

Thus �I‚1;‚3 is homotopic to �I‚2;‚3 ı�
I
‚1;‚2

.

Remark 3.34 A similar mechanism of proof appeared in [63, Proposition 7.7.4], where the situation is
Morse and the auxiliary data (which can be viewed as the analog of the defining data) are choices in the
construction of virtual fundamental cycles.

To explain the functoriality for flow morphisms, we introduce the following category:

Definition 3.35 Letting C and D be oriented flow categories, Data.C! D/ is defined to be the category
whose objects are defining data of C and D. There is exactly one morphism from ‚1 to ‚2 if ‚1 and ‚2
are defining data for the same flow category or ‚1 and ‚2 are defining data for C and D, respectively.
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Then Data.C/ and Data.D/ are full subcategories of Data.C!D/. If there is an oriented flow morphism
H W C ! D, then for any defining data ‚ and ‚0 of C and D, respectively, we can assign a cochain
morphism �H‚;‚0 W .BC.C/; dCBC;‚/! .BC.D/; dDBC;‚0/. The next theorem states that such an assignment
along with BC.C/ and BC.D/ is a functor.

Theorem 3.36 For an oriented flow morphism H, there is a functor

ˆH W Data.C! D/! K.Ch/

which extends functors BC.C/ and BC.D/ by sending the morphism ‚C !‚D to �H
‚C ;‚D

. Here ‚C

and ‚D are defining data for C and D, respectively.

Proof We only need to prove the functoriality. We use ‚C and ‚D to denote defining data for C and D,
respectively. By Theorem 3.28, �HıI

‚C1 ;‚
D

is homotopic to both

�H
‚C2 ;‚

D ı�
I
‚C1 ;‚

C
2

and �H
‚C1 ;‚

D ı�
I

‚C1 ;‚
C
1

:

Since, by Theorem 3.33, �I
‚C1 ;‚

C
1

is homotopic to the identity, �H
‚C2 ;‚

D
ı�I
‚C1 ;‚

C
2

is homotopic to �H
‚C1 ;‚

D
.

Similarly, �I
‚D1 ;‚

D
2

ı�H
‚C ;‚D1

is homotopic to �H
‚C ;‚D2

.

3.7 Flow subcategories and flow quotient categories

In this section, we introduce subcategories and quotient categories in the setting of flow categories, which
on the cochain complex level correspond to subcomplexes and quotient complexes.

Definition 3.37 Let C D fCi ;Mi;j g be an oriented flow category. A subset A of Z is called a C–subset
if j … A implies Mi;j D∅ for all i 2 A.

A basic example of a C–subset is the set of integers bigger than a fixed number.

Proposition 3.38 Let C D fCi ;Mi;j g be an oriented flow category and A be a C–subset. Then CA D
fCi ;Mi;j ; i; j 2 Ag and C=A D fCi ;Mi;j ; i; j;… Ag are flow categories.

Proof It is clear that both CA and C=A are subcategories. Then it is sufficient to prove that the boundary
of morphism spaces comes from fiber products of the morphisms spaces for both CA and C=A. Since the
boundary @Mi;k comes from Mi;j �j Mi;k , if both i; k 2 A, then j 2 A, otherwise one of Mi;j and
Mj;k is empty. Similarly for C=A.

We will call CA a flow subcategory and C=A the associated flow quotient category.

Remark 3.39 A finer definition of subcategory is using a subset of components of Obj.C/ such that a
similar condition to Definition 3.37 holds.

From Definition 3.8, when the defining data of CA and C=A are restrictions of a defining data on C, we
have the tautological short exact sequence

(3-51) 0! BC.CA/! BC.C/! BC.C=A/! 0

Algebraic & Geometric Topology, Volume 24 (2024)



1366 Zhengyi Zhou

by the obvious inclusion and projection. To make the structure more compatible with concepts introduced
here and our future applications [79], we lift the short exact sequence to the flow morphism level. We
first introduce the following:

Lemma 3.40 Assume .V0˚ V1; d / is a cochain complex with the property that d.V0/ � V0, that is ,
d has a decomposition into d00C d10C d11, where dab W Va! Vb . Suppose we have another cochain
complex .V 00˚ V

0
1; d
0/ with the same property. Assume the following squares are commutative up to

homotopies H1 and H2 with the property that imH1 � V
0
0, V0 � kerH2 and the middle morphism � has

the same decomposition �00C�10C�11, ie �.V0/� V 00:

0 // V0 //

 
��

V0˚V1 //

�
��

V1

�

��

// 0

0 // V 00
// V 00˚V

0
1

// V 01
// 0

Then they induce a morphism between the long exact sequences of cohomology.

Proof We only need to prove the following square is commutative:

H.V1/
d10
//

�

��

H.V0/

 

��

H.V 01/
d 010
// H.V 00/

By imH1 � V
0
0 and V0 � kerH2, we have  D �00 and �D �11 on cohomology. Then the claim follows

because the square below is commutative up to the homotopy21 �10:

.V1; d11/
d10
//

�11
��

.V0;�d00/

�00
��

.V 01; d
0
11/

d 010
// .V 00;�d

0
00/

Proposition 3.41 Let C D fCi ;Mi;j g be an oriented flow category and A a C–subset. Then we
have two flow morphisms IA W CA ) C and PA W C ) C=A, which induces a short exact sequence
0! BC.CA/! BC.C/! BC.C=A/! 0. The induced long exact sequence is isomorphic to that of (3-51)
if the defining data for CA and C=A are the restriction of defining data on C.

Proof IA is the identity flow morphism of CA when the target lands in A, and the empty set otherwise.
PA is the identity flow morphism of C=A when the source lands outside A, and the empty set otherwise.
Similar to the proof of Proposition 3.38, both IA and PA are oriented flow morphisms. Since the induced
cochain morphism of IA maps BC.CA/ isomorphically to the subspace of BC.C/ generated by H�.Ci /
for i 2 A, and the induced cochain morphism of PA vanishes on the subspace of BC.C/ generated by
H�.Ci / for i 2 A and maps the subspace generated by H�.Ci / for i … A isomorphically to BC.C=A/,

21See Remark 3.42 for the explanation of the sign, although it does not affect the map on cohomology.
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then we have a short exact sequence as below. Moreover, we claim that we have the diagram of short
exact sequences which is commutative up to homotopy

0 // BC.CA/
�IA

//

id
��

BC.C/
�PA
//

id
��

BC.C=A/ //

id
��

0

0 // BC.CA/
i
// BC.C/ �

// BC.C=A/ // 0

where the second row is the tautological short sequence (3-51). This is equivalent to proving �IA is
homotopic to inclusion i , and �PA is homotopic to the projection � . Note that �IA D i CN with N a
strict upper triangular matrix and N D �IA � i D i ı .�ICA � id/. Similar to the proof of Theorem 3.33,
we have that IA ıICA and IA induce the same map. Hence .i CN/ ı .idCN/ is homotopic to i CN by
Theorem 3.28, and so i CN is homotopic to i if we multiply .idCN/�1 to the right of the homotopy
relation. Similarly, �PA is homotopic to the projection � . It is clear from Theorem 3.28 that those
homotopies satisfy the conditions of Lemma 3.40, and hence the claim follows.

Remark 3.42 The conclusion of Lemma 3.40 can be rephrased as saying that V0!V0˚V1!V1!V0Œ1�

and V 00!V 00˚V
0
1!V 01!V 00Œ1� are equivalent distinguished triangles in K.Ch/.22 In view of Section 3.6,

the minimal Morse–Bott cochain complex is only well defined in K.Ch/. It is natural to expect that we
only get well-defined distinguished triangles in K.Ch/.

Definition 3.43 Let C and D be two oriented flow categories, A a C–subset and B a D–subset. We say
an oriented flow morphism H maps A to B , if and only if Hi;j D∅ whenever i 2 A and j … B .

Proposition 3.44 Let C and D be two oriented flow categories , A a C–subset and B a D–subset. Assume
an oriented flow morphism H maps A to B . Then we have oriented flow morphisms HA W CA) DB and
H=A W C=A) D=B , and on the cochain level they induce a morphism between the long exact sequences.

Proof The restriction of H is HA when the source and target land in A and B , respectively. H=A is the
restriction of H when source and target land in complements of A and B respectively. Then HA and H=A
are flow morphisms by a direct check similar to Proposition 3.38. We define F to be the flow morphism
from CA to D which is the restriction of H to CA. Since Hi;j D∅ whenever i 2A and j …B , we have that
H must land in DB . Then by the same argument as in Theorem 3.33, H ıIA, IB ıHA and F induce the
same cochain morphism. Then Theorem 3.28 implies that both �H ı�IA and �IB ı�HA are homotopic
to �F. Similarly, �H=A ı�PA and �PB ı�H are homotopic. It is clear that the homotopies and �H satisfy
the conditions in Lemma 3.40, and hence the claim follows.

Remark 3.45 It is clear that the identity flow morphism maps A to A. Hence Proposition 3.44 implies
that the long exact sequence from Proposition 3.41 is independent of the defining data and is isomorphic
to the long exact sequence induced from (3-51).
22When .V; d/ is ungraded, V Œ1� simply means .V;�d/.
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4 The action spectral sequence

Given a Morse–Bott function on a closed manifold M , there is a spectral sequence converging to H�.M/

with the first page generated by the cohomology of critical manifolds (sometimes twisted by a local
system). Such a spectral sequence is sometimes referred to as the Morse–Bott spectral sequence. For flow
categories, Austin and Braam’s construction [3] comes with a spectral sequence, which is induced by the
an action filtration. Moreover, it was shown under the fibration condition that the spectral sequence from
Austin and Braam’s construction (from the first page) is isomorphic to the Morse–Bott spectral sequence.
Similar spectral sequences from action filtration in Floer theory can be found in many places, eg [70].
Often the spectral sequence is an invariant of the Morse–Bott function, ie independent of other auxiliary
structures. For example, in the finite-dimensional Morse–Bott theory, any reasonable construction should
recover the Morse–Bott spectral sequence, which can be constructed using only the Morse–Bott function
in a purely topological manner.

The goal of this section is to prove those results for the minimal Morse–Bott cochain complex. The
existences of an “action” filtration is encoded in the definition of a flow category by requiring Mi;j D∅
for i > j , since we secretly order Ci by their critical values of the hypothetical Morse–Bott functional.
For basics of spectral sequences arising from filtrations, we refer readers to [55; 75].

Letting C WD fCi ;Mi;j g be an oriented flow category, we have the following “action” filtration on the
minimal Morse–Bott cochain complex BC:

FpBC WD
Y
i�p

H�.Ci /� Fp�1BC� BC:

It is clear from definition that the differential dBC;‚ is compatible with this filtration for any defining
data ‚. The associated spectral sequence can be described explicitly as follows. We define Zp

kC1
to

be the space of ˛0 2H�.Cp/ such that there exist ˛1; ˛2; : : : ; ˛k�1 2H�.C�/ with (we suppress the
subscript ‚ in di;‚ for simplicity)

(4-1)

d1˛0 D 0;

d2˛0C d1˛1 D 0;

d3˛0C d2˛1C d1˛12D 0;
:::

dk˛0C dk�1˛1C � � �C d1˛k�1 D 0:

We define Bp
kC1

to be the space of ˛ 2H�.Cp/ such that there exist ˛0; ˛1; : : : ; ˛k�1 2H�.C�/ with

(4-2)

˛ D dk˛0C dk�1˛1C � � �C d1˛k�1;

0D dk�1˛0C dk�2˛1C � � �C d1˛k�2;
:::

0D d1˛0:
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On Zp
kC1

=B
p

kC1
, there is a map @kC1 W Z

p

kC1
=B

p

kC1
! Z

pCkC1

kC1
=B

pCkC1

kC1
defined by @kC1˛0 WD

dkC1˛0C dk˛1C � � � C d2˛k�1. Since the differential on the minimal Morse–Bott cochain complex
has the special form

Q
di , unwrapping Leray’s theorem on the spectral sequence associated to a filtered

complex, we have the following:

Proposition 4.1 [55] Following the notation above ,

B
p
1 � B

p
2 � � � � � B

p

k
�

[
k

B
p

k
D Bp1 �Z

p
1 D

\
k

Z
p

k
� � � � �Z

p

k
� : : :�Z

p
2 �Z

p
1 :

Additionally, @k is a well-defined map from Z
p

k
=B

p

k
to ZpCkC1

k
=B

pCkC1

k
such that @2

k
D 0 and

Z
p

kC1
=B

p

kC1
'Hp.Zk=Bk; @k/. Here we view the superscript p as a grading and then @k has grading

kC 1 on Zk=Bk . Hence we have a spectral sequence .Ep
k
WDZ

p

k
=B

p

k
; @k/ with

Ep1 WDZ
p
1=B

p
1 ' FpH.BC; dBC/=FpC1H.BC; dBC/;

where FpH.BC; dBC/ is the associated filtration on the cohomology of .BC; dBC/. In other words , the
spectral sequence .Ep

k
; @k/ is the spectral sequence induced from the filtration FpBC.

Remark 4.2 Since we do not assume C carries a grading structure, we do not have a grading on BC (as well
as its relation to the natural degree on H�.C�/) in general. In particular, we will not get a multicomplex
in [4]. The cost is that we cannot further refine the spectral sequence inEp

k
using their degrees onH�.Cp/.

The second page of the spectral sequence is computed by taking the cohomology with respect to @1 D d1
in (3-15). Since d1 is computed using M�;�C1, which are manifolds without boundary, d1 is simply the
pullback and pushforward of cohomology. It is more accessible in good cases; works in this direction
using cascades constructions can be found in [20; 21]. In general, even though di depends on defining
data in general for i � 2, @i does not for any i .

Proposition 4.3 Every page of the spectral sequence is independent of the defining data.

Proof The identity flow morphism I induces a cochain map �I‚1;‚2 W .BC; dBC;‚1/! .BC; dBC;‚2/.
The cochain map �I preserves the filtrations, thus it induces a morphism between spectral sequences.
Since the induced map on the zeroth page is the identity it induces isomorphisms on every page.

Remark 4.4 Proposition 4.3 only asserts the invariance of the spectral sequence with respect to defining
data for a fixed flow category. However, the spectral sequence is expected to be an invariant of the
hypothetical Morse–Bott functional, ie independent of other choices (metrics, almost-complex structures,
abstract perturbations) in the construction of the flow category. To prove this claim, one needs to study
the underlying moduli problem and deploy some virtual techniques. We will touch on this aspect of
the theory briefly in Section 9. The spectral sequence is also expected to be independent of the specific
construction method. It is an interesting question to find applications of those invariants, particularly in
the quantitative aspects of symplectic geometry like symplectic embedding problems.
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The final page of the spectral sequence only recovers the associated graded of the cohomology with
respect to the induced filtration. We define

E1 WD lim
 ��
p

lim
��!
q

pM
iDq

Ei1;

ie the direct sum at the negative end and the direct limit at the positive end of Ei1. Following [55, Proof
of Lemma 3.10], we have the following exact sequence (note that we are using field coefficients):

0! lim
 ��
p

FpH.BC; dBC/!H.BC; dBC/!E1! lim
 ��
p

1FpH.BC; dBC/! 0:

In some good cases, like FpBCD 0 for p� 0, E1 is (noncanonically) isomorphic to the Morse–Bott
cohomology. For example, the symplectic cohomology considered in [70] satisfies this condition, as the
symplectic action is bounded from above.

5 Orientations and local systems

The aim of this section is explaining how orientation conventions in Definitions 2.15, 3.18 and 3.29
arise in applications. In applications like Morse or Floer theories, coherent orientations usually use
extra structures from the moduli problem, namely the gluing theorem for the determinant line bundles
of Fredholm sections; see [31]. Similar properties and constructions exist in Floer theories of different
flavors beyond cohomology theory, eg [13; 34; 71]. In this section, we explain the structure which is
necessary for the existence of coherent orientations on flow categories and how they arise in applications.
Then we generalize the construction of the minimal Morse–Bott cochain complex to flow categories with
local systems, where critical manifolds Ci can be nonorientable.

5.1 Orientations for flow categories

5.1.1 Orientations in the Morse case We first review how coherent orientations arise in the construction
of Hamiltonian Floer cohomology in the nondegenerate (Morse) case following [1]. We will not just orient
0– and 1–dimensional moduli spaces but all of them, and show that they satisfy Definition 2.15. Assume
a symplectic manifold .M;!/ is symplectically aspherical, that is, !j�2.M/ D 0. Let Ht W S1 �M !R

be a Hamiltonian such that all contractible 1–periodic orbits of the Hamiltonian vector field XHt are
nondegenerate. For simplicity, we assume that every moduli space of Floer cylinders is cut out transversely.
We note here that the orientation problem is independent from many other aspects of the theory, and in
particular, the transversality problem.23 In other words, we have a flow category fxi ;Mi;j g, where xi is
a nondegenerate contractible periodic orbit and Mi;j is the compactified moduli space of Floer cylinders
from xi to xj , where the symplectic action of xi is smaller than that of xj if and only if i < j .

23In the nontransverse case, the discussion of the determinant line bundle below can be lifted to the underlying Banach
manifolds/polyfolds. However, when transversality holds, there is a canonical isomorphism depending on the section/perturbation
from the determinant bundle of the moduli space to oi;j that it is compatible with gluing, ie (4) and (5).
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To orient Mi;j in a coherent way such that Definition 2.15 holds, we recall the following extra structures
that can be associated to the moduli spaces Mi;j in the Hamiltonian Floer cohomology:

(1) For every periodic orbit xi , we can assign an orientation line oi with a Z=2 grading. Such a line is
constructed from the determinant line of a perturbed N@ operator over C with one positive end at infinity
[1, (1.4.8)] and the grading is the index of the operator (modulo 2).

(2) For every point in Mi;j , there is an orientation line with a Z=2 grading coming from the determinant
line bundle of the linearized Floer equation at that point. All these lines form a line bundle oi;j over Mi;j .
We refer readers to [80] for the topology on the determinant bundle.

(3) By the gluing theorem for linear Fredholm operators [1, Lemma 1.4.5], we have a grading-preserving
isomorphism over Mx;y :

(5-1) �i;j W s
�oi ˝ oi;j ! t�oj :

Over Mi;j �Mj;k � @Mi;k , there is a grading-preserving isomorphism

�i;j;k W �
�
1 oi;j ˝�

�
2 oj;k! oi;k;

where �1 and �2 are the two projections. Note that �i;j and �i;j;k are compatible in the sense that there
is commutative diagram over Mi;j �Mj;k up to multiplying by a positive number:

s�oi ˝�
�
1 oi;j ˝�

�
2 oj;k

�i;j˝id
//

id˝�i;j;k
��

��1 t
�oj ˝�

�
2 oj;k ��2 s

�oj ˝�
�
2 oj;k

��2 �j;k
// ��2 t

�ok t�ok

��

s�oi ˝ oi;k
�i;k

// t�ok

(4) Let N@i;j be the Floer operator cutting out Mi;j . When transversality holds for every moduli space,
ker DN@i;j is a vector bundle over Mi;j . Then ker DN@i;j contains an oriented trivial line subbundle R

induced by the R translation action, and

(5-2) ker DN@i;j D TMi;j ˚R:

Moreover, we have a grading-preserving isomorphism �i;j W oi;j ! det ker DN@i;j .

(5) On Mi;j �Mj;k , we have an isomorphism ker DN@i;j ˚ ker DN@j;k
�
�! ker DN@i;k and the following

diagram commutes (we suppress the pullbacks):

oi;j ˝ oj;k

�i;j˝�j;k
��

�i;j;k
// oi;k

�i;k
��

det ker DN@i;j ˝ det ker DN@j;k
det�

// det ker DN@i;k

(6) Let Rr , Rs and Rt be the trivial subbundles in ker DN@i;j , ker DN@j;k and ker DN@i;k , respectively. Then
by [1, Lemma 1.5.7],

(5-3) �.hr; si/D t and �.h�r; si/ is pointing out along Mi;j �Mj;k � @Mi;k in (5-2):
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Proposition 5.1 If we fix an orientation for every oi , then (3) and (4) determine an orientation of Mi;j

and ŒMi;j �ŒMj;k�D .�1/
mi;jC1@ŒMi;k�jMi;j�Mj;k

.

Proof Given orientations of oi , the isomorphism �i;j determines an orientation of oi;j . Then by (4)
and �i;j , there is an induced orientation ŒMi;j �. We claim this orientation satisfies the claimed relation.
By (3), �i;j;k preserves the orientations. Therefore � W ker DN@i;j ˚ ker DN@j;k ! ker DN@i;k preserves
the orientations. That is, ŒMi;j �ŒRr �ŒMj;k�ŒRs�D ŒMi;k�ŒRt �. Then by (6), we have ŒMi;j �ŒMj;k�D

.�1/mi;jC1@ŒMi;k�jMi;j�Mj;k
.

Orientations from Proposition 5.1 can be used to prove d2 D 0 for Hamiltonian Floer cohomology in the
nondegenerate case. Moreover, orientations �ŒMi;j � fit into the orientation convention in Definition 2.15.

5.1.2 Orientations in the Morse–Bott case We should expect similar structures and properties in
Morse–Bott theories. We phrase the structures as a definition and explain how to get an oriented flow
category from there. Before stating the definition, we introduce some notation:

(1) Let E!M be a vector bundle. Then detE WD
Vmax

E with Z=2 grading rankE .mod 2/. We write
detC WD detTC .

(2) For Z=2 graded line bundles o1 and o2, unless stated otherwise the map o1 ˝ o2 ! o2 ˝ o1 is
defined by

(5-4) v1˝ v2! .�1/jo1j�jo2jv2˝ v1

for vectors v1 and v2 in o1 and o2, respectively.

(3) Let � be the diagonal in C �C with normal bundle N . Unless stated otherwise, det�˝ detN !
detC ˝ detC on � is the map induced by the isomorphism T�˚N ! TC ˚TC . In particular, if we
orient N following Example 2.8, such a map preserves orientations.

Definition 5.2 An orientation structure on a flow category C D fCi ;Mi;j g consists of the following
structures:

(1) There are topological line bundles oi over Ci with Z=2 gradings for every Ci , and topological line
bundles oi;j over Mi;j with Z=2 gradings for every Mi;j .

(2) There is a grading-preserving bundle isomorphism over Mi;j

(5-5) �i;j W s
�oi ˝ s

� detCi ˝ oi;j ! t�oj ;

and a grading-preserving bundle isomorphism over Mi;j �j Mj;k � @Mi;k

(5-6) �i;j;k W �
�
1 oi;j ˝ .t � s/

� detT�j ˝��2 oj;k! oi;kjMi;j�jMj;k
:
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The bundle isomorphisms are compatible in the sense that the following diagram over Mi;j �j Mj;k is
commutative up to multiplying by a positive number:

(5-7)

s�oi ˝ s
� detCi ˝��1 oi;j ˝ .t � s/

� det�j ˝��2 oj;k

�i;j˝id
��

id˝�i;j;k
oo

��2 s
�oj ˝�

�
2 s
� detCj ˝��2 oj;k

��2 �j;k
��

t�ok oo

s�oi ˝ s
� detCi ˝ oi;k

�i;k

��

t�ok

The diagram makes sense because over the fiber product Mi;j �j Mj;k , we have ��1 t
�oj D �

�
2 s
�oj and

.t � s/� det�j D ��2 s
� detCj .

(3) There are vector bundles Vi;j over Mi;j with smooth bundle maps

Si;j W Vi;j ! TCi and Ti;j W Vi;j ! TCj

covering si;j WMi;j ! Ci and ti;j WMi;j ! Cj , respectively. Moreover, there is an oriented trivial
subbundle R of Vi;j such that Si;j .R/D Ti;j .R/D 0,

(5-8) Vi;j D TMi;j ˚R;

Si;j jTMi;j
D dsi;j and Ti;j jTMi;j

D dti;j . There is a grading-preserving isomorphism

(5-9) �i;j W s
� detCi ˝ oi;j ˝ t� detCj ! detVi;j :

(4) On Mi;j �j Mj;k we have Vi;j �TCj Vj;k D Vi;k , and the following diagram commutes, where the
last map is induced by the isomorphism Vi;j ˚Vj;k D .t � s/

�Nj ˚Vi;k:

.t�s/� detNj˝s� detCi˝oi;j˝.t�s/� det�j˝oj;k˝t� detCk
�i;j;k

//

��

.t�s/� detNj˝s� detCi˝oi;k˝t� detCk

�i;k

��

s� detCi˝oi;j˝.t�s/�.det�j˝detNj /˝oj;k˝t� detCk

��

s� detCi˝oi;j˝t� detCj˝s� detCj˝oj;k˝t� detCk

�i;j˝�j;k

��

detVi;j˝detVj;k // .t�s/� detNj˝detVi;k

(5) Let Rr , Rs and Rt be the trivial subbundles in Vi;j , Vj;k and Vi;j , respectively. We have

(5-10) hr; si D t and h�r; si is pointing out along Mi;j �j Mj;k � @Mi;k :

In applications, the topological line bundle oi is the determinant line bundle of a perturbed Floer equation
with exponential decay at the end over a domain with one positive end. For details on exponential decay,
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we refer readers to [12; 32]. The topological line bundle oi;j usually comes from the determinant bundle
of the Floer equation with exponential decay at both ends over a cylinder. The bundle isomorphism and
its compatible diagram come from a version of the linear gluing theorem for Fredholm operators [1; 31].
Vi;j is the kernel of the linearized Floer operator defining Mi;j and the trivial subbundle comes from
the R translation. The last condition (5) comes from a similar argument as in [1, Lemma 1.5.7]. The
bundle oi;j can be defined on the background Banach manifold or polyfolds [44, Chapter 6], however
Vi;j is defined only when transversality holds. Definition 5.2(3) states the relation between Vi;j , oi;j and
TMi;j , and (4) states the compatibility with the gluing map �i;j;k .

Remark 5.3 Similar to Definition 2.13, Definition 5.2 is a simplified version. In general, we should
associate each component ofCi with a line bundle and each component of Mi;j with a bundle isomorphism
satisfying similar compatibility conditions.

Remark 5.4 Definition 5.2 is modeled on the classical treatment of the Floer equation [12; 32]. That
is, we mod out the R translation after solving the Floer equation. Hence we expect that bundles Vi;j
over Mi;j contain a trivial oriented R direction. If we use the polyfold setup, then the Floer operator is
defined on polyfolds of cylinders with the R translation already quotiented out; see [26; 73]. One can
adjust Definition 5.2 to be consistent with such a point of view.

Proposition 5.5 Assume the flow category C has an orientation structure , all the line bundles oi are
oriented and all Ci are oriented. Then C can be coherently oriented.

Proof By the map �i;j in (5-5), if the oi and Ci are oriented, then there are induced orientations Œoi;j �
on oi;j . By (5-7), over the fiber product Mi;j �j Mj;k we have

(5-11) �i;j;k.�
�
1 Œoi;j �˝ .t � s/

�Œ�j �˝�
�
2 Œoj;k�/D Œoi;k�:

Using �i;j in Definition 5.2(4), we have an orientation ŒVi;j � on Vi;j . Then by (5-11), the commutative
diagram in Definition 5.2(4) implies that the natural map Vi;j ˚Vj;k! .t � s/�Nj �Vi;k induces

ŒVi;j �˝ ŒVj;k� 7! .�1/cj .mi;jC1/.t � s/�ŒNj �˝ ŒVi;k�

on the prescribed orientations. By Definition 5.2(3), the orientation ŒVi;j � induces an orientation ŒMi;j �.
Hence on Mi;j �j Mj;k � @Mi;k ,

ŒMi;j �ŒRr �ŒMj;k�ŒRs�D .�1/
cj .mi;jC1/.t � s/�ŒNj �ŒMi;k�ŒRt �:

Then Definition 5.2(5) implies that

ŒMi;j �ŒMj;k�D .�1/
cjmi;jCmi;jC1.t � s/�ŒNj �@ŒMi;k�jMi;j�jMj;k

:

Then the orientations �ŒMi;j � satisfy Definition 2.15.24

24One can certainly modify the definition of coherent orientations of a flow category (Definition 2.15) so that ŒMi;j � gives a
coherent orientation. Then the signs in (3-15) do not factorize nicely.
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When the oi are not oriented or the Ci are not oriented, Definition 5.2 gives all the structures we need to
work with the local system oi . We discuss such generalization in Section 5.2.

5.1.3 Orientations for flow morphisms We explain how the orientation convention in Definition 3.18
arise in application.

Definition 5.6 Assume HD fHi;j g is a flow morphism from flow category C to D such that C and D
have orientation structures. A compatible orientation structure on H is the following:

(1) There are Z=2 graded line bundles oHi;j over Hi;j . Over Hi;j , we have a grading-preserving
isomorphism

(5-12) �Hi;j W s
�oCi ˝ s

� detCi ˝ oHi;j ! t�oDj :

(2) Over the fiber product MC
i;j �j Hj;k � @Hi;k , we have a grading-preserving isomorphism

(5-13) �
C;H
i;j;k
W ��1 o

C
i;j ˝ .t � s/

� det�Cj ˝�
�
2 o
H
j;k! oHi;k :

Over the fiber product Hi;j �j MD
j;k
� @Hi;k , we have a grading-preserving isomorphism

(5-14) �
H;D
i;j;k
W ��1 o

H
i;j ˝ .t � s/

� det�Dj ˝�
�
2 o
D
j;k! oHi;k :

(3) The bundle isomorphisms in (1) and (2) are compatible in the sense that over MC
i;j �j Hj;k and

Hi;j �j MD
j;k

, we have the commutative diagrams

(5-15)

s�oCi ˝ s
� detCi ˝��1 o

C
i;j ˝ .t � s/

� det�Cj ˝�
�
2 o
H
j;k

�C
i;j
˝id

��

id˝�C;H
i;j;k

oo

��2 s
�oDj ˝�

�
2 s
� detDj ˝��2 o

D
j;k

�H
j;k

��

t�ok oo

s�oCi ˝ s
� detCi ˝ oHi;k

�H
i;k

��

t�ok

and

(5-16)

s�oCi ˝ s
� detCi ˝��1 o

H
i;j ˝ .t � s/

� det�Dj ˝�
�
2 o
D
j;k

�H
i;j
˝id

��

id˝�H;D
i;j;k

oo

��2 s
�oDj ˝�

�
2 s
� detDj ˝��2 o

D
j;k

�D
j;k

��

t�ok oo

s�oCi ˝ s
� detCi ˝ oHi;k

�H
i;k

��

t�ok

respectively.
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(4) There is a grading-preserving isomorphism �Hi;j W s
� detCi ˝ oHi;j ˝ t

� detDj ! detTHi;j .

(5) On MC
i;j �j Hj;k � @Hi;k we have V Ci;j �TCj THj;k D THi;k , and the following diagram commutes,

where the last row is induced by the isomorphism V Ci;j ˚THj;k! .t � s/�NC
j ˚THi;k:

.t�s/detNC
j ˝s

� detCi˝oCi;j˝.t�s/
� det�Cj ˝o

H
j;k
˝t� detDk

��

�
C;H
i;j;k
// .t�s/� detNC

j ˝s
� detCi˝oHi;k˝t

� detDk

�H
i;k

��

s� detCi˝oCi;j˝.t�s/
�.det�Cj ˝N

C
j /˝o

H
j;k
˝t� detDk

��

s� detCi˝oCi;j˝t
� detCj˝s� detCj˝oHj;k˝t

� detDk

�C
i;j
˝�H
j;k

��

detV Ci;j˝detTHj;k // .t�s/� detNC
j ˝detTHi;k

On Hi;j �j MD
j;k
� @Hi;k , we have THi;j �TDj V

D
j;k
D THi;k , and the following diagram commutes,

where the last row is induced by the isomorphism THi;j ˚V Dj;k! .t � s/�ND
j ˚THi;k:

.t�s/detND
j ˝s

� detCi˝oHi;j˝.t�s/
� det�Dj ˝o

D
j;k
˝t� detDk

��

�
H;D
i;j;k
// .t�s/� detND

j ˝s
� detCi˝oHi;k˝t

� detDk

�H
i;k

��

s� detCi˝oHi;j˝.t�s/
�.det�Dj ˝N

D
j /˝o

D
j;k
˝t� detDk

��

s� detCi˝oHi;j˝t
� detDj˝s� detDj˝oDj;k˝t

� detDk

�H
i;j
˝�D
j;k

��

detTHi;j˝detV D
j;k

// .t�s/� detND
j ˝detTHi;k

(6) Let Rs and Rt be the trivial lines in V Ci;j and V D
j;k

, respectively. Then s points in along MC
i;j�jHj;k�

@Hi;k and t points out along Hi;j �j MD
j;k
� @Hi;k .

In the example of Hamiltonian Floer cohomology for nondegenerate Hamiltonians, the bundle oHi;j is the
determinant line bundle of the time-dependent Floer equation [2, page 384]. In the Morse–Bott case, oHi;j
is the determinant line bundle of the time-dependent Floer equation with exponential decay at both ends.
By the same argument as in Proposition 5.5, we have the following:

Proposition 5.7 Let C and D be two flow categories with orientation structures and H be a flow morphism
from C to D with a compatible orientation structure. Assume oCi , oDi , Ci and Di are oriented , and C and
D are oriented using Proposition 5.5. Then Definition 5.6(1) and (4) determine orientations on Hi;j such
that H is an oriented flow morphism from C to D.
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Remark 5.8 A compatible orientation structure on a flow premorphism is Definition 5.6(1) and (4),
and hence we have enough structures to orient the spaces in a flow premorphism when oCi , oDj , Ci and
Di are oriented. The composition F ıH of two composable flow morphisms F and H with compatible
orientation structures has a natural compatible orientation structure, where

oF ıHi;j jHi;j�jFj;k D �
�
1 o
H
i;j ˝ .t

H
i;j � s

F
j;k/
� det�Dj ˝�

�
2 o
F
j;k :

5.1.4 Orientations for flow homotopies In applications, a flow homotopy from H to F usually comes
from considering a time-dependent Floer equation with an extra Œ0; 1�z parameter [2, page 414] such that
when z D 0 the equation defines the flow morphism H, and when z D 1 the equation defines the flow
morphism F. Hence we have the following definition:

Definition 5.9 Let H and F be two flow premorphisms with orientation structures from C to D whose
orientation structures are compatible with those of C and D. A flow homotopy Y between H and F is
said to have a compatible orientation structure if:

(1) There are Z=2 graded line bundles oYi;j over Yi;j . Over Yi;j there is a grading-preserving isomorphism

(5-17) �Yi;j W s
�oCi ˝ s

� detCi ˝ oYi;j ! t�oDj :

(2) Over the fiber product MC
i;j �j Yj;k � Yi;k , we have a grading-preserving isomorphism

(5-18) �
C;Y
i;j;k
W ��1 o

C
i;j ˝ .t � s/

� det�Cj ˝�
�
2 o
Y
j;k! oYi;k :

Over the fiber product Yi;j �j MD
j;k
� @Yi;k , we have a grading-preserving isomorphism

(5-19) �
Y;D
i;j;k
W ��1 o

Y
i;j ˝ .t � s/

� det�Dj ˝�
�
2 o
D
j;k! oYi;k :

(3) �Yi;j , �C;Y
i;j;k

and �Y;D
i;j;k

are compatible so that commutative diagrams similar to Definition 5.6(3) hold.

(4) On Hi;j � @Yi;j we have oYi;j jHi;j D o
H
i;j and �Yi;j jHi;j D �

H
i;j ; similarly for Fi;j � @Yi;j .

(5) TYi;j jHi;j DRz˚THi;j with z pointing in along the boundary and TYi;j jFi;j DRz˚TFi;j with
z pointing out along the boundary. And there is a Z=2–bundle isomorphism

�Yi;j WRz˝ s
� detCi ˝ oYi;j ˝ t

� detDj ! detTYi;j

such that �Yi;j jHi;j D idRz ˝�
H
i;j and �Yi;j jFi;j D idRz ˝�

F
i;j .

(6) On MC
i;j �j Yj;k � @Yi;k we have V Ci;j �TCj TYj;kDTYi;k , and the following diagram (we suppress

the pullback notation) commutes, where the last row is induced by the isomorphism V Ci;j ˚ TYj;k !
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.t � s/�NC
j ˚TYi;k:

Rz˝ detNC
j ˝ detCi ˝ oCi;j ˝ det�Cj ˝ o

Y
j;k
˝ detDk

��

�
C;Y
i;j;k
// Rz˝ detNC

j ˝ detCi ˝ oYi;k˝ detDk

�Y
i;k

��

Rz˝ detCi ˝ oCi;j ˝ det�Cj ˝N
C
j ˝ o

Y
j;k
˝ detDk

��

detCi ˝ oCi;j ˝ detCj ˝Rz˝ detCj ˝ oYj;k˝ detDk

�C
i;j
˝�Y

j;k

��

detV Ci;j ˝ detTYj;k // .t � s/� detNC
j ˝ detTYi;k

On Yi;j �j MD
j;k
� @Yi;k we have TYi;j �TDj V

D
j;k
D TYi;k , and the following diagram commutes,

where the last row is induced by the isomorphism TYi;j ˚V Dj;k! .t�s/�ND
j ˚TYi;k twisted by .�1/dj

(because of the extra Rz):

Rz˝ detND
j ˝ detCi ˝ oYi;j ˝ det�Dj ˝ o

D
j;k
˝ detDk

��

�
Y;D
i;j;k
// detND

j ˝ detCi ˝ oYi;k˝ detDk

�Y
i;k

��

Rz˝ detCi ˝ oYi;j ˝ det�Dj ˝N
D
j ˝ o

D
j;k
˝ detDk

��

detCi ˝ oYi;j ˝ detDj ˝Rz˝ detDj ˝ oDj;k˝ detDk

�Y
i;j
˝�D

j;k

��

detTYi;j ˝ detV D
j;k

.�1/
dj

// detND
j ˝ detTYi;k

(7) Let Rs and Rt be the trivial lines in V Ci;j and V D
j;k

, respectively. Then s points in along MC
i;j �Yj;k �

@Yi;k and t points out along Yi;j �MD
j;k
� @Yi;k .

If we can fix orientations of oCi , oDi , Ci and Di , then (1), (4) and (5) imply that the induced orientations
of Yi;j , Hi;j and Fi;j satisfy

@ŒYi;j jHi;j �D�ŒHi;j � and @ŒYi;j jFi;j �D ŒFi;j �:

In general, we have the analog of Proposition 5.5 and 5.7:

Proposition 5.10 Let Y be a flow homotopy between two flow premorphisms H and F from C to D.
Assume everything is equipped with compatible orientation structures , and oCi , oDi , Ci andDi are oriented.
If C, D, H and F are oriented by Propositions 5.5 and 5.7, then Yi;j can be oriented by Definition 5.9(1)
and (5) so that Y is an oriented flow homotopy between H and F.
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5.2 Local systems

From the discussion in Section 5.1, to orient a flow category, a flow morphism or a flow homotopy with
orientation structures, we need to orient oi and Ci . However, in the Morse–Bott case, it is possible that
Ci is not orientable or oi is not orientable. Hence we need to upgrade the minimal Morse–Bott cochain
complex to a version with local systems. In fact, Definitions 5.2, 5.6 and 5.9 already provide all the
structures needed to define a cochain complex without any orientable assumptions; the generator will
be the cohomology of Ci twisted by oi . In the case of finite-dimensional Morse–Bott theory, let C be a
critical manifold with stable bundle S . Then in view of the Thom isomorphism, the contribution from a
critical manifold C to the total cohomology should be the cohomology with local system H�.C; detS/.
In the abstract setting, if a flow category has an orientation structure, then the line bundle oi plays the
role of detS .

We will introduce a more compact definition, just like Definition 2.15. First we introduce some notation.
Let C D fCi ;Mi;j g be a flow category. Over Mi;j �j Mj;k � @Mi;k , we have an induced isomorphism
TMi;j ˚TMj;k! .t � s/�Nj ˚T @Mi;k . If we use the identification t�TCj ! .t � s/�Nj given by
v 7! .�v; v/, we have an isomorphism TMi;j ˚ TMj;k ! t�Cj ˚ T @Mi;k . Therefore we have an
isomorphism over Mi;j �j Mj;k:

detMi;j ˝ detMj;k! t� detCj ˝ det @Mik :

Using the isomorphism Rout˚T @Mi;k D TMi;k , there is a natural isomorphism det @Mi;k! detMi;k

preserving compatible orientations. Hence we have an isomorphism of degree 1

detMi;j ˝ detMj;k! t� detCj ˝ detMik;

which induces an isomorphism

(5-20) f W detMi;j ˝ t
� det� Cj ˝ detMj;k! detMj;k;

where det� Cj D .detCj /�. Here f is induced by the natural isomorphism t� detCj ˝ t� det� Cj DR

and the order-switch convention (5-4).

Definition 5.11 Let CDfCi ;Mi;j g be a flow category. Then a local system on C consists of the following:

(1) There is a line bundle oi on each Ci .

(2) Over the Mi;j , there is a bundle isomorphism

�i;j W s
�oi ˝ detMi;j ˝ t

� det� Cj ! t�oj

such that the following diagram over Mi;j �j Mj;k � @Mi;k commutes, where f is defined in (5-20):

s�oi ˝ detMi;j ˝ t
� det� Cj ˝ detMj;k˝ t

� det� Ck
�i;j
//

f

��

s�oj ˝ detMj;k˝ t
� det� Ck

�j;k
// t�ok

��

s�oi ˝ detMi;k˝ t
� det� Ck

.�1/
mi;jC1�i;k

// t�ok
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Proposition 5.12 If C has an orientation structure , then oi is a local system on C.

Proof Since C has an orientation structure, ie we have isomorphisms �Ci;j W s
�oi˝s

� detCi˝oi;j! t�oj ,
Vi;j D TMi;j ˚R and �i;j W s�oi ˝ oi;j ˝ t�oj ! detVi;j , using the natural orientation on R and
isomorphisms �i;j and �Ci;j we get an isomorphism �i;j W s

�oi˝detMi;j ˝ t
� det� Cj ! t�oj . Similarly

to Proposition 5.5, Definition 5.2(4) and (5) imply the commutative diagram in Definition 5.11.

Similarly, we have the following definitions of local systems on flow morphism and flow homotopies:

Definition 5.13 Let HD fHi;j g be a flow morphism from the flow category C to the flow category D.
Both C and D are equipped with local systems. We say H has a compatible local system if, on each Hi;j ,
we have an isomorphism

�Hi;j W s
�oCi ˝ detHi;j ˝ t� det� Cj ! t�oDj

such that the two following diagrams over MC
i;j �j Hj;k � @Hi;k and Hi;j �j MD

j;k
� @Hi;k , respectively,

commute, where the map f in the first columns of both diagrams is defined in a similar way to (5-20):

s�oCi ˝ detMC
i;j ˝ t

� det� Cj ˝ detHj;k˝ t� det�Dk
�C
i;j
//

f

��

s�oCj ˝ detHj;k˝ t� det�Dk
�H
j;k
// t�oD

k

��

s�oCi ˝Hi;k˝ t� det�Dk
.�1/

mC
i;j
C1
�H
i;k

// t�oD
k

s�oCi ˝detHi;j ˝ t� det�Dj ˝detMD
j;k
˝ t� det�Dk

�H
i;j
//

f

��

s�oDj ˝detMD
j;k
˝ t� det�Dk

�D
j;k
// t�oD

k

��

s�oCi ˝Hi;k˝ t� det�Dk
.�1/hi;kC1�H

i;k
// t�oD

k

Definition 5.14 A compatible local system on a flow premorphism H from C to D consists of bundle
isomorphisms �Hi;j W s

�oCi ˝ detHi;j ˝ t� det�Dj ! t�oDj on every Hi;j .

Definition 5.15 Let Y be a flow morphism between flow premorphisms H and F from the flow category C
to the flow category D. Assume C, D, H and F are equipped with compatible local systems. We say Y has a
compatible local system if on each Yi;j we have an isomorphism �Yi;j Ws

�oCi ˝detYi;j˝t� det�Dj! t�oDj
such that:

(1) Under the identification detYi;j jFi;j D detFi;j induced by Rout˚ TFi;j D TYi;j jFi;j , we have
�Yi;j jFi;j D �

F
i;j . Under the identification detYi;j jHi;j D detHi;j induced by Rin˚THi;j D TYi;j jHi;j ,

we have �Yi;j jHi;j D �
H
i;j .
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(2) The following two diagrams over MC
i;j �j Yj;k � @Yi;k and Yi;j �j MD

j;k
� @Yi;k , respectively,

commute, where the map f in the first columns of both diagrams is defined in a similar way to (5-20):

s�oCi ˝detMC
i;j ˝ t

� det� Cj ˝detYj;k˝ t� det�Dk
�C
i;j
//

f

��

s�oCj ˝detYj;k˝ t� det�Dk
�Y
j;k
// t�oD

k

��

s�oCi ˝Yi;k˝ t� det�Dk
.�1/

cj �Y
i;k

// t�oD
k

s�oCi ˝detYi;j ˝ t� det�Dj ˝detMD
j;k
˝ t� det�Dk

�Y
i;j
//

f

��

s�oDj ˝detMD
j;k
˝ t� det�Dk

�D
j;k
// t�oD

k

��

s�oCi ˝Yi;k˝ t� det�Dk
.�1/yi;kC1�Y

i;k
// t�oD

k

The propositions below follow from arguments similar to the proof of Proposition 5.12.

Proposition 5.16 Let C and D be two flow categories with orientation structures. Assume H is a flow mor-
phism with compatible orientation structures. If C and D are given local systems using Proposition 5.12,
then H has a compatible local system. If H is only a flow premorphism from C to D with compatible
orientation structure , then H can be given a compatible local system.

Proposition 5.17 Let C and D be two flow categories with orientation structures , and H and F two flow
premorphism with compatible orientation structures. Assume Y is a flow morphism with compatible
orientation structures. If C and D are given local systems using Proposition 5.12 and H and F are given
local systems using Proposition 5.16, then Y has a compatible local system.

5.2.1 De Rham theory with local systems To generalize the construction of the minimal Morse–Bott
cochain complex to flow categories with local systems, we first recall the de Rham theory with local
systems [11, Section 7]. Let M be manifold and o a local system over M . The de Rham complex
��.M; o/ with local system o is defined as sections of

V
T �M ˝Z=2 o. The usual exterior differential

lifts to a differential on ��.M; o/, which is still denoted by d. The associated cohomology is denoted by
H�.M; o/. The wedge product defines a bilinear map

��.M; o/���.M; o0/!��.M; o˝ o0/;

which induces a map on cohomology. Using local systems, the integration is well defined for forms in
��.M; detM/ without assuming M is oriented. Moreover, we have the form of Stokes’s theoremZ

M

d˛ D
Z
@M

i�˛;
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where i W ��.M; detM/ ! ��.@M; det @M/ is defined by the restriction map and the isomorphism
detM j@M ! det @M induced by the isomorphism Rout˚T @M D TM .

Let C be a closed manifold with a local system o. Since there is a canonical isomorphism from o�˝o to
the trivial line bundle, we have a paring

(5-21) H�.C; o�/�H�.C; o˝ detC/!R

by integrating over C . It is a nondegenerate pairing just like the usual case.

5.2.2 The minimal Morse–Bott cochain complex for flow categories with local systems Let C D
fCi ;Mi;j g be a flow category with a local system. Define o�i �.oi˝detCi / to be ��1 o

�
i ˝�

�
2 .oi˝detCi /.

Since ��2 detCi is canonically isomorphic to det�i and .o�i � oi /j�i D o�i ˝ oi D R, when ! 2
��.Ci�Ci ; o

�
i �.oi˝detCi // is restricted to the diagonal�i , we have !j�i 2�

�.�i ; det�i /. ThereforeR
�i
! is well defined. In particular,

R
�i

descends to a well-defined map onH�.Ci�Ci ; o�i �.oi˝detCi //.
Since the pairing in (5-21) is nondegenerate,

R
�i

is represented by a class in

H�.Ci �Ci ; .oi ˝ detCi /� o�i /DH
�.Ci ; oi ˝ detCi /˝H�.Ci ; o�i /:

If we choose representatives f�i;ag � ��.Ci ; oi ˝ detCi / of a basis of H�.Ci ; oi ˝ detCi / and
representatives f��i;ag � �

�.Ci ; o
�
i / of the dual basis in H�.Ci ; o�i / in the sense that h��i;a; �i;bi D

.�1/dimCi �j�i;b j
R
C �
�
i;a ^ �i;b D ıab , then

P
a �
�
1 �i;a ^ �

�
2 �
�
i;a represents

R
�i

by the same proof as in
Proposition 3.2. On the other hand, there is a natural isomorphism ��1 detCi˝��2 detCi 'det�i˝detNi
over the diagonal�i , induced by the isomorphism TCi˚TCiDT�i˚Ni . Using the natural identification
��2 detCi! det�i , there is an induced isomorphism ��1 detCi!Ni . A similar isomorphism was already
used in the definition of (5-20). Using this isomorphism, if a form in ��.Ci �Ci ; .oi ˝ detCi /� o�i / is
supported in the tubular neighborhood of �i , then it can be viewed as a form in ��.Ni ; detNi /. Using
the twisted Thom isomorphism in [72], we get another representative of

R
�i

by the Thom classes ıni . As
a consequence, we find primitives f ni 2�

�.Ci �Ci ; .oi ˝ detCi /� o�i / such that

df ni D ı
n
i �

X
a

��1 �i;a ^�
�
2 �
�
i;a;

with a relation similar to (3-7). Similarly to Definition 3.3, such choices are referred to as defining data.

Given defining data on a flow category with a local system, we define the minimal Morse–Bott chain
complex to be

(5-22) BC.C/ WD lim
��!

q!�1

1Y
jDq

H�.Cj ; o
�
j /D lim

��!
q!�1

1Y
jDq

H�.Cj ; oj /

(since oi ' o�i , but not canonically). Next, we explain how (3-15) for dk in the construction of the minimal
Morse–Bott cochain complex still makes sense in the setting of local systems. Let ˛ 2��.Cv; o�v/ and
 2��.CvCk; ovCk ˝ detCvCk/. Then s�˛ ^ t� 2��.Mv;vCk; s

�o�v ˝ t
�ovCk ˝ t

� detCvCk/. By
Definition 5.11, we have an isomorphism

�v;vCk W s
�ov˝ detMv;vCk˝ t

� det� CvCk! t�ovCk;
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which induces an isomorphism

(5-23) detMv;vCk! s�o�v ˝ t
�ovCk˝ t

� detCvCk :

Let  v;vCk denote the inverse of (5-23) with an extra negative sign. The extra negative sign is to
match the negative sign in the proof of Proposition 5.5. Using  v;vCk , we can view s�˛ ^ t� as in
��.Mv;vCk; detMv;vCk/, and hence the integration

R
Mv;vCk

s�˛^ t� is well defined.

Next, we consider Mv;k
i Œ˛; f nvCi ; �. Then s�˛^ .t � s/�f nvCi ^ t

� is a form in

��.Mv;vCi �MvCi;vCk; s
�o�v ˝ .t � s/

�..ovCi ˝ detCvCi /� o�vCi /˝ t
�.ovCk˝ detCvCk//:

Since

s�o�v ˝ .t � s/
�..ovCi ˝ detCvCi /� o�vCi /˝ t

�.ovCk˝ detCvCk/

D .s�o�v ˝ t
�.ovCi ˝ detCvCi //� .s�o�vCi ˝ t

�.ovCk˝ detCvCk//;

using  v;vCi and  vCi;vCk , we get a bundle isomorphism

s�o�v ˝ .t � s/
�..ovCi ˝ detCvCi /� o�vCi /˝ t

�.ovCk˝ detCvCk/! detMv;vCi � detMvCi;vCk

! det.Mv;vCi �MvCi;vCk/:

Thus Mv;k
i Œ˛; f nvCi ; � is defined. Similarly, Mv;k

i1;:::;ir
Œ˛; f nvCi1 ; : : : ; f

n
vCir

; � makes sense in the local
system setting. Thus the differential dBC D

Q
dk is well defined and d2BC D 0 by the same proof as in

Theorem 3.10.

Theorem 5.18 Let C be a flow category with a local system. Then .BC.C/; dBC/ is cochain complex for
any defining data and the cohomology is independent of defining data.

Similarly, we have analogs of Theorems 3.21, 3.28, 3.30, 3.33 and 3.36 in the setting of local systems by
the same argument.

6 Generalizations

In this section, we give two generalizations of the minimal Morse–Bott cochain complex. The first is
dropping the compactness assumption on the Ci in flow categories. The second extracts abstract properties
used in the construction of the minimal Morse–Bott cochain complex and provides more flexibility in
choosing the “homological perturbation” data. Such generalization leads to Gysin exact sequences for
flow categories.

6.1 Proper flow categories

We first generalize to the case that Ci is not compact. However, we cannot work with every noncompact
manifold. Hence we introduce the following:
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Definition 6.1 A manifold C is called of finite type if and only if C is the interior of a compact manifold
M with boundary.

In particular, any closed manifold is of finite type. An infinite-genus surface is not of finite type. For any
manifold C of finite type, H�.C / is a finite-dimensional vector space.

Definition 6.2 A proper flow category is defined similarly to Definition 2.9, except for the following
two differences:

(1) Ci is a manifold such that each connected component of Ci is of finite type.

(2) Mi;j is not assumed to be compact. However, the target map ti;j WMi;j ! Cj is proper.

To explain the generalization of the minimal Morse–Bott cochain complex to proper flow categories, we
first explain the counterpart of the perturbation data. Although the following discussion does not require
a coherent orientation as explained in Section 5, we assume fCi ;Mi;j g is equipped with a coherent
orientation for simplicity. In particular, Ci is oriented. Let C be an oriented manifold of finite type and
��c .C / denote the space of compactly supported differential forms on C . Then we have a bilinear form

��.C /���c .C /!R given by .˛; ˇ/ 7! h˛; ˇi WD .�1/dimC �jˇ j
Z
C

˛^ˇ;

and Lefschetz duality asserts that the bilinear form is nondegenerate on cohomology.

Definition 6.3 Let C be an oriented manifold of finite type. We define ��c;�.C �C/ to be

f˛ 2��c;�.C �C/ j supp.˛/�K �C for some compact set Kg:

Similarly, we define ���;c.C �C/ to be

f˛ 2���;c.C �C/ j supp.˛/� C �K for some compact set Kg:

��c;�.C �C/ and ���;c.C �C/ are both cochain complexes using the usual exterior differential. Moreover,
H�c;�.C �C/ WDH

�.��c;�.C �C/; d/DH
�
c .C /˝H

�.C / and H��;c.C �C/ WDH
�.���;c.C �C/; d/D

H�.C /˝H�c .C /, where H�c .C / is the cohomology of compactly supported differential forms. The
following proposition is an analog of the Lefschetz duality with a similar proof to [11, Theorem 12.15]:

Proposition 6.4 The bilinear form ��c;�.C �C/��
�
�;c.C �C/!R defined by .˛; ˇ/ 7!

R
C�C˛^ˇ

descends to cohomology. The induced bilinear form on cohomology is nondegenerate.

To explain the perturbation data for proper flow categories, we need to interpret the diagonal �� C �C
as a cohomology class and represent the cohomology class two different ways: Thom classes which
approximate the Dirac current of the diagonal, and a trace term. Let ˛ 2���;c.C �C/. Then supp.˛/\�
is compact, and hence

R
�˛ is well defined. Moreover, for ˛ 2 ���;c.C � C/ we have

R
�d˛ D 0 by

Stokes’ theorem. Therefore � determines a linear function Œ�� on H��;c.C �C/. In particular, Œ�� can
be represented by a cohomology class in H�c;�.C �C/ by Proposition 6.4. Since C is of finite type, both
H�.C / andH�c .C / are finite-dimensional. Let f�a 2��c .C /g1�a�dimH�c .C/ be representatives of a basis
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�n

�

Figure 3: The graph of �n near the boundary.

ofH�c .C / in��c .C /, and f��a 2�
�.C /g1�a�dimH�.C/ be representatives of a basis ofH�.C / in��.C /,

such that h��a ; �bi D ıab . The following proposition is proven by the same argument as in Proposition 3.2:

Proposition 6.5
P
a �
�
1 �a^�

�
2 �
�
a 2�

�
c;�.C �C/ represents Œ��, ie for any closed form ˛ 2���;c.C �C/,Z

C�C

˛^

�X
a

��1 �a ^�
�
2 �
�
a

�
D

Z
�

˛:

The Dirac current ı of the diagonal � and any of its approximations given in (3-4) are not in ��c;�.C �C/.
To overcome this problem, we need to perturb � to �n so that �n �K �C for a compact set K and �n

approximates � in a suitable sense. In order to do this, we write C as M [ .0; 1/�@M for a manifold M
with boundary @M . We fix a smooth nondecreasing function f WR!RC such that f .x/D 0 for x � 0
and f .x/ < x for x > 0. Then we define �n � C �C to be

�n WD�M [�.0;1�1=n/�@M [ Q�
n;

whereh
1�

1

n
; 1
�
� @M �

h
1�

1

n
; 1
�
� @M � Q�n WD

n�
1�

1

n
Cf .r/; x; 1�

1

n
C r; x

� ˇ̌
r 2

h
0;
1

n

�
; x 2 @M

o
:

Proposition 6.6
R
�n defines the same map on H��;c.C �C/ for all n 2N and equals

R
�.

Proof The claim follows from the fact that any class in H�c .C / has a representative supported in
M � C DM [ .0; 1/� @M and �n\ .C �M/D�\ .C �M/ for all n.

The Thom class of �n constructed from (3-4) gives a form ın 2��c;�.C �C/— in a sufficiently small
tubular neighborhood of �n — representing the map

R
�n D

R
� through the nondegenerate bilinear

form in Proposition 6.4. As a consequence of Propositions 6.4 and 6.5, ın and
P
a �
�
1 �a ^ �

�
2 �
�
a are

cohomologous in ��c;�.C �C/, ie we can find primitives f n such that

df n D ın�
X
a

��1 �a ^�
�
2 �
�
a :

The following proposition shows that we can choose ın and f n carefully so that the relation (3-7) holds
asymptotically. Such a result is crucial for setting up the convergence results and follows directly from
the construction.
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Proposition 6.7 Fix a tubular neighborhood of �� C �C . Then there exist Thom classes ın of �n

and primitives f n such that f n�f m D .�n� �m/ on C � .M [ .0; 1� 2=min.n;m//� @M/.

Following the same idea as in Definition 3.3, the bases f�i;ag and f��i;ag, along with Thom classes ıni and
primitives f ni in Proposition 6.7 for each Ci , give defining data for a proper flow category. Next, we
show the analog of Lemmas 3.7 and 3.14 hold for proper flow categories:

Lemma 6.8 Let C be an oriented proper flow category. Given defining data as above , then for every
˛ 2��.Cv/;  2�

�
c .CvCk/:

(1) limn!1Mv;k
i1;:::;ir

Œ˛; f nvCi1 ; : : : ; f
n
vCir

; � 2R exists.

(2) For � D .j˛jCmv;vCip /cvCip ,

lim
n!1

Mv;k
i1;:::;ir

Œ˛; f nvCi1 ; : : : ; ı
n
vCip

; : : : ; f nvCir ; �

D .�1/� lim
n!1

Mv;k

i1;:::;ip�1;Nip;ipC1;:::;ir
Œ˛; f nvCi1 ; : : : ; f

n
vCir

; �:

Proof Since the target map t is proper,

t� 2��c .MvCir ;vCk/ and .t � s/�f nvCij 2�
�
c;�.MvCij�1;vCij �MvCij ;vCijC1/;

so s�˛^.t�s/�f nvCi1^� � �^.t�s/
�f nvCir^t

� 2��c .M
v;k
i1;:::;ir

/. Hence Mv;k
i1;:::;ir

Œ˛; f nvCi1 ; : : : ; f
n
vCir

; �

makes sense. For the convergence, take Mv;k
i Œ˛; f nvCi ; � as an example. Let K denote the subset

svCi;vCk.t
�1
vCi;vCk

.supp./// of CvCi . Then we only need f nvCi for its value on CvCi �K to determine
Mv;k
i Œ˛; f nvCi ; �. By the properness, K is compact. We write CvCi DM [ .0; 1/� @M . Therefore, for

n big enough, K �M [ .0; 1� 2=n/� @M . Hence for n and m big enough, the difference f nvCi �f
m
vCi

on CvCi �K is prescribed in Proposition 6.7. Therefore the argument in the proof of Lemma 3.7 can
be applied to prove the convergence. Similarly, limn!1Mv;k

i1;:::;ir
Œ˛; f nvCi1 ; : : : ; f

n
vCir

; � exists. The
second claim follows from a similar argument and the proof of Lemma 3.14.

Similarly to Definition 6.2, we have proper flow morphisms, proper flow premorphisms and proper flow
homotopies if we require the target maps to be proper. With Lemma 6.8, all results in Section 3 can be
generalized to proper flow categories with the same proof.

6.2 Flexible defining data

The following discussion works for proper flow categories with orientation structures. However, for
simplicity of notation, we only work with oriented flow categories. Let C be an oriented flow category. From
the discussion in Section 3, the essential property we need for the construction is the following relation:

(6-1) ıni D df ni C
X
a

��1 �i;a ^�
�
2 �
�
i;a:

In fact, it is not necessary to construct our cochain complex from the cohomology of the critical manifolds.
We only need to find differential forms f�i;ag and f��i;ag such that (6-1) holds and they are dual bases
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in the sense that h��i;a; �i;bii D ıab . Such generalization provides some flexibility in applications. For
example, one can use the generalized construction to prove Gysin exact sequences for sphere bundles
over flow categories.

Definition 6.9 For an oriented closed manifold C , a reduction of ��.C / is a pair .A;A�/ such that:

(1) A and A� are finite-dimensional subspaces of ��.C / with dimAD dimA�.

(2) There exists a basis f�ag of A and a basis f��a g of A� such that h��a ; �bi D ıab .

(3)
P
a �
�
1 �a ^�

�
2 �
�
a is cohomologous to the Thom class ın.

Example 6.10 In the construction of the minimal Morse–Bott cochain complex on an oriented flow
category, we use that the reductionADA� equals the image of chosen quasiembeddingH�.C /!��.C /.

Using Definition 6.9, we can generalize defining data to the following: a reduction .Ai ; A�i / for Ci , a
family of Thom classes ıni converging to the Dirac current of the diagonal �i , and primitives f in such
that (6-1) and (3-7) hold. We will call this generalization defining data with reductions.

Let C be an oriented flow category. Given defining data with reductions A, we define

(6-2) BC.C; A/ WD lim
��!

j!�1

1Y
iDj

A�i :

The differential is defined as dA D
Q1
iD0 dA;i , where

(6-3) dA;0˛ WD .�1/
j˛j.cvC1/Ccv

X
a

�Z
Cv

d˛^ �v;a

�
��v;a D .�1/

cvCj˛j
X
a

hd˛; �v;ai��v;a;

with d the normal exterior differential and ˛ 2 A�v . For k � 1 and  2 AvCk ,

(6-4) hdA;k˛; ivCk D lim
n!1

X
r�0

0Di0<i1<���<ir<k

.�1/?Mv;k
i1;:::;ir

Œ˛; f nvCi1 ; : : : ; f
n
vCir

; �;

where ?D
Pr
jD0 �.C; ˛; ij /.

Remark 6.11 We can view (6-3) as the composition of d with the projection (3-3) twisted by a sign.
The extra sign could be eliminated by using a suitable change of coordinates on A�v (ie conjugate by an
automorphism of A�v). Then the sign in (6-4) would be modified accordingly. The upshot is that there
is no canonical orientation and sign convention, but different conventions typically differ by a “change
of coordinates”.

One important feature of our construction is that the choices we make on the critical manifolds Ci
(reductions, Thom classes and primitives f ni ) are independent of the structures of the flow categories,
flow morphisms or flow homotopies.

Example 6.12 Now we can (heuristically) rephrase the perturbation data for the cascades construction
as a reduction. Let C D fCi ;Mi;j g be an oriented flow category. We neglect the difference between
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differential forms and currents, as well as orientations and signs for now. For a Morse–Smale pair .fi ; gi /
on a critical manifold Ci , let Ai WD fŒSx�gx2Crit.fi / and A�i WD fŒUx�gx2Crit.fi /. Then, by [39],

Œ�i ��
X

x2Crit.fi /

ŒSx�ŒUx�D d lim
t!1

� [
t 0<t

graph�it 0
�
;

and ŒUx� is the dual of ŒSx�. Thus fAi ; A�i g is a reduction.25

One should be able to modify our construction to make the argument above rigorous. In particular, we need
an extension of the space of differential forms to include ŒSx� and ŒUx� as well as the homotopy operator.
However, such an extension will depend on Mi;j , which explains various transversality requirements of
the gradient flows of fi with Mi;j in the cascades construction.

In general, a reduction for manifolds of finite type with local systems is defined as follows:

Definition 6.13 For a manifoldC of finite type with a local system o, a reduction is a pair .A;A�/ such that:

(1) A and A� are finite-dimensional subspaces of ��c .C; o˝detC/ and ��.C; o�/, respectively, such
that dimAD dimA�.

(2) There exists a basis f�ag of A and a basis f��a g of A� such that h��a ; �bi D ıab .

(3)
P
a �
�
1 �a ^�

�
2 �
�
a represents the same map as

R
� on H�.C; o�/˝H�c .C; o˝ detC/.

Constructions in Section 3 combined with results in Sections 5.2 and 6.1 yield the following results by
identical proofs:

Theorem 6.14 (1) Let C be a proper flow category with local systems and let A be defining data with
reductions. Then (6-2), (6-3) and (6-4) define a cochain complex .BC.C; A/; dA/, and the homotopy
type of .BC.C; A/; dA/ is independent of the defining data.

(2) Let D be another proper flow category with local systems , B defining data with reductions for D
and H a proper flow morphism from C to D with compatible local systems. Then (3-34) defines
a cochain morphism �HA;B W .BC.C; A/; dA/! .BC.C; B/; dB/ and the homotopy type of �HA;B is
independent of the defining data.

(3) Let E be another proper flow category with local systems , C defining data with reductions for E
and F a proper flow morphism from D to E with compatible local systems. Assume H and F are
composable. Then �F ıHA;C and �FB;C ı�

H
A;B are homotopic.

(4) Let H and F be two proper flow premorphisms from C to D with compatible local systems. Assume
there exists a proper flow homotopy Y from H to F with compatible local systems. Then �HA;B is
homotopic to �FA;B .

25The “homotopy operator” f ni in our construction might be different from the “homotopy operator”
�S

0<t<1 graph�it
�

in
the cascades construction. However, the homotopy operator in our construction is irrelevant as long as the convergence results in
Section 3 hold.
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Remark 6.15 When C is a single manifold C , let .A;A�/ be a reduction. Then the independence result
in Theorem 6.14 shows that the cohomology of .A�; dA;0/ isH�.C; o�/. In particular, dimAD dimA��

dimH�.C; o�/.

We end this subsection with a general way of constructing a reduction (but not all reductions arise in
this way).

Proposition 6.16 Let C be a manifold of finite type with a local system o, and assume A and A� are
finite-dimensional subspaces of ��c .C; o˝ detC/ and ��.C; o�/, respectively. If d is closed on both A
andA�, the pairingA�˝A!R given by .˛; ˇ/ 7! .�1/dimC �jˇ j

R
C˛^ˇ is nondegenerate , and both A,!

��.C; o˝ detC/ and A� ,!��.C; o�/ induce surjections on cohomology , then .A;A�/ is a reduction.

Proof Let f�ag be a basis of A, and f��a g the dual basis under the pairing. It remains to verify
Definition 6.13(3). We first claim that T WD

P
a �
�
1 �a ^�

�
2 �
�
a is closed. By our assumption that A and

A� are closed under d, we have dT 2 ��1A^ �
�
2A
� � ��c;�.C �C; .o˝ detC/� o�/. Moreover, the

pairing on .��1A^�
�
2A
�/˝ .��1A

� ^��2A/ from integration is nondegenerate by the nondegeneracy of
the paring on A�˝A. Therefore to show dT D 0, it is sufficient to prove that for any ��p 2A

� and �q 2A,Z
C�C

dT ^��1 �
�
p ^�

�
2 �q D 0:

HenceZ
C�C

dT ^��1 �
�
p ^�

�
2 �q D

Z
C�C

�P
a
��1 d�a ^��2 �

�
a C .�1/

j�aj��1 �a ^�
�
2 d��a

�
^��1 �

�
p ^�

�
2 �q

D .�1/j�
�
q j�j�

�
p jCdimC �j�q j

Z
C

d�q ^ ��p C
Z
C

d��p ^ �q:

Since the only case where the above integration is nonzero is when j�qjC j��p j D dimC � 1, the above
integration is

R
Cd.��p ^ �q/ D 0. As a consequence, T is closed. Since A ,! ��.C; o˝ detC/ and

A� ,!��.C; o�/ induce surjections on cohomology, every class H�.C; o�/˝H�c .C; o˝ detC/ can be
represented by an element in ��1A^�

�
2A. Then by the same argument as in Proposition 3.2, T represents

the diagonal. Hence .A;A�/ is a reduction.

6.2.1 Gysin sequences Let C be a manifold and � W E! C an oriented sphere bundle over C with
fiber Sk . Then we have an exact sequence [11, Section 14]

� � � !H�.C /
��
��!H�.E/

��
��!H��k.C /

^e
��!H�C1.C /! � � � ;

where e is the Euler class of E. In this section, we generalize it to the setting of flow categories. This
construction plays an important role in proving the uniqueness of the cohomology ring of exact symplectic
fillings of a flexibly fillable contact manifold in [79].

Definition 6.17 Let C be an oriented flow category. A k–sphere bundle over C is a functor � W E ! C
such that � maps Ei to Ci and ME

i;j to MC
i;j , both � W Ei ! Ci and � WME

i;j !MC
i;j are k–sphere

bundles, and sEi;j and tEi;j are bundle maps covering si;j and ti;j . A k–sphere bundle � W E! C is said to
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be oriented if and only if � W Ei ! Ci are oriented sphere bundles, and there is an orientation on each
bundle � WME

i;j !MC
i;j with both bundle maps sEi;j and tEi;j preserving the orientation.

Proposition 6.18 Let � W E! C be an oriented k–sphere bundle. Then E is oriented using the convention

ŒEi �D ŒCi �ŒS
k�; ŒME

i;j �D .�1/
kŒMC

i;j �ŒS
k�:

Proof This is proven in Definition/Proposition 7.2.

Theorem 6.19 Let � W E! C be an oriented k–sphere bundle. There exist flow morphisms …� W C) E
and …� W E ) C and defining data ‚ and „ for C and E , respectively (where ‚ is minimal but „ is
defining data with reductions), such that we have a short exact sequence

0! BC.C; ‚/ �
…�

���! BC.E ; „/ �
…�

���! BC.C; ‚/! 0:

Assume C has a grading structure (Definition 2.13). Then we have a long exact sequence

(6-5) � � � !H�.C/ �
�

��!H�.E/ ����!H��k.C/!H�C1.C/! � � � :

Otherwise , we have an exact triangle (without grading).

Before giving the proof, we first explain the defining data ‚ and „. The defining data for C is any
minimal defining data ‚. For the defining data of E , we fix an angular form  i 2 �

k.Ei / such that
d i D���ei , where ei is the Euler class (viewed in �kC1.Ci /) of the sphere bundle Ei ! Ci . When
k is even, the cohomology class Œei � is zero. Hence when k is even, we can choose  such that
ei D 0 2�

kC1.Ci /. Assume f�i;ag is the chosen basis in the minimal defining data ‚, with f��i;ag the
dual basis. Then for each �i;a there exists a unique �2h�i;aiD h��i;ai such that Œ.�1/j�

�
i;a
jC1��i;a^ei �D Œ��

in cohomology. In other words, we can find �i;a such that .�1/j�
�
i;a
jC1��i;a ^ ei � d�i;a 2 h�i;ai. If we

write mD dimH�.Ci /, then we define

Ai D A
�
i WD h�

��i;1; : : : ; �
��i;m; �

���i;1 ^ i ��
��i;1; : : : ; �

���i;m ^ i ��
��i;mi:

The above construction ensures that d is closed on Ai DA�i . Since
R
Ei
���i;a^ .�

���
i;b
^ i ��

��i;b/DR
Ci
�i;a ^ �

�
i;b

, for any nonzero vector v in A D A�, there is a vector u 2 A D A� with hv; ui ¤ 0. In
particular, the pairing is nondegenerate on A˝A�. That A!��.Ei / induces a surjection on cohomology
follows from the Gysin sequence associated to the sphere bundle Ei!Ci . Therefore by Proposition 6.16,
.Ai ; A

�
i / is a reduction for Ei . Moreover, we can choose �i;a such that the following holds:

Lemma 6.20 We write ����i;a^ i ��
��i;a as �i;a. Then there exist f�i;ag from the construction above

such that h���i;a; �i;bii ¤ 0 if and only if aD b and h�i;a; �i;bii D 0 for any a and b.

Proof We have some freedom in the choice of �i;a, since we can modify it by an element in h�i;ai. The
first claim is obvious by integrating the Sk fiber first. The only nontrivial part is proving h�i;a; �i;bii D 0
for any a and b. We will proceed by induction. Assume for a; b �N < dimH�.Ci / that h�i;a; �i;bii D 0.
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Then we can find �i;NC1 such that h�i;a; �i;NC1ii D 0 for any a � N C 1. We first take any N�i;NC1 in
the form ����i;NC1 ^ i ��

� N�i;NC1 2 A from the construction above. Then we define

�i;NC1 WD N�i;NC1�

NX
aD1

h�i;a; N�i;NC1ii�
��i;a:

It is straightforward to check that h�i;a; �i;NC1ii D 0 for any a �N . Now note that, by degree reasons,
if h�i;NC1; �i;NC1ii ¤ 0 we must have j�i;NC1j D 1

2
dimEi . In this case,

h�i;NC1; �i;NC1ii D ..�1/
.dimEi=2/C1� 1/

Z
Ci

�i;NC1 ^ �
�
i;NC1:

However, no matter what the parity of 1
2

dimEi is, we can add a multiple of ���i;NC1 to �i;NC1 to
make sure that h�i;NC1; �i;NC1ii D 0. Note that this modification does not affect the property that
h�i;a; �i;NC1ii D 0 for any a �N , as h�i;a; ���i;NC1ii D 0 for a �N . The above argument also proves
the induction foundation when N D 1. Hence the claim follows.

In order to obtain the proof of Theorem 6.19, we need to use the following approximations of Dirac
currents of diagonals and primitives f n on the sphere bundle Ei ! Ci :

Proposition 6.21 Let � WE! C be an oriented k–sphere bundle over an oriented closed manifold. Let
AD A� be the reduction on ��.E/ built from the previous discussion (in particular , we choose  i such
that d i D 0 if k is even). Suppose T is the closed form in ��1A^�

�
2A representing the diagonal in the

definition of reduction. Then there exist approximations ıE;n of the Dirac current of the diagonal �E
such that :

(1) There exist forms f E;n on E �E such that

df E;n D ıE;n�T:

(2) Lemmas 3.7 and 3.14 hold for f E;n. In particular , the construction in Section 6.2 works for f E;n.

(3) Let �1;2 denote the projection E �E! C �C . Then f E;n can be written as sums of differential
forms in the form .��1;2˛/^ˇ with ˛ 2��.C �C/ and deg.ˇ/� k, ie the fiber degree of f E;n is
at most k. In other words , if v1; : : : ; vkC1 are kC 1 vertical vectors in Tp.E �E/ for p 2 C �C ,
then f E;n.v1 ^ � � � ^ vkC1 ^ � � �/D 0.

Proof See Appendix B.

Proof of Theorem 6.19 The defining data ‚ and „ are explained above. We now explain the flow
morphisms …� and …�. On the space level, …� is the same as the identity flow morphism IE for E . The
only difference is that the source map on …� is the projection to Ci . Similarly, …� from E to C on the
space level is the same as the identity flow morphism IE , but the target map for …� is the projection
to Ci . We point out here that if the flow category C is an actual space (concentrated in one level), then
…� and …� induce �� and �� on cohomology by definition.
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With the defining data ‚ and „, we get maps

(6-6) 0! BC.C; ‚/ �
…�

���! BC.E ; „/ �
…�

���! BC.C; ‚/! 0:

We will show (6-6) is a short exact sequence. Using the reduction from Lemma 6.20, the dual basis
of f���i;ag [ f�i;ag is f�i;ag [ f���i;ag, up to sign. Then BC.E ; „/ can be decomposed into V0˚ V1
as a vector space, where V0 is generated by h���i;ai and V1 is generated by h�i;ai. Next we use
approximations of the Dirac currents of the diagonal and primitives f nE from Proposition 6.21. By
Proposition 6.21(3), if  2 h���i;vCki, then…�v;k

i1;:::;ip jj1;:::;jq
Œ˛; f

C;n
vCi1

; : : : ; f
C;n
vCip

; f
E;n
vCj1

; : : : ; f
E;n
vCjq

; �

in the definition ofˆ…
�

is zero. Otherwise we cannot cover the fiber directions to get a nonzero integration,
as the total fiber degree contributed by f E;nvCj1

; : : : ; f
E;n
vCjq

is at most kq, but the total fiber dimension in
…�

v;k
i1;:::;ip jj1;:::;jq

is k.qC 1/. Hence im�…
�

� V0. Moreover, �…
�

is an isomorphism onto V0, as it is
the identity plus a strictly upper triangle matrix, similar to the proof of Theorem 3.10 using the identity
flow morphism. Similarly, V0 � ker�…� and �…� jV1 W V1! BC.C; ‚/ is an isomorphism. Therefore
(6-6) is a short exact sequence, and the induced long exact sequence is the Gysin exact sequence (6-5).

Remark 6.22 There are two cases of the Gysin exact sequence for which we do not need to appeal to
Proposition 6.21:

(1) When C is a single space C , the reduction of the sphere bundle E can be viewed as decomposed into
two copies of H�.C /, which corresponds to the classical Gysin exact sequence. This is explained
in Proposition 6.24.

(2) When dimCi � 1 for all i , degf E;ni D dimCi C k � 1 � k, and Proposition 6.21(3) holds
tautologically for any defining data.

These two cases are enough for the argument in [79].

By Corollaries 3.13 and 3.22, we have the following:

Corollary 6.23 If C is a Morse flow category and E an oriented k–sphere bundle over C, then the Gysin
exact sequence only depends on ME

i;j of dimension no greater than 2k.

The next proposition follows from direct computation:

Proposition 6.24 If C is a single space C , then an oriented k–sphere bundle E over C is an oriented
k–sphere bundle � WE! C . Then the Gysin exact sequence in Theorem 6.19 is the classical Gysin exact
sequence

� � � !H i .C /
��
��!H i .E/

��
��!H i�k.C /

^.�1/dimCC1e
����������!H iC1.C /! � � � ;

where e 2H�.C / is the Euler class of � WE! C and �� is the integration along the fiber following the
convention in [11, Section 6].

Proof Let f�1; : : : ; �kg and f��1 ; : : : ; �
�
k
g be representatives of a basis and the dual basis of H�.C /.

Assume  is the Thom class ofE such that d D���e, where e is a closed differential form representing

Algebraic & Geometric Topology, Volume 24 (2024)



Morse–Bott cohomology from homological perturbation theory 1393

the Euler class. BC.C/ is h��1 ; : : : ; �
�
k
i D h�1; : : : ; �ki with zero differential. On the other hand, by the

proof of Theorem 6.19, BC.E/ is the reduction A� D A in the form

h���1; : : : ; �
��k; �1 WD �

���1 ^ ��
��1; : : : ; �k WD �

���k ^ ��
��ki:

The differential dA on ���i is zero. Since (6-3), in this case, can be equivalently expressed for  2 A,
we have

hdA;0�i ; i D .�1/
j�i j.dimEC1/CdimE

Z
E
��..�1/j�

�
i
jC1��i ^ e� d�i /^ :

Since
R

d�i ^���j D 0, it is sufficient to compute the case when  D �j :

hdA;0�i ; �j i D .�1/
j�i j.dimEC1/CdimE

Z
E
��..�1/j�

�
i
jC1��i ^ e� d�i /^ .����j ^��

��j /

D .�1/j�i j.dimEC1/CdimE
Z
E
��..�1/j�

�
i
jC1��i ^ e� d�i /^����j ^ :

Note that Z
E
��.d�i ^ ��j /^ D

Z
C

d�i ^ ��j D
Z

d.�i ^ ��j /D 0:

Then we have

hdA;0�i ; �j i D .�1/
j�i j.dimEC1/CdimE

Z
E
��..�1/j�

�
i
jC1��i ^ e^ �

�
j /^ 

D .�1/j�i j dimECdimCC1
Z
C
��i ^ e^ �

�
j :

On the other hand,
h���j ; �j i D .�1/

j�j jCj�j j dimE :

As a consequence,

dA;0�i D
P
j

.�1/j�i j dimECdimCC1Cj�j jCj�j j dimE
�Z
C
��i ^ e^ �

�
j

�
���j :

Note that to have a nonzero integration it is necessary to have j�i jC j�j jC 1D dimE, and hence

j�i j dimEC dimC C 1Cj�j jC j�j j dimE D dimC C 1Cj�j j D dimC Cj�i j mod 2

and
dA;0�i D .�1/

dimCCj�i j��
�P
j

�Z
C
��i ^ e^ �

�
j

�
�j

�
:

Since D
��j ;

�Z
C
��i ^ e^ �

�
j

�
�j

E
D .�1/j�

�
j
j�j�j j

Z
C
��j ^ �

�
i ^ e D .�1/

j�j j
2

h��j ; �
�
i ^ ei;

we know that

(6-7)
h
.�1/dimCCj�i j

P
j

�Z
C
��i ^ e^ �

�
j

�
�j

i
D Œ.�1/dimCC1��i ^ e� 2H

�.C /:

Next, by Theorem 3.21 and similar computation as above, �…
�

.�i /D �
��i and �…�.�i /D ��i . Then the

connecting map ı WH��k.C /!H�C1.C / is given by ı.��i /D .�1/
dimCC1��i ^ e by (6-7).

Remark 6.25 To explain the sign twist compared to [11, Section 14], recall from (6-3) that dA�i is,
roughly speaking, .�1/dimECj�i jd�i (then project to A). Then .�1/dimECj�i jd�i D .�1/dimCC1����i ^e.
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In other words, if we consider the Gysin exact sequence following [11, Section 14] but with the cochain
complex .��.E/; .�1/dimEC�d/, then we get the long exact sequence with sign twist in Proposition 6.24.

Next, we consider the functoriality of Gysin exact sequences.

Definition 6.26 Let C and D be two oriented flow categories, and �E W E! C and �F W F ! D be two
oriented k–sphere bundles. Assume H W C) D is an oriented flow morphism. A compatible k–sphere
bundle T over H is a flow morphism (not oriented a priori) from E to F such that Ti;j is an Sk–bundle
over Hi;j and sT ; tT are bundle maps covering sH ; tH . It is oriented if the sphere bundles Ti;j !Hi;j
are oriented and sT ; tT preserve the orientation.

Similar to Proposition 6.18, we have that if the k–sphere bundle T over H is oriented, then T is an
oriented flow morphism from E to F with orientation ŒTi;j �D ŒHi;j �ŒSk�.

Proposition 6.27 Let C and D be two oriented flow categories , and �E W E ! C and �F W F ! D be
two oriented k–sphere bundles. Assume H W C) D is an oriented flow morphism and T is a compatible
oriented k–sphere bundle over H. Then we have a morphism between the Gysin exact sequences below ,
assuming they have grading structures. Otherwise it is a commutative diagram of exact triangles:

� � � // H�.C/ ��
//

�H

��

H�.E/
��
//

�T

��

H��k.C/ //

�H

��

H�C1.C/ //

�H

��

� � �

� � � // H�.D/ ��
// H�.F/

��
// H��k.D/ // H�C1.D/ // � � �

Proof We define P to be a flow morphism from C to F which on the space level is same as T, but the
source map is � ı tTi;j , where � is the projection Ei ! Ci . We claim that �P D �T ı…

�
E D �…

�
F ıH . By

the argument in Theorem 3.33, the contribution from Tı…�E containing .…�E /i;j for i < j is zero due to
the extra interval direction in .…�E /i;j . Then it is easy to identify �P D �T ı…

�
E on the nose. On the other

hand, the contribution from …�F ıH containing .…�F /i;j for i < j is zero and .…�F /j;j �Dj Hi;j ' Ti;j
by Definition 6.26. Hence �P can also be identified with �…

�
F ıH on the nose. Then by Theorem 3.28,

�T ı�� is homotopic to �� ı�H . Similarly, �H ı�� is homotopic to �� ı�T . By the same argument
as in Theorem 6.19, using the special defining data in Proposition 6.21, the homotopies above and �T

satisfy the conditions of Lemma 3.40, and hence the claim follows.

7 Equivariant theory

The aim of this section is to construct an equivariant theory for a flow category with a smooth group action.
Our method is based on the approximation of the homotopy quotient. In the context of Floer theory,
a construction in this spirit can be found in [16]. All the results in this section, namely Theorems 7.1
and 7.14, can be generalized to proper flow categories with local systems. However, for simplicity, we
only consider oriented flow categories.
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7.1 Parametrized cohomology

Similar to the construction of parametrized symplectic homology in [16], we need the parametrized
cohomology of an oriented flow category, ie we need to take the product of a flow category C with a
closed oriented manifold B . Since taking a product with B automatically falls into the Morse–Bott case,
using the theory developed in previous sections, we have a direct, also geometric construction. Then all
that remains are some orientation checks.

Let C D fCi ;Mi;j g be an oriented flow category and B an oriented compact manifold throughout
this section. We construct the product flow category C � B first. The parametrized cohomology is
defined to be the cohomology of C �B . Each map f W B1 ! B2 induces an oriented flow morphism
H.f / W C � B2 ) C � B1. Similarly, a homotopy induces a flow homotopy. The main result of this
subsection is that, after taking the minimal Morse–Bott cochain complex, we have a contravariant functor
by this product construction.

Theorem 7.1 Let C be an oriented flow category. Then we have a contravariant functor

C�W K.Man/! K.Ch/;

where K.Man/ is the category whose objects are closed oriented manifolds and morphisms are homotopy
classes of smooth maps.

7.1.1 Product flow categories The first step towards the construction of the functor C� is to construct
the functor on objects, that is, the product flow categories.

Definition/Proposition 7.2 If we orient Ci �B and Mi;j �B by ŒCi �B�D ŒCi �ŒB� and ŒMi;j �B�D

.�1/dimB ŒMi;j �ŒB�, then C �B D fCi �B;Mi;j �Bg is an oriented flow category.

Remark 7.3 The reason we oriented Mi;j �B by .�1/dimB ŒMi;j �ŒB� is that in Definition 5.2 and
Proposition 5.5 we mod out the R translation from the right in the construction of coherent orientations
in applications which motivate those definitions.

Definition 7.4 Let E1 ! M1 and E2 ! M2 be two vector bundles. Then E1 � E2 is defined to
��1E1˚�

�
2E2 over M1 �M2, where �1; �2 WM1 �M2!M1;M2 are the projections.

Proof of Definition/Proposition 7.2 It is clear that we only need to verify that C � B satisfies the
orientation property in Definition 2.15. Note that

@ŒMi;k �B�D
X
j

.�1/dimBCmi;j ŒMi;j �j Mj;k�ŒB�:

Let NB be the normal bundle of �B in B �B , and orient it by Œ�B �ŒNB �D ŒB�ŒB�. Then the normal
bundle of�Cj�B isNj�NB . If we orientNj�NB by the product orientation, then Œ�Cj�B �ŒNj�NB �D
ŒCj �B�ŒCj �B�, ie ŒNj �NB � satisfies our orientation convention (2-4) for Cj �B .
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Then

ŒNi �NB �@ŒMi;k �BjMi;j�jMj;k�B �

D .�1/dimBCmi;j ŒNi �NB �ŒMi;j �j Mj;k�ŒB�

D .�1/dimBCmi;jCdimB.mi;k�1/CdimB2 ŒNi �ŒMi;j �j Mj;k�Œ�B �ŒNB �

D .�1/dimBCmi;jCdimB.mi;k�1/Ccjmi;jCdimB2 ŒMi;j �ŒMj;k�ŒB�ŒB�

D .�1/dimBCmi;jCdimB.mi;k�1/Ccjmi;jCdimB2CdimBmj;k ŒMi;j �B�ŒMj;k �B�:
Because

dimBCmi;j C dimB.mi;k � 1/C cjmi;j C dimB2C dimBmj;k

D dimBCmi;j C .mi;j C dimB/.cj C dimB/ mod 2;

by Definition 2.15, C �B is an oriented flow category.

Remark 7.5 It is very natural to expect a Künneth formula for C�B . Indeed,H.C�B/'H.C/˝H.B/.
Since we will not use it, we omit the proof.

7.1.2 Flow morphisms between product flow categories The second step is to construct the functor
on morphisms: we want to associate every smooth map f WB1!B2 with a cochain map BC.C �B2/!
BC.C �B1/. To that end, we first construct a flow morphism H.f / from C �B2 to C �B1, which is
defined similarly to the identity flow morphism of C �B1. Then the associated cochain map is �H.f /,
defined by Theorem 3.21.

Definition 7.6 Let C be an oriented flow category and f W B1! B2 a smooth map between two closed
oriented manifolds. Then we define H.f /D fHfi;j g as follows:

(1) Hfi;j DMi;j � Œ0; j � i ��B1 with the product orientation when i � j , and Hfi;j D∅ when i > j .

(2) The source and target maps s and t are defined by

s WHfi;j ! Ci �B2; .m; t; b/ 7! .sC .m/; f .b// and t WHfi;j! Cj �B1; .m; t; b/ 7! .tC .m/; b/

for m 2Mi;j , t 2 Œ0; j � i � and b 2 B1, and where sC and tC are source and target maps of C.

(3) For m 2Mi;j , n 2Mj;k , t 2 Œ0; k� j � and b1 2B1; b2 2B2 such that .m; n/ 2Mi;j �j Mj;k and
f .b1/D b2, we define

mL W .Mi;j �B2/�j H
f

j;k
!Hf

i;k
by .m; b2; n; t; b1/ 7! .m; n; t C j � i; b1/:

(4) Form2Mi;j , n2Mj;k , t 2 Œ0; j �i � and b1 2B1 such that .m; n/2Mi;j �kMj;k and f .b1/D b2,
we define

mR WH
f
i;j �j .Mj;k �B1/!Hf

i;k
by .m; t; b1; n; b1/ 7! .m; n; t; b1/:

Proposition 7.7 The flow morphism H.f / in Definition 7.6 is an oriented flow morphism C�B2)C�B1.

Proof All we need to do is the orientation check. It is analogous to the proof of Definition/Lemma 3.23.
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Remark 7.8 In other words, H.f / can be viewed as the identity flow morphism on C �B1 with source
maps twisted by f . In view of the Künneth formula, the morphism induced by H.f / is given by id˝f �

twisted by an appropriate sign. We can similarly define another flow morphism from C �B1 to C �B2
as the identity flow morphism on C � B1 with target maps twisted by f . Then the induced map on
cohomology is id˝f� twisted by an appropriate sign, where f� WH�.B1/!H�CdimB2�dimB1.B2/ is
the pushforward.

7.1.3 Flow homotopies between product flow categories For an oriented flow category C, we now
have enough ingredients to define the functor C�W K.Man/! K.Ch/:

B 7! BC.C �B/ on objects;

.B1
f
�! B2/ 7!

�
BC.C �B2/

�H.f /
����! BC.C �B1/

�
on morphisms:

To finish the proof of Theorem 7.1, we still need to show that homotopic smooth maps induce homotopic
cochain maps, and the functoriality of C�.

Let f; g W B1! B2 be two smooth maps and D W Œ0; 1��B1! B2 a homotopy between them such that
Djf0g�B1 D f and Df1g�B1 D g. We claim there is a flow homotopy Y .D/ between the H.f / and H.g/.

Definition 7.9 We define Y .D/D fYDi;j g as follows:

(1) For i � j , we define YDi;j D Œ0; 1��Mi;j � Œ0; j � i ��B1 with the product orientation. For i < j ,
we define YDi;j D∅.

(2) The source map s is defined as

s W Œ0; 1��Mi;j � Œ0; j � i ��B1! Ci �B2; .z;m; t; b/ 7! .sC .m/;Dz.b//:

(3) The target map t is defined as

t W Œ0; 1��Mi;j � Œ0; j � i ��B1! Ci �B1; .z;m; t; b/ 7! .tC .m/; b/:

(4) We define �f WH
f
i;j
D�! f0g �Mi;j � Œ0; j � i ��B1 � YDi;j .

(5) We define �g WH
g
i;j
D�! f1g �Mi;j � Œ0; j � i ��B1 � YDi;j .

(6) We define

mL W .Mi;j �B2/�j .Œ0; 1��Mj;k � Œ0; k� j ��B1/! Œ0; 1��Mi;k � Œ0; k� i ��B1 D KDi;k;

.m; b2; z; n; t; b1/ 7! .z;m; n; t C j � i; b1/:

(7) We define

mR W .Œ0; 1��Mi;j � Œ0; j � i ��B1/�j .Mj;k �B1/! Œ0; 1��Mi;k � Œ0; k� i ��B1 D YDi;k;

.z;m; t; b1; n; b1/ 7! .z;m; n; t; b1/:

Proposition 7.10 Y .D/ in Definition 7.9 is an oriented flow homotopy from H.f / to H.g/.
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Proof We need only check the orientations, and it is analogous to the proof of Definition/Lemma 3.23.

To complete the proof of Theorem 7.1, we still have to prove the functoriality. Let g W B1 ! B2 and
f W B2! B3 be two smooth maps. It is not hard to see that H.f / and H.g/ can be composed. We claim
that there is a homotopy Y c from H.f / ıH.g/ to H.f ıg/ ıI, where I is the identity flow morphism
on C �B3.

Definition 7.11 Y c D fYci;j g is defined as follows:

� Yci;j D Œ0; 2��Mi;j � Œ0; j � i ��B1 with product orientation for i � j . We define Yci;j D∅ for i < j .

� The source map s is defined as

s W Œ0; 2��Mi;j � Œ0; j � i ��B1;! Ci �B3; .z;m; t; b/ 7! .sC .m/; f ıg.b//:

� The target map t is defined as

t W Œ0; 2��Mi;j � Œ0; j � i ��B1! Ci �B1; .s;m; t; b/ 7! .tC .m/; b/:

� Since .Hf ıg ı I/i;k D
S
i�j�k Ii;j �j H

f ıg

j;k
, we define �H.f ıg/ıI in two cases:

(1) When j D i , we define �H.f ıg/ıI as

Ii;i �i H
f ıg

i;k
D .Ci �B3/�i .Mi;k � Œ0; k� i ��B1/! Œ0; 2��Mi;k � Œ0; k� i ��B1;

.c; b3; m; t; b1/ 7! .0;m; t; b1/:

(2) When j > i , we define �H.f ıg/ıI on Ii;j �j H
f ıg

j;k
as

.Mi;j � Œ0; j � i ��B3/�j .Mj;k � Œ0; j � i ��B1/! Œ0; 2��Mi;k � Œ0; k� i ��B1;

.m; t1; b3; n; t2; b1/ 7!

�
t1

j � i
; mL.m; n/; t2C j � i; b1

�
:

� For j < k, we define �H.f /ıH.g/ on Hfi;j �j H
g

j;k
as

.Mi;j � Œ0; j � i ��B2/�j .Mj;k � Œ0; k� j ��B1/! Œ1; 2��Mi;k � Œ0; k� i ��B1;

.m; t1; b2; n; t2; b1/ 7!

�
t2

k� j
C 1;m; n; t1C k� j; b1

�
:

When k D j , we define �H.f /ıH.g/ as

.Mi;k� Œ0; k� i ��B2/�j .Ck�B1/! Œ1; 2��Mi;k� Œ0; k� i ��B1; .m; t; b2; c; b1/ 7! .2;m; t; b1/:

� We define

mL W .Mi;j �B3/�j .Œ0; 2��Mj;k � Œ0; k� j ��B1/! Œ1; 2��Mi;k � Œ0; k� i ��B1 � Yci;k;

.m; b3; z; n; t; b1/ 7!
�
1
2
zC 1; .m; n/; t C j � i; b1

�
:
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� We define

mR W .Œ0; 2��Mi;j � Œ0; j � i ��B1/�j .Mj;k �B1/! Œ0; 1��Mi;k � Œ0; k� i ��B1 � Yci;k;

.z;m; t; b; n; b/ 7!
�
1
2
z; .m; n/; t; b

�
:

Proposition 7.12 Y c in Definition 7.11 is an oriented flow homotopy from H.f / ıH.g/ to H.f ıg/ ıI.

Proof The proof is analogous to the proof of Definition/Lemma 3.23.

Proof of Theorem 7.1 This follows by Definition/Proposition 7.2 and Propositions 7.7, 7.10 and 7.12.

Remark 7.13 There is a generalization of the construction above. Let B1
f
 � B

g
�! B2 be maps

between closed oriented manifolds. Then there is a flow morphism H from C � B2 to C � B1 with
Hi;j WDMi;j � Œ0; j � i ��B , where the source and target map are induced by g and f . The homotopy
type of the induced cochain map is determined by the oriented bordism group ��SO.B1; B2/, which is
defined as follows: an element in �nSO.B1; B2/ is represented by a closed oriented n–manifold M and
two maps f and g from M to B1 and B2. The triples .M; f; g/ and .N; f 0; g0/ are equivalent if and
only if there is an oriented bordism D from M to N and two maps F and G from D to B1 and B2
extending f , g, f 0 and g0.

7.2 Equivariant cohomology

The functor C� is not very interesting, because it is quite independent of the flow category C. However, if
C has a compact Lie group G acting on it, then the Borel construction, which is just a product modulo the
G–action, merges some information of C into the “homotopy quotient”. Thus nontrivial phenomena may
arise from this construction. The first step towards the Borel construction is to upgrade Theorem 7.1:

Theorem 7.14 Let the compact Lie group G act on C in an orientation-preserving way (Definition 7.15).
Then there is a contravariant functor

C�G W K.PrinG/! K.Ch/;

where K.PrinG/ is the category whose objects are closed oriented principal G–bundles and morphisms
are G–equivariant homotopy classes of G–equivariant maps.

The classifying space EG ! BG can be approximated by a sequence of closed oriented G–bundles
En!Bn such that � � � �En�EnC1� � � � . Note that EG!BG can be understood as the “G–equivariant
homotopy colimit” of the diagram � � � � En � EnC1 � � � � . The classical Borel construction of the
equivariant cohomology [38] suggests that the equivariant cochain complex of a flow category should
be the composition of a homotopy limit and the functor C�G to the diagram � � � � En � EnC1 � � � � .
We will construct this theory in this subsection. In particular, we will show that such a construction is
independent of the approximation fEn! Bng.
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7.2.1 The functor C�G

Definition 7.15 A G–action on an oriented flow category C consists of left G–actions on Ci and Mi;j

such that the source, target and multiplication maps are G–equivariant. We say the G–action preserves
the orientation if the G–actions on Ci and Mi;j preserve the orientations.

Let E! B be an oriented G–bundle. Assume G acts on C in a orientation-preserving manner. Then G
acts from the right on Ci �E and Mi;j �E by .x; e/ �gD .g�1 � c; e �g/. Let Ci �G E and Mi;j �G E

denote quotients of the respective G–actions. If we orient B , Ci �G E and Mi;j �G E by ŒB�ŒG�D ŒE�,
ŒCi �GE�ŒG�D ŒCi �ŒE� and ŒMi;j �GE�ŒG�D .�1/

dimB ŒMi;j �ŒE�, then Definition/Proposition 7.2 can
be generalized to the following statement by an analogous proof:

Proposition 7.16 If G acts on the oriented flow category C and preserves orientation , then C �G E D
fCi �G E;Mi;j �G Eg is an oriented flow category.

Moreover, Propositions 7.7, 7.10 and 7.12 can be generalized to the equivariant settings:

Proposition 7.17 Assume G acts on the oriented flow category C and preserves the orientation. Let
E1! B2 and E2! B2 be two oriented G–principal bundles.

(1) Let f be a smooth G–equivariant map E1!E2. Then there is an oriented flow morphism HG.f /

from C �G E2 to C �G E1.

(2) Let g be another G–equivariant map E1!E2 and D W Œ0; 1��E1!E2 an equivariant homotopy
between f and g. Then there is an oriented flow homotopy YG.D/ between HG.f / and HG.g/.

(3) Let h W E2! E3 be another equivariant map between two oriented G–principal bundles. Then
there is an oriented flow homotopy Y c

G from HG.h/ ıHG.f / to HG.h ıf / ı I.

Then Theorem 7.14 follows from Propositions 7.16 and 7.17.

7.2.2 Approximations of classifying spaces

Definition 7.18 Let G be a compact Lie group. An approximation of the classifying space EG! BG is
a sequence of oriented principal G–bundles En! Bn such that En �EnC1 equivariantly. Moreover, for
each k 2N, there exists Nk 2N such that for all n�Nk , En is k–connected.

Given an approximation of the classifying space, we can compute the equivariant cohomology for
G–actions:

Theorem 7.19 [38] Let M be a compact manifold with a smooth G–action and En! Bn an approxi-
mation of the classifying space EG! BG. Then

lim
 ��

H�.M �G En/DH
�.M �G EG/DH�G.M/:
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Approximations of the classifying spaces can be constructed as follows. Fix an embedding G � U.m/.
By H.n;m/, we mean the set of m orthogonal vectors in Cn, which is a compact orientable smooth
manifold. U.m/ acts on it with quotient the Grassmannian Gr.n;m/, and fH.n;m/! Gr.n;m/g serves
as a finite-dimensional approximation of the classifying principal bundle EU.m/! BU.m/ as n!1.
Then EG ! BG can be approximated by H.n;m/ ! H.n;m/=G. It was checked in [38] that this
construction is an approximation in the sense of Definition 7.18.

7.2.3 Homotopy limit Since our construction uses an approximation, we need to take a limit in the
end. Consider a directed system of cochain-complexes

� � � ! A3! A2! A1! A0:

Then the limit lim
 ��

Ai is also a cochain complex. However, this limit is not very nice from the homotopy-
theoretic point of view. If we change the maps in the directed system by homotopic maps, then the
homotopy type of lim

 ��
Ai may change. In our setting, the cochain map is constructed only up to homotopy

(Section 3.6), thus we need to apply a better limit called the homotopy limit, whose homotopy type is
invariant under the replacement of homotopic maps. We recall some of the basic definitions and properties
of homotopy limits from [60].

Let Nop be the inverse directed set f� � � ! 2! 1! 0g and fAn; �nm W An! Amg an inverse system of
cochain complexes over this directed set:

� � �
�4
��! A3

�3
��! A2

�2
��! A1

�1
��! A0:

Then there is a map v W
Q
Ai !

Q
Ai such that v.an/D �n.an/ over the basis an 2 An. Then holimAn

is defined to be the homotopy kernel of 1� v, that is, †�1C.1� v/, where C. � / denotes the mapping
cone and † is shifting by 1.26 Then we have a triangle in K.Ch/:

(7-1)

Q
An

1�v
//
Q
An

C1
yy

holimAn

ee

This construction is the infinite telescope construction. Thus it is clear that the homotopy limits of any
final subsets of Nop are homotopic to each other, and changing �i up to homotopy does not affect the
homotopy type of the homotopy limit. There is a commutative diagram in K.Ch/,

(7-2)

holimAn //
Q
An

lim
 ��

An

OO ::

26We assume everything is graded by Z=2 for simplicity. If everything is ungraded, then shifting just means multiplying the
differential by �1. This also enters into the definition of mapping cone in the ungraded case.
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When lim
 ��

1An D 0, ie the Mittag-Leffler condition holds for An, then lim
 ��

An ! holimAn is a quasi-
isomorphism [60, Remark 27]. This is the reason why sometimes we can use the limit instead of homotopy
limit in applications, eg [16]. The long exact sequence from the triangle (7-1) implies we have the short
exact sequence

0! lim
 ��

1H��1.An/!H�.holimAn/! lim
 ��

H�.An/! 0:

7.2.4 Equivariant cochain complexes Now, we are ready to define the equivariant cochain complex of
a flow category with a group action. Pick an approximation E0 � � � � �Ei � � � � of the classifying space
such that Ei is oriented and G preserves the orientation. Then applying the functor C�G to this sequence,
we get an inverse system in K.Ch/,

� � � ! BC.C �G E2/! BC.C �G E1/! BC.C �G E0/:

Definition 7.20 The equivariant cochain complex BCG is defined as holim BC.C �G En/.

Results in Section 3.6 imply that the homotopy type of BCG is independent of the auxiliary defining
data. To get a canonical theory, we still need to check that BCG does not depend on the choice of the
approximation En! Bn.

7.2.5 Independence of approximations With another approximation E 0n ! B 0n of the classifying
space, we claim that we can form a new sequence of approximations containing both E 0n ! B 0n and
En! Bn as final subsets. As preparation, we state two propositions; the first is a simple application of
obstruction theory.

Proposition 7.21 Let Y ! X be a smooth fiber bundle , where the fiber F is k–connected and X is
a k–dimensional manifold. Then there is a cross-section for Y ! X , and any two cross-sections are
homotopic.

By this proposition, [38, Proposition 1.1.1.] can be modified into the following:

Proposition 7.22 Let E ! B be a G–principal bundle , with E k–connected. Then , for any closed
manifold M with dimM � k, the G–principal bundles over M are classified by ŒM;B� (the set of
homotopy classes of maps from M to B).

Therefore by Definition 7.18 and Proposition 7.22, there exists n1 2N such that there is an equivariant
map E1!E 0n1 . Moreover, there exists m1 2N such that there is an equivariant map E 0n1 !Em1 and
the composition E1!E 0n1!Em1 is equivariantly homotopic to E1 �Em1 . We can keep applying this
argument to get a directed system in the equivariant homotopy category of spaces

E1!E 0n1 !Em1 !E 0n2 !Em2 ! � � � ;
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which is also compatible with the two approximations fEmi g and fE 0ni g up to equivariant homotopy.
Then Theorem 7.14 implies that there is a well-defined inverse directed system in the homotopy category
of cochain complexes,

(7-3) � � � ! BC.C �G Em2/! BC.C �G E 0n2/! BC.C �G Em1/! BC.C �G E 0n1/! BC.C �G E1/:

Let H denote the homotopy limit of (7-3). Since both BC.C �G E 0ni / and BC.C �G Emi / are final in the
inverse directed systems above,

holim BC.C �G E 0n/D holim BC.C �G E 0ni /DH D holim BC.C �G Emi /D holim BC.C �G Em/:

Therefore the homotopy type of BCG is independent of the approximation, giving the following theorem:

Theorem 7.23 Let C be an oriented flow category. Assume the compact Lie group G acts on C and pre-
serves the orientation. Then the homotopy type of the equivariant cochain complex BCG in Definition 7.20
is well defined , ie independent of all the choices , particularly the choice of the approximation fEn!Bng.

7.2.6 Spectral sequences From (7-1), the homotopy limit is the shifted mapping cone of 1� v. Thus
the action spectral sequence in Proposition 4.1 on BC.C �G En/ induces a spectral sequence on the
homotopy limit. In particular, we need to apply the following result:

Proposition 7.24 [75, Exercise 5.4.4] Let f W B! C be a map of filtered cochain complexes. For a
fixed integer r � 0, there is a filtration on the mapping cone C.f /, defined by

FpC.f / WD FpCrBnC1˚FpCn:

Then the r th page Er.C.f // of the induced spectral sequence is the mapping cone of the map on the r th

page f r WEr.B/!Er.C /.

Let r D 1. By Proposition 7.24, there is a spectral sequence for BCG induced from the action filtration
on …BCC�GEn . Since Ep1 .…BC.C �G En//D…H�.Cp �G En/ with the differential coming from the
d1 term in (3-15) for each C �G En, again by Proposition 7.24 E1.BCG/ is the (shifted) mapping cone
of the cochain morphism

1� v W
Y
n

lim
��!

q!�1

1Y
pDq

H�.Cp �G En/!
Y
n

lim
��!

q!�1

1Y
pDq

H�.Cp �G En/:

Since lim
 ��

1H�.Cp �G En/D 0, ie the Mittag-Leffler condition holds for inverse system

� � � !H�.Cp �G En/!H�.Cp �G En�1/! � � � ;

the natural map (7-2)

lim
��!

q!�1

1Y
pDq

H�G.Cp/D lim
 ��
n

lim
��!

q!�1

1Y
pDq

H�.Cp �G En/!E1.BCG/

is a quasi-isomorphism. The induced differential dG1 on lim
��!q

Q1
pDqH

�
G.Cp/ is the limit of d1 for C�GEn.

Since d1 comes from the moduli spaces without boundary (the pullback and pushforward on cohomology),
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dG1 is t�ıs� WH�G.Cp/!H�G.CpC1/ up to sign (the pullback and pushforward on equivariant cohomology).
The polyfold theoretic version of dG1 is the analog of the equivariant fundamental class in [77].

Corollary 7.25 There is a spectral sequence for BCG such that

E
p
2 .BCG/'H�

�
lim
��!

q!�1

1Y
pDq

H�G.Cp/; d
G
1

�
:

8 A basic example: finite-dimensional Morse–Bott cohomology

The aim of this section is to construct a flow category for the finite-dimensional Morse–Bott theory. The
existence of such a flow category is a folklore theorem, stated in various places, eg [3; 33]. The Morse
version of the flow category was introduced in [19], and [74] provided a detailed construction for the
flow category of a Morse function for metrics which are standard near critical points. In this section, we
prove that there is a flow category for any Morse–Bott function if we choose a suitable metric. The local
analysis in our case is just a family version of the analysis in [74].

In the Morse case, [2, Section 3.4] provides an argument to reduce constructions of continuation maps
and homotopies to counting gradient flow lines on some larger manifolds. Similarly, we can construct the
flow morphisms and flow homotopies by looking at flow categories arising from some larger manifolds
with suitable Morse–Bott functions. With all of these established, just like the Morse case, we can prove
that the cohomology of the flow category is independent of the Morse–Bott function. The main theorem
of this chapter is the following:

Theorem 8.1 Let f be a Morse–Bott function on a closed manifold M . Then there exists a metric g
such that the compactified moduli spaces of (unparametrized ) gradient flow lines form a flow category
with an orientation structure. The cohomology of the flow category is independent of the Morse–Bott
function and is equal to the regular cohomology H�.M;R/.

Let f be a Morse–Bott function on M throughout this section, and let the critical manifolds C1; : : : ; Cn
be such that f .Ci / < f .Cj / if and only if i < j . We can fix a real number ı > 0 such that ı is strictly
smaller than the absolute values of the nonzero eigenvalues of Hess.f / over all critical manifolds Ci .

8.1 The Fredholm property for the finite-dimensional Morse–Bott theory

Like the Morse case, the moduli spaces of parametrized gradient flow lines from Ci to Cj is a zero set of
a Fredholm operator over some Banach space Bi;j . The construction of Bi;j was included in the appendix
of [32] as part of the Banach manifolds of the cascades construction; we review the construction briefly.
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First we fix an auxiliary metric g0 on M . Let  be a smooth curve defined over R such that

lim
t!�1

.t/D x 2 Ci ; lim
t!C1

.t/D y 2 Cj ;(8-1) ˇ̌̌
d
dt

ˇ̌̌
g0
< Ce�ıjt j for jt j � 0 and some constant C:(8-2)

Let P.Ci ; Cj / be the space of continuous paths defined over R connecting Ci and Cj . The Banach
manifold Bi;j will be a subspace of P.Ci ; Cj /. We will first describe the neighborhood of  in Bi;j . For
this purpose:

(1) Fix a smooth function � WR!R such that �.t/D jt j for jt j� 0. Then we can define the weighted
Sobolev space Hk

ı
.R; �TM/ with norm jf jHk

ı
WD jeı�.t/f jHk , for k � 1.

(2) Fix local charts of M near x and y such that Ci near x is a radius-r ball in the x1; : : : ; xci
coordinates, and Cj near y is a radius-r ball in the y1; : : : ; ycj coordinates.

(3) �˙.t/ are smooth functions which are 1 near ˙1 and 0 near �1 such that (8-3) makes sense
using the local charts above.

There exists a positive number K such that when f 2 Hk
ı
.R; �TM/ with jf jHk

ı
< K, we have that

jf j is pointwise smaller than the injective radius of the metric g0. Let exp denote the exponential map
associated to the metric g0. Then there is a map

(8-3)

BK.H
k
ı .R; 

�TM//�Br.Rci /�Br.Rcj /! P.Ci ; Cj /;

.f; x1; : : : ; xc1 ; y1; : : : ; ycj / 7! exp f C
ciX
1

��xi C

cjX
1

�Cyi :

Bi;j consists of images of all such maps in P.Ci ; Cj / for all curves  satisfying (8-1) and (8-2). Let
Ei;j ! Bi;j be the vector bundle, where the fiber over  2 Bi;j is Hk�1

ı
.R; �TM/.

Proposition 8.2 [32] Bi;j is a Banach manifold and Ei;j ! Bi;j is a Banach bundle.

Since the evaluation maps Bi;j!Ci�Cj are submersions for all i <j , the fiber products Bi;j�j � � ��kBk;l
are Banach manifolds. Moreover, Ei0;i1 �i1 � � � �ik�1 Eik�1;ik ! Bi0;i1 �i1 � � � �ik�1 Bik�1;ik are Banach
bundles for all i0 < i1 < � � �< ik . Given a metric g, then there is a section si;j W Bi;j ! Ei;j defined by
s./D  0�rgf ./.

Proposition 8.3 [32] The section si;j is a Fredholm operator with index dj�diCciCcj , where di is the
dimension of the negative eigenspace of Hess.f / on Ci (di is the grading structure for our flow category).

Proposition 8.4 For a generic metric g, si;j is transverse to 0 and , for all i0 < � � �< ik , the fiber products
s�1i0;i1.0/�i1 � � � �ik�1 s

�1
ik�1;ik

.0/ are cut out transversely.

Proof The proof follows from a standard Sard–Smale argument by considering the universal moduli
space of all metrics. The result for the fiber products follows from applying the Sard–Smale argument to
si0;i1 �i1 � � � �ik�1 sik�1;ik W Bi0;i1 �i1 � � � �ik�1 Bik�1;ik ! Ei0;i1 �i1 � � � �ik�1 Eik�1;ik .
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We call such a pair .f; g/ a Morse–Bott–Smale pair (this is weaker than the Morse–Bott–Smale condition
in Remark 2.17). Let Mi;j denote s�1i;j .0/=R. Then Mi;j WD

S
i<i1<���<ik<j

Mi;i1 �i1 � � � �ik Mik ;j can
be made into a compact topological space. The topology on this space is completely analogous to the
Gromov–Floer topology on the set of broken flow lines in the Morse case; see [2; 74] for details.

8.2 Flow categories of Morse–Bott functions

The main theorem of this section is that we can put smooth structures on Mi;j such that the following holds:

Theorem 8.5 The set fCi ;Mi;j g is a flow category with an orientation structure.

To prove this theorem, we need to equip Mi;j with a smooth structure with boundaries and corners. One
strategy is using a gluing map [69], which can be generalized to Floer theories. This method requires
certain compatibility between gluing maps to guarantee a smooth structure.27 In the context of Lagrangian
Floer theory, such a construction was carried out in [6]. Another method is finding an (M–)polyfold
description of the moduli spaces. Then the manifold structures with boundaries and corners come from
those of the ambient (M–)polyfolds; see [24; 44]. In this section, we will adopt a more elementary
method from [2; 19; 74], so that the smooth structure on the moduli spaces is inherited from some
ambient manifolds.

Lemma 8.6 [61] Let Ci be a critical manifold of the Morse–Bott function f . Then there is a tubular
neighborhood of Ci inM diffeomorphic to the normal bundle N of Ci . Moreover , N can be decomposed
into stable and unstable bundles N s and N u, and there are metrics gs and gu on N s and N u such that
f .v/jN D f .Ci /� jv

sj2gs Cjv
uj2gu , where v 2N , and vs and vu are the stable and unstable components

of v.

If we fix a connection on N , then gs and gu can be understood as bilinear forms on TN. Let gCi be a
metric on Ci . If a metric g near Ci has the form ��gCi Cg

sCgu, where � is the projection N ! Ci ,
we say the metric g is standard near Ci . In fact, we can require the Morse–Bott–Smale pair to have
standard metric near all critical manifolds, as we can obtain transversality by perturbing the metric away
from critical manifolds. For a standard metric, the gradient vector in N is contained in the fibers of the
tubular neighborhood. Therefore the local picture of the gradient flow is just a family of the Morse flow
lines in each fiber. When restricted to a fiber F with coordinate x1; : : : ; xs; y1; : : : ; yu, the pair .f; g/ is
standard and is in the form

f jF D�x
2
1 � � � � � x

2
s Cy

2
1 C � � �Cy

2
uCC;

gjF D dx1˝ dx1C � � �C dxs˝ dx2C dy1˝ dy1C � � �C dyu˝ dyu:

Inside the fiber F , we define

Srs WD f.x1; : : : ; xs/ j x
2
1 C � � �C x

2
s D r

2
g; Sru WD f.y1; : : : ; yu/ j y

2
1 C � � �Cy

2
u D r

2
g;

Drs WD f.x1; : : : ; xs/ j x
2
1 C � � �C x

2
s < r

2
g; Dru WD f.y1; : : : ; yu/ j y

2
1 C � � �Cy

2
u < r

2
g:

27One condition that guarantees compatibility is the so-called “associative gluing” [74].

Algebraic & Geometric Topology, Volume 24 (2024)



Morse–Bott cohomology from homological perturbation theory 1407

Let M be the moduli space of gradient flow lines and broken gradient flow lines of .f jF ; gjF / from
Srs �D

r
u to Drs �S

r
u . Let ev� and evC be the two evaluation maps at the two ends defined on M. Then

the following lemma is essentially contained in [74]:

Lemma 8.7 The image im.ev� � evC/.M/� .Srs �D
r
u/� .D

r
s �S

r
u/ is a submanifold with boundary

inside the fiber F .

Proof The gradient flow lines are .e�2tx; e2ty/, and thus the images of unbroken flow lines are
.x; y; .jyj=r/x; .r=jyj/y/, which is a submanifold in .Srs �D

r
u/� .D

r
s �S

r
u/. The images of broken flow

lines are .x; 0; 0; y/, which is also a submanifold in .Srs �D
r
u/� .D

r
s �S

r
u/. The boundary chart is given

by .t; x; 0; 0; y/! .x; ty; tx; y/ for t 2 Œ0; 1/; thus the lemma is proven.

Remark 8.8 Lemma 4.4 of [74] composes the map ev� � evC with the projection .x; y0; x0; y/ !
..jxj0C jy0j/=.2r/; x; y/ to get a homeomorphism from M to Œ0; 1/� Srs � S

r
u. This was used in [74]

to construct a smooth structure with boundaries and corners on M. Since the projection restricted to
im.ev� � evC/.M/ is a diffeomorphism, we can also use the smooth structure on im.ev� � evC/.M/ to
make M into a manifold with boundaries and corners.

Since Srs �D
r
u andDrs�S

r
u are transverse to the gradient flow, Lemma 8.7 also holds if we replace Srs �D

r
u

and Drs �S
r
u by open sets in f j�1F .C ��/ and f j�1F .C C�/. Now we return to the Morse–Bott case with

a standard metric near Ci . Let �t be the flow for rf . Then the stable manifold Si of Ci is defined to be

Si D
˚
x 2M j lim

t!1
�t .x/ 2 Ci

	
;

and the unstable manifold Ui is defined to be

Ui D
˚
x 2M j lim

t!�1
�t .x/ 2 Ci

	
:

Both Si and Ui are equipped with smooth evaluation maps to Ci . Then we have the family version of
Lemma 8.7 as follows:

Lemma 8.9 Given a standard metric near Ci , let Nr be the radius-r open tube of Ci . Suppose � is a
small positive real number , and v˙�i denotes f .Ci /˙ �. Let Mi;�;r denote the moduli space of flow lines
and broken flow lines from f �1.v��i /\Nr to f �1.vC�i /\Nr . Then there exist �; r > 0 such that the
image of ev�� evCjMi;�;r

is a submanifold with boundary in .f �1.v��i /\Nr/� .f
�1.vC�i /\Nr/, and

the boundary is .Si \f �1.v��i //�Ci .Ui \f
�1.vC�i //.

Proposition 8.10 Mi;j �j Mj;k [Mi;k can be given the structure of a manifold with boundary.

Proof Since we have diffeomorphisms

Mi;j ' Ui \Sj \f
�1.v��j / and Mj;k ' Uj \Sk \f

�1.vC�j /;
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the Morse–Bott–Smale condition implies that the intersections are transverse. On the other hand, let
Mi;k \Mj;�;r be the set of flow lines in Mi;k which contains a flow line in Mj;�;r . Then it is an open
set of Mi;k , and we have the embedding

ev� � evC WMi;k \Mj;�;r ! .f �1.v��j /\Nr/� .f
�1.vC�j /\Nr/:

The image is

im.ev� � evC/.Mi;k \Mj;�;r/D im.ev� � evC/.@0Mj;�;r/\
�
.Ui \f

�1.v��j //� .Sk \f
�1.vC�j //

�
;

where @0Mj;�;r is the interior (depth-0 boundary, Definition 2.1) of Mj;�;r . The Morse–Bott–Smale
condition implies that the intersection is transverse. Moreover, since the fiber product Mi;j �j Mj;k

is transverse, @ im.ev� � evC/.Mj;�;r/D .Sj \ f
�1.v��j //�Cj .Uj \ f

�1.vC�j // is also transverse to
.Ui \ f

�1.v��j //� .Sk \ f
�1.vC�j //. Thus im.ev� � evC/.Mi;k \Mj;�;r/ can be completed by the

boundary structure of im.ev� � evC/.Mj;�;r/. That is, we can add in

.Ui \Sj \f
�1.v��j //�Cj .Sk \Uj \f

�1.vC�j //'Mi;j �j Mj;k

as the boundary of Mi;k \Mj;�;r . The topology check is analogous to [74].

Therefore we have a smooth boundary structure on Mi;j �j Mj;k �Mi;k . We still need to construct
corner structures near curves with multiple breaking and prove the compatibility of smooth structures.
The proof is very similar, and the corner structure will be inherited from (fiber) products of the manifolds
with boundary in Lemma 8.9.

Proposition 8.11 Mi;j �jMj;k�kMk;l[Mi;k�kMk;l[Mi;j �jMj;l[Mi;l can be given the structure
of manifold with boundaries and corners , which is compatible with structure given in Proposition 8.10.

Proof Let N�;r denote the radius-r open tube around C�. We use Mj;k;�;r to denote the moduli space
of gradient flow lines from f �1.v��j /\Nj;r to f �1.vC�

k
/\Nk;r , passing through f �1.vC�j /\Nj;r

and f �1.v��
k
/\Nk;r , such that the only breaking allowed is at Cj or Ck , or both. Then ev�;C;�;C WD

ev� � evC � ev� � evC defines an embedding

Mj;k;�;r ! .f �1.v��j /\Nj;r/� .f
�1.vC�j /\Nj;r/� .f

�1.v��k /\Nk;r/� .f
�1.vC�

k
/\Nk;r/:

We define V � f �1.vC�j /\Nj;r ; U � f
�1.v��

k
/\Nk;r be the sets such that the flow lines from V

will end in U without breaking. Then V and U are both open subsets and there is a diffeomorphism
� W V ! U defined using the gradient flow, and so im.ev�;C;�;C/ is contained inside the fiber product
.f �1.v��j /\Nj;r/� V �� U � .f

�1.vC�
k
/\Nk;r/. By a little abuse of notation, we use V \Mj;�;r

to denote ev�1
C
.V / � Mj;�;r and U \Mk;�;r to denote ev�1� .U / � Mk;�;r , which are both open

subsets and inherit the structure of a manifold with boundary from Lemma 8.9. Then im.ev�;C;�;C/D
ev�;C.V \Mj;�;r/ �� ev�;C.U \Mk;�;r/. The Morse–Bott–Smale condition implies that the fiber
product ev�;C.V \Mj;�;r/�� ev�;C.U \Mk;�;r/ is cut out transversely as a manifold with boundaries
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and corners. Therefore Mj;k;�;r inherits the structure of a manifold with corners from its image under
im ev�;C;�;C, whose depth-1 boundary is

.ev�;C.V \ @1Mj;�;r/�� ev�;C.U \ @0Mk;�;r//[ .ev�;C.V \ @0Mj;�;r/�� ev�;C.U \ @1Mk;�;r//;

and depth-2 boundary (corner) is ev�;C.V \ @1Mj;�;r/�� ev�;C.U \ @1Mk;�;r/.

We defineMi;l\Mj;k;�;r to be the open subset ofMi;l consisting of flow lines with a portion in Mj;k;�;r .
Similar to the proof of Proposition 8.10, we can use the boundary and corner structures on Mj;k;�;r to give
a corner structure nearMi;l\Mj;k;�;r by intersecting the unstable and stable manifolds of Ci and Cl with
im.ev�;C;�C/ inside .f �1.v��j /\Nj;r/�.f

�1.vC�j /\Nj;r/�.f
�1.v��

k
/\Nk;r/�.f

�1.vC�
k
/\Nk;r/.

More explicitly, we get a corner structure nearMi;j�jMj;k�kMk;l , which also gives a boundary structure
near Mi;j �j .Mj;l \ .U \ @0Mk;�;r// and .Mi;k \ .V \ @0Mj;�;r//�kMk;l . Moreover, the boundary
structure is exactly the one constructed in Proposition 8.10. This finishes the proof.

Proof of Theorem 8.5 Following the same proof as that of Proposition 8.11, we can prove that Mi;j is
endowed with the structure of compact manifold with boundaries and corners. Let oi be the determinant
line bundle of the stable bundle N s over Ci . Then fCi ;Mi;j g defines a flow category Cf;g with an
orientation structure following the construction in Section 5.1.2.

8.3 Morphisms and homotopies

To derive the flow morphisms between different Morse–Bott functions and flow homotopies between them,
we will use the argument from [2] to reduce the construction of flow morphisms and flow homotopies
back to flow categories.

8.3.1 Flow morphisms [2, Theorem 3.4.2, first step] Let .f1; g1/ and .f2; g2/ be two locally standard
Morse–Bott–Smale pairs, and let C1 D fC 1i ;M

1
i;j g and C2 D fC 2i ;M

2
i;j g denote the associated flow

categories. We can find a smooth function F WR�M !R such that

F.t; x/D

�
f1.x/ if t < 1

3
;

f2.x/ if t > 2
3
:

We consider a Morse function h on R that only has two critical points: one local minimum at 0 and one
local maximum at 1. Also, h satisfies

@F

@t
C
dh

dt
> 0 for all x 2M and t 2 .0; 1/:

Then F Ch defines a Morse–Bott function on R�M with critical manifolds fC 1i �f0gg and fC 2i �f1gg.
We can find a locally standard metric G such that

G.t; x/D

�
g1C dt ˝ dt if t < 1

3
;

g2C dt ˝ dt if t > 2
3
:

We can assume .F;G/ is a locally standard Morse–Bott–Smale pair. Then by Theorem 8.5, we can
associate to .FCh;G/ a flow category with an orientation structure. Let Fi;j dquadenote the compactified
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moduli space of flow lines from C 1i �f0g to C 2j �f1g. Then Fi;j forms a flow morphism F from C1 to C2.
When F.t; x/D f .x/, we can choose metric gCdt2. Then Fi;i DCi and Fi;j 'Mi;j � Œ0; j � i �' Ii;j

for i < j , that is, the construction gives the identity flow morphism [2, Theorem 3.4.2. second step].

8.3.2 Flow homotopies [2, Theorem 3.4.2, third step] Assume we have continuations F , G and H
from f1 to f2, f2 to f3 and f1 to f3, respectively. Then we can find K WRs �Rt �M !R such that

K.s; t; x/D

8̂̂̂<̂
ˆ̂:
H.t; x/ if s < 1

3
;

F .s; x/ if t < 1
3
;

G.t; x/ if s > 2
3
;

f3.x/ if t > 2
3
:

We can find h with one local minimum at 0 and local maximum at 1 such that
@K

@s
Ch0.s/ > 0 8.s; t; x/ 2 .0; 1/�R�M and @K

@t
Ch0.t/ > 0 8.s; t; x/ 2R� .0; 1/�M:

ThenKCh.s/Ch.t/ defines a Morse–Bott function, with critical manifolds fC 1i �f.0; 0/gg, fC
2
i �f.1; 0/gg,

fC 3i �f.0; 1/gg and fC 3i �f.1; 1/gg, and we can find a locally standard Morse–Bott–Smale metric extending
the locally standard metrics used in F ,G,H and f3. Then the flow lines fromC 1i �f.0; 0/g toC 3j �f.1; 1/g
give rise to a flow homotopy between G ıF and I ıH.

Proof of Theorem 8.1 By Theorem 8.5, we have a flow category Cf;g with an orientation structure for
any locally standard Morse–Bott–Smale pair .f; g/. Using the flow morphisms and flow homotopies
above, we can see that the cohomology of Cf;g does not depend on .f; g/. Thus we can let f � C , and g
be any metric. Then .f; g/ is a locally standard Morse–Bott–Smale pair. The object space and morphism
space of the corresponding flow category are both M ; thus the cohomology of the flow category equals
the cohomology H�.M;R/.

A Morse–Smale pair is a special case of a Morse–Bott–Smale pair, and our definition of the minimal
Morse–Bott cochain complex recovers the Morse cochain complex when the function is Morse. As a
corollary, the R coefficient Morse cohomology equals the de Rham cohomology of M .

8.4 Noncompact case

LetM be a noncompact manifold of finite type, as introduced in Definition 6.1, throughout this subsection.
That is, M is the set of interior points of a compact manifold with nonempty boundary. Let @r be a
nonzero outward-pointing vector field on the collar neighborhood of the end of M . In the following, we
will only consider two types of Morse–Bott functions:

(1) Morse–Bott functions f such that @rf > 0 on the collar,

(2) constant functions.

In (1), we have a flow category Cf by Theorem 8.5. In (2), the flow category is a single space M , which
is a proper flow category. Next we will show how to associate a flow morphism between flow categories
from different Morse–Bott functions and flow homotopy between them. Once they are set up like the
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compact case, we have that the cohomology of the flow category is independent of the Morse–Bott
function. In particular, one can choose a constant, and hence the cohomology is the regular cohomology.

8.4.1 Flow morphisms and homotopies Given two admissible Morse–Bott functions f1 and f2 on M ,
the homotopy between them is a smooth function F WR�M !R such that

F.t; x/D

�
f1.x/ if t < 1

3
;

f2.x/ if t > 2
3
;

and when t 2
�
1
3
; 2
3

�
, we have @rF.t; x/ > 0 on the collar. Then hCF defines a Morse–Bott function

on R�M , and we claim that the associated flow category defines a proper flow morphism from Cf1
to Cf2 . We may assume the metric on R�M has the property that the gradient for the collar coordinate
r 2 .�1; 0/ is @r on the collar. Then @rF.t; x/� 0 for all t implies that @rF.t; x/D @r.hCF.t; x//D
hrr;r.hCF.t; x//i � 0. Therefore any gradient flow line from a critical point of f1 to a critical point
f2 has the property that if it touches the collar then it stays in the collar after the touching point. In
addition to the argument in Section 8.3, we need to show the properness of the target maps in order to
prove the claim. We divide it into the following cases.

(i) Both f1 and f2 are of type (1) Any gradient flow line that touches the collar neighborhood cannot
return to the interior side. Hence the construction in Section 8.3 gives compact moduli spaces and a flow
morphism from Cf1 to Cf2 .

(ii) f1 is of type (2) and f2 is of type (1) The same argument as in case (i) holds.

(iii) f1 is of type (1) and f2 is of type (2) Let K �M D Crit.f2/ be a compact subset. For points
outside the collar, we define r D �1. Let R WD maxfr.x/ j x 2 Kg. Then R < 0 and all gradient flow
lines from critical points of f1 to a point in K stay inside the domain Œ0; 1�� fr � Rg, and hence the
space of such flow lines is compact. This shows that the target maps are proper.

(iv) Both f1 and f2 are of type (2) The same argument as in case (iii) holds.

Remark 8.12 If we replace the condition on the collar by @rF.t; x/ < 0, this would force f1 and f2 to
have the property that @rf1; @rf2<0 if they are not constant. In this case, the gradient flow lines in R�M

will shrink on the collar neighborhood instead of expanding, and hence the source map is proper and the
target map is not. We can similarly define a cochain complex using the compactly supported cohomology
in this case. The cohomology of the cochain complex is the compactly supported cohomology, which is
isomorphic to the homology.

The asymmetry of the flow morphism prevents us from constructing a flow morphism from Cf to Cf .
Assume f > 0 without loss of generality. There exists a flow morphism from Cf to C2f constructed from
F.t; x/D �.t/f .x/, where �.t/ is an increasing function with �.t/D 1 for t � 0 and �.t/D 2 for t � 1.
The flow morphism is diffeomorphic to the identity flow morphism when we use the metric gCdt2. The
flow homotopy follows from the same argument as if we require the increasing property on the collar
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when constructing the homotopy of homotopy. Therefore we have the invariance of the cohomology with
respect to the Morse–Bott function:

Theorem 8.13 If M is a noncompact manifold of finite type and f is a Morse–Bott function of type (1)
or (2), then the flow category Cf is proper and has a local system such that the cohomology is H�.M IR/.

8.4.2 The Gysin exact sequence Let M be an n–dimensional manifold of finite type. Assume f is
a Morse–Bott function on M and, when M is noncompact, f is one of the two admissible types (1)
or (2). Let g be a metric such that .f; g/ is a locally standard Morse–Bott–Smale pair. Then we have
a (proper) flow category Cf D fCi ;Mi;j g. Let � W E!M be a oriented k–sphere bundle. Then ��f
is a Morse–Bott function on E with critical manifolds f��1.Ci /g. We pick a metric gF on the fibers
of E, (a metric only defined on the subbundle of fiber directions T vE of TE). Fix a connection of
TED T vE˚T hE. Then gF can be understood as a semipositive bilinear form on TE vanishing on T hE,
and gF C��g is a metric on E. It can be verified directly that a gradient flow line Q of .��f; gF C��g/
is a parallel lift of a gradient flow line  of .f; g/. Hence .��f; gF C��g/ is again a Morse–Bott–Smale
pair, and the induced flow category C��f is given by

Obj.C��f /D fEi WD ��1.Ci /g and Mor.C��f /D fME
i;j D s

�
i;jEig:

The source map is the natural map and the target map is given by the parallel transportation along flow
lines in Mi;j . As a consequence, we have an oriented k–sphere bundle C��f ! Cf . The flow morphisms
and flow homotopies defined in the previous discussions can be lifted to the sphere bundle level by the
same parallel transportation construction. Therefore the induced Gysin exact sequence is independent
of the function f . In particular, one may choose f to be constant, and hence the Gysin exact sequence
will become the usual Gysin exact sequence by Proposition 6.24. Therefore we have the following
isomorphism of long exact sequences:

Theorem 8.14 Let M be an n–dimensional manifold of finite type and � WE!M a k–sphere bundle.
Suppose f is an admissible Morse–Bott function on M . Then we have the following isomorphic long
exact sequences:

� � � // H i .Cf / //

��

H i .C��f / //

��

H i�k.Cf / //

��

H iC1.Cf / //

��

� � �

� � � // H i .M/
��

// H i .E/
��

// H i�kM
^.�1/dimCC1e

// H iC1.M/ // � � �

9 Transversality by polyfold theory

With the theory on flow categories developed in the previous sections, we now want to get flow categories
in applications, ie we need to solve the transversality problems. For this purpose, we will adopt the
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polyfold theory developed by Hofer, Wysocki and Zehnder [40; 42; 43; 41; 44]. This section outlines
some ideas on combining our construction with polyfold theory; details will appear in a future work.

9.1 Polyflow categories

The main result of Section 3 is that, for any oriented flow category, we can construct a well-defined cochain
complex up to homotopy. If we want to write down a representative cochain complex of the homotopy
class, we need to fix defining data ‚. In applications, take Hamiltonian Floer cohomology as an example,
the flow category consists of the zero sets of some sc–Fredholm sections over a family of polyfolds [73].
A natural idea is that we replace every manifold Mi;j in the flow category by strong polyfold bundle
Wi;j !Zi;j with an sc–Fredholm section �i;j such that all Wi;j !Zi;j ; �i;j are organized just like a
flow category. When all �i;j are transverse to 0, then ��1i;j .0/ defines a flow category. In this case, we
expect to assign a well-defined cochain complex to such a system of polyfolds up to homotopy. When we
need to write down an explicit representative cochain complex for the homotopy class, we need to fix a
family of perturbations that are compatible with category structure and defining data (on Ci ), which does
not depend on the perturbation. We first give a preliminary definition of such a system:

Definition 9.1 A polyflow category is a small category Z with following properties:

(1) The object space Obj.Z/ D C WD
F
i2Z Ci is the disjoint union of manifolds Ci such that each

connected component of Ci is a manifold of finite type (Definition 6.1).

(2) The morphism space Mor.Z/ D Z is a polyfold. The source and target maps s; t W Z ! C are
sc–smooth. Let Zi;j denote .s � t /�1.Ci �Cj /.

(3) Zi;i ' Ci (the identity morphisms), Zi;j D∅ for j < i , and Zi;j is a polyfold for j > i .

(4) The fiber productZi0;i1�i1Zi1;i2�i2 � � ��ik�1Zik�1;ik is cut transversely, for all increasing sequences
i0 < i1 < � � �< ik .

(5) The composition m WZi;j �j Zj;k!Zi;k is an sc–smooth injective map into the boundary of Zi;k .
Moreover, @Zj;kD

S
i<j<k m.Zi;j �jZj;k/ and d.x/Cd.y/C1Dd.m.x; y// for .x; y/2Zi;j �jZj;k ,

where d is the degeneracy index [44, Definition 2.4.1]. When restricted to any stratum of fixed degeneracy
index, m is a local sc–diffeomorphism to a stratum with a fixed degeneracy index.

(6) There are strong polyfold bundles Wi;j !Zi;j and sc–Fredholm sections �i;j such that both bundles
and sections are compatible with m, ie m�Wi;kjZi;j�jZj;k D Wi;j � Wj;k and �i;kjm.Zi;j�jZj;k/ D
m.si;j ; sj;k/.

(7) ��1i;j .0/\ t
�1
i;j .K/ is compact for every compact set K \Cj .

Remark 9.2 (i) Condition (4) can be replaced by the more convenient condition that the .s � t /jZi;j
are submersions. Then (4) follows from [25].
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(ii) The index ind si;j plays the role ofmi;j . Orientation structures defined in Section 5 can be generalized
to polyflow categories such that orientation structures are enough to give coherent orientations or local
systems on flow categories from perturbations in Claim 9.3.

(iii) Condition (5) is stronger than Definition 2.9(4). When we define operators from a flow category, we
use integration and Stokes’ theorem. Hence an almost identification on the boundary is enough. However,
in the polyflow category, we need to perturb Zi;j inductively in a coherent way, which requires a finer
identification of all the boundary and corner structures.

When all sections �i;j are transverse to 0, the zero sets form a proper flow category. Hence our goal
is to find a family of scC–perturbations �i;j such that si;j C �i;j is transverse in general position and
consistent with the composition m. The consistency depends on the combinatorics of the problem in
general. In the case of polyflow categories, the combinatorics are relatively simple and we expect to have
a perturbation scheme.

Claim 9.3 There exist coherent perturbations �i;j such that �i;j C �i;j is transverse to 0 and in general
position [44, Definition 5.3.9].

Remark 9.4 The claim does not hold when there are inner symmetries that we want to preserve. To be
more precise, assume we have a strong polyfold bundle W !Z with two submersive evaluation maps
s; t WZ! C . Let � WZ!W be a Fredholm section. When dimC > 0, given any transverse perturbation
� WZ!W , it is not necessarily true that .�; �/ is a transverse perturbation to .�; �/ on the fiber product
Zt �s Z. In fact, it is possible that there is no transverse perturbation to .�; �/ on Zt �s Z in the form of
.�; �/ for a perturbation � WZ!W . Such phenomena can appear in a polyflow category, eg we may have
Ci D Cj D Ck , Wi;j DWj;k and �i;j D �j;k . If we require �i;j D �j;k , then we run into this problem. In
applications, for example Hamiltonian Floer cohomology, we see this when the Novikov coefficient has to
be used. The requirement of symmetry in perturbations guarantees the cochain complex is a module over
the Novikov field. In the S1–Morse theory case, this also causes problems (self-gluing) in the homotopy
argument. The homotopy argument can be viewed as a Morse–Bott problem with critical manifolds
copies of R. In these two explicit examples, special methods can be adopted to overcome the challenge.
In the most general case, under certain assumptions28 of the polyflow category, we can actually perturb
the source and target maps consistently to destroy all the inner symmetries. We will discuss this in detail
in our future work.

Although the polyfold perturbation only produces weighted branched suborbifolds as the transverse zero
sets, it causes no problem, since the convergence results (Lemmas 3.7 and 3.14), are local in nature.
The only thing we need about Mi;j is Stokes’ theorem, which was proven in [43]. Thus all the proofs

28Basically, we require a collar neighborhood near the boundaries and corners of polyfolds. Such assumptions are satisfied in all
known examples.
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in Section 3 apply to the weighted branched suborbifold case. Similar to Definition 9.1, we can define
polyflow morphisms and polyflow homotopies by replacing the manifolds by polyfolds with sc–Fredholm
sections. Once the perturbation scheme is given for those structures, we can generate flow morphisms
and flow homotopies.

Remark 9.5 To generalize the identity flow category (Definition/Lemma 3.23) to the polyfold case, the
naive construction of multiplying by an interval does not work, because the product with an interval does
not have the right boundary and corner structures to apply an inductive perturbation scheme. However,
there is a more natural construction of the identity (poly)flow category which has the right boundary and
corner structures. The construction is closely related to the geometric realization of the category, which
will be discussed in a future work.

The enrichment to polyflow categories causes more choices, ie the choice of perturbation. We would like
to have the cohomology independent of the perturbation. Such invariance can be proven using the identity
polyflow category or a homotopy argument.

Claim 9.6 Let Z be a polyflow category with orientation structures. If there is no inner symmetry ,29

then we can associate it with a Morse–Bott cochain complex .BC.Z/; dBC/ such that the homotopy type
of the cochain complex is independent of defining data and scC–perturbations.

9.2 Equivariant theory

In Section 7, we discuss the equivariant theory when the flow category is equipped with a group action.
However, requiring G symmetry on the flow category is equivalent to requiring G–equivariant transver-
sality on the background polyflow category. Since G–equivariant transversality is often obstructed, the
construction in Section 7 cannot be applied directly. However, the construction in Section 7 can be
generalized to polyflow categories. Hence we can apply the Borel construction on the level of polyfolds.

Definition 9.7 Let Z be a polyflow category. A compact Lie group G acts on Z if and only if G acts on
Ci and Wi;j !Zi;j in the sense of [78, Definition 3.66] so that all sc–Fredholm sections �i;j and the
structure maps s, t and m are G–equivariant.

Assume G acts a polyflow category Z. If we fix an approximation En of EG, then we can form a
sequence of polyflow categories Z�GEn by the quotient construction in [78]. Using the identity polyflow
morphism and the construction in Section 7, we have a sequence of polyflow morphisms connecting
different Z �G En. Then we have a directed system in the “category” of polyflow categories. We can get
an inverse system of cochain complexes by applying Claim 9.6. Then the equivariant cochain complex will
be the homotopy limit of such an inverse system. Details of the construction will appear in a future work.

29Or collar neighborhood assumptions on the polyfolds hold, if there are inner symmetries.
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Appendix A Convergence

This section proves the convergence results used in Section 3. We will see that transversality of fiber
products is not only natural from the polyfold point of view as explained in Section 9, but also essential
in proving the convergence results, especially Lemma 3.14.

A.1 The Thom class

We review the construction of Thom classes in [11, Section 6]. Let � W E !M be an oriented vector
bundle with a metric over an oriented manifold. The fiber F , the base manifold M and the total space E
are oriented in the manner of ŒM �ŒF �D ŒE�. If S.E/ denotes the sphere bundle of E, then we can find a
form  (an angular form) on S.E/ such that the integration over each fiber is 1, and d D���e, where
e is the Euler class of the sphere bundle. Then we pick smooth functions �n WRC!R such that �n is
increasing, supported in Œ0; 1=n� and is �1 near 0; see Figure 4.

Then d.�n / defines a form on RC�S.E/, and it is ��e on an open neighborhood of f0g�S.E/. Thus
d.�n / is a lift of some form on E, that is, d.�n / D p�ın for ın 2 ��.E/, where p is the natural
map RC �S.E/!E. This ın is a Thom class of � WE!M . The next lemma asserts that ın actually
represent the zero section not only in the cohomological sense, but also in a stronger sense of currents.
Let ıM denote the Dirac current of the zero section: ıM .˛/D

R
M i
�˛ for ˛ 2��.E/, where i WM !E

is the zero section.

Lemma A.1 (Lemma 3.1) We have ın! ıM in the sense of currents , ie for all ˛ 2��.E/,

lim
n!1

Z
E

˛^ ın! ıM .˛/:

Proof Let F 'Rn be a fiber of the bundle. Since ın is compactly supported, the integration over a fiber isZ
F

ınD

Z
F�f0g

ınD

Z
.0;1/�Sn�1

p�ınD

Z
Œ0;1/�Sn�1

p�ınD

Z
Œ0;1/�Sn�1

d.�n /D�
Z
f0g�Sn�1

 D1:

r

�n.r/

�1

1

n 1

Figure 4: The graph of �n.
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Let ˛ 2��.E/. Since
R
F ı

n D 1 for any fiber F ,Z
E
��i�˛^ ın D

Z
M

Z
F
��i�˛^ ın D

Z
M
i�˛:

Therefore, it is enough to show
lim
n!1

Z
E
.˛���i�˛/^ ın D 0:

We will prove this by partition of unity. Let fUig be an open cover of M and fpig a partition of unity
subordinated to this open cover. We fix trivializations over each Ui . Then over ��1.Ui /,

.��pi / � .˛��
�i�˛/D

X
f I;J dxI ^ dyJ ;

where x are the coordinates in Ui and y are the coordinates in the fiber direction. I and J are sets of
indices. Since ˛ and ��i�˛ are the same when restricted to the zero section, limr!0 f I;∅ D 0, where r
is the radius coordinate in the fiber direction. Hence

lim
n!1

Z
��1.Ui /

f I;∅dxI ^ ın D lim
n!1

Z
RC�Sn�1�Ui

f I;∅dxI ^ d�n ^ �f I;∅dxI ^ �n��e

D lim
n!1

Z 1=n

0

Z
S.E/jUi

˙f I;∅d�n ^ ^ dxI ˙ �nf I;∅��e^ dxI :

Since j�nj is supported in Œ0; 1=n� and bounded by 1,
R 1=n
0 jd�nj D 1, limr!0 f I;∅D 0 and  is bounded

on S.E/, we have
lim
n!1

Z
��1.U /

f I;∅ dxI ^ ın D 0:

When the cardinality jJ j of J is greater than 0, using the spherical coordinate in the fiber direction,
dyI D Cr jJ jd�J CDr jJ j�1 dr ^ d�J�1, where d�J and d�J�1 are forms on the sphere of degree jJ j
and jJ j � 1 and C;D are bounded functions. Because d�n is purely in the dr direction,

lim
n!1

Z
��1.Ui /

f I;J dxI ^ dyJ ^ ın

D lim
n!1

Z 1=n

0

Z
S.E/jUi

f I;JCr jJ j dxI ^ d�J ^ d�n ^ 

� lim
n!1

Z 1=n

0

Z
S.E/jUi

f I;JCr jJ j ^ dxI ^ d�J ^ �n��e(A-1)

� lim
n!1

Z 1=n

0

Z
S.E/jUi

f I;JDr jJ j�1 ^ ^ dxI ^ dr ^ d�J�1 ^ �n��e:(A-2)

Because f I;J and C are bounded, d�J is bounded on S.E/,
R 1=n
0 jd�nj D 1 and limr!0 r jJ j D 0, the

first term limits to zero. Since everything in (A-1) and (A-2) is uniformly bounded and �n is supported in
Œ0; 1=n�, (A-1) and (A-2) have limit zero. Hence

lim
n!1

Z
��1.Ui /

��pi .˛i ��
�i�˛/^ ın D 0:

Therefore

lim
n!1

Z
E
.˛i ��

�i�˛/^ ın D lim
n!1

P
i

Z
��1.Ui /

.��pi / � .˛i ��
�i�˛/^ ın D 0:
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fiber F

f �1.B/

f

support of ın

B

f .F /fibers

the homotopy

Figure 5: The pullback of Thom classes.

Next we will show that Lemma A.1 is preserved under pullback, when transversality conditions are met.

Lemma A.2 Let M be a compact manifold with boundaries and corners and E! B a vector bundle
over a closed manifold B . If f WM !E is transverse to B and we orient f �1.B/ by Œf �1.B/�f �ŒE�D
ŒTMjf �1.B/�, then for ˛ 2��.C /,

lim
n!1

Z
M

˛^f �ın D

Z
f �1.B/

˛jf �1.B/:

Proof Fix a tubular neighborhood � W N ! f �1.B/. For n big enough, f �ın is the Thom class
of f �1.B/, ie f �ın has integration 1 along each fiber. This is because the fiber F of f �1.B/ is
diffeomorphic to a submanifold homotopic to a fiber of E! B though the map f . Since ın is closed
and has a small enough support, Stokes’ theorem implies

R
F f
�ın D

R
f .F /ı

n D
R

fiber ofE ı
n D 1. Then

by the same argument as in the proof of Lemma A.1, we only need to prove

lim
n!1

Z
N

.˛���i�˛/^f �ın D 0:

Picking a point x 2 f �1.B/, by the implicit function theorem, we can find a local chart of x in M ,

� WRkC �Rn!M; �.0/D x;

and local trivialization of E! B over f .x/,

 WRi �Rj !E;  .0; 0/D .f .x/; 0/;

such that

 �1 ıf ı�.x1; : : : ; xk; y1; : : : ; yn�j ; zn�jC1; : : : ; zn/D .f1; : : : ; fi ; zn�jC1; : : : ; zn/;

where f1; : : : ; fi are functions of x�, y� and z�. Replacing the z coordinates by spherical coordinates,
the pullback of d.�n / through f is d.�n Q /, where Q is defined on Rk

C
�Rn�j � Sj�1 �RC and

uniformly bounded. Then the proof of Lemma A.1 can be applied to prove the claim.
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A.2 Proof of Lemmas 3.7 and 3.14

Following the discussion in Section 3.1, we pick representatives f�i;ag of a basis of H�.Ci / in ��.Ci /
to get a quasi-isomorphic embedding

H�.Ci /!��.Ci /;

and denote the dual basis by f��i;ag such that f��i;ag are in the image of the chosen embedding H�.Ci /!

��.Ci / and .�1/dimCi j�bi j
R
Ci
��i;a ^ �i;b D ıab . Then by Proposition 3.2, the Thom class ıni D d.�n i /

of �i � Ci �Ci and
P
a �
�
1 �i;a ^�

�
2 �
�
i;a both represent the Poincaré dual of the diagonal �i , thus they

are cohomologous in ��.Ci �Ci /. Therefore we can find f ni such that df ni D ı
n
i �

P
a �
�
1 �i;a^�

�
2 �
�
i;a

and

(A-3) f ni �f
m
i D .�n� �m/ i :

Thus the support of f ni � f
m
i converges to a measure-zero set. To show the convergence results

(Lemmas 3.7 and 3.14), we need to show that f ni is uniformly bounded. The uniform boundedness is not
necessarily true in Ci �Ci , but it holds if we use spherical coordinates near the diagonal �i . To apply
spherical coordinates in an intrinsic way, we recall blow-ups of real submanifolds:

Definition A.3 [58, Chapter 5] Let p WE!M be vector bundle over a manifold. Then the blow-up of
E along M is the manifold

BlM E D f.v; e/ 2E �S.E/ j p.v/D p.e/ and ae D v for some a � 0g;

where S.E/ is the sphere bundle .Enf0M g/=RC, and 0M is the zero section of E!M .

Then one can define a blow-up of a submanifold N �M in the sense of Definition 2.2 by blowing up N
in the tubular neighborhood which is identified with the normal bundle. Moreover, the blow-up of the
submanifold N can be described intrinsically as

BlN M WD .MnN/[S.TM=TNjN /;

where S.TM=TNjN / is the sphere bundle of the quotient bundle (normal bundle) TM=TNjN over N . The
smooth structure on BlN M can be given using an auxiliary tubular neighborhood and it is independent of

M

N

@M BlN M

S.TM=TN/

Figure 6: Blowing up one submanifold.
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M N1

N2

@M

BlN1M

BlN1M

BlN1;N2M

Figure 7: Blowing up two submanifolds.

the tubular neighborhood [58, Chapter 5]. The natural map BlN M!M is smooth and is a diffeomorphism
up to measure-zero sets. Thom classes ıni Dd.�n i / can be pulled back to Bl�i Ci�Ci , and the primitives
�n i are uniformly bounded on Bl�i Ci �Ci .

Using this intrinsic description, when a smooth map f WM �N ! C �C is transverse to the diagonal �,
there is a natural map Bl� f WBlM�CN M�N!Bl�C C�C induced by f WM�N!C�C . Moreover,
we have the following commutative diagram of smooth maps:

BlM�CN M �N

��

Bl� f
// Bl�C C �C

��

M �N
f

// C �C

If we have two submanifoldsN1 andN2 ofM such thatN1 is transverse toN2 in the sense of Definition 2.4,
then we can blow up N1 and N2. It was shown in [58, Chapter 5] that the order of blowing up does not
influence the diffeomorphism type. The resulting blow-up is denoted by BlN1;N2M . Similarly, if we have
a sequence of submanifolds N1; N2; : : : ; Nk such that

�T
˛2AN˛

�
is transverse to Nˇ for ˇ …A, then we

can blow up all N1; : : : ; Nk . The diffeomorphism type does not depend on the order; let BlN1;:::;Nk M
denote the blow-up.

In the setting of a flow category (Definition 2.9), any fiber product Mi0;i1 �i1Mi1;i2 �i2 � � � �inMin;inC1

is cut out transversely in Mi0;i1 �Mi1;�2 � � � � �Min;inC1 . Therefore

Nj WDMi0;i1 �Mi1;i2 � � � � �Mij�1;ij �ij Mij ;ijC1 � � � � �Min;inC1
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are submanifolds in the product Mi0;i1 �Mi1;i2 � � � � �Min;inC1 such that
�T

˛2AN˛
�

is transverse to
Nˇ for ˇ …A. Then we have a blow-up Bln WDBlN1;:::;Nn Mi0;i1 �Mi1;i2 �� � ��Min;inC1 and a similar
commutative diagram of smooth maps

(A-4)

Bln

��

Bl�i .t�s/
// Bl�ij Cij �Cij

��

Mi0;i1 �Mi1;i2 � � � � �Min;inC1
t�s

// Cij �Cij

Now we start to prove Lemmas 3.7 and 3.14. The definition of Ms;k
i1;:::;ir

Œ˛; f
n1
sCi1

; : : : ; f
nr
sCir

; � is (3-10).

Lemma A.4 (Lemma 3.7) For every ˛ 2 ��.Cv/ and  2 ��.CvCk/, and any defining data ‚,
limn!1Mv;k

i1;:::;ir
Œ˛; f nvCi1 ; : : : ; f

n
vCir

; � exists.

Proof Since Mv;k
i1;:::;ir

Œ˛; f
n1
vCi1

; : : : ; f
nr
vCir

; � is an integration over Mv;k
i1;:::;ir

, and
S
j M

v;k

i1;:::;Nij ;:::;ir
is

a measure-zero set in Mv;k
i1;:::;ir

, we can restrict the integral to

Mv;k
i1;:::;ir

�

[
j

Mv;k

i1;:::;Nij ;:::;ir

to get the same value.

We have a blow-up Blr Mv;k
i1;:::;ir

by blowing up all Mv;k
i1;:::;Nij ;:::;ir

for 1 � j � r . The primitives
f ni can be lifted to Bl�i Ci � Ci and t � s can be lifted to the blow-ups to Bl�i .t � s/. We define
Blr Mv;k

i1;:::;ir
Œ˛; f

n1
vCi1

; : : : ; f
nr
vCir

; � to be the result of integrating the wedge product of pullbacks of
˛; f

n1
vCi1

; : : : ; f
nr
vCir

;  to Blr Mv;k
i1;:::;ir

. Because Blr Mv;k
i1;:::;ir

and Mv;k
i1;:::;ir

�
S
j M

v;k

i1;:::;Nij ;:::;ir
also

differ by a measure-zero set, by the commutative diagram (A-4),

Blr Mv;k
i1;:::;ir

Œ˛; f nvCi1 ; : : : ; f
n
vCir

; �DMv;k
i1;:::;ir

Œ˛; f nvCi1 ; : : : ; f
n
vCir

; �:

Then

(A-5) Blr Mv;k
i1;:::;ir

Œ˛; f nvCi1 ; : : : ; f
n
vCir

; ��Blr Mv;k
i1;:::;ir

Œ˛; f mvCi1 ; : : : ; f
m
vCir

; �

D

rX
pD1

Blr Mv;k
i1;:::;ir

Œ˛; f mvCi1 ; : : : ; f
m
vCip�1

; f nvCip �f
m
vCip

; f nvCipC1 ; : : : ; f
n
vCir

; �:

Note that the f nvCij are uniformly bounded over Bl�vCij CvCij �CvCij for every n 2N, and the support
of f nvCij �f

m
vCij

converges to a measure-zero set in Bl�vCij CvCij �CvCij when n;m!1. By (A-4),
the pullbacks of f nvCij to Blr Mv;k

i1;:::;ir
have the same properties. Thus (A-5) implies the convergence.

Lemma A.5 (Lemma 3.14) For an oriented flow category C and any defining data , we have

lim
n!1

Mv;k
i1;:::;ir

Œ˛; f nvCi1 ; : : : ; ı
n
vCip

; : : : ; f nvCir ; �

D .�1/� lim
n!1

Mv;k

i1;:::;ip�1;Nip;ipC1;:::;ir
Œ˛; f nvCi1 ; : : : ; f

n
vCir

; �;

where � D .j˛jCmv;vCip /cvCip .
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Ms;k
i1;i2

Ms;k
Ni1;i2

Ms;k

i1;Ni2

U

D U

blow up Ms;k

i1;Ni2

Bl1 Bl1Ms;k
Ni1;i2

Bl1 U

D Bl1 U

partition of Bl1 U

Bl1 V2

V1

D p�1.V1/
D p�1.V2/

Figure 8: The r D 2; p D 1 case.

Proof The limit limn!1Mv;k
i1;:::;ip�1;Nip;ipC1;:::;ir

Œ˛; f nvCi1 ; : : : ; f
n
vCir

; � exists by the same argument
used in the proof of Lemma A.4. To prove the limit on the left-hand side exists, we can blow up everything
except for Mv;k

i1;:::;Nip;:::;ir
to get Blr�1. Assume that the pullback of ınvCip is supported in the tubular

neighborhood U of Mv;k
i1;:::;Nip;:::;ir

in Mv;k
i1;:::;ir

. Then U can be lifted to the blow-up Blr�1 to get Blr�1 U
(see Figure 7). For simplicity, we suppress the wedge and pullback notation. Then we have

lim
n!1

Z
Mv;k
i1;:::;ir

f̨ nvCi1 � � � ı
n
vCip
� � � f nvCir D lim

n!1

Z
Blr�1U

f̨ nvCi1 � � � ı
n
vCip
� � � f nvCir:

Let Blr�1Mv;k
i1;:::;Nip;:::;ir

denote the lift of Mv;k
i1;:::;Nip;:::;ir

in Blr�1. Then Blr�1 U is still a tubular
neighborhood of Blr�1Mv;k

i1;:::;Nip;:::;ir
. Let p W Blr�1 U ! Blr�1Mv;k

i1;:::;Nip;:::;ir
denote the projection

of the tubular neighborhood. Then we can divide Blr�1Mv;k
i1;:::;Nip;:::;ir

into two parts, V1 and V2, such
that V1 is a small open set containing the blow-up domain, and V2 is the complement. Then p�1.V1/ and
p�1.V2/ are partitions of Blr�1 U (see Figure 8). Using the same local coordinates as in Lemma A.2, if we
integrate the fiber direction of the tubular neighborhood, because f nvCi1 ; : : : ; f

n
vCip�1

; f nvCipC1 ; : : : ; f
n
vCir

are uniformly bounded over Blr�1, we have

(A-6)
ˇ̌̌Z
p�1.V1/

f̨ nvCi1 � � � ı
n
vCip
� � � f nvCir

ˇ̌̌
�K vol.V1/;

where K is a constant. Over p�1.V2/, the pullbacks of f nvCi1 ; : : : ; f
n
vCip�1

; f nvCipC1 ; : : : ; f
n
vCir

do not
change for n large enough, because p�1.V2/ stays away from the blown-up area. Thus the only thing
that varies over p�1.V2/ is ınvCip . Note that

lim
n!1

Z
p�1.V2/

f̨ nvCi1 � � � ı
n
vCip
� � � f nvCir

D .�1/
.j˛jC

P
j<p.cvCij�1//cvCip lim

n!1

Z
p�1.V2/

ınvCip f̨ nvCi1 � � � f
n
vCir

:

By Definition 2.15, the orientation relation on Mv;k
i1;:::;Nip;:::;ir

� V2 satisfies

ŒNvCip �ŒM
v;k
i1;:::;Nip;:::;ir

�D .�1/
.
P
j�pmvCij�1;vCij /:cvCip ŒMv;k

i1;:::;ir
�

Combining with Lemma A.2 and�
j˛jC

P
j<p

.cvCij � 1/
�
cvCip C

� P
j�p

mvCij�1;vCij

�
cvCip D .j˛jCmv;vCip /cvCip mod 2;
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we can conclude that

(A-7) lim
n!1

Z
p�1.V2/

f̨ nvCi1 � � � ı
n
vCip
� � � f nvCir

D lim
n!1

.�1/.j˛jCmv;vCip /cvCip
Z
V2

f̨ nvCi1 � � � f
n
vCip�1

f nvCipC1 � � � f
n
vCir

:

By (A-6) and (A-7), since V1 can be arbitrarily small, limn!1Ms;k
i1;:::;ir

Œ˛;f nvCi1 ; : : : ; ı
n
vCip

; : : : ;f nvCir ;�

exists. Since f nvCi1 ; : : : ; f
n
vCip�1

; f nvCipC1 ; : : : ; f
n
vCir

are uniformly bounded over Blr�1Mv;k

i1;:::;Nip;:::;ir
,

(A-8)
ˇ̌̌Z
V1

f̨ nvCi1 � � � f
n
vCiip�1

f nvCipC1 � � � f
n
vCir


ˇ̌̌
<K 0 vol.V1/:

Since Blr�1Mv;k

i1;:::;Nip;:::;ir
and Mv;k

i1;:::;Nip;:::;ir
differ by a measure-zero set,

(A-9)
Z
Mv;k

i1;:::;
Nip;:::;ir

f̨ nvCi1 � � � f
n
vCip�1

f nvCipC1 � � � f
n
vCir



D

Z
Blr�1Mv;k

i1;:::;
Nip;:::;ir

f̨ nvCi1 � � � f
n
vCip�1

f nvCipC1 � � � f
n
vCir



D

Z
V1[V2

f̨ nvCi1 � � � f
n
vCip�1

f nvCipC1 � � � f
n
vCir

:

Therefore by (A-6), (A-7), (A-8) and (A-9),ˇ̌̌
lim
n!1

�Z
Mv;k
i1;:::;ir

f̨ nvCi1 � � � ı
n
vCip
� � � f nvCir � .�1/

.j˛jCmv;vCip /csCip

Z
Mv;k

i1;:::;
Nip;:::;ir

f̨ nvCi1 � � � f
n
vCir


�ˇ̌̌

� .KCK 0/ vol.V1/:

Thus, since V1 can be arbitrarily small,

lim
n!1

Z
Mv;k
i1;:::;ir

f̨ nvCi1 � � � ı
n
vCip
� � � f nvCir

D lim
n!1

.�1/.j˛jCmv;vCip /cvCip
Z
Mv;k

i1;:::;
Nip;:::;ir

f̨ nvCi1 � � � f
n
vCir

:

Appendix B Proof of Proposition 6.21

Proposition B.1 (Proposition 6.21) Let � WE! C be an oriented k–sphere bundle over an oriented
closed manifold. Let AD A� be the reduction on ��.E/ built from the discussion after the statement of
Theorem 6.19 (in particular , we choose  i such that d i D 0 if k is even). Suppose T is the closed form
in ��1A^�

�
2A representing the diagonal by the definition of reduction. Then there exist approximations

ıE;n of the Dirac current of the diagonal �E such that :

(1) There exist forms f E;n on E �E such that

df E;n D ıE;n�T:

(2) Lemmas 3.7 and 3.14 hold for f E;n. In particular , the construction in Section 6.2 works for f E;n.
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(3) Let �1;2 denote the projection E �E! C �C . Then f E;n can be written as sums of differential
forms in the form .��1;2˛/^ˇ with ˛ 2��.C �C/ and deg.ˇ/� k (the fiber degree of f E;n is
at most k). In other words , if v1; : : : ; vkC1 are kC1 vertical vectors in Tp.E �E/ for p 2 C �C ,
then f E;n.v1 ^ � � � ^ vkC1 ^ � � �/D 0.

Proof Let ıC;n be the Thom classes of �C � C �C constructed using (3-4) with the angular form
‰C of the normal bundle. Let ıS

k ;n be the Thom classes of �E � E �C E constructed using (3-4).
We define p W U ! E �C E to be a projection in a tubular neighborhood U of E �C E in E � E.
Then �1;2.U / is a tubular neighborhood of �C � C � C . By the same argument as in Lemma 3.1,
limn!1 ��1;2ı

C;n ^p�ıS
k ;n is the Dirac current of the diagonal �E � E �E. Since, for n� 0, the

support of ��1;2ı
C;n is contained in U , the ��1;2ı

C;n ^ p�ıS
k ;n are cohomologous to each other and

represent Thom classes of �E for n� 0.

Next, we show that we can find the desired primitives f E;n. Let p1; p2 WE�C E!E be the projections
to the first and second components, respectively. Then .�1/kp�1 Cp

�
2 is a closed form on E �C E

because d..�1/kp�1 C p
�
2 / D .�1/kC1q�e � q�e D 0 for any k (when k is even, e is zero by

assumption), where q WE �C E! C is the projection. We claim .�1/kp�1 Cp
�
2 is cohomologous to

ıS
k ;n: there are f S

k ;n 2�k�1.E �C E/ such that

(B-1) ıS
k ;n
� .�1/kp�1 �p

�
2 D df S

k ;n:

We first proceed assuming (B-1). Let …1 and …2 be the two projections E � E ! E. Note that
.�1/k…�1 C…

�
2 is not closed on U . We have d..�1/k…�1 C…

�
2‰/D �

�
1;2..�1/

kC1e˝1�1˝ e/,
and the closed form .�1/kC1e˝ 1� 1˝ e is zero on �C . Hence .�1/kC1e˝ 1� 1˝ e is exact on
�1;2.U /. Therefore we can find h 2 �k.�1;2.U // with hj�C D 0 and .�1/k…�1 C…

�
2‰C �

�
1;2h is

closed on U . Since ..�1/k…�1 C…
�
2 C�

�
1;2h/jE�CE D .�1/

kp�1 Cp
�
2 , we know that there exists

g 2�k�1.U / such that

p�..�1/kp�1 Cp
�
2 /� .�1/

k…�1 �…
�
2 D dgC��1;2h:

Now we make any extension of h to C �C ; the extended form is still denoted by h. We have

��1;2ı
C;n
^p�ıS

k ;n
D ��1;2ı

C;n
^p�..�1/kp�1 Cp

�
2 /C�

�
1;2ı

C;n
^p�df S

k ;n

D ��1;2ı
C;n
^
�
..�1/k…�1 C…

�
2 C�

�
1;2h/C�

�
1;2ı

C;n
^ .dgCp�df S

k ;n/
�
:

If we write df C;n D ıC;n�
P
a �
�
1 �a ^�

�
2 �
�
a , then

��1;2ı
C;n
^ ..�1/k…�1 C…

�
2 C�

�
1;2h/

D ��1;2.df
C;n
C
P
a
��1 �a ^�2�

�
a /^ ..�1/

k…�1 C…
�
2 C�

�
1;2h/

D d
�
��1;2f

C;n
^..�1/k…�1 C…

�
2 C�

�
1;2h/

�
C��1;2

�P
a
��1 �a^�2�

�
a

�
^..�1/k…�1 C…

�
2 C�

�
1;2h/

C .�1/dimC��1;2f
C;n
^ d..�1/k…�1 C…

�
2 C�

�
1;2h/:
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Let Sn denote the last two terms. Then Sn�Sm D 0 for n;m� 0 as supp.f C;n�f C;m/� .�1;2/.U /
and d..�1/k…�1 C…

�
2 C�

�
1;2h/ is zero on U .

Next, recall from Lemma 6.20 that AD A� has a basis of the form

h���1; : : : ; �
��k; �1 WD �

���1 ^ ��
��1; : : : ; �k WD �

���k ^ ��
��ki

such that the dual basis is h�1; : : : ; �k; ���1; : : : ; ���ki, up to sign. It is easy to check that Sn � T
is in the form ��1;2˛ for ˛ 2 ��.C � C/. Since T and ��1;2ı

C;n ^ p�ıS
k ;n both represent �E , we

have that Sn � T is exact. Therefore ˛ is a closed class in ��.C � C/ such that Œ��1;2˛� D 0. As a
consequence, Œ˛�D

P
i .Œ˛i �^ Œe�/˝ Œˇi �C

P
j Œ˛
0
j �˝ .Œˇ

0
j �^ Œe�/ on cohomology. Therefore there exist

˛0; ˛1; ˛2 2�
�.C �C/ such that

Sn�T D �
�
1;2˛ D d.��1;2˛0 ^…

�
1‰C�

�
1;2˛1 ^…

�
2‰C�

�
1;2˛2/D dw:

So we can take ıE;n WD ��1;2ı
C;n ^p�ıS

k ;n and

(B-2) f E;n WDwCf C;n^..�1/k…�1 C…
�
2 C�

�
1;2h/C.�1/

dimC .�1��2/
�ıC;n^.gCp�f S

k ;n/:

Since f nC and f n
Sk

can be chosen so that (3-7) holds, Lemmas 3.7 and 3.14 hold for f E;n using the same
argument as in Appendix A. By (B-2), the third property of the proposition holds, since each component
has the property.

Proof of (B-1) Note that p1 W E �C E ! E is also a sphere bundle (it is the pullback of the bundle
� W E ! C through � itself). Then p�2 is the angular form of p1. After fixing representatives
f˛1; : : : ; ˛mg of a basis of H�.E/, we get a reduction of ��.E �C E/ by the same argument as the one
after the statement of Theorem 6.19:

B D B� D hp�1˛1; : : : ; p
�
1˛m; �1 WD p

�
1˛1 ^p

�
2 �p

�
1f1; : : : ; �m WD p

�
1˛m ^p

�
2 �p

�
1fmi:

Since d is closed on B and the cohomology is the cohomology of E �C E (since it is a reduction), it
suffices to prove that, for any ˇ 2 B ,Z

E�CE

ˇ^ ..�1/kp�1 Cp
�
2 /D

Z
�E

ˇ:

If ˇ D p�1˛i , thenZ
E�CE

p�1˛i ^ ..�1/
kp�1 Cp

�
2 /D

Z
E�CE

.�1/kp�1 .˛i ^ /C

Z
E�CE

p�1˛i ^p
�
2 :

The first term is clearly zero, and the second term is
R
E ˛i D

R
�E
.p�1˛i /j�E by integration along the

fiber of p1. If ˇ D �i D p�1˛i ^p
�
2 �p

�
1fi , then by the same argument as above, we haveZ

E�CE

�i ^ ..�1/
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The localization spectral sequence in the motivic setting

CLÉMENT DUPONT

DANIEL JUTEAU

We construct and study a motivic lift of a spectral sequence associated to a stratified scheme, recently
discovered by Petersen in the context of mixed Hodge theory and `–adic Galois representations. The
original spectral sequence expresses the compactly supported cohomology of an open stratum in terms
of the compactly supported cohomology of the closures of strata and the combinatorics of the poset
underlying the stratification. Some of its special cases are classical tools in the study of arrangements of
subvarieties and configuration spaces. Our motivic lift lives in the triangulated category of étale motives
and takes the shape of a Postnikov system. We describe its connecting morphisms and study some of its
functoriality properties.

18N40; 14F42, 14N20

Introduction

For a topological space X , an open subspace U and a complementary closed subspace Z, the compactly
supported cohomology groups of X , U and Z are related by a localization long exact sequence

(1) � � � !H �c .U /!H �c .X/!H �c .Z/!H �C1c .U /! � � � :

This can typically be used for two different purposes: either to compute the compactly supported
cohomology of X knowing that of U and Z, or to compute the compactly supported cohomology of U
knowing that of X and Z.

More generally, let X be a topological space equipped with a stratification, ie a partition by locally closed
subspaces called strata such that the closure of a stratum is a union of strata; we assume for simplicity
that there is a unique open stratum X0. The specialization relation turns the set of strata into a finite poset
whose least element is X0. One may either want to understand the space X in terms of the strata, or to
understand the open stratum X0 in terms of the closures of the strata. In the former case, the localization
long exact sequence can be generalized to a spectral sequence in an obvious way. In the latter case,
however, this was explained only recently by Petersen [2017] who devised a spectral sequence converging
to the compactly supported cohomology of X0, whose first page is expressed in terms of the compactly
supported cohomology of the closures of strata, and of the combinatorics of the poset of strata. We refer
the reader to the introduction of [loc. cit.] for a clear interpretation in terms of inclusion-exclusion.
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1432 Clément Dupont and Daniel Juteau

A precursor of Petersen’s spectral sequence (or rather, of its Poincaré dual version) is Deligne’s spectral
sequence appearing in mixed Hodge theory [Deligne 1971, 3.2.4.1] where the stratification is induced
by a normal crossing divisor inside a smooth projective complex variety. Several other special cases are
classical tools in the study of more combinatorially involved contexts such as arrangements of subvarieties
[Bibby 2016; Björner and Ekedahl 1997; Dupont 2015; Goresky and MacPherson 1988; Looijenga 1993]
and configuration spaces [Cohen and Taylor 1978; Getzler 1999; Kříž 1994; Totaro 1996]. In the general
case, Petersen proves that his spectral sequence is compatible with mixed Hodge structures when X is a
complex algebraic variety equipped with an algebraic stratification. It also has an étale `–adic variant
which is compatible with Galois actions. The proofs are sheaf-theoretic and involve filtering well-chosen
resolutions in abelian categories of sheaves.

The goal of this article is to lift Petersen’s spectral sequence to a motivic setting. Let now X be a scheme
equipped with a stratification (see Section 3 for the relevant assumptions) with a unique open stratum X0,
and let j WX0 ,!X denote the open immersion. We also denote by iX

S
W S ,!X the closed immersion of

the closure of a stratum S . We denote by yP the poset of strata and fix a strictly increasing map � W yP !Z

such that �.X0/D 0. We fix a ring of coefficients K. To every stratum S 2 yP is associated a cochain
complex of K–modules C �.S/ which computes the reduced cohomology of the open interval .X0; S/ in
the poset yP .

We work in the context of the triangulated category of étale motives (or motivic sheaves) over X with
coefficients in K, denoted by DAX [Ayoub 2007a; 2007b; 2014a; Cisinski and Déglise 2016; 2019]. The
lack of an abelian-categorical formalism for motivic sheaves forces us to depart from Petersen’s original
techniques. In the triangulated setting, the notion of a filtration has to be replaced with that of a Postnikov
system, that is, a sequence of distinguished triangles where each triangle has a vertex in common with
the next one. The main result of this article is as follows (see Theorems 3.3 and 3.16 for more precise
statements).

Main Theorem For F 2DAX there is a Postnikov system in DAX ,

� � � // F 2 //

~~

F 1 //

~~

F 0 D jŠj
ŠF

~~

G2
C1

aa

G1
C1

``

G0
C1

``

where the graded objects are given by

Gk D
M
S2 yP
�.S/Dk

.iX
S
/�.i

X

S
/�F˝C �.S/:

The connecting morphisms Gk!GkC1Œ1� are explicitly computed. This Postnikov system is functorial
in F and functorial with respect to a class of stratified morphisms.
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The localization spectral sequence in the motivic setting 1433

In the case of the constant motivic sheaf FDKX , this theorem expresses the compactly supported motive
of X0 in terms of the compactly supported motives of the closures of strata S and the complexes C �.S/.
For instance, if the stratification consists of an open j W U ,!X and its closed complement i WZ ,!X ,
the Postnikov system reduces to the localization triangle

jŠKU !KX ! i�KZ
C1
�!

which is the motivic lift of the localization long exact sequence (1).

One can recover Petersen’s spectral sequence(s) along with a description of the d1 differential from our
main theorem, by applying (compactly supported) cohomological realization functors. In a genuinely
motivic setting, an application to the study of classical polylogarithm motives will appear as a joint article
of the first author with J Fresán [Dupont and Fresán 2023]. There, it is crucial to have a Postnikov system
that is functorial with respect to a group action on a stratified scheme, which is a special case of the
functoriality statement in our theorem.

One of the main difficulties in the proof of our main theorem is to construct the Postnikov system in a
way that makes it obviously functorial. For this we cannot simply work in the context of a triangulated
category, where cones are not functorial. Rather, we are led to work in the enhanced setting of triangulated
derivators. Another reason for this choice is that we rely on the six functor formalism for étale motives,
developed by Ayoub [2007a; 2007b] and written in the language of algebraic derivators, a geometric
enrichment of the notion of a triangulated derivator. From the standpoint of homotopy theory, it is
natural to expect our main theorem to lift to the stable1–category of motives; this would require an
1–categorical enhancement of Ayoub’s six functor formalism.

We also study a dual version of our main theorem (Theorem 3.9) where we are interested in describing the
object j�j �F. Due to the lack of duality in the general setting of algebraic derivators, we cannot simply
repeat the proof. Instead, we rely on applying Poincaré–Verdier duality, but the latter is available at the
motivic level only under certain assumptions (see Section 3.4). Note that, if we gave up on functoriality,
then we would not need to work in the setting of algebraic derivators and could prove the dual statement
(without functoriality) in full generality. This strongly suggests that the dual statement (with functoriality)
is true in full generality, even though we are not able to prove it with our methods. In any case, if one is
only interested in working with realizations, one can first apply a realization functor to the main theorem
and then dualize.

Perspectives

A natural direction of research would be to try and apply our main theorem to prove motivic representation
stability results in the spirit of the homological representation stability results of Petersen [2017]. Also, it
would be desirable to clarify the general functoriality properties of our construction, beyond those already
explored here.
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1434 Clément Dupont and Daniel Juteau

A motivation for this project is the possibility to study a more general geometric setting mixing jŠ and j�
extensions, depending on the strata. The corresponding motives can be viewed as relative cohomology
motives on some blow-up of the ambient variety and are ubiquitous in the geometric study of periods
(see eg [Goncharov 2002] and the introduction of [Dupont 2017]).

Outline

In Section 1 we review classical definitions and properties of poset (co)homology; to the best of our knowl-
edge, the only original content is the introduction of connecting morphisms relating poset (co)homology
complexes of different intervals in a poset. In Section 2 we work in the setting of triangulated derivators
and collect some tools to produce and study functorial Postnikov systems. In Section 3 we apply those
tools to our geometric setting and prove the main results.
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1 Poset (co)homology

In this section we review poset (co)homology. To the best of our knowledge, the only original content is
the introduction of connecting morphisms relating poset (co)homology complexes of different intervals
in a poset. We fix a commutative ring with unit K for the rest of this article, that will serve as a ring of
coefficients.

1.1 Definition

Let P be a finite poset. We will sometimes make use of the extension yP D fO0g[P where O0 < p for all
p 2 P . For any element x 2 P we let C�.x/, denoted by CP

�
.x/ when we want to make dependence on

P explicit, be the chain complex whose degree n component is the free K–module on chains

Œx1 < � � �< xn�1 < xn D x�;

and whose differential @ W Cn.x/! Cn�1.x/ is given by

@Œx1 < � � �< xn�1 < xn D x�D

n�1X
iD1

.�1/i�1Œx1 < � � �< Oxi < � � �< xn�1 < xn D x�:
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We let h�.x/ denote the homology of C�.x/. Up to a shift, C�.x/ is the (reduced) normalized chain
complex of the nerve of the poset P<x D fp 2 P j p < xg and thus we have

hn.x/DHn.C�.x//D zHn�2.P<x/:

We let C �.x/, or C �P .x/ when we want to make dependence on P explicit, denote the cochain complex
dual to C�.x/ and use the same notation for the basis of chains and the (dual) basis of cochains. The
differential d W C n.x/! C nC1.x/ is given by

dŒx1< � � �<xn�1<xnD x�D

nX
iD1

.�1/i�1
X

xi�1<y<xi

Œx1< � � �<xi�1<y <xi < � � �<xn�1<xnD x�;

where by convention we have x0 D O0 in yP . We let h�.x/ denote the cohomology of C �.x/ and we have

hn.x/DHn.C �.x//D zHn�2.P<x/:

The following lemma is classical.

Lemma 1.1 If P has a least element a then C�.x/ and C �.x/ are contractible for all x > a.

Proof The nerve of P<xD Œa; x/ is a cone over the nerve of the open interval .a; x/ and thus contractible.
Concretely, a contracting homotopy c W C�.x/! C�C1.x/ is provided by the formula

cŒx1 < � � �< xn�1 < xn D x�D

�
0 if x1 D a;
Œa < x1 < � � �< xn�1 < xn D x� if x1 > a:

The transpose of c is a contracting homotopy for C �.x/.

It is sometimes convenient to extend the definitions to yP by defining C�.O0/ and C �.O0/ to be K concentrated
in degree zero.

Remark 1.2 The complexes C� have a certain functoriality property with respect to morphisms of
posets. In this article we will only deal with functoriality with respect to isomorphisms (and in particular
with respect to group actions). For ˛ W P ! P 0 an isomorphism of posets we have for every x 2 P
a natural isomorphism of chain complexes C�.˛/ W CP� .x/ ! CP

0

�
.x0/ for x0 D ˛.x/. They satisfy

C�.id/D id and C�.ˇ ı˛/D C�.ˇ/ıC�.˛/. Dually we have natural isomorphisms of cochain complexes
C �.˛/ W C �P 0.x

0/! C �P .x/ that satisfy C �.id/D id and C �.ˇ ı˛/D C �.˛/ ıC �.ˇ/.

1.2 The connecting maps

For x < y in P we define a map
byx W C�C1.y/! C�.x/

by setting

byx Œx1 < � � �< xn < xnC1 D y�D

�
.�1/nŒx1 < � � �< xn D x� if xn D x;
0 otherwise:

Algebraic & Geometric Topology, Volume 24 (2024)
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Lemma 1.3 .@byx C b
y
x@/Œx1 < � � �< xn < xnC1 D y�D

�
Œx1 < � � �< xn�1 D x� if xn�1 D x;
0 otherwise:

Proof We compute, for X D Œx1 < � � �< xn < xnC1 D y�,

byx@XD

n�1X
iD1

.�1/i�1byx Œx1< � � �< Oxi < � � �<xn<xnC1Dy�C.�1/
n�1byx Œx1< � � �<xn�1<xnC1Dy�:

If xn�1D x then xn¤ x and we have byx@X D Œx1 < � � �<xn�1D x� and @byxX D @0D 0, which proves
the first part of the claim. If xn�1 ¤ x and xn ¤ x then all terms vanish and we get byx@X D @b

y
xX D 0.

If xn�1 ¤ x and xn D x then

byx@X D

n�1X
iD1

.�1/n�i Œx1 < � � �< Oxi < � � �< xn D x�D�@b
y
xX:

We write xÉy when y covers x in P , ie when x < y and there is no z 2 P such that x < z < y.

Lemma 1.4 (1) For xÉy in P , byx W C�C1.y/! C�.x/ is a morphism of complexes.

(2) Let x < z in P be such that every y 2 .x; z/ satisfies xÉyÉ z. Then the morphism of complexesX
x<y<z

byxb
z
y W C�C2.z/! C�.x/

is homotopic to zero.

The first part of the lemma implies that we get connecting morphisms byx W h�C1.y/! h�.x/ in homology,
for xÉy.

Proof (1) For xn�1 < xn < xnC1 D y we cannot have xn�1 D x since y covers x. Then Lemma 1.3
implies that @byx D�b

y
x@, thus byx is a morphism of complexes.

(2) We haveX
x<y<z

byxb
z
y Œx1 < � � �< xnC1 < xnC2 D z�D

�
�Œx1 < � � �< xn D x� if xn D x;
0 otherwise:

Thanks to Lemma 1.3 this can be rewritten asX
x<y<z

byxb
z
y D�@b

z
x � b

z
x@:

By duality we get a map that we denote by the same symbol, since there is no risk of confusion,

byx W C
�.x/! C �C1.y/:

It is defined by the formula

byx Œx1 < � � �< xn D x�D .�1/
nŒx1 < � � �< xn D x < xnC1 D y�:
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Lemma 1.5 (1) For xÉy in P , byx W C �.x/! C �C1.y/ is a morphism of complexes.

(2) Let x < z in P be such that every y 2 .x; z/ satisfies xÉyÉ z. Then the morphism of complexesX
x<y<z

bzyb
y
x W C

�.x/! C �C2.z/

is homotopic to zero.

Proof This is the dual of Lemma 1.4.

It is sometimes convenient to extend the definitions to yP . Indeed, for O0É y, ie for y a minimal element
of P , we can define by

O0
WC�C1.y/!C�.O0/ to be the natural (iso)morphism of complexes. The same goes

in cohomology for by
O0
W C �.O0/! C �C1.y/. One easily checks that Lemmas 1.4 and 1.5 also apply to the

case x D O0.

Remark 1.6 Let us assume for simplicity that the poset yP is graded, ie any two maximal chains between
two elements x < y in yP have the same length. For x 2 yP let rk.x/ denote the length of a maximal chain
from O0 to x. In many geometric cases we have, for every x 2 yP ,

hn.x/D 0 for n¤ rk.x/;

and we simply write h.x/D hrk.x/.x/. (This implies that the cohomology of C �.x/ is concentrated in
degree rk.x/ and that hrk.x/.x/'h.x/_.) This condition is satisfied, eg if the poset yP is Cohen–Macaulay
[Baclawski 1980; Björner et al. 1982]. In this case we get a chain complex .h; b/ where

hn D
M
x2 yP

rk.x/Dn

h.x/

and b W hnC1 ! hn is induced by the connecting maps byx for x < y. One can also prove that these
connecting maps induce acyclic complexes of K–modules, for every x 2 P ,

0! h.x/!
M

y2 yP;y<x
rk.y/Drk.x/�1

h.y/!
M

z2 yP;z<x
rk.z/Drk.x/�2

h.z/! � � � ! h.O0/! 0:

This allows one to define h.x/ together with the connecting morphisms bxu by induction on rk.x/.

A typical example of a Cohen–Macaulay poset is the poset of flats of a matroid (for instance, the poset of
strata of a central hyperplane arrangement); in this case .h; b/ is the underlying chain complex of the
Orlik–Solomon algebra of the matroid [Orlik and Solomon 1980; Orlik and Terao 1992].

1.3 Interpretation of poset cohomology as homotopy limit

We will now consider the abelian category of representations of the finite poset P , ie the category
.K–Mod/P of functors from P viewed as a category to the category of K–modules. Since K–Mod is
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abelian, it admits finite limits, so we have a limit functor limP W .K–Mod/P !K–Mod, which is right
adjoint to the constant functor K–Mod! .K–Mod/P ; since it has a left adjoint, it is left exact, and we
may consider the right derived functor R limP W D..K–Mod/P /! D.K–Mod/. In anticipation of the
next section, we will call it homotopy limit and denote it by holimP . We now prove and discuss the
following interpretation of the complexes C �.x/ (see also [Tosteson 2016] for a similar discussion).

Proposition 1.7 For x 2 P we denote by Kx the representation of P defined by Kx.y/DK if y D x
and zero otherwise. We have a canonical isomorphism in D.K–Mod/,

holimP Kx ' C
�C1.x/:

In order to compute the functor holimP we introduce convenient limP –acyclic representations of P . For
x 2 P and M 2K–Mod, we let M6x 2 .K–Mod/P denote the representation given by M6x.y/DM if
y 6 x and zero otherwise, the transition morphisms being the identity of M or zero.

Lemma 1.8 The representation M6x is limP –acyclic.

Proof The functor
.�/6x WK–Mod! .K–Mod/P ; M 7!M6x;

is exact and sends injectives to injectives. Indeed, for T 2 .K–Mod/P we have an isomorphism

Hom.K–Mod/P .T;M6x/' HomK–Mod.T .x/;M/;

and thus the functor Hom.K–Mod/P .�;M6x/ is exact if M is injective. Thus, we have isomorphisms

R limP .M6x/' R limP ıR.�/6x.M/'R.limP ı.�/6x/.M/'M ' limP .M6x/:

The first isomorphism follows from the fact that .�/6x is exact, the second follows from the fact that it
sends injectives to injectives, the third and fourth from the equality limP ı.�/6x D IdK–Mod.

Proof of Proposition 1.7 For z 6 y we have a canonical morphism K6y ! K6z . Moreover, those
morphisms compose functorially. Using them we can form a resolution

0!Kx!K6x!
M
y<x

K6y!
M
z<y<x

K6z! � � � :

More precisely, we set
Rnx D

M
Œx1<���<xn<xnC1Dx�

K6x1
:

In analogy with the construction of the complexes C �.x/ of Section 1.1, we define a differential
d W Rnx ! RnC1x . Its component indexed by chains Œx1 < � � � < xn < xnC1 D x� on the source and
Œx1 < � � � < xi�1 < y < xi < � � � < xn < xnC1 D x� on the target equals .�1/i times the natural map
(the latter being the identity for i > 1 and the canonical morphism K6x1

!K6y for i D 1). The other
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components are zero. One easily checks that we get a complex R�x of representations of P which is such
that

R�x.a/D

8<:
K if aD x;
C �C1
Œa;x�

.x/ if a < x;
0 otherwise:

By Lemma 1.1, the complex C �
Œa;x�

.x/ is contractible and we thus get a resolution Kx ��!R�x .

By Lemma 1.8 this resolution is limP –acyclic. Hence, it can be used to compute holimP KxDR limP Kx .
Since each limP K6x1

is just K, applying limP to the resolution gives limP R�x ' C
�C1.x/, and the

result follows.

Remark 1.9 The resolution appearing in the proof of Proposition 1.7 is a Bousfield–Kan resolution
[1972, Chapter XI].

We now turn to the interpretation of the connecting morphisms byx . For x < y in P we let Kyx denote
the representation of P defined by Kyx.z/DK if z 2 fx; yg and zero otherwise, the transition morphism
Kyx.x/!Kyx.y/ being the identity. We have a short exact sequence in .K–Mod/P ,

0!Ky!Kyx !Kx! 0;

which induces a distinguished triangle Ky!Kyx !Kx
C1
�! in D..K–Mod/P /. We denote by

ayx WKx!Ky Œ1�

the connecting morphism.

Proposition 1.10 Assume that xÉy. We have a commutative square in D.K–Mod/,

holimP Kx
holimP a

y
x
//

'
��

holimP Ky Œ1�

'
��

C �C1.x/
b

y
x Œ1�

// C �C2.y/

where the vertical isomorphisms are those of Proposition 1.7.

Proof Let R�x and R�y denote the resolutions of Kx and Ky described in the proof of Proposition 1.7.
By mimicking the definition of byx and the proof of Lemma 1.5 1) we get a morphism of complexes
R�x!R�C1y . We let S� denote its cone shifted by �1, so that S�DR�x˚R

�

y as graded P –representations.
We consider the commutative diagram

0 // Ky //

��

Kyx //

��

Kx //

��

0

0 // R�y
// S� // R�x

// 0

where both rows are short exact sequences. The dotted arrow Kyx ! S0 DK6x˚K6y is defined so that
its value at y is the identity of K and its value at x is the diagonal morphism K!K˚K. It is a morphism
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of representations of P because xÉy. The composite Kyx ! S0! S1 is zero, as one can check on the
values at x and y. In the above commutative diagram, the bottom row is thus a limP –acyclic resolution of
the top row, by the five lemma. This implies that the connecting morphism holimP Kx! holimP Ky Œ1�

is computed by the connecting morphism in the long exact sequence associated to the short exact sequence

0! limP R�y! limP S�! limP R�x! 0:

By construction, this is nothing but the short exact sequence for the cone of the morphism

byx Œ�1� W C
��1.x/! C �.y/;

and the connecting morphism is byx .

Remark 1.11 Let ˛ W P ! P 0 be an isomorphism of posets, let x 2 P and x0 D ˛.x/ 2 P 0. One easily
proves that the natural isomorphism

C �C1P 0 .x
0/' holimP 0 Kx0 ' holimP Kx ' C

�C1
P .x/

is the isomorphism of complexes denoted by C �C1.˛/ in Remark 1.2.

2 Triangulated derivators

In this section we collect some tools about triangulated derivators and natural Postnikov systems arising
in this context. The main result is Proposition 2.20.

2.1 The framework of triangulated derivators

We work within the framework of triangulated derivators, introduced by Grothendieck [1991] and
developed by several authors; see [Ayoub 2007a; Cisinski and Neeman 2008; Franke 1996; Groth 2013;
Heller 1988; Maltsiniotis 2001]. Broadly speaking, triangulated derivators are like triangulated categories
with well-defined homotopy limits and colimits (and more generally homotopy Kan extensions).

We work with Ayoub’s notion [2007a] of a triangulated derivator in order to be able to use the notion
of an algebraic derivator from [loc. cit.] in the next section. There a 2–category of “diagrams” is fixed,
which is a full 2–subcategory of the 2–category of (small) categories satisfying the axioms D0, D1 and
D2 of [Ayoub 2007a, section 2.1.2]; we choose it to be the 2–category of finite posets, since those are the
only diagrams that we will need. All 2–categories in this paper are strict, and our notion of a 2–functor
between two 2–categories is the weak one, ie that of a pseudofunctor in the sense of [Borceux 1994, 7.5].

2.1.1 Finite posets A finite poset P is viewed as a category with a unique morphism from x to y if
x 6 y, and none otherwise. Finite posets thus form a full 2–subcategory of the 2–category of (small)
categories. A functor between finite posets is an order-preserving map and is simply called a morphism
of posets. For two such morphisms f; g W P !Q, there is a unique natural transformation from f to g if
f .x/6 g.x/ for every x 2 P , and none otherwise.
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We denote by e the poset with one element. For P a finite poset, we denote by p or pP W P ! e the
morphism to a point. An inclusion between posets Q � P is denoted iPQ WQ! P . For P a finite poset
and x 2 P , we use the notation ix or iPx W e! P for the inclusion of x.

2.1.2 Triangulated prederivators

Definition 2.1 A triangulated prederivator D is a 1–contravariant and 2–covariant 2–functor from the
2–category of finite posets to the 2–category of triangulated categories. In other words, it associates

(0) to every finite poset P , a triangulated category D.P /;

(1) to every morphism f W P !Q of finite posets, a triangulated functor f � WD.Q/!D.P /;

(2) to every pair of morphisms f; g W P ! Q such that f .x/ 6 g.x/ for every x 2 P , a natural
transformation of triangulated functors f �! g�;

in a way that is compatible with horizontal and vertical composition.

Remark 2.2 The triangulated category D.e/ is called the ground category. For a finite poset P , an
element x 2 P and an object F 2D.P /, the pullback .ix/�F 2D.e/ is called the value of F at x. For
elements x; y 2P such that x6 y we have two morphisms ix; iy W e!P such that ix. � /6 iy. � / and thus
a natural transformation .ix/�! .iy/

�. Thus, the functors .ix/� induce an underlying diagram functor

(2) D.P /!D.e/P

which is not an equivalence in general. The category D.P / should be thought of as the category of
“homotopy coherent” P –shaped diagrams of objects of the ground category D.e/, whereas the category
D.e/P consists of “homotopy incoherent” diagrams. More generally we have “partial” underlying diagram
functors, for finite posets P and E,

D.E �P /!D.E/P

and diagrams in D.E/P can be called “partially homotopy incoherent”.

Remark 2.3 Our variance convention slightly differs from that of [Ayoub 2007a] since there prederivators
are 1–contravariant and 2–contravariant, which makes the underlying diagram functor land in D.e/P

op
.

2.1.3 Triangulated derivators A triangulated derivator [Ayoub 2007a, définition 2.1.34] is a triangu-
lated prederivator that satisfies a certain number of axioms, including the following that we mention for
future reference:

(1) We have D.¿/D 0.

(2) The underlying diagram functor (2) is conservative for every finite poset P ; it is a triangulated
equivalence if P is discrete.

(3) For every morphism f W P !Q of finite posets, the functor f � WD.Q/!D.P / admits right and
left adjoints,

f� WD.P /!D.Q/; fŠ WD.P /!D.Q/;
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respectively, which are automatically triangulated functors. They play the role of homotopy right and left
Kan extension functors; in the special case of p W P ! e, the projection to a point, they are a homotopy
limit and colimit functors and we write p� D holim and pŠ D hocolim.

(4) For a morphism f W P !Q and some element y 2Q, let y=P � P denote the subposet consisting
of elements x 2 P such that y 6 f .x/. We have a natural transformation

.py=P /
�.iQy /

�
! .iPy=P /

�f �

associated by 2–functoriality to the two morphisms .iQy / ı py=P and f ı .iP
y=P

/ from y=P to Q. By
using the units and counits of the adjunctions we can obtain from it a natural transformation

.iQy /
�f�! .py=P /�.i

P
y=P /

�

which is .iQy /�f�! .py=P /�.py=P /
�.i

Q
y /
�f�! .py=P /�.i

P
y=P

/�f �f�! .py=P /�.i
P
y=P

/�. We require
this last natural transformation to be invertible. In the same vein, let P=y � P denote the subposet
consisting of elements x 2 P such that f .x/6 y. Then we have a natural transformation

.pP=y/Š.i
P
P=y/

�
! .iQy /

�fŠ

that we require to be invertible.

Remark 2.4 The axioms listed above are similar to the axioms 1–4 of [Ayoub 2007a, définition 2.1.34],
albeit slightly less complete for (2) and (4). In [loc. cit.] two more axioms, 5 and 6, relate the triangulated
structures on the categories D.P / with the homotopy Kan extension functors f� and fŠ and will not be
used in the rest of this article.

Remark 2.5 If A is a Grothendieck abelian category, eg ADK–Mod , then we have a derivator DA such
that DA.P / is the derived category of the diagram category AP for every finite poset P . The pullback
functors f � are the obvious ones and their adjoints are obtained by deriving the usual Kan extension
functors.

2.1.4 Monoidal structure The triangulated derivators that we will deal with all have a unital symmetric
monoidal structure in the sense of [Ayoub 2007a, section 2.1.6]. This means that for every finite poset P
the triangulated category D.P / is endowed with the structure of a unital symmetric monoidal triangulated
category and that for every morphism f W P ! Q the functor f � W D.Q/! D.P / is endowed with
the structure of a unital symmetric monoidal functor. The triangulated derivator DK–Mod of the abelian
category K–Mod is symmetric monoidal.

Let D be a unital symmetric monoidal derivator. Then we have, for every morphism of finite posets
f W P !Q and for F 2D.P /, G 2D.Q/, a natural morphism

(3) G˝f�F! f�.f
�G˝F/:
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It is obtained as the composition G˝f�F! f�f
�.G˝f�F/ ��! f�.f

�G˝f �f�F/! f�.f
�G˝F/,

where the first and last steps involve the unit and the counit of the adjunction, and the middle step uses
that f � is monoidal. In the same way, we have a natural morphism

(4) fŠ.f
�G˝F/! G˝fŠF:

Neither (3) nor (4) is an isomorphism in general.

2.1.5 Coefficients In the remainder of this section we fix a unital symmetric monoidal triangulated
derivator D equipped with a morphism of unital symmetric monoidal triangulated derivators DK–Mod!D.
Such an object can be called a unital symmetric monoidal triangulated derivator with coefficients in K.

We will allow ourselves to interpret complexes of K–modules as objects of D.e/ without specific reference
to the morphism DK–Mod!D.

2.2 Extension by zero

We start with a classical lemma.

Lemma 2.6 Let P be a finite poset with projection p W P ! e.

(1) If P has a least element x then we have isomorphisms p� ' .ix/� and p� ' .ix/Š. The natural
morphism pŠp

�! idD.e/ is an isomorphism.

(2) If P has a greatest element y then we have isomorphisms pŠ ' .iy/� and p� ' .iy/�. The natural
morphism idD.e/! p�p

� is an isomorphism.

Proof We prove the first point (the second is proved dually). The fact that x is the least element of P
may be expressed by the fact that .ix; p/ is an adjoint pair of functors. It follows that .p�; .ix/�/ is also
an adjoint pair of functors. Now .ix/

� being a right adjoint to p� means that it is equal to p�, and p�

being a left adjoint to .ix/� means that it is equal to .ix/Š.

For the second assertion, note that pix D ide, hence pŠ.ix/Š ' idD.e/, and the isomorphism p� D .ix/Š

identifies this with the adjunction morphism pŠp
�! idD.e/.

Lemma 2.7 Let i W Q ,! P denote the inclusion of a subposet. For every G 2 D.Q/ the natural
morphisms

i�i�G! G and G! i�iŠG

are isomorphisms.

Proof We prove that the first morphism is an isomorphism (the second case is proved dually). For every
x 2Q we have a sequence of isomorphisms

.iQx /
�i�i�G' .iPx /

�i�G' .px=Q/�.i
Q

x=Q
/�G' .ix=Qx /�.i

Q

x=Q
/�G' .iQx /

�G;
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where the second isomorphism follows from Section 2.1.3(4) and the third isomorphism follows from
Lemma 2.6 since x is the least element of x=Q. One checks that the composition of these isomorphisms
is the composition of .iQx /� with the natural morphism i�i�G! G. By Section 2.1.3(2) this proves the
claim.

Definition 2.8 Let P be a finite poset.

(1) A sieve in P is a subset U � P such that for every x 6 y in P , y 2 U implies x 2 U .

(2) A cosieve in P is a subset V � P such that for every x 6 y in P , x 2 V implies y 2 V .

The complement of a sieve is a cosieve and the complement of a cosieve is a sieve. We also call a sieve
(resp. cosieve) the functor of posets given by the inclusion of a sieve (resp. cosieve). The following lemma
is classical and says that the functor u� (resp. vŠ) deserves the name “extension by zero” if u is a sieve
(resp. if v is a cosieve).

Lemma 2.9 Let P be a finite poset.

(1) Let u WU ,! P be a sieve. For F 2D.P /, the natural morphism F! u�u
�F is an isomorphism if

and only if .ix/�FD 0 for all x 2 P nU .

(2) Let v W V ,! P be a cosieve. For F 2D.P /, the natural morphism vŠv
�F! F is an isomorphism

if and only if .ix/�FD 0 for all x 2 P nV .

Proof We prove the first point (the second is proved dually). Let us assume that the natural morphism
F! u�u

�F is an isomorphism. Then for x 2 P nU we have an isomorphism

.ix/
�F' .ix/

�u�u
�F' .px=U /�.i

U
x=U /

�u�F;

where the second isomorphism follows from Section 2.1.3(4). By assumption, we have x=U D¿ and
Section 2.1.3(1) implies that .ix/�F D 0. Conversely, if .ix/�F D 0 for all x 2 P nU then the same
argument shows that the natural morphism .ix/

�F! .ix/
�u�u

�F is an isomorphism. The fact that it is
an isomorphism also for x 2 U follows from the same kind of reasoning as in the proof of Lemma 2.7.
Thanks to Section 2.1.3(2) we conclude that the morphism F! u�u

�F is an isomorphism.

The next lemma explains the compatibility between extension by zero and pullback.

Lemma 2.10 (1) Consider the cartesian diagram in the category of finite posets ,

f �1.U /
u0
//

g

��

Q

f

��

U
u

// P

where u is a sieve. Then we have a canonical isomorphism f �u�
��! .u0/�g

�.

Algebraic & Geometric Topology, Volume 24 (2024)



The localization spectral sequence in the motivic setting 1445

(2) Consider the cartesian diagram in the category of posets ,

f �1.V /
v0
//

h
��

Q

f

��

V
v

// P

where v is a cosieve. Then we have a canonical isomorphism .v0/Šh
� ��! f �vŠ.

Proof We prove the first point (the second is proved dually). The morphism f �u�! .u0/�g
� is the

composite f �u�! .u0/�.u
0/�f �u�

��! .u0/�g
�u�u�

��! .u0/�g
�. The fact that it is an isomorphism

follows from Lemma 2.9 and the fact that u and u0 are sieves.

The next lemma provides a projection formula for the “extension by zero” functors.

Lemma 2.11 Let P be a finite poset.

(1) Let u W U ,! P be a sieve. For F 2D.P / and G 2D.U /, the natural morphism

F˝u�G! u�.u
�F˝G/

defined in Section 2.1.4(3) is an isomorphism.

(2) Let v W V ,! P be a cosieve. For F 2D.P / and G 2D.V /, the a natural morphism

vŠ.v
�F˝G/! F˝ vŠG

defined in Section 2.1.4(4) is an isomorphism.

Proof We prove the first point (the second is proved dually). Let c W P nU ,! P denote the cosieve
complementary to u. Then c�.F˝u�G/' c�F˝c�u�GD 0 since c�u�D 0 by Lemma 2.9. Using that
same lemma and also Lemma 2.7, we see that each step in the definition of the morphism Section 2.1.4(3)
is an isomorphism.

2.3 Localization triangles

Let P be a finite poset. Let u W U ,! P be a sieve and v W V ,! P denote the complementary cosieve.

Lemma 2.12 For F 2D.P / there is a unique distinguished triangle in D.P /,

(5) vŠv
�F! F! u�u

�F C1�!;

such that the first two maps are the counit and unit respectively. It is functorial in F and we call it a
localization triangle.

Proof Let C denote a cone of the counit morphism vŠv
�F!F, so that we have a distinguished triangle

in D.P /,

(6) vŠv
�F! F! C C1�!:
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By applying the triangulated functor v� to (6) and using Lemma 2.7 we get a distinguished triangle in D.V /,

v�F id
�! v�F! v�C C1�!:

We thus have v�C D0 and Lemma 2.9 implies that we have an isomorphism C 'u�u
�C . By applying the

triangulated functor u� to (6) and using u�vŠD 0, which follows from Lemma 2.9, we get a distinguished
triangle in D.U /,

0! u�F! u�C C1�!;

and deduce that we have an isomorphism C ' u�u
�F. This implies the existence of a distinguished

triangle whose first two edges are the counit vŠv�F! F and the unit F! u�u
�F. By adjunction and

v�u� D 0, which follows from Lemma 2.9, we have HomD.P /.vŠv
�F; u�u

�FŒ�1�/D 0, and [Beı̆linson
et al. 1982, corollaire 1.1.10] implies that the remaining edge of the triangle is unique. This implies that
the triangle is functorial in F.

Remark 2.13 The output of the above lemma, as well as the results of the rest of this section, is a
diagram in the triangulated category D.P /, and is thus a partially incoherent diagram from the point
of view of derivators (see Remark 2.2). It is of course possible to lift it to a coherent diagram living in
D.P � Œ3�/, where Œn� denotes the poset .f0; 1; : : : ; ng;6/ with n consecutive arrows. We choose not to
phrase our results (and in particular Proposition 2.20 below) in this totally coherent way but rather in a
way that is more appealing to readers familiar with the setting of triangulated categories.

However, let us sketch a way to do so in the particular example of the above lemma. The first step is to
lift the counit morphism vŠv

�F! F to an object of D.P � Œ1�/. For this we can consider the cosieve
v0 W V 0 ,! P � Œ1� where V 0 consists of those elements .x; i/ such that x 2 V if i D 0. If f W P � Œ1�! P

denotes the natural projection, then we can consider the object

.v0/Š.v
0/�f �F 2D.P � Œ1�/

and check that its underlying morphism in D.P / is indeed the counit morphism vŠv
�F! F. One can

then proceed as in [Groth 2013, Section 4.2] (see also [Ayoub 2007a, remarque 2.1.38]) to produce a
coherent lift of the triangle (6), and the same arguments as in the proof above identify it to a coherent lift
of the triangle (5).

The next lemma explains the compatibility between the localization triangles and pullback.

Lemma 2.14 Let f WQ!P be a morphism of finite posets and introduce a sieve u0 W f �1.U / ,!Q and
a cosieve v0 Wf �1.V / ,!Q. For F2D.P / we have the following isomorphism of distinguished triangles ,
where the first triangle is obtained by applying f � to (5) and the second triangle is the localization
triangle (5) of f �F with respect to u0 and v0:

f �vŠv
�F // f �F // f �u�u

�F
C1

//

'
��

.v0/Š.v
0/�f �F

'

OO

// f �F // .u0/�.u
0/�f �F

C1
//
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Proof It is obtained from the diagram

f �vŠv
�F // f �F // f �u�u

�F
C1

//

'
��

.v0/Šh
�v�F
OO

'
��

'

OO

.u0/�g
�u�F

.v0/Š.v
0/�f �F // f �F // .u0/�.u

0/�f �F
C1
//

��
'

OO

where the notation is borrowed from Lemma 2.10. The isomorphisms between the first and second rows
follow from Lemma 2.10. The two visible squares of the diagram commute, and the remaining square
commutes by the uniqueness statement in Lemma 2.12.

Lemma 2.15 For F;F0 2D.P / we have the following isomorphism of distinguished triangles , where
the rows are (induced by) localization triangles:

vŠv
�.F˝F0/ //

'
��

F˝F0 // u�u
�.F˝F0/

C1
//

F˝ vŠv
�F0 // F˝F0 // F˝u�u

�F0
C1

//

'

OO

Proof It is obtained from the diagram

vŠv
�.F˝F0/ //

OO

'
��

F˝F0 // u�u
�.F˝F0/
OO

'
��

C1
//

vŠ.v
�F˝ v�F0/

'
��

u�.u
�F˝u�F0/

F˝ vŠv
�F0 // F˝F0 // F˝u�u

�F0
C1

//

'

OO

where the isomorphisms between the second and third rows follow from Lemma 2.11, the two visible
squares of the diagram commute, and the remaining square commutes by the uniqueness statement in
Lemma 2.12.

For x<y inP and F2D.P / let us denote by .ix<y/�F W .ix/
�F! .iy/

�F the corresponding morphism in
D.e/ in the underlying diagram (see Remark 2.2). Recall from Section 1.3 the morphism a

y
x WKx!Ky Œ1�

in DK–Mod.P /.

Lemma 2.16 Assume that U and V are discrete posets. Then the connecting morphism in the localization
triangle (5) reads

u�u
�F'

M
x2U

p�.ix/
�F˝Kx!

M
y2V

p�.iy/
�F˝Ky Œ1�' vŠv

�FŒ1�;

where the component indexed by x 2 U and y 2 V is p�.ix<y/�F˝ a
y
x if x < y and zero otherwise.

Note that the object p�.ix/�F˝Kx 2D.P / has value .ix/�F at x and zero at every other point.
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Proof We proceed in two steps.

(1) Assume that we work in the derivator DK–Mod and that FD p�K 2D.P / is the constant object with
values K. Since U and V are discrete posets we have, by Section 2.1.3(2), isomorphisms

u�u
�p�K'

M
x2U

Kx and vŠv
�p�K'

M
y2V

Ky :

For x 2 U and y 2 V , we can apply Lemma 2.14 to Z D fx; yg, to reduce the computation of the
connecting morphism to the case where P D Z has two elements. If x < y then the connecting
morphism is ayx by definition. Otherwise P is itself discrete and Section 2.1.3(2) implies that we have
F' u�u

�p�K˚ vŠv
�p�K, and the connecting morphism is zero.

(2) We now work in the general case of the lemma. We write FD F˝p�K. By applying Lemma 2.15
for F0 D p�K and using the first step of the proof, we get a commutative diagram

u�u
�F // vŠv

�FŒ1�

'
��

F˝u�u
�p�K

'

OO

OO

'
��

// F˝ vŠv
�p�KŒ1�
OO

'
��L

x2U F˝Kx //
L
y2V F˝Ky Œ1�

where the component of the bottom morphism indexed by x 2 U and y 2 V is idF˝ a
y
x if x < y and

zero otherwise. Let us now fix x 2 U and y 2 V with x < y. By 2–functoriality we have a commutative
diagram

F F

��

.ix/Š.ix/
�F

OO

.iy/�.iy/
�F

.ix/Š.ix/
�p�.ix/

�F

��

.iy/�.iy/
�p�.iy/

�F

p�.ix/
�F

p�.ix<y/
�F

// p�.iy/
�F

OO

where the values at x of the vertical arrows on the left are isomorphisms and the values at y of the vertical
arrows on the right are isomorphisms. We then conclude that we have a commutative diagram

F˝Kx
id˝ay

x
//

OO

'

��

F˝Ky Œ1�

p�.ix/
�F˝Kx

p�.ix<y/
�F˝a

y
x

// p�.iy/
�F˝Ky Œ1�
��

'

OO

and the claim follows.
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2.4 Postnikov systems from derivators

Let P be a finite poset and let � W P ! Z>1 be a strictly increasing map. This defines a finite decreasing
filtration of P by cosieves V k D fx 2 P j �.x/> kg such that each complement V k nV kC1 is a discrete
poset (an antichain in P ). We let vk W V k ,! P .

Lemma 2.17 Let F 2D.P /.

(1) We set F kFD .vk/Š.v
k/�F. We have a Postnikov system in D.P /,

� � � // F 3F //

{{

F 2F //

{{

F 1FD F

{{

G3F

C1

cc

G2F

C1

cc

G1F

C1

cc

where the graded objects are given by

GkF'
M

�.x/Dk

p�.ix/
�F˝Kx :

(2) For every integer k, the connecting morphism GkF!GkC1FŒ1� has its component indexed by x
and y with �.x/D k and �.y/D kC 1, given by

p�.ix/
�F˝Kx

p�.ix<y/
�F˝a

y
x

����������! p�.iy/
�F˝Ky Œ1�

if x < y, and zero otherwise.

(3) The above Postnikov system is functorial in F.

Proof (1) The morphism F kC1F! F kF is defined as the composite

.vkC1/Š.v
kC1/�F' .vk/ŠvŠv

�.vk/�F! .vk/Š.v
k/�F

where v W V kC1 ,! V k is a cosieve with complementary sieve u W V k nV kC1 ,! V k . According to
Lemma 2.12 this morphism fits into a distinguished triangle

F kC1F! F kF!GkF C1�!

with GkFD .vk/Šu�u
�.vk/�F. Since V k nV kC1 is a discrete poset we have, as in the proof of

Lemma 2.16, an isomorphism

GkF'
M

�.x/Dk

F˝Kx '
M

�.x/Dk

p�.ix/
�F˝Kx :

(2) Applying Lemma 2.14 to Z D fx 2 P j �.x/ 2 fk; kC 1gg we are reduced to the two-step case
where �.P /� f1; 2g. In this case the claim is Lemma 2.16 and we are done.

(3) The functoriality statement follows from the functoriality of localization triangles (Lemma 2.12).
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Remark 2.18 In the spirit of Remark 2.13 let us sketch a way to lift the partially incoherent Postnikov
system of the above lemma to a totally coherent diagram.1 The first step is to lift the horizontal morphisms
to an object of D.P � Œn�/ where n is an integer such that �.P /� f1; : : : ; ng. For this we consider the
cosieve v0 W V 0 ,! P � Œn� consisting of elements .x; i/ such that x 2 V iC1. If f W P � Œn�! P denotes
the natural projection then the object .v0/Š.v0/�f �F 2D.P � Œn�/ is a coherent lift of the composable
morphisms F kC1F! F kF in D.P /. One can then produce the remainder of the Postnikov system in a
coherent way as in Remark 2.13.

In the next section we will apply the functor p� to a Postnikov system as in Lemma 2.17. For this reason
we now recast poset cohomology in the context of a general monoidal triangulated derivator.

Lemma 2.19 Let P be a finite poset and let x 2 P . For M 2D.e/ we have a functorial isomorphism

p�.p
�M ˝Kx/'M ˝C

�C1.x/:

Proof Call F 2D.P / admissible if for any M 2D.e/, the natural morphism

(7) M ˝p�F! p�.p
�M ˝F/

defined in Section 2.1.4(3) is an isomorphism. Admissible objects satisfy the following properties:

(a) If P has a greatest element then for every N 2D.e/, p�N is admissible. Indeed by Lemma 2.6
we have p�p� ' idD.e/ and (7) is isomorphic to the identity of M ˝N .

(b) If u WU ,!P is a sieve and G2D.U / is admissible, then u�G is admissible. Indeed, let v WP nU ,!P

denote the cosieve complementary to U . Then v�.p�M ˝u�G/' v�p�M ˝ v�u�GD 0 since
v�u� D 0. By Lemma 2.9 we thus have an isomorphism

p�M ˝u�G' u�u
�.p�M ˝u�G/' u�..p ıu/

�M ˝G/;

and (7) is isomorphic to the natural morphism

M ˝ .p ıu/�G! .p ıu/�..p ıu/
�M ˝G/;

which is an isomorphism because G is admissible by assumption.

(c) By the naturality of (7), an extension of admissible objects (and in particular a finite direct sum of
admissible objects) is admissible. A shift of an admissible object is admissible.

We now note that we have, as in the proof of Proposition 1.7, a resolution Kx ��!R�x with

Rnx D
M

Œx1<���<xn<xnC1Dx�

K6x1
:

For every y 6 x we have K6y ' .u6y/�.p6y/�K, where u6y W P6y ,! P and p6y W P6y! e are the
inclusion and projection maps of the subposet P6y D fa 2 P j a 6 yg. Since y is the greatest element

1This was suggested to us by Martin Gallauer.
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of P6y , we get by (a) above that .p6y/�K is admissible. Since P6y is a sieve in P , we get by (b)
above that K6y is admissible. By (c) above we thus get that every Rnx is admissible and then that Kx is
admissible. The claim then follows from Proposition 1.7 since p� is the homotopy limit functor.

The next proposition will be our main tool in the next section. It computes a homotopy limit in the shape
of a Postnikov system.

Proposition 2.20 Let F 2D.P /.

(1) We set F kp�FD p�.v
k/Š.v

k/�F. We have a functorial Postnikov system in D.e/,

� � � // F 2p�F //

yy

F 1p�FD p�F

yy

G2p�F

C1

dd

G1p�F

C1

ee

where the graded objects are given by

Gkp�F'
M

�.x/Dk

.ix/
�F˝C �C1.x/:

(2) For every integer k, the connecting morphism Gkp�F!GkC1p�FŒ1� has its component indexed
by x and y with �.x/D k and �.y/D kC 1, given by

.ix/
�F˝C �C1.x/

.ix<y/
�F˝b

y
x Œ1�

����������! .iy/
�F˝C �C2.y/

if x < y, and zero otherwise.

(3) The above Postnikov system is functorial in F.

Proof This follows from applying the triangulated functor p� to the Postnikov system of Lemma 2.17
and setting F kp�F WD p�F

kF and Gkp�F WD p�G
kF. The description of the graded objects follows

from Lemma 2.19. The description of the connecting morphisms follows from Proposition 1.10.

Remark 2.21 The Postnikov system of Proposition 2.20 is functorial with respect to isomorphisms of
posets in the following sense. Let ˛ W P ! P 0 be an isomorphism of posets; we set � 0 D � ı ˛�1. For
F0 2 D.P 0/ there is a natural isomorphism .p0/�F0 ��! p�˛

�F0 and a natural isomorphism between
the Postnikov system corresponding to F0 2 D.P 0/ and the one corresponding to ˛�F0 2 D.P /. The
corresponding isomorphism at the level of graded objects has component indexed by x0 2 P 0 and x 2 P
given by

.ix0/
�F0˝C �C1P 0 .x

0/
id˝C �C1.˛/

�
�������! .ix/

�˛�F0˝C �C1P .x/

if ˛.x/D x0 and zero otherwise, where C �C1.˛/ was defined in Remark 1.2. This follows easily from
Remark 1.11.
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3 The main theorem

3.1 Categories of motives

3.1.1 Conventions on schemes In what follows we fix a noetherian base scheme B and write “scheme”
for “separated scheme over B”.

3.1.2 Motives over a scheme For every scheme X we have, following Morel and Voevodsky [1999]
and Ayoub [2007a; 2007b], a unital symmetric monoidal triangulated derivator DAX of étale motives
over X with coefficients in K. It is a particular case of a stable homotopical functor SHT

M constructed
in [Ayoub 2007b, définition 4.5.21], taking for the model category M (the category of “coefficients”)
the category of complexes of K–modules, for T the Tate motive (the stabilization consists in formally
inverting the functor T ˝�), and considering the étale topology; the axioms of a unital symmetric
monoidal triangulated derivator are proved to hold in [Ayoub 2007b, section 4.5]. Other constructions
lead to equivalent (under certain assumptions) categories of motives, such as Beilinson motives, étale
motives with transfers, and h–motives; see [Ayoub 2014b, théorème B.1; Cisinski and Déglise 2016,
Corollary 5.5.5; 2019, Section 16.2].

Remark 3.1 By making other choices of M and T one is led to other categories such as the Morel–
Voevodsky stable A1–homotopy categories of schemes SH, where our results below still hold.

There is a natural morphism of unital symmetric monoidal triangulated derivators DK–Mod!DAX , so
that the derivator D DDAX satisfies the assumptions of Section 2.1.5. In what follows we will make an
abuse of notation and simply write DAX for the ground category DAX .e/.

Let us note that X 7!DAX satisfies the “six functor formalism”, for which we will not give a definition
here but rather refer to Ayoub. This means that it has the same formal functoriality properties as derived
categories of sheaves in familiar contexts. In particular, it underlies a cross functor [Ayoub 2007a,
définition 1.2.12, scholie 1.4.2]. This notion (defined in [loc. cit., section 1.2]) abstracts the properties of
the exchange morphisms between Š and � pullbacks and/or pushforwards (such as the morphism appearing
in the proper base change theorem).

Another important feature that we will use is the existence of functorial localization triangles [Ayoub
2007a, section 1.4.4] for F 2DAX , where i WZ ,!X denotes a closed immersion and j WX nZ ,!X

denotes the complementary open immersion,

(8) jŠj
ŠF! F! i�i

�F C1�! :

3.1.3 Motives over a diagram of schemes In the proof of the main theorem below we will make use
of categories of motives over diagrams of schemes, introduced by Ayoub. A diagram of schemes .P;X/
is the datum of a finite poset P along with a functor X W P op! Sch. (Our convention is actually opposed
to Ayoub’s, see Remark 3.2 below.) For X a scheme we have the constant diagram of schemes .P;X/
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where all the transition maps are the identity of X . We view a scheme as the constant diagram of schemes
on the poset with one element: X D .e; X/. Diagrams of schemes form a 2–category [Ayoub 2007a,
définition 2.4.4] in which a morphism ˛ W .P;X/! .Q;Y/ consists of a morphism of posets ˛ W P !Q

along with a natural transformation X) Y ı˛.

Ayoub defines a (1–contravariant, 2–covariant) 2–functor

.P;X/ 7!DA.P;X/

from the 2–category of diagrams of schemes to the 2–category of triangulated categories which extends
the derivator P 7! DA.P;X/ D DAX .P / for every scheme X . This functor satisfies the axioms
of an algebraic derivator [Ayoub 2007a, 2.4.2] that we will not discuss here. We simply note that for
˛ W.P;X/!.Q;Y/ a morphism of diagrams of schemes, the natural morphism ˛� WDA.Q;Y/!DA.P;X/

admits a right adjoint ˛� WDA.P;X/!DA.Q;Y/. The existence of left adjoints is more constrained.

Remark 3.2 Our convention for diagrams of schemes and for the variance of DA is opposed to Ayoub’s
but is consistent with our variance convention for derivators (see Remark 2.3) and with the convention for
posets of strata introduced in the next subsection.

3.2 The main theorem

Let X be a scheme and let X0 be a dense open subscheme of X with complement Z. We denote by
j W X0 ,! X and i W Z ,! X the corresponding open and closed immersions. Let us be given a (finite)
stratification of Z, ie a finite partition of Z by locally closed subschemes called strata such that the
Zariski closure of each stratum is a union of strata. The set P of strata is naturally endowed with the
structure of a poset where for strata S; T 2 P ,

S 6 T () S � T:

We thus get a stratification of X indexed by the extended poset yP D fX0g[P with X0 <S for all S 2P .

For S 2 P we have defined (see Section 1.1) a complex of K–modules C �.S/ which computes the
reduced cohomology groups of the poset P<S . For strata S; T 2 P with S É T we have defined (see
Section 1.2) a morphism of complexes bTS WC

�.S/!C �.T /Œ1�. We also define C �.X0/ to be the complex
K concentrated in degree zero. For a minimal stratum S 2P , ie such that X0ÉS in yP , we have a natural
(iso)morphism of complexes bSX0

W C �.X0/! C �.S/Œ1�.

We fix a strictly increasing map � W yP !Z, and we assume that �.X0/D 0. Such a map always exists. If
P is graded then we may take � D rk, the rank function.

In the statement of the next theorem, we will use the following “restriction” morphisms of functors (for
strata S 6 T ):

(9) �TS W .i
X

S
/�.i

X

S
/�! .iX

S
/�.i

S

T
/�.i

S

T
/�.iX

S
/� ' .iX

T
/�.i

X

T
/�:
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Theorem 3.3 Let F 2DAX and set GD jŠj
ŠF.

(1) There is a Postnikov system in DAX ,

� � � // F 2G //

{{

F 1G //

{{

F 0GD G

{{

G2G

C1

cc

G1G

C1

cc

G0G

C1

cc

where the graded objects are given by

GkGD
M

�.S/Dk

.iX
S
/�.i

X

S
/�F˝C �.S/:

(2) For every integer k, the connecting morphism GkG!GkC1GŒ1� has its component indexed by S
and T with �.S/D k and �.T /D kC 1, given by

.iX
S
/�.i

X

S
/�F˝C �.S/

�T
S F˝bT

S
�����! .iX

T
/�.i

X

T
/�F˝C �.T /Œ1�

if S < T and zero otherwise.

(3) The above Postnikov system is functorial in F.

Proof We proceed in three steps.

(a) We construct the first triangle. The (rotated) localization triangle (8) reads

i�i
�FŒ�1�! jŠj

ŠF! F C1�!

and provides the first triangle of the Postnikov system, with F 1G D i�i
�FŒ�1� and G0G D F. It is

functorial in F.

(b) We work with motives over diagrams of schemes. We consider the diagram of schemes .P;Z/ where
Z WP op! Sch is defined by S 7!S and where the transition morphisms are the natural closed immersions.
We have a natural morphism of diagram of schemes s W .P;Z/!Z induced by the closed immersions
S ,!Z. This was previously considered by Ayoub and Zucker [2012, Lemma 1.18] who proved that the
natural counit idDAZ

! s�s
� is an isomorphism. We thus have an isomorphism in DAZ ,

i�i
�F' i�s�s

�i�F:

Let us recall that .P;X/ denotes a constant diagram of schemes. We have a natural morphism of diagrams
of schemes r W .P;Z/ ! .P;X/ induced by the closed immersions S ,! X . If we also denote by
p W .P;X/! .e; X/DX the projection to a point, we have the following commutative diagram:

.P;Z/
r
//

s

��

.P;X/

p

��

Z
i

// X
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We thus have an isomorphism

F 1G' p�HŒ�1�

where we set HD r�r
�p�F 2DA.P;X/DDAX .P /. It is easy to see, using the axiom DerAlg 3d in

[Ayoub 2007a, définition 2.4.12], that the value of H at a stratum S is .iX
S
/�.i

X

S
/�F. Moreover, for strata

S 6 T the transition map from the value at S to the value at T is the restriction morphism �TSF defined
in (9).

(c) We construct the Postnikov system. By applying Proposition 2.20(1) to the object H 2DAX .P / we
get a Postnikov system in DAX ,

� � � // F 2p�H //

yy

F 1p�HD p�HD F 1GŒ1�

yy

G2p�H

C1

dd

G1p�H

C1

ee

with

Gkp�H'
M

�.S/Dk

.iX
S
/�.i

X

S
/�F˝C �C1.S/:

This is, up to a shift, the remainder of the Postnikov system promised in the theorem, ie we set, for k > 1,

F kGD F kp�HŒ�1� and GkGDGkp�HŒ�1�:

The description of the connecting morphisms follows from Proposition 2.20(2). (The connecting morphism
G0F!G1FŒ1� needs to be treated separately; it is the composite F! i�i

�F!
L
�.S/D1.i

X

S
/�.i

X

S
/�F

which is the sum of the morphisms �SX0
F.) The functoriality statement follows from Proposition 2.20(3).

For any (B–)scheme X let us denote by aX W X ! B its structural map. The next corollary expresses
the “compactly supported cohomology” of a motivic sheaf F on the open X0 in terms of “compactly
supported cohomology” of F on all the closures of strata.

Corollary 3.4 Let F 2DAX and set M D .aX0
/Šj

ŠF 2DAB .

(1) There is a Postnikov system in DAB ,

� � � // F 2M //

zz

F 1M //

zz

F 0M DM

zz

G2M

C1

cc

G1M

C1

dd

G0M

C1

dd

where the graded objects are given by

GkM D
M

�.S/Dk

.aS /Š.i
X

S
/�F˝C �.S/:
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(2) For every integer k, the connecting morphism GkM !GkC1MŒ1� has its component indexed by
S and T with �.S/D k and �.T /D kC 1, given by

.aS /Š.i
X

S
/�F˝C �.S/

�T
S F˝bT

S
�����! .aT /Š.i

X

T
/�F˝C �.T /Œ1�

if S < T and zero otherwise.

(3) The above Postnikov system is functorial in F.

Proof This follows from applying the functor .aX /Š to the Postnikov system of Theorem 3.3. By the
projection formula we have an isomorphism

.aX /Š
�
.iX
S
/�.i

X

S
/�F˝C �.S/

�
D .aX /Š

�
.iX
S
/�.i

X

S
/�F˝ .aX /

�C �.S/
�
' .aX /Š.i

X

S
/�.i

X

S
/�F˝C �.S/;

and this equals .aS /Š.i
X

S
/�F˝C �.S/ since .aX /Š.iXS /� D .aX /Š.i

X

S
/Š D .aS /Š.

Remark 3.5 One can also apply the functor .aX /� to the Postnikov system of Theorem 3.3 and get a
Postnikov system expressing the relative motive of the pair .X;Z/ with coefficients in a motivic sheaf F.
It is a motivic refinement of the classical long exact sequence in relative cohomology.

3.3 Localization spectral sequences

We recover the spectral sequences of [Petersen 2017] by applying realization functors.

3.3.1 Betti realization We now consider a finite type scheme X over C. We have the Betti realization
functor [Ayoub 2010]

DAX !D.X an/;

whose target is the derived category of the category of sheaves of K–modules on the analytification X an.
This functor is compatible with the operations f �, f�, fŠ and ˝, and we thus get from Theorem 3.3
(resp. Corollary 3.4) a Postnikov system inD.X an/ (resp.D.Ban/). We can then derive a spectral sequence
by applying a cohomological functor such as the “cohomology sheaves” functor H0 WD.Ban/! Sh.Ban/.

Remark 3.6 We may also apply other natural cohomological functors when available. For instance, if
the Betti realization of F is a complex of sheaves with constructible cohomology sheaves, almost all of
which are zero (eg if F is a constant sheaf), then one can also apply the perverse cohomology functor
pH0 with target the category of perverse sheaves pPerv.Ban/ for any perversity function p [Beı̆linson
et al. 1982].

In the case B D Spec.C/, the spectral sequence reads:

E
p;q
1 D

M
�.S/Dp

HpCq.R�c.i
X

S
/�F˝C �.S//)HpCq

c .X0; j
ŠF/:

We can make it more explicit under some extra assumptions as in [Petersen 2017, Section 3], and
we get for instance the following corollary [Petersen 2017, Theorem 3.3(ii)]. We recall the notation
hn.S/DHn.C �.S// from Section 1.1.
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Corollary 3.7 Assume that K is a hereditary ring (eg K is a field or KD Z) and that for every stratum
S and every integer n the cohomology group hn.S/ is a torsion-free K–module. Then we have a spectral
sequence of K–modules

E
p;q
1 D

M
�.S/Dp
iCjDpCq

H i
c .S; .i

X

S
/�F/˝ hj .S/)HpCq

c .X0; j
ŠF/:

Proof Since C �.S/ is a complex of free K–modules, the tensor product by C �.S/ is also the derived
tensor product. Moreover, since K is hereditary, the complex C �.S/ is quasi-isomorphic to its cohomology.
Finally, since that cohomology is assumed to be torsion-free, the Künneth formula applies without the
Tor correction term.

Remark 3.8 In the context of Remark 1.6 we can simplify further since most cohomology groups hj .S/
vanish: we get a spectral sequence

E
p;q
1 D

M
rk.S/Dp

H q
c .S; .i

X

S
/�F/˝ h.S/_)HpCq

c .X0; j
ŠF/:

The differential dp;q1 has component indexed by strata S and T , with rk.S/ D p and rk.T / D pC 1,
given by

H q
c .S; .i

X

S
/�F/˝ h.S/_

�T
S F˝bT

S
�����!H q

c .T ; .i
X

T
/�F/˝ h.T /_

if S < T , and zero otherwise.

3.3.2 Hodge realization In the case K D Q, the Betti realization functor can be enriched into a
Hodge realization functor in the constructible case. Following [Ayoub 2014a, Definition 2.11] we define
DAct

X to be the smallest triangulated subcategory of DAX stable under direct summands and Tate twists
and containing the motives f�KY for f W Y ! X of finite presentation. Objects of DAct

X are called
constructible.

Thanks to [Ivorra 2016] we have Hodge realization functors

DAct
X !Db.MHM.X//

which are compatible with the six functor formalism, where MHM.X/ is Saito’s category of mixed Hodge
modules on X [Saito 1990]. This proves that the spectral sequence of Corollary 3.7 is compatible with
mixed Hodge structures if X has finite type over Spec.C/ and F is constructible, eg FDQX the constant
sheaf. This was already noted by Petersen [2017, Theorem 3.3(ii)].

3.3.3 Étale (and `–adic) realization Let us assume that B D Spec.k/ for some field k. We fix a
prime ` invertible in k and set KDQ`. By [Ayoub 2014b, sections 5 and 9; Cisinski and Déglise 2016,
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Section 7.2], we have an étale (or `–adic) realization functor

DAct
X !Dbc .X

ét/

compatible with the six operations, where Dbc .X
ét/ is Ekedahl’s triangulated category of `–adic systems

[Ekedahl 1990].

This implies that we have a spectral sequence in étale cohomology analogous to that of Corollary 3.7 with
Q` coefficients, with values in the category of continuous representations of the Galois group Gal.ksep=k/.
This was already noted by Petersen [2017, Theorem 3.3(ii)].

3.4 The dual version

We start with the “dual” variant of Theorem 3.3, where we consider the same geometric situation but
study the object j�j �F instead of jŠj ŠF. We will derive one from the other by using Verdier duality in
the motivic setting (see Remark 3.10 below for a discussion of this strategy).

For simplicity we assume that the base scheme B is of finite type over a characteristic zero field. Then
we have a Verdier duality functor [Ayoub 2014a, Theorem 3.10]

DX W .DAct
X /

op
!DAct

X

which satisfies the usual compatibilities DX ıDX ' id and DY ıf�' fŠ ıDX for f WX! Y a morphism
of schemes.

Recall from Sections 1.1 and 1.2 the homological complexes C�.S/, for S 2 P , that we now treat with
cohomological conventions (ie with negative cohomological degrees) and the connecting morphisms
bTS W C�C1.T /! C�.T / for S É T , which in cohomological conventions read bTS W C�.T /! C�.S/Œ1�.
As in the previous paragraph we set C�.X0/ D K concentrated in degree 0, and for S 2 P a minimal
element, we consider the natural (iso)morphism bSX0

W C�.S/! C�.X0/Œ1�.

In the statement of the next theorem we will use the following “Gysin-type” morphisms of functors,
which are dual to restriction morphisms �TS (for strata S 6 T ):

(10) TS W .i
X

T
/Š.i

X

T
/Š ' .iX

S
/Š.i

S

T
/Š.i

S

T
/Š.iX

S
/Š! .iX

S
/Š.i

X

S
/Š:

Theorem 3.9 Let F 2DAct
X be a constructible object and let us set GD j�j

�F.

(1) There is a Postnikov system in DAX ,

GD F0G // F1G

C1||

// F2G

C1||

// � � �

C1{{

G0G

bb

G1G

bb

G2G

bb

where the graded objects are given by

GkGD
M

�.S/Dk

.iX
S
/Š.i

X

S
/ŠF˝C�.S/:
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(2) For every integer k, the connecting morphism GkC1G!GkGŒ1� has its component indexed by S
and T with �.S/D k and �.T /D kC 1, given by

.iX
T
/Š.i

X

T
/ŠF˝C�.T /

T
S F˝bT

S
�����! .iX

S
/Š.i

X

S
/ŠF˝C�.S/Œ1�

if S < T , and zero otherwise.

(3) The above Postnikov system is functorial in F.

Proof We apply Theorem 3.3 to the Verdier dual of F and dualize the Postnikov system obtained in this
way. The only thing that needs to be checked is the description of GkG and the connecting morphisms.
Let !X 2DAct

X denote the dualizing object. For any object U 2DAct
X ,

DX .U˝C �.S//D HomDAct
X
.C �.S/˝U; !X /' HomDAct

X
.C �.S/;DX U/' DX U˝C�.S/:

In the last step we have used the fact that C�.S/ is the strong dual of C �.S/ in the monoidal category
DK–Mod because it is a bounded complex of free K–modules of finite rank. By applying this to

UD .iX
S
/�.i

X

S
/�DX F;

using the compatibility between Verdier duality and the functors i� and iŠ, and the fact that DX ıDX F'F,
we get an isomorphism

DX
�
.iX
S
/�.i

X

S
/�DX F˝C �.S/

�
' .iX

S
/Š.i

X

S
/ŠF˝C�.S/:

This implies the description of GkG as in the statement of the theorem. The fact that the Gysin morphisms
TS defined in (10) and the restriction morphisms �TS defined in (9) are Verdier dual to each other is clear,
and the claim follows.

Remark 3.10 Theorem 3.9 is most certainly true without the assumption that F is constructible and
without the assumption that B is a finite type scheme over a characteristic zero field. In fact, as noted in the
introduction, we can prove it without the functoriality statement using only the language of triangulated
categories. However, it seems that the tools that we are using do not allow us to do it functorially. Indeed,
we cannot simply repeat the proof of Theorem 3.3 since the existence of a left adjoint to the functor s�

appearing in the proof is not guaranteed in the context of an algebraic derivator.

Remark 3.11 As in Corollary 3.4 and Remark 3.5 one may apply the functors .aX /� or .aX /Š to the
Postnikov system of Theorem 3.9 to get localization Postnikov systems in DAB . In the case of .aX /�
this computes .aX0

/�j
�F, the cohomology of X0 with coefficients in the restriction of F; a particularly

interesting case is when F D KX is a constant motivic sheaf. There the main difficulty is to be able
to compute the graded objects of the Postnikov system, ie the objects .aS /�.i

X

S
/ŠKX for all strata S .

Luckily, if S is smooth of codimension c in X , then by purity we have an isomorphism

.iX
S
/ŠKX 'KS Œ�2c�.�c/;

and the localization Postnikov system is expressed in terms of the motives of the closures of strata.
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Remark 3.12 By applying realization functors and cohomological functors one gets spectral sequences
from Theorem 3.9 as in Section 3.3. We only state one special case that is important for applications. Let
FDKX , and assume that we are in the context of Corollary 3.7 and Remark 3.8. Further assume that for
every stratum S the closure S is smooth of codimension cS in X . Then we get by the previous remark a
(second quadrant) spectral sequence in mixed Hodge structures:

(11) E
�p;q
1 D

M
rk.S/Dp

H q�2cS .S/.�cS /˝ h.S/)H�pCq.X0/:

A special case of interest is when the stratification is induced by a normal crossing divisor, in which case
cS D rk.S/ and h.S/ has rank one for every stratum S ; one then recovers Deligne’s spectral sequence
[1971, 3.2.4.1]. The other classical spectral sequences cited in the introduction [Bibby 2016; Björner
and Ekedahl 1997; Cohen and Taylor 1978; Dupont 2015; Getzler 1999; Goresky and MacPherson 1988;
Kříž 1994; Looijenga 1993; Totaro 1996] are all special cases of (11).

3.5 Functoriality

We now turn to the functoriality of our main theorem with respect to morphisms of schemes. With a little
more work it should be easy to treat more general cases.

3.5.1 A category of stratified schemes For simplicity we restrict to morphisms between stratified
schemes whose underlying combinatorial datum is an isomorphism of posets.

Definition 3.13 Let X and X 0 be two stratified schemes with posets of strata yP and yP 0 as in Section 3.2.
A stratified morphism from X to X 0 is a pair .˛; f / where ˛ W yP ! yP 0 is an isomorphism of posets and
f WX !X 0 is a morphism of schemes such that

f .S/� ˛.S/ for all S 2 yP :

Note that for a stratified morphism .˛; f /, the morphism f does not determine ˛ in general. However,
for an isomorphism of schemes f WX !X 0 such that the image by f of every stratum of X is a stratum
of X 0, there is a unique ˛ W yP ! yP 0 such that .˛; f / is a stratified isomorphism.

Our notion of stratified morphism is more easily understood in the context of the category of diagrams of
schemes. For a stratified scheme X with poset of strata yP we have a natural diagram of schemes . yP ;X/
where X W yP op! Sch sends S to S . A stratified morphism .˛; f / as above gives rise to a morphism of
diagrams of schemes

.˛; f / W . yP ;X/! . yP 0;X0/:

One can thus view our category of stratified schemes as a subcategory of the category of diagrams
of schemes. It is not a full subcategory since we only consider morphisms .˛; f / for which ˛ is an
isomorphism of posets.

3.5.2 Functoriality of the localization triangle The first step in the construction of the Postnikov
system is just the localization triangle (8). So let us consider a morphism of pairs f W .X;Z/! .X 0; Z0/,
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whereZ andZ0 are closed subschemes and f .Z/�Z0. If we denote byX0 andX 00 the open complements,
then f �1.X 00/�X0. We have the diagram

Z
i
//

f
��

X

f
��

X0
j

oo f �1.X 00/
j0
oo

f
��

Z0
i 0
// X 0 X 00j 0
oo

where the left square is commutative and the rectangle on the right is cartesian. Given an object F0 2DAX 0 ,
we want to define a morphism between the localization triangle for F0 and f� of the localization triangle
for f �F0:

.i 0/�.i
0/�F0Œ�1� //

��

.j 0/Š.j
0/ŠF0 //

��

F0
C1
//

��

f�i�i
�f �F0Œ�1� // f�jŠj

Šf �F0 // f�f
�F0

C1
//

Let us now define the three vertical morphisms:

� The right morphism is of course the adjunction unit F0! f�f
�F0.

� The left morphism is given by the composition

.i 0/�.i
0/�F0Œ�1�! .i 0/�f�f

�.i 0/�F0Œ�1� ��! f�i�i
�f �F0Œ�1�;

where the first arrow is induced by the adjunction unit, and the isomorphism on the right follows
from the commutativity of the left square in the diagram above.

� The middle morphism is given by the composition

.j 0/Š.j
0/ŠF0! .j 0/Šf�f

�.j 0/ŠF0! f�jŠ.j0/Š.j0/
Šj Šf �F0! f�jŠj

Šf �F0;

where the first arrow is induced by the adjunction unit, the second arrow induced by two exchange
morphisms (which are part of the cross functor structure; see [Ayoub 2007a, section 1.2]) for the
cartesian square on the right of the diagram above, and the third arrow is induced by the adjunction
counit.

We leave it to the reader to check that this defines indeed a morphism of triangles. The commutativity of
the left square is easy, the commutativity of the right square is a nice exercise on using the axioms of a cross
functor, and the commutativity of the third square follows from [Beı̆linson et al. 1982, proposition 1.1.9].

Remark 3.14 Assume that B D Spec.C/ and denote by a W X ! B and a0 W X 0 ! B the structure
morphisms. If f is proper, we have a0

Š
f� D a0

Š
fŠ D aŠ. Consequently, taking F0 D QX 0 , applying

the functor a0
Š

and taking the Betti realization, we get the functoriality (for proper morphisms) of the
localization long exact sequence of the introduction:

� � � // H �c .X
0
0/

//

��

H �c .X
0/ //

��

H �c .Z
0/ //

��

H �C1c .X 00/
//

��

� � �

� � � // H �c .X0/
// H �c .X/

// H �c .Z/
// H �C1c .X0/ // � � �
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Similarly, using a0� instead, we get the functoriality of the long exact sequence in relative cohomology:

� � � // H �.X 0; Z0/ //

��

H �.X 0/ //

��

H �.Z0/ //

��

H �C1.X 0; Z0/ //

��

� � �

� � � // H �.X;Z/ // H �.X/ // H �.Z/ // H �C1.X;Z/ // � � �

In this case we do not need to assume that f is proper; we always have a0�f� D a�.

3.5.3 Functoriality of the localization spectral sequence To express the functoriality of Theorem 3.3
with respect to stratified morphisms, we adopt a more meaningful notation:

� For an object H 2 DAX .P / we denote by z….H/ the Postnikov system in DAX described in
Proposition 2.20.

� For an object F 2 DAX we denote by …. yP ;X IF/ the Postnikov system in DAX described in
Theorem 3.3.

Borrowing notation from the proof of Theorem 3.3 we have that …. yP ;X IF/ is obtained by appending
z….r�r

�p�F/Œ�1� to the first (localization) triangle.

We start with a general lemma explaining the compatibility between the Postnikov systems z… and
certain pushforwards. We recall (see Remark 1.2) that an isomorphism of posets ˛ W P ! P 0 induces
isomorphisms of complexes denoted by

C �.˛/ W C �P 0.S
0/! C �P .S/

for elements S 2 P and S 0 2 P 0 such that S 0 D ˛.S/. If � W yP !Z is a strictly increasing map such that
�.O0/D 0 and if ˛ W yP ! yP 0 is an isomorphism of posets then we denote by � 0 W yP 0! Z the composite
� 0 D � ı˛�1. In the next lemma, for H 2DAX .P / and S 2 P we denote by HS 2DAX the value of H

at S .

Lemma 3.15 Let ˛ W P ! P 0 be an isomorphism of posets , let f WX !X 0 be a morphism of schemes ,
and let us denote by .˛; f / W .P;X/! .P 0; X 0/ the corresponding morphism of (constant) diagrams of
schemes. For H 2DAX .P / we have an isomorphism

z…..˛; f /�H/ ��! f� z….H/:

At the level of graded objects it readsM
�.S 0/Dk

f�H˛�1.S 0/˝C
�C1
P 0 .S

0/ ��!
M

�.S/Dk

f�.HS ˝C
�C1
P .S//'

M
�.S/Dk

f�HS ˝C
�C1
P .S/;

and its component indexed by S 0 and S is given by id˝C �C1.˛/ if S D ˛.S 0/ and zero otherwise.

Proof Since .˛; f /D .id; f / ı .˛; id/ it is enough to do the proof in the case ˛ D id and in the case
f D id. In the former case it follows from the fact that .id; f /� W DAX ! DAX 0 is a morphism of
derivators. In the latter case it is the content of Remark 2.21.
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In the statement of the next theorem we will use the following “pullback” morphisms of functors in the
context of a morphism of schemes f W X ! X 0 and two strata S and S 0 such that f .S/ � S 0, where
f S
0

S
W S ! S 0 denotes the morphism induced by f :

�S
0

S .f / W .i
X 0

S 0
/�.i

X 0

S 0
/�! .iX

0

S 0
/�.f

S 0

S
/�.f

S 0

S
/�.iX

0

S 0
/� ' f�.i

X

S
/�.i

X

S
/�f �:

Theorem 3.16 (1) The Postnikov system of Theorem 3.3 is functorial with respect to stratified
morphisms. More precisely , for every morphism .˛; f / W . yP ;X/! . yP 0; X 0/ and every object
F0 2DAX 0 we have a morphism of Postnikov systems

….˛; f IF0/ W…. yP 0; X 0IF0/! f�…. yP ;X If
�F0/:

They satisfy ….id; idIF0/D id and the equality

….ˇ ı˛; g ıf IF00/D g�….˛; f Ig
�F00/ ı….ˇ; gIF00/

for composable morphisms

. yP ;X/
.˛;f /
��! . yP 0; X 0/

.ˇ;g/
��! . yP 00; X 00/

and F00 2DAX 00 .

(2) For every integer k, the morphism ….˛; f IF0/ reads , at the level of graded objects ,M
� 0.S 0/Dk

.iX
0

S 0
/�.i

X 0

S 0
/�F0˝C �P 0.S

0/!
M

�.S/Dk

f�.i
X

S
/�.i

X

S
/�f �F0˝C �P .S/

and has its component indexed by S 0 and S given by �S
0

S .f /F
0˝C �.˛/ if S 0 D ˛.S/ and zero

otherwise.

(3) The morphism ….˛; f IF0/ is functorial in F0.

Proof We proceed in three steps as in the proof of Theorem 3.3.

(a) The first triangle of the Postnikov system is the localization triangle and its functoriality follows from
the discussion of Section 3.5.2.

(b) Following the proof of Theorem 3.3 we consider the following commutative diagram in the category
of diagrams of schemes:

.P;Z/
r
//

s

��

.P;X/

�
p

��

.˛;f /

((

Z
i

//

f

''

X

� f

''

.P 0;Z0/
r 0
//

s0

��

''

.˛;f /

.P 0; X 0/

p0

��

Z0
i 0

// X 0
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The morphism .˛; f / W .P;X/! .P;X 0/ is induced by ˛ at the level of posets and by f WX!X 0 at the
level of schemes. The morphism .˛; f / W .P;Z/! .P;Z0/ is induced by ˛ at the level of posets and by
the maps S ! ˛.S/ induced by f at the level of schemes. We have the commutative diagram in DAX 0 ,

.i 0/�.i
0/�F0 //

�

��

f�i�i
�f �F0

�

��

.i 0/�.s
0/�.s

0/�.i 0/�F0
OO

�

��

f�i�s�s
�i�f �F0
OO

�

��

.p0/�.r
0/�.r

0/�.p0/�F0
.p0/�'

// .p0/�.˛; f /�r�r
�.˛; f /�.p0/�F0 oo

�
// f�p�r�r

�p�f �F0

where the vertical arrows ��! are isomorphisms by [Ayoub and Zucker 2012, Lemma 1.18] as in the
proof of Theorem 3.3. We have the objects

H0 D .r 0/�.r
0/�.p0/�F0 and HD r�r

�.˛; f /�.p0/�F0 ' r�r
�p�f �F0

of DAX 0.P 0/ and DAX .P /, respectively, and the natural morphism ' W H0 ! .˛; f /�H appearing
in the above diagram. For S 0 2 P 0, the value of H0 at S 0 is .iX

0

S 0
/�.i

X 0

S 0
/�F0, that of .˛; f /�H is

f�.i
X

S
/�.i

X

S
/�f �F0, for S 0 D ˛.S/, and the value of ' is �S

0

S .f /F
0.

(c) We define the remainder of ….˛; f IF0/ to be the composite

z….H0/
z….'/
��! z…..˛; f /�H/ ��! f� z….H/

where the second arrow is described in Lemma 3.15. The compatibility with composition is left to the
reader. The description of ….˛; f IF0/ at the level of graded objects follows from Lemma 3.15 and the
description of the values of ' in (b). The functoriality in F0 is obvious.

Remark 3.17 By applying Poincaré–Verdier duality one gets the dual statement that the Postnikov
system of Theorem 3.9 is functorial with respect to stratified morphisms.
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Complex hypersurfaces in direct products of Riemann surfaces

CLAUDIO LLOSA ISENRICH

We study smooth complex hypersurfaces in direct products of closed hyperbolic Riemann surfaces and
give a classification in terms of their fundamental groups. This answers a question of Delzant and Gromov
on subvarieties of products of Riemann surfaces in the smooth codimension one case. We also answer
Delzant and Gromov’s question of which subgroups of a direct product of surface groups are Kähler for
two classes: subgroups of direct products of three surface groups, and subgroups arising as the kernel
of a homomorphism from the product of surface groups to Z3. These results will be a consequence of
answering the more general question of which subgroups of a direct product of surface groups are the
image of a homomorphism from a Kähler group, which is induced by a holomorphic map, for the same
two classes. This provides new constraints on Kähler groups.

32J27; 20F65, 20J05, 32Q15

1 Introduction

A Kähler group is a group that can be realized as fundamental group of a compact Kähler manifold.

Convention Throughout this work, Sg will denote a closed orientable surface of genus g � 2 and
�g D �1.Sg/ its fundamental group. Furthermore, a surface group will always be a group isomorphic
to �g for some g � 2.

Kähler groups have attracted much interest over the last decades and have been studied from many different
points of view. An important motivation for studying them is that they are closely linked to the study
of the topology of smooth complex projective varieties. Historically, a key technique for understanding
Kähler groups is through their homomorphisms onto surface groups. For some examples of how surface
groups are used in the study of Kähler groups, as well as for general background on Kähler groups, we
refer the reader to [Amorós et al. 1996] (and also [Biswas and Mj 2017; Burger 2011] for more recent
developments).

A central objective of this work will be to develop new constraints on homomorphisms from Kähler
groups onto surface groups by studying complex hypersurfaces in direct products of Riemann surfaces.
More precisely, we will address the following questions, raised by Delzant and Gromov [2005] in their
fundamental work on cuts in Kähler groups:

© 2024 The Author, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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1468 Claudio Llosa Isenrich

Question 1 [Delzant and Gromov 2005] Which subgroups of direct products of surface groups are
Kähler?

Question 2 [Delzant and Gromov 2005] Given a subgroup G � �1.Sg1
/� � � � ��1.Sgr

/, when does
there exist an algebraic variety V � Sg1

� � � � �Sgr
of a given dimension n such that the image of the

fundamental group of V is G?

Question 2 can be seen as a more general version of Question 1. This is particularly apparent from the
following group-theoretic reformulation:

Question 3 When is a subgroup G � �1.Sg1
/� � � � ��1.Sgr

/ the image of a homomorphism �1.X /!

�1.Sg1
/� � � � ��1.Sgr

/ which is induced by a holomorphic map X ! Sg1
� � � � �Sgr

from a compact
Kähler manifold X ?

Answers to these questions in concrete situations provide new constraints on Kähler groups and can thus
have interesting applications. Indeed, one such application of Theorem 1.1 has been provided recently by
Llosa Isenrich and Py [2021]. They apply it to obtain constraints on Kodaira fibrations admitting more
than two fiberings, thereby making progress on the question [Salter 2015; Catanese 2017] of whether
such Kodaira fibrations can exist.

Delzant and Gromov [2005] give criteria for when a Kähler group admits a homomorphism to a direct
product of surface groups. These results have been extended by [Py 2013; Delzant and Py 2019]. A
key consequence of their works is that many actions of Kähler groups on CAT(0) cube complexes factor
through homomorphisms to direct products of surface groups. Combined with the important role that
CAT(0) cube complexes have played in recent advances in geometric group theory and low-dimensional
topology (eg [Agol 2013]), this motivates Delzant and Gromov’s questions.

The first nontrivial examples of Kähler subgroups of direct products of surface groups were constructed by
Dimca, Papadima and Suciu [Dimca et al. 2009] with the purpose of showing that there is a Kähler group
which does not have a classifying space which is a quasiprojective variety. They arise as fundamental
groups of generic fibres of holomorphic maps from a direct product of Riemann surfaces onto an elliptic
curve, which restrict to ramified coverings of degree two on the factors. These examples have been
generalized by Llosa Isenrich [2019] and Biswas, Mj and Pancholi [Biswas et al. 2014]. All of these
examples are fundamental groups of smooth complex hypersurfaces in direct products of closed Riemann
surfaces. More general classes of Kähler subgroups of direct products of surface groups have been
constructed from holomorphic maps onto higher-dimensional tori [Llosa Isenrich 2020]. They include
examples coming from subvarieties of all possible codimensions. On the other hand, Kähler subgroups of
direct products of surface groups must satisfy strong constraints and the same remains true for subgroups
arising as images of homomorphisms which are induced by holomorphic maps [Llosa Isenrich 2020]. We
will provide more details on these results in Section 2.

Algebraic & Geometric Topology, Volume 24 (2024)



Complex hypersurfaces in direct products of Riemann surfaces 1469

The combination of the diversity of examples and constraints reveals the subtle conditions that a complete
answer to Delzant and Gromov’s question needs to satisfy. However, as discussed above, solutions even
in specific cases provide new tools for studying Kähler groups, enabling interesting applications. This
work is thus concerned with finding natural situations in which complete answers can be obtained. For
this we combine insights from previous works with Albanese maps and a careful analysis of complex
hypersurfaces in direct products of closed Riemann surfaces.

Our first result is an answer to Question 3 for direct products of three surface groups.

Definition For a direct product G1�� � ��Gr of groups, denote by pi WG1�� � ��Gr!Gi the projection
onto the i th factor. A subgroup H �G1 � � � � �Gr is called

� subdirect if pi.H /DGi for 1� i � r , and

� full if H \Gi WDH \ .1� � � � � 1�Gi � 1� � � � � 1/ is nontrivial for 1� i � r .

Theorem 1.1 Let G D �1.X / be the fundamental group of a compact Kähler manifold X, and let
� WG! �g1

��g2
��g3

be a homomorphism with finitely presented full subdirect image G WD �.G/ of
infinite index. Assume that ker.pi ı�/ is finitely generated for 1� i � 3.

Then there are finite-index subgroups �i
� �gi

, a complex elliptic curve E and a holomorphic map

f D

3X
iD1

fi W S1
�S2

�S3
!E;

induced by branched holomorphic coverings fi W Si
! E, such that G0 D ker.f�/Š �1.H / � G is a

finite-index subgroup , where H is the smooth generic fibre of f and f� W �1
��2

��3
! �1.E/ is the

induced map on fundamental groups.

We emphasize that the condition that ker.pi ı �/ is finitely generated in Theorem 1.1 implies that the
homomorphism � is induced by a holomorphic map, and, conversely, that every homomorphism to a
surface group induced by a holomorphic map will have finitely generated kernel, after possibly passing to
a finite ramified cover. Thus, our result does really provide an answer to Question 3 for direct products of
three surface groups.

Remark 1.2 Theorem 1.1 also provides constraints on homomorphisms to products of more than three
surface groups satisfying the remaining assumptions of the theorem. To see this, we use that, for subdirect
products of surface groups, finite presentability is equivalent to satisfying the virtual surjection to pairs
property (VSP) [Bridson et al. 2013, Theorem D]. Thus, finite presentability is preserved under projections
to factors, allowing us to apply Theorem 1.1 to every composition of such a homomorphism with a
projection to three of the surface group factors.

We also give a description of all possible images of homomorphisms with � as in Theorem 1.1 when the
image is not a full subdirect product (see Theorem 4.3). However, in this case the homomorphism will
not always be induced by a holomorphic map.

Algebraic & Geometric Topology, Volume 24 (2024)
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As a consequence of Theorem 4.3, we obtain the following answer to Question 1 in the three factor case:

Corollary 1.3 Let G D �1.X / � �g1
��g2

��g3
for X a compact Kähler manifold. Then there is a

finite-index subgroup G0 �G such that either

(1) G0 Š Z2k ��h1
� � � � ��hs

for h1; : : : hs � 2 and 0� 2kC s � 3; or

(2) G0 is the kernel of an epimorphism  W �1
� �2

� �3
! Z2 which is induced by a surjective

holomorphic map f D
P3

iD1 fi W S1
�S2

�S3
!E with the same properties as the map f in

Theorem 1.1.

Conversely, every group which satisfies one of the conditions (1) and (2) is Kähler.

We remark that Theorem 1.1 and Corollary 1.3 will hold for any choice of compact Kähler manifold X

with G D �1.X /. However, the complex structures on E and Si
obtained in the proof will depend

on the complex structure of X, since we will make use of the fact that there is a holomorphic map
X ! Sg1

� Sg2
� Sg3

which realizes the homomorphism G ! �g1
� �g2

� �g3
. Both results will be

consequences of the more general criterion provided by Theorem 3.1. Theorem 3.1 also allows us to
classify connected smooth complex hypersurfaces in a direct product of r closed Riemann surfaces in terms
of the image of their fundamental groups, thus providing a complete answer to Question 2 for this case.

Theorem 1.4 Let X � Sg1
� � � � �Sgr

be a connected smooth complex hypersurface in a product of
closed Riemann surfaces of genus gi � 2. Then there are finite unramified covers X0!X and Si

!Sgi
,

and a holomorphic embedding � WX0 ,! S1
� � � � �Sr

such that one of the following holds:

(1) �� is surjective on fundamental groups.

(2) X0 is a direct product of r � 1 Riemann surfaces.

(3) There is 3 � s � r , an elliptic curve E and surjective holomorphic maps hi W Si
! E for

1 � i � s such that X0 D H � SgsC1
� � � � � Sgr

for H the smooth generic fibre of h DPs
iD1 hi W S1

� � � � �Ss
!E.

Moreover , if (3) holds , then h induces a short exact sequence

1! �1.H /! �1.S1
/� � � � ��1.Ss

/! �1.E/! 1:

Finally, the techniques used to prove Theorem 3.1 can be adapted to give a complete classification of
Kähler subgroups of direct products of surface groups arising as kernels of homomorphisms to Z3, hence
also answering Question 1 for this case. We refer to Section 6 for the precise statement and results.

Structure

In Section 2 we will give some additional background and motivation for this work. In Section 3 we will
prove Theorem 3.1, which is the main technical result of this work. We apply this result in Section 4 to
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prove Theorem 1.1 and Corollary 1.3 and in Section 5 to prove Theorem 1.4. In Section 6 we explain
how the techniques used in the proof of Theorem 3.1 can be applied to kernels of homomorphisms from
direct products of surface groups to Z3.
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2 Background

When approaching Delzant and Gromov’s questions, it is helpful to use our understanding of the nature of
subgroups of direct products of surface groups from geometric group theory. The work of Bridson, Howie,
Miller and Short [Bridson et al. 2009; 2013] and other authors (eg [Kochloukova 2010; Kuckuck 2014])
shows that finiteness properties play a key role in this context. We say that a group has finiteness type Fk

if it has a classifying CW–complex with finitely many cells of dimension � k. Note that type F1 is
equivalent to being finitely generated, while type F2 is equivalent to being finitely presented. A subgroup
of type Fr of a direct product of r surface groups is virtually a direct product of finitely many free groups
and surface groups [Bridson et al. 2009; 2013]. Thus, all “nontrivial” subgroups of such a product must
have exotic finiteness properties. Moreover, for groups which are not of type Fr , stronger finiteness
properties mean stronger constraints on the type of group. For more details we refer to [Bridson et al.
2009; 2013; Kochloukova 2010; Kuckuck 2014].

As explained in the introduction, finding a complete answer to Delzant and Gromov’s question is far
from trivial. However, there are interesting subclasses of direct products of surface groups in which
finding an answer seems more feasible. Indeed, a first class are the subgroups G of type F1: since any
such G is virtually a direct product of surface groups and free groups, one deduces readily that G being
Kähler is equivalent to G being virtually a product Z2k ��1.Sg1

/� � � � ��1.Sgs
/ for k � 0, s � 0 and

g1; : : : ;gs � 2.

In terms of finiteness properties, the first nontrivial class of subgroups of a direct product of r surface
groups is given by the ones which are of type Fr�1 but not Fr . The examples constructed in [Dimca
et al. 2009] show the existence of Kähler groups of this type for every r � 3. They are obtained as
fundamental groups of complex hypersurfaces in direct products of Riemann surfaces. Their construction
was subsequently generalized in [Biswas et al. 2014; Llosa Isenrich 2019]. All known examples of this
type can be obtained from the following result:

Algebraic & Geometric Topology, Volume 24 (2024)
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Theorem 2.1 [Dimca et al. 2009; Llosa Isenrich 2019] Let r � 3, let E be an elliptic curve and let
fi W Sgi

!E be branched covers for 1� i � r . Define the map f WD
Pr

iD1 W Sg1
� � � � �Sgr

!E using
the additive structure in E. Assume that the induced map f� on fundamental groups is surjective and let
H be the smooth generic fibre of f. Then f induces a short exact sequence

1! �1.H /! �g1
� � � � ��gr

! �1.E/! 1:

The group �1.H / is Kähler of type Fr�1 but not of type Fr . Moreover , �1.H / � �g1
� � � � ��gr

is an
irreducible full subgroup.

When passing to subgroups with more general finiteness properties, the situation turns out to be more
subtle. Indeed, the class of Kähler subgroups of direct products of surface groups that one can then
obtain is much larger: they can attain any possible finiteness properties and can arise from subvarieties
of all codimensions [Llosa Isenrich 2020]. Moreover, there is no apparent correlation between the
codimension of a smooth subvariety realizing a subgroup and its finiteness properties (see [Llosa Isenrich
2020, Theorems 1.2 and 4.1] for precise statements of these results).

On the other hand, it is not hard to see that Kähler subgroups of a direct product of surface groups have
to satisfy many restrictions. It is well known that a Kähler subgroup of a direct product of surface groups
must be isomorphic to a subdirect product of a free abelian group of even rank and finitely many surface
groups. Even among subgroups of this form, strong constraints hold [Llosa Isenrich 2020, Sections 6–9].
For instance, every Kähler full subdirect product of r surface groups which is of type Fk with k > 1

2
r

must virtually be isomorphic to the kernel of an epimorphism �g1
� � � � ��gr

! Z2m for some m � 0

and g1; : : : ;gr � 2; a similar result holds for finitely presented images of homomorphisms from Kähler
groups to direct products of surface groups which are induced by holomorphic maps.

Given the explicit nature of Theorem 2.1, one may now wonder if these constraints can be strengthened
to show that all Kähler subgroups of direct products of r surface groups are of the form of this theorem if
they are of type Fr�1 but not Fr . Theorem 1.1, Corollary 1.3 and Theorem 6.4 show that this is indeed
the case after imposing additional assumptions and that the same remains true even when we consider
images of homomorphisms to direct products of surface groups. The common key to these results is
that our assumptions will allow us to reduce to situations in which all interesting Kähler subgroups are
fundamental groups of smooth complex hypersurfaces.

We now turn to explaining in more detail why the condition that ker.pi ı �/ is finitely generated in
Theorem 1.1 arises naturally. For this recall the following classical result about Kähler groups:

Theorem 2.2 Let G D �1.X /, for X a compact Kähler manifold. Fix h� 2. The following properties
are equivalent :

(1) There exists a surjective homomorphism � WG � �h.

(2) There exists g � h and a holomorphic map f WX ! Sg with connected fibres.
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(3) There exists g � h and a holomorphic map Of WX ! Sg;n with connected and nonmultiple fibres
such that the kernel of the induced homomorphism Of� WG!�orb

1
.Sg;n/ is finitely generated , where

Sg;n is a closed hyperbolic Riemann orbisurface with cone points of orders nD .n1; : : : ; nk/.

Moreover , if (1) is satisfied , then we can choose a map f satisfying (2) such that � factors through
f� W �1.X /! �g. Similarly, if (2) is satisfied , then we can choose a map Of satisfying (3) such that f
factors through Of.

The equivalence of (1) and (2) is due to Siu [1987] and Beauville [1988], while the orbifold version was
proved by Catanese [2003] (although it seems to have been known earlier; see [Kotschick 2012] for further
details). Conversely, every homomorphism from a Kähler group onto a closed hyperbolic orbisurface
group with finitely generated kernel is induced by a holomorphic map (see [Catanese 2008; Delzant
2016, Theorem 2]). For further background and definitions on maps from compact Kähler manifolds to
hyperbolic orbisurfaces, we refer the reader to [Delzant 2016, Section 2].

Note that every hyperbolic orbisurface group has a finite-index subgroup which is a surface group.
Considering that all of the main results in this paper require us to pass to finite-index subgroups, we will
thus restrict ourselves to considering surface groups for the remainder of this work.

We conclude this section by fixing some notation and definitions which we will require later. For a direct
product G1 � � � � �Gr of groups and 1 � i1 < � � � < ik � r , we denote by pi1;:::;ik

W G1 � � � � �Gr !

Gi1
� � � � �Gik

the projection homomorphism. We say that a subgroup K �G1 � � � � �Gr surjects onto
k–tuples if pi1;:::;ik

.K/DGi1
�� � ��Gik

, virtually surjects onto k–tuples if pi1;:::;ik
.K/�Gi1

�� � ��Gik

is a finite-index subgroup, and virtually surjects onto pairs (VSP) if K virtually surjects onto 2–tuples for
all 1� i1 < � � �< ik � r .

We call a subgroup K�G1�� � ��Gr coabelian if it is the kernel of an epimorphism WG1�� � ��Gr!Zk

for some k � 0, and coabelian of even rank if k is even.

Moreover, for a product of surfaces Sg1
� � � � � Sgr

and 1 � i1 < � � � < ik � r , we will denote by
qi1;:::;ik

W Sg1
� � � � �Sgr

! Sgi1
� � � � �Sgik

the projection. We say that a subset X � Sg1
� � � � �Sgr

geometrically surjects onto k–tuples if qi1;:::;ik
.X /D Sgi1

� � � � �Sgik
for all 1� i1 < � � �< ik � r . We

say that X is geometrically subdirect if it geometrically surjects onto 1–tuples.

3 From homomorphisms to complex hypersurfaces

In this section we will prove the main result of this work. The results described in the introduction will
be consequences of this result and the techniques developed in its proof.

Theorem 3.1 Let r � 3, let X be a compact Kähler manifold and let G D �1.X /. Let � W G !

�g1
� � � � ��gr

be a homomorphism with full subdirect image which can be realized by a holomorphic
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map f WX ! Sg1
� � � � �Sgr

. Assume that

� �.G/ is coabelian and a proper subgroup of �g1
� � � � ��gr

; and

� for 1� i1 < � � �< ir�1 � r , the composition qi1;:::;ir�1
ıf WX ! Sgi1

� � � � �Sgir�1
is surjective.

Then there is an elliptic curve B and branched covers hi W Sgi
!B such that �.G/D �1.H /, where H is

the connected smooth generic fibre of the holomorphic map hD
Pr

iD1 hi W Sg1
� � � � �Sgr

! B.

Moreover , f .X / is a (possibly singular) fibre of h.

The proof of Theorem 3.1 uses the following simple and well-known result:

Lemma 3.2 Let X and Y be complex tori and let f WX!Y be a surjective holomorphic homomorphism.
Then f�.�1.X //� �1.Y / is a finite-index subgroup.

Proof of Theorem 3.1 Let A.X / be the Albanese torus of X, let Ai DA.Sgi
/ be the Albanese torus

of Sgi
for 1 � i � r , and denote by aX W X ! A.X / and ai W Sgi

! Ai the respective Albanese maps.
By the universal property of the Albanese map, we obtain a commutative diagram

(3-1)

X
f
//

aX

��

Sg1
� � � � �Sgr

.a1;:::;ar /

��

h

%%
A.X /

Nf
// A1 � � � � �Ar

// B

where B is the complex torus .A1 � � � � �Ar /= Nf .A.X // (this quotient is well defined, since the induced
map on complex tori is a holomorphic homomorphism with image a complex subtorus). Denote by
b WA1 � � � � �Ar ! B the quotient map. It is the sum b D

Pr
iD1 bi of the restrictions bi WAi! B.

Surjectivity of the map q1;:::;r�1 ı f W X ! Sg1
� � � � � Sgr�1

implies that, for every .s1; : : : ; sr�1/ 2

Sg1
� � � � �Sgr�1

, there are x 2X and sx;r 2 Sgr
with f .x/D .s1; : : : ; sr�1; sx;r /. By commutativity

of (3-1), we obtain that

.t1; : : : ; tr�1; tx;r / WD .a1.s1/; : : : ; ar�1.sr�1/; ar .sx;r //D Nf .aX .x//:

Denote by †i WD bi.ai.Sgi
// the image of Sgi

in B. Since Nf .A.X // D ker.b/, we obtain that
b.t1; : : : ; tr�1; tx;r /D 0 2 B and hence

Pr�1
iD1 bi.ti/D�br .tx;r / 2 �†r . Irreducibility of Sgi

implies
that †i is an irreducible subvariety of dimension at most one in B. Thus, the holomorphic map

r�1X
iD1

bi W a1.Sg1
/� � � � � ar�1.Sgr�1

/!�†r ; .t1; : : : ; tr�1/ 7!

r�1X
iD1

bi.ti/;

is either trivial or surjective. It follows that the image bi.ai.Sgi
// is either a point or a translate of �†r

for 1 � i � r � 1. If, moreover, at least one of the images bi.ai.Sgi
// is nontrivial, then �†r � B is
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nontrivial and therefore an irreducible subvariety of dimension one. A repeated application of the same
argument to all j 2 f1; : : : ; rg shows that, if at least one of the images †i of Sgi

in B is one-dimensional,
then all of the †i are one-dimensional and translates of each other.

It follows that either

(1) †i is a point for all i 2 f1; : : : ; rg, or

(2) †i is a one-dimensional irreducible projective variety and †i is a translate of †j for all i; j 2

f1; : : : ; rg.

Consider the case when the image of all of the Sgi
is one-dimensional in B. Then the restriction of the

holomorphic map
r�1X
iD1

bi ı ai W Sg1
� � � � �Sgr�1

!�†r

to f.s1; : : : ; sj�1/g�Sgj �f.sjC1; : : : ; sr�1/g is a surjective holomorphic map for every j 2f1; : : : ; r�1g,
.s1; : : : ; sj�1/ 2 Sg1

� � � � � Sgj�1
and .sjC1; : : : ; sr / 2 SgjC1

� � � � � Sgr�1
. By symmetry, the same

holds for
Pr

iD1;i¤j bi ı ai for 1� j � r .

By assumption, r � 3. It follows that, for any choice of points s1;0 2 Sg1
and sr;0 2 Sgr

, we have

�†r C br .ar .sr;0//D h.Sg1
� � � � �Sgr�1

� fsr;0g/

D h.fs1;0g �Sg2
� � � � �Sgr�1

� fsr;0g/

D h.fs1;0g �Sg2
� � � � �Sgr

/D b1.a1.s1;0//�†1:

Hence, �†r C br .ar .sr;0// D b1.a1.s1;0// � †1 is independent of s1;0 and sr;0 and therefore the
image h.Sg1

� � � � �Sgr
/D br .ar .sr;0//�†r is one-dimensional and a translate of �†r . Furthermore,

the restriction hjf.s1;:::;sj�1/g�Sgj
�f.sjC1;:::;sr /g maps onto br .ar .sr;0// �†r for every j 2 f1; : : : ; rg,

.s1; : : : ; sj�1/ 2 Sg1
� � � � �Sgj�1

and .sjC1; : : : ; sr / 2 SgjC1
� � � � �Sgr

.

Choose s1;0 2 Sg1
such that there is an open neighbourhood U � Sg1

of s1;0 in which the restriction
b1 ı a1 W U ! b1.a1.U //�†1 is biholomorphic. In particular, b1.a1.U // is a smooth one-dimensional
complex manifold.

Surjectivity of the restriction ˇjf.s1;0/g�Sg2
�f.s3;:::;sr /g for every .s3; : : : ; sr / 2 Sg3

� � � � �Sgr
implies

that, for every z 2 ar .br .sr;0//�†r , there is a point s2;z 2 Sg2
such that h.s1; s2;z; s3; : : : ; sr;0/ D z.

Then the map

U ! ar .br .sr;0//�†r ; u 7! b1.a1.u//C b2.a2.s2;z//C

rX
iD3

bi.ai.si//

is a biholomorphic map from U onto a neighbourhood of z 2†r . Hence, z is a smooth point of †r and
it follows that †r is a smooth connected projective variety of dimension one.
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The Sgi
are finite-sheeted branched coverings of the closed Riemann surface ar .br .sr;0//�†r and thus

the image of �1.Sgi
/ in �1

�
ar .br .sr;0//�†r

�
is a finite-index subgroup for 1� i � r . Since r � 2, there

is a Z2 subgroup in �1

�
ar .br .sr;0//�†r

�
and the only closed Riemann surface with a Z2 subgroup in

its fundamental group is an elliptic curve. Thus, ar .br .sr;0//�†r is an elliptic curve.

Surjectivity of the maps ai� W �1.Sgi
/! �1.Ai/ on fundamental groups and the fact that the fibres of the

quotient map A1� � � ��Ar !B are connected imply that the map h is surjective on fundamental groups.
Hence, ar .br .sr;0//�†r D B, h is surjective holomorphic, and the restrictions hjSgj

for 1� j � r are
branched covers. Theorem 2.1 implies that h induces a short exact sequence

1! �1.H /! �1.Sg1
/� � � � ��1.Sgr

/
h�
�! �1.B/D Z2

! 1

on fundamental groups, where H is the connected smooth generic fibre of h.

Since �.G/� �g1
� � � � ��gr

is coabelian, we obtain a commutative diagram

(3-2)

1 // �.G/ //

��

�g1
� � � � ��gr

//

��

Zl //

��

1

.�.G//ab // .�g1
� � � � ��gr

/ab // Zl // 1

where the lower sequence is exact by right-exactness of abelianization.

We now use the same line of argument as in the proof of [Llosa Isenrich 2020, Lemma 6.1] to show that
l D rkZ.�1.B//. Since it is short, we include it here for the readers convenience:

By definition of the Albanese map, the commutative diagram (3-1) induces a commutative diagram

(3-3)

�1.X /
f�

//

��

�g1
�� � ���gr

��

Zl// // 1

�1.A.X //D .�1.X //ab �1.A1/�� � ���1.Ar /D .�g1
�� � ���gr

/ab//
Nf�Df�;ab

�1.B/
++

h�

//

The map � W�1.X /!�g1
�� � ���gr

factors through �.G/; thus, the map .�1.X //ab! .�g1
�� � ���gr

/ab

factors through .�.G//ab. It follows that

im
�
.�1.X //ab! .�g1

� � � � ��gr
/ab
�
D im

�
.�.G//ab! .�g1

� � � � ��gr
/ab
�
;

and exactness of the bottom horizontal sequence in (3-2) implies that

.�g1
� � � � ��gr

/ab=im
�
.�1.X //ab! .�g1

� � � � ��gr
/ab
�
Š Zl :

The commutative diagram (3-3) can be extended to a commutative diagram

�1.X /
f�

//

��

�g1
� � � � ��gr

��

// Zl //

����

1

�1.A.X //D .�1.X //ab �1.A1/� � � � ��1.Ar /D .�g1
� � � � ��gr

/ab

33

//
Nf�Df�;ab

�1.B///
++
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Hence, the fundamental group �1.B/ is a quotient of Zl . By Lemma 3.2, we have rkZ
Nf�
�
�1.A.X //

�
D

rkZ�1

�
Nf .A.X //

�
. Thus, we obtain

rkZ.�1.B//D 2 � dimCB D 2 � dimC.A1 � � � � �Ar /� 2 � dimC
Nf .A.X //

D rkZ.�g1
� � � � ��gr

/ab� rkZ
Nf�
�
�1.A.X //

�
D l:

It follows that the epimorphism Zl ! �1.B/ is an isomorphism and therefore we obtain an isomorphism
of short exact sequences

1 // �.G/ //

Š

��

�g1
� � � � ��gr

//

Š

��

Zl //

Š

��

1

1 // �1.H / // �g1
� � � � ��gr

h�
// �1.B/ // 1

If †i is a point, then the same argument shows that B is a point and the isomorphism of short exact
sequences implies that �.G/Š �1.H /Š �g1

� � � � ��gr
is not a proper subgroup.

Finally, observe that, since hıf WX !B factors through the Albanese torus A.X / of X, the image of X

in B is trivial. Hence, f .X / is contained in a fibre of h. Since f .X / is the image of a smooth complex
manifold under a proper holomorphic map, it is an irreducible subvariety of a fibre of h. The map h has
isolated singularities, since the restriction of h to every surface factor is a branched covering of B, and its
fibres (singular or nonsingular) are connected.

If f .X / is contained in a smooth generic fibre of h, then it is equal to this fibre, since smooth projective
varieties are irreducible. So assume that f .X / is contained in one of the finitely many singular fibres Hs

of h and let z 2Hs be a singular point. By Milnor’s theory [1968] of isolated hypersurface singularities,
a neighbourhood of z in Hs is homeomorphic to a cone over a smooth manifold K (called the link of the
singularity). Furthermore, K is .n�2/–connected for n the complex dimension of Hs . In particular, K is
connected if n� 2. Since the complex dimension of Hs is r �1� 2, it follows that K is connected. Thus,
the complement of the cone point in the cone over K is connected. Connectedness of Hs then implies
that the complement of the finite set of singular values in Hs is a connected smooth complex manifold. It
follows that Hs is an irreducible variety and thus Hs D f .X /.

4 The three factor case

By combining Theorem 3.1 with the following results, we can complete the classification of Kähler
subgroups of direct products of three surface groups up to passing to finite-index subgroups.

Proposition 4.1 [Llosa Isenrich 2020, Proposition 9.5] Let r � 2, let X be a compact Kähler manifold
and let GD �1.X /. Let � WG!�g1

�� � ���gr
be a homomorphism with finitely presented full subdirect

image such that the projections pi ı� WG! �gi
, 1� i � r , have finitely generated kernel.

Then � is induced by a holomorphic map f W X ! Sg1
� � � � �Sgr

and the composition qi;j ı f W X !

Sgi
�Sgj is surjective for 1� i < j � r .
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Theorem 4.2 [Llosa Isenrich 2020, Theorem 6.13] Let X be a compact Kähler manifold and let
G D �1.X /. Let  WG! �g1

��g2
��g3

be a homomorphism such that the projection pi ı has finitely
generated kernel for 1� i � r and the image G WD  .G/ is finitely presented. Then one of the following
holds:

(1) G D �1.R/ for R a closed Riemann surface of genus � 0.

(2) G D Zk for k 2 f1; 2; 3g.

(3) G is virtually a direct product Zk ��h1
��h2

for h1; h2 � 2 and k 2 f0; 1g.

(4) G is virtually Zk ��h for h� 2 and k 2 f1; 2g.

(5) G is virtually subdirect and coabelian of even rank.

As a consequence one can obtain a constraint on Kähler subgroups of direct products of surface groups
by imposing the evenness condition on the first Betti number for (1)–(5) in Theorem 4.2. Note that, while
groups of the form �1.R/, �h1

��h2
and Z2��h are Kähler, the same turns out to not be true in general for

coabelian subgroups of �h1
��h2

��h3
of even rank. In fact, many such subgroups are not even the image

of a homomorphism from a Kähler group which is induced by a holomorphic map. As an application
of Theorem 3.1, we can make this statement precise and thus prove Theorem 1.1 and Corollary 1.3.

Theorem 4.3 Let G D �1.X / be Kähler and let  WG! �g1
��g2

��g3
be a homomorphism such that

the projections pi ı W G ! �gi
have finitely generated kernel for 1 � i � 3 and the image is finitely

presented. Then there is a finite-index subgroup G0 �G D  .G/ such that either

(1) G0 Š Zk ��h1
� � � � ��hs

with 0� kC s � 3; or

(2) there are finite-index subgroups �i
� �gi

, an elliptic curve E and branched holomorphic coverings
fi W Si

!E for 1� i � 3 such that G0 Š �1.H /Š ker.f�/, where H is the smooth generic fibre
of the surjective holomorphic map f D

P3
iD1 fi .

Conversely, any group satisfying one of the conditions (1) and (2) is the image of a homomorphism
satisfying the above hypotheses.

Proof By Theorem 4.2, it suffices to consider the case when G is virtually coabelian of even rank. Then
there are finite-index subgroups �i

� �gi
for l � 0 and an epimorphism � W �1

��2
��3

! Z2l such
that G0 WD ker� � G is a finite-index subgroup and G0 � �1

� �2
� �3

is a finitely presented full
subdirect product. We may further assume that G0 � �1

��2
��3

is a proper subgroup (if not, then (1)
holds with k D 0 and s D 3).

Let X0!X be the finite-sheeted holomorphic cover corresponding to the subgroup  �1.G0/�G. Then
X0 is a compact Kähler manifold with  .�1.X0//DG0 D ker� and the projections

pi ı j�1.X0/ W �1.X0/! �i

have finitely generated kernel. Proposition 4.1 implies that  j�1.X0/ is induced by a holomorphic map
f WX0!S1

�S2
�S3

with the property that qi;j ıf WX0!Si
�Sj is a surjective holomorphic map
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for 1� i < j � 3. Hence, all assumptions of Theorem 3.1 are satisfied. It follows that G0 satisfies (2). The
converse direction follows easily by taking quotients of Kähler groups of the form Z2s ��h1

� � � � ��hs

and from Theorem 2.1.

Proof of Theorem 1.1 If in Theorem 4.3 the group G is a full subdirect product, then (1) can only hold
if G0 � �g1

��g2
��g3

has finite index. Hence, we must be in case (2).

To reduce Corollary 1.3 to Theorem 4.3, we will apply the following result of Bridson and Miller:

Theorem 4.4 [Bridson and Miller 2009, Theorem 4.6] Let �g�2 be a surface group , let A be any group
and let G � �g �A. Assume that G is finitely presented and that the intersection G \�g is nontrivial.
Then G \A is finitely generated.

Proof of Corollary 1.3 Let GD�1.X /��g1
��g2

��g3
be a nontrivial Kähler group; in particular, G is

finitely presented. Let  W �1.X / ,! �g1
��g2

��g3
be the canonical inclusion. To apply Theorem 4.3,

we need to show that ker.pi ı / is finitely generated for 1� i � 3.

Assume first that G \ �gi
is nontrivial for 1 � i � 3. Then Theorem 4.4 implies that ker.p1 ı / D

G\.�g2
��g3

/ is finitely generated and that, similarly, ker.p2ı / and ker.p3ı / are finitely generated.
If some of the intersections G \ �gi

are trivial, then, by reordering factors and projecting away from
factors with trivial intersection, we may assume that G is a full subgroup of �g1

�� � ���gs
with 1� s � 2.

In particular, we may assume that the embedding of G in �g1
��g2

��g3
has trivial projection to the last

3� s factors. For s D 1, it is now trivially true that ker.pi ı / is finitely generated for 1� i � 3, and for
s D 2 the same follows from another application of Theorem 4.4.

Thus, we can apply Theorem 4.3 in all cases. The first part of the result is then a direct consequence of
the fact that Kähler groups have even first Betti number.

Conversely, groups satisfying condition (1) and having even first Betti number are clearly Kähler and
�1.H / in (2) is Kähler as the fundamental group of H.

Remark 4.5 Corollary 1.3 provides a classification of Kähler subgroups of direct products of three
surface groups up to passing to finite-index subgroups. This statement can be made more precise in the
cases corresponding to (1): when k D 0, finite extensions of these groups are Kähler if they are subdirect
products of surface groups; and when k D 2, the group G is either a finite-index subgroup of a direct
product Z2 ��h0 with h� h0 � 2 or Š Z2.

The following example shows that it may be necessary to pass to finite-index subgroups:

Example 4.6 Let �g1
��g2

be a direct product of surface groups. For m � 2, consider the canonical
epimorphisms �i WH1.�gi

;Z/!Z=mZ obtained by mapping a basis of H1.�gi
;Z/ to 12Z=mZ. Denote

by y�i W�g1
!Z=mZ the composition of �i with the abelianization map and define y� WD�1C�2 W�g1

��g2
!

Z=mZ. The finite-index subgroup ker y���g1
��g2

is Kähler and virtually a direct product ker �1�ker �2

of surface groups, but is not itself a direct product of surface groups.
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5 Complex hypersurfaces

In this section we prove Theorem 1.4. We consider an embedded connected smooth complex hypersurface
� W X ,! Sg1

� � � � �Sgr
in a direct product of closed Riemann surfaces of genus gi � 2. Observe that

we may assume that all projections qi ı � W X ! Sgi
are nonconstant. Indeed, if one of the projections

qi ı � WX ! Sgi
in Lemma 5.2 is constant, say qr ı �, then X D Sg1

� � � � �Sgr�1
is a direct product of

r � 1 surfaces. Hence, we do not lose much by excluding this case.

Lemma 5.1 Let r � 2 and let �X W X ,! Sg1
� � � � �Sgr

be a geometrically subdirect embedding of a
connected smooth complex hypersurface in a direct product of closed Riemann surfaces. Then there is
2 � s � r such that X D Y � SgsC1

� � � � � Sgr
with �Y W Y ,! Sg1

� � � � � Sgs
an embedded smooth

complex hypersurface which geometrically surjects onto .s�1/–tuples.

Proof The result follows by induction on the number of factors r � 2. For r D 2, the result holds due
to the assumption that the embedding is geometrically subdirect. If X does not geometrically surject
onto .r�1/–tuples, then there is an .r�1/–tuple 1� i1 < � � �< ir�1 � r such that the irreducible variety
X D qi1;:::;ir�1

.X / is .r�2/–dimensional; we may assume ij D j. Hence, the smooth generic fibre of
q1;:::;r�1 WX!Sg1

�� � ��Sgr�1
is one-dimensional and therefore equal to Sgr

. Let X ��X be the locus
of nonsingular values. Then X � �Sgr

�X is an open dense submanifold. It follows that X DX �Sgr

with X ,! Sg1
� � � � �Sgr�1

a connected smooth embedded hypersurface. Clearly X is geometrically
subdirect. The result follows by induction.

Lemma 5.2 Let r � 1 and let � W X ,! Sg1
� � � � �Sgr

be a connected smooth complex hypersurface
such that the projections qi ı � WX ! Sgi

are nontrivial. Then there are finite regular covers Shi
! Sgi

for 1� i � r such that � lifts to an embedding j WX ,! Sh1
� � � � �Shr

with i�.�1.X //Š j�.�1.X //�

�h1
� � � � ��hr

a subdirect product.

Proof The projections qi ı � WX !Sgi
are proper holomorphic maps between compact Kähler manifolds.

Thus, �hi
WD .qi ı �/�.�1.X //� �1.Sgi

/ is a finite-index subgroup for 1� i � r . Let fi W Shi
! Sgi

be
the associated unramified coverings. Then � factors through a continuous map j WX ! Sh1

� � � � �Shr

making the diagram
Sh1
� � � � �Shr

��

X

j

99

�
// Sg1
� � � � �Sgr

commutative. Since � and the fi are holomorphic, the map j defines a holomorphic embedding and, by
choice of the fi , the group j�.�1.X //� �h1

� � � � ��hr
is subdirect.

We may in fact assume that the image ��.�1.X //� �h1
� � � � ��hr

is full subdirect.
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Lemma 5.3 Let r � 2 and let � W X ,! Sg1
� � � � � Sgr

be an embedded connected smooth complex
hypersurface such that ƒ WD ��.�1.X // � �g1

� � � � � �gr
is a subdirect product. If ƒ is not full in

�g1
� � � � � �gr

, then (after possibly reordering factors) X is biholomorphic to R � Sg3
� � � � � Sgr

with j W R ,! Sg1
� Sg2

an embedded Riemann surface such that j�.�1.R // Š �g2
, the projection

R ! Sgi
for i D 1; 2 is a branched covering , and �g1

\ j�.�1.R //D f1g.

Proof After applying Lemma 5.1 and splitting off direct surface factors from X, we may assume that
X geometrically surjects onto .r�1/–tuples for r � 2. If ƒ is not full, then there is a factor �gi

with
�gi
\ƒD f1g, say i D 1. Hence, the projection q2;:::;r W Sg1

� � � � �Sgr
! Sg2

� � � � �Sgr
induces an

isomorphism ƒŠ q2;:::;r;�.ƒ/DW xƒ� �g2
�� � ���gr

. Since X geometrically surjects onto .r�1/–tuples,
the map q2;:::;r WX !Sg2

�� � ��Sgr
is a surjective holomorphic map between closed complex manifolds.

It follows that xƒ� �g2
� � � � ��gr

is a finite-index subgroup and thus a full subdirect product.

The epimorphism p1 W ƒ! �g1
induces an epimorphism Np1 W

xƒ! �g1
. By the universal property of

full subdirect products of limit groups (see [Bridson et al. 2013, Theorem C(3)]), Np1 is induced by a
homomorphism �g2

� � � � ��gr
! �g1

and thus factors through the projection �g2
� � � � ��gr

! �gi
for

some 2 � i � r (else the image �g1
would contain an element with noncyclic centralizer), say i D 2.

It follows that the projection ƒ! �g1
��g2

factors through the projection to �g2
and thus has image

isomorphic to �g2
. However, this contradicts geometric surjection to .r�1/–tuples unless r D 2 (since,

as above, q1;:::;r�1;�.ƒ/� �g1
� � � � ��gr�1

is a finite-index subgroup).

This leaves us with the situation when X D R is a closed Riemann surface of genus  � 2 with the
property that ƒD ��.�1.X //Š �g2

. Since ��.�1.X // is subdirect, the projections onto factors induce
finite-sheeted branched coverings R ! Sgi

for i D 1; 2.

Proof of Theorem 1.4 If X is not geometrically subdirect, then (2) holds. Hence, we can assume that
X is geometrically subdirect. By Lemma 5.1, reduce to the case that X D Y �SgsC1

� � � � �Sgr
with

j W Y ,! Sg1
� � � � �Sgs

an embedded smooth complex hypersurface that geometrically surjects onto
.s�1/–tuples. If s D 1, then Y is a point and we are in case (2). If s D 2 then Y is a smooth Riemann
surface and we are again in case (2). Hence, we may assume that s � 3. By Lemmas 5.2 and 5.3, we may
further assume that ƒ WD j�.�1.Y //� �1.Sg1

/� � � � ��1.Sgs
/ is a full subdirect product.

Since Y geometrically surjects onto .s�1/–tuples, the projections

q1;:::;i�1;iC1;:::;s ı j W Y ! Sg1
� � � � �Sgi�1

�SgiC1
� � � � �Sgs

are surjective holomorphic maps between closed complex manifolds of the same dimension. Hence,
.q1;:::;i�1;iC1;:::;s;� ı j /.�1.Y // � �g1

� � � � � �gi�1
� �giC1

� � � � � �gs
is a finite-index subgroup for

1� i � s. Hence, Corollary 3.6 of [Kuckuck 2014] implies that there are finite-index subgroups �i
� �gi

and an epimorphism � W �1
� � � � � �s

! Zk such that ƒ0 WD ker� D ƒ\ .�1
� � � � � �s

/ � ƒ is
a finite-index subgroup and the restriction of � to every factor is surjective. Note that, in particular,
ƒ0 � �1

� � � � ��s
is a full subdirect product.
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Denote by Y0! Y the finite-sheeted covering associated to the finite-index subgroup j�1
� .ƒ0/� �1.Y /.

Then there is a holomorphic embedding � W Y0 ,! S1
� � � � �Ss

making the diagram

Y0
�
//

��

S1
� � � � �Ss

��

Y
j
// Sg1
� � � � �Sgs

commutative. By construction, we have ��.�1.Y0// D ƒ0 and that Y0 geometrically surjects onto
.s�1/–tuples

If ƒ0 � �1
� � � � ��s

is a finite-index subgroup, then we are in case (1). Hence, we may assume that
ƒ0 has infinite index. In particular, k � 1 and all conditions of Theorem 3.1 are satisfied. Hence, there is
an elliptic curve E and branched covers hi W Si

!E such that Y0 is equal to a fibre of the holomorphic
map hD

Ps
iD1 hi W S1

� � � � �Ss
!E.

The map h has isolated singularities and all fibres are irreducible varieties by the proof of Theorem 3.1.
In particular, the map h is a submersion in all but finitely many points. It follows that h has reduced fibres
and thus the fibres of h over singular values are singular varieties and, in particular, cannot be smooth
manifolds (see eg [Milnor 1968, page 13]). Since Y0 is a smooth subvariety of S1

� � � � �Ss
, it follows

that Y0 is a smooth generic fibre of h.

Remark 5.4 We want to mention that case (2) in Theorem 1.4 splits into three cases (after reordering
factors):

(i) X0 has trivial image in one factor, say Sr
, and thus X0 D S1

� � � � �Sr�1
.

(ii) ��.�1.X0// � �g1
� � � � ��gr

is not full. In this case, the proof of Lemma 5.3 shows that X0 D

Rh�S3
� � � � �Sr

with Rh ,! S1
�S2

an embedded curve and ��.�1.X0//Š �2
� � � � ��r

.

(iii) s D 2, X0 DRh �S3
� � � � �Sr

with Rh ,! S1
�S2

an embedded curve and ��.�1.X0//D

�1
� � � � ��r

This happens for instance when Rh is a generic hyperplane section of Sg1
�Sg2

.
Note that in this case �� is not injective and furthermore this is precisely the case when (1) and (2)
both hold in Theorem 1.4.

Remark 5.5 In case (1) of Theorem 1.4, the epimorphism � W �1.X0/! �1
� � � ���r

is not necessarily
injective. For instance, X0 can be as in Remark 5.4(iii). However, it can be an isomorphism: Take X to
be a smooth generic hyperplane section of Sg1

� � � � �Sgr
. If r � 3 the Lefschetz hyperplane theorem

implies that X ,! Sg1
� � � � �Sgr

induces an isomorphism on fundamental groups.

Remark 5.6 In the light of Theorem 1.4, it is natural to ask if one can also classify smooth subvarieties X

of codimension k � 2 in a direct product of Riemann surfaces Sg1
�� � ��Sgr

in terms of their fundamental
groups. The examples constructed in [Llosa Isenrich 2020] show that the class of fundamental groups of
such subvarieties will be much larger. Furthermore, the Lefschetz hyperplane theorem will allow us to
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realize any fundamental group of a smooth subvariety of codimension l < k as the fundamental group of
a smooth subvariety of codimension k whenever k � r � 2. These two observations show that any such
classification will have to allow a much wider variety of fundamental groups. One observation that seems
worth mentioning is that, for k < 1

2
r , the image of �1.X / in �g1

� � � � ��gr
has to be isomorphic to a

virtually coabelian subgroup of even rank in a direct product of � r surface groups (we might need to get
rid of some factors and replace others by finite-index subgroups).

To see this, we first split off direct factors, using the same methods as above, to obtain a codimension
k subvariety X0 in a product of s � r surfaces which geometrically surjects onto .s�k/–tuples. Then
we combine results of Kuckuck [2014] with the fact that the inclusion X0 ,! Sg1

� � � � �Sgs
is holo-

morphic and thus the images qi1;:::;is�k ;�.�1.X // � �gi1
� � � � � �gis�k

are finite-index subgroups for
1� i1< � � �< is�k � s (see [Llosa Isenrich 2020, Sections 5 and 6] for details, in particular Proposition 6.3).

6 Maps to Z3

Another situation in which we can give a complete answer to Delzant and Gromov’s question is the case
of coabelian subgroups of rank two. Our proof will make use of [Bridson et al. 2013].

Theorem 6.1 [Bridson et al. 2013, Theorem D] Let G � ƒ1 � � � � �ƒr be a finitely generated full
subdirect product of nonabelian limit groups ƒi for 1� i � r .

Then G is finitely presented if and only if G virtually surjects onto pairs.

Theorem 6.2 Let X be compact Kähler , let G D �1.X / and let � W G ! �g1
� � � � � �gr

be a ho-
momorphism with finitely presented full subdirect image which is induced by a holomorphic map
f W X ! Sg1

� � � � � Sgr
. Assume that there is an epimorphism  W �g1

� � � � � �gr
! Z2 such that

ker D �.G/.

Then (after possibly reordering factors) there is s � 3, an elliptic curve E and branched covering maps
fi WSgi

!E for 1� i � s such that �.G/D�1.H /��gsC1
�� � ���gr

, where H is the connected smooth
generic fibre of the holomorphic map f D

Ps
iD1 fi W Sg1

�� � ��Sgs
!E, f�D j�g1

������gs
, and  j�gi

trivial for i � sC 1.

Proof With the same notation as in the proof of Theorem 3.1, consider the commutative diagram

X
f
//

aX

��

Sg1
� � � � �Sgr

.a1;:::;ar /

��

h

%%
A.X /

Nf
// A1 � � � � �Ar

// B

Arguing as in the proof of Theorem 3.1 (see diagram (3-3) and subsequent discussion) we obtain that
rkZ�1.B/D 2 and that the map  is induced by the holomorphic map h W Sg1

� � � � �Sgr
! B. Since

the restriction hjSgi
W Sgi

! B is a holomorphic map, either it is surjective or h.Sgi
/ is a point.
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A surjective holomorphic map between closed Riemann surfaces is a branched covering. Hence, there is
1� s � r such that (after reordering factors):

� h W Sgi
! B is a branched holomorphic covering for 1� i � s.

� h.Sgi
/ is a point for sC 1� i � r .

It follows that
�.G/D ker h� D ker..hjSg1

�����Sgs
/�/��gsC1

� � � � ��gr

D ker D ker. j�g1
������gs

/��gsC1
� � � � ��gr

:

Since �gsC1
� � � � � �gr

is finitely generated and �.G/ is finitely presented, the full subdirect product
ker. j�g1

������gs
/Š �.G/=.�gsC1

� � � � ��gr
/� �g1

� � � � ��gs
is finitely presented.

If s D 1, then being a full subdirect product implies that ker. j�g1
������gs

/ D �g1
, and, if s D 2, then

Theorem 6.1 implies that the group ker. j�g1
��g2

/� �g1
��g2

is a finite-index subgroup. However,  is
an epimorphism onto the infinite group Z2. It follows that s � 3.

Hence, the restriction hjSg1
�����Sgs

satisfies all conditions of Theorem 2.1, so ker. j�g1
������gs

/D�1.H /

for H the smooth generic fibre of the restriction hjSg1
�����Sgs

. Thus, �.G/D�1.H /��gsC1
�� � ���gr

.

As a consequence of Theorem 6.2, we can now classify all Kähler subgroups arising as kernels of
homomorphisms from a direct product of surface groups to Z3. For this we will require the following
result:

Theorem 6.3 [Llosa Isenrich 2020, Corollary 1.6] Let k�0 and g1; : : : ;gr �2. If � W�g1
�� � ���gr

!

Z2kC1 is a surjective homomorphism , then ker� is not Kähler.

Theorem 6.4 Let r � 1, let � W�g1
�� � ���gr

!Z3 be a homomorphism , let GD ker� ��g1
�� � ���gr

and let pi.G/D �i
� �gi

be the projection of G to the i th factor. Then the following are equivalent :

(1) G is Kähler.

(2) Either G D �g1
� � � � ��gr

, or there is r � s � 3, an elliptic curve E and surjective holomorphic
maps fi W Si

! E for 1 � i � s such that G D �1.H / � �gsC1
� � � � � �gr

(after possibly
reordering factors), where H is the connected smooth generic fibre of the holomorphic map
f D

Ps
iD1 fi WS1

�� � ��Ss
!E, f�D�j�1

������s
W�1
�� � ���s

!�1.E/Š�.�1
�� � ���s

/

and �j�gi
is trivial for i � sC 1.

Theorem 6.4 shows in particular that the image of � is either trivial or isomorphic to Z2.

Proof By Theorem 2.1, (2) implies (1). Assume that G is Kähler. If � is trivial, then GD �g1
�� � ���gr

is Kähler, and, if im.�/�Z3 has odd rank, then, by Theorem 6.3, G is not Kähler. Thus, we may assume
that G is a finitely presented full subdirect product of �1

�� � ���r
which is the kernel of an epimorphism

� W �1
� � � � ��r

! Z2 D im.�/, where, by slight abuse of notation, � now denotes the restriction of �
to �1

� � � � ��r
.
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Since G is finitely presented, we apply Theorem 4.4 as in the proof of Corollary 1.3 to show that
the kernels of the projections of ker.�/ to factors are finitely generated. Let X be a compact Kähler
manifold with G D �1.X /. Then Proposition 4.1 implies that � is induced by a holomorphic map
f WX ! S1

� � � � �Ss
�SgsC1

� � � � �Sgr
. Hence, all conditions of Theorem 6.2 are satisfied and we

obtain (2).
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The K.�; 1/ conjecture and acylindrical hyperbolicity
for relatively extra-large Artin groups

KATHERINE M GOLDMAN

Let A� be an Artin group with defining graph � . We introduce the notion of A� being extra-large relative
to a family of arbitrary parabolic subgroups. This generalizes a related notion of A� being extra-large
relative to two parabolic subgroups, one of which is always large type. Under this new condition, we show
that A� satisfies the K.�; 1/ conjecture whenever each of the distinguished subgroups do. In addition, we
show that A� is acylindrically hyperbolic under only mild conditions.

20F36, 20F65

Let � be a finite simplicial graph whose edges are labeled with (finite) integers, each at least 2. For
vertices s; t of � connected by an edge, let m.s; t/ denote the label of the edge between s and t . Let
S D Vert.�/. Since � is simplicial, we use the convention that an edge of � is the same as an unordered
pair fs; tg of vertices of � . The Artin group defined by � is

A� D hS j prod.s; t Im.s; t//D prod.t; sIm.s; t// for fs; tg an edge of �i;

where prod.a; bIn/ is the alternating word in a and b starting with a of length n (eg aba : : : ). We call
the pair .A; S/ an Artin–Tits system.

There is a Coxeter group also naturally associated with this defining graph; namely,

W� D hS j .st/
m.s;t/

D 1 for fs; tg an edge of � and s2 D 1 for s 2 Si:

It is well known that there is a natural surjective homomorphism A� !W� induced by the identity map
on S. Recall that, if W� is finite, then we call W� spherical and call A� spherical type. In this case, we
may sometimes refer to � itself as spherical type.

By [van der Lek 1983], if � 0 is a full (or “induced”) subgraph of � , then the natural map from the Artin
group A� 0 to A� is an injection. (Recall that a subgraph � 0 of � is called full if, for any pair of vertices
v;w of � 0 which span an edge fv;wg in � , we also have that fv;wg is an edge of � 0.) We call such a
subgroup of A� a (standard) parabolic subgroup. Sometimes, if T D Vert.� 0/, we write AT for A� 0 .

It is also well known that the Artin group A� is the fundamental group of a space N.W / which is the
quotient of a complement of a certain complexified hyperplane arrangement by a natural W�–action. (See
[Paris 2014] for more details.) The long-standing K.�; 1/ conjecture states that N.W / is aspherical (ie
has contractible universal cover). Currently, the K.�; 1/ conjecture is known to be true when

(1) A� is spherical type [Deligne 1972];

© 2024 The Author, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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(2) A� is affine type (meaning W� has a finite-index subgroup which acts properly by isometries on a
Euclidean space), proven in general in [Paolini and Salvetti 2021];

(3) if � 0 is a full spherical-type subgraph of � , then jVert.� 0/j D 2 (in which case A� is called
2–dimensional) [Charney and Davis 1995], or, more generally, if A� is locally reducible [Charney
2000],

(4) every full complete subgraph of � is spherical type (in which case A� is called FC type) [Charney
and Davis 1995]; and

(5) some combination criteria are satisfied, including results by Godelle and Paris [2012] and Ellis and
Sköldberg [2010].

We present a new criterion based on the following familiar condition: an Artin group A� is extra-large
type if every edge of � has label at least 4. In this case, A� is 2–dimensional, and thus satisfies theK.�; 1/
conjecture. Juhász [2018] introduced the following condition: Let H D A� 0 be a standard parabolic
subgroup of A (with � 0 � � a full subgraph). Then A is extra-large relative to H (or � 0–relatively
extra-large) if

(1) for every edge fs; tg of � with s 2 � 0 and t … � 0, we have m.s; t/� 4; and

(2) for every edge ft; t 0g of � with t; t 0 … � 0, we have m.t; t 0/� 3.

It is then shown that A� satisfies the word problem or K.�; 1/ conjecture whenever H does. It is in this
spirit that we make the following generalization.

Let f�ig be a finite family consisting of disjoint, nonempty full subgraphs of � with vertex sets SDVert.�/
and Si D Vert.�i /. Suppose also that S D

S
Si . In direct analogy to the relatively extra-large condition,

we consider:

(REL) Every edge of � between �i and �j for some i ¤ j has label at least 4.

If this condition is satisfied, we say that A� is f�ig–relatively extra-large. We establish the following
theorem regarding such Artin groups:

Theorem Suppose A� is f�ig–relatively extra-large. Then A� satisfies the K.�; 1/ conjecture if and
only if each A�i does.

In fact, a somewhat stronger fact can be established using our methods. Instead of (REL), consider:

(REL0) If e is an edge of � between �i and �j for some i ¤ j and e shares a vertex with a distinct edge
between �i and �k for some i ¤ k, then e has label at least 4.

Specifically, this allows edges which are isolated among those edges between the subgraphs in the
family f�ig to have label 2 or 3. We show:

Theorem A Suppose � and f�ig satisfy (REL0). Then A� satisfies the K.�; 1/ conjecture if and only if
each A�i does.
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In addition to this, we are able to show under mild hypotheses that Artin groups satisfying (REL0) are
acylindrically hyperbolic. Acylindrical hyperbolicity is a property of interest for many groups, including
Artin groups. Some of the classes for which acylindrical hyperbolicity is known for include

(1) right-angled Artin groups (m.s; t/D 2 for each edge of �) which are not cyclic or a direct product
of nontrivial subgroups [Osin 2016],

(2) spherical-type Artin groups [Calvez and Wiest 2017],

(3) type FC Artin groups whose defining graph has diameter at least 3 [Chatterji and Martin 2019],

(4) extra-extra-large type Artin groups (meaning m.s; t/� 5 for each edge fs; tg of the defining graph)
of rank at least 3 [Haettel 2022],

(5) Artin groups A� such that � is not a join of two subgraphs �1 and �2 [Charney and Morris-Wright
2019],

(6) affine-type Artin groups [Calvez 2022],

(7) 2–dimensional Artin groups of hyperbolic type (meaning the associated Coxeter group is hyperbolic)
[Martin and Przytycki 2022], and

(8) 2–dimensional Artin groups [Vaskou 2022].

We show acylindrical hyperbolicity in our setting as well:

Theorem B Suppose A� and f�igniD1, n� 2 satisfy (REL0). In addition , assume jVert.�/j � 3 and not
all edges between the family f�ig have label 2. Then A� is acylindrically hyperbolic.

We note that the conditions in Theorem A include the original relatively extra-large condition of Juhász
as a special case. Suppose A� is � 0–relatively extra-large (in the sense of [Juhász 2018]). Let � 00 be
the full subgraph on the vertices of � which are not in � 0. Then A� is f� 0; � 00g–relatively extra-large in
our sense. The condition (2) in the definition of �–relatively extra-large is equivalent to requiring that
A� 00 be large type (ie all edge labels are at least 3). Then A� 00 satisfies the K.�; 1/ conjecture as A� 00 is
2–dimensional. Thus according to our result, A� satisfies the K.�; 1/ conjecture if and only if A� 0 does.

Our theorems include many new examples for which the K.�; 1/ conjecture and/or acylindrical hyper-
bolicity was not previously known. As one example, consider two graphs �1 and �2 of type zC3 (see
Figure 1). These defining graphs generate an affine Artin group, and thus satisfy the K.�; 1/ conjecture.

3

42
24

2

Figure 1: A defining graph of type zC3.
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Then let � be the join of �1 and �2 with each of the new edges labeled by 4 (or greater). It is quickly
checked that A� satisfies none of the previously listed conditions. But � and f�1; �2g satisfy (REL0), and
each A�i satisfies the K.�; 1/ conjecture, so A� does. In addition, none of the edges between �1 and �2
are labeled 2, so A� is acylindrically hyperbolic. More generally, if a clique � with at least three vertices
is extra-large relative to a family f�ig, then A� is acylindrically hyperbolic, and, if each �i satisfies the
K.�; 1/ conjecture, then A� does as well.

We also note that our methodology for proving Theorem A differs from Juhász’s original work, allowing
us to drop his condition (2) and treat more general defining graphs. This also allows us to easily prove
acylindrical hyperbolicity. We hope that this method may be adapted for other similar restrictions on A� .
Namely, our strategy for proving Theorem A is as follows. In Section 1, we construct a simplicial complex
as a variation of the usual Deligne complex. We show the complex is CAT.0/, and hence contractible, in
Section 2. Then, in Section 3, we show that this complex is homotopy equivalent to the universal cover
of N.W / by a result of Godelle and Paris [2012]. In Section 4, we prove Theorem B using recent results
of Vaskou [2022].

We would also like to note that the conditions (REL) and (REL0) can be naturally relaxed to allow edges
with label at least 3, which would define a relatively large type condition. This case is also currently of
interest to the author; however, it is somewhat more complicated.

The author would like to extend great thanks to Mike Davis and Jingyin Huang for their helpful comments
and advice given through the writing of this paper.

1 The Deligne-like complex

Before we define our complex, we wish to establish a lemma in Artin groups similar to a well-known
property of cosets of standard parabolic subgroups of Coxeter groups. We include a proof for the reader’s
convenience. We make heavy use of this result in the subsequent sections.

Lemma 1.1 Suppose .A; S/ is an Artin–Tits system , ˛; ˛0 2 A and T; T 0 � S. Then , if ˛AT � ˛0AT 0 ,
we have ˛�1˛0 2 AT 0 and T � T 0.

Proof Let w and w0 be the image of ˛ and ˛0, respectively, under the quotient homomorphism A�!W� .
The inclusion ˛AT � ˛0AT 0 is preserved under the quotient map, giving us the relation wWT � w0WT 0
in W� . So, by [Bourbaki 2002, Chapter IV, Section 8, Theorem 2(iii)], T � T 0 as subsets of W� . Since
the quotient map is bijective on the generators, this gives T � T 0 viewed in A� .

To see that ˛ and ˛0 must be in the same AT 0–coset, note that ˛AT � ˛AT 0 as well as ˛AT � ˛0AT 0 , so
¿¤ ˛AT � ˛AT 0 \˛0AT 0 . Since cosets partition the group and these cosets have nonempty intersection,
they must be the same.

Algebraic & Geometric Topology, Volume 24 (2024)



The K.�; 1/ conjecture and acylindrical hyperbolicity for relatively extra-large Artin groups 1491

We also briefly give a restatement of a result of van der Lek.

Lemma 1.2 If .A; S/ is an Artin–Tits system and s 2 S, then s cannot be written as a product of the
elements of S n fsg.

Proof By [van der Lek 1983],

Afsg\ASnfsg Š Afsg\Snfsg D A¿ D 1:

Thus, in particular, s … ASnfsg. Since ASnfsg is the collection of all possible products of the generators
S n fsg, the result follows.

1.1 Definition of the complex

Through the rest of the paper, we let ADA� be an Artin group such that � and f�ig satisfy (REL0), with
Si D Vert.�i / and Ai D A�i .

We now introduce a simplicial complex based on our distinguished subgroups Ai of A analogous to the
Deligne complex. To do this, we mimic the construction of the Deligne complex in [Charney and Davis
1995], but replace the poset of spherical generating sets with the following set:

Definition 1.3 Let S` be the set of all T � S satisfying either

(1) T D¿ (in which case AT D 1, the trivial subgroup of A),

(2) T D Si ,

(3) T D fsi ; sj g for vertices si 2 Si and sj 2 Sj of an edge between �i and �j with i ¤ j , or

(4) T D fsg for a vertex s of an edge between �i and �j with i ¤ j.

With this, we define
AS` D f˛AT W ˛ 2 A; T 2 S`g;

and order these sets by inclusion. We then let X denote the geometric realization of the derived complex
of S` and ŷ denote the geometric realization of the derived complex of AS` (recall that the derived
complex of a poset is the set of chains in the poset ordered by inclusion of chains).

We will denote an n–simplex of ŷ by

Œ˛0AT0 ; ˛1AT1 ; : : : ; ˛nATn �;

where ˛0AT0 < ˛1AT1 < � � � < ˛nATn is a chain in AS`. We use similar notation for simplices of X.
Notice that ŷ inherits a natural left action of A with fundamental domain isomorphic to X via the
simplicial map induced by the set map T 7! AT .
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We note that, if one replaces S` by Sf, the set of T � S such that AT is spherical type, then the definition
of the (modified) Deligne complex of [Charney and Davis 1995] is recovered. To further borrow their
notation, we will let K denote the geometric realization of the derived complex of Sf, let ASf denote
the cosets of AT for T 2 Sf, and let ˆM D ˆM .A�/ denote the geometric realization of the derived
complex of ASf.

The rest of this section and the next is dedicated to showing that ŷ is CAT.0/. First we show that ŷ is
simply connected, then endow it with a metric of nonpositive curvature.

To show that ŷ is simply connected, we will use basic facts about complexes of groups. We will only
need the fact that the action of A� on ŷ has a complex of groups structure briefly, so we will summarize
the basic argument here, and refer the reader to [Haefliger 1992] for more details on complexes of groups.

Lemma 1.4 The complex ŷ is simply connected.

Proof The stabilizer of a vertex Œ˛AT � of ŷ is the subgroup ˛AT ˛�1 of A. Thus, A acts on ŷ without
inversion. The complex X is homeomorphic to the quotient ŷ=A via the simplicial map induced by
T 7! AT . In addition, X is simply connected, as Œ¿� is a cone point in X. This information determines
a complex of groups [Haefliger 1992, Section 2.1], which we denote by A.X/. The edge maps are the
usual inclusion maps AT ,! AT 0 . Note that this complex is developable by definition.

Since X is simply connected, �1.A.X// is the colimit of the groups AT along the inclusion maps
[Haefliger 1992, Section 2.7], implying �1.A.X//D A. It follows that the classifying space of A.X/ is
BA.X/D ŷ �AEA [Haefliger 1992, Proposition 3.2.3], and thus the universal cover isfBA.X/D ŷ �EA;
which is homotopy equivalent to ŷ . This shows that ŷ is simply connected.

1.2 The metric on ŷ

In order to put a metric on ŷ , we first note the following:

Lemma 1.5 The complex ŷ is 2–dimensional.

Proof Suppose we have a 3–simplex Œ˛0AT0 ; ˛1AT1 ; ˛2AT2 ; ˛3AT3 � of ŷ . By Lemma 1.1, we then
have a chain T0 < T1 < T2 < T3. In particular, jT2j � 2. The only sets of S` with cardinality at least 2
are either Si for some i or an edge fsi ; sj g. But, in either case, there is no element of S` containing T2, a
contradiction.

As a consequence of the proof of the lemma, there are only two kinds of top-dimensional simplices of ŷ :
the first is Œ˛01; ˛1Afsg; ˛2Ai � for a vertex s 2 Si of an edge between �i and some �j , and the second is
Œ˛01; ˛1Afsi g; ˛2Afsi ;sj g� for fsi ; sj g an edge between �i and �j .
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We now put a metric on the two kinds of 2–simplices of ŷ . First consider Œ˛01; ˛1Afsg; ˛2Ai �. We give
this simplex the metric of a Euclidean isosceles right triangle with right angle at ˛1Afsg and whose legs
have length 1. Pictorially, we have

˛01

�
4

˛2Ai

�
4

˛1Afsg

�
2

1

1

p
2

The arrows here denote the inclusion of the relevant groups.

Now consider a simplex of the form �D Œ˛01; ˛1Afsi g; ˛2Afsi ;sj g� for e D fsi ; sj g an edge between �i
and �j .

1.2.1 Case 1: a disjoint edge Suppose that e is disjoint from all other edges between any �k and �̀ .
We then put a similar metric on � as in the previous case, namely

˛01

�
4

˛2Afsi ;sj g

�
4

˛1Afsi g

�
2

1

1

p
2

1.2.2 Case 2: a nondisjoint edge Now suppose that e shares a vertex with some other edge between �i
and �j . Then we still put the metric of a Euclidean right triangle on �, but it will no longer be isosceles.
Specifically, the metric we put on � still assigns a right angle to the vertex ˛1Afsi g, but now places an
angle of 3�

8
to ˛01 and an angle of �

8
to ˛2Afsi ;sj g. Moreover, importantly, the 1–simplex Œ˛01; ˛1Afsi g�

is given length 1. The diagram for this case is

˛01

3�
8

˛2Afsi ;sj g

�
8

˛1Afsi g

�
2

1
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In order to show this properly defines a piecewise Euclidean metric on ŷ , we examine the gluings between
adjacent simplices. We begin with a simplex of the form � D Œ˛01; ˛1Afsg; ˛2Ai �. The only type of
simplex� can be adjacent to which is not of the same type is one of the form�0D Œ˛01; ˛1Afsg; ˛

0
2Afs;tg�

with fs; tg an edge between �i and �j and t a vertex of �j . These simplices are glued only along the
edge Œ˛01; ˛1Afsg�, and within both simplices we have assigned this edge a length of 1.

Now consider �D Œ˛01; ˛1Afsi g; ˛2Afsi ;sj g� for fsi ; sj g an edge between �i and �j . The case where �
is adjacent to a simplex of the form Œ˛01; ˛1Afsg; ˛2Ai � was covered above. So consider an adjacent
simplex of the form Œ˛001; ˛1Afsi g; ˛2Afsi ;sj g� or Œ˛01; ˛01Afs0i g; ˛2Afsi ;sj g�. In either case, the metric put
on the simplices is the same as that of � as this metric only depended on the edge fsi ; sj g, so there is no
issue with the gluing.

It remains to check the simplices of the form �0 D Œ˛01; ˛1Afsi g; ˛2Afs0i ;skg
� for an edge fs0i ; s

0
j g and

sk 2 �k for some k ¤ i . By Lemma 1.1, since ˛1Afsi g � ˛2Afs0i ;skg, we have fsig � fs0i ; skg, and since
sk 2 �k we must have s0i D si . Thus, if this is to be a simplex distinct from �, we must have sk ¤ sj , so
fsi ; skg and fsi ; sj g are both edges which are not distinct. Thus, the metrics on � and �0 are the same,
so they may be glued as required.

2 Links

The purpose of this section is to show the following:

Proposition 2.1 The complex ŷ (with the above metric) is CAT.0/ (and hence contractible).

To do this, we compute the link at each relevant vertex of ŷ and show that the link condition is satisfied.
Let us briefly recall the relevant definitions. (For more details, see [Bridson and Haefliger 1999].)

Definition 2.2 (link of a vertex) Let K be a polyhedral complex and v a vertex of K. Then the link of v
in K, denoted by lkK.v/, is the "–sphere of K centered at v. We give the link a cell structure coming from
the intersection of the sphere with the cell structure of K. The link is endowed with a natural spherical
metric inherited from the "–sphere.

In the case of the geometric realization of an abstract simplicial complex (such as ŷ ), we can give an
explicit description of the link of a vertex using the underlying set. Let Œ˛AT � be a vertex of ŷ (so
˛AT 2 AS`). Then the vertex set of lk ŷ .Œ˛AT �/ is

f˛0AT 0 W ˛
0AT 0 � ˛AT g[ f˛

00AT 00 W ˛
00AT 00 � ˛AT g:

But, by Lemma 1.1, this is the same as the set

f˛0AT 0 W ˛
0AT 0 � ˛AT g[ f˛AT 00 W T

00
� T g:
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A collection of vertices ˛0AT0< � � �< j̨ATj <˛AT 00
< � � �<˛AT 0

k
spans a .jCk/–simplex of lk ŷ .Œ˛AT �/

if and only if
Œ˛0AT0 < � � �< j̨ATj < ˛AT < ˛AT 00

< � � �< ˛AT 0
k
�

is a .jCkC1/–simplex of ŷ . In the case of ŷ , we can say slightly more than this. Our complex ŷ is
2–dimensional, so the link of any vertex is 1–dimensional. Moreover, the link of a simplicial complex is
itself a simplicial complex, so the link here is always a simplicial graph.

We can also explicitly describe the spherical metric on each link in ŷ . If Œ˛AT � is a vertex of ŷ and
e D Œ˛0AT0 ; ˛1AT1 � is an edge of lk ŷ .Œ˛AT �/, then the length of e is the angle assigned above to the
vertex corresponding to ˛AT in the simplex of ŷ spanned by the vertices ˛AT , ˛0AT0 and ˛1AT1 .

Definition 2.3 We say that a polyhedral complex K satisfies the link condition if, for each vertex v of K,
the link lkK.v/ is a CAT.1/ space (under the induced spherical metric).

To show ŷ is CAT.0/, we make use of the following criterion, proven in [Bridson and Haefliger 1999]:

Lemma 2.4 If K is a Euclidean polyhedral complex (meaning each cell of K has the metric of a
Euclidean polytope) and K is simply connected , then K is CAT.0/ if and only if it satisfies the link
condition.

Since our complex ŷ is 2–dimensional, to verify our links are CAT.1/, we can use the following equivalent
condition, also proven in [Bridson and Haefliger 1999]:

Lemma 2.5 A 2–dimensional Euclidean simplicial complex K satisfies the link condition if and only if ,
for each vertex v of K, every embedded closed loop in lkK.v/ has length at least 2� .

We now turn to examining the links of our complex in detail. Since each vertex of ŷ is a translate of one
of the cosets AT , it suffices to just compute the link at AT for T 2 S`.

2.1 Case 1: T D Si

Let us first examine the link of Ai for fixed i . The vertex set of this link can be decomposed as

f˛1 W ˛ 2 Aig and f˛Afsg W ˛ 2 Ai ; s 2 Sig:

It is easily seen that there is no edge between any two vertices which are in the same set, meaning the
link is a bipartite graph. By definition, we can only have an edge when ˛1� ˛0Afsg, or, in other words,
when ˛ 2 ˛0Afsg.

To show that the shortest embedded closed loop in Ai has length at least 2� , we claim that any embedded
closed loop in lk ŷ .Ai / must have at least eight edges. Since the link is a bipartite graph, we know the
edge length of any cycle is even and at least 4. So we only need to verify that there are no cycles of edge
length 4 or 6.
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Suppose we have a loop with four edges. Then, by our discussion regarding the possible edges in the link,
this loop must have the form

˛11

˛0Afs0g ˛00Afs00g

˛21

(The arrows correspond to inclusions; the paths we consider are not directed.) This gives us equations of
the form

˛0.s0/k1 D ˛1 D ˛
00.s00/j1 and ˛0.s0/k2 D ˛2 D ˛

00.s00/j2 :

Or, rewriting,
.s00/j1.s0/�k1 D .˛00/�1˛0 D .s00/j2.s0/�k2 ;

implying
.s00/j1�j2 D .s0/k1�k2 :

Since we’re assuming the loop is embedded, s0¤ s00 (otherwise two cosets of the same subgroupAs0DAs00
would intersect nontrivially, and thus be the same), and ˛1¤ ˛2, so k1¤ k2 and j1¤ j2. However, these
are distinct generators, so this cannot happen by Lemma 1.2. Thus, this loop is not embedded.

Now suppose we have a loop with six edges. This loop has the form

ˇ11

˛1Afs1g ˛3Afs3g

ˇ21 ˛2Afs2g ˇ31

Since the loop is embedded, each ˇi is distinct and at most one of the ˇi can be the identity, so assume
ˇ1 ¤ 1 and ˇ2 ¤ 1. Then, since ˇ1 ¤ 1, we must have s1 ¤ s3 (as before, if we did have s1 D s3, then
the cosets ˛1Afs1g and ˛3Afs3g would be cosets of the same subgroup Afs1g D Afs3g which intersect
nontrivially, and thus would be the same coset). Similarly, s1 ¤ s2.

From our diagram, we see that

˛1s
k1
1 D ˇ1 D ˛3s

k3
3 ; ˛2s

j2
2 D ˇ2 D ˛1s

j1
1 ; ˛3s

`3
3 D ˇ3 D ˛2s

`2
2

for some ki ; ji ; `i 2 Z. Then

s
j1�k1
1 D s

�k1
1 s

j1
1 D .˛

�1
1 ˇ1/

�1.˛�11 ˇ2/D ˇ
�1
1 ˇ2;

and, similarly,
s
`2�j2
2 D ˇ�12 ˇ3; s

k3�`3
3 D ˇ�13 ˇ1:
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Note that, since the ˇi are distinct, none of these exponents are zero. But

s
j1�k1
1 D ˇ�11 ˇ2 D ˇ

�1
1 .ˇ3ˇ

�1
3 /ˇ2 D .ˇ

�1
3 ˇ1/

�1.ˇ�12 ˇ3/
�1
D s

`3�k3
3 s

j2�`2
2 :

This means sj1�k11 2 Afs2;s3g, and so Afs1g\Afs2;s3g ¤ 1 since j1� k1 ¤ 0. But then, by [van der Lek
1983], this would mean fs1g\ fs2; s3g ¤¿, a contradiction. Thus, this loop cannot be embedded.

Therefore, each embedded loop in lk ŷ .Ai / has at least eight edges. The spherical metric on the link
assigns each of these edges a length of �

4
, so the shortest possible length of an embedded loop is 2� .

2.2 Case 2: T D fsg

Now we look at the link of Afsg with s 2Vert.�i / a vertex of an edge between �i and �j . In this case the
link is again a bipartite graph: the vertices can be divided into the sets

f˛1 W ˛ 2 Afsgg and fAig[
˚
Afs;skg W fs; skg is an edge between �i and �k with k ¤ i

	
:

So every embedded loop has at least four edges. The spherical metric on the link assigns a length of �
2

to
each of these edges, implying the length of every embedded loop is at least 2� .

2.3 Case 3: T D fsi ; sj g

The link of AT for T D fsi ; sj g with si 2 Si and i ¤ j, is slightly different, as there are two cases to
consider. However, in both cases the minimal number of edges in an embedded loop are the same.

Lemma 2.6 If T D fsi ; sj g is an edge between �i and �j for i ¤ j, then each embedded loop in
lk ŷ .ŒAT �/ has at least 4m.si ; sj / edges.

Proof The link of AT has vertex set which can be split into

f˛1 W ˛ 2 AT g and f˛Ask W ˛ 2 AT ; k D i; j g;

on which the link is a bipartite graph. By applying the natural AT –action on the link, we may consider
only loops which contain the vertex 1. Namely, we may consider only loops of the form

˛1At1 ˇ1 ˛2At2 ˇ2

1
:::

˛nAtn ˇn�1 ˛nAtn�1 ˇn�2

where each ˛k 2AT and each tk 2 T. This loop has 2n edges. Moreover, assuming this loop is embedded,
this gives rise to a (reduced) word in si and sj of syllable length at least n (see [Appel and Schupp 1983,
Section 4] for the definition of syllable length) which is equal to the identity in AT . By [Appel and
Schupp 1983, Lemma 6], this means n� 2m.si ; sj /. Thus, this loop has at least 4m.si ; sj / edges.

Now we can compute the length of these loops in each given link.
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2.3.1 Case 3a: a disjoint edge If fsi ; sj g is disjoint from every other edge between the subgraphs
in f�kg, then the spherical metric on the link of AT implies that the length of each edge here is �

4
. So the

length of any embedded loop is at least .4m.s1; s2//
�
�
4

�
D �m.s1; s2/. Since m.s1; s2/ � 2, this loop

has length at least 2� , as required.

2.3.2 Case 3b: a nondisjoint edge If this edge is not disjoint from every other edge between the
subgraphs in f�kg, the metric we have assigned implies that the length of each edge is �

8
. So the length

of any embedded loop is at least .4m.s1; s2//
�
�
8

�
D

�
2
m.s1; s2/. But in this case we have also assumed

m.s1; s2/� 4, so the length of this loop is still at least 2� .

2.4 Case 4: T D ¿

It remains to check the link of the trivial coset 1. Note again that this link is bipartite, with a partition of
the vertices given by

fAfsg W s a vertex of an edge between the subgraphs in f�kgg
and

fAig[
˚
Afsi ;sj g W fsi ; sj g an edge between �i and �j with j ¤ i

	
:

We first verify that there are no embedded loops with four edges. Suppose we had such an embedded
loop, say

Afsg

AT1 AT2

Afs0g

Since this loop is embedded, s ¤ s0. Thus, by Lemma 1.1, both T1 and T2 contain fs; s0g. If s and s0 are
in the same vertex set Si , then T1 D T2 D Si by our definition of S`. Similarly, if they are in distinct
vertex sets, then both T1 and T2 must exactly be the edge fs; s0g. In either case, we have a contradiction.

It is entirely possible that we have embedded loops of length 6. Suppose

Afs1g

AT1 AT3

Afs2g Afs3g

AT2

is such a loop. If each pair fsi ; sj g is an edge between the family of subgraphs f�ig, then the Ti must be
the edges

T1 D fs1; s2g; T2 D fs2; s3g; T3 D fs3; s1g
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since these are the only sets of S` which satisfy the containments implied by the diagram. But none of
these edges are disjoint, so the metric we’ve put on ŷ assigns the following edge lengths to this path:

Afs1g

AT1 AT3

Afs2g Afs3g

AT2

3�
8

3�
8

3�
8

3�
8

3�
8

3�
8

And thus this loop has length at least 2� . Now suppose two of the vertices si are in the same vertex set
and the other is in a distinct vertex set. Without loss of generality, we can take s1; s2 2 Si and s3 2 Sj
with i ¤ j. Then the only set T1 2 S` containing both s1 and s2 is T1 D Si , and so

T1 D Si ; T2 D fs2; s3g; T3 D fs3; s1g:

The metric on ŷ then assigns the edge lengths

Afs1g

AT1 AT3

Afs2g Afs3g

AT2

�
4

3�
8

�
4

3�
8

3�
8

3�
8

which is still at least 2� total. We note that it is not possible to have s1; s2; s3 2 Si for any i , since then
T1 D T2 D T3 D Si , and this loop would not be embedded.

Finally, if we have a loop with eight edges in this link, then the length of each edge under our metric is at
least �

4
, and thus the length of this loop is at least 2� as well.

This concludes every possibility for T, so it follows that ŷ satisfies the link condition by Lemma 2.5. By
Lemma 1.4, ŷ is simply connected, so, by Lemma 2.4, ŷ is CAT.0/ and thus contractible, as desired.

3 The K.�; 1/ conjecture

In this section only, we assume that each A�i satisfies the K.�; 1/ conjecture. In addition, we assume
that A� is not spherical type. (Since the K.�; 1/ conjecture is known for spherical-type Artin groups,
there is no loss of generality in making this assumption.)

Algebraic & Geometric Topology, Volume 24 (2024)



1500 Katherine M Goldman

We will use the following:

Definition 3.1 [Godelle and Paris 2012] Let .A; S/ be an Artin–Tits system and let S be a family of
subsets of S. Then S is complete and K.�; 1/ if the following are satisfied:

(1) If T 2 S and T 0 � T, then T 0 2 S.

(2) .AT ; T / satisfies the K.�; 1/ conjecture for each T 2 S.

(3) If AT is spherical type, then T 2 S.

Then let
ASD f˛AT W ˛ 2 A; T 2 Sg

and let ˆ.A;S/ denote the geometric realization of the derived complex of AS.

The relevant result for us is:

Theorem 3.2 [Godelle and Paris 2012, Theorem 3.1] Let .A; S/ be an Artin–Tits system and let S be a
complete and K.�; 1/ family of subsets of S. Then ˆ.A;S/ has the same homotopy type as the universal
cover of N.W /.

Our family S` is not itself complete and K.�; 1/, so we cannot directly apply this result. Instead we
show that ŷ is homotopic to ˆ WDˆ.A;S/ for a certain complete and K.�; 1/ collection S, which we
define as follows: the sets of S are the subsets of S consisting of the sets in S` and every subset of Si .

Lemma 3.3 S is a complete and K.�; 1/ family of subsets of S.

Proof First we note that (1) and (2) are satisfied immediately by our definition of S (to see (2), note
that a standard parabolic subgroup satisfies the K.�; 1/ conjecture whenever the original group does by
[Godelle and Paris 2012, Corollary 2.4]). It remains to show that S contains all spherical-type generating
sets.

Suppose � 0 is a full subgraph of � such that A� 0 is spherical type, and let T D Vert.� 0/. If T � Si , then
we already have T 2 S. So suppose there are t1; t2 2 T with t1 and t2 in distinct vertex sets, say t1 2 Si
and t2 2 Sj with i ¤ j.

If T D ft1; t2g, then, since we’re assuming A� 0 is spherical type, ft1; t2g is an edge of � , and thus T 2 S.
In other words, whenever jT j D 2 and T š Sk for any k, we must have that T is an edge of � , so T 2 S.

Suppose jT j> 2 and let t3 2 T be distinct from t1 and t2. If any of ft1; t2g, ft2; t3g or ft3; t1g were not an
edge of � , then A� 0 would not be spherical, so each of these are edges. There are three cases to consider:
t3 is in either S1, S2 or neither. By symmetry, we may consider only the cases where t3 2 S1 and t3 is in
neither. In both of these cases, ft1; t2g and ft3; t2g are distinct nondisjoint edges between the family f�ig,
so, by the (REL0) condition, both of their labels must be at least 4. By the classification of finite Coxeter
groups, then, A� 0 is not spherical type. Thus, if T š Si , we cannot have jT j> 2.
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Thus, ˆ is homotopy equivalent to the universal cover of N.W /. It remains to show that:

Theorem 3.4 There is a deformation retract from ˆ to ŷ .

Proof Note that there is a natural embedding of ŷ into ˆ induced by the inclusion of S` in S.

We establish the deformation retract directly by describing the maps on each simplex. Let � be a maximal
simplex of ˆ (ie one which is not a face of any other simplex). There are two types of simplices to
consider. The first is

�D Œ˛01; ˛0Afsg; ˛1Afs;tg�

for an edge fs; tg between the family f�ig. This is already a maximal simplex of ŷ , so we leave it
unchanged. In the other case,

�D Œ˛0AT0 ; ˛1AT1 ; : : : ; ˛n�1ATn�1 ; ˛nASi �

for some Si . Since � is maximal, T0 D ¿ and T1 D fsg for some s 2 Si . There are two subcases to
consider. If s is a vertex of an edge between �i and some �j , then there is a natural deformation retract
from � to the simplex Œ˛0AT0 ; ˛1AT1 ; ˛nASi � of ŷ . Otherwise, there is a natural deformation retract
from � to the simplex Œ˛0AT0 ; ˛nASi � of ŷ . Moreover, these can easily be parametrized so that we
can glue deformation retracts of adjacent maximal simplices to attain a deformation retract on the entire
complex ˆ.

We have therefore proven:

Theorem A Suppose � and f�ig satisfy (REL0). Then A� satisfies the K.�; 1/ conjecture if and only if
each A�i does.

Proof First supposeA� satisfies theK.�; 1/ conjecture. Then, by [Godelle and Paris 2012, Corollary 2.4],
each A�i also does.

Now suppose each A�i satisfies the K.�; 1/ conjecture. Combining Theorem 3.2 and Lemma 3.3, ˆ is
homotopy equivalent to the universal cover of N.W /, and, by Theorem 3.4, ŷ is homotopy equivalent
to ˆ. Thus, by Proposition 2.1, the universal cover of N.W / is contractible.

4 Acylindrical hyperbolicity

We conclude by showing the following:

Theorem B Suppose A� and f�igniD1, n� 2 satisfy (REL0). In addition , assume jVert.�/j � 3 and not
all edges between the family f�ig have label 2. Then A� is acylindrically hyperbolic.

For the full definition of acylindrical hyperbolicity, we refer the reader to [Bowditch 2008].
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First, if there are no edges between the family f�ig, then A� is a free product of the A�i , and thus is
acylindrically hyperbolic by considering the action of A� on its Bass–Serre tree. So we assume there is
an edge between the family f�ig, say eD fsi ; sj g with si 2 Si and sj 2 Sj . By our assumptions on � , we
may take e to have label at least 3. In this case, we make use of the following adaptation of a theorem
from [Martin 2017]:

Theorem 4.1 [Martin 2017, Theorem B] Let X be a CAT.0/ simplicial complex and G a group acting
on X by simplicial isomorphisms. Suppose there is a vertex v of X with stabilizer Gv satisfying:

(1) The orbits of Gv on the link lkX .v/ are unbounded in the associated spherical metric.

(2) Gv is weakly malnormal in G (ie there exists an element g 2G such that Gv \gGvg�1 is finite).

Then G is either virtually cyclic or acylindrically hyperbolic.

Remark 4.2 This is a strictly weaker statement than the one given in [Martin 2017], which allows X to
be a polyhedral complex satisfying the “strong concatenation property”. By [Martin 2017, Example 2.9
and Lemma 2.11], CAT.0/ simplicial complexes always satisfy this property.

We use the action of A� on our Deligne-like complex ŷ , which we have shown is CAT.0/ for any Artin
group satisfying (REL0). We claim that ve WD ŒAfsi ;sj g� is a vertex of ŷ which satisfies the conditions of
Theorem 4.1.

Since we have assumed jVert.�/j � 3, there is at least one vertex s of � distinct from si and sj . If
there is no such s for which either fs; sig or fs; sj g is an edge of � , then A� is a free product and thus
acylindrically hyperbolic by our previous remarks. In the other case, take s such that one of fs; sig
or fs; sj g is an edge of � , and define � D fs; si ; sj g. Then the full subgraph of � on vertices � is
connected and, by the (REL0) condition, A� is a 2–dimensional Artin group. Moreover, we have assumed
m.si ; sj / > 2, so A� is not a right-angled Artin group. Thus, we may use the following:

Theorem 4.3 [Vaskou 2022, Lemma 5.7] Let Aƒ be a 2–dimensional Artin group of rank at least 3, and
suppose thatƒ is connected and Aƒ is not a right-angled Artin group. Then there exists an Artin subgroup
Afa;bg with coefficient 3�m.a; b/ <1 and an element g 2 Aƒ such that Afa;bg\gAfa;bgg�1 D f1g.

Applying this to A�, we have a; b 2 � and g 2 A� such that Afa;bg \ gAfa;bgg�1 D f1g. The proof
of the theorem implies that we may take fa; bg D fsi ; sj g. This shows that ve satisfies (2). To show ve

satisfies (1), we use:

Theorem 4.4 [Vaskou 2022, Lemma 4.5] Consider an Artin group Afa;bg with coefficient 3 �
m.a; b/�1. Then

f`S.g/ W g 2 Afa;bgg

is unbounded (where `S.g/ is the syllable length of g).
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By the same analysis in the case of loops, if fa; bg is an edge between the family f�ig, then reduced
words in a and b correspond to paths in lk ŷ .ŒAfa;bg�/, and vice versa. The edge length of such a path
is at least the syllable length of the given word. So, since m.si ; sj / � 3, the action of Afsi ;sj g on
lk ŷ .ŒAfsi ;sj g�/D lk ŷ .ve/ is unbounded. Therefore, ve also satisfies (1), and thus A� is acylindrically
hyperbolic.
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The localization of orthogonal calculus with respect to homology

NIALL TAGGART

For a set of maps of based spaces S we construct a version of Weiss’s orthogonal calculus which depends
only on the S–local homotopy type of the functor involved. We show that S–local homogeneous functors
of degree n are equivalent to levelwise S–local spectra with an action of the orthogonal group O.n/

via a zigzag of Quillen equivalences between appropriate model categories. Our theory specialises to
homological localizations and nullifications at a based space. We give a variety of applications including a
reformulation of the telescope conjecture in terms of our local orthogonal calculus and a calculus version
of Postnikov sections. Our results also apply when considering the orthogonal calculus for functors which
take values in spectra.

55P60, 55P65; 55N20, 55P42

1 Introduction

1.1 Motivation

Weiss’s orthogonal calculus [1995] studies functors from the category of real inner product spaces and
isometries to the category of based spaces or spectra. The motivation for such a version of functor calculus
comes from a desire to study geometric and differential topology through a homotopy-theoretic lens. For
example, Arone, Lambrechts and Volić [Arone et al. 2007] and Arone [2009] utilised Weiss’s calculus to
provide a comprehensive study of the (stable) homotopy type of spaces of embeddings Emb.M;N �Rk/

where M and N are fixed smooth manifolds. More recently, Krannich and Randal-Williams [2021] have
studied the Weiss tower of the classifying space BTOP.Rk/ of the group of homeomorphisms of Rk

to understand the homotopy type of the space of diffeomorphisms of discs. In all of these cases, the
authors are only able to ascertain geometric information up to rational homotopy via ad-hoc means. These
vastly varying approaches highlight the need for a comprehensive account of the interactions between
orthogonal calculus and localizations.

The theory of localizations at homology theories are ubiquitous and have had wide applications; of
particular note is chromatic homotopy theory which among other things gives a spectrum level interpretation
for the periodic families appearing in the stable homotopy groups of spheres. An extensive amount of
effort has been geared toward understanding how localization at homology theories — particularly the
chromatic localizations — interact with Goodwillie’s calculus of functors [Arone and Mahowald 1999;

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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1506 Niall Taggart

Kuhn 2004; 2006a; 2006b]; see eg [Kuhn 2007] for a survey. Analogous questions remain in Weiss’s
orthogonal calculus, and we propose a noticeably different approach than those applied to the Goodwillie
calculus.

Overview

Given a functor F from the category of Euclidean spaces to the category of based spaces or spectra, the
calculus assigns a tower of functors

F

|| �� �� !!

� � � // TnF // Tn�1F // � � � // T1F // T0F

called the Weiss tower for F . The functor TnF is a categorification of the nth Taylor polynomial from
differential calculus. The nth layer of the tower DnF is the homotopy fibre of the map TnF ! Tn�1F ,
and is a categorification of homogeneous functions from differential calculus. Orthogonal calculus is
synonymous with being the most computationally challenging flavour of functor calculus due to the
interaction between the highly “geometric” nature of the objects of study and the highly homotopical
constructions.

Let C denote either the category of based spaces or spectra. Given a set S of maps in C we produce an
S–local Weiss tower of the form

F

{{ �� �� ""

� � � // T S
n F // T S

n�1
F // � � � // T S

1
F // T S

0
F

DS
n F

OO

DS
n�1

F

OO

DS
1

F

OO

To understand the S–local Weiss tower, we utilise Bousfield’s [1975; 1979] interpretation of localizations in
terms of model structures on C. We begin by constructing a model structure, denoted by Poly�n.J0;LSC/,
which captures the homotopy theory of functors which are S–locally polynomial of degree less than
or equal n. Under some assumptions on the set of localizing objects the composite TnLS is a fibrant
replacement functor, hence satisfying the necessary universal property.

We further construct a model structure, denoted by Homogn.J0;LSC/, which captures the homotopy theory
of functors which are S–locally homogeneous of degree n. Through a zigzag of Quillen equivalences
we characterise the S–local n–homogeneous functors in terms of appropriately S–local spectra with an
action of O.n/.
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Theorem (Corollary 5.16) Let S be a set of maps of based spaces and n � 0. There is a zigzag of
Quillen equivalences

Homogn.J0;LSTop�/'Q Sp.LSTop�/ŒO.n/�;

where Sp.LSTop�/ŒO.n/� is the category of levelwise S–local spectra with an action of O.n/.

Theorem (Corollary 5.18) Let S be a set of maps of spectra and n� 0. There is a zigzag of Quillen
equivalences

Homogn.J0;LSSp/'Q LSSpŒO.n/�;

where LSSpŒO.n/� is the category of S–local spectra with an action of O.n/.

In particular, an S–local n–homogeneous functor F is determined by and determines an appropriately S–
local spectrum with an O.n/–action, denoted by @S

n F . On the derived level, we obtain a computationally
accessible classification theorem for S–local homogeneous of degree n functors.

Theorem (Theorem 5.20) Let S be a set of maps of in C and n� 1.

(1) A Top�–valued S–local n–homogeneous functor F is objectwise weakly equivalent to the functor

V 7!�1Œ.SRn˝V
^ @S

n F /hO.n/�;

and any functor of the above form is objectwise S–local and n–homogeneous.

(2) An Sp–valued S–local n–homogeneous functor F is objectwise weakly equivalent to the functor

V 7! .SRn˝V
^ @S

n F /hO.n/;

and any functor of the above form is objectwise S–local and n–homogeneous.

Applications

We envision that the applications of this local version of orthogonal calculus are vast. For example,
extending the rational computations of [Arone 2009; Arone et al. 2007; Krannich and Randal-Williams
2021] to higher chromatic height or another perspective on the full understanding of the Weiss tower
of BO.�/ in vn–periodic homotopy theory achieved by Arone [2002] using computations of Arone and
Mahowald [1999].

Very little of our results use the fact that the target category is based spaces or spectra. The largest hurdle
to having a theory of localizations of orthogonal calculus with target any (simplicial cofibrantly generated)
model category is the development of orthogonal calculus in this realm. We hope that our exposé of
orthogonal calculus with target space a localization of spaces or spectra will motivate the construction
of orthogonal calculus based on more general homotopy theories such as arbitrary model categories or
1–categories.

In the last part of this paper, we give several initial applications, which we survey here.
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Bousfield classes Bousfield [1979] introduced an equivalence relation on the stable homotopy category
that has turned out to be of extreme importance. Define the Bousfield class hEi of a spectrum E to
be the collection of E–acyclic spectra, and say that E and E0 are Bousfield equivalent if and only if
hEi D hE0i. These Bousfield classes assemble into a lattice, the understanding of which has been a major
task in stable homotopy theory. For example, the nilpotence theorem of Devanitz, Hopkins and Smith
[Devinatz et al. 1988; Hopkins and Smith 1998] is equivalent to a classification of the Bousfield classes
for finite spectra. The Bousfield lattice has many interesting interactions with homological localizations
of orthogonal calculus.

Theorem (Example 6.6) Let E and E0 be spectra. The E–local orthogonal calculus is equivalent to the
E0–local orthogonal calculus if and only if E and E0 are Bousfield equivalent.

Fix a prime p. Ravenel’s height n telescope conjecture [1984, Conjecture 10.5] is the statement that the
height n Morava K–theory, K.n/, is Bousfield equivalent to T .n/, the telescope of any vn–self map on a
finite type n complex. The telescope conjecture is trivial at height nD 0, has been verified at height nD 1

and at all primes by Bousfield [1979], Mahowald [1981] and Miller [1981], but in general, is widely
believed to be false.

Theorem (Corollary 6.9) The height n telescope conjecture holds if and only if the K.n/–local orthog-
onal calculus and the T .n/–local orthogonal calculus are equivalent.

The Weiss tower of a functor F produces a spectral sequence as it is a tower of fibrations. We call this
spectral sequence the Weiss spectral sequence. From a computational perspective we obtain the following
relation between the telescope conjecture and the local Weiss spectral sequences.

Theorem (Lemma 6.10) If the height n telescope conjecture holds , then for all r � 0, the r th page of
the T .n/–local Weiss spectral sequence is isomorphic to the r th page of the K.n/–local Weiss spectral
sequence.

Nullifications For functors from the category of Euclidean spaces to the category of based spaces we
also consider localization at a based space W , which is sometimes referred to as nullification. In this
setting W –local objects are also called W –periodic, following Bousfield [1994] and Dror Farjoun [1996].

We give alternative constructions for the n–polynomial and n–homogenous model structures when the
localization is a nullification. These alternative constructions yield an identical n–polynomial model
structure but sheds new light on some of the formal properties of the model structure, and yield an
n–homogeneous model structure which is Quillen equivalent to the original W –local model structure via
the identity functor. These alternative descriptions are particularly useful when considering Postnikov
sections of orthogonal calculus.
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The results obtained for nullifications do not hold for more general localizations as the techniques employed
rely crucially on a right properness condition on the model categories. We show in Proposition 7.2 that
the right proper condition is satisfied if and only if the localization is a nullification. This is an extension
of a remark of Bousfield [2001].

Postnikov sections Considering nullifications with respect to the spheres produces a theory of Postnikov
sections in orthogonal calculus. We prove that our SkC1–local projective model structure on the category
of functors from Euclidean spaces to based spaces is identical to the model structure of k–types in the
category of functors from Euclidean spaces to based spaces in the sense of k–types in an arbitrary model
category developed by Gutiérrez and Roitzheim [2017, Section 4].

Theorem (Proposition 8.2) Let k � 0. The model structure of k–types in orthogonal functors is
identical to the SkC1–local model structure; that is , there is an equality of model structures ,

Pk Fun.J0;Top�/ WDLWk
Fun.J0;Top�/D Fun.J0;LSkC1Top�/:

As an application we produce a tower of model categories

� � � ! Homogn.J0;PkTop�/! � � � ! Homogn.J0;P0Top�/;

where PkTop� denotes the SkC1–local model structure on based spaces. By applying the theory of
homotopy limits of model categories, we show that the n–homogeneous model structure of Barnes and
Oman [2013, Proposition 6.9] is the homotopy limit of this tower, in the following sense.

Theorem (Corollary 8.13) There is a Quillen equivalence

Homogn.J0;Top�/'Q holim
k

Homogn.J0;PkTop�/:

Relation to other work

This work is intimately related to the rational orthogonal calculus developed by Barnes [2017]; by
replacing our generalised homology theory E� with rational homology one recovers Barnes’ theory.

Unstable chromatic homotopy theory can be described algebraically, via Heuts’s [2021] algebraic model
for vn–periodic spaces via an equivalence (of1–categories) with Lie algebras in T .n/–local spectra.
This model indicated that there is likely a relationship between vn–periodic orthogonal calculus and
orthogonal calculus of Heuts’s Lie algebra models. Such an equivalence at chromatic height zero suggests
a relationship between rational orthogonal calculus and the algebraic models for rational homotopy
theory of Sullivan [1977] and Quillen [1969]. This together with Barnes’ [2017] model for rational
n–homogeneous functors using the classification of rational spectra with an O.n/–action as torsion
modules over the rational cohomology ring of BSO.n/ of Greenlees and Shipley [2014] suggests the
existence of algebraic model calculi. We plan to return to this in future work.
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This work also forms part of an extensive program to go “beyond orthogonal calculus” which was initiated
in the PhD thesis of the author [Taggart 2020], together with a series of articles exploring extensions
of the orthogonal calculus and the relations between these [Taggart 2021; 2022a; 2022b; 2023]. This
extensive project hopes to illuminate our understanding of orthogonal calculus which (at least relative to
Goodwillie calculus) remains largely unexplored.

The future applications of the homological localization of orthogonal calculus are abounding. For example
in the recent work of Beaudry, Bobkova, Pham and Xu [Beaudry et al. 2022], the authors compute
the tmf–homology of RP2, where tmf denotes the connective spectrum of topological modular forms.
Their computation for RP2 and the tmf–local Weiss tower for the functor V 7!RP .V / should yield a
calculation of the tmf–homology of RPk for all k. Such a connection would, for example, feed into a
chromatic understanding of block structures; see eg [Macko 2007].

Conventions

We work extensively with model categories and refer the reader to the survey article [Dwyer and Spaliński
1995] and the textbooks [Hovey 1999; Hirschhorn 2003] for a detailed account of the theory. We further
assume the reader has familiarity with orthogonal calculus, references for which include [Barnes and
Oman 2013; Weiss 1995].

The category Top� will always denote the category of based compactly generated weak Hausdorff spaces,
and we will, for brevity, call the objects of this category “based spaces”. The category of based spaces will
always be equipped with the Quillen model structure unless specified otherwise. The weak equivalences
are the weak homotopy equivalences and fibrations are Serre fibrations. This is a cellular, proper and
topological model category with sets of generating cofibrations and acyclic cofibrations denoted by I

and J , respectively.

Unless otherwise stated the word “spectra” is synonymous with the phrase “orthogonal spectra”, details
of which can be found in [Mandell et al. 2001] in the nonequivariant case, and [Mandell and May 2002]
in the equivariant situation.

We will denote by C either the category of based spaces or of orthogonal spectra.
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Part I Local orthogonal calculus

2 Orthogonal functors

Denote by C the category Top� of based topological spaces or the category Sp of (orthogonal) spectra.
Define J to be the category with finite-dimensional inner product subspaces of R1 as objects and
with the linear isometries as morphisms. Define J0 to be the category with the same objects and
J0.U;V /D J.U;V /C. The morphism set J.U;V / may be topologised as the Stiefel manifold of dim.U /–
frames in V . As such, J is a topologically enriched category, and J0 is enriched in based spaces. Since
the functor

†1 W Top�! Sp

is symmetric monoidal — see eg [Mandell and May 2002, Lemma II.4.8] — we may enhance the topolog-
ical enrichment of J0 to a spectral enrichment, resulting in a category J

Sp
0

, whose class of objects agrees
with the class of objects in J0, and morphism spectrum

J
Sp
0
.V;W /D†1J0.V;W /:

We will omit the superscript “Sp” when confusion is unlikely to occur.

The category Fun.J0;C/ of C–enriched functors from J0 to C is the category of input functors for
orthogonal calculus. We will refer to such functors as C–valued orthogonal functors or simply orthogonal
functors when confusion is unlikely. Examples of orthogonal functors are abound in geometry, topology
and homotopy theory, and examples of Top�–valued orthogonal functors include

(1) the one-point compactification functor S W V 7! SV ;

(2) the functor BO.�/ W V 7! BO.V / which sends an inner product space to the classifying space of its
orthogonal group;

(3) the functor BTOP.�/ W V 7! BTOP.V /, which sends an inner product space V to BTOP.V /, the
classifying space of the space of self-homeomorphisms of V ;

(4) the functor BDiffb.M ��/ W V 7!BDiffb.M �V /, which for a fixed smooth and compact manifold
M sends an inner product space V to the classifying space of the group of bounded diffeomorphisms
from M �V to M �V which are the identity on @M �V ; and

(5) the restriction of an endofunctor on based spaces to evaluation on spheres.1

The category of orthogonal functors may be equipped with a projective model structure.

1Endofunctors of based spaces are particularly interesting from a homotopy-theoretic point of view when you restrict to the
values on spheres; see eg [Arone 2002; Arone and Mahowald 1999; Behrens 2012]. In particular for F the identity functor,
the Weiss tower of F ıSD S and the Goodwillie tower for F agree up to weak equivalence [Barnes and Eldred 2016]; hence
orthogonal calculus is intimately related to understanding the (stable) homotopy groups of spheres.
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Proposition 2.1 There is a model category structure on the category of orthogonal functors Fun.J0;C/

with weak equivalences and fibrations defined objectwise. This model structure is cellular , proper and
topological , and in the case of Sp–valued orthogonal functors , this model structure is spectral and stable.

2.1 Local input functors

The “base” model structure for the S–local orthogonal calculus will be the S–local model structure on
the category of orthogonal functors.

Proposition 2.2 Let S be a set of maps in C. There is model structure on the category of orthogonal
functors such that a map is a weak equivalence or fibration if it is an objectwise S–local equivalence
or an objectwise S–local fibration in C, respectively. This model structure is cellular , left proper and
topological , and in the case of Sp–valued orthogonal functors this model structure is spectral. We call this
model structure the S–local projective model structure and denote it by Fun.J0;LSC/.

Proof This model structure is an instance of a projective model structure on a category of functors; see
eg [Hirschhorn 2003, Theorem 11.6.1].

Example 2.3 For E� a generalised homology theory, the model structure of Proposition 2.2 has weak
equivalences the objectwise E�–isomorphisms, and fibrant objects objectwise E�–local objects. This
follows since the E�–localization of spaces and spectra exist by work of Bousfield [1975; 1979].

3 Polynomial functors

3.1 Polynomial functors

Polynomial functors behave in many ways like polynomial functions from classical calculus; eg a functor
which is polynomial of degree less than or equal to n is polynomial of degree less than or equal to nC 1.
We give only the necessary details here and refer the reader to [Weiss 1995] or [Barnes and Oman 2013]
for more details on polynomial functors in orthogonal calculus.

Definition 3.1 An orthogonal functor F is polynomial of degree less than or equal n if F is objectwise
fibrant and for each U 2 J0, the canonical map

F.U /! holim
0¤V�RnC1

F.U ˚V /DW �nF.U /

is a weak homotopy equivalence. Functors which are polynomial of degree less than or equal to n will
sometimes be referred to as n–polynomial functors.
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Remark 3.2 Given an orthogonal functor F and an inner product space U we can restrict the orthogonal
functor F.U ˚�/ to a functor

F.U ˚�/ W P.RnC1/! Top�;

where P.RnC1/ is the poset of finite-dimensional inner product subspaces of RnC1. Such functors are
deserving of the name RnC1–cubes by analogy with cubical homotopy theory. The orthogonal functor F

being n–polynomial is equivalent to asking that for each U this restricted functor is homotopy cartesian.
Informally speaking, orthogonal calculus can be thought of as calculus built from Rn–cubical homotopy
theory in a similar way to how Goodwillie calculus is built from cubical homotopy theory.

There is a functorial assignment of a universal (up to homotopy) n–polynomial functor to any orthogonal
functor F . It is the n–polynomial approximation of F , and is defined as

TnF.U /D hocolim.F.U /! �nF.U /! � � � ! �k
n F.U /! � � � /:

Barnes and Oman [2013, Propositions 6.5 and 6.6] construct a localization of the projective model
structure on the category of orthogonal functors which captures the homotopy theory of n–polynomial
functors, in particular the n–polynomial approximation functor is a fibrant replacement. There are two
equivalent ways to consider this model structure; as the Bousfield–Friedlander localization of Fun.J0;C/

at the n–polynomial approximation endofunctor

Tn W Fun.J0;C/! Fun.J0;C/;

or as the left Bousfield localization at the set

Sn D fSnC1.U;V /C! J0.U;V / j U;V 2 J0g

for Top�–valued orthogonal functors, or the set †1Sn D f†
1f j f 2 Sng for Sp–valued orthogonal

functors, where SnC1.V;W / is the sphere bundle of the .nC1/–fold Whitney sum of the orthogonal
complement bundle over the space of linear isometries J.V;W /.

Proposition 3.3 [Barnes and Oman 2013, Proposition 6.5] There is a model category structure on
the category of orthogonal functors with weak equivalences the Tn–equivalences2 and fibrations those
objectwise fibrations f WX ! Y such that the square

X //

��

TnX

��

Y // TnY

is a homotopy pullback in the projective model structure. This model structure is cellular , proper and
topological , and in the case of Sp–valued orthogonal functors this model structure is spectral. We call this
the n–polynomial model structure and denote it by Poly�n.J0;C/.
2A map f WX ! Y is a Tn–equivalence if Tn.f / W TnX ! TnY is an objectwise weak equivalence.
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3.2 Local polynomial functors

The definition of an S–locally n–polynomial functor is the analogous definition of an n–polynomial
functor when the base model category is LSC, ie an objectwise fibrant functor which satisfies a cartesian
RnC1–cube condition.

Definition 3.4 Let S be a set of maps in C. An orthogonal functor is S–locally n–polynomial if it is
objectwise S–local and n–polynomial.

The S–locally n–polynomial model structure is an iterated left Bousfield localization involving the set Sn

and the set
JS D fJ0.U;�/^ j j U 2 J; j 2 JLSCg;

as this iterative localization will necessarily have the S–locally n–polynomial functors as fibrant objects.
This model structure was first constructed by Barnes [2017] for the rationalization of Top�–valued
orthogonal functors.

Proposition 3.5 Let S be a set of maps in C. There is model category structure on the category
of orthogonal functors with cofibrations the projective cofibrations , and fibrant objects the S–locally
n–polynomial functors. This model structure is cellular , left proper , topological , and in the case of
Sp–valued orthogonal functors this model structure is spectral. We call this model structure the S–local
n–polynomial model structure and denote it by Poly�n.J0;LSC/.

Proof The process of left Bousfield localizations may be iterated and it follows that the JS –localization
of the n–polynomial model structure and the Sn–localization of the S–local projective model structure
are identical, and have as cofibrations the projective cofibrations.

For the fibrant objects, notice that the model structure is equivalently described as the left Bousfield
localization of the projective model structure with respect to the set of maps Sn[JS . By definition an
object X is Sn[JS –local if and only if it is both Sn–local and JS –local, and hence the fibrant objects are
precise those S–locally n–polynomial functors.

The S–local n–polynomial model structure behaves precisely like a left Bousfield localization of the
n–polynomial model structure in the following sense.

Lemma 3.6 Let S be a set of maps in C. The adjoint pair

1 W Poly�n.J0;C/� Poly�n.J0;LSC/ W1

is a Quillen adjunction.

Proof The left adjoint preserves cofibrations since the classes of cofibrations are identical. The right
adjoint is right Quillen since it preserves fibrant objects as every S–locally n–polynomial functor is
necessarily n–polynomial.
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The composite TnLS need not be a fibrant replacement functor in the S–local n–polynomial model
structure since the class of S–local objects need not be closed under filtered homotopy colimits. Imposing
a condition on the set S which forces TnLS to be S–local in turn forces TnLS to be a functorial fibrant
replacement.

Proposition 3.7 Let S be a set of maps in C. If the class of S–local objects is closed under sequential
homotopy colimits , then the weak equivalences of the S–local n–polynomial model structure are those
maps f WX ! Y such that the induced map

TnLSf W TnLSX ! TnLSY

is an S–local equivalence. In particular , The composite TnLS is a functorial fibrant replacement in the
S–local n–polynomial model structure.

Proof We apply [Barnes 2017, Lemma 5.5], which shows that a map f WX ! Y is weak equivalence in
the iterated left Bousfield localization if and only if

LSf WLSX !LSY

is an Sn–local equivalence. This last is equivalent to LSf W LSX ! LSY being a Tn–equivalence,
ie TnLSf W TnLSX ! TnLSY being an objectwise weak equivalence. Since both the domain and
codomain of this map are S–local, checking this map is an objectwise weak equivalence is equivalent to
checking that it is an S–local equivalence by the S–local Whitehead theorem.

Remark 3.8 Let S be a set of maps in C. To ease notation, we will denote the composite TnLS by T S
n .

In particular, for E a spectrum we denote the composite functor TnLE by T E
n . In general, T S

n need not
be S–local, but will be when the class of S–local objects is closed under sequential homotopy colimits.

Example 3.9 (1) For a finite cell complex W , T W
n F is W –local (or W –periodic) for all Top�–valued

orthogonal functors F .

(2) For localization at the Eilenberg–Mac Lane spectrum associated to a subring R of the rationals,
T HR

n F is HR–local for all orthogonal functors F .

(3) For E a spectrum such that the associated localization of spectra is smashing, T E
n F is E–local for

all Sp–valued orthogonal functors F .

4 Differentiation

The analogy between orthogonal calculus and differential calculus (Taylor’s version) indicated the
existence of an inductive “formula” for the n–polynomial approximation. The building blocks of such a
“formula” are the derivatives of the functor under consideration.
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4.1 The derivatives

The orthogonal complement of the pullback of the tautological bundle to the Stiefel manifold J0.V;W /

is a vector bundle 1.V;W / with fibre over an isometry f given by f .V /?. For n� 0, we denote the
n–fold Whitney sum of 1.V;W / by n.V;W /. Define Jn to be the category with the same objects as
J and morphism space Jn.U;V / given as the Thom space of n.U;V /. Define J

Sp
n to be the spectral

enriched version of Jn, ie the category with the same objects but morphism spectrum given by

JSp.V;W /D†1Jn.V;W /:

The standard action of O.n/ on Rn via the regular representation induces an action on the vector bundles
that is compatible with the composition; hence Jn is naturally enriched over based spaces with an
O.n/–action.

Recall that C denotes the category of based spaces or spectra. We denote by CŒO.n/� the category of
O.n/–objects in C. For CD Top�, this recovers the category of O.n/–spaces, and for CD Sp, this is the
category of spectra with an O.n/–action. Let 0�m� n. The inclusion in

m WR
m!Rn induces a functor

in
m W Jm! Jn. Postcomposition with in

m induces a topological functor

resnm W Fun.Jn;C/! Fun.Jm;C/;

which by [Weiss 1995, Proposition 2.1] has a right adjoint

indn
m W Fun.Jm;C/! Fun.Jn;C/;

the right Kan extension along in
m, and is given by

indn
m F.U /D natm.Jn.U;�/;F /;

where natm.�;�/ denotes the space of natural transformations in Fun.Jm;C/ and Jn.U;�/ is considered
as an object of Fun.Jm;C/ by restriction. Combining the restriction and induction functors with change
of group adjunctions from [Mandell and May 2002], we obtain an adjoint pair

resnm =O.n�m/ W FunO.n/.Jn;CŒO.n/�/� FunO.m/.Jm;CŒO.m/�/ W ind
n
mCI

(see [Barnes and Oman 2013, Section 4]), where FunO.n/.Jn;CŒO.n/�/ is the category of CŒO.n/�–enriched
functors from Jn to CŒO.n/�. We refer to this category as the nth intermediate category on the point of its
role as an intermediate in the classification of n–homogeneous functors; see Section 5.

Definition 4.1 Let F be an orthogonal functor. For n� 0, the nth derivative of F is given by indn
0 CIF .

For this we write indn
0 "
�F or F .n/.

Restricted evaluation in the nth intermediate category induces structure maps of the form

X.V /^SRn˝W
!X.V ˚W /

for X 2 FunO.n/.Jn;CŒO.n/�/ and V;W 2 Jn; see eg [Barnes and Oman 2013, Section 7]. It is thus
reasonable to think of the objects of the nth intermediate category as spectra of multiplicity n; see eg
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[Weiss 1995, Section 9]. This idea leads to an object Z in the nth intermediate category being called an
n�–spectrum if the adjoint structure maps

Z.V /!�Rn˝W Z.V ˚W /

are weak equivalences in C, and a map f W X ! Y in the nth intermediate category being called an
n–stable equivalence if the induced map

f � W ŒY;Z�! ŒX;Z�

on objectwise homotopy classes of maps is an isomorphism for all n�–spectra Z. With these definitions
we get an n–stable model structure on the nth intermediate category analogous to the stable model structure
on spectra; see eg [Barnes and Oman 2013, Section 7].

Proposition 4.2 [Barnes and Oman 2013, Proposition 7.14] There is a model category structure on the
nth intermediate category with weak equivalences the n–stable equivalences and fibrations the objectwise
fibrations X ! Y such that the square

X.U / //

��

�Rn˝V X.U ˚V /

��

Y .U / // �Rn˝V Y .U ˚V /

is a homotopy pullback in C for all U;V 2Jn. The fibrant objects are the n�–spectra. This model structure
is cellular , proper , stable and topological , and in the case of Sp–valued orthogonal functors , this model
structure is spectral. We call this the n–stable model structure and denote it by FunO.n/.Jn;CŒO.n/�/.

4.2 The local n–stable model structure

We now equip the nth intermediate category with an S–local model structure which will be intermediate
in our classification of S–local n–homogeneous functors as appropriately3 S–local spectra with an action
of O.n/. This model structure was first defined by Barnes [2017] for the rationalization of Top�–valued
orthogonal functors.

Proposition 4.3 Let S be a set of maps in C. There is a model category structure on the nth intermediate
category with cofibrations the cofibrations of the n–stable model structure and fibrant objects the n�–
spectra which are objectwise S–local. This model structure is cellular , left proper and topological , and
in the case of Sp–valued orthogonal functors , this model structure is spectral. We call this the S–local
n–stable model structure and denote it by LS FunO.n/.Jn;CŒO.n/�/.

Proof This model structure is the left Bousfield localization of the n–stable model structure at the set

Qn D fO.n/C ^ Jn.U;�/^ j j U 2 J; j 2 JLSCg:

3Here “appropriately” means levelwise S–local spectra for Top�–valued orthogonal functors and S–local spectra for Sp–valued
orthogonal functors.
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We record the following fact which will prove useful later.

Lemma 4.4 Let S be a set of maps in C. If F is an S–local functor , then F .n/ D indn
0 F is S–local.

Proof The objectwise smash product

.�/^ .�/ W Fun.Jn;LSC/�LSC! Fun.Jn;LSC/

is a Quillen bifunctor, and the result follows from the definition of indn
0 F .

4.3 The derivatives as spectra

The nth derivative (n � 0) is naturally an object of the nth intermediate category, ie is a spectrum of
multiplicity n. This multiplicity may be reduced to nD 1 through a Quillen equivalence

.˛n/! W FunO.n/.Jn;O.n/Top�/� SpŒO.n/� W.˛n/
�

in the topological case (see eg [Barnes and Oman 2013, Section 8]) and by a series of Quillen equivalences

Fun.Jn; SpŒO.n/�/
.˛n/!

.˛n/
� ����! Sp.SpŒO.n/�/

F0

Ev0

 ����! SpŒO.n/�

in the spectral case (see eg [Barnes and Oman 2013, Section 11]). Here Sp.SpŒO.n/�/ denotes the
category of spectrum objects in spectra with an O.n/–action or equivalently, orthogonal bispectra with
an O.n/–action, and is Quillen equivalent to orthogonal spectra by arguments similar to [Hovey 2001,
Theorem 5.1] or [Schwede and Shipley 2003, Theorem 3.8.2].

Example 4.5 The (spectrum representing the) nth derivative of the Top�–valued orthogonal functor
BO.�/ have been completely calculated by Arone [2002]. Weiss [1995] calculated the first few examples
by hand, for instance the first derivative is the sphere spectrum with trivial O.1/–action, the second
derivative is the shifted sphere spectrum S�1 with trivial action, and the third derivative is the 2–fold
loops on the mod-3 Moore spectrum �2.S=3/. Higher derivatives have a striking resemblance with the
Goodwillie derivatives of the identity functors on based spaces.

We now prove that this result holds S–locally for any set S of maps in our category C. Since the
adjunctions are slightly different, we prove each separately.

Theorem 4.6 Let S be a set of maps of based spaces. The adjoint pair

.˛n/! WLS FunO.n/.Jn;O.n/Top�/� Sp.LSTop�/ŒO.n/� W.˛n/
�

is a Quillen equivalence between the S–local model structures.

Proof For the Quillen adjunction apply [Hirschhorn 2003, Theorem 3.3.20(1)], noting that there is an
isomorphism

.˛n/!.O.n/C ^ Jn.U;�/^ j /ŠO.n/C ^ J1.R
n
˝U;�/^ j

for j a generating acyclic cofibration for the S–local model structure on based spaces.

Algebraic & Geometric Topology, Volume 24 (2024)



The localization of orthogonal calculus with respect to homology 1519

By [Barnes and Oman 2013, Proposition 8.3], the adjoint pair

.˛n/! W FunO.n/.Jn;O.n/Top�/� SpŒO.n/� W.˛n/
�

is a Quillen equivalence. To show that the adjunction between the S–local model structures is a Quillen
equivalence, it suffices by [Hovey 2001, Proposition 2.3] to show that if Y is fibrant in SpŒO.n/� such that
.˛n/

�Y is fibrant in the S–local n–stable model structure, then Y is fibrant in the S–local model structure
on SpŒO.n/�. This follows readily from the definitions of fibrant objects in both model structures.

The category of orthogonal bispectra with an O.n/–action, or equivalently the category of (orthogonal)
spectrum objects in spectra with an O.n/–action may be equipped with an LS –local model structure,
similar to Proposition 4.3. For S a set of maps of spectra, the S–local model structure LSSp.SpŒO.n/�/

is the left Bousfield localization of the stable model structure at the set

fJ1.V;�/^ j j V 2 J; j 2 JLSSpŒO.n/�g

since the category Sp.SpŒO.n/�/ may also be described as the category of O.n/–objects in Fun.J1; Sp/.
In particular, the fibrant objects of the S–local model structure on Sp.SpŒO.n/�/ are O.n/–objects
X 2 Fun.J1; Sp/ such that X.V / is an S–local spectrum for each V 2 J1.

Theorem 4.7 Let S be a set of maps of spectra. The adjoint pairs

LS Fun.Jn; SpŒO.n/�/
.˛n/!

.˛n/
� ����!LSSp.SpŒO.n/�/

F0

Ev0

 ����!LSSpŒO.n/�

are Quillen equivalences between the S–local model structures.

Proof Identifying the category of spectrum objects in spectra with an O.n/–action with the category of
O.n/–objects in Fun.J1; Sp/, the proof that the adjunction

.˛n/! WLS Fun.Jn; SpŒO.n/�/� LSSp.SpŒO.n/�/ W.˛n/
�;

is a Quillen equivalence follows analogously to Theorem 4.6.

For the adjunction
F0 WLSSpŒO.n/�� LSSp.SpŒO.n/�/ WEv0;

note that the composite functor

SpŒO.n/�
F0
�! Sp.SpŒO.n/�/ 1

�!LSSp.SpŒO.n/�/

is left Quillen, and to extend to a left Quillen functor from LSSpŒO.n/�, it suffices by [Hirschhorn 2003,
Proposition 3.3.18(1) and Theorem 3.1.6(1)] to exhibit that the right adjoint preserves S–local objects,
which follows immediately from the definition of S–local objects in the respective model structures.

To see that the adjunction is a Quillen equivalence, we apply [Hovey 2001, Proposition 2.3], which
reduces the problem to showing that if Y is an�–spectrum object in SpŒO.n/� (ie fibrant in Sp.SpŒO.n/�/)
such that Ev0.Y / is S–local, then Y is S–local. This follows from the �–spectrum structure and the
interaction of homotopy function complexes with the suspension-loops adjunction.
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5 Homogeneous functors and their classification

5.1 Homogeneous functors

The layers of the Weiss tower associated to an orthogonal functor F are the homotopy fibres of maps
TnF! Tn�1F and have two interesting properties: first, they are polynomial of degree less than or equal
to n; and second, their .n�1/–polynomial approximation is trivial. We denote the nth layer of the Weiss
tower of F by DnF .

Definition 5.1 For n � 0, an orthogonal functor F is said to be n–reduced if its .n�1/–polynomial
approximation is objectwise weakly equivalent to the terminal object. An orthogonal functor F is said to
be homogeneous of degree n if it is both polynomial of degree less than or equal n and n–reduced. We
will sometimes refer to a functor which is homogeneous of degree n as being n–homogeneous.

There is a model structure on the category of orthogonal functors which contains the n–homogeneous
functors as the bifibrant objects. This model structure is a right Bousfield localization of the n–polynomial
model structure.

Proposition 5.2 [Barnes and Oman 2013, Proposition 6.9] There is a model category structure on the
category of orthogonal functors with weak equivalences the Dn–equivalences and fibrations the fibrations
of the n–polynomial model structure. The cofibrant objects are the n–reduced projectively cofibrant
objects and the fibrant objects are the n–polynomial functors. In particular , cofibrant-fibrant objects of this
model structure are the projectively cofibrant n–homogeneous functors. This model structure is cellular ,
proper , stable and topological , and in the case of Sp–valued orthogonal functors this model structure is
spectral. We call this the n–homogeneous model structure and denote it by Homogn.J0;C/.

Remark 5.3 The model structure of [Barnes and Oman 2013, Proposition 6.9] has as weak equivalences
those maps which induce objectwise weak equivalences on the nth derivatives of their n–polynomial
approximations. We showed in [Taggart 2022a, Proposition 8.2] that the class of such equivalences is
precisely the class of Dn–equivalences. The proof of [Taggart 2022a, Proposition 8.2] is valid for Sp–
valued orthogonal functors since Sp–valued n–homogeneous functors admit and analogous classification
in terms of spectral with an O.n/–action; see eg [Barnes and Oman 2013, Section 11].

The n–homogeneous model structure is (zigzag) Quillen equivalent to spectra with an action of O.n/.

Proposition 5.4 [Barnes and Oman 2013, Proposition 8.3, Theorems 10.1 and 11.3, and Corollary 11.4]
Let n� 0. There is a zigzag of Quillen equivalences

Homogn.J0;C/'Q SpŒO.n/�:

Algebraic & Geometric Topology, Volume 24 (2024)



The localization of orthogonal calculus with respect to homology 1521

On the homotopy category level, the Barnes–Oman zigzag of Quillen equivalences recovers Weiss’s
characterisation of homogeneous functors of degree n.

Proposition 5.5 [Weiss 1995, Theorem 7.3; Barnes and Oman 2013, Theorem 11.5] Let n� 1.

(1) An n–homogeneous functor F is determined by and determines a spectrum @nF with an O.n/–
action.

(2) A Top�–valued n–homogeneous functor F is objectwise weak homotopy equivalent to the functor

V 7!�1Œ.SRn˝V
^ @nF /hO.n/�;

and any functor of the above form is homogeneous of degree n.

(3) An Sp–valued n–homogeneous functor F is objectwise weak homotopy equivalent to the functor

V 7! .SRn˝V
^ @nF /hO.n/;

and any functor of the above form is homogeneous of degree n.

5.2 Local homogeneous functors

Definition 5.6 Let S be a set of maps in C. An orthogonal functor F is S–locally homogeneous of
degree n if it is objectwise S–local and n–homogeneous.

Lemma 5.7 Let S be a set of maps of in C, and F and orthogonal functor. For n� 1, there is a homotopy
fibre sequence

DS
n F ! T S

n F ! T S
n�1F

in which DS
n .F / is

(1) homogeneous of degree n; and

(2) S–locally n–homogeneous if , in addition , the class of S–local objects is closed under sequential
homotopy colimits.

Proof By [Weiss 1995, Lemma 5.5] the homotopy fibre of a map between n–polynomial functors is
n–polynomial; hence DS

n F is n–polynomial. Applying Tn�1 to the homotopy fibre sequence, yields that
the .n�1/–polynomial approximation of DS

n F is objectwise weakly contractible, proving .1/.

For .2/, observe that the homotopy fibre of a map between S–local objects is S–local and when the class
of S–local objects is closed under sequential homotopy colimits, TnLSF is S–local for all n.

Example 5.8 (1) For homological localization at the Eilenberg–Mac Lane spectrum associated to a
subring R of the rationals, DHR

n F is HR–locally n–homogeneous for any orthogonal functor F .
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(2) For nullification at a based finite cell complex W , DW
n F is W –locally n–homogeneous for any

Top�–valued orthogonal functor F .

(3) For a spectrum E whose associated localization of spectra is smashing, DE
n F is E–locally n–

homogeneous for any Sp–valued orthogonal functor.

Proposition 5.9 Let S be a set of maps in C. There is model category structure on the category of
orthogonal functors with cofibrations the cofibrations of the n–homogeneous model structure and fibrant
objects the n–polynomial functors whose nth derivative is objectwise S–local in the nth intermediate
category. This model structure is cellular , left proper and topological , and in the case of Sp–valued
orthogonal functors this model structure is spectral. We call this the S–local n–homogeneous model
structure and denote it by Homogn.J0;LSC/.

Proof We left Bousfield localize the n–homogeneous model structure at the set of maps

Kn D fJn.U;�/^ j j U 2 J; j 2 JLSCg:

This left Bousfield localization exists since the n–homogeneous model structure is cellular and left proper
by [Barnes 2017, Lemma 6.1]. The description of the cofibrations follows immediately.

The fibrant objects are the Kn–local objects which are also fibrant in the n–homogeneous model structure,
ie those n–polynomial functors Z for which the induced map

ŒJn.U;�/^B;Z�! ŒJn.U;�/^A;Z�

is an isomorphism for all maps Jn.U;�/ ^A! Jn.U;�/ ^B in Kn. A straightforward adjunction
argument and the definition of the nth derivative of an orthogonal functor yield the required characterisation
of the fibrant objects.

Corollary 5.10 Let S be a set of maps in C. The cofibrant objects of the S–local n–homogeneous model
structure are the projectively cofibrant functors which are n–reduced.

Proof The S–local n–homogeneous model structure is a particular left Bousfield localization of the n–
homogeneous model structure, hence has the same cofibrant objects. The result follows by the orthogonal
calculus version of [Taggart 2022a, Corollary 8.6].

The S–local n–homogeneous model structure behaves like a right Bousfield localization of the S–local
n–polynomial model structure in the following sense.

Lemma 5.11 Let S be a set of maps in C. The adjoint pair

1 W Homogn.J0;LSC/� Poly�n.J0;LSC/ W1

is a Quillen adjunction.
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Proof The cofibrations of the S–local n–homogeneous model structure are the cofibrations of the
n–homogeneous model structure, which are contained in the cofibrations of the n–polynomial model
structure, which in turn are precisely the cofibrations of the S–local n–polynomial model structure, hence

1 W Homogn.J0;LSC/! Poly�n.J0;LSC/

preserves cofibrations.

On the other hand, to show that the right adjoint is right Quillen it suffices to show that the identity
functor sends fibrant objects in the S–local n–polynomial model structure to fibrant objects in the S–local
n–homogeneous model structure. This follows from Lemma 4.4 since the fibrant objects in the S–local
n–polynomial model structure are the S–locally n–polynomial functors by Proposition 3.5 and the fibrant
objects of the S–local n–homogeneous model structure are the n–polynomial functors with S–local nth

derivative by Proposition 5.9.

5.3 Characterisations for stable localizations

We obtain a characterisation of the fibrations of the S–local n–homogeneous model structure when the
localizing set S is stable in the sense of [Barnes and Roitzheim 2014, Definition 4.2], ie when the class of
S–local spaces is closed under suspension. For the statement of the following result recall the definition
of the nth derivative of an orthogonal functor from Definition 4.1.

Proposition 5.12 If S is a set of maps in C which is stable , then the fibrations of the S–local n–
homogeneous model structure are those maps f WX ! Y which are fibrations in the n–polynomial model
structure such that

X .n/
! Y .n/

is an objectwise fibration in LSC.

Proof We first given an explicit characterisation of the acyclic cofibrations since the fibrations are
characterised by the right lifting property against these maps. The maps in Kn are cofibrations between
cofibrant objects since Jn.U;�/ is cofibrant in Homogn.J0;C/ and the maps in JLSC are cofibrations of
the S–local model structure on C. Moreover, since the localizing set S is stable, it follows the set of
generating acyclic cofibrations JLSC is stable and in turn that the set Kn is stable. Hence by [Barnes and
Roitzheim 2014, Theorem 4.11], the generating acyclic cofibrations are given by the set JHomogn[ƒ.Kn/,
where JHomogn is the set of the generating acyclic cofibrations of the n–homogeneous model structure and
ƒ.Kn/ the set of horns on Kn in the sense of [Hirschhorn 2003, Definition 4.2.1]. As horns in topological
model categories are given by pushouts and Kn is a set of cofibrations between cofibrant objects it suffices
to use the set JHomogn [Kn as the generating acyclic cofibrations of the S–local n–homogeneous model
structure.

If f WX ! Y is a map with the right lifting property with respect to JHomogn [Kn, then f has the right
lifting property with respect to JHomogn and the right lifting property with respect to Kn independently.
Having the right lifting property with respect to JHomogn is equivalent to being a fibration in the n–
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polynomial model structure. On the other hand, a map in Kn is of the form Jn.U;�/^A! Jn.U;�/^B

for A! B a generating acyclic cofibration of the S–local model structure on C. A lift in the diagram

Jn.U;�/^A //

��

X

��

Jn.U;�/^B //

88

Y

(indicated by the dotted arrow) exists if and only if the lift in the diagram

A //

��

nat0.Jn.U;�/;X /

��

B //

77

nat0.Jn.U;�/;Y /

exists, which is equivalent to the statement that X .n/! Y .n/ is an objectwise fibration of S–local objects
in C; see Section 4.1.

This specialises to homological localizations.

Corollary 5.13 Let E be a spectrum. The fibrations of the E–local n–homogeneous model structure are
those maps f WX ! Y which are fibrations in the n–polynomial model structure such that

X .n/
! Y .n/

is an objectwise fibration in LEC.

Proof Combine Proposition 5.12 with [Barnes and Roitzheim 2014, Example 4.3].

Corollary 5.14 Let E be a spectrum. An orthogonal functor F is fibrant in the E–local n–homogeneous
model structure if and only if F is n–polynomial and F .n/ is objectwise E–local. In particular , the
bifibrant objects are the projectively cofibrant n–homogeneous functors with E–local nth derivative.

Proof Apply Corollary 5.13 to the map F !�.

5.4 Differentiation as a Quillen functor

The nth derivative is a right Quillen functor as part of a Quillen equivalence between the n–homogeneous
model structure and the nth intermediate category; the adjunction

resn0 =O.n/ W FunO.n/.Jn;CŒO.n/�/� Homogn.J0;C/ W ind
n
0"
�

is a Quillen equivalence [Barnes and Oman 2013, Theorem 10.1]. We now show that this extends to the
S–local situation.

Theorem 5.15 Let S be a set of maps in C. The adjoint pair

resn0 =O.n/ WLS FunO.n/.Jn;CŒO.n/�/� Homogn.J0;LSC/ W ind
n
0"
�

is a Quillen equivalence between the S–local model structures.
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Proof The left adjoint applied to the localizing set of the S–local n–stable model structure is precisely the
localization set of the S–local n–homogeneous model structure, hence the result follows from [Hirschhorn
2003, Theorem 3.3.20(1)].

Corollary 5.16 Let S be a set of maps of based spaces , and n � 0. There is a zigzag of Quillen
equivalences

Homogn.J0;LSTop�/'Q Sp.LSTop�/ŒO.n/�:

Example 5.17 Let R be a subring of the rationals. Then there is a zigzag of Quillen equivalences

Homogn.J0;LHRTop�/'Q SpHR ŒO.n/�

between HR–local n–homogeneous functors and HR–local4 spectra with an action of O.n/.

Corollary 5.18 Let S be a set of maps of spectra , and n� 0. There is a zigzag of Quillen equivalences

Homogn.J0;LSSp/'Q LSSpŒO.n/�:

Example 5.19 Let E be a spectrum. Then there is a zigzag of Quillen equivalences

Homogn.J0;LESp/'Q SpE ŒO.n/�

between E–local n–homogeneous functors and E–local spectra with an action of O.n/.

5.5 The classification

As in the classical theory, any S–locally n–homogeneous functor may be expressed concretely in terms
of a levelwise S–local spectrum with an action of O.n/. The proof of which follows as in the classical
setting [Weiss 1995, Theorem 7.3] and can be realised through the derived equivalence of homotopy
categories provided by our zigzag of Quillen equivalences.

Theorem 5.20 Let S be a set of maps of in C and n� 1.

(1) An S–local n–homogeneous functor F is determined by and determines an appropriately S–local
spectrum with an O.n/–action , denoted by @S

n F .

(2) A Top�–valued S–local n–homogeneous functor F is objectwise weakly equivalent to the functor

V 7!�1Œ.SRn˝V
^ @S

n F /hO.n/�;

and any functor of the above form is objectwise S–local and n–homogeneous.

(3) An Sp–valued S–local n–homogeneous functor F is objectwise weakly equivalent to the functor

V 7! .SRn˝V
^ @S

n F /hO.n/;

and any functor of the above form is objectwise S–local and n–homogeneous.
4In particular, the HR–local model structure on spectra is identical to the levelwise HR–local model structure since a spectrum
is HR–local if and only if it is levelwise HR–local; see eg [Barnes and Roitzheim 2011, Lemma 8.6].
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Part II Applications

6 Bousfield classes

6.1 Bousfield classes

For a spectrum E, the Bousfield class of E, denoted by hEi, is the equivalence class of E under the
relation: E �E0 if for any spectrum X , E ^X D 0 if and only if E0 ^X D 0. If hEi D hE0i, then the
classes of E�–isomorphisms and E0�–isomorphisms agree and hence the localization functors (on spaces
or spectra) agree. The collection of all Bousfield classes forms a lattice, with partial ordering hEi � hE0i
given by reverse containment, ie if and only if the class of E0–acyclic spectra is contained in the class
of E–acyclic spectra, in particular, the partial ordering induces a natural transformation LE0 ! LE .
Bousfield classes have been studied at length; see eg [Bousfield 1979; Ravenel 1984].

A similar story remains true unstably. Given a based space W the unstable Bousfield class of W , or the
nullity class of W , is the equivalence class hW i of all spaces W 0 such that the class of W –periodic5

spaces agrees with the class of W 0–periodic spaces. There is a partial ordering hW i � hW 0i given by
reverse containment, ie if and only if every W 0–periodic space is W –periodic. In particular, the relation
hW i � hW 0i implies that every W –local equivalence is a W 0–local equivalence and there is a natural
transformation PW ! PW 0 , which is a W 0–localization. Nullity classes have also been studied at length;
see eg [Bousfield 1994; Dror Farjoun 1996].

Remark 6.1 It is worth noting that in both cases there is a choice of ordering of the equivalence
classes, and our choices have been made to align with the predominant references on the subject, which
unfortunately means the “stable” and “unstable” directions are dual. The choice of ordering used by
Bousfield and that of Dror Farjoun also differ, adding further confusion to the literature on these matters.

Theorem 6.2 Let S and S 0 be sets of maps in C. The class of S–local objects agrees with the class of
S 0–local objects if and only if for every orthogonal functor F , the S–local Weiss tower of F is objectwise
weakly equivalent to the S 0–local Weiss tower of F .

Proof If the class of S–local objects agrees with the class of S 0–local objects, then the localization
functors LS and LS 0 agree on C and hence on the level of orthogonal functors. In particular, for every
orthogonal functor F , the canonical map6

LSF !LS 0F

5W –periodic spaces are precisely W –local spaces. This change in terminology is classical; see eg [Bousfield 1994; Dror Farjoun
1996].
6This map is induced from the S–local objects being contained in the S 0–local objects. We could also use the canonical
LS 0F !LS F since the S–local objects also contained the S 0–local objects.
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is an objectwise weak equivalence. Now, consider the commutative diagram

DS
n F //

��

T S
n F //

��

T S
n�1

F

��

DS 0

n F // T S 0

n F // T S 0

n�1
F

in which the rows are homotopy fibre sequences. For each n� 0, the map

T S
n F ! T S 0

n F

is an objectwise weak equivalence since polynomial approximation preserves objectwise weak equiva-
lences. It follows that the leftmost vertical arrow is also an objectwise weak equivalence and that the
S–local Weiss tower is objectwise weakly equivalent to the S 0–local Weiss tower.

The converse is immediate from specialising for every object C 2 C to the constant functor at C .

Example 6.3 (1) Let E and E0 be spectra. For every orthogonal functor F the E–local Weiss tower
of F and the E0–local Weiss tower of F agree if and only if E and E0 are Bousfield equivalent.

(2) Let W and W 0 be based spaces. For every Top�–valued orthogonal functor F the W –local Weiss
tower of F and the W 0–local Weiss tower of F agree if and only if W and W 0 have the same
nullity class.

6.2 Bousfield classes and model categories for orthogonal calculus

On the model category level, we have the following.

Theorem 6.4 Let S and S 0 be sets of maps of maps in C. The class of S–local objects in C agrees with
the class of S 0–local objects in C if and only if there are equalities of model structures making the diagram

Fun.J0;LSC/
1
//
Poly�n.J0;LSC/

1
//

1
oo Homogn.J0;LSC/

1
oo

Fun.J0;LS 0C/
1
//
Poly�n.J0;LS 0C/

1
//

1
oo Homogn.J0;LS 0C/

1
oo

commute.

Proof For one direction assume that the class of S–local objects agrees with the class of S 0–local objects.
Then the S–local model structure and the S 0–local model structure on C agree as they have the same
cofibrations and fibrant objects. This equality lifts to the local projective model structures on the category
of orthogonal functors. As left Bousfield localization does not alter the cofibrations, the cofibrations
of the S–local n–polynomial model structure agree with the cofibrations of the S 0–local n–polynomial
model structure. These model structures also have the same fibrant objects since a functor is S–locally
n–polynomial if and only if it is S 0–local n–polynomial under our assumption.
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For the local n–homogeneous model structures, recall that these are certain left Bousfield localizations of
the n–homogeneous model structure (see Proposition 5.9), hence have the same cofibrations. As before,
these model structures have the same fibrant objects since our assumption together with Lemma 4.4
implies that the nth derivative of a functor is S–local if and only if it is S 0–local, and the fibrant objects
are the n–polynomial functors with local derivatives; see Proposition 5.9.

For the converse note that since the S–local model structure on the category of orthogonal functors agrees
with the S 0–local model structure, the objectwise S–local equivalences are precise the objectwise S–local
equivalences. It follows that the local model structures on C must agree.

6.3 The partial ordering of Bousfield classes

Lemma 6.5 Let S and S 0 be sets of maps in C and F an orthogonal functor. If the class of S 0–local
objects of C is contained in the class of S–local objects , then

(1) there is an S 0–local equivalence DS
n F !DS 0

n F ; and

(2) if F is reduced , then the S–local Weiss tower of F is S 0–locally equivalent to the S 0–local Weiss
tower of F .

Proof For (1), note that the map on derivatives @S
n F ! @S 0

n F induced by the natural transformation
LS !LS 0 is an S 0–local equivalence; hence the n–homogeneous functors which correspond to these
spectra are S 0–locally equivalent, ie the map DS

n F !DS 0

n F is an S 0–local equivalence. For (2), since F

is reduced, [Weiss 1995, Corollary 8.3] implies that there is a commutative diagram

T S
n F //

��

T S
n�1

F //

��

RS
n F

��

T S 0

n F // T S 0

n�1
F // RS 0

n F

in which both rows are homotopy fibre sequences. The map RS
n F !RS 0

n F is an S 0–local equivalence
by part (1), and the map T S

0
F! T S 0

0
F is also an S 0–local equivalence since F is reduced. An induction

argument on the degree of polynomials yields the result.

Example 6.6 (1) Let E and E0 be spectra and F an orthogonal functor. If hEi � hE0i, then

(a) there is an E–local equivalence DE0

n F !DE
n F ; and

(b) if F is reduced, then the E0–local Weiss tower of F is E–locally equivalent to the E–local
Weiss tower of F .

(2) Let W and W 0 be based spaces and F a Top�–valued orthogonal functor. If hW i � hW 0i, then

(a) there is an W 0–local equivalence DW
n F !DW 0

n F ; and

(b) if F is reduced, then the W –local Weiss tower of F is W 0–locally equivalent to the W 0–local
Weiss tower of F .
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6.4 The telescope conjecture

The height n telescope conjecture of Ravenel [1984, Conjecture 10.5] asserts that the T .n/–localization
and K.n/–localization of spectra agree. There are numerous equivalent formalisations of the conjecture —
see eg [Barthel 2020, Proposition 3.6] — and we choose the following as it best suits any possible
interaction with the calculus.

Conjecture 6.7 (the height n telescope conjecture) Let n� 0. The Bousfield class of T .n/ agrees with
the Bousfield class of K.n/.

Corollary 6.8 Let n � 0. The validity of the height n telescope conjecture implies equality of model
structures

Fun.J0;LT .n/C/
1
//
Poly�n.J0;LT .n/C/

1
//

1
oo Homogn.J0;LT .n/C/

1
oo

Fun.J0;LK.n/C/
1
//
Poly�n.J0;LK.n/C/

1
//

1
oo Homogn.J0;LK.n/C/

1
oo

Proof The telescope conjecture implies that the Bousfield class of T .n/ and the Bousfield class of K.n/

agree, hence the result follows by Theorem 6.4.

The following is an immediate corollary to Theorem 6.2.

Corollary 6.9 Let n � 0. The height n telescope conjecture holds if and only if for every orthogonal
functor F the K.n/–local Weiss tower of F and the T .n/–local Weiss tower of F agree.

This provides new insight into the height n telescope conjecture. For example, to find a counterexample
it now suffices to find an orthogonal functor such that one corresponding term in the K.n/–local and
T .n/–local Weiss towers disagree. This can also be seen through the spectral sequences associated to the
local Weiss towers. The K.n/–local and T .n/–local Weiss towers of an orthogonal functor F produce
two spectral sequences,

�t�sDK.n/
s F.V /Š �t�s..S

Rs˝V
^ @K.n/

s F /hO.n//) �� holim
d

T
K.n/

d
F.V /;

�t�sDT .n/
s F.V /Š �t�s..S

Rs˝V
^ @T .n/

s F /hO.n//) �� holim
d

T
T .n/

d
F.V /:

These are closely related to the telescope conjecture as follows.

Lemma 6.10 Let F be an orthogonal functor. If the height n telescope conjecture holds , then for all
r � 1, the Er –page of the T .n/–local Weiss spectral sequence is isomorphic to the Er –page of the
K.n/–local Weiss spectral sequence.
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Proof It suffices to prove the claim for r D 1. The validity of the height n telescope conjecture
implies that there is a natural transformation LK.n/!LT .n/. This natural transformation induces a map
D

K.n/

d
F ! D

T .n/

d
F , which by Corollary 6.9 is an objectwise weak equivalence. It hence suffices to

show that the natural map D
K.n/

d
F !D

T .n/

d
F induces a map on the E1–pages of the spectral sequences,

that is, we have to show that the induced diagram

�t�sD
K.n/
s F.V /

d
K.n/

1
//

��

�t�sC1D
K.n/
sC1

F.V /

��

�t�sD
T .n/
s F.V /

d
T .n/

1

// �t�sC1D
T .n/
sC1

F.V /

commutes for all s and t . This follows from the commutativity of the induced diagram of long exact
sequences induced by the diagram of homotopy fibre sequences

D
K.n/
s F.V / //

��

T
K.n/
s F.V / //

��

T
K.n/
s�1

F.V /

��

D
T .n/
s F.V / // T

T .n/
s F.V / // T

T .n/
s�1

F.V /

and the construction of the d1–differential in the homotopy spectral sequence associated to a tower of
fibrations.

7 The calculus for nullifications

7.1 Nullifications of orthogonal functors

Bousfield, Dror Farjoun and others — see eg [Bousfield 1994; 1996; Casacuberta 1994; Dror Farjoun
1996] — have extensively studied the nullification of the category of based spaces at a based space W .
This nullification is functorial, giving a functor

PW W Top�! Top�;

and the Bousfield–Friedlander localization of Top� at the endofunctor PW defines a model structure which
we call the W –periodic model structure, and denote by PW Top�. This model structure is precisely the left
Bousfield localization at the set S D f�!W g, ie the W –periodic and W –local model structures agree.

The endofunctor PW W Top�! Top� extends objectwise to a functor

PW W Fun.J0;Top�/! Fun.J0;Top�/;

and the W –periodic model structure on spaces — see eg [Bousfield 2001, Section 9.8] — extends in a
canonical way to give the Bousfield–Friedlander localization of the category of orthogonal functors at
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the functor PW , which we denote by Fun.J0;PW Top�/, and call the W –periodic model structure. This
model structure agrees with the S–local model structure on orthogonal functors for S D f�!W g.

In this section we give an alternative construction of the model structures for W –local orthogonal calculus.
The key to this is that the W –periodic model structure on based spaces is right proper.

Remark 7.1 The process of left Bousfield localization can interfere with other model categorical
properties, for instance left Bousfield localization need not preserve right properness. For example if
EDHQ, then the HQ–local model structure on based spaces is not right proper since there is a pullback
square

K.Q=Z; 0/ //

��

P

��

K.Z; 1/
'H Q

// K.Q; 1/

in which the right-hand vertical map is a fibration, P is contractible and the lower horizontal map is a
HQ–equivalence but the left-hand vertical map is not. Another example is provided by Quillen [1969,
Remark 2.9].

The property of being right proper has many advantages including the ability to right Bousfield localize.
As such we investigate when the S–local model structure is right proper. It suffices to examine when the
f –local model structure is right proper for some map f WX ! Y of based spaces.

The following has motivation in [Bousfield 2001, Remark 9.11], which notes that the f –local model
structure cannot be right proper unless the localization functor Lf is equivalent to a nullification. We
extend Bousfield’s remark by showing that his nullification condition is both necessary and sufficient in a
stronger sense than originally proposed by Bousfield. This result depends on two constructions also due
to Bousfield: the first is the construction of a based space A.f / associated to a map f WX ! Y of based
spaces (see [Bousfield 1997, Theorem 4.4]); the second is the nullification functor PW W Top�! Top�

associated to any based space W (see [Bousfield 1994, Theorem 2.10]). This nullification functor has two
key properties which we would also like to highlight: first, when W is connected, PW preserves disjoint
unions (see eg [Bousfield 2001, Theorem 9.9]); and second, PW is contractible when W is not connected
(see eg [Bousfield 1994, Example 2.3]). For example, if f is the map which induces localization with
respect to integral homology, then PA.f / is Quillen’s plus construction; see eg [Dror Farjoun 1996, 1.E.5].

Proposition 7.2 Let f WX ! Y be a map of based spaces. The f –local model structure on based spaces
is right proper if and only if there exists a based space A.f / and equality of model structures

Lf Top� D PA.f /Top�;

where PA.f /Top� is the Bousfield–Friedlander localization [Bousfield 2001, Theorem 9.3], at the nullifi-
cation endofunctor

PA.f / W Top�! Top�:
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Proof By [Bousfield 1997, Theorem 4.4], there exists a based space A.f / such that the classes of
A.f /–acyclic and f –acyclic spaces agree, and every PA.f /–equivalence is an f –local equivalence.

Assume that the f –local model structure is right proper. For a connected based space X , the path
fibration over LfX is an f –local fibration; hence the homotopy fibre of the map X !LfX is f –acyclic,
and hence A.f /–acyclic. It follows by [Bousfield 1994, Corollary 4.8(i)], the map X ! LfX is a
PA.f /–equivalence; hence every f –local equivalences of connected spaces is a PA.f /–equivalence. Since
the functor PA.f / on based spaces comes from a functor on unbased spaces which preserves disjoint
unions when A.f / is connected and which takes contractible values when A.f / is not connected, every
f –local equivalence must be a PA.f /–equivalence. It follows that the class of f –local equivalences
agrees with the class of PA.f /–equivalences. The equality of the model structures follows immediately
since both model structures have the same cofibrations inherited from the Quillen model structure on the
category of based spaces.

For the converse, assume that the f –local model structure agrees with the A.f /–local model structure.
The latter model structure is right proper by [Bousfield 2001, Theorem 9.9], and since both model
structures have the same weak equivalences and fibrations, the f –local model structure must also be right
proper.

Remark 7.3 The property of being right proper is completely determined by the weak equivalence class
of the model structure; if two model structures have the same weak equivalences, then one is right proper
if and only if the other is; see eg [Balchin 2021, Remark 2.5.6].

7.2 Nullifications and polynomial functors

Recall from Proposition 3.5 that we have minimal control over the W –local n–polynomial model structure,
in particular, unless the localization is well-behaved with respect to sequential homotopy colimits, TnLW

is not a fibrant replacement functor. We construct a W –periodic n–polynomial model structure as the
Bousfield–Friedlander localization at the composite

Tn ıPW W Fun.J0;Top�/! Fun.J0;Top�/

and show that this model structure is precisely the W –local n–polynomial model structure.

We begin with a lemma which deals with fibrant objects in the Bousfield–Friedlander localization of
orthogonal functors at the endofunctor PW , which we call the W –periodic projective model structure.

Lemma 7.4 For a finite cell complex W and an orthogonal functor F , the functor TnPW F is fibrant
in the Bousfield–Friedlander localization of the category of orthogonal functors at the functor PW . In
particular , the map

!TnPW F W TnPW F ! PW TnPW F

is an objectwise weak homotopy equivalence.
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Proof The Bousfield–Friedlander localization of based spaces at the endofunctor PW is identical to the
left Bousfield localization of based spaces at the map �!W , since both model structures have the same
cofibrations and fibrant objects. It follows that the Bousfield–Friedlander localization of the category
of orthogonal functors at the endofunctor PW is identical to the W –local projective model structure.
In particular, we see that PW F is fibrant and hence �nPW F is also fibrant, since the class of W –local
objects is closed under homotopy limits. The result follows since local objects for a nullification are
closed under sequential homotopy colimits by [Dror Farjoun 1996, 1.D.6].

Proposition 7.5 For a finite cell complex W the Bousfield–Friedlander localization of the category of
orthogonal functors at the endofunctor

Tn ıPW W Fun.J0;Top�/! Fun.J0;Top�/

exists. This model structure is proper and topological. We call this the W –periodic n–polynomial model
structure and denote it by Poly�n.J0;PW Top�/.

Proof We verify the axioms of [Bousfield 2001, Theorem 9.3]. First note that since PW and Tn

both preserve objectwise weak equivalences so does their composite, hence verifying [Bousfield 2001,
Theorem 9.3(A1)].

The natural transformation from the identity to the composite Tn ıPW is given in components as the
composite

F
!F
�! PW F

�PW F
���! TnPW F;

where ! W 1! PW and � W 1! Tn; hence at TnPW F , we obtain the composite

TnPW F
!TnPW F
�����! PW TnPW F

�PW TnPW F
�������! TnPW TnPW F:

Since the domain is fibrant in the W –periodic projective model structure the first map in the composite is
an objectwise weak equivalence; see Lemma 7.4. The second map is also a weak equivalence. To see
this, note that since TnPW F is polynomial of degree less than or equal n, the functor PW TnPW F is
also polynomial of degree less than or equal n by the commutativity of the diagram

TnPW F //

��

�nTnPW F

��

PW TnPW F // �nPW TnPW F

and the fact that homotopy limits preserve objectwise weak equivalences. It follows that the natural
transformation � W TnPW F ! TnPW TnPW F is an objectwise weak equivalence, as a composite of two
objectwise weak equivalences.
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The map TnPW .�/ W TnPW F ! TnPW TnPW F is also an objectwise weak equivalence. To see this,
note that there is a commutative diagram

F

!F

��

!F
//

.1/

PW F
�PW F

//

!PW F

��

.2/

TnPW F

!TnPW F

��

PW F
PW !F

//

�PW F

��

.3/

PW PW F
PW �PW F

//

�PW PW F

��

.4/

PW TnPW F

�PW TnPW F

��

TnPW F
TnPW !F

// TnPW PW F
TnPW �PW F

// TnPW TnPW F

in which the required map is given by the lower horizontal composite. Since PW is a homotopically
idempotent functor, PW !F is an objectwise weak equivalence. It follows that the bottom horizontal map

TnPW !F W TnPW F ! TnPW PW F

of .3/ is a weak equivalence since Tn preserves weak equivalences.

Moreover, PW being homotopically idempotent yields that the vertical map

!PW F W PW F ! PW PW F

in .2/ is an objectwise weak equivalence. The right-hand vertical map in this square is also an equivalence
by Lemma 7.4. By [Weiss 1995, Theorem 6.3], the top right-hand horizontal map

�PW F W PW F ! TnPW F

is an approximation of order n in the sense of [Weiss 1995, Definition 5.16]. By commutativity of .2/,
the lower horizontal map

PW �PW F W PW PW F ! PW TnPW F

is an approximation of order n. The proof of [Weiss 1995, Theorem 6.3] also demonstrates that the
vertical maps in .4/ are approximations of order n, and since three out of the four maps in the lower right
square are approximations of order n, so too is the lower right-hand horizontal map

TnPW �PW F W TnPW PW F ! TnPW TnPW F:

An application of [Weiss 1995, Theorem 5.15] yields that this map is an objectwise weak equivalence as
both source and target are polynomial of degree less than or equal n. This concludes the proof that the
map

TnPW .�/ W TnPW F ! TnPW TnPW F

is an objectwise weak equivalence, and verifies [Bousfield 2001, Theorem 9.3(A2)].
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Finally we verify [Bousfield 2001, Theorem 9.3(A3)]. Let

A
k
//

g

��

B

f
��

C
h

// D

be a pullback square with f an objectwise fibration between W –local n–polynomial functors, and
TnPW h W TnPW C ! TnPW D an objectwise weak equivalence. By [Bousfield 2001, Theorem 9.9], we
see that the fibre of k is PW –acyclic, ie PW .fib.k// is objectwise weakly contractible. Since Tn preserves
objectwise weak equivalences, we see that TnPW .fib.k// is objectwise weakly contractible, and hence k

is a TnPW –equivalence.

The fact that the resulting model structure is topological follows from [Bousfield 2001, Theorem 9.1].

This Bousfield–Friedlander localization results in an identical model structure to the W –local n–polynomial
model structure of Proposition 3.5

Proposition 7.6 For a finite cell complex W there is an equality of model structures

Poly�n.J0;LW Top�/D Poly�n.J0;PW Top�/;

that is , the W –local n–polynomial model structure and the W –periodic n–polynomial model structure
agree. In particular , these model structures are cellular , proper and topological.

Proof Both model structures have the same cofibrations, namely the projective cofibrations. It suffices
to show that they share the same fibrant objects. Working through the definition of a fibrant object in
the Bousfield–Friedlander localization we see that an orthogonal functor F is fibrant if and only if the
canonical map F ! TnPW F is an objectwise weak equivalence. It follows that F must be W –local and
n–polynomial, hence fibrant in the W –local n–polynomial model structure. Conversely, if F is fibrant in
the W –local n–polynomial model structure, then the map F ! PW F is an objectwise weak equivalence
and there is a commutative diagram

F //

��

PW F

��

TnF // TnPW F

in which three out of the four arrows are objectwise weak equivalences, hence so too is the right-hand
vertical arrow. It follows that F is fibrant in the Bousfield–Friedlander localization.

Remark 7.7 The nullification condition here is necessary. The above lemma does not hold in general. To
see this, consider the (smashing) localization at the spectrum E DHQ. The HQ–local model structure
is not right proper (see Remark 7.1), yet if this were expressible as a Bousfield–Friedlander localization it
would necessarily be right proper [Bousfield 2001, Theorem 9.3].
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Corollary 7.8 For a finite cell complex W , a map f WX ! Y is a fibration in the W –local n–polynomial
model structure if and only if f is a fibration in the projective model structure and the square

X //

��

TnPW X

��

Y // TnPW Y

is a homotopy pullback square in the projective model structure on Fun.J0;Top�/.

Remark 7.9 It is highly unlikely that this result holds in more general localizations than nullifications.
Let C be a model category and S a set of maps in C such that the left Bousfield localization of C at S

exists. By [Hirschhorn 2003, Proposition 3.4.8(1)] right properness of C and LSC is sufficient for a map
f WX ! Y being a fibration in LSC if and only if f is a fibration in C and the square

X
jX
//

f

��

yX

Of
��

Y
jY

// yY

is a homotopy pullback square, where Of W yX ! yY is a S–localization of f in the sense of [Hirschhorn
2003, Definition 3.2.16]. In our situation, Proposition 7.2 guarantees that a homological localization is
right proper if and only if it is a nullification. However, it is not clear in general if right properness of the
base model category and the localized model category is a necessary condition for the above description
of the fibrations in LSC.

7.3 Nullifications and homogeneous functors

In the case of a nullification, the W –local n–homogeneous model structure of Proposition 5.9 is not the
only way of constructing a model structure with the correct homotopy category. Since the W –local model
structure on based spaces is right proper, so too is the W –local n–polynomial model structure and hence
we can also follow the more standard procedure and preform a right Bousfield localization at the set

K0n D fJn.U;�/ j U 2 Jg;

to obtain a local n–homogeneous model category structure.

Proposition 7.10 For a finite cell complex W there exists a model structure on the category of orthogonal
functors with weak equivalences those maps X ! Y such that

.TnPW X /.n/! .TnPW X /.n/

is an objectwise weak equivalence and with fibrations the fibrations of the W –local n–polynomial model
structure. This model structure cellular , proper , stable and topological. We call this the W –periodic
n–homogeneous model structure and denote it by Homogn.J0;PW Top�/.
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Proof This is the right Bousfield localization of the W –local n–polynomial model structure. The proof
of which follows exactly as in [Barnes and Oman 2013, Proposition 6.9]. Note that this right Bousfield
localization exists since the W –local n–polynomial model structure in right proper and cellular when the
localization is a nullification; see Proposition 7.6.

This right Bousfield localization behaves like a left Bousfield localization of the n–homogeneous model
structure in the following sense.

Lemma 7.11 For a finite cell complex W , the adjoint pair

1 W Homogn.J0;Top�/� Homogn.J0;PW Top�/ W1

is a Quillen adjunction.

Proof Since the acyclic cofibrations of the n–homogeneous model structure are precisely the acyclic
cofibrations of the n–polynomial model structure and similarly, the acyclic cofibrations of W –periodic
n–homogeneous model structure are precisely the acyclic cofibrations of the W –local n–polynomial
model structure, the identity functor preserves acyclic cofibrations by Lemma 3.6.

On the other hand, by [Hirschhorn 2003, Proposition 3.3.16(2)], cofibrations between cofibrant objects in
a right Bousfield localization are cofibrations in the underlying model structure; hence Lemma 3.6 shows
that the identity functor preserves cofibrations between cofibrant objects. The result follows by [Dugger
2001, Corollary A.2].

An analogous Quillen equivalence is obtained between the W –local intermediate category and the W –
periodic n–homogeneous model structure of Proposition 7.10, which we recall is obtained as a right
Bousfield localization of the W –local n–polynomial model structure. The proof is all but identical to
[Barnes and Oman 2013, Theorem 10.1].

Theorem 7.12 For a finite cell complex W , the adjoint pair

resn0 =O.n/ WLW FunO.n/.Jn;O.n/Top�/� Homogn.J0;PW Top�/ W ind
n
0"
�

is a Quillen equivalence.

Propositions 5.9 and 7.10 provide two different model structures which both capture the homotopy theory
of W –locally n–homogeneous functors. However, these model structures are not identical. For instance,
the W –local model structure of Proposition 5.9 has fibrant objects the n–polynomial functors which have
W –local nth derivative, whereas the fibrant objects of the W –periodic n–homogeneous model structure
(Proposition 7.10) are the W –local n–polynomial functors. However, they are Quillen equivalent via the
identity functor.
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Corollary 7.13 For a finite cell complex W , the adjoint pair

1 W Homogn.J0;LW Top�/� Homogn.J0;PW Top�/ W1

is a Quillen equivalence.

Proof Since cofibrations between cofibrant objects in Homogn.J0;LW Top�/ are projective cofibrations
which are Tn–equivalences, and the cofibrations between cofibrant objects of Homogn.J0;PW Top�/ are
the projective cofibrations, it follows that the identity functor

1 W Homogn.J0;LW Top�/! Homogn.J0;PW Top�/

necessarily preserves cofibrations between cofibrant objects. On the other hand, the identity functor

1 W Homogn.J0;PW Top�/! Homogn.J0;LW Top�/

preserves fibrant objects since if X is objectwise W –local, indn
0 X is objectwise W –local, by Lemma 4.4.

It follows that the adjunction is a Quillen adjunction. To see that the adjunction is a Quillen equivalence,
there is a commutative square

LW FunO.n/.Jn;O.n/Top�/
resn

0
=O.n/

//

1

��

Homogn.J0;LW Top�/
indn

0
"�

oo

1

��

LW FunO.n/.Jn;O.n/Top�/
resn

0
=O.n/

//

1

OO

Homogn.J0;PW Top�/
indn

0
"�

oo

1

OO

of Quillen adjunctions, in which three out of four are Quillen equivalences by Theorems 5.15 and 7.12.
Hence the remaining Quillen adjunction must also be a Quillen equivalence.

It follows that there is a zigzag of Quillen equivalences

Homogn.J0;PW Top�/'Q Sp.LW Top�/ŒO.n/�;

whenever both model structures exist.

8 Postnikov sections

Given a based space A, the k th Postnikov section of A is the nullification of A at SkC1, ie PkADPSkC1A.
Given a diagram of (simplicial, left proper, combinatorial) model categories, Barwick [2010, Section 5,
Application 1] and Bergner [2012] develop a general machinery for producing a model structure which
captures the homotopy theory of the homotopy limit of the diagram of model categories. Gutiérrez and
Roitzheim [2016, Section 4] applied this to the study of Postnikov sections for model categories, which
recovers the classical theory when C is the Kan–Quillen model structure on simplicial sets. We consider
the relationship between Postnikov sections and orthogonal calculus via our local calculus.
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8.1 A combinatorial model for calculus

The current theory of homotopy limits of model categories requires that the model categories in question
be combinatorial, ie locally presentable and cofibrantly generated. Since the category of based compactly
generated weak Hausdorff spaces is not locally presentable, the Quillen model structure is not combinatorial
and hence none of our model categories for orthogonal functors are either. We invite the reader to take
for granted that all of our cellular model categories may be replaced by combinatorial model categories
by starting with a combinatorial model for the Quillen model structure on based spaces, and hence skip
directly to Section 8.2.

We give the details of these combinatorial replacements here. We replace compactly generated weak
Hausdorff spaces with �–generated spaces; a particular full subcategory of the category of topological
spaces, which were developed by Vogt [1971] and unpublished work of Smith, and are surveyed by
Dugger [2003]. The category of �–generated spaces may be equipped with a model structure analogous
to the Quillen model structure on compactly generated weak Hausdorff spaces with weak equivalences the
weak homotopy equivalences and fibrations the Serre fibrations. This model structure is combinatorial,
proper and topological. The existence of the model structure follows from [Dugger 2003, Section 1.9].
The locally presentable (and hence combinatorial) property follows from [Fajstrup and Rosický 2008,
Corollary 3.7]. The Quillen equivalence may be extracted from [Dugger 2003, Section 1.9].

This combinatorial model for spaces transfers to categories of functors and we obtain a projective model
structure on the category of orthogonal functors which is Quillen equivalent to our original projective
model structure but is now combinatorial. A left or right Bousfield localization of a combinatorial model
category is again combinatorial; hence the n–polynomial, n–homogeneous and local versions of these
model categories are all combinatorial when we begin with the combinatorial model for the projective
model structure on orthogonal functors.

Hypothesis 8.1 For the remainder of this section , we will assume that all our model structures are com-
binatorial , since they are all Quillen equivalent to combinatorial model categories using the combinatorial
model for based spaces.

8.2 The model structure of k–types in orthogonal functors

Denote by I the set of generating cofibrations of the projective model structure of orthogonal functors,
and denote by Wk the set of maps of the form

B ^SkC1
qA^SkC1 A^DkC2

! B ^DkC2;

where A! B is a map in I . The model category of k–types in Fun.J0;Top�/ is the left Bousfield
localization of the projective model structure at I � fSkC1!DkC2g used by Gutiérrez and Roitzheim
[2016] to model Postnikov sections.
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Proposition 8.2 Let k � 0. Under Hypothesis 8.1, the model structure of k–types in the category of
orthogonal functors is identical to the SkC1–local model structure , that is , there is an equality of model
structures ,

Pk Fun.J0;Top�/ WDLWk
Fun.J0;Top�/D Fun.J0;LSkC1Top�/:

Proof It suffices to show that both model structures have the same fibrant objects since the cofibrations
in both model structures are identical. To see this, note that by examining the pushout product we can
rewrite the set Wk as

Wk D fJ0.U;�/^SnCkC1
C ! J0.U;�/^DnCkC2

C j n� 0; U 2 J0g:

It follows by an adjunction argument that an orthogonal functor Z is Wk–local if and only if �iZ.U / is
trivial for all i � kC1 and all U 2 J0. This last condition is equivalent to being objectwise SkC1–local.

8.3 The model structure of k–types in spectra

Taking ISp to be the set of generating cofibrations of the stable model structure on Sp and denoting again
by Wk the relevant pushout product maps, we obtain a similar characterisation of the category of k–types
in spectra.

Proposition 8.3 Let k � 0. Under Hypothesis 8.1, there is an equality of model structures between the
model category of k–types in spectra , and the stabilisation of SkC1–local spaces , that is ,

PkSp WDLWk
SpD Sp.LSkC1Top�/:

Proof Both model structures can be described as particular left Bousfield localizations of the stable
model structure on spectra, hence have the same cofibrations. The proof reduces to the fact that the
model structures have the same fibrant objects. To see this, note that the fibrant objects of PkSp are
the k–truncated �–spectra, and the fibrant objects of Sp.LSkC1Top�/ are the levelwise k–truncated �–
spectra. Since both fibrant objects are �–spectra a connectivity style argument yields that an �–spectrum
is k–truncated if and only if it is levelwise k–truncated, and hence both model structures have the same
fibrant objects.

Remark 8.4 Given a compact Lie group G, a similar procedure shows that there is an equality of model
structures

PkSpŒG� WDLWk
SpŒG�D Sp.LSkC1Top�/ŒG�:

8.4 Postnikov reconstruction of orthogonal functors

The collection of SkC1–local model structures on the category of orthogonal functors assembles into a
tower of model categories7

P� WN
op
!MCat; k 7! Fun.J0;LSkC1Top�/;

7A tower of model categories is a special instance of a left Quillen presheaf, that is a diagram of the form F W Jop!MCat for
some small indexing category J.
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where MCat denotes the category of model categories and left Quillen functors. The homotopy limit
of this tower of model categories recovers the projective model structure on orthogonal functors. The
existence of a model structure which captures the homotopy theory of the limit of these model categories
follows from [Gutiérrez and Roitzheim 2016, Proposition 2.2]. In particular, the homotopy limit model
structure is a model structure on the category of sections8 of the diagram P� formed by right Bousfield
localizing the injective model structure in which a map of sections is a weak equivalence or cofibration if
it is an objectwise weak equivalence or cofibration respectively.

Lemma 8.5 [Gutiérrez and Roitzheim 2016, Theorem 1.3 and Proposition 2.2] There is a combinatorial
model structure on the category of sections of P� where a map f� WX�! Y� is a fibration if and only if f0

is a fibration in Fun.J0;LS1Top�/ and for every k � 1 the induced map

Xk

&&

((

%%

Yk �Yk�1
Xk�1

//

��

Xk�1

��

Yk
// Yk�1

indicated by a dotted arrow in the above diagram is a fibration in Fun.J0;LSkC1Top�/. A section X� is
cofibrant if and only if Xn is cofibrant in Fun.J0;Top�/ and for every k � 0, the map XkC1! Xk is
a weak equivalence in Fun.J0;LSkC1Top�/. A map of cofibrant sections is a weak equivalence if and
only if the map is a weak equivalence in Fun.J0;LSkC1Top�/ for each k � 0. We will refer to this model
structure as the homotopy limit model structure and denote it by holimP�.

Proposition 8.6 Under Hypothesis 8.1 the adjoint pair

const W Fun.J0;Top�/� holimP� Wlim

is a Quillen equivalence.

Proof The adjoint pair exists, and is a Quillen adjunction by [Gutiérrez and Roitzheim 2016, Lemma 2.4].

To see that the adjoint pair is a Quillen equivalence let X� be a cofibrant and fibrant section in the
homotopy limit model structure. Showing that

const lim X�! X�

is a weak equivalence is equivalent to showing that the map lim X� ! Xk is a weak equivalence in
Fun.J0;LSkC1Top�/ for all k � 0. This is in turn, equivalent to the map .lim X�/.U /!Xk.U / being a

8A section X� of the tower P� is a sequence � � � !Xk!XkC1! � � �!X0 of orthogonal functors, and a morphism of sections
f WX�! Y� is given by maps of orthogonal functors fk WXk ! Yk for all k � 0 subject to a commutative ladder condition.
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weak equivalence in LSkC1Top� for all k � 0. Since limits in functor categories are computed objectwise,
the fact that the unit is a weak equivalence follows from [Gutiérrez and Roitzheim 2016, Theorem 2.5].
A similar argument shows that the counit is also a weak equivalence.

8.5 Postnikov reconstruction for spectra with an O.n/–action

The aim is to show that similar reconstruction theorems may be obtained for the n–homogeneous model
structures. We first start by investigating analogous theorems for spectra and show that such reconstructions
are compatible with the zigzag of Quillen equivalences between spectra with an O.n/–action and the
n–homogeneous model structure. Proposition 8.3 and [Gutiérrez and Roitzheim 2016, Section 2.1] imply
that the functor

PSp
�
WNop

!MCat; k 7! Sp.LSkC1Top�/

defines a left Quillen presheaf.9 This left Quillen presheaf is “convergent” in the following sense.

Proposition 8.7 Under Hypothesis 8.1 the adjoint pair

const W Sp � holimPSp
�
Wlim

is a Quillen equivalence.

Proof The fact that the adjoint pair is a Quillen adjunction follows from [Gutiérrez and Roitzheim 2016,
Lemma 2.4].

The left adjoint reflects weak equivalences between cofibrant objects. Indeed, if X ! Y is a map between
cofibrant spectra X and Y such that

const.X /! const.Y /

is a weak equivalence in holimPSp
�

, then

const.X /! const.Y /

is a weak equivalence in Sect.N;PSp
�
/ by the colocal Whitehead theorem and the fact that the left adjoint

is left Quillen and thus preserves cofibrant objects. It follows that for each k 2N, the induced map

const.X /k ! const.Y /k

is a weak equivalence in Sp.LSkC1Top�/, that is, X ! Y is a weak equivalence in Sp.LSkC1Top�/ for
all k. Unpacking the definition of a weak equivalence in Sp.LSkC1Top�/ and using the fact that the right
adjoint is a right Quillen functor and hence preserves weak equivalences between fibrant objects, we see
that the induced map

lim PkX ! lim PkY

is a weak equivalence in Sp, and hence, so is the map X ! Y .

9Alternatively, the adjunction 1 W Sp.LSkC2Top�/� Sp.LSkC1Top�/ W1, is a Quillen adjunction. This fact follows from the
facts that both model structures have the same cofibrations and a SkC1–local space is SkC2–local as h†W i � hW i for all based
spaces W ; see eg [Bousfield 1994, Section 9.9]. Hence P

Sp
� is a left Quillen presheaf.
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It is left to show that the derived counit is an isomorphism. Let Y� be bifibrant in holimPSp
�

. The condition
that the counit applied to Y� is a weak equivalence is equivalent to asking for the map

lim
�k

PkY�! Yk

to be a weak equivalence in Sp.LSkC1Top�/ for all k 2N. The structure maps of Y� induce a map of
towers

� � � // Yj

��

// � � � // YkC3
//

��

YkC2
//

��

YkC1

��

� � � // YkC1
// � � � // YkC1

// YkC1
// YkC1

in which each vertical arrow is a weak equivalence in Sp.LSkC1Top�/. This map of towers induces a
map

0 // lim1
�k �iC1.Y�/ //

��

�i.lim�k Y�/ //

��

lim�k �i.Y�/ //

��

0

0 // lim1
�k �iC1.YkC1/ // �i.lim�k YkC1/ // lim�k �i.YkC1/ // 0

of short exact sequences. For 0� i < n the left- and right-hand side maps are isomorphisms; hence the
map

lim
�k

Y�! YkC1

is a weak equivalence in Sp.LSkC1Top�/ for all k, and it follows that the required map

lim
�k

Y�! YkC1! Yk

is a weak equivalence in Sp.LSkC1Top�/ for all k.

A similar justification to before provides a left Quillen presheaf

PSpŒO.n/�
�

WNop
!MCat; k 7! Sp.LSkC1Top�/ŒO.n/�;

where Sp.LSkC1Top�/ŒO.n/� is the category of O.n/–objects in the category of k–types in spectra. This
is equivalent to the category of k–types in spectra with an O.n/–action. As a corollary to Proposition 8.7,
we obtain that the induced left Quillen presheaf on spectra with an O.n/–action is also suitably convergent.

Corollary 8.8 Under Hypothesis 8.1 the adjoint pair

const W SpŒO.n/�� holimPSpŒO.n/�
�

Wlim

is a Quillen equivalence.
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8.6 Postnikov reconstruction for the intermediate categories

The functor
PJn
�
WNop

!MCat; k 7!LSkC1 FunO.n/.Jn;O.n/Top�/

defines a left Quillen presheaf, since there is an equality of model structures between the SkC1–local
n–stable model structure and the model structure of k–types in FunO.n/.Jn;O.n/Top�/. The proof of
which is completely analogous to the case for spectra; see Proposition 8.3. Since the SkC1–local n–stable
model structure agrees with the model structure of k–types, we will denote both model structures by
Pk FunO.n/.Jn;O.n/Top�/.

The homotopy limit of this left Quillen presheaf agrees with the homotopy limit of the left Quillen
presheaf on spectra with an O.n/–action in the sense that the homotopy limit model categories are Quillen
equivalent. In detail, the adjunction

.˛n/! W FunO.n/.Jn;O.n/Top�/� SpŒO.n/� W.˛n/
�

of [Barnes and Oman 2013, Section 8] induces an adjunction

.˛n/
N
! W Fun.N; FunO.n/.Jn;O.n/Top�//� Fun.N; SpŒO.n/�/ W.˛�n/

N

where .˛�n/
N D .˛n/

� ı .�/. This adjunction in turn induces an adjunction

.˛n/
N
! W holimPJn

�
� holimPSpŒO.n/�

�
W.˛�n/

N :

Proposition 8.9 Under Hypothesis 8.1 the adjoint pair

.˛n/
N
! W holimPJn

�
� holimPSpŒO.n/�

�
W.˛�n/

N

is a Quillen equivalence.

Proof Fibrations of the homotopy limit model structure of PSpŒO.n/�
�

are precisely the fibrations of the
injective model structure on the category of sections of PSpŒO.n/�

�
since the homotopy limit model structure

is a right Bousfield localization of the injective model structure. A similar characterisation holds for the
left Quillen presheaf PJn

�
; hence to show that the right adjoint preserves fibrations it suffices to show that

the left adjoint preserves acyclic cofibrations of the injective model structure on the categories of sections.
To see this, note that the adjunction

.˛n/! W FunO.n/.Jn;O.n/Top�/� SpŒO.n/� W.˛n/
�

is a Quillen adjunction, and hence so too is the induced adjunction on the injective model structures on
the categories of sections.

To show that the left adjoint preserves cofibrations it suffices to show that cofibrations between cofibrant
objects are preserved. As the homotopy limit model structures are right Bousfield localizations [Hirschhorn
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2003, Proposition 3.3.16(2)] implies that cofibrations between cofibrant objects are cofibrations of the
injective model structures on the categories of sections which by the analogous reasoning as above are
preserved by the left adjoint. This yields that the adjunction in question is a Quillen adjunction.

To show that the adjunction is a Quillen equivalence notice that the right adjoint reflects weak equivalences
between cofibrant objects by the colocal Whitehead theorem [Hirschhorn 2003, Theorem 3.2.13(2)], and
the fact that the induced adjunction on the injective model structures on the categories of sections is a
Quillen equivalence since for B� 2 Sect.N;PJn

�
/ and X� 2 Sect.N;PSpŒO.n/�

�
/, a map B�! .˛�n/

NX� is
a weak equivalence if and only if for each k 2 N, the map Bk ! .˛�n/

NXk is a weak equivalence of
spectra, which in turn happens if and only if the adjoint map .˛n/!Bk !Xk is an n–stable equivalence,
which is precisely the condition that the adjoint map .˛n/

N
!

B�!X� is a weak equivalence.

It is left to show that the derived counit is an isomorphism. Let Y� be bifibrant in the homotopy limit
model structure of the left Quillen presheaf PSpŒO.n/�

�
. Then the derived counit

.˛n/
N
! Oc..˛

�
n/

NY�/! Y�

is a map between cofibrant objects, hence a weak equivalence in the homotopy limit model structure if
and only if a weak equivalence in the injective model structure on the category of sections, ie if and only
if for each k 2N, the induced map

.˛n/!.˛n/
�Yk ! Yk

is a weak equivalence, which it always is by [Barnes and Oman 2013, Proposition 8.3].

As a corollary, we see that the left Quillen presheaf PJn
�

is convergent.

Corollary 8.10 Under Hypothesis 8.1 the adjoint pair

const W FunO.n/.Jn;O.n/Top�/� holimPJn
�
Wlim

is a Quillen equivalence.

Proof Consider the commutative diagram

FunO.n/.Jn;O.n/Top�/
.˛n/!

//

const
��

SpŒO.n/�
.˛n/

�

oo

const
��

holimPJn
�

lim

OO

.˛n/
N
!

// holimP
.˛�n /

N
oo

lim

OO

of Quillen adjunctions in which three out of the four adjoint pairs are Quillen equivalences by [Barnes and
Oman 2013, Proposition 8.3], Corollary 8.8 and Proposition 8.9. It follows since Quillen equivalences
satisfy the two-out-of-three property, that the remaining Quillen adjunction is a Quillen equivalence.
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8.7 Postnikov reconstruction for homogeneous functors

The same approach as we have just employed for moving from spectra with an O.n/–action to the
intermediate categories yields similar results for the homogeneous model structures. We choose to
model SkC1–local n–homogeneous functors by the SkC1–periodic n–homogeneous model structures of
Proposition 7.10.

Lemma 8.11 The functor

PHomogn

�
WNop

!MCat; k! Homogn.J0;PSkC1Top�/

defines a left Quillen presheaf.

Proof It suffices to show that the adjoint pair

1 W Homogn.J0;PSkC2Top�/� Homogn.J0;PSkC1Top�/ W1

is a Quillen adjunction. The adjoint pair

1 W Poly�n.J0;LSkC2Top�/� Poly�n.J0;LSkC1Top�/ W1

is a Quillen adjunction since the composite of Quillen adjunctions is a Quillen adjunction, so the adjunction

1 W Fun.J0;LSkC2Top�/� Poly�n.J0;LSkC1Top�/ W1

is a Quillen adjunction, and by [Hirschhorn 2003, Proposition 3.3.18(1) and Theorem 3.1.6(1)], this
composite Quillen adjunction extends to the SkC2–local n–polynomial model structure since SkC1–local
n–polynomial functors are SkC2–locally n–polynomial.

An application of [Hirschhorn 2003, Theorem 3.3.20(2)(a)] yields the desired result about the n–
homogeneous model structures.

Similar proofs to Proposition 8.9 and Corollary 8.10 yield the following results relating the n–homogeneous
model structure to the homotopy limit of the tower of SkC1–local n–homogeneous model structures.

Proposition 8.12 Under Hypothesis 8.1 the adjunction

.resn0 =O.n//
N
W holimPHomogn

�
� holimPJn

�
W.indn

0 "
�/N

is a Quillen equivalence.

Corollary 8.13 Under Hypothesis 8.1 the adjunction

const W Homogn.J0;Top�/� holimPHomogn

�
Wlim

is a Quillen equivalence.
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Bounded subgroups of relatively finitely presented groups

EDUARD SCHESLER

Let G be a finitely generated group that is relatively finitely presented with respect to a collection Hƒ
of peripheral subgroups such that the corresponding relative Dehn function is well defined. We prove
that every infinite subgroup H of G that is bounded in the relative Cayley graph of G with respect to
Hƒ is conjugate into a peripheral subgroup. As an application, we obtain a trichotomy for subgroups of
relatively hyperbolic groups. Moreover we prove the existence of the relative exponential growth rate for
all subgroups of limit groups.

20F67

1 Introduction

The notion of a group G that is hyperbolic relative to a finite set Hƒ of its subgroups was introduced
by Gromov [10] as a generalization of a word hyperbolic group. In his definition, the groups H 2Hƒ
appear as stabilizers of points at infinity of a certain hyperbolic space X the group G acts on. Since
then, the study of relatively hyperbolic groups has remained an active field of research, and several
characterizations of relative hyperbolicity were introduced by Bowditch [2], Farb [8] and Osin [15]. In
the last work, Osin uses the concept of relative presentations in order to define the relative hyperbolicity
of a group G with respect to a set Hƒ D fH� j � 2ƒg of its subgroups. To make this more precise, let
X �G be a symmetric subset such that G is generated by

S
�2ƒH�[X . Then we obtain a canonical

epimorphism

" W F WD

� ©
�2ƒ

zH�

�
�F.X/!G;

where the groups zH� are disjoint isomorphic copies of H�, and F.X/ denotes the free group over X .
Consider a subset R � F whose normal closure is the kernel of ". Then R gives rise to a so-called
relative presentation of G with respect to Hƒ of the form

(1)
�
X;H

ˇ̌̌
S D 1; S 2

[
�2ƒ

S�; RD 1;R 2R
�
;

where H WD
S
�2ƒ.

zH� n f1g/ and S� is the set of all relations over the alphabet zH�. In this framework,
G is said to be hyperbolic relative to Hƒ if X and R can be chosen to be finite and (1) admits a linear
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relative Dehn function. That is, there is some C > 0 such that for every word w of length at most ` over
X [H that represents the identity in G, there is an equality of the form

(2) w DF

kY
iD1

f �1i R˙1i fi

that holds in F , where k �C`, fi 2F and Ri 2R. Note that in general, there is no reason to expect that
for every ` 2N and every relation w of length at most ` there is a uniform upper bound n 2N such that
w can be written as in (2) with k � n. Even if X and R are finite, in which case we say that (1) is a finite
relative presentation for G, there are easy examples where there is no such n; see [15, Example 1.3].

Here we study groups G that admit a finite relative presentation as in (1) whose relative Dehn function
ırel
G;Hƒ

is well defined. This means that for every ` 2 N there is a minimal number ırel
G;Hƒ

.`/ such
that for every relation w of length at most ` there is an expression of the form (2) with k � ırel

G;Hƒ
.`/.

Examples of relatively finitely presented groups that admit a well-defined nonlinear relative Dehn function
were considered by Hughes, Martínez-Pedroza and Sánchez Saldaña [12]. The study of groups with
a well-defined relative Dehn function typically involves considerations in the so-called relative Cayley
graph �.G;X [H/ of G. Since X [H can be (and usually is) infinite, it is natural to ask the following:

Question 1.1 Which subgroups of G have bounded diameter in �.G;X [H/?

Note that, aside from the finite subgroups of G, every subgroup of G that can be conjugated into some
of the groups H� has bounded diameter in �.G;X [H/. It turns out that for finitely generated G, the
existence of a well-defined relative Dehn function is enough to deduce that there are no further examples
of subgroups of G whose diameter in �.G;X [H/ is finite.

Theorem 1.2 Let G be a finitely generated group. Suppose that G is relatively finitely presented with
respect to a collection Hƒ D fH� j � 2ƒg of its subgroups and that the relative Dehn function ırel

G;Hƒ
is

well defined. Then every subgroup K �G satisfies exactly one of the following conditions:

(i) K is finite.

(ii) K is infinite and conjugate to a subgroup of some H�.

(iii) K is unbounded in �.G;X [H/.

Note for example that if one of the subgroups H� in Theorem 1.2 is infinite, then there is no subgroup
K �G that contains H� as a proper subgroup of finite index. This also follows from the fact that each
H� is almost malnormal, which is shown in [15, Proposition 2.36].

Remark 1.3 The condition that the relative Dehn function ırel
G;Hƒ

in Theorem 1.2 is well defined cannot
be removed. To see this, let G be the infinite cyclic group generated by an element a and let H be the
subgroup of G that is generated by a2. Then the relative Cayley graph of G with respect to Hƒ D fH g
is clearly bounded. In particular, G is a bounded subset of its relative Cayley graph while not being
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conjugate to a subgroup of H . On the other hand, it can be easily seen that G admits a finite relative
presentation with respect to H .

If the groupG in Theorem 1.2 is relatively hyperbolic with respect toHƒ, then it is known that a subgroup
K �G with infinite diameter in �.G;X [H/ contains a loxodromic element; see Osin [16, Theorem 1.1
and Proposition 5.2]. Recall that an element g 2G is called loxodromic if the map

Z! �.G;X [H/ given by n 7! gn

is a quasiisometric embedding. We therefore obtain the following classification of subgroups of relatively
hyperbolic groups which, to the best of my knowledge, was not recorded before:

Corollary 1.4 Let G be a finitely generated group. Suppose that G is relatively hyperbolic with respect
to a collection Hƒ D fH� j � 2ƒg of its subgroups. Then every subgroup K �G satisfies exactly one of
the following conditions:

(i) K is finite.

(ii) K is infinite and conjugate to a subgroup of some H�.

(iii) K contains a loxodromic element.

As an application of Corollary 1.4, we consider relative exponential growth rates in finitely generated
groups. Recall that for a finitely generated group G and a finite generating set X of G, the growth function
ˇXG WN!N of G with respect to X is defined by ˇXG .n/D jB

X
G .n/j, where BXG .n/ denotes the set of

all elements of G that are represented by words of length at most n in the generators of X and X�1.
Using Fekete’s lemma, it is easy to see that the limit limn!1

n
p
ˇXG .n/, known as the exponential growth

rate of G with respect to X , always exist; see for example Milnor [13]. Given a subgroup H � G, a
relative analogue of the exponential growth rate is obtained by counting the elements in the relative balls
BXH .n/ WD B

X
G .n/\H . The resulting function

ˇXH WN!N given by n 7! jBXH .n/j

is called the relative growth function of H with respect to X . In [14, Remark 3.1], Olshanskii pointed
out that, unlike in the nonrelative case, the limit limn!1

n
p
ˇXH .n/ does not exist in general. As a

consequence, the relative exponential growth rate of H in G with respect to X is typically defined
as lim supn!1

n
p
ˇXH .n/. Nevertheless, in many cases where the relative exponential growth rate is

studied in the literature (see for example Cohen [3], Grigorchuk [9], Olshanskii [14], Sharp [19], Coulon,
Dal’Bo and Sambusetti [5] and Dahmani, Futer and Wise [7] where G is free or hyperbolic) the limit
limn!1

n
p
ˇXH .n/ is known to exist, in which case we say that the relative exponential growth rate of H

in G exists with respect to X . In the case where G is a free group, the existence of the relative exponential
growth rate was proven by Olshanskii in [14], extending prior results of Cohen [3] and Grigorchuk [9]
who have independently proven the existence for normal subgroups of G. More recently, these existence
results were generalized by the author to the case where G is a finitely generated acylindrically hyperbolic
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group and H is a subgroup that contains a generalized loxodromic element of G; see [17]. By combining
this with Corollary 1.4, we will be able conclude the following:

Theorem 1.5 Let G be a finitely generated group that is relatively hyperbolic with respect to a collection
Hƒ D fH� j � 2ƒg of its subgroups. Suppose that each of the groups H� has subexponential growth.
Then the relative exponential growth rate of every subgroup H � G exists with respect to every finite
generating set of G.

By Osin [15, Theorem 1.1], each of the groups H� in Theorem 1.5 is finitely generated, so the assumption
on subexponential growth indeed makes sense. Relatively hyperbolic groups G as in Theorem 1.5 include
many naturally occurring examples of groups. A particularly interesting such class is given by limit
groups, which were introduced by Sela in his solution of the Tarski problems [18], and naturally generalize
the class of free groups. By work of Dahmani [6] and Alibegović [1], limit groups are known to be
relatively hyperbolic with respect to a system of representatives for the conjugacy classes of their maximal
abelian noncyclic subgroups. As a consequence, we obtain the following generalization of Olshanskii’s
existence result:

Corollary 1.6 Let G be a limit group. Then the relative exponential growth rate of every subgroup
H �G exists with respect to every finite generating set of G.

Acknowledgments I would like to thank Jason Manning for a helpful conversation regarding an alterna-
tive way of proving Corollary 1.4; see Section 4.1. The author was partially supported by the DFG grant
WI 4079/4 within the SPP 2026 Geometry at infinity.

2 Preliminaries

In this section we introduce some definitions and properties that will be relevant for our study of relatively
finitely presented groups. More information about these groups can be found in [15].

2.1 Relative presentations

Let us fix a group G and a collection Hƒ D fH� j � 2ƒg of so-called peripheral subgroups of G. Let
X �G be a symmetric subset such that G is generated by

S
�2ƒH�[X . Such an X will be referred to

as a relative generating of G with respect to Hƒ. Note that this gives us a canonical epimorphism

" W F WD

� ©
�2ƒ

zH�

�
�F.X/!G;

where the groups zH� are pairwise disjoint isomorphic copies of H� and F.X/ denotes the free group
over X . Let us also assume that zH� \X D ∅ for every � 2 ƒ. Let N denote the kernel of " and let
R� N be a subset whose normal closure in F coincides with N . For each � 2ƒ let S� be the set of
words over zH� n f1g that represent the identity in G.

Algebraic & Geometric Topology, Volume 24 (2024)
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Definition 2.1 With the notation above, we say that a relative presentation of G with respect to Hƒ is a
presentation of the form

(3)
�
X;H

ˇ̌̌
S D 1; S 2

[
�2ƒ

S�; RD 1; R 2R
�
;

where H WD
S
�2ƒ.

zH� n f1g/. The relative presentation (3) is called finite if X and R are finite. In this
case G is said to be relatively finitely presented with respect to Hƒ.

The following result will be crucial for us:

Theorem 2.2 [15, Theorem 1.1] Let G be a finitely generated group and let Hƒ D fH� j � 2ƒg be a
collection of its subgroups. Suppose that G is finitely presented with respect to Hƒ. Then the following
conditions hold :

(i) The collection Hƒ is finite , ie jƒj<1.

(ii) Each subgroup H� is finitely generated.

2.2 Relative Dehn functions

Let G be a relatively finitely presented group with a finite relative presentation as in Definition 2.1. For
each ` 2N, let N` denote the set of words of length at most ` over X [H that represent the identity in G.
Given w 2N`, let vol.w/ 2N be minimal with the property that there is an expression of the form

(4) w DF

vol.w/Y
iD1

f �1i R˙1i fi ;

where the equality is taken in F , and fi 2 F and Ri 2R for every 1� i � vol.w/.

Definition 2.3 The relative Dehn function for the finite relative presentation (3) of G is defined by

ırel
G;Hƒ

WN!N [f1g given by ` 7! supfvol.w/ j w 2N`g:

We say that ırel
G;Hƒ

is well defined if ırel
G;Hƒ

.`/ <1 for every ` 2N.

An important class of relatively finitely presented groups with a well-defined Dehn function consists of
relatively hyperbolic groups, which can be defined in terms of the relative Dehn function.

Definition 2.4 A relatively finitely presented group G with a relative presentation (3) is called relatively
hyperbolic with respect to Hƒ if there is some C > 0 such that ırel

G;Hƒ
.`/� C` for every ` 2N.

Of course, the relative Dehn function ırel
G;Hƒ

depends on the finite relative presentation (3), and not just
on Hƒ. But as for ordinary (nonrelative) Dehn functions of finitely presented groups, different finite
relative presentations lead to asymptotically equivalent relative Dehn functions; see [15, Theorem 2.34].
In particular, the property of ırel

G;Hƒ
being well defined or bounded above by a linear function does not

depend on the choice of a finite relative presentation.

Algebraic & Geometric Topology, Volume 24 (2024)



1556 Eduard Schesler

2.3 Geometry of the relative Cayley graph

Let us again consider a relatively finitely presented group G with a finite relative presentation as in
Definition 2.1. The Cayley graph of G with respect to X [H is called the relative Cayley graph of G and
will be denoted by �.G;X [H/. We will study the local geometry of �.G;X [H/. In order to do so, let
us fix some terminology. Given an edge e of �.G;X [H/, we write @0.e/ to denote the initial vertex of
e and @1.e/ to denote the terminal vertex of e. A sequence p D .e1; : : : ; en/ of edges in �.G;X [H/ is
called a path if @1.ei /D @0.eiC1/ for 1� i < n. If moreover @0.e1/D @1.en/, then p is said to be cyclic.
The label of a path p will be denoted by Lab.p/. Sometimes it is useful to forget about the initial vertex
of a cyclic path pD .e1; : : : ; en/. To make this precise, we define the loop associated to p as the set Œp� of
all paths of the form .ei ; : : : ; en; e1; : : : ; eiC1/ for 1� i � n. A subpath of a loop Œp� is a subpath of some
representative p0 2 Œp�. The algebraic counterpart of a loop is the set Œw� of all cyclic conjugates of a word
w over X[H, which will be referred to as a cyclic word. Accordingly, the label of a loop Œp� is defined as
Lab.Œp�/ WD ŒLab.p/�. Up to minor notational differences, the following definitions can be found in [15].

Definition 2.5 Let w be a word over X [H. A subword v of w is a �–subword if it consists of letters
of zH�. If a �–subword v of w is not properly contained in any other �–subword of w, then v is called a
�–syllable of w. Similarly, we say that a word v over X [H is a �–subword of a cyclic word Œw� if it is
a �–subword of some cyclic conjugate of w. If a �–subword v of Œw� is not properly contained in any
other �–subword of Œw�, then v is called a �–syllable of Œw�.

Let us now translate Definition 2.5 into conditions for paths in �.G;X [H/.

Definition 2.6 Let q be a path in �.G;X [ H/. A subpath p of q is a �–subpath if Lab.p/ is a
�–subword of Lab.q/. A �–subpath p of q is called a �–component of q if Lab.p/ is a �–syllable of
Lab.q/. Suppose now that q is cyclic, and consider the loop Œq� associated to q. We say that a subpath p
of Œq� is a �–subpath of Œq� if Lab.p/ is a �–subword of Lab.Œq�/. If moreover Lab.p/ is a �–syllable of
Lab.Œq�/, then p is called a �–component of Œq�.

Definition 2.7 Let p1 and p2 be �–components of a path p (resp. a loop Œq�) in �.G;X [H/. We say
that p1 and p2 are connected, if there is a path c in �.G;X [H/ that connects a vertex of p1 with a
vertex of p2 and Lab.c/ consists of letters of zH�. We say that p1 is isolated in p (resp. Œq�) if there are
no further �–components of p (resp. Œq�) that are connected to p1.

Let us now translate the notion of an isolated component of a path (loop) into a corresponding notion for
syllables in (cyclic) words.

Definition 2.8 Let w be a word over X[H and let p be any path in �.G;X[H/ with Lab.p/Dw. We
say that two �–syllables v1 and v2 of w are connected (resp. isolated) if the corresponding �–components
p1 and p2 of p are connected (resp. isolated). If w represents the identity in G, and v1 and v2 are
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�–syllables of the cyclic word Œw�, then v1 and v2 are connected (resp. isolated) if the corresponding
�–components p1 and p2 of the loop Œp� are connected (resp. isolated).

The following lemma is a direct consequence of [15, Lemma 2.27]. It will help us study the local structure
of �.G;X [H/ and often lets us switch between the word metrics dX and dX[H.

Lemma 2.9 Let G be a finitely generated group with a finite generating set X . Suppose that G is
relatively finitely presented with respect to a collection Hƒ D fH� j � 2ƒg of its subgroups , and that the
relative Dehn function ırel

G;Hƒ
is well defined. Then for every n 2N there is a finite subset �n �G with

the property that for every cyclic path q in �.G;X[H/ of length at most n and every isolated component
p of the loop Œq�, the label Lab.p/ represents an element in �n.

3 The alternating growth condition

In this section we introduce the alternating growth condition, which will play a central role in our proof
of Theorem 1.2.

3.1 Regular neighborhoods

Let us start by defining a condition for paths in graphs that can be thought of as a strong form of having
no self-intersections.

Definition 3.1 Let � be a graph and let p be a path in � that consecutively traverses the sequence
v0; : : : ; vn of vertices in � . We say that p has a regular neighborhood in � if every two vertices vi and
vj that can be joined by an edge in � satisfy ji � j j � 1.

Example 3.2 If p is a geodesic path in a graph � then p has a regular neighborhood in � .

Example 3.3 If p is a nontrivial cyclic path in a graph � then p does not have a regular neighborhood in � .

Remark 3.4 Every path p that has a regular neighborhood in a graph � is locally 2–geodesic, ie the
restriction of p to each subpath of length at most 2 is geodesic.

It will be useful for us to translate the concept of regular neighborhoods to words over some generating
set of a group.

Definition 3.5 Let G be a group and let X be a generating set of G. A word w over X is called regular
(with respect to X ) if some path p in �.G;X/ with Lab.p/Dw has a regular neighborhood in �.G;X/.

Remark 3.6 Let G be a group and let X be a generating set of G. From the definitions, it directly
follows that a word w over X is regular if and only if every subword v of w of length at least 2 satisfies
jvjX � 2, where j � jX denotes the word metric corresponding to X .
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3.2 Sequences of alternating growth

We want to study sequences of regular words in the context of finitely generated relatively finitely
presented groups. Let us therefore fix a finitely generated group G, a finite generating set X of G, and
a collection Hƒ D fH� j � 2 ƒg of peripheral subgroups of G. Suppose that G is relatively finitely
presented with respect to Hƒ and that the relative Dehn function ırel

G;Hƒ
is well defined. As in Section 2

we write zH� to denote pairwise disjoint isomorphic copies of H� that also intersect trivially with X . Let
us fix some notation in order to avoid ambiguities concerning the length and the evaluation of a word
over X [H, where as always HD

S
�2ƒ.

zH� n f1g/.

Notation 3.7 Let w D w1 : : : w` be a word over X [H. We write kwk D ` for the word length of w.
The image of w in G will be denoted by Nw. For any subset Y � G we write j NwjY for the length of a
shortest word over Y that represents Nw. If there is no such word, then we set j NwjY D1.

Definition 3.8 A sequence of words .w.n/1 : : : w
.n/

`
/n2N of fixed length `� 2 over X [H satisfies the

alternating growth condition if the following conditions are satisfied:

(I) If w.n/i D x for some 1� i � `, n 2N and x 2X , then w.m/i D x for every m 2N. In this case
we say that i is an index of type X .

(II) If w.n/i 2 zH� for some 1� i � `, n 2N and � 2ƒ, then w.m/i 2 zH� for every m 2N. In this case
we say that i is an index of type �.

(III) The index 1 is not of type X .

(IV) Two consecutive indices are never of the same type.

(V) If i is of type �, then Nw.n/i …H� and j Nw.n/i jX � n for every � 2ƒ n f�g and every n 2N.

(VI) Each word w.n/1 : : : w
.n/

`
is regular with respect to X [H.

The following observation will be used frequently:

Remark 3.9 Given a regular word w over X [H, it directly follows from the definitions that every
syllable v in w is isolated and consists of a single edge.

3.3 Concatenating sequences of alternating growth

In what follows, we need to construct certain sequences .w.n/1 : : : w
.n/

`
/n2N of words over X [H that

satisfy the alternating growth condition so that ` can be chosen arbitrarily large. In order to do so, we
will use the following lemma, which allows us to “concatenate” two sequences of words that satisfy the
alternating growth condition so that the resulting sequence also satisfies the alternating growth condition.
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Lemma 3.10 With the notation above , suppose that there are two sequences .v.n/1 : : : v
.n/
M /n2N and

.w
.n/
1 : : : w

.n/
N /n2N of words over X [H that satisfy the alternating growth condition. Let � 2ƒ be such

that w.n/1 2 zH� for some n 2N.

(i) Suppose that Nv.n/M …H� for every n 2N. Then there is a strictly increasing sequences of natural
numbers .sn/n2N such that

.v
.sn/
1 : : : v

.sn/
M w

.sn/
1 : : : w

.sn/
N /n2N

satisfies the alternating growth condition.

(ii) Suppose that Nv.n/M 2H� for every n 2N. Then there are strictly increasing sequences of natural
numbers .sn/n2N and .tn/n2N such that the sequence

.v
.sn/
1 : : : v

.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/
N /n2N ;

where z.n/ 2 zH� is the element representing v.sn/M w
.tn/
1 2 H�, satisfies the alternating growth

condition.

Proof Let us first prove (i). Suppose that there is no such sequence .si /i2N . Then there are infinitely
many n 2N such that v.n/1 : : : v

.n/
M w

.n/
1 : : : w

.n/
N does not satisfy some of the conditions of Definition 3.8.

Since (I)–(V) are clearly satisfied, it follows that v.n/1 : : : v
.n/
M w

.n/
1 : : : w

.n/
N is not regular (with respect

to X [H) for infinitely many n 2N. By restriction to a subsequence if necessary, we can assume that
no word v.n/1 : : : v

.n/
M w

.n/
1 : : : w

.n/
N is regular. Since Nv.n/M … H� for every n 2 N, none of the subwords

v
.n/
M w

.n/
1 represent the trivial element inG. Along with the assumption that v.n/1 : : : v

.n/
M and w.n/1 : : : w

.n/
N

are regular, it follows that there is a maximal index an such that

(5) jv.n/an : : : v
.n/
M w

.n/
1 : : : w

.n/

bn
jX[H D 1

for some index bn. Suppose that each bn is chosen to be minimal with respect to an. Then there are
generators un 2X [H such that

qn D v
.n/
an
: : : v

.n/
M w

.n/
1 : : : w

.n/

bn
un

represents the identity in G for every n 2N. We want to argue that w.n/1 is an isolated �–syllable in the
cyclic word Œqn�. Suppose that this is not the case. Then there are three cases to consider:

Case 1 (v.n/i : : : v
.n/
M w

.n/
1 2H� for some an � i �N ) Then v.n/i : : : v

.n/
M 2H�, and since v.n/1 : : : v

.n/
M

is regular, i DM . Thus Nv.n/M 2H�, in contrast to our assumption Nv.n/M …H�.

Case 2 (w.n/1 : : : w
.n/
i 2H� for some 2� i � bn) This is a contradiction since w.n/1 : : : w

.n/
N is regular.

Case 3 (w.n/1 : : : w
.n/

bn
un 2H�) In this case we also have v.n/an : : : v

.n/
M 2H�. Using again the assumption

that v.n/1 : : : v
.n/
M is regular, an DM and Nv.n/M 2H�, which contradicts our assumption that Nv.n/M …H�.
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Thus w.n/1 is indeed an isolated �–syllable in Œqn�. Moreover, kqnk � M CN C 1 for every n 2 N.
From Lemma 2.9 it therefore follows that f Nw.n/1 j n 2 Ng is a finite subset of G. On the other hand,
the alternating growth condition ensures that jw.n/1 jX � n for every n 2 N. This finally gives us the
contradiction that arose from our assumption that there is no sequence .si /i2N as in (i).

Let us now prove (ii). From the alternating growth condition, jw.n/1 jX � n for every n 2N. Thus we can
choose strictly increasing sequences of natural numbers .sn/n2N and .tn/n2N such that jv.sn/M w

.tn/
1 jX � n

for every n 2N. Note that Definition 3.8(I)–(V) are clearly satisfied for

.v
.sn/
1 : : : v

.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/
N /n2N ;

where z.n/ 2 zH� is the element representing v.sn/M w
.tn/
1 . In order to prove the lemma it therefore suffices

to show that v.sn/1 : : : v
.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/
N is regular for all but finitely many n 2N. To see this, let

us first consider the subwords

v
.sn/
1 : : : v

.sn/
M�1z

.n/ and z.n/w
.tn/
2 : : : w

.tn/
N :

Suppose that there is some 1� i �M � 1 with jv.sn/i : : : v
.sn/
M�1z

.n/jX[H � 1. Then there are two cases
to consider:

Case 1 (v.sn/i : : : v
.sn/
M�1z

.n/ 2H�) Then we also have v.sn/i : : : v
.sn/
M�1 2H�, and since v.sn/1 : : : v

.sn/
M is

regular, it follows that M � 1D 1. But then v.sn/M�1 and v.sn/M both represent elements of H�, which in
turn contradicts the regularity of v.sn/1 : : : v

.sn/
M .

Case 2 (v.sn/i : : : v
.sn/
M�1z

.n/ …H�) Then there is some un 2 X [H that does not lie in zH� such that
qn WD v

.sn/
i : : : v

.sn/
M�1z

.n/un represents the identity in G. We claim that z.n/ is an isolated syllable in the
cyclic word Œqn�. Otherwise there would be some i � j �M � 1 with

v
.sn/
j : : : v

.sn/
M�1z

.n/ 2H�;

which is impossible as we have seen in Case 1. Moreover, kqnk �M . From Lemma 2.9 it therefore
follows that fNz.n/1 j n 2 Ng is a finite subset of G. Since jz.n/jX � n, there are only finitely many
n2N such that jv.sn/i : : : v

.sn/
M�1z

.n/jX[H � 1 for some 1� i �M �1. Thus v.sn/1 : : : v
.sn/
M�1z

.n/ is regular
for all but finitely many n 2N. Symmetric argument shows that z.n/w.tn/2 : : : w

.tn/
N is regular for all but

finitely many n 2N. By restriction to a subsequence if necessary, we can therefore assume that the words
v
.sn/
1 : : : v

.sn/
M�1z

.n/ and w.tn/2 : : : w
.tn/
N are regular for every n.

Now assume v.sn/1 : : : v
.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/
N is not regular, and choose 1� an�M �1 and 2� bn�N

such that v.sn/an : : : v
.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/

bn
is a minimal subword of v.sn/1 : : : v

.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/
N with

jv.sn/an
: : : v

.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/

bn
jX[H � 1:

Case 1 (qn WD v
.sn/
an : : : v

.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/

bn
represents the identity in G) Since v.sn/1 : : : v

.sn/
M�1z

.n/

and z.n/w.tn/2 : : : w
.tn/
N are regular, it follows that z.n/ is an isolated syllable in the cyclic word Œqn�. In

view of Lemma 2.9, there are only finitely many such n.
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Case 2 (v.sn/an : : : v
.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/

bn
does not represent an element of H�) Then there is some

un 2
S
�2ƒnf�g.

zH� n f1g/[X such that

qn WD v
.sn/
an

: : : v
.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/

bn
un

represents the trivial element in G. In particular, un is not part of a �–syllable in the cyclic word Œqn�.
Another application of Lemma 2.9 now reveals that there are only finitely many n 2 N such that
v
.sn/
an : : : v

.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/

bn
does not represent an element of H�.

Case 3 (v.sn/an : : : v
.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/

bn
represents a nontrivial element in H�) Then there is some

un 2 zH� such that
qn WD v

.sn/
an

: : : v
.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/

bn
un

represents the identity in G. Suppose z.n/ is connected to some further �–syllable in the cyclic word Œqn�.
Since v.sn/1 : : : v

.sn/
M�1z

.n/ and z.n/w.tn/2 : : : w
.tn/
N are regular, z.n/ has to be connected to un. Hence

z.n/w
.tn/
2 : : : w

.tn/

bn
un 2H�;

which implies
w
.tn/
2 : : : w

.tn/

bn
2H�:

From the regularity of z.n/w.tn/2 : : : w
.tn/
N it therefore follows that N D 2. But then Nw.tn/2 2H�, which

contradicts the regularity of w.tn/1 w
.tn/
2 : : : w

.tn/
N . Thus un is an isolated syllable in Œqn� and a final

application of Lemma 2.9 proves that Case 3 can only occur finitely many times.

Altogether we have shown that v.sn/1 : : : v
.sn/
M�1z

.n/w
.tn/
2 : : : w

.tn/
N is regular for all but finitely many n2N,

which proves the lemma.

Corollary 3.11 Let G be a finitely generated group with a finite generating set X . Suppose that G is
relatively finitely presented with respect to a collection of peripheral subgroups Hƒ D fH� j � 2ƒg, and
that the relative Dehn function ırel

G;Hƒ
is well defined. Let .w.n//n2N be a sequence of words over X [H

that satisfies the alternating growth condition and let K be the subgroup of G generated by f Nwn j n 2Ng.
Then there is some C 2 N that satisfies the following. For every L 2 N there is a sequence of words
.vn/n2N over X [H such that :

(i) .vn/n2N satisfies the alternating growth condition.

(ii) The length of every word vn is bounded by L� kvnk � LCC .

(iii) Every word vn represents an element of K.

Proof Let us write w.n/Dw.n/1 : : : w
.n/

`
for every n2N. From properties (II) and (III) of the alternating

growth condition there is some �2ƒ such thatw.n/1 2 zH� for every n2N. By restriction to a subsequence
if necessary, we may assume that .wn/n2N satisfies one of the following two conditions:

(i) Nw.n/
`
…H� for every n 2N.

(ii) Nw.n/
`
2H� for every n 2N.
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Suppose the first and let k 2 N. Then an inductive application of Lemma 3.10(i) provides us with
subsequences

.w
.si;n/
1 : : : w

.si;n/

`
/n2N

of w.n/ for each 1� i � k such that the sequence of concatenated words

vn WD .w
.s1;n/
1 : : : w

.s1;n/

`
/.w

.s2;n/
2 : : : w

.s2;n/

`
/ : : : .w

.sk;n/
1 : : : w

.sk;n/

`
/

has length k` and satisfies the alternating growth condition. Thus the corollary is clearly satisfied for C D`.

Let us now consider (ii), and let k 2N. Then an inductive application of Lemma 3.10(ii) provides us
with subsequences

.w
.si;n/
1 : : : w

.si;n/

`
/n2N

of w.n/ for each 1� i � k such that the sequence of words vn given by

.w
.s1;n/
1 : : : w

.s1;n/

`�1
/z.t1;n/.w

.s2;n/
2 : : : w

.s2;n/

`�1
/z.t2;n/ : : : z.tk�1;n/.w

.sk;n/
2 : : : w

.sk;n/

`
/;

where z.ti;n/ 2 zH� is the element representing w.si;n/
`

w
.siC1;n/

1 2 H�, satisfies the alternating growth
condition. In this case vn has length k.`� 1/C 1 and we see that the corollary is satisfied for C D `.

4 Dichotomy of infinite subgroups

Endowed with Corollary 3.11, we are now ready to study the subgroup of a relatively finitely presented
groupG that is generated by all the elements Nwn, where .wn/n2N is a sequence that satisfies the alternating
growth condition.

Lemma 4.1 Let G be a finitely generated group with a finite generating set X . Suppose that G is
relatively finitely presented with respect to a collection of peripheral subgroups Hƒ D fH� j � 2ƒg and
that the relative Dehn function ırel

G;Hƒ
is well defined. Suppose that .wn/n2N is a sequence of words

over X [H that satisfies the alternating growth condition. Then the subgroup K � G generated by
f Nwn 2G j n 2Ng is unbounded with respect to dX[H.

Proof Suppose that K is bounded with respect to dX[H, ie that there is some N 2N with jkjX[H �N
for every k 2 K. Due to Corollary 3.11 there is a number L � 4N and a sequence .vn/n2N of words
vn D v

.n/
1 : : : v

.n/
L over X [H that satisfies the alternating growth condition such that each vn represents

an element of K. By restriction to a subsequence, we can assume that there is some M 2 N with
jvnjX[H DM �N for every n 2N. Let u.n/1 : : : u

.n/
M be a shortest word over X [H representing Nv�1n .

Then each word qn WD v
.n/
1 : : : v

.n/
L u

.n/
1 : : : u

.n/
M represents the identity in G. The alternating growth

condition ensures v.n/1 : : : v
.n/
L is regular and that two consecutive letters of vn do not lie in X . It therefore

follows that at least every second of its letters is an isolated syllable in vn. Thus there are at least 2N
isolated syllables in vn D v

.n/
1 : : : v

.n/
L . Note that for every � 2ƒ and every �–syllable of u.n/1 : : : u

.n/
M ,

which necessarily consists of a single letter u.n/i , there is at most one �–syllable v.n/j in v.n/1 : : : v
.n/
L that
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is connected to u.n/i in the cyclic word Œqn�. Otherwise there would be a connection between two different
isolated �–syllables of v.n/1 : : : v

.n/
L by a �–word. This implies that there are at least 2N �M �N isolated

syllables in Œqn� that become arbitrarily large with respect to X as n goes to 1. But this contradicts
Lemma 2.9 since kqnk �M CL for every n 2N. Thus K is an unbounded subset of �.G;X [H/.

Lemma 4.2 Let G be a finitely generated group with a finite generating set X . Suppose that G is
relatively finitely presented with respect to a collection of peripheral subgroups Hƒ D fH� j � 2ƒg and
that the relative Dehn function ırel

G;Hƒ
is well defined. Let K �G be an infinite subgroup that is bounded

with respect to dX[H. Then there is an element g 2G and an index � 2ƒ such that jgKg�1\H�j D1.

Proof Since K is bounded with respect to dX[H, each of its conjugates gKg�1 is a bounded subset of
�.G;X [H/. Let m 2N be minimal with the following property:

.�/ There is a conjugate H WD gKg�1 of K, a finite relative generating set Y of G, and an infinite
sequence .kn/n2N of pairwise distinct elements kn 2H with jknjY[H Dm for every n 2N.

Let g, Y and .kn/n2N be as in .�/. For each n let u.n/ D u.n/1 : : : u
.n/
m be a (shortest) word over Y [H

that represents kn. Due to the minimality of m, we can extend Y to any finite relative generating set Y 0 of
G such that .�/ is still satisfied for an appropriate subsequence of .kn/n2N . Since G is finitely generated,
we can therefore assume that Y is a symmetric generating set of G.

Suppose first that mD 1. Then u.n/1 2HD
S
�2ƒ.

zH� n f1g/ for all but finitely many n 2N. Since ƒ
is finite by Theorem 2.2, there is some � 2ƒ such that infinitely many pairwise distinct letters u.n/1 lie
in zH�. It therefore follows that jgKg�1\H�j D1.

Let us now consider the case m� 2. We want to modify Y and u.n/ in such a way that some subsequence
of .u.n//n2N satisfies the alternating growth condition. This will be done inductively by going through
the letters u.n/i of u.n/.

Suppose that u.n/1 2 Y for infinitely many n 2N. Then we can choose some x1 2 Y and a subsequence
.kjn/n2N of .kn/n2N with u.jn/1 D x1 for every n. In this case we replace .kn/n2N by .kjn/n2N .

Suppose next that u.n/1 2H for all but finitely many n 2N. Since ƒ is finite, there is some �1 2ƒ with
u
.n/
1 2

zH�1 for infinitely many n 2N. We have to consider 2 cases:

Case 1 (there is some Qh1 2 zH�1 with u.n/1 D Qh1 for infinitely many n 2 N) Restrict .kn/n2N to a
subsequence .kjn/n2N such that u.jn/1 D Qh1 for every n 2 N. Moreover we add h1 and h�11 to Y and
replace the letter u.jn/1 D Qh1 2 zH�1 in u.jn/ by h1 2 Y for every n 2N. Next we replace the resulting
sequence by a subsequence that satisfies .�/, which is possible by the choice of m.

Case 2 (there is no Qh1 2 zH�1 with u.n/1 D Qh1 for infinitely many n 2 N) Replace .u.n//n2N by
a subsequence .u.jn//n2N such that j Nu.jn/1 jY > n for every n 2N.

We proceed analogously with the other indices i 2 f2; : : : ; mg. The resulting sequence of words over
Y [H will be denoted by .v.n/1 : : : v

.n/
m /n2N . Let gn 2H be the element represented by v.n/1 : : : v

.n/
m .
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Suppose that either two consecutive letters v.n/i and v.n/iC1 or v.n/1 and v.n/m both lie in Y . Then we
could add v.n/i v

.n/
iC1 and .v.n/i v

.n/
iC1/

�1 (resp. v.n/m v
.n/
1 and .v.n/m v

.n/
1 /�1) to Y in order to obtain a shorter

sequence of infinitely many pairwise distinct elements of H (resp. of v.n/
�1Hv

.n/
1 ) with respect to dY[H.

But this is a contradiction to the choice of m. Thus neither v.n/i and v.n/iC1 nor v.n/1 and v.n/m both lie
in Y . In particular, we can replace v.n/1 : : : v

.n/
m by its inverse .v.n/m /�1 : : : .v

.n/
1 /�1 to ensure that the

first letter does not lie in Y . Let us therefore assume that v.n/1 is never contained in Y . To prove that
.v
.n/
1 : : : v

.n/
m /n2N satisfies the alternative growth condition, it remains to show that each v.n/1 : : : v

.n/
m

is regular and that two consecutive letters v.n/i and v.n/iC1 cannot lie in the same group zH�. But these
properties are direct consequences of the condition jgnjY[HDm from .�/, where kn plays the role of gn.
Altogether we have shown that there is a conjugate H of K and a sequence .gn/n2N of elements in H
that can be represented by a sequence .v.n/1 : : : v

.n/
m /n2N of words over Y [H that satisfies the alternating

growth condition. In this case, Lemma 4.1 tells us that H is an unbounded subset of �.G; Y [H/, which
clearly contradicts our assumption that K is a bounded subset of �.G;X [H/. Hence mD 1, in which
case we have already proven the lemma.

We are now ready to prove our main theorem:

Theorem 4.3 Let G be a finitely generated group and let X be a finite generating set of G. Suppose that
G is relatively finitely presented with respect to a collection of peripheral subgroups Hƒ D fH� j � 2ƒg
and that the relative Dehn function ırel

G;Hƒ
is well defined. Then every subgroup K �G satisfies exactly

one of the following conditions:

(i) K is finite.

(ii) K is infinite and conjugated to a subgroup of a peripheral subgroup.

(iii) K is unbounded in �.G;X [H/.

Proof Suppose that K is infinite and bounded as a subset of �.G;X [H/. From Lemma 4.2 we know
that there is an index � 2ƒ and an element g 2G such that the gKg�1\H� is infinite. We can therefore
choose a sequence .hn/n2N of distinct nontrivial elements hn 2 gKg�1\H�. Suppose that gKg�1 is
not a subgroup of H� and let a 2 gKg�1 nH� . Let Qhn 2 zH� be the element representing hn. Then, after
adding fa; a�1g to X if necessary, we can consider the sequence of words . Qhna/n2N over X [H. We
claim that . Qhna/n2N has a subsequence that satisfies the alternating growth condition. The only property
that is not directly evident is that . Qhna/n2N has a subsequence consisting of regular words. Suppose that
this is not the case. Since ƒ is finite by Theorem 2.2, it then follows that there is some � 2ƒ such that
Qhna represents an element in H� for infinitely many n 2N. Then Qhma. Qhna/�1 D Qhm Qh�1n represents an
element in H�\H� whenever Qhma and Qhna both represent elements of H�. Since a was chosen outside
of H� , it moreover follows that Qhna can never represent an element of H� . In particular, �¤ �. But this
is a contradiction to [15, Proposition 2.36], which says that H�\H� is finite for �¤ �. Thus . Qhna/n2N

has a subsequence that satisfies the alternating growth condition. In this case Lemma 4.1 tells us that the
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subgroup hfahn j n 2Ngi of gKg�1 is unbounded in �.G;X [H/, which contradicts our assumption
that K is bounded in �.G;X [H/. Finally, this proves that gKg�1 is a subgroup of H�.

Let us now consider the important special case of Theorem 1.2 where G is relatively hyperbolic with
respect to Hƒ. Recall that an element g 2G is called loxodromic if the map

Z! �.G;X [H/ given by n 7! gn

is a quasiisometric embedding. It is known that a subgroup K �G with infinite diameter in �.G;X [H/
contains a loxodromic element. This follows from a corresponding result for acylindrically hyperbolic
groups [16, Theorem 1.1] and the fact that relatively hyperbolic groups act acylindrically on the (hyperbolic)
graph �.G;X [H/ [16, Proposition 5.2].

Corollary 4.4 Let G be a finitely generated group. Suppose that G is relatively hyperbolic with respect
to a collection Hƒ D fH� j � 2ƒg of its subgroups. Then every subgroup K �G satisfies exactly one of
the following conditions:

(i) K is finite.

(ii) K is infinite and conjugate to a subgroup of some H�.

(iii) K contains a loxodromic element.

4.1 A geometric proof of Corollary 4.4

As pointed out to the author by Jason Manning, there is a short and more geometric proof of Corollary 4.4
that uses the cusped space�D�.G;Hƒ; X/ associated toG,Hƒ and an appropriate finite generating set
X of G (see [11, Definition 3.15], where cusped spaces for relatively hyperbolic groups were introduced).
Indeed, according to [11, Remark 3.14 and Theorem 3.25], the space � is hyperbolic and admits a proper
isometric action of G. Moreover it is evident from the construction of � that for each x 2� and every
infinite subgroup K ��, the orbit K:x has infinite diameter in �. Thus K:x has at least one limit point
� 2 @�. If K:x has another limit point � 2 @�, then we can choose g; h 2 H such that the distances
of d�.g:x; x/ and d�.h:x; x/ are arbitrarily large while the Gromov product .g:x; h:x/x is bounded. In
this case, a standard argument tells us that at least one of the elements g; h; gh 2K is loxodromic; see
[4, Lemme 2.3]. In the remaining case, � is a fixed point of H and it is a consequence of the construction
of � that H is conjugate to a subgroup of some H�.

5 Applications

As an application of the classification of subgroups of relatively hyperbolic groups given in Corollary 4.4,
we prove the existence of the relative exponential growth rate for all subgroups of a large variety of
relatively hyperbolic groups.
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Definition 5.1 Let G be a finitely generated group and let X be a finite generating set of G. Given a
subgroup H �G, we define the relative growth function of H in G with respect to X by

ˇXH WN!N; n 7! jBXH .n/j;

where BXH .n/ denotes the set of elements in H that are represented by words of length at most n
over X [ X�1. The relative exponential growth rate of H in G with respect to X is defined by
lim supn!1

n
p
ˇXH .n/.

It is natural to ask whether lim sup can be replaced by lim, ie whether the limit limn!1
n
p
ˇXH .n/ exists.

Unlike in the important special case H DG, in which it is well known that this limit exists (see eg [13]),
it does not exist in general; see [14, Remark 3.1]. In the case where the limit limn!1

n
p
ˇXH .n/ does

exist, we will say that the relative exponential growth rate of H in G exists with respect to X . The
following result provides us with a large variety of finitely generated relatively hyperbolic groups G for
which the relative exponential growth rate exists for each of its subgroups and generating sets.

Theorem 5.2 Let G be a finitely generated group that is relatively hyperbolic with respect to a collection
Hƒ D fH� j � 2ƒg of its subgroups. Suppose that each of the groups H� has subexponential growth.
Then the relative exponential growth rate of every subgroup K � G exists with respect to every finite
generating set of G.

Proof Let X be a finite generating set of G. We go through the three cases of Corollary 4.4.

Suppose first thatK is finite. Then ˇXK is eventually constant and it trivially follows that limn!1
n
p
ˇXK .n/

exists and is equal to 1.

Let us next consider the case where K contains a loxodromic element k. By [16, Proposition 5.2], G acts
acylindrically on the (hyperbolic) graph �.G;X [H/. In this case, [16, Theorem 1.1] tells us that either
G is virtually cyclic, in which case the claim follows trivially, or G is acylindrically hyperbolic, in which
case the claim is covered by [17, Theorem 5.8].

Consider now the remaining case, where K is infinite and conjugated to a subgroup of some peripheral
subgroup. Thus there is some g 2 G and some � 2 ƒ such that K � gH�g�1. By Theorem 2.2
each H�, and hence gH�g�1, is finitely generated. We can therefore choose a finite generating set Y of
gH�g

�1. Moreover, it follows from [15, Lemma 5.4] that each peripheral subgroup, and hence gH�g�1,
is undistorted in G. We can therefore choose a constant C > 0 such that

(6) ˇX
gH�g�1

.n/� ˇY
gH�g�1

.Cn/

for every n 2N. By assumption, each H�, and therefore gH�g�1, has subexponential growth. Thus we
have limn!1 ˇYgH�g�1.n/=a

n D 0 for every a > 1. In view of (6), this implies that

lim
n!1

ˇX
gH�g�1

.n/=an D 0:

Then limn!1
n
p
ˇXK .n/D 1 since ˇXK .n/� ˇ

X
gH�g�1

.n/ for n 2N, and in particular the limit exists.
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A topological construction of families of Galois covers of the line

ALESSANDRO GHIGI

CAROLINA TAMBORINI

We describe a new construction of families of Galois coverings of the line using basic properties of config-
uration spaces, covering theory, and the Grauert–Remmert extension theorem. Our construction provides
an alternative to a previous construction due to González-Díez and Harvey (which uses Teichmüller theory
and Fuchsian groups) and, in the case the Galois group is nonabelian, corrects an inaccuracy therein. In
the opposite case where the Galois group has trivial center, we recover some results due to Fried and
Völklein.

20F36, 32G15, 32J25, 57K20

1 Introduction

The object of this note are families of Galois coverings of the line.

Let G be a finite group and let C and C 0 be smooth projective curves over the complex numbers endowed
with a G–action. We say that C and C 0 are topologically equivalent or have the same (unmarked)
topological type if there is an � 2AutG and an orientation-preserving homeomorphism f W C ! C 0 such
that f .g �x/D �.g/ �f .x/ for x 2C 0 and g 2G. We say that C and C 0 are (unmarkedly) G–isomorphic
if moreover f is a biholomorphism.

Given a G–covering C ! P1, it has been proved by González-Díez and Harvey [1992] that there exists
an algebraic family of curves with a G–action

� W C! B

such that

(1) every curve C 0 in the family is topologically equivalent to C ;

(2) every curve with an action of the given topological type is G–isomorphic to some fiber of the
family and to at most a finite number of fibers.

This result has been subsequently used in several papers, eg [Conti et al. 2022; Frediani et al. 2015;
Frediani and Neumann 2003; Penegini 2015; Perroni 2022], just to mention a few.

The construction in [González-Díez and Harvey 1992] uses Teichmüller theory. Other approaches to this
construction include [Fried and Völklein 1991; Li 2018; Völklein 1994]. In this paper we describe an
alternative, explicit and mostly topological construction of such families. We expect this to be useful to
make explicit computations on the family. For example, we expect this to allow a better understanding of

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
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the monodromy and the generic Hodge group for the natural variation of Hodge structure associated with
the family, generalizing the results of [Rohde 2009] carried out in the cyclic case. Our motivation comes
from the fact that these families and their variation of the Hodge structure are important in the study of
Shimura subvarieties of the moduli space Ag (of principally polarized abelian varieties of dimension g)
in relation with the Coleman–Oort conjecture; see eg [Moonen 2010; Moonen and Oort 2013; Frediani
et al. 2015; Tamborini 2022]. The results presented here are, nevertheless, of independent interest.

1.1 We give a quick glance at our construction. For n� 3 let M0;n denote the set of n–tuples

X D .x1; : : : ; xn/ 2 .P
1/n

such that xi ¤ xj for i ¤ j , xn�2 D 0, xn�1 D 1 and xn D1. Consider the group

�n D h1; : : : ; n j 1 � � � n D 1i:

Let G be a finite group and let � W �n! G be an epimorphism. Fix X 2M0;n. After choosing a base
point x0 2 P1�X and an isomorphism � W �n Š �1.P1�X; x0/, Riemann’s existence theorem yields a
G–covering CX ! P1 with monodromy � ı��1 and branch locus X . Nevertheless this covering depends
on the choices. Our goal is to make this construction for all X 2M0;n together, in order to get a family of
curves parametrized by M0;n. Consider the map

p WM0;nC1!M0;n; p.x0; x1; : : : ; xn/D .x1; : : : ; xn/:

We have p�1.X/D P1�X . Hence p can be thought as the universal family of genus 0 curves with n
marked points. The basic idea of our construction is that the total space of our family should be a suitable
G–covering of M0;nC1. For the construction of this covering, choose

(i) an element x D .x0; X/ 2M0;nC1;

(ii) an isomorphism � W �n! �1.P1�X; x0/.

The following sequence is exact and splits:

1! �1.P
1
�X; x0/! �1.M0;nC1; x/! �1.M0;n; X/! 1:

Set for simplicity Nx WD �1.P1�X; x0/, HX WD �1.M0;n; X/ and f WD ��1 ı � . Assume that we can
find an extension Qf :

1 �1.P1�X; x0/ �1.M0;nC1; x/ HX 1

G

f Qf

From Qf we get a topological G–covering C�!M0;nC1. By the Grauert–Remmert extension theorem
(see Theorem 7.4 below) this compactifies to a branched covering C! P1 �M0;n of quasiprojective
varieties. Composing with the projection to M0;n we get a holomorphic family � W C!M0;n satisfying
properties (1) and (2).
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1.2 Thus, if one is able to find the extension Qf , one can construct the families using only basic properties of
configuration spaces, covering theory and the Grauert–Remmert extension theorem, avoiding Teichmüller
theory and Fuchsian groups. In fact this strategy is not new, as it has already been used in exactly the
same context in various papers by Michael D Fried and Helmut Völklein; see eg [Fried 1977; Fried and
Völklein 1991; Völklein 1994].

If G is abelian, one is always able to find the extension Qf ; see Section 10. In general however the
extension Qf does not exist, contrary to what is claimed in [González-Díez and Harvey 1992]. One can at
least show that there are always finite-index subgroups Ha �HX such that f extends to a morphism
fa WNx ÌHa!G. Geometrically passing from HX to the subgroup Ha means that one builds a family
satisfying (1) and (2) over a base which is no longer M0;n, but some finite cover Ya of it. The pair
.Ha; fa/ is far from unique, there are many of them and different choices yield families differing by finite
étale pullback (see Section 7 for precise definitions.) So another problem arises: how is one supposed to
choose the pair .Ha; fa/ in order to determine the family in a canonical way?

For a special class of groups, namely for groups G with trivial center, there is a canonical choice of
.Ha; fa/, which allows to construct a canonical family of coverings. This case corresponds to the one
studied in [Fried and Völklein 1991; Völklein 1994; 1996] where the condition that G be centerless plays
a crucial role.

It is odd that for this problem the two special cases occur in opposite directions, namely for abelian and
for centerless groups.

For general G one is not able to pick out a distinguished choice in a canonical way. This problem was
already considered long ago in [Fried 1977, pages 57–58] where a cohomological interpretation of this
difficulty is given.

Our approach instead is the following. Since we are stuck with a whole collection of pairs .Ha; fa/, each
one giving rise to a family of coverings with base the cover Ya of M0;n, we decide to consider the whole
collection instead of the single families. This collection comes naturally with the structure of a directed
set coming from the pullbacks among families. We are able to show that this collection with this structure
is well defined and depends only on the topological data.

Summing up, our construction, which builds heavily on previous approaches, corrects an inaccuracy
in [González-Díez and Harvey 1992], where it is erroneously claimed that one has always Ya DM0;n,
confirms that YaDM0;n if G is abelian (Theorem 10.1), and allows to recover at least part of the results in
the papers of Fried and Völklein quoted above, while generalizing them to arbitrary groups with nontrivial
center.

1.3 The paper is organized as follows. In Section 2 we recall basic facts about the configuration spaces
of P1. Section 3 deals with parallel transport for fiber bundles. This material is for sure known to the
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experts, but rather hard to locate in the literature. Since these arguments are quite useful and we like their
geometric flavor, we prefer to expound them concisely. In Section 4 we recall some classical concepts of
surface topology. After these preliminaries, in Section 5 we study the set Tn.G/ of topological types
of G–actions; the main result is Theorem 5.6, which gives a combinatorial description of the set of
topological types. The proof of this well-known fact presents our ideas in a simple context. Section 6 is
dedicated to the description of some technical tools for the construction of the families. In Section 7 we
construct the collection of families fCa! Yaga as sketched above. In Section 8 we study the dependence
of the collection on the choices (i) and (ii), and on the epimorphism � W �n!G. Also this point becomes
quite neat using our approach. Section 9 is dedicated to the case where G has trivial center and Section 10
to case where G is abelian. Summing up our main theorem is the following:

Theorem 1.4 (1) The topological types of G–curves C with g.C /D g, g.C=G/D 0 and n branch
points are in bijection with the set .Dn.G/=AutG/=Out� �n (see Corollary 5.7, Definitions 4.8
and 5.2, and (4-1) for notation).

(2) For any topological type there is a nonempty ordered set .I;�/ and for any a 2 I there is an
algebraic family �a W Ca! Ya of genus g curves with a G–action. The following properties hold :

(a) Every curve C in the family has the given topological type.

(b) For any a2I and for anyG–curve C withC=GŠP1, there is at least one fiber of �a WCa!Ya

which is G–isomorphic to C , and there are only finitely many such fibers.

(c) Each Ya is a finite étale cover of M0;n;

(d) .I;�/ is a directed set : for any a; b 2 I there is a c with c � a and c � b.

(e) If a � b, there is an algebraic étale covering v W Ya! Yb such that Ca Š v
�Cb .

(f) All the families have the same moduli image.

(g) If Z.G/ D f1g, then .I;�/ has a minimum; hence in this case we can associate to any
topological type a single family instead of the whole collection.

(h) If G is abelian , then there exists a 2 I such that Ya DM0;n.

The precise statement can be found in Theorems 7.8 and 8.2. Roughly speaking one can say that for any
topological type there is a “universal” family of G–curves with that topological type. Such a family is
not unique, but only unique up to the equivalence relation generated by finite étale pullbacks.

1.5 The existence problem that we address in this paper can of course be generalized: instead of
considering just Galois covers, one can ask for the construction of families satisfying (1) and (2) for all
the coverings with a fixed Galois closure (equivalently with fixed monodromy). These kinds of problems
have been studied a lot and they are extremely important also because of their relevance for the inverse
Galois problem; see [Fried 1977; 2010; Fried and Jarden 1986; Fried and Völklein 1991; 1992; Völklein
1996]. In these cases it often happens that the “universal” family has more than one component. We
stress that in this paper we restrict only to the Galois case and that in this case all families are connected.
In fact, the base of each family is a (connected) cover of M0;n.

Algebraic & Geometric Topology, Volume 24 (2024)



A topological construction of families of Galois covers of the line 1573

Another variant of the problem studied in this paper is obtained by letting G� be a group such that
InnG � G� � AutG and considering two data equivalent if and only if they belong to the same
G� �Out� �n–orbit. This also has attracted a lot of attention in the literature. Our case corresponds to the
choice G� D AutG. In this paper we restrict to this case since we are interested in the topological types.

Acknowledgements The authors would like to thank Michael D Fried, Gabino González-Díez and Fabio
Perroni for useful discussions/emails related to the subject of this paper. We are very grateful to the referee
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Section 9. We also thank Federico Fallucca for pointing out an inaccuracy in an earlier draft. The authors
were partially supported by MIUR PRIN 2017 Moduli spaces and Lie theory by MIUR, Programma
Dipartimenti di Eccellenza (2018–2022) — Dipartimento di Matematica “F Casorati”, Università degli
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2 Configuration spaces

2.1 If M is a manifold, its configuration space is

F0;nM WD f.x1; : : : ; xn/ 2M
n
j xi ¤ xj for i ¤ j g:

We use the following notation: X D .x1; : : : ; xn/ is a point of F0;nM and xD .x0; X/D .x0; x1; : : : ; xn/
is a point of F0;nC1M . We set M �X WDM �fx1; : : : ; xng. The group �1.F0;nM/ is called the pure
braid group with n strings of the manifold M .

2.2 If n � 3, then the group PGL.2;C/ acts freely and holomorphically on F0;n P1. The quotient
F0;nP1=PGL.2;C/ is the moduli space of smooth curves of genus 0 with n marked points. Setting
C�� WDC�f0; 1g, the map

F0;n�3C��! F0;nP1; .z1; : : : ; zn�3/ 7! .z1; : : : ; zn�3; 0; 1;1/;

is a section for the action of PGL.2;C/, ie its image intersects each orbit in exactly one point and it
induces a biholomorphism of F0;n�3C�� onto the moduli space F0;nP1=PGL.2;C/. We define M0;n as
the image of the section, ie we set

M0;n WD F0;n�3C�� � f.0; 1;1/g D fX D .x1; : : : ; xn/ 2 F0;nP1 j xn�2 D 0; xn�1 D 1; xn D1g:

Points of M0;n will be denoted by X D .x1; : : : ; xn/ with the understanding that xn�2 D 0, xn�1 D 1
and xn D1. Similarly we set

M0;nC1 WD fx D .x0; : : : ; xnC1/ 2 F0;nC1 P1 j xn�2 D 0; xn�1 D 1; xn D1g:

It is often useful to compare the configuration space of P1 with that of the plane. Denote by T.2;C/ the
subset of elements of PGL.2;C/ fixing1. The group T.2;C/ acts on F0;n�1C and the map

(2-1) M0;n! F0;n�1C; X 7! .x1; : : : ; xn�3; 0; 1/;
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is a section for this action; hence M0;n �T.2;C/Š F0;n�1C. In particular, �1.M0;n/� �1.F0;n�1C/.
Thus, when dealing with �1.M0;n/, we can work with the more classical braid group of the plane. The
map

(2-2) p WM0;nC1!M0;n; p.x0; X/ WDX

is a fiber bundle. In fact it is the restriction of the bundle F0;nC! F0;n�1C; see [Birman 1974]. The
fiber over X is P1�X DC���fx1; : : : ; xn�3g. Hence (2-2) is the universal family of genus 0 curves
with n ordered marked points.

2.3 Fix x D .x0; X/ 2M0;nC1 and let Qx D .x0; zX/ 2 F0;nC be the corresponding point via (2-1). We
have a commutative diagram

(2-3)

1 �1.P1�X; x0/ �1.M0;nC1; x/ �1.M0;n; X/ 1

1 �1.C� zX; x0/ �1.F0;nC; Qx/ �1.Fn�1C; zX/ 1

The rows are the split exact sequence of the fibrations p and F0;nC! F0;n�1C; see eg [Birman 1974,
Corollary 1.8.1; Fadell 1962, Theorem 3.1]. A geometric way to exhibit the splitting is to produce a cross
section as follows: given x D .x1; : : : ; xn/ 2M0;n we set

f .x/ WD 1
2

minf1; jx1j; : : : ; jxn�3jg:

Then s.x/ WD .f .x/; x1; : : : ; xn/ is a section of p WM0;nC1!M0;n. (A similar idea is used in [Fadell
1962, Theorem 3.1].) The morphism s� W �1.M0;n; X/! �1.M0;nC1; x/ is a splitting. Setting

(2-4)
" W �1.M0;n; X/! Aut.�1.P1�X; x0//;

".Œ˛�/.Œ�/ WD s�Œ˛� � Œ� � s�Œ˛�
�1
D Œs ı˛ �  � s ı i.˛/�;

we get
�1.M0;nC1; x/D �1.P

1
�X; x0//Ì" �1.M0;n; X/:

3 Parallel transport

In this section we recall a notion of parallel transport up to homotopy on any fiber bundle. In the sequel,
we will use it for the bundle p WM0;nC1!M0;n to study the dependence of the construction of Section 7
from the choices made.

3.1 Given b0; b1 2 B let �.B; b0; b1/ denote the set of all paths ˛ in B with ˛.0/D b0 and ˛.1/D b1.
We write ˛ � ˇ if ˛ ' ˇ rel f0; 1g. Let …1.B/ denote the fundamental groupoid of B; this is the small
category whose objects are the points of B and with morphisms from b0 to b1 equal to �.B; b0; b1/=�,
composition being given by Œ˛� � Œˇ�D Œ˛ �ˇ�.
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3.2 Let p WE! B be a fiber bundle (in the sense of [Spanier 1966, page 90], ie a locally trivial bundle).
Assume that the base B is Hausdorff and paracompact. Then p is a fibration [Spanier 1966, Corollary 14,
page 96], ie it has the homotopy lifting property for every topological space Z: if H WZ � Œ0; 1�! B is
any map and f W Z! E lifts H. � ; 0/, then there is a lift zH of H with zH. � ; 0/D f ; see eg [Spanier
1966, page 66]. For any fiber bundle p WE!B one can define a sort of parallel transport up to homotopy,
which is a contravariant functor T from …1.B/ to the homotopy category of topological spaces, denoted
by h�TOP. For b 2 B set T .b/ WD Eb D p�1.b/. Given Œ˛� 2 …1.B/.b0; b1/ consider the map
H W Eb0 � Œ0; 1�! B defined by H.e; t/ WD ˛.t/. The inclusion i W Eb0 ,! E is a lift of H. � ; 0/. By
the homotopy lifting property there is zH WEb0 � Œ0; 1�!E with p zH DH and zH. � ; 0/D i . Moreover
the homotopy class of zH. � ; 1/ is well defined. We call T .Œ˛�/D Œ zH. � ; 1/� 2 ŒEb0 ; Eb1 � the homotopy
parallel transport along ˛; see eg [Spanier 1966, page 100f; May 1999, page 54].

3.3 If p W E ! B is a differentiable fiber bundle one can say more. Recall the following basic fact
from differential topology. Let M and N be smooth manifolds. An isotopy of M in N is a smooth map
f WM � Œ0; 1�!N such that f . � ; t / is an embedding for any t . If M DN , f . � ; t / is a diffeomorphism
of M for any t and f . � ; 0/D idM ; we say that f is an ambient isotopy.

Theorem 3.4 If M is a compact submanifold of N , any isotopy f WM � Œ0; 1�!N such that f . � ; 0/ is
the inclusion M ,!N extends to an ambient isotopy.

For a proof, see eg [Hirsch 1976, Theorem 1.3, page 180].

Lemma 3.5 Assume that p WE! B is a differentiable bundle. Let ˛ be a path in B from b0 to b1. Let
� be a path in E with p� D ˛ and set x0 D �.0/ 2 Eb0 and x00 D �.1/ 2 Eb1 . Then there is a map
zH WEb0 � Œ0; 1�!E such that

(1) zH. � ; 0/ is the inclusion Eb0 ,!E;

(2) zH. � ; t / is a diffeomorphism of Eb0 onto E˛.t/;

(3) zH.x0; t /D �.t/.

In particular , the map f ˛ WD zH. � ; 1/ is a diffeomorphism of Eb0 onto Eb1 such that f ˛.x0/D x00 and
T .Œ˛�/D Œf ˛�. Moreover if G is a finite group acting fiberwise on E and the fiber is compact , then f ˛

can be chosen to be G–equivariant.

Proof If the fiber of E is compact, the argument is the usual proof of the Ehresmann theorem: pullback
E to Œ0; 1�, choose a lift to E of the vector field d=dt and integrate it; see eg [Voisin 2002]. A G–invariant
lift gives the last statement. But we also need the case of noncompact fibers. This can be treated as
follows. Denote by Q̨ W ˛�E ! E the bundle map covering ˛. Since Œ0; 1� is contractible, there is a
(smooth) trivialization  WEb0 � Œ0; 1�! ˛�E such that  .x; 0/D x; see [Steenrod 1951, Corollary 11.6,
page 53]. Given any such  the composition Q̨ ı WEb0 � Œ0; 1�!E is a possible choice for the map zH
in 3.2. We now modify  so that it matches conditions (1)–(3). First notice that if fhtgt2Œ0;1� is any path
in Diff.Eb0/ starting at the identity, then  0t WD  tht is a new trivialization of ˛�E. Next observe that
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t 7! �1t .�.t// is a path in Eb0 from x0 to  �11 .x00/, ie an isotopy of fx0g in Eb0 . By Theorem 3.4 there
is fhtg that extends this isotopy. Then  0t WD  tht is a trivialization and zH WD Q̨ ı 0 satisfies (1)–(3).

We now use this construction for the fiber bundle M0;nC1!M0;n and give a geometric interpretation of
the morphism (2-4) in terms of parallel transport.

Proposition 3.6 Let x; x0 2M0;nC1. Let ˇ W Œ0; 1�!M0;n be a path such that ˇ.0/DX and ˇ.1/DX 0.
Let zH , f ˇ and T .Œˇ�/ be as in Lemma 3.5. Assume that f ˇ .x0/D x00. Set Q̌.t/ WD zH.t; x0/. Then for
Œ� 2 �1.P1�X; x0/ we have f ˇ� .Œ�/D Q̌#.Œ�/.

Proof Take Œ� 2 �1.P1�X; x0/. Consider the map

F W Œ0; 1�� Œ0; 1�!M0;nC1; F .t; s/D zH..s/; t/:

Then F.0; s/D zH..s/; 0/D .s/, F.0; 1/D zH..s/; 1/D f ˇ ı .s/ and

F.t; 0/D F.t; 1/D zH.x0; t /D Q̌.t/:

It follows that i. Q̌/� � Q̌ ' f ˇ ı rel f0; 1g. Hence f ˇ� .Œ�/D Q̌#.Œ�/ for any Œ�2�1.P1�X; x0/.

Proposition 3.7 Let Œ˛� 2 �1.M0;n; X/ and let zH , f ˛ and T .Œ˛�/ be as in Lemma 3.5. Assume that
�.t/ WD zH.t; x0/D s ı˛. Then ".Œ˛�/D f ˛� .

Proof By Proposition 3.6, we get f ˛� Œ�D �#.Œ�/D Œ� � � i.�/� for any Œ� 2 �1.P1�X; x0/. Hence
f ˛ satisfies f ˛� Œ�D Œs ı˛ �  � s ı i.˛/�D ".Œ˛�/.Œ�/ for every Œ� 2 �1.P1�X; x0/.

4 Dehn–Nielsen theorems and consequences

We dedicate this section to fixing some notation and recalling some classical concepts of surface topology.

4.1 Let† be an oriented surface and set†� WD†�fyg for some y 2†. Given b0; b12† let�.†; b0; b1/
denote the set of all paths ˛ in † with ˛.0/D b0 and ˛.1/D b1. Fix x0 2†�. Let Q̨ 2�.†; x0; y/ be
such that Q̨ .t/D y only for t D 1 and let D be a small disk around y. Let ˛ be the loop that starts at x0,
travels along Q̨ till it reaches @D, then makes a complete tour of @D counterclockwise and finally goes
back to x0 again along Q̨ . An important observation is that the conjugacy class of Œ˛� in �1.†�; x0/ is
well defined. Indeed the choice of the disk does not change Œ˛�, while if a different path Q̌ 2�.†; x0; y/
is chosen, then Œˇ� and Œ˛� are conjugate by the class of a loop in †� that starts at x0 travels along Q̨ up
to @D, then along a piece of @D and finally goes back along Q̌.

4.2 Fix a point .x0; X/ 2 F0;n S
2. Consider a smooth regular arc Q̨ i joining x0 to x�i (for some

permutation �). Assume that the paths Q̨ i intersect only at x0 and that the tangent vectors at x0 are
all distinct and follow each other in counterclockwise order (we orient S2 by the outer normal). Now
consider the loops ˛i constructed as in 4.1 and assume that the circles are pairwise disjoint and that the
intersection of the interior of the i th circle with X reduces to x�i .
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Definition 4.3 Let x D .x0; X/ 2 F0;nC1 S
2. We call a set of generators BD fŒ˛1�; : : : ; Œ˛n�g obtained

as above a geometric basis of �1.S2�X; x0/. We say that a geometric basis BD fŒ˛i �g
n
iD1 is adapted

to x if it respects the order of the points in X , that is ˛i turns around xi , ie the permutation � D id.

Notice that, thanks to the permutation, the definition of geometric basis depends only on the set
fx1; : : : ; xng, not on the ordering of the points. On the other hand the classes fŒ˛i �g have a fixed
order.

4.4 For n� 3, set �n WD
˝
1; : : : ; n j

Qn
iD1 i D 1

˛
. From a geometric basis BD fŒ˛i �g

n
iD1 we get an

isomorphism
� W �n! �1.S

2
�X; x0/

such that �.i / D Œ˛i �. Assume that B D fŒ˛i �g
n
iD1 and B D fŒ N̨ i �g

n
iD1 are two geometric bases for

�1.S
2�X; x0/. It follows from 4.1 that every Œ˛i � is conjugate to some Œ N̨j �. If we denote by

�; N� W �n! �1.S
2
�X; x0/

the isomorphisms corresponding to the two bases, then � WD N� ı ��1 2 Aut�1.S2 �X; x0/ has the
following properties:

(1) for every i D 1; : : : ; n, �.Œ˛i �/ is conjugate to Œ j̨ � for some j ;

(2) the induced homomorphism on H 2.�1.S
2�X; x0/;Z/ is the identity.

Definition 4.5 We denote by Aut� �1.S2 �X; x0/ the subgroup of elements of Aut�1.S2 �X; x0/
satisfying properties (1) and (2) above. By 4.4 this definition does not depend on the choice of the
geometric basis B.

4.6 Now assume that B and B are adapted to X . In this case, for every i D 1; : : : ; n, Œ˛i � is conjugate
to Œ N̨ i �. As a consequence, the automorphism � WD N� ı��1 of �1.S2�X; x0/ belongs to the subgroup
Aut�� �1.S2�X; x0/ defined as follows.

Definition 4.7 We denote by Aut�� �1.S2�X; x0/ the subgroup of Aut� �1.S2�X; x0/ of elements
that map Œ˛i � to a conjugate of Œ˛i � for every i D 1; : : : ; n. This definition does not depend on the choice
of the geometric basis B adapted to x.

Definition 4.8 Similarly, we denote by Aut� �n � Aut�n the subgroup of automorphisms � satisfying:

(1) For i D 1; : : : ; n the element �.i / is conjugate to j for some j .

(2) The automorphism of H 2.�n;Z/ induced by � is the identity.

We denote by Aut�� �n � Aut� �n the subgroup of automorphisms � such that:

(10) For i D 1; : : : ; n the element �.i / is conjugate to i .

If � W �n ! �1.S
2 � X; x0/ is induced from a geometric basis (not necessarily adapted to x), then

� 2Aut� �n (resp. Aut�� �n) if and only if ����1 2Aut� �1.S2�X; x0/ (resp. Aut�� �1.S2�X; x0/).
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4.9 If G is a group and a 2G, then inna WG!G denotes conjugation by a, ie inna.x/D axa�1. Notice
that if f WG!H is a morphism, then f ı inna D innf .a/ ıf . The group of inner automorphisms of G is
denoted InnG. It is a normal subgroup of AutG. We set OutG WDAutG= InnG. For .x0; X/2F0;nC1 S

2,
we observe that Inn.�1.S2�X; x0//� Out��.�1.S2�X; x0// and Inn�n � Aut�� �n, and we define

(4-1)

Out� �1.S2�X; x0/ WD
Aut� �1.S2�X; x0/
Inn �1.S2�X; x0/

;

Out�� �1.S2�X; x0/ WD
Aut�� �1.S2�X; x0/
Inn �1.S2�X; x0/

;

Out� �n WD
Aut� �n
Inn�r

:

Using a geometric basis we immediately get Out� �n Š Out� �1.S2�X; x0/.

4.10 If Sg;n is a topological surface of genus g with n punctures, the mapping class group of Sg;n
is denoted by Mod.Sg;n/, while PMod.Sg;n/ denotes the pure mapping class group of Sg;n, which is
defined to be the subgroup of Mod.Sg;n/ of elements that fix each puncture individually.

4.11 In the sequel we will need the following variants of the Dehn–Nielsen–Baer theorem, for which
see [Farb and Margalit 2012, Theorem 8.8, page 234; Ivanov 2002, Section 2.9; Zieschang et al. 1980,
Theorem 5.7.1, page 197, and Theorem 5.13.1, page 214].

Theorem 4.12 (Dehn–Nielsen–Baer) Let x D .x0; X/ 2 F0;nC1 S
2. Then ' 2 Aut� �1.S2�X; x0/ if

and only if there exists � 2 Inn�1.S2�X; x0/ and an orientation-preserving homeomorphism

h W S2�X ! S2�X

such that h.x0/D x0 and ' D � ı h�. In other words , Mod.S2�X/Š Out�.�1.S2�X; x0//.

Corollary 4.13 Let x; y 2 F0;nC1 S
2 and ' W �1.S2 �X; x0/! �1.S

2 � Y; y0/ be a homomorphism
that sends geometric bases to geometric bases. Then there exists � 2 Inn.�1.S2 � Y; y0// and an
orientation-preserving homeomorphism h W S2�X ! S2�Y such that h.x0/D y0 and ' D � ı h�.

Proof Fix an orientation-preserving homeomorphism f W S2�Y ! S2�X such that f .y0/D x0 and
apply the Dehn–Nielsen–Baer theorem to f� ı'.

Corollary 4.14 Let x D .x0; X/ 2 F0;nC1 S
2. Then ' 2 Aut�� �1.S2 �X; x0/ if and only if there

exists � 2 Inn.�1.S2 �X; x0// and an orientation-preserving self-homeomorphism h of S2 such that
h.xi /D xi for 0� i � n and ' D � ı h�. In other words , PMod.S2�X/Š Out�� �1.S2�X; x0/.

Proof Applying the Dehn–Nielsen–Baer theorem we get the homeomorphism h of S2�X and � . It is
elementary that h extends to a homeomorphism of S2. Next assume h.x1/D xj and fix a geometric basis
BD fŒ˛i �g adapted to x. Here ˛i is a loop at x0 that makes a counterclockwise turn around xi as in 4.1.
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Hence Œh˛1� is a loop making a turn around h.x1/D xj . But Œh˛1� is conjugate to �h�.Œ˛1�/D '.Œ˛1�/
which is conjugate to Œ˛1� since ' 2 Aut�� �1.S2�X; x0/. Since ˛1 makes a turn around x1 it follows
that h.x1/D xj D x1. Similarly h.xi /D xi for any i .

4.15 We conclude this section by interpreting some classical constructions in the theory of braid groups
using parallel transport. We consider the (pure version of the) generalized Birman exact sequence
associated with C�� D P1�f0; 1;1g (see [Farb and Margalit 2012, Theorem 9.1, page 245])

(4-2) 1! �1.M0;n; X/
Push
��! PMod.P1�X/ Forget

���! PMod.C��/! 1:

The map Forget is the natural homeomorphism obtained by filling in the punctures, ie it is the map
induced by the inclusion P1�X ,!C��. The map Push is defined as follows; see [Farb and Margalit
2012, Section 4.2.1]. Let ˛ D .˛1; : : : ; ˛n/ W Œ0; 1�!M0;n be a pure braid in P1, with ˛.0/D ˛.1/DX .
Thinking of ˛ as an isotopy from X to X (sending each xi to xi ) we get by Theorem 3.4 that it can be
extended to an isotopy of the whole P1. Denoting by ˆ˛ the homeomorphism of P1 obtained at the end
of the isotopy, we have that ˆ˛.xi /D ˛i .1/D xi , and thus ˆ˛ can be regarded as an homeomorphism of
P1�X . Taking its isotopy class we get Push.˛/D Œˆ˛�2 PMod.P1�X/. This map is well defined, ie it
does not depend on the choice of ˛ within its homotopy class nor on the choice of the isotopy extension.

4.16 It is useful to reinterpret the morphism " defined in (2-4) in this setting. In particular we note that
Im "� Aut��.�1.P1�X; x0//. Fix Œ˛� 2 �1.M0;n; X/.

Arguing as in Proposition 3.7 note that f ˛ extends to a homeomorphism f ˛ W P1! P1 that fixes every
xi individually. Hence Œf ˛�2 PMod.P1�X/. Since ".Œ˛�/D f ˛� , we have ".Œ˛�/2Aut��.�1.P1�X//.

Let Q" W �1.M0;n; X/! Out��.�1.C���X; x0// denote the composition of " with the natural projection
Aut�� ! Out��. Also, denote by F W PMod.C�� �X/! Out��.�1.C�� �X; x0// the isomorphism
F W Œh� 7! Œh�� coming from Corollary 4.14 of the Dehn–Nielsen–Baer theorem. The following proposition
is the analogue of [Birman 1974, Theorem 1.10] for configurations of points in C�� (instead of C).

Proposition 4.17 For Œ˛� 2 �1.M0;n; X/, let f ˛ be the parallel transport as in Lemma 3.5. Then
Push.Œ˛�/D Œf ˛�. Moreover , the following diagram commutes:

PMod.P1�X/

�1.M0;n; X/

Out��.�1.P1�X; x0//

F

Push

Q"

Proof Let ˛ W Œ0; 1�!M0;n be a pure braid in P1, with ˛.0/D ˛.1/DX , that we think as an isotopy
from X to X . Let zH W .P1 � X/ � Œ0; 1� ! M0;nC1 and f ˛ be as in Lemma 3.5. Define a map
 W P1 � Œ0; 1� ! P1 by  .u; t/ WD zH.u; t/ for u … X and  .xi ; t / WD ˛i .t/. So  is an ambient
isotopy of P1 extending the isotopy ˛. This proves the result, since by Proposition 3.7 ".Œ˛�/D f ˛� , so
Q".Œ˛�/D f ˛� mod Inn�1.P1�X; x0/, while Push.Œ˛�/D Œf ˛�.

Algebraic & Geometric Topology, Volume 24 (2024)



1580 Alessandro Ghigi and Carolina Tamborini

Remark 4.18 Considering configurations of points in C instead of C��, Proposition 4.17 corresponds
to [Birman 1974, Theorem 1.10].

Proposition 4.19 Let x D .x0; X/ 2 M0;nC1 and let � 2 Aut�� �1.P1 � X; x0/. Then there is an
Œ˛� 2 �1.M0;n; X/, a lift Q̨ of ˛ with Q̨ .0/D Q̨ .1/D x0, a parallel transport f ˛t such that f ˛t .x0/D Q̨ .t/
and z 2 �1.P1�X; x0/ such that � D innz ıf ˛� .

Proof Since PMod.C��/ is trivial — see [Farb and Margalit 2012, Proposition 2.3] — it follows from
(4-2) that Push (and thus Q") is an isomorphism. In particular, for every � 2Aut��.�1.P1�X; x0//, there
exists Œ˛�2�1.M0;n; X/ and � 2 Inn.�1.P1�X; x0// such that f ˛� D ".Œ˛�/D �ı� . Thus �D innz ıf ˛�
for some z 2 �1.P1�X; x0/.

5 Topological types of actions

Definition 5.1 Let G be a finite group and let †1 and †2 be oriented topological surfaces both endowed
with an action of G. We say that the two actions are topologically equivalent if there is an � 2 AutG and
an orientation-preserving homeomorphism f W†1 Š†2 such that f .g � x/D �.g/ �f .x/ for any x 2†1
and any g 2G; see [González-Díez and Harvey 1992]. An equivalence class is called a topological type
of G–action (sometimes this is called unmarked topological type).

Definition 5.2 Fix on S2 the orientation by the outer normal. We let Tn.G/ denote the set of topological
types of G–actions on a topological surface † such that †=G Š S2 (as oriented surfaces) and the
projection � W†!†=G has n branch points.

Definition 5.3 If G is a finite group an n–datum is an epimorphism � W �n!G is such that �.i /¤ 1
for i D 1; : : : ; n. We let Dn.G/ denote the set of all n–data associated with the group G.

5.4 Fix a point x D .x0; X/ 2 F0;nC1 S
2 and a geometric basis B D fŒ˛i �g

n
iD1 of �1.S2 � X; x0/.

Denote by � W �n Š �1.S2 �X; x0/ the corresponding isomorphism. If � W �n! G is a n–datum, the
epimorphism � ı��1 gives rise to a topological G–covering p W†�0! S2�X . By the topological part
of the Riemann existence theorem, this can be completed to a branched G–cover p W†� ! S2. By taking
the equivalence class of †� we get a topological type of G–action. We get a map

Fx;B W D
n.G/! Tn.G/; .� W �n!G/ 7! Œ†� �:

5.5 We now introduce an action on the set of data that will be very important for the rest of the paper. By
the Dehn–Nielsen–Baer theorem, Out� �n Š Out�.�1.S2�X; x0//ŠMod.S2�X/. The latter group
has a presentation with generators �1; : : : ; �n�1 and relations

(5-1)
�i�j D �j�i for ji � j j � 2; .�1 � � � �n�1/

n
D 1;

�iC1�i�iC1 D �i�iC1�i ; �1 � � � �n�2�
2
n�1�n�2 � � � �1 D 1:
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See [Birman 1974, Theorem 4.5, page 164]. Consider the short exact sequence

1! Inn�n ,! Aut� �n
�
�! Out� �n! 1:

Let Q�i W �r ! �r be the automorphism defined by the rule

Q�i .i /D iC1; Q�i .iC1/D 
�1
iC1iiC1; Q�i .j /D j for j ¤ i; i C 1:

These automorphisms belong to Aut� �n and satisfy the relations (5-1) up to inner automorphisms.
Moreover, �. Q�i /D �i . The group AutG �Aut� �n acts on the set Dn.G/ by the rule

.�; �/ � � WD � ı � ı ��1;

where .�; �/ 2AutG �Aut� �n and � 2Dn.G/ is a datum. We can view this action as an iterated action:
first AutG acts on Dn.G/, then Aut� �n acts on the quotient Dn.G/=AutG. Observe also that for any
a 2 �n,

� ı .inna/�1 D inn�.a/�1 ı �:

So inner automorphisms of �n can be absorbed in the action of AutG. Since the automorphisms Q�i above
satisfy the relations (5-1) up to inner automorphisms, it follows that they do satisfy them exactly when
acting on Dn.G/=AutG. In this way one gets an action of Out� �n on Dn.G/=AutG. Finally we claim
that the actions of Aut� �n and Out� �n on Dn.G/=AutG have the same orbits; hence

Dn=.AutG �Aut� �n/D .Dn=AutG/=Aut� �n D .Dn=AutG/=Out� �n:

The reason is the same as before: inner automorphisms of �n can be absorbed in the action of AutG.

Theorem 5.6 Let G be a finite group. Choose

(1) an element x D .x0; X/ 2 F0;nC1 S
2;

(2) a geometric basis BD fŒ˛i �g
n
iD1 of �1.S2�X; x0/.

Then the map Fx;B induces a bijection between Dn.G/=.AutG �Aut� �n/ and the set Tn.G/ of topo-
logical types of G–actions. The bijection does not depend on the choices of the point x 2 F0;nC1 S

2 and
of the geometric basis B.

From the discussion in 5.5 we immediately get the following.

Corollary 5.7 The topological types of G–actions on curves of genus g are in bijection with

.Dn=AutG/=Out� �n:

The proof of Theorem 5.6 is based on the following two propositions.

Proposition 5.8 The map Fx;B is constant on the orbits of the action of AutG �Aut� �n.

Proof Let � W �n ! G be a datum and .�; �/ 2 AutG �Aut� �n. Let � 0 D � ı � ı ��1. We want to
show that †� and †�

0

have the same topological type of G–action. Set N� D � ı � ı ��1. Observe
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that N� 2 Aut�.�1.S2 �X; x0// since � 2 Aut� �n. By the Dehn–Nielsen–Baer Theorem 4.12, there is
� 2 Inn.�1.S2�X; x0// and an orientation-preserving diffeomorphism h W .S2�X; x0/! .S2�X; x0/

such that h.x0/D x0 and � ı h� D N�. Let p and p0 denote the projections

†�0 †�
0

0

.S2�X; x0/ .S2�X; x0/

p p0

h

Choose Qx0 2†�0 and Qx00 2†
� 0

0 both over x0. We have that

h�.p�.�1.†
�
0; Qx0///D .�

�1
ı N�/.ker.� ı��1//D ��1.ker.� ı��1 ı N��1//D ker.� ı��1 ı N��1/;

where the last equality holds because � is an inner automorphism. Moreover, since � 2 AutG,

ker.� ı��1 ı N��1/D ker.� ı � ı��1 ı N��1/:

Thus h�.p�.�1.†�0; Qx0/// D ker.� ı � ı ��1 ı N��1/ D .p0/�.�1.†�
0

0 //. By the lifting theorem we get
an oriented homeomorphism Qh W†�0!†�

0

0 such that the diagram commutes and which extends to the
compactifications. Hence the G–actions on †� and †�

0

have the same topological type.

Proposition 5.9 If � 2Dn.G/, then Fx;B.�/ does not depend on the choices of the point x 2F0;nC1 S
2

and of the geometric basis B.

Proof First fix x and consider two geometric bases B and B. Let �; N� W �n! �1.S
2�X; x0/ denote the

corresponding isomorphisms. Then � WD��1ı N�2Aut� �n. For a datum � , we have �ı N��1D�ı��1ı��1.
So Fx;B.�/DFx;B.� ı�

�1/. By Proposition 5.8, Fx;B.� ı�
�1/DFx;B.�/. Hence Fx;B.�/DFx;B.�/,

as desired. Now suppose that x; y 2F0;nC1 S
2. Let � W�n!�1.S

2�X; x0/ and N� W�n!�1.S
2�Y; y0/

be the isomorphisms associated with two geometric bases B and B. Then

� WD N� ı��1 W �1.S
2
�X; x0/! �1.S

2
�Y; y0/

sends a geometric basis to a geometric basis. Hence, by Corollary 4.13, there is � 2 Inn.�1.S2�Y; y0//
and an orientation-preserving homeomorphism h W .S2 �X; x0/! .S2 � Y; y0/ such that h.x0/ D y0
and � ı h� D �. Given a datum � , h� maps the kernel of � ı��1 to the kernel of � ı N��1. By the lifting
theorem there is an oriented diffeomorphism Qh that extends to the compactifications. Hence the G–actions
on †�x and †�y have the same topological type.

We recall two basic facts about monodromy maps. Let p WE!B be a topological G–covering. For b 2B
and e 2 p�1.b/, we denote by �p;e the monodromy map �p;e W �1.B; b/! G such that g D �p;eŒ˛�
maps e to ˛e.1/, where ˛e is the lift of ˛ with initial point e.

Lemma 5.10 Let p WE! B be a topological G–covering. Fix b0; b1 2 B and ei 2 p�1.bi /. Let ı be a
path from e0 to e1 and  D p ı ı. Then �p;e0 D �p;e1 ı#. In particular , if b0 D b1 then �p;e0 and �p;e1
differ by an inner automorphism of �1.B; b0/ or — equivalently — of G.
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Lemma 5.11 Let p WE!B and p0 WE 0!B 0 beG–coverings. Let Qh WE!E 0 be aG–equivariant homeo-
morphism and denote by h WB!B 0 the induced homeomorphism. Fix e0 2E. Then �p;e0D�p0; Qh.e0/ıh�.

Proof of Theorem 5.6 By Proposition 5.8, Fx;B induces a map between Dn.G/= .AutG �Aut� �n/
and Tn.G/. To prove the statement we have to check that

(1) if two epimorphisms �; � 0 W �r !G give rise to the same topological type of G–action, then � and
� 0 are in the same orbit for the action of AutG �Aut� �n;

(2) every topological type of G–action with n branch points can be constructed from a datum in Dn.G/.

To prove (1), consider the branched covers p W † ! S2 and p0 W †0 ! S2 associated with � ı ��1

and � 0 ı ��1 and suppose that there exists � 2 AutG and an orientation-preserving homeomorphism
Qh W†!†0 such that Qh.g � e/D �.g/ Qh.e/. We get an induced homeomorphism h W†=G!†0=G and an
isomorphism h� W �1.S

2�X; x0/! �1.S
2�X; h.x0//. Fix e0 2 p�1.x0/. From Lemma 5.11 it follows

that �p;e0 D � ı�p0; Qh.e0/ ı h�. Now fix e00 2 .p
0/�1.x0/ and a path in †0 from Qh.e0/ to e00. Finally let

 D p0 ı ı. By Lemma 5.10 we get that �
p0; Qh.e0/

D �p0;e00
ı #. Thus

(5-2) �p;e0 D � ı�p0;e00
ı # ı h�:

Observe that, since Qh preserves the orientation, so does h; hence #ıh� W�1.S
2�X; x0/!�1.S

2�X; x0/

lies in Aut�.�1.S2�X; x0//. Let � WD ��1 ı .# ıh�/ı� 2Aut� �n be the corresponding automorphism
in Aut� �n. (Again we are using that � comes from a geometric basis.) Also, observe that � ı ��1

coincides with �p;e0 up to an inner automorphism of G, and the same holds for � 0 ı��1 and for �p0;e00 .
We get that there exists � 2 AutG such that (5-2) becomes

� ı��1 D � ı � 0 ı��1 ı .# ı h�/D � ı �
0
ı ��1 ı��1:

Thus .�; �/:� 0 D � ; that is, they are in the same orbit for the action of AutG �Aut� �n. To prove (2)
assume that G acts effectively on a surface † in such a way that †=G Š S2. Up to diffeomorphism we
can assume that the set of critical values of p W †! S2 coincides with X . Fix a point Qx0 2 p�1.x0/.
Let � WD �p; Qx0 ı � W �n! G be the monodromy of the unramified cover. Since †�0 is connected � is
surjective, and �.i /¤ 1 since all the points of X are branch points. So it is an n–datum. By construction
the associated cover coincides with †. Finally, it follows from Proposition 5.9 that the bijection induced
by Fx;B does not depend on x and B.

6 Tools for the construction

This section is dedicated to some tools that we will need in the following section for the construction
of the families. We start with some considerations from group theory, that will be at the basis of the
construction of the ordered set .I;�/ of Theorem 1.4.
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Consider an exact sequence of groups

(�) 1!N i
�!K

p
�!H ! 1

and an epimorphism
f WN�G

onto a finite group G.

Definition 6.1 An extension a of .�; f / is a pair aD .Ha; fa/, whose first element is a subgroup Ha of
H of finite index, and whose second element is a morphism fa W p

�1.Ha/!G such that fai D f . We
denote by I.�; f / the set of all extensions.

If aD .Ha; fa/ is an extension, we set

Ka WD p
�1.Ha/:

Ka is a subgroup of K and fa is defined on Ka.

On the set I.�; f / we introduce the order relation

a � b () Ha �Hb and fa D fbjKa :

Proposition 6.2 .I.�; f /;�/ is a directed set.

Proof Given a; b 2 I.�; f /, set Hc WD fh 2Ha\Hb j fa.h/D fb.h/g. Then Hc has finite index in H
since G is finite. Set fc WD fajHc . Then c WD .Hc ; fc/ 2 I.�; f /, and c � a and c � b.

In the following lemmas we describe two natural bijections between the sets I.�; f /, when f and (�)
change under some specific rule.

Lemma 6.3 Given f WN�G and � 2 AutG, set Nf WD � ıf . Then

(6-1) ˆ W I.�; f /! I.�; Nf /; ˆ.Ha; fa/ WD .Ha; � ıfa/:

is an order-preserving bijection.

The proof is immediate.

Lemma 6.4 Consider a commutative diagram of groups

.�/

. N�/

1 N K H 1

1 N K H 1

˛

i p

 ˇ

Ni Np

with exact rows and ˛, ˇ and  isomorphisms. In other words , (�) and ( N�) are isomorphic short exact
sequences. Given Nf WN�G, set f WD Nf ı˛ WN�G. Then the map

(6-2) ˆ W I.�; f /! I. N�; Nf /; ˆ.Ha; fa/ WD .ˇ.Ha/; fa ı 
�1
j.Ka//;

is an order-preserving bijection.
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Proof If aD .Ha; fa/, set Ka D p�1.Ha/ as above. Set H Na WD ˇ.Ha/. Then

K Na WD Np
�1.ˇ.Ha//D .ˇ

�1
Np/�1.Ha/D .p

�1/�1.Ha/D .Ka/:

Set also Nf Na WD fa ı�1jK Na . Then it is immediate to check that Na WD .H Na; Nf Na/Dˆ.a/ belongs to I. N�; Nf /

and that ˆ is an order-preserving bijection.

Lemma 6.5 Let N , H and G be groups and let " WH !AutN , h 7! "h, be a morphism. Let f WN !G

and ' WH !G be morphisms. There is a morphism f 0 WN Ì"H !G extending both f and ' (when N
and H are included in N Ì"H in the obvious way) if and only if for any h 2H

(6-3) inn'.h/ ıf D f ı "h:

The proof is elementary.

Lemma 6.6 Let N , H , G, " WH ! AutN and f be as above. Assume that f is surjective , that N is
finitely generated and that G is finite. Then

(a) H 00 WD fh 2H j "h.ker �/D ker �g is a finite-index subgroup of H ;

(b) there is a morphism Q" WH 00! AutG such that the diagram

N N

G G

"h

f f

Q"h

commutes for h 2H 00;

(c) H 0 WD ker Q" is a finite-index subgroup of H ;

(d) there is a unique morphism f 0 WN Ì"H 0!G that extends f and such that f 0jH 0 � 1.

Proof The subgroup kerf has index d WD jGj<1 in N . Since N is finitely generated, there are a finite
number of index d subgroups of N ; see eg [Hall 1950, page 128; Kurosh 1960, page 56]. The natural
action of AutN on the subgroups of N preserves the index. Therefore the orbit of AutN through kerf
is finite. Hence .AutN/kerf has finite index in AutN . Since H=H 00 injects in AutN=.AutN/kerf , H 00

also has finite index in H . The existence of Q"h follows immediately from the inclusion "h.kerf /� kerf
for h 2H 00. Since AutG is finite, H 0 has finite index in H 00 and in H . By construction, for any h 2H 0

we have f D Q"h ıf D f ı "h, ie (6-3) holds with ' WH 0!G the trivial morphism.

Theorem 6.7 If the sequence (�) splits , then I.�; f /¤∅.

Proof By Lemma 6.4 we can assume that the split exact sequence (�) is a semidirect product. The result
then follows from Lemma 6.6.

6.8 We dedicate the second part of this section to some considerations on coverings and fiber bundles,
which will be fundamental tools for our construction.
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In the following we assume that all the spaces considered are semilocally 1–connected. Let X be
a connected space and let x 2 X . For every subgroup H � �1.X; x/ there is a pointed covering
p W .E; e/ ! .X; x/ such that Imp� D H . Moreover p is unique up to pointed isomorphism. If
ˇ 2�.X; x; x0/ and ˇ# W �1.X; x/! �1.X; x

0/ is the induced isomorphism, then the pointed coverings
of X associated with H � �1.X; x/ and with ˇ#H � �1.X; x

0/ are isomorphic. Indeed if ˇe denotes the
lift with ˇe.0/D e and e0 D ˇe.1/, then p��1.E; e0/D ˇ#H , so E is associated with both subgroups. If
X is a complex manifold, any covering has a unique complex structure such that p is holomorphic and
the coverings associated to H � �1.X; x/ and with ˇ#H � �1.X; x

0/ are biholomorphic.

Lemma 6.9 Let E, B and B be connected and locally arcwise connected topological spaces. Let
p WE!B be a fiber bundle and q WB!B be a covering. Let E WD q�E be the pullback bundle. Then in
the diagram

(6-4)
.E; e/ .E; Ne/

.B; b/ .B; Nb/

Nq

 p

q

Nq WE!E is also a covering. Moreover , if the fiber of p is arcwise connected , then

Nq��1.E; e/D p
�1
� .q��1.B; b//:

Proof Fix Ne 2E, set NbDp. Ne/ and let V �B be an evenly covered open subset of B , ie q�1.V /D
F
Ui

and qjUi is a homeomorphism of Ui onto V . We claim that p�1.V / is an evenly covered neighborhood
of e. Indeed Nq�1.p�1.V //D

F
 �1.Ui /. Moreover  �1.Ui /D .qjUi /

�E is mapped homeomorphically
on p�1.V / by Nq since qjUi is a homeomorphism onto V . This proves the first assertion. Next choose
e 2 Nq�1. Ne/ and set b D  .e/. Obviously q.b/D Nb. Set F WD p�1. Nb/ and F WD  �1. Nb/. The diagram
(6-4) induces a morphism of the homotopy exact sequences of the bundles:

�2.B/ �1.F; e/ �1.E; e/ �1.B; b/ �0.F /D 1

�2.B/ �1.F ; Ne/ �1.E; Ne/ �1. NB; Nb/ �0.F /D 1

Š Š Nq�

p�

q� Š

p�

Set H WD q��1.B; b/ � �1.B; Nb/, and K WD p�1� .H/ � �1.E; Ne/. In the lower row we can substitute
�1.B; b/ with H and �1.E; e/ with K and the row remains exact. Clearly Nq� maps into K since the
diagram commutes. So we get the diagram

�2.B/ �1.F; e/ �1.E; e/ �1.B; b/ �0.F /D 1

�2.B/ �1.F ; Ne/ K H �0.F /D 1

Š Š Nq�

p�

q� Š

p�

Now q� is an isomorphism. Applying the short five lemma [Eilenberg and Steenrod 1952, page 16], we
get that K D Im Nq�, as desired.
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The following lemma is a sort of converse which will be needed later.

Lemma 6.10 Let A, E, E, B and B be connected and locally arcwise connected topological spaces.
Consider the diagram

(6-5)
.A; a/ .E; Ne/

.B; b/ .B; Nb/

Qq

' p

q

Assume that ' W A! B and p W E ! B are fiber bundles with arcwise connected fibers , that q and Qq
are finite degree coverings , and that Qq��1.A; a/D p�1� .q��1.B; b//. Then A is isomorphic to q�E as a
fiber bundle over B .

Proof Apply Lemma 6.9. Using the same notation as in (6-4),

Nq��1.E; e/D p
�1
� .q��1.B; b//D Qq��1.A; a/:

Moreover Nq is also a covering. So there is w W .A; a/! .E; e/ such that Nq ıw D Qq. It remains to show
that  ıw D '. Combining (6-5) with (6-4) we get the commutative diagram

.A; a/ .E; e/ .E; Ne/

.B; b/ .B; Nb/

Qq

w

'

Nq

 p

q

From Nq ıwD Qq we get p ı Nq ıwD p ı Qq; hence q ı ıwD q ı'. So  ıw and ' lift the same map with
respect to the covering q. Since  ıw.a/D '.a/, we conclude that  ıw D ' and the result follows.

7 Construction of the families of G–curves

7.1 Fix an element x D .x0; X/ 2M0;nC1 and set

(7-1) Nx WD �1.P
1
�X; x0/; Kx WD �1.M0;nC1; x/; HX WD �1.M0;n; X/:

Consider the split exact sequence in the top row of (2-3), namely

(�x) 1!Nx
i�
�!Kx

p�
�!HX ! 1:

Here i W P1�X ,!M0;nC1 is the map i.x0/ WD .x0; x1; : : : ; xn/ and p WM0;nC1!M0;n is the fibration.
Now let G be a finite group and let � W �n! G be a datum. Choose a geometric basis BD fŒ˛i �g

n
iD1

of Nx . As in 4.4, let � W �n! Nx be the isomorphism induced from the basis B. We apply the group
theoretical considerations of Section 6 to the exact sequence (�x) with f WD � ı��1 WNx�G. We get
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a directed set I.�x; f /, which is nonempty since (�x) splits. To stress the dependence from the choices
made, we will set

I.x;B; �/ WD I.�x; � ı�
�1/:

Indeed � contains the same information as the basis B.

Definition 7.2 A collection of families is an indexed set fCa! Yaga2I where

(1) .I;�/ is a directed set;

(2) .Ya; ya/ is a pointed smooth complex quasiprojective variety;

(3) Ca! Ya is a family of curves;

(4) if a; b 2 I and a � b, then there is an étale cover of finite degree vab W .Ya; ya/! .Yb; yb/ such
that Ca Š v

�
ab

Cb .

In this section we construct a collection of families indexed by I.x;B; �/.

7.3 Fix a D .Ha; fa/ 2 I.x;B; �/. Let qa W .Ya; ya/ ! .M0;n; X/ be the pointed covering with
qa��1.Ya; xa/ D Ha. Endow Ya with the unique structure of a complex manifold making qa an
unramified analytic cover. Consider the diagram

(7-2)

.Ea WD q
�
aM0;nC1; ea/ .M0;nC1; x/

.Ya; ya/ .M0;n; X/

Nqa

 a p

qa

with ea WD .ya; x/. Notice that p WM0;nC1!M0;n is the universal family of lines with n holes and hence
 a WEa! Ya is also a holomorphic family of curves (lines with holes).

By Lemma 6.9 applied to the diagram (7-2), the map Nqa W Ea ! M0;nC1 is the covering such that
Nqa��1.Ea; ea/DKa WD p

�1
� .Ha/. Hence fa WKa!G gives a morphism �1.Ea; ea/!G and thus a

pointed G–covering ua W .C�a; za/! .Ea; ea/ such that Imua� D . Nqa�/
�1.kerfa/. In other words, ua is

the covering such that

(7-3) Imua� D Nq
�1
a� .kerfa/:

Composing with  a we finally get a holomorphic family of noncompact Riemann surfaces

�a D  a ıua W C
�
a! Ya:

The following diagram describes the whole situation:

.C�a; za/ .Ea; ea/ .M0;nC1; x/

.Ya; ya/ .M0;n; X/

�a

ua Nqa

 a p

qa
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It might help to compare this diagram with the corresponding diagram of groups:

kerfa Ka Kx

Ha HX

p� p�

Summing up: p is the universal family of lines with n holes, qa is a covering used as a base change,
 a is the pullback family of lines with n holes, ua is a Galois cover and �a is a family of noncompact
Riemann surfaces. Each fiber of �a covers the corresponding fiber of  a. More precisely, if y 2 Ya and
X D qa.y/ 2M0;n, looking at the fibers over y we have the unramified G–covering

(7-4) C�a;y!Ea;y D P1�X:

The last step in the construction is the fiberwise compactification, which is an application of the Grauert–
Remmert extension theorem; see [Grothendieck 1971, Chapter XII, Theorem 5.4, page 340].

Theorem 7.4 (Grauert–Remmert extension theorem) Let Y be a connected complex manifold and
Z � Y a closed analytic subset such that Y ı WD Y �Z is dense in Y . Let f ı W Xı ! Y ı be a finite
unramified cover. Then up to isomorphism there exists a unique normal analytic space X and a unique
analytic covering f WX ! Y such that Xı �X and f ı D f jXı .

Corollary 7.5 In the hypotheses above , if Z is a smooth divisor , then X is smooth.

Proof Let D be the unit disc. Using a local chart U ŠDn of Y such that U \Z DDn\fz1 D 0g we
get a finite cover of D� �Dn�1. By the topological classification of coverings disc, it is of the form
.z1; : : : ; zn/ 7! .zm1 ; z2; : : : ; zn/ for some m� 1, hence extends to an analytic cover Dn!Dn. So, by
uniqueness, f �1.U /ŠDn. In particular, f �1.U / is smooth.

Lemma 7.6 The unramified covering ua W C�a ! Ea extends uniquely to an algebraic ramified cover
ua W Ca! P1 �Ya, with Ca and Ya smooth and quasiprojective.

Proof Consider P1 �M0;n. Let x0 2 P1 and X D .x1; : : : ; xn/ 2 M0;n. Recall that this means that
xn�2 D 0, xn�1 D 1, xn D1 and .x1; : : : ; xn�3/ 2 F0;n�3C��. Let Zi � P1 �M0;n be the smooth
divisor Zi WD fx0 D xig for i D 1; : : : ; n. The divisors Z1; : : : ; Zn are pairwise disjoint, so their union,
which we denote by Z, is a smooth divisor of P1�M0;n. The map Nqa in (7-2) obviously extends to a map

Nqa W P
1
�Ya! P1 �M0;n:

Then Nq�aZ is a smooth divisor of P1 �Ya. Since M0;nC1 D .P1 �M0;n/�Z, Ea D .P1 �Ya/� Nq�aZ.
So we can apply the Grauert–Remmert extension theorem to the topological covering ua W C�a ! Ea,
which can be thus completed to a ramified cover ua W Ca ! P1 � Ya, with Ca smooth. To prove the
quasiprojectivity one uses a similar argument. An étale analytic cover of a quasiprojective variety is
quasiprojective and the covering map is algebraic; see eg [Grothendieck 1971, Chapter XII, Theorem 5.1,
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page 333]. Since M0;n and M0;nC1 are quasiprojective, and qa and Nqa are étale, we get that Ya and Ea are
quasiprojective and qa and Nqa are algebraic morphisms. Let NYa be a projective manifold containing Ya

as an open subset. Then Ea is a Zariski open subset of P1 � NYa and we can apply the Grauert–Remmert
extension theorem to ua W C�a! Ea, this time viewing Ea as an open subset of P1 �Ya. We obtain a
ramified cover Nua W Ca! P1 �Ya. Since P1 �Ya is projective, Ca is also projective. By uniqueness,
Ca D Nu

�1
a .P1 �Ya/, so it is quasiprojective.

7.7 Notice that the projection P1 �Ya! Ya extends  a in (7-2), while the composition

Ca
ua
�! P1 �Ya! Ya

extends �a. We denote the extensions by the same symbol. We claim that

�a W Ca! Ya

is a submersion. Indeed, let U ŠDn be a local chart in P1 �Ya such that

U \��Z D U \��Zi D fx0� xi D 0g

for some i D 1; : : : ; n (with xn�2 D 0, xn�1 D 1 and xn D 1). Denoting w D x0 � xi , we get that
w; x1; : : : ; xn are local coordinates on U and � 0j� 0�1.U / W �

0�1.U /! U is of the form

.w; x1; : : : ; xn/ 7! .wm; x1; : : : ; xn/

for some m� 2. We conclude that locally �a.w; x1; : : : ; xn/D .x1; : : : ; xn/. Thus �a is a submersion
onto a smooth base and its fibers are smooth curves.

If y 2 Ya, the fiber Ca;y ! P1 of �a over y is the unique smooth compactification of the unramified
cover (7-4), ie the one given by Riemann’s existence theorem.

We call
Ca P1 �Ya

Ya

ua

�a

 a

the family of G–coverings associated with the datum � 2 Dn.G/, the point x D .x0; X/ 2M0;nC1, the
geometric basis B of �1.P1�X; x0/ and the extension a 2 I.x;B; �/.

Theorem 7.8 If x 2M0;nC1, B is a basis of Nx and � is an n–datum , then

(7-5) K.x;B; �/ WD fCa! Yaga2I.x;B;�/

is a collection of families in the sense of Definition 7.2.

Proof It remains only to prove property (4). We start with an observation. If pi W .Ei ; ei /! .B; b/ are
coverings and Imp1�� Imp2�, the unique continuous map f W .E1; e1/! .E2; e2/ such that p2ıf Dp1
is a covering map. Indeed let f W .X; x/! .E2; e2/ be the covering with Imf� D p

�1
2� .Imp1�/. Then

p2 ıf is a covering isomorphic to p1, so we can assume p1 D p2 ıf .
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Now, given a D .Ha; fa/ and b D .Hb; fb/, a � b means that Ha � Hb � �1.M0;n; X/; hence
Ka D p�1� .Ha/ � Kb D p�1� .Hb/ and fa W Ka ! G is the restriction of fb . We have coverings
qi W .Yi ; yi /! .M0;n; X/ with Hi D Im qi� for i D a; b. By the observation at the beginning there is a
unique covering map v W .Ya; ya/! .Yb; yb/ such that qb ı v D qa and Im v� D q

�1
b�
.Ha/. For the same

reason, since Im Nqi� DKi for i D a; b, there is a covering Nv W .Ea; ea/! .Eb; eb/ such that Nqb ı Nv D Nqa.
We claim that

(7-6)  b Nv D v a:

Indeed, qb b Nv D p Nqb Nv D p Nqa D qa a D qbv a. Hence  b Nv and v a lift the same map with respect
to the covering qb . Since  b Nv.ea/D yb D v a.ea/ we conclude that  b Nv D v a as claimed.

Finally we have the coverings ui WC�i !Ei such that Imui�D Nq
�1
i� .kerfi /; see (7-3). Since Nv�D Nq�1b� ı Nqa�

and kerfa � kerfb we have Nv�. Nq�1a� .kerfa//D Nq�1b� .kerfa/� Nq�1b� .kerfb/. This means that

(7-7) Im. Nv ıua/� D Nv�. Nq�1a� .kerfa//� Imub�:

So we can apply once more the observation at the beginning and we get a covering Qv WC�a!C�
b

such that

(7-8) ub Qv D Nvua; Im Qv� D u�1b� .Im. Nv ıua/�/:

Composing with  a and  b and using (7-6) we get a commutative diagram

(7-9)

C�a C�
b

Ya Yb

Qv

�a �b

v

with �a and �b bundles, and Nv and Qv coverings. We claim that

(7-10) Im Qv� D ��1b� .Im v�/:

Indeed starting from (7-7) we compute

Im. Nv ıua/� D Nq�1b� .kerfa/D Nq�1b� .Ka \ kerfb/D Nq
�1
b� .Ka/\ Nq

�1
b� .kerfb/;

Nq�1b� .kerfb/D Imub�;

Ka D p
�1
� .Ha/;

Nq�1b� .Ka/D Nq
�1
b�p

�1
� .Ha/D .p Nqb�/

�1
� .Ha/D .qb� b�/

�1.Ha/D  
�1
b� .q

�1
b� .Ha//D  

�1
b� .Im v�/;

Im. Nv ıua/� D  �1b� .Im v�/\ Imub�:

So from (7-8) we get

Im Qv� D u�1b� .Im. Nv ıua/�/D u
�1
b� . 

�1
b� .Im v�/\ Imub�/D u

�1
b� . 

�1
b� .Im v�//D �

�1
b� .Im v�/:

This proves (7-10). Applying Lemma 6.10 to the diagram (7-9) we get that Qv W C�a ! v�C�
b

is an
isomorphism of bundles over Ya. The map Qv is an isomorphism of the coverings C�a ! Ea and
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v�C�
b
!Ea. By the uniqueness statement in the Grauert–Remmert extension theorem, it extends to an

isomorphism of the coverings Ca! P1 �Ya and v�Cb! P1 �Ya. This extension is an isomorphism
of the families of curves, Ca Š v

�Cb .

8 Independence from the choices

In this section, we conclude the proof of our Theorem 1.4. We present two main arguments. The first one
is Theorem 8.2, whose proof will take up most of the section. It states the independence of the collection
K.x;B; �/ on x 2M0;nC1, on the geometric basis B, and on the AutG �Aut� �n–orbit of � . Secondly,
we show (Theorem 8.6) that every curve in a family of the collection �a W Ca! Ya has the topological
type associated with � , and that, conversely, for any G–curve C with topological type Œ� �, there is at least
one fiber of Ca! Ya which is (unmarkedly) G–isomorphic to C (and there are only finitely many such
fibers).

Definition 8.1 We say that two collections of families fCa! Yaga2I and fC Na! Y Nag Na2I are equivalent
if there is an order-preserving bijection a 7! Na of I onto I and for every a 2 I a biholomorphism
wa W Ya! Y Na such that:

(1) Ca Š w
�
aC Na.

(2) If a; b 2 I and a � b, the following diagram commutes:

Ya Y Na

Yb Y Nb

vab

wa

Nv
Na Nb

wb

In the following we conclude the independence of our collection from the choices made; different choices
yield equivalent collections.

Theorem 8.2 Up to equivalence , the collection of families K.x;B; �/ is independent of the choices of x
and B and only depends on the AutG �Aut� �n–orbit of � . In particular , the collection K.x;B; �/ only
depends on the topological type Œ� �.

The proof of Theorem 8.2 is organized as follows: We start by showing that the action of AutG on � does
not change the collection (Lemma 8.3); and then we prove that changing x and B by parallel transport
leads to equivalent collections (Lemma 8.4). The combination of these two results implies that, up to
equivalence, the collection of families K.x;B; �/ does not change under the action AutG �Aut�� �n
on � (Lemma 8.5). Finally, we combine these results and complete the proof of Theorem 8.2.

Lemma 8.3 Let � 2Dn.G/ and � 2AutG. Set N� WD � ı � . Let I.x;B; �/! I.x;B; N�/, a 7! Na, be the
bijection of Lemma 6.3. Then Y Na D Ya and C Na D Ca. So K.x;B; �/ D K.x;B; N�/. In particular , for
z 2Nx , K.x;B; �/D K.x;B; � ı innz/:
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Proof Let � W �n!Nx be the isomorphism induced from the basis B. Set f WD � ı��1 and

Nf WD N� ı��1 D � ıf:

By Lemma 6.3 we get a bijective correspondence I.x;B; �/! I.x;B; N�/ which sends aD .Ha; fa/ to
Na WD .H Na; f Na/, whereH NaDHa, and f NaD �ıfa. It follows thatK NaDKa and kerf NaD kerfa. Therefore
Y Na D Ya; E Na DEa, C�

Na D C�a and C Na D Ca. For the last statement, observe that � ı innz D inn�.z/ ı� .

Lemma 8.4 Let � 2 Dn.G/ and x; x0 2M0;nC1. Let the notation be as in Proposition 3.7: ˇ is a path
in M0;n from X to X 0, f ˇ represents the parallel transport along ˇ, f ˇ .x0/D x00 and Q̌.t/D zH.t; x0/.
Then the collections K.x;B; �/ and K.x0; f

ˇ
� .B/; �/ are equivalent.

Proof Let � W �n ! Nx be the isomorphism induced from the basis B. Set f WD � ı ��1 and
Nf WD f ı .f

ˇ
� /
�1. We show that if a 2 I.x;B; �/ and Na D ˆ.a/, where ˆ is the map in (6-2),

then the families Ca! Ya and C Na! Y Na are canonically isomorphic. Consider the diagram

.�x/

.�x0/

1 Nx Kx HX 1

1 Nx0 Kx0 HX 0 1

f
ˇ
�

i� p�

Q̌# ˇ#

i� p�

Assume aD .Ha; fa/ and NaD .H Na; f Na/. By the definition of ˆ we have H Na D ˇ#.Ha/, K Na D Q̌#.Ka/,
f Na D fa ı . Q̌#/

�1 and kerf Na D Q̌#.kerfa/. It follows from 6.8 that there are canonical isomorphisms
Y Na Š Ya, E Na ŠEa and C�

Na Š C�a. By compactifying we get that the families Ca! Ya and C Na! Y Na are
isomorphic.

Lemma 8.5 Let .�; �/ 2AutG�Aut�� �n. Then the collections K.x;B; �/ and K.x;B; �ı� ı��1/ are
equivalent.

Proof We have N� WD � ı � ı ��1 2 Aut��Nx . Set N� WD � ı � ı ��1, f WD � ı ��1 W Nx � G and
Nf WD N� ı ��1 D � ı f ı N��1. By Proposition 4.19, there is an Œ˛� 2 �1.M0;n; X/, a lift Q̨ of ˛ with
Q̨ .0/D Q̨ .1/D x0, and a parallel transport f ˛t such that f ˛t .x0/D Q̨ .t/ and z 2 �1.P1 �X; x0/ such
that N� D innz ıf ˛� . Note that, in particular, f ˛.x0/ D x0. We get Nf D � ı f ı .f ˛� /

�1 ı innz�1 . The
statement follows from the previous two lemmas.

Proof of Theorem 8.2 Since changing geometric bases of Nx adapted to X corresponds to acting with
Aut�� �n, by the previous lemma it follows that if the point x is fixed, changing the adapted basis does
not matter. Next fix x; Nx 2M0;nC1. Choose a path Q̌ in M0;nC1 joining x to Nx. Set ˇ WD p ı Q̌ and let
f ˇ be a parallel transport such that f ˇ .x0/ D Nx0. Let B be an adapted basis at x. Then f ˇ� B is an
adapted basis at Nx. By Lemma 8.4 we get that K.x;B; �/ and K. Nx; f

ˇ
� B; �/ are equivalent. In other

words we have independence from x and B as long as B is adapted to x. We also have that � only
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matters through its AutG �Aut�� �n–orbit by Lemma 8.5. It remains to show independence from the
Aut� �n–orbit. It follows from the definitions in 4.4 that this is equivalent to showing that if x 2M0;nC1,
B is a basis adapted to x and B is an arbitrary basis of �1.P1�X; x0/, then the collections K.x;B; �/
and K.x;B; �/ are equivalent. Let us prove this statement. There is a permutation � 2 Sn such that B is
adapted to .x0; x�1 ; : : : ; x�n/. Define

� WM0;n!M0;n; �.x1; : : : ; xn/ WD .x�1 ; : : : ; x�n/;

Q� WM0;nC1!M0;nC1; Q�.x0; x1; : : : ; xn/ WD .x0; x�1 ; : : : ; x�n/:

Set Nx D Q�.x/ and X D �.X/. By the previous results we know that K.x;B; �/ and K. Nx;B; �/ are
equivalent. It remains to check that also K. Nx;B; �/ and K.x;B; �/ are equivalent. Consider the diagram

.�x/

.� Nx/

1 Nx Kx HX 1

1 N Nx K Nx HX 1

idNx

i� p�

Q�� ��

i� p�

To check commutativity observe that Q� sends the fiber over X to the fiber over X WD .x�1 ; : : : ; x�n/, ie
Q�.P1�X/� fXg D .P1�X/� fXg and on the first factor it is the identity map. We use this diagram
with f D Nf D � ı N��1. We get the usual correspondence a 7! Na, I.x;B; �/! I. Nx;B; �/, with

(8-1) H Na D ��.Ha/; K Na D Q��.Ka/; kerf Na D Q��.kerfa/:

Consider the diagram

.C�
Na; z Na/ .E Na; e Na/ M0;nC1

.C�a; za/ .Ea; ea/ M0;nC1

.Y Na; y Na/ .M0;n; NX/

.Ya; ya/ .M0;n; X/

u Na

 Na

Nq Na

p
ua

Owa

 a

Qwa

Nqa

Q�

q Na

wa

qa

p

�

By a repeated use of the lifting theorem and using (8-1) we can show the existence of homeomorphisms
wa, Qwa and Owa making the diagram commute. Indeed .Im.� ı qa/�/ D ��.Ha/ D Im q Na� by the first
equation in (8-1). So wa is the isomorphism between the pointed coverings � ı qa and q Na. By the same
argument, using the second equation in (8-1), we get the isomorphism Qwa. Consider the cube on the right
in the diagram. All its faces (except the left one) commute. But then

q Na Na Qwa D p Nq Na Qwa D p Q� Nqa D �p Nqa D �qa a D q Nawa a:

So  Na Qwa and wa a lift the same map with respect to q Na. Since  Na Qwa.ea/ D y Na D wa a.ea/ we
conclude that  Na Qwa D wa a.
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Finally consider the horizontal square on the left of the diagram. We want to show that

Im. Qwa ıua/� D Imu Na�:

We compose with the injective morphism Nq Na� and compute

Nq Na�.Im. Qwa ıua/�/D Q��qa�.Imua�/D Q��.kerfa/:

By the third equation in (8-1) this equals kerf NaD Nq Na�.Imu Na�/. Thus Nq Na�.Im. Qwa ıua/�/D Nq Na�.Imu Na�/

and Im. Qwa ıua/� D Imu Na�. So the lifting theorem again yields existence of an isomorphism Owa making
everything commutative. The homeomorphisms wa, Qwa and Owa are in fact biholomorphisms as observed
in 6.8. It follows that � Na Owa D wa�a. By the uniqueness statement in the Grauert–Remmert extension
theorem, Qwa extends to a biholomorphism between Ca and C Na. Thus Ca Š Qw

�
aC Na.

Property (2) in Definition 8.1 follows again by the lifting theorem:

Ya Y Na

Yb Y Nb

M0;n M0;n

vab

wa

qa

q Na

Nv
Na Nb

wb

qb q Nb

�

We have Nq Nb Nv Na Nbwa D q Nawa D �qa D �qbvab D q Nbwbvab , so Nvabwa and wavab lift the same map. More-
over, Nv

Na Nb
wa.ya/D Nvab.y Na/D y Nb D wb.yb/D wbvab.ya/, so the two maps coincide; Nvabwa D wavab .

This proves (2).

Theorem 8.6 Let G be a finite group and � 2Dn.G/. Choose a point x 2M0;nC1 and a geometric basis
B of Nx . Let �a W Ca! Ya be any family in the collection K.x;B; �/. Then every curve in the family
has the topological type given by Œ� � 2 Dn.G/=AutG �Aut� �n. Conversely, every algebraic curve with
a G–action of the topological type given by Œ� � is (unmarkedly) G–isomorphic to some fiber. Moreover ,
there are only finitely many such fibers.

Proof Consider �a WCa!Ya and let y; y0 2Ya. Let ˇ be a path in Ya from y to y0, and let f ˇ represent
the parallel transport along ˇ. By Lemma 3.5, we get a G–equivariant diffeomorphism Ca;y ! Ca;y0 .
Hence the G–actions on Ca;y and Ca;y0 have the same topological type. This proves the first statement.
Now let C be an algebraic curve such that G acts effectively on C in such a way that C=G Š P1.
We get the ramified covering � W C ! P1. By acting via PGL.2;C/, one can move any three branch
points of � to 0, 1 and1. We can thus assume that the set of critical values of � W C ! P1 coincides
with Y 2 M0;n. Set C � WD ��1.P1 � Y /. Fix a point y0 2 P1 � Y and consider the monodromy
f W �1.P1�Y; y0/!G associated with �jC� W C �! P1�Y . Finally fix a basis B0 of �1.P1�Y; y0/
to Y . Let � W�n!�1.P1�Y; y0/ denote the associated isomorphism. Denote by � 0D f ı� W�n!G the
datum associated with C . We get a collection K.y;B0; � 0/. Assume that C has the same topological type
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of G–action as Œ� �, namely that Œ� �D Œ� 0� 2Dn.G/=Aut�� �n �AutG. By Theorem 8.2 the collections
K.x;B; �/ and K.y;B0; � 0/ are equivalent. Thus there exist Na 2 I.y;B0; � 0/ and a biholomorphism
wa W Ya ! Y Na as in Definition 8.1. In particular, Ca Š w

�
aC Na. It follows that C , which is the central

fiber for � Na W C Na! Y Na, is G–isomorphic to some fiber of �a W Ca! Ya. To check that only finitely many
fibers can be G–isomorphic to C we argue as follows. For any � 2 Sn there is a unique g� 2 Aut P1

such that g� .y�n�2/D 0, g� .y�n�1/D 1 and g� .y�n/D1. If f W C ! Ca;y is a G–isomorphism for
some y 2 Ya, then f descends to an isomorphism Nf 2 Aut P1 that maps branch points to branch points.
So if X WD qa.y/, we have Nf .fy1; : : : ; yng/ D fx1; : : : ; xng. Then there is a permutation � such that
Nf .y�i /D xi for any i D 1; : : : ; n. So Nf D g� and X D .g� .y1/; : : : ; g� .yn//. This shows that there is

a finite number of possibilities for X , so a finite number of possibilities for y since qa is finite.

9 The centerless case

If the group G has trivial center, the whole discussion in Sections 6, 7 and 8 is greatly simplified.

Indeed, let us go back to the setting at the beginning of Section 6 and let us consider again the sequence (�).

Theorem 9.1 If the sequence (�) on page 1584 splits and Z.G/ D f1g, then there exists a minimum
amin 2 I.�; f / and it is unique.

Proof With the notation of Lemma 6.6, set H 000 WD fh 2H 00 j Q"h 2 InnGg. Note that H 0 �H 000 �H 00

and that H 000 has finite index in H 00 and in H . By assumption the map G ! InnG is bijective. So
for every h 2 H 000, there is a unique element of G, denoted by '.h/, such that Q"h D inn'.h/. We get
a map ' W H 000! G. Since Q" is a morphism, we have inn'.hh0/ D inn'.h/'.h0/ and, since Z.G/ D f1g,
this implies that ' is a morphism. Also, by construction, ' satisfies inn'.h/ ıf D f ı "h. Therefore,
by Lemma 6.5, there exists a morphism Qf W N Ì"H 000! G extending f such that Qf jH 000 D '. Thus
.H 000; Qf / 2 I.�; f /. Moreover, since ' is unique, so is Qf . Now let aD .Ha; fa/ 2 I.�; f / and observe
that, by Lemma 6.5, every h 2Ha satisfies (6-3). It follows that Ha �H 000 and 'a D 'jHa and thus we
conclude that aD .Ha; fa/� .H 000; Qf /. Uniqueness of the minimum in obvious in any ordered set.

Next let Nx , Kx and HX be as in (7-1) and consider the splitting exact sequence (�x). As usual, choose
a geometric basis BD fŒ˛i �g

n
iD1 of Nx , let � W �n!Nx be the isomorphism induced from the basis B,

and, for a datum � WNx!G, set f WD � ı��1 WNx!G. Theorem 9.1 applied to (�x) reads as follows:

Theorem 9.2 If G has trivial center , then there exists a minimum amin 2 I.x;B; �/ and it is unique.

Thus in this case by choosing the minimum we have a canonical choice of a family. Thus, if the center of
G is trivial, the choice of a point x 2M0;nC1, a geometric basis BD fŒ˛i �g

n
iD1, and a datum � WNx!G

yields a well-defined minimum family

�.x;B;�/ W C.x;B;�/! Y.x;B;�/;
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and we can forget about the whole collection. Moreover by Theorem 8.2 changing x or B or � inside its
AutG �Aut� �n–orbit amounts to passing from a collection to an equivalent one. Since equivalence is
order-preserving, it naturally maps the minimum to the minimum. This yields the following.

Theorem 9.3 If G has trivial center , then up to isomorphism the family �.x;B;�/ WC.x;B;�/! Y.x;B;�/ is
independent of the choices of x and B and only depends on the AutG �Aut� �n–orbit of � . In particular ,
the family �.x;B;�/ W C.x;B;�/! Y.x;B;�/ only depends on the topological type Œ� �.

10 The abelian case

We conclude looking at the special case where the group G is abelian, the opposite of G being centerless.

Theorem 10.1 If G is abelian , then there exists a 2 I.x;B; �/ such that Ya DM0;n.

Proof Let Nx , Kx and HX be as in (7-1) and consider the splitting exact sequence (�x), ie the top row
of (2-3). Let � W �n! Nx be the isomorphism induced from the basis B. Set f WD � ı��1 W Nx ! G.
Now let ' WHX !G be any morphism. Let

" W �1.M0;n/! Aut.�1.P1�X; x0//

denote the morphism giving the semidirect product in (�x). By the considerations in 2.3, " is just the
restriction to �1.M0;n/ of the morphism Q" giving the splitting of the exact sequence in the second row
of (2-3). In [Birman 1974, Corollary 1.8.3] it is explicitly described the image via Q" of the generators of
the pure braid group of n� 1 strings of the plane. To be more precise, the notation in [Birman 1974]
corresponds to identify

M0;n Š f.x1; : : : ; xn�1/ 2 F0;n�1C j x1 D 0; x2 D 1g

instead of (2-1). By this description one sees that, for a generator h of �1.M0;n/, "h sends a generator j
of �1.P1�X; x0/ to a conjugate of it. In the setting of Lemma 6.5 we have f ı "h.j /D f .j / since G
is abelian. Similarly inn'.h/ is the identity since G is abelian. It follows immediately that there exists
fa WKx!G extending both f and '. Thus .Hx; fa/ 2 I.x;B; �/.

10.2 The proof of Theorem 10.1 shows that, when G is abelian, for every morphism ' WHX!G we can
build f' WKx!G extending both f and '. We point out that this is the opposite of the uniqueness result
in Theorem 9.2. Of course, .HX ; f'/ 2 I.x;B; �/ is a minimal element for .I.x;B; �/;�/ since HX is
as big as possible, ie if b 2 I.x;B; �/ and .HX ; f'/� b, then HX DHb , so bD .Hx; f'/. But different
choices of ' yield elements in I.x;B; �/ that are not comparable with respect to the order relation �.

10.3 An important point to stress is that, in the general case, Ha ¨ HX and Ya ¤ M0;n for every
a 2 I.x;B; �/. We now show this via an easy example. As in the proof of Theorem 10.1, we use
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the description in [Birman 1974] of image via Q" of the generators of the pure braid group of the plane
and we show that, in general, there may not exist any morphism Qf W �1.P1 � X; x0/ Ì HX ! G

extending f . Thus, in this case Ha ¨ HX for any a 2 I. Let � W �4! S3 be given by �.1/ D .12/,
�.2/D .23/, �.3/D .23/ and �.4/D .12/. With the notation in [Birman 1974], �1.M0;4/ is free on
the generators A12 and A13. We have �.".A12/1/ D .23/, �.".A12/2/ D .13/, �.".A12/3/ D .23/
and �.".A12/4/D .12/. Now note that, on one side, 1234 D 1 and thus 1234 2 ker � , but on
the other side �.".A12/.1234//D .23/.13/D .123/¤ 1. With the notation of Lemma 6.6 it follows
that A12 …H 00, so H 00 ¤HX . It follows from Lemma 6.5 that for any a 2 I we have Ha �H 00. Thus
in particular, Ha �H 00 ¤HX . Thus there is no morphism Qf W �1.P1�X; x0/ÌHX !G extending f .
Geometrically, one can interpret this fact as follows. On M0;4ŠC�� there is the universal family of elliptic
curves E!M0;4. We denote by E� the fiber of E!M0;4 over � 2C��. The family corresponding to �
shows that every elliptic curve has an effective action of S3, which is built as follows: S3 D Z=3ÌZ=2,
where Z=2 is the multiplication by �1 on E and Z=3 is a subgroup of the translations .E;C/. So to
build such an action one has to choose a line inside E�Œ3�. If an extension Qf W �1.M0;5/! S3 exists,
then there is a family of lines l� �E�Œ3�ŠH1.E�;Z=3/ defined over M0;4. Equivalently, fixing a base
point �0 2 M0;4, there is a line l�0 � E�0 which is stable under the action of the monodromy of the
family E. But the image of this monodromy is �2, the congruence subgroup of level 2, which fixes no
line in H1.E�0 ;Z=3/.

10.4 It follows from the previous remarks that, in the general case, Ya cannot be M0;n itself, but is
necessarily a finite cover of it. As pointed out in the introduction, this corrects an inaccuracy in [González-
Díez and Harvey 1992]. There it is claimed that Y DM0;n always. As M0;n is birational to projective
space, the authors concluded that the image of the family in Mg is always a unirational variety. By
Theorem 10.1 their proof works for abelian covers, hence the moduli image of a family of abelian covers
is always unirational. In the general case this argument fails and in fact the result is false. Indeed, Michael
D Fried informed us that he recently found examples of families for which the moduli image is not
unirational. In his work in progress [Fried � 2024], Fried considers the moduli space of Galois covers of
the line with fixed datum and fixed Nielsen class. When a component of this moduli space is of general
type (ie a multiple of its canonical class gives an embedding), then the component is not unirational.
When the datum is for covers with 4 branch points, and the equivalences include reduction by the action
of Möbius transformations, there is an explicit formula for the genus of the components — see [Bailey
and Fried 2002] — which in this case are one-dimensional and covers of the j–line. When that genus
exceeds 1, these spaces have general type. For the group An, n� 1 mod 4, and the branching type of the
covers having all four conjugacy classes .nC1/=2–cycles, Fried has computed the components and their
genuses. For n large, the genus is a nonconstant multiple of n2. When the equivalence comes from the
degree n permutation representation of An, the base Ya of any family in the collection fCa! Yaga2I

associated with the datum, has a natural map to one of these components. Thus its moduli image cannot
be unirational.
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We study quasimorphisms and bounded cohomology of a variety of braided versions of Thompson groups.
Our first main result is that the Brin–Dehornoy braided Thompson group bV has an infinite-dimensional
space of quasimorphisms and thus infinite-dimensional second bounded cohomology. This implies that,
despite being perfect, bV is not uniformly perfect, in contrast to Thompson’s group V . We also prove that
relatives of bV like the ribbon braided Thompson group rV and the pure braided Thompson group bF
similarly have an infinite-dimensional space of quasimorphisms. Our second main result is that, in stark
contrast, the close relative of bV denoted by cbV , which was introduced concurrently by Brin, has trivial
second bounded cohomology. This makes cbV the first example of a left-orderable group of type F1 that
is not locally indicable and has trivial second bounded cohomology. This also makes cbV an interesting
example of a subgroup of the mapping class group of the plane minus a Cantor set that is nonamenable but
has trivial second bounded cohomology, behavior that cannot happen for finite-type mapping class groups.

20F65, 20J05; 20F36, 57K20

1 Introduction

The braided Thompson group bV was introduced independently by Brin [2007] and Dehornoy [2006]
as a braided version of the classical Thompson group V . This group and its relatives have proven to be
important objects in geometric group theory, in particular thanks to their connections to big mapping class
groups. Recall that a surface is said to be of infinite type if its fundamental group is not finitely generated,
and to such a surface one can associate a mapping class group in the same way as for finite-type surfaces;
such mapping class groups are called big. As an example of the connection, certain braided Thompson
groups are dense in the big mapping class group of a compact surface minus a Cantor set [Skipper and
Wu 2021, Corollary 3.20], and hence serve as finitely generated “approximations” of these big mapping
class groups. For more on connections between braided Thompson groups and big mapping class groups,
see eg [Aramayona et al. 2021; Aramayona and Funar 2021; Funar and Kapoudjian 2004; 2008; 2011;
Genevois et al. 2022].

Here we are concerned with the question of which braided Thompson groups have an infinite-dimensional
space of quasimorphisms, or second bounded cohomology, and which do not. A function q W �!R is
called a quasimorphism if the quantity jq.g/Cq.h/�q.gh/j is uniformly bounded; its supremum is called
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the defect of q and is denoted by D.q/. We denote by Q.�/ the space of quasimorphisms of � , modulo
bounded functions (sometimes this notation is used to denote the space of homogeneous quasimorphisms,
which is canonically isomorphic [Calegari 2009b, 2.2.2]). We may sometimes colloquially refer to a
group as having “no quasimorphisms” if it only has bounded ones. The objects Q.�/ are of great interest
in dynamics, geometric group theory, geometric topology and symplectic geometry. For example, they are
intimately connected with bounded cohomology [Frigerio 2017] and stable commutator length [Calegari
2009b]. In this context, Thompson-like groups have played an important role: for instance, they have
repeatedly served as the first finitely presented examples achieving certain values of stable commutator
length [Ghys and Sergiescu 1987; Zhuang 2008; Fournier-Facio and Lodha 2023].

In addition to bV , we inspect the ribbon braided Thompson group rV , the pure braided Thompson
group bF , the kernel bP of the projection bV ! V , and most importantly the group cbV , which was
introduced by Brin [2007] along with bV . One can view cbV as a braided analogue of a Cantor set point
stabilizer in V . See Section 2 for the definitions of all these braided Thompson groups. The group cbV ,
despite its strong similarities to bV , has extremely different behavior when it comes to quasimorphisms
and bounded cohomology, as our two main results make clear:

Theorem 1.1 For � any of the braided Thompson groups bV , rV , bF or bP , the space Q.�/ is
infinite-dimensional , and thus also the second bounded cohomology H2

b
.�/ is infinite-dimensional.

Theorem 1.2 We have H2
b
.cbV /D 0.

Here H2
b
.�/ denotes the second bounded cohomology of a group � , with trivial real coefficients. This

invariant was introduced by Johnson [1972] and Trauber in the context of Banach algebras, and has since
become a fundamental tool in geometric topology [Gromov 1982], dynamics [Ghys 1987] and rigidity
theory [Burger and Monod 2002]. For every group � there is a map Q.�/! H2

b
.�/, whose kernel is the

space of real-valued homomorphisms (Proposition 3.1). Using this, Theorem 1.2, together with the fact
that the abelianization of cbV is isomorphic to Z (Corollary 2.14), implies:

Corollary 1.3 Q.cbV / is one-dimensional , spanned by the abelianization of cbV .

One consequence of Theorem 1.1 is that, despite being perfect [Zaremsky 2018a], bV is not uniformly
perfect (Corollary 4.4). Recall that a group � is uniformly perfect if there exists N 2N such that every
element in � can be written as a product of at most N commutators. This is in contrast to the fact that
Thompson’s group V is uniformly perfect, and even uniformly simple [Gal and Gismatullin 2017] — in
fact, Hn

b
.V /D 0 for all n� 1 [Andritsch 2022]. Since bV is not uniformly perfect, the following natural

question emerges:

Question 1.4 Which elements of bV have nonzero stable commutator length?

A characterization of this phenomenon in (finite-type) mapping class groups was given in [Bestvina et al.
2016]; see [Field et al. 2022] for some related results for big mapping class groups.
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Theorem 1.2 has interesting consequences for subgroups of big mapping class groups. Pioneering work
of Bestvina and Fujiwara [2002] showed that every subgroup of a (finite-type) mapping class group
is either virtually abelian or has infinite-dimensional Q.�/; see also [Bestvina et al. 2016]. This can
be viewed as a sort of Tits-like alternative, since every quasimorphism on an amenable group is at
a bounded distance from a homomorphism [Brooks 1981], whereas groups with hyperbolic features
typically have an infinite-dimensional space of quasimorphisms [Brooks 1981; Epstein and Fujiwara
1997; Hull and Osin 2013]. The question of whether something similar happens for the big mapping
class group MCG.R2 nK/ for K a Cantor set was listed in the AIM problem list on big mapping class
groups [AIM 2019, Question 4.7]. Namely, it is asked whether every subgroup � �MCG.R2 nK/ is
either amenable or has infinite-dimensional Q.�/. Theorem 1.2 provides a negative answer to this, sincecbV is nonamenable (by virtue of containing braid groups), and embeds in MCG.R2 nK/; see Section 4.

In fact, we should point out that a negative answer to this question was already “almost” available in
the literature. Indeed, by a result of Calegari and Chen [2021], every countable circularly orderable
group � embeds in MCG.R2 nK/, and there are plenty of countable circularly orderable groups that
are nonamenable and have a finite-dimensional space of quasimorphisms, or no quasimorphisms at all
[Calegari 2007; Zhuang 2008; Fournier-Facio and Lodha 2023]. The most straightforward example
is probably Thompson’s group T , which has no quasimorphisms by virtue of being uniformly perfect
(and even uniformly simple; see eg [Guelman and Liousse 2023]). In fact, when the groups are even
left-orderable, many of them have vanishing second bounded cohomology [Fournier-Facio and Lodha
2023], and sometimes even vanishing bounded cohomology in every positive degree [Monod 2022]. As a
remark, since the examples coming from the procedure in [Calegari and Chen 2021] act on the plane by
fixing a radial coordinate and acting by rotations, which is really a “one-dimensional” picture, one can
view cbV as providing the first truly “two-dimensional” example, ie one involving genuine braids.

In order to prove Theorem 1.1, we generally follow the approach used by Bavard [2016] to show that
MCG.R2 nK/ has an infinite-dimensional space of quasimorphisms. Her proof in turn makes use of the
approach of Bestvina and Fujiwara [2002] to finite-type mapping class groups, following suggestions of
Calegari [2009a] from a blog post. Bavard’s result prompted the study of analogues of curve graphs for
big mapping class groups, and arguably initiated the recent surge of interest in big mapping class groups;
see [Aramayona and Vlamis 2020] for more on the history of big mapping class groups.

In the course of proving Theorem 1.2, we also prove that cbV is of type F1, meaning it has a classifying
space with finitely many cells in each dimension (Corollary 2.15); this is a stronger property than finite
generation and finite presentability. It is known that bV and thus cbV are left-orderable [Ishida 2018], and
that cbV contains a copy of bV (see Definition 2.9), which is finitely generated and perfect [Zaremsky
2018a]. Therefore cbV serves as the first example of a group with the following properties:

Corollary 1.5 The group cbV is a left-orderable group of type F1 that is not locally indicable and has
vanishing second bounded cohomology.

Algebraic & Geometric Topology, Volume 24 (2024)
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A finitely generated group is indicable if it admits a homomorphism onto Z. A group is locally indicable
if each of its finitely generated subgroups is indicable. The combination of these properties is interesting
because it shows that in the celebrated Witte Morris theorem [2006] the hypothesis of amenability cannot
be weakened to the vanishing of second bounded cohomology. The first finitely generated examples
were found in [Fournier-Facio and Lodha 2023]; those examples have the additional property of being
nonindicable, answering a question of Navas [2018]. Since cbV is indicable, the existence of type-F1
examples with these stronger properties is still open.

We will always stick to the “nD 2 case” to avoid getting bogged down in notation, but the reader should
note that all of our results can be adapted to the braided Higman–Thompson groups bVn (as in [Aroca
and Cumplido 2022; Skipper and Wu 2023]) and their analogous subgroups cbVn, with appropriate small
modifications to the arguments. It would be interesting to try and adapt our arguments to other more
complicated Thompson-like groups related to asymptotically rigid mapping class groups, eg for positive
genus surfaces [Aramayona and Funar 2021] or for higher-dimensional manifolds [Aramayona et al. 2021].
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2 Braided Thompson groups

The first braided Thompson group, which we denote by bV and which has also been denoted by BV ,
Vbr and brV in the literature, was introduced independently by Brin [2007] and Dehornoy [2006], as a
braided version of Thompson’s group V . Other braided Thompson groups include the “F –like” pure
braided Thompson groups bF [Brady et al. 2008], various “T –like” braided Thompson groups [Funar
and Kapoudjian 2008; 2011; Witzel 2019], braided Higman–Thompson groups bVn [Aroca and Cumplido
2022; Skipper and Wu 2023], braided Brin–Thompson groups sVbr [Spahn 2021], the “ribbon braided”
Thompson group rV [Thumann 2017] and braided Röver–Nekrashevych groups brVd .G/ [Skipper and
Zaremsky 2023]. Most relevant to our purposes here is a close relative cbV of bV , which was also
introduced by Brin [2007] (there denoted by bBV ), and realized up to isomorphism as a concrete subgroup
of bV by Brady, Burillo, Cleary and Stein [Brady et al. 2008]; see also [Burillo and Cleary 2009].

Let us recall the definitions of bV and cbV using the standard braided tree pair model, as in [Brady et al.
2008; Zaremsky 2018a]. By a tree we will always mean a finite rooted planar binary tree. An element
of bV is represented by a representative triple .T�; ˇ; TC/, where T� is a tree, TC is a tree with the
same number of leaves as T�, say n, and ˇ is a braid in Bn. Elements of bV are equivalence classes
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ŒT�; ˇ; TC� of representative triples, where the equivalence relation is given by the notion of expansion,
which we now describe.

First, denote by �n WBn! Sn the usual map from the braid group to the symmetric group, recording how
the numbering of the strands at the bottom changes when the strands move to the top. (We may write � for
�n when we do not need to care about n.) Let .T�; ˇ; TC/ be a representative triple, say with T˙ having
n leaves and ˇ 2Bn, and let 1� k � n. Let T 0

C
be the tree obtained from TC by adding a caret to the kth

leaf, let T 0� be the tree obtained from T� by adding a caret to the �n.ˇ/.k/th leaf, and let ˇ0 2 BnC1 be
the braid obtained from ˇ by bifurcating the kth strand (counting at the bottom) into two parallel strands.

Definition 2.1 (expansion, equivalence) With the above setup, call .T 0�; ˇ
0; T 0
C
/ the kth expansion of

.T�; ˇ; TC/. Declare that two representative triples are equivalent if one is an expansion of the other, and
extend this to generate an equivalence relation on the set of representative triples.

The elements of the group bV are the equivalence classes ŒT�; ˇ; TC�, and the group operation is
described as follows. Given two elements ŒT�; ˇ; TC� and ŒU�; ; UC�, up to expansions we can assume
that TC D U�. Now we define

ŒT�; ˇ; TC�ŒTC; ; UC� WD ŒT�; ˇ; UC�:

Some immediate subgroups of bV include Thompson’s group F , which is the subgroup of elements of
the form ŒT�; 1; TC�, and the pure braided Thompson group bF , which is the subgroup of elements of
the form ŒT�; ˇ; TC� for ˇ a pure braid. We will also be especially interested in the following subgroup:

Definition 2.2 (the group cbV ) For each n 2 N, let yBn denote the standard copy of Bn�1 inside Bn
which only braids the first n�1 strands . Note that if .T 0�; ˇ

0; T 0
C
/ is an expansion of .T�; ˇ; TC/, say with

ˇ 2 Bn and ˇ0 2 BnC1, then ˇ 2 yBn if and only if ˇ0 2 yBnC1. Thus the equivalence classes ŒT�; ˇ; TC�
for ˇ 2 yBn form a well-defined subgroup of bV , denoted by cbV .

There is a convenient way to picture elements of bV as (equivalence classes of) so-called strand diagrams.
For an element ŒT�; ˇ; TC�, we picture TC upside-down and below T�, with ˇ connecting the leaves
of TC up to the leaves of T�. See Figure 1 for an example of an element of bV , and an expansion.

To accurately model the equivalence relation coming from expansion, and the group operation, which
amounts to stacking strand diagrams, some equivalences between strand diagrams naturally emerge. The
three key equivalences are shown in Figure 2.

See [Brady et al. 2008; Zaremsky 2018a] for more details.

2.1 Using pure braids and ribbon braids

Some more subgroups of bV arise when we restrict to pure braids. As before, consider the standard
projection Bn! Sn from the braid group Bn to the symmetric group Sn. The kernel of this map is the
pure braid group PBn. This leads us to the following definition of the pure braided Thompson group bF :
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D

Figure 1: An element ŒT�; ˇ; TC� of bV . We draw TC upside down, with ˇ as a braid from the
leaves of TC up to the leaves of T�. We have �4.ˇ/D .1 2 3/, so �4.ˇ/.2/D 3. Thus to perform
the 2nd expansion, we add a caret to the 2nd leaf of TC, a caret to the 3rd leaf of T�, and bifurcate
the 2nd strand of ˇ (counting from the bottom) into two strands. Note that this element lies in the
subgroup cbV since the rightmost strand does not braid with any of the others.

Definition 2.3 (the group bF ) If .T 0�; ˇ
0; T 0
C
/ is an expansion of .T�; ˇ; TC/ then ˇ0 is pure if and only

if ˇ0 is pure, so the equivalence classes ŒT�; ˇ; TC� for ˇ 2 PBn form a well-defined subgroup of bV ,
denoted by bF .

Note that bF is not normal in bV , but the following related subgroup is:

Definition 2.4 (the group bP ) Let bP denote the subgroup of bV consisting of all ŒT; ˇ; T � such that
ˇ is pure.

For reference, the group bP was denoted by PBV in [Brady et al. 2008] and by Pbr in [Zaremsky 2018a].
Note that the trees in ŒT; ˇ; T � must be the same, so bP is strictly smaller than bF . The quotient bV=bP
is isomorphic to Thompson’s group V , and the quotient bF=bP is isomorphic to Thompson’s group F
[Brady et al. 2008]. More precisely, upon passing to a quotient with kernel bP , the elements of bV change
from being represented by triples .T�; ˇ; TC/ for ˇ 2 Bn to being represented by triples .T�; �; TC/ for
� 2 Sn. The notion of expansion has an obvious analogue for permutations, and we get equivalence
classes ŒT�; �; TC�, which are the elements of V . The image of cbV under the projection bV ! V is a
group called yV , which was also considered in [Brin 2007]. The kernel cbV \bP of the projection cbV ! yV
has the following interesting property, which will be useful later:

D D D

Figure 2: The three key equivalences for strand diagrams, which can occur anywhere inside a
strand diagram representing an element of bV . Further equivalences are obtained by combining
these, and by rotating and reflecting the one on the right.

Algebraic & Geometric Topology, Volume 24 (2024)



Braided Thompson groups with and without quasimorphisms 1607

Lemma 2.5 There is an epimorphism cbV \ bP ! bP .

Proof An element of cbV \ bP is of the form ŒT; ˇ; T � for ˇ a pure braid in which the rightmost strand
does not braid with any of the others. Let T 0 be the subtree of T whose root is the left child of the root
of T (or if T is trivial, just take T 0 to also be trivial). Let ˇ0 be the (pure) braid obtained from ˇ by
deleting any strands corresponding to leaves of T that are closer to the right child of the root than the
left (so in particular, in the nontrivial case this includes the rightmost strand). Intuitively, ŒT 0; ˇ0; T 0� is
obtained by taking just the “left part” of ŒT; ˇ; T �, from the point of view of the root of T . This operation
is well defined up to expansions, and yields a well-defined homomorphism ŒT; ˇ; T �! ŒT 0; ˇ0; T 0� fromcbV \ bP to bP , which is clearly surjective.

Finally, let us discuss a “twisted” version of bV , called the ribbon braided Thompson group rV . This
arises by treating the strands in a strand diagram as ribbons, which are allowed to twist. This first appeared
officially in work of Thumann [2017, Section 3.5.3], where he proved that rV (there denoted by RV )
is of type F1. The idea of using ribbons to represent strands in bV was actually already present in
Brin’s original paper [2007], but without twisting. We will mostly follow the approach from [Zaremsky
2018b, Example 4.2], which uses the notion of cloning systems from [Witzel and Zaremsky 2018] to
provide a framework for elements of rV similar to the one we are using here for bV . An element
of rV is represented by a triple .T�; ˇ.m1; : : : ; mn/; TC/ where T� and TC are trees with n leaves and
ˇ.m1; : : : ; mn/2Bn oZ. More precisely, ˇ 2Bn, m1; : : : ; mn 2Z and Bn oZ denotes the wreath product
Bn Ë Zn with the action induced by the standard projection Bn! Sn. (We write our wreath products
with the acting group on the left, for convenience. Also, we may sometimes write ˇ.0; : : : ; 0/ as ˇ and
1Bn

.m1; : : : ; mn/ as .m1; : : : ; mn/ for the sake of notational elegance.) An expansion of this triple is
another triple of the form

.T 0�; ˇ
0s
mk

k
.m1; : : : ; mk�1; mk; mk; mkC1; : : : ; mn/; T

0
C/;

where T 0
C

is TC with a caret added to the kth leaf for some 1� k� n, ˇ0 is ˇ with its kth ribbon bifurcated
into two parallel ribbons, and T 0� is T� with a caret added to the �.ˇ/.k/th leaf. Here sk is the kth standard
generator of Bn, in the standard presentation

Bn D hs1; : : : ; sn�1 j sisiC1si D siC1sisiC1 for all i; and sisj D sj si for all i and j with ji � j j> 1i:

Let us adopt the convention that sk crosses the kth ribbon (counting at the bottom) under the .kC1/st

ribbon, and a positive single twist of a ribbon involves the left side of the ribbon (looking at the bottom)
twisting under the right side. These conventions make the definition of expansion look somewhat natural;
see Figure 3.

By taking the equivalence relation generated by expansion, we get equivalence classes of the form
ŒT�; ˇ.m1; : : : ; mn/; TC�, which comprise the group rV . Just like in bV , the group operation is given,
roughly, by first expanding until the right tree of the left element equals the left tree of the right element
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D

Figure 3: Expansion in rV . Here we see that Œ � ; 1B1
.1/; � �D Œ^; s1.1; 1/;^�, where � is the trivial

tree and ^ is a single caret.

and then canceling these trees. We could consider various subgroups of rV by restricting to pure braids
and/or full twists, but for our purposes we will just stick with all braids and all twists.

At this point we have
bP < bF < bV < rV;

where we view bV as the subgroup of rV consisting of elements ŒT�; ˇ.0; : : : ; 0/; TC�, that is, elements
with no twisting. As we have said, bP is normal in bF and bV , and in fact it is even normal in rV , as
we now show:

Lemma 2.6 The subgroup bP is normal in rV .

Proof Let ŒU; ; U �2bP and ŒT�; ˇ.m1; : : : ; mn/; TC�2 rV , expanding so that without loss of generality
U D TC. Then

ŒT�; ˇ.m1; : : : ; mn/; TC�ŒTC; ; TC�ŒT�; ˇ.m1; : : : ; mn/; TC�
�1

D ŒT�; ˇ.m1; : : : ; mn/; TC�ŒTC; ; TC�ŒTC; .�m1; : : : ;�mn/ˇ
�1; T��

D ŒT�; ˇ.m1; : : : ; mn/.�m1; : : : ;�mn/ˇ
�1; T��D ŒT�; ˇˇ

�1; T�� 2 bP:

The last equals sign holds because  is pure, and hence .m1; : : : ; mn/ D .m1; : : : ; mn/.

As we have said, the quotients bV=bP and bF=bP are isomorphic to V and F , respectively. The quotient
rV=bP is isomorphic to a Thompson-like group constructed analogously to rV but using Sn oZ instead
of Bn oZ; this could be made more precise by putting a cloning system, in the sense of [Witzel and
Zaremsky 2018], on the family of groups Sn oZ, but we will not need to worry about this here. Indeed,
all we will need to use rV=bP for later is to relate quasimorphisms of rV to quasimorphisms of bV , bF
and bP , and for this all we need to know about it is the following:

Lemma 2.7 The quotient rV=bP is uniformly perfect.
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Proof Note that bV=bP Š V is uniformly perfect [Gal and Gismatullin 2017]. Choose N 2 N such
that every element of V is a product of at most N commutators. Set M D 3N C 2. We claim that every
element of rV=bP is a product of at most M commutators. Let ŒT�; ˇ.m1; : : : ; mn/; TC�2 rV , and write
it as a product of three elements:

ŒT�; ˇ; TC�ŒTC; .m1; 0; : : : ; 0/; TC�ŒTC; .0;m2; : : : ; mn/; TC�:

Modulo bP , we know that this first factor is a product of at most N commutators. The second factor
is conjugate to ŒTC; .0;m1; 0; : : : ; 0/; TC� via the conjugator ŒTC; s1; TC�, and this is of the same form
as the third factor. Thus it suffices to focus on the third factor, and show that any element of the form
g D ŒT; .0;m2; : : : ; mn/; T � is, modulo bP , a product of at most N C 1 commutators.

Let T 0 be T with n�1 new carets added, one after the other, always attaching each new caret to the leftmost
leaf. Thus gD ŒT 0; .0; : : : ; 0;m2; : : : ; mn/; T 0�, where the number of 0s is n. Let T 00 be T with n�1 new
carets, one on each leaf other than the leftmost. Thus g D ŒT 00; .0;m2; m2; m3; m3; : : : ; mn; mn/; T 00�
for  2B2n�1 the braid that arises from performing this expansion, namely  D sm2

2 s
m3

4 � � � s
mn

2n�2. Setting
hD ŒT 00; ; T 00� 2 bV we get h�1g D ŒT 00; .0;m2; m2; m3; m3; : : : ; mn; mn/; T 00�. Now let ˛ 2 B2n�1
be any braid satisfying ˛.0; : : : ; 0;m2; : : : ; mn/˛�1 D .0;m2; 0;m3; : : : ; 0;mn; 0/ in B2n�1 oZ, and set
aD ŒT 00; ˛; T 0�. We get

aga�1 D ŒT 00; ˛; T 0�ŒT 0; .0; : : : ; 0;m2; : : : ; mn/; T
0�ŒT 0; ˛�1; T 00�

D ŒT 00; ˛.0; : : : ; 0;m2; : : : ; mn/˛
�1; T 00�D ŒT 00; .0;m2; 0;m3; : : : ; 0;mn; 0/; T

00�:

Hence h�1gag�1a�1D ŒT 00; .0; 0;m2; 0;m3; : : : ; mn�1; 0;mn/; T 00�. Now using a similar trick as when
we conjugated by a, this is conjugate to ŒT 0; .0; : : : ; 0;m2; : : : ; mn/; T 0�, which equals g. Thus g is
conjugate to h�1gag�1a�1, and considered modulo bP this is an element of V times a commutator, so
we are done.

It is worth recording the following consequence:

Corollary 2.8 The group rV is perfect.

Proof We already know bV is perfect [Zaremsky 2018a], so the derived subgroup rV 0 contains bV . In
particular it contains bP , and so rV=rV 0 is a quotient of rV=bP . This is perfect by Lemma 2.7, so we
conclude that rV D rV 0.

2.2 Algebraic properties of bbV

Our proof of Theorem 1.2 will rely on some algebraic properties of bV and cbV , which are the focus of
this subsection.

Definition 2.9 (right depth, cbV .1/) Say that the right depth of a tree is the distance from its rightmost
leaf to its root. Denote by cbV .1/� cbV the subgroup of elements that admit a representative of the form
.T�; ˇ; TC/ such that T� and TC both have right depth 1.
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Figure 4: The proof of Lemma 2.11: conjugating an element of cbV .1/ by x0 yields another
element of cbV .1/.

Note that cbV .1/ is naturally isomorphic to bV . Indeed, we have an isomorphism bV ! cbV .1/ given by
ŒT�; ˇ; TC�! ŒU�; ; UC�, where U� is obtained from T� by adding a new caret whose left leaf is the root
of T�, UC is obtained from TC by adding a new caret whose left leaf is the root of TC, and  is obtained
from ˇ by adding one new unbraided strand on the right. This is also discussed in [Brady et al. 2008].

Definition 2.10 (homomorphism �1, subgroup yD) Let �1 W cbV ! Z be the homomorphism sending
ŒT�; ˇ; TC� to the right depth of T� minus the right depth of TC. Since expansions preserve this
measurement, thanks to the rightmost strand of such a ˇ not braiding, this is well defined, and is clearly a
homomorphism. Denote by yD the kernel in cbV of �1.

We call this map �1 since its restriction to Thompson’s group F � cbV coincides with a map usually
denoted by �1. Note that yD consists of all ŒT�; ˇ; TC�2cbV such that T� and TC have the same right depth.
In particular yD contains cbV .1/. We will see in Corollary 2.14 that yD equals the derived subgroup of cbV .

Recall the usual first generator x0 of Thompson’s group F . This is the element x0 D ŒT2; 1; T1�, where
Ti is the tree consisting of a caret with a caret attached to its i th leaf, and 1 is the identity in B3. Note
that �1.x0/D 1. Also note that x�10 D ŒT1; 1; T2�.

Lemma 2.11 We have x�10 �cbV .1/ � x0 � cbV .1/.
Proof This is clear using strand diagrams; see Figure 4. In the figure, we represent an element of cbV .1/
by drawing the first carets of each tree and the last (unbraided) strand of the braid, and then drawing a
gray box to represent the arbitrary remainder of the picture. Now conjugating by x0 and applying some of
the equivalence moves from Figure 2, we see that in the resulting strand diagram the trees again have right
depth 1 and the rightmost strand is unbraided (in fact the two rightmost strands are both unbraided).
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Figure 5: An example of the proof of Lemma 2.12 (for A having just one element): conjugating
an element of yD in which the trees have right depth 3 by x20 yields an element of cbV .1/.

Lemma 2.12 For any finite subset A of yD, there exists k � 0 such that x�k0 �A � x
k
0 �

cbV .1/.
Proof Since A is finite, we can choose k � 0 such that every element of A can be represented by a triple
.T�; ˇ; TC/ in which the right depth of T� (and thus TC) is at most kC 1. For any such .T�; ˇ; TC/, it
is clear that x�k0 � ŒT�; ˇ; TC� � x

k
0 2

cbV .1/. See Figure 5 for an example.

Corollary 2.13 The group cbV is isomorphic to an ascending HNN-extension of bV .

Proof To get our result, we will verify the conditions in [Geoghegan et al. 2001, Lemma 3.1] usingcbV .1/ (which is isomorphic to bV ) as the base and x0 as the stable letter. Clearly no nontrivial power
of x0 lies in cbV .1/. Lemma 2.11 shows that x�10 �cbV .1/ �x0 � cbV .1/. Finally, we need to show that cbV
is generated by cbV .1/ and x0. Given ŒT�; ˇ; TC� 2 cbV , up to right multiplication by a power of x0 we
can assume that ŒT�; ˇ; TC� 2 yD, ie T� and TC have the same right depth. Now Lemma 2.12 says we
can conjugate by some power of x0 so that our element lands in cbV .1/.
Corollary 2.14 The derived subgroup cbV 0 equals yD, so the abelianization of cbV is Z, given by the
map �1.

Proof Since yD is the kernel of a map to Z, it contains cbV 0. Conversely, since cbV .1/ is isomorphic
to bV , and bV is perfect [Zaremsky 2018a], Lemma 2.12 implies that any element of yD is conjugate
in cbV to an element of a perfect subgroup of cbV , which shows that every element of yD lies in cbV 0. This
shows cbV 0 D yD, and the second statement follows since yD is the kernel of �1 in cbV .
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Figure 6: An arbitrary conjugate of an element of cbV .1/ by g. We see that it will commute with
any element of cbV .1/.

Brin [2006] showed that bV and cbV are finitely presented. In fact, bV is even of type F1 [Bux et al.
2016]. The techniques in [loc. cit.] could likely be used to show that cbV is also of type F1, but now,
thanks to Corollary 2.13, we can prove this much more quickly:

Corollary 2.15 The group cbV is of type F1.

Proof It is a standard fact that an ascending HNN-extension of a group of type Fn is itself of type Fn;
see eg [Baumslag et al. 1980, end of Section 2]. Since bV is of type F1 [Bux et al. 2016], Corollary 2.13
implies that cbV is as well.

The key dynamical feature that will make bounded cohomology vanish is contained in the following lemma:

Lemma 2.16 There exists g 2 yD such that every element of cbV .1/ commutes with every element of
g�1 �cbV .1/ �g.

Proof We define gD ŒT2; s1; T2�, where as before T2 is a caret with a second caret hanging on the right,
and s1 is the first standard generator of B3, ie the element braiding the first two strands with a single twist.
Since ˇ does not braid the rightmost strand we have g 2 cbV , and since clearly �1.ŒT2; ˇ; T2�/D 0 we
have g 2 yD. We see in Figure 6 that, in any element of g�1 �cbV .1/ �g, the trees both have “left depth” 1
and the first strand does not braid with anything. Since elements of cbV .1/ and g�1 �cbV .1/ �g therefore
braid disjoint sets of strands, they commute.
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3 Second bounded cohomology

We will work only with bounded cohomology with trivial real coefficients, and use the definition in terms
of the bar resolution. We refer the reader to [Brown 1982; Frigerio 2017] for a general and complete
treatment of ordinary and bounded cohomology of discrete groups, respectively. For the more general
setting of locally compact groups, we refer the reader to [Monod 2001].

For every n�0, denote by Cn.�/ the set of real-valued functions on�n. By convention, �0 is a single point,
so C0.�/ŠR consists only of constant functions. We define differential operators ı� WC�.�/!C�C1.�/

by ı0 D 0 and, for n� 1,

ın.f /.g1; : : : ; gnC1/

D f .g2; : : : ; gnC1/C

nX
iD1

.�1/if .g1; : : : ; gigiC1; : : : ; gnC1/C .�1/
nC1f .g1; : : : ; gn/:

One can check that ı�C1ı� D 0, so .C�.�/; ı�/ is a cochain complex. We denote by Z�.�/ WD ker.ı�/ the
set of cocycles, and by B�.�/ WD im.ı��1/ the set of coboundaries. The quotient H�.�/ WD Z�.�/=B�.�/

is the cohomology of � with trivial real coefficients. We will also call this the ordinary cohomology to
make a clear distinction from the bounded one, which we proceed to define.

Restricting to functions f W ��!R that are bounded, meaning that their supremum kf k1 is finite, leads
to a subcomplex .C�

b
.�/; ı�/. We denote by Z�

b
.�/ the bounded cocycles and by B�

b
.�/ the bounded

coboundaries. The vector space H�

b
.�/ WD Z�

b
.�/=B�

b
.�/ is the bounded cohomology of � with trivial

real coefficients.

The inclusion of the bounded cochain complex into the ordinary one induces a linear map at the level of
cohomology, called the comparison map:

c�
W H�

b.�/! H�.�/:

This map is in general neither injective nor surjective. In degree 2, the kernel admits a description in
terms of quasimorphisms:

Proposition 3.1 [Calegari 2009b, Theorem 2.50] Let Q.�/ denote the space of quasimorphisms on �
up to bounded distance , and Z1.�/ the space of homomorphisms �!R. Then the sequence

0! Z1.�/!Q.�/
Œı1.�/�
�����! H2b.�/

c2

�! H2.�/

is exact. In particular , c2 is injective if and only if every quasimorphism on � is at a bounded distance
from a homomorphism.

While many applications of bounded cohomology in geometric group theory, eg the study of stable
commutator length, are only concerned with quasimorphisms, in different settings the full knowledge
of H2

b
is of interest. Notable instances include the classification of circle actions [Ghys 1987], and the

construction of manifolds with prescribed simplicial volume [Heuer and Löh 2021; 2023].
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In order to prove Theorem 1.2, that cbV has vanishing second bounded cohomology, it is enough to prove
this for the subgroup yD (from Definition 2.10), thanks to the following fact:

Proposition 3.2 ([Monod 2001, 8.6]; see also [Monod and Popa 2003]) Let n� 0. Let � be a group
and N a normal subgroup such that �=N is amenable. Then the inclusion N ! � induces an injection in
bounded cohomology Hn

b
.�/! Hn

b
.N /. In particular , if Hn

b
.N /D 0 then Hn

b
.�/D 0.

To prove vanishing of H2
b
. yD/, we will use the following notion:

Definition 3.3 Let � be a group. We say that � has commuting conjugates if for every finitely generated
subgroupH �� there exists g 2� such that every element ofH commutes with every element of g�1Hg.

Theorem 3.4 [Fournier-Facio and Lodha 2023] If � is a group with commuting conjugates , then
H2
b
.�/D 0.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2 Since cbV = yD Š Z by definition, using Proposition 3.2 it suffices to show that
H2
b
. yD/ D 0. By Theorem 3.4 it suffices to show that yD has commuting conjugates. Let H � yD be a

finitely generated subgroup. By Lemma 2.12 there exists k � 0 such that x�k0 �H � x
k
0 �

cbV .1/. Then by
Lemma 2.16 there exists g2 yD such that every element of g�1 �x�k0 �H �x

k
0 �g commutes with every element

of cbV .1/, and so in particular with every element of x�k0 �H � x
k
0 . Thus, every element of the conjugate

of H by xk0 �g �x
�k
0 commutes with every element of H . Finally, note that xk0 �g �x

�k
0 2

yD since g 2 yD,
x0 2cbV and yD is normal in cbV . This shows that yD has commuting conjugates and concludes the proof.

4 Quasimorphisms on rV and bV

In this section we prove Theorem 1.1. We will first work with the ribbon braided Thompson group
rV and prove that Q.rV / is infinite-dimensional (Proposition 4.2), and then prove that unbounded
quasimorphisms of rV restrict to unbounded quasimorphisms of bV , bF and bP (and indeed, any �
satisfying bP � � � rV ).

First we need to make the connection between rV and MCG.R2 nK/. This was done implicitly in
[Aramayona and Funar 2021; Funar and Kapoudjian 2004], and more explicitly in [Skipper and Wu
2021, Theorem 3.24]. In short, rV is isomorphic to a certain subgroup of mapping classes of S2 nK,
namely those that are “asymptotically quasirigid” with respect to some “rigid structure” involving choices
of “admissible subsurfaces” and only act on half of S2 nK in some sense; see [Skipper and Wu 2021,
Definition 3.7] for all the details. We can view this as describing certain mapping classes of D2 nK that
do not require the boundary of D2 to be fixed, but rather allow it to be half-twisted. For an example
providing the intuition for how to view an element of bV as a mapping class, see Figure 7.
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Figure 7: A visualization of the element ŒT�; ˇ; TC� of bV from Figure 1 as a mapping class on
the disk. The bottom (domain) tree TC describes a decomposition of D2 into the pieces shown,
and the top (range) tree T� describes another such decomposition. The braid ˇ then treats the
four smallest subdisks in the domain as “holes”, with the range viewed similarly, and gives a
homeomorphism from the former to the latter, indicated by the dotted lines. This element does
not involve twists, but one could picture the holes twisting as well, yielding an element of rV .

Now we pass from this picture to MCG.R2 nK/ by viewing D2 nK inside R2 nK at the expense of
modding out the cyclic subgroup generated by a full twist around the boundary of D2. This is represented
by the element Œ � ; 1B1

.2/; � � of rV , which generates the center Z.rV /, so at this point we have embedded
rV=Z.rV / inside MCG.R2nK/. In particular, we can work in MCG.R2nK/ to prove thatQ.rV=Z.rV //
is infinite-dimensional, from which it will immediately follow that Q.rV / is as well. It is also worth
mentioning that bV \Z.rV /D f1g, so this provides an explicit embedding of bV into MCG.R2 nK/.

4.1 Quasimorphisms on rV

The proof thatQ.rV=Z.rV // is infinite-dimensional closely follows Bavard’s proof [2016, Théorème 4.8]
that Q.MCG.R2 nK// is infinite-dimensional.1 We will especially use the constructions from [Bavard
2016, Section 4.1].

Bavard [2016] constructs the so-called ray graph Xr associated to the surface R2 nK, and shows that
it is hyperbolic. She proceeds to show that the action of MCG.R2 nK/ on Xr satisfies the hypotheses
of Bestvina and Fujiwara’s main theorem [2002], which implies that Q.MCG.R2 n K// is infinite-
dimensional. To prove our Proposition 4.2, we will show that the action of rV=Z.rV / also satisfies these
properties, and make reference to [Bavard 2016, Section 4] throughout.

We start by reviewing Bavard’s proof for MCG.R2 nK/. By the main theorem of [Bestvina and Fujiwara
2002], it suffices to exhibit elements h1; h2 2MCG.R2 nK/ with the following properties:

(1) h1 and h2 are hyperbolic elements for the action of MCG.R2 nK/ on Xr , acting by translation on
axes l1 and l2, which are equipped with the orientation of the action of the respective elements.

1This is Theorem 4.9 in the English translation.
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(2) h1 and h2 are independent, meaning that their fixed point sets in @Xr are disjoint.

(3) There exist constants B and C such that for every segment w of l2 longer than C , for every
g 2MCG.R2nK/, if the segment g �w is contained in the B–neighborhood of l1, then it is oriented
in the opposite direction.

Identify K with the set f0; 1gN of infinite words � in the alphabet f0; 1g, and for each finite word
w 2 f0; 1g� let K.w/ WD fw� j � 2Kg be the cone corresponding to w. Then define

K0 DK.00/; K1 DK.010/; K2 DK.0110/; : : : ; K1 D f0N1g;

K�1 DK.11/; K�2 DK.101/; K�3 DK.1001/; : : : ; K�1 D f1N0g:

This provides a partition of K into sets Ki for �1� i �1, where each Ki for i 2Z is a clopen set and
each K˙1 contains one point.

Let us now be more precise about how we would like K to live inside of R2. Assume that K lies on the
horizontal axis R and is symmetric around 0…K, and thatKi �R<0 for all 0� i �1 andKi �R>0 for all
�1� i��1. Let I �R be a symmetric open neighborhood of 0 that is disjoint fromK. Finally, let C�R2

be a homeomorphic copy of a circle, formed as the union of a segment in the horizontal axis R containing
all ofK and a semicircle in the upper half-plane. Let � denote the homeomorphism of R2 that is a half-turn
rotation about the origin, so � stabilizes K, and denote by � the mapping class of � in MCG.R2 nK/.

Theorem 4.1 [Bavard 2016, Théorème 4.8] Let Qt1 be any homeomorphism of R2 that stabilizes C,
restricts to the identity on I and sends Ki to KiC1 for each i 2 Z. Let t1 2MCG.R2 nK/ be the class
of Qt1, let t2 WD �t1��1, let h1 WD t1t2t1 and let h2 WD �h�11 ��1. Then the elements h1 and h2 satisfy
the three properties above , and hence any subgroup of MCG.R2 nK/ containing h1 and h2 has an
infinite-dimensional space of quasimorphisms.

As we have seen, rV maps to MCG.R2nK/with kernelZ.rV /ŠZ. Note that the image in MCG.R2nK/
of the element Œ � ; 1B1

.1/; � � 2 rV , which is a single half-twist on one ribbon, is precisely the mapping
class �.

Proposition 4.2 The space Q.rV / is infinite-dimensional.

Proof We will prove thatQ.rV=Z.rV // is infinite-dimensional, which implies our result. By Theorem 4.1
it suffices to show that the elements h1 and h2 can be realized inside of rV=Z.rV /. Since each of h1
and h2 is obtained as a product of conjugates of t1 by � and since � 2 rV=Z.rV /, it suffices to show that
t1 can be realized inside rV=Z.rV /.

Recall that, in Theorem 4.1, the homeomorphism Qt1 representing t1 can be any homeomorphism of R2

satisfying

(1) Qt1 stabilizes the topological circle C,

(2) Qt1jI is the identity, and

(3) Qt1.Ki /DKiC1 for each i 2 Z.
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Figure 8: The desired element. Left: a ribbon strand diagram representing this element. Right:
the corresponding mapping class, as in Figure 7. We indicate the circle C with rainbow colors and
labels a–f, to make it clear how the mapping class acts on it. The fixed interval I is red (e).

Note that Qt1 is defined on all of R2, so the image Qt1.Ki / is well defined, even if what we are interested in
is a class t1 2MCG.R2 nK/— this is the usual equivocation between punctures and marked points.

Consider the element ŒT1; s�11 s�12 .0; 0;�2/; T2� of rV represented as in Figure 8.

With C and I as indicated in the picture, it is clear that up to isotopy C is stabilized (thanks to the third
strand twisting), and that I is fixed pointwise. One can also check that Ki is sent to KiC1 for each i 2Z.
We conclude that all the criteria are satisfied, and so we are done.

4.2 Quasimorphisms on bV

The final step in the proof of Theorem 1.1 is to show that the quasimorphisms on rV constructed in the
previous subsection restrict to nontrivial quasimorphisms on bV , bF and bP . This will be a consequence
of the following general statement applied to rV and bP , which follows from left exactness of Q; see
[Calegari 2009b, Remark 2.90].

Lemma 4.3 Let � be a group and ƒ� � a normal subgroup , and suppose that Q.�=ƒ/D 0. Then the
restriction Q.�/!Q.ƒ/ is injective.

Proof of Theorem 1.1 Let � be any group such that bP � � � rV , for instance any of the groups
in the statement of the theorem. Note that the quotient rV=bP is uniformly perfect by Lemma 2.7, so
every quasimorphism on rV=bP is bounded [Calegari 2009b, Lemma 2.2.4], ie Q.rV=bP /D 0. Hence
Lemma 4.3 applies, and the restriction Q.rV /!Q.bP / is injective. Since this map factors through
Q.rV /!Q.�/, this restriction is also injective. We conclude by Proposition 4.2.
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Since every quasimorphism on a uniformly perfect group is bounded [Calegari 2009b, Lemma 2.2.4], an
immediate corollary of Theorem 1.1 is the following:

Corollary 4.4 The group bV is not uniformly perfect.

Of course we also conclude that rV is not uniformly perfect, despite being perfect (Corollary 2.8). Note
that bF is not perfect (it has abelianization Z4), but it follows from [Zaremsky 2018a] that bF 0 is perfect.
However, we can deduce in the same way:

Corollary 4.5 The group bF 0 is not uniformly perfect.

We should also mention another group fitting between bP and rV and thus having infinite-dimensional
space of quasimorphisms, namely the “braided T ” group from [Witzel 2019]. This is the subgroup of bV
consisting of elements ŒT�; ˇ; TC� such that �.ˇ/ 2 Sn is a cyclic permutation.

Let us discuss restricting quasimorphisms of bV to cbV . If � �MCG.R2 nK/ has a bounded orbit in Xr ,
then the quasimorphisms produced via this action are bounded on � . This is analogous to the behavior
of finite-type mapping class groups, in particular for the braid group [Feller 2022], and was already
noted by Calegari [2009a] for MCG.R2 nK/. We see that in fact this happens for cbV , since it fixes the
isotopy class of the ray going from the rightmost point of the Cantor set to infinity on the right. Thanks
to Theorem 1.2, we can actually prove a stronger version of this statement. Namely, not only are these
quasimorphisms bounded on cbV , but the same is true for every quasimorphism of bV .

Corollary 4.6 For every quasimorphism q of bV , the image of cbV under q is bounded.

Proof Let  D Œ � ; 1B1
.1/; � �. Then viewing rV=Z.rV / as a subgroup of MCG.R2 nK/, we have

 Z.rV /D �. Note that the conjugate  �1cbV  equals the subgroup of bV consisting of all elements
where the leftmost strand does not braid with anything. Let �0 W  �1cbV  ! Z be the map sending
 �1g to �1.g/. Since conjugation by  is an isomorphism, Corollary 2.14 implies that the kernel
of �0 equals the derived subgroup . �1cbV  /0.
Let g 2 cbV , and choose h 2 cbV \ �1cbV  such that �1.h/D �1.g/ and �0.h/D 0. In particular, h
lies in . �1cbV  /0 and gh�1 lies in cbV 0. By Corollary 1.3, there exists a scalar � 2R such that qjcbV is
at a bounded distance r.q/ from � ��1, where �1 is the abelianization map of cbV (Corollary 2.14). It
follows that

jq.gh�1/j � j� ��1.gh
�1/jC r.q/D r.q/:

We also get jq.h/j � r.q/ by the same argument applied to  �1cbV  (which is isomorphic to cbV ), up to
taking a larger r.q/. Thus

jq.g/j � jq.gh�1/jC jq.h/jCD.q/� 2r.q/CD.q/:

This shows that qjcbV is bounded, which concludes the proof.
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Together with Theorem 1.1, this implies that, analogously to Corollary 4.4, there is no uniform-length
factorization for elements of bV in terms of conjugates of elements in cbV . Indeed, if such a factorization
did exist, we could run a similar argument as in the proof of Corollary 4.6, and obtain that every
quasimorphism of bV is bounded.

As one last indication of braided Thompson groups exhibiting unusual bounded cohomological behavior,
consider the short exact sequence 1! cbV \ bP ! cbV ! yV ! 1. By Theorem 1.2 H2

b
.cbV /D 0, and in

fact the proof works using permutations instead of braids, mutatis mutandis, to show that H2
b
. yV /D 0

(also, it is true in general that a quotient of a group with vanishing second bounded cohomology itself
has vanishing second bounded cohomology [Bouarich 1995]). However, by Theorem 1.1 Q.bP / is
infinite-dimensional, and thus so is Q.cbV \ bP / since cbV \ bP surjects onto bP (Lemma 2.5); in
particular, H2

b
.cbV \ bP / is infinite-dimensional.

This gives a concrete example of the failure of a 2-out-of-3 property for vanishing of second bounded
cohomology: if a group � has vanishing second bounded cohomology and a quotient �=N has the
same property, then the kernel N can still have infinite-dimensional second bounded cohomology. For
comparison, if H2

b
.N /D 0, then H2

b
.�/D 0 if and only if H2

b
.�=N/D 0 [Moraschini and Raptis 2023,

Corollary 4.2.2]. The failure of this 2-out-of-3 property was observed in [Fournier-Facio et al. 2023,
Theorem 4.5] for every degree, but this is to our knowledge the first “naturally occurring” example in
degree 2, as well as the first finitely generated one (and even type F1).
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Fix a finite group G. We study �SO;G
2 and �U;G2 , the unitary and oriented bordism groups of smooth G–

equivariant compact surfaces, respectively, and we calculate them explicitly. Their ranks are determined
by the possible representations around fixed points, while their torsion subgroups are isomorphic to the
direct sum of the Bogomolov multipliers of the Weyl groups of representatives of conjugacy classes of all
subgroups of G. We present an alternative proof of the fact that surfaces with free actions which induce
nontrivial elements in the Bogomolov multiplier of the group cannot equivariantly bound. This result
permits us to show that the 2–dimensional SK–groups (Schneiden und Kleben, or “cut and paste”) of the
classifying spaces of a finite group can be understood in terms of the bordism group of free equivariant
surfaces modulo the ones that bound arbitrary actions.

55N22, 57R75, 57R77, 57R85

1 Introduction

Equivariant bordism groups have been a subject of ongoing research since the 1960s. Conner, Floyd,
Landweber, Stong, Smith and tom Dieck, among others, laid the foundations for the extraordinary
homology and cohomology theories obtained from equivariant bordism, and found many interesting
properties of these groups. Given a finite group G, a particularly important problem is the explicit
calculation of the oriented and complex G–equivariant bordism groups of a point, since they provide the
coefficients for the theories. This turns out to be a complicated task.

Explicit calculations of the equivariant bordism groups for finite abelian groups (see Landweber [19],
Ossa [26] and Stong [34]) led some to expect that, at least in the unitary case, equivariant bordism groups
are always a free module over the unitary bordism ring for any finite group G; see Rowlett [28, page 1],
May [21, Chapter XXVIII.5] and Greenlees and May [12, Conjecture 1.2]. This belief was confirmed
for general abelian groups (see Löffler [20] and [21, Chapter XXVIII, Theorem 5.1]) and for metacyclic
groups [28], and therefore it was conjectured that for any finite group this was the case. This conjecture
remained dormant for some years and it was recalled Uribe in his 2018 ICM Lecture [35], where he
named it “the evenness conjecture in equivariant unitary bordism”.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
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When the evenness conjecture holds true for a group G, it implies that the G–equivariant unitary bordism
ring is torsion-free. In particular, any unitary manifold with a free action of a finite group that generates a
torsion class in the unitary bordism group of free actions would bound equivariantly. This has always
been the first step for proving the evenness conjecture, namely, to construct explicit equivariant manifolds
whose boundaries are the desired generators of the equivariant unitary bordism groups of free actions.

In the case of surfaces, the evenness conjecture would imply that all oriented surfaces with orientation-
preserving free actions bound equivariantly (note that if an oriented surface with orientation-preserving
free action does not bound equivariantly, then the class of the difference of this surface with G–times the
quotient surface induces a nontrivial torsion class in the reduced G–equivariant unitary bordism group).
Domínguez and Segovia [9] showed that indeed this is the case for abelian, dihedral, symmetric and
alternating groups. Nevertheless, it fails to be true in general. It has been recently shown that there is an
obstruction class for an oriented surface with an orientation-preserving free action to bound equivariantly
(see Samperton [29; 30]), and this obstruction class lies in the Bogomolov multiplier of the group; see
Bogomolov [3] and Kunyavskiı̆ [18]. The Bogomolov multiplier of a finite group consists of the classes
of the Schur multiplier H 2.G;C�/ that vanish once restricted to any abelian subgroup; the homological
version of the Bogomolov multiplier is the quotient of the second integral homology of the group by the
classes generated by 2–dimensional tori; see Moravec [22]. This result implies that indeed there are torsion
classes in the equivariant unitary bordism groups, and therefore that the evenness conjecture in equivariant
unitary bordism is false in general. The evenness conjecture might then be restated instead as a classification
question, namely which finite groups satisfy the evenness conjecture in equivariant unitary bordism?

We focus on the calculation of the oriented and the unitary G–equivariant bordism groups for compact
surfaces. We use the fixed-point construction methods developed by Rowlett [27] to determine the rank of
the equivariant bordism groups, and then use the explicit generators of the equivariant bordism groups for
adjacent families in dimension 3 in order to determine which equivariant surfaces bound. In Theorem 4.3
we present a generalization to all finite groups of the result shown by Samperton in [29] which states that
the obstruction class for equivariantly bounding an oriented surface with free action is the element in the
Bogomolov multiplier of the group that the surface defines. The Conner–Floyd spectral sequence will then
allow us to determine the torsion group in the equivariant bordism group of surfaces. Our main result is:

Theorem 4.4 Let G be a finite group and TorZ.�
G
2 / the torsion subgroup of the unitary or oriented

G–equivariant bordism of surfaces �G2 . Then there is a canonical isomorphismM
.K/

zB0.WK/Š TorZ.�
G
2 /;

where .K/ runs over all conjugacy classes of subgroups of G, WK D NGK=K and zB0.WK/ is the
homology version of the Bogomolov multiplier of the group WK .

With the torsion group in hand, we describe explicitly in Theorem 4.5 the G–equivariant bordism groups
of surfaces, unitary and oriented.

Algebraic & Geometric Topology, Volume 24 (2024)
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Since there are infinitely many groups with nontrivial Bogomolov multipliers, we conclude that there are
infinitely many groups which do not satisfy the evenness conjecture in equivariant unitary bordism. On
the other hand, there are also infinitely many groups G whose G–equivariant unitary bordism group of
surfaces is a free abelian group, thus implying that these groups may still satisfy the evenness conjecture
for equivariant unitary bordism.

We use our previous calculations to interpret which equivariant surfaces bound in terms of the SK–relation
(cutting and pasting from the German Schneiden und Kleben). The study of invariants under cutting and
pasting started with the characterization by Jänich [15; 14] of invariants with the additive properties of the
Euler characteristic and the signature, and it was further developed with the introduction of the SK–groups
of a space by Karras, Kreck, Neumann and Ossa [17]. The SK–groups of a space can be understood as the
groups of equivalence classes of manifolds with continuous maps to the space subject to the equivalence
relation given by cutting and pasting. The 2–dimensional SK–groups of BG can be understood in terms
of cutting and pasting surfaces with free G–actions. The SK–groups of BG were studied in [17] and were
identified by Neumann in [24, Theorem 2] with the second integral homology group of BG modulo the toral
classes (as far as we know this is the first reference where the homological Bogomolov multiplier appears).

We conclude with the study of two explicit groups, of order 64 and 243, whose Bogomolov multipliers
are nontrivial. We sketch why both groups possess nontrivial Bogomolov multipliers and give explicit
homomorphisms from the fundamental group of a genus-2 surface to both groups that define the desired
surfaces with free actions that do not bound equivariantly. These constructions allow us to give explicit
generators for the torsion subgroup of the equivariant unitary bordism groups for both groups.

2 Preliminaries

2.1 Equivariant bordism

Let G be a finite group and consider compact manifolds endowed with smooth actions of the group G
preserving either the orientation or the unitary (tangentially stable almost complex) structure.

Recall that a tangentially stable almost complex G–structure over the G–manifold M consists of a
G–equivariant complex vector bundle � over M such that TM˚Rk Š � as G–equivariant real vector
bundles and k is some natural number; here G acts trivially on the stabilized part Rk . Two tangentially
stable almost complex structures are identified if they become isomorphic as complex vector bundles
after stabilization with further G–trivial C summands.

With this definition at hand, if K is a subgroup of G, then the fixed-point set MK is endowed with a
canonical tangential stable almost complex WK–structure with WK WDNGK=K. This follows from the
isomorphism of WK–equivariant real bundles

(1) �K Š .TM˚Rk/K Š .TMjMK /K ˚Rk D T .MK/˚Rk

and the fact that �K becomes a WK–equivariant complex vector bundle over MK .

Algebraic & Geometric Topology, Volume 24 (2024)
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Now, as NGK–equivariant real vector bundles, we have the isomorphism

(2) �jMK Š TMjMK ˚Rk Š T .MK/˚ �.MK ;M/˚Rk Š �K ˚ �.MK ;M/;

where �.MK ;M/ denotes the normal bundle of the embedding MK ,!M . Since both �jMK and �K are
NGK–equivariant complex vector bundles over MK , the normal bundle �.MK ;M/ is naturally endowed
with the structure of an NGK–equivariant complex vector bundle. The fact that the normal bundles of the
fixed points MK are endowed with complex structures plays an important role in the study of tangentially
stable almost complex G–structures.

Tangentially stable almost complex G–structures are also called G–equivariant unitary structures, and
the equivalence classes of manifolds under the bordism relation in the realm of G–equivariant unitary
structures is called the G–equivariant unitary bordism group.

Following the notation of Stong [34], denote by �G� either the bordism ring �SO;G
� of G–equivariant

oriented manifolds or the bordism ring�U;G� ofG–equivariant unitary (tangentially stable almost complex)
manifolds. Whenever the upper script SO or U is not specified, it means that the construction and results
apply to both homology theories.

For the explicit definitions of both unitary and oriented equivariant bordism rings see [34, Section 2], and for
the properties of the tangentially stable almost complex manifolds defining the unitary equivariant bordism
groups, including the ones presented above, see [21, XXVIII, Section 3; 13, Section 2; 2, Section 5].

2.2 Equivariant bordism for families

The study of the equivariant bordism groups led Conner and Floyd to restrict their attention to manifolds
with prescribed isotropy groups [4; 5]. The allowed isotropy groups are therefore organized in families of
subgroups of G which are closed under conjugation and under taking subgroups. For any such family of
subgroups F there is a classifyingG–space EF for actions whose isotropy groups lie on F . ThisG–space
is characterized by its properties on fixed-point sets, namely, the fixed-point set EFH is contractible
whenever H 2 F and empty otherwise. The construction of EF can be carried out in such a way that an
inclusion of families F 0 � F induces a G–cofibration EF 0!EF [8, Section 1.6].

The equivariant bordism groups �G� fF ;F 0g for a pair of families F 0 � F are the bordism groups of
G–equivariant compact manifolds with boundary .M; @M/ such that the isotropy groups of M lie in F
and the isotropy groups of its boundary @M lie in F 0. Following [7, page 310] one may define the bordism
of groups for a pair of G–spaces .X;A/ and a pair of families by

(3) �G� fF ;F
0
g.X;A/ WD�G� .X �EF ; X �EF 0[A�EF/;

or, equivalently, using a more geometrical description [34].

Algebraic & Geometric Topology, Volume 24 (2024)
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2.3 Long exact sequence for families

Whenever three families are related by the inclusions F 00�F 0�F there is induced a long exact sequence
in bordism [5, Theorem 5.1]

(4) � � � !�G� fF
0;F 00g !�G� fF ;F

00
g !�G� fF ;F

0
g
@
�!�G��1fF

0;F 00g ! � � � :

2.4 Conner–Floyd spectral sequence

More generally, associated to the families F0�F1� � � � �FkDF there is a spectral sequence converging
to �Gn fFg, whose filtration is

(5) Fp�
G
n fFg WD Im.�Gn fFpg !�Gn fFg/:

This spectral sequence is usually called the Conner–Floyd spectral sequence, its first page is given by

(6) E1p;q Š�
G
pCqfFp;Fp�1g;

and the differentials are induced by the boundary maps. The first page of this spectral sequence might
be difficult to calculate, but whenever the pair of families Fp�1 � Fp are adjacent (see below for the
definition), fixed-point methods together with the classification of the normal bundles can make them
computable in terms of nonequivariant bordism groups.

2.5 Equivariant bordism for adjacent families

A pair of families F 0 � F are called adjacent whenever they differ by the conjugacy class .K/ of a
subgroup K, in other words F � F 0 D .K/. A manifold .M; @M/ in �Gn fF ;F 0g is cobordant to the
G–equivariant tubular neighborhood of the fixed-point set of all the subgroups of G conjugate to K (all
isotropy groups in the complement of the tubular neighborhood belong to F 0; the explicit bordism can
be found in [5, Lemma 5.2]). The fixed points MK of K become a free WK WD NGK=K space and
the G–equivariant tubular neighborhood can be reconstructed from a specific WK–equivariant twisted
bundle over MK by extending the NGK space to a G space. Hence, if MK is of dimension n � k
and MK=WK is connected, its tubular neighborhood can be recovered from a map MK ! CNGK;K.k/

where CNGK;K.k/ is aWK–space which classifies the NGK–equivariant tubular neighborhoods of rank k
around K–fixed points [35, (2.5)]. In the unitary case there is a decomposition in terms of nonequivariant
unitary bordism groups [35, Theorem 2.8]

(7) �U;Gn fF ;F 0g WD
M
2k�n

�Un�2k.CNGK;K.k/�WK
EWK/;

and a similar one in the case of oriented bordisms [1, Theorem 2.11] This localization theorem will
become very useful in what follows once we apply it for the study of the equivariant bordism groups of
surfaces.
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2.6 G–fixed points

For every subgroup K of G denote by AK the family of all subgroups of K and its conjugates in G,
and denote by PK the family AK � .K/ of all proper subgroups of K, and its conjugates in G. The
localization map at the fixed points of the whole group action

(8) �G� !�G� fAG;PGg

together with the decomposition into nonequivariant bordisms groups presented in (7), has been a powerful
tool for determining the equivariant bordism groups for abelian groups (see for instance [6; 20; 13]). In
this particular case, the bordism groups �G� fAG;PGg are isomorphic to the nonequivariant bordism
groups of products of complex Grassmannians in the unitary case, and of products of real, complex and
quaternionic Grassmannians in the oriented case.

2.7 Rowlett spectral sequence

We still need another spectral sequence suited for understanding the equivariant bordism groups of pairs
of families. This spectral sequence was constructed by Rowlett in [27, Proposition 2.1], whence its
name. Consider a pair of families F 0 � F that are also families of subgroups of the normal subgroup
K of G and .M; @M/ in �Gn fF ;F 0g. Then it is easy to see that the classifying map M=K! EWK of
the free WK DG=K action of the quotient induces an isomorphism of bordism groups �G� fF ;F 0g

Š
�!

�G� fF ;F 0g.EWK/ by mappingM to the compositionM!M=K!EWK ; the inverse is simply induced
by the map EWK!�. The space EWK can be constructed as a CW–complex whose n–skeleton .EWK/

n

is constructed from .EWK/
n�1 by attaching a finite number of copies ofWK�Bn withWK acting trivially

on the n–dimensional balls. One may filter �G� fF ;F 0g.EWK/ by the images under the inclusion of the
skeletons �G� fF ;F 0g..EWK/

n/, and therefore one obtains a spectral sequence converging to �G� fF ;F 0g
whose first page becomes

(9) E1p;q Š�
G
pCqfF ;F

0
g..EWK/

p; .EWK/
p�1/ŠHp..EWK/

p; .EWK/
p�1/˝WK

�Kq fF ;F
0
g;

and whose second page is

(10) E2p;q ŠHp.WK ; �
K
q fF ;F

0
g/;

where the action of an element of WK on a K–manifold M consists of the same manifold M endowed
with the conjugate K–action. The zeroth column consists of the WK–coinvariants

(11) E20;q Š .�
K
q fF ;F

0
g/WK

;

and the edge homomorphism

(12) �Kq fF ;F
0
g ŠE10;q!E20;q!E10;q!�Gq fF ;F

0
g

is simply the extension homomorphism factorizing through the coinvariants

(13) �Kq fF ;F
0
g ! .�Kq fF ;F

0
g/WK

!�Gq fF ;F
0
g given by M 7!M �K G:
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In characteristic zero the spectral sequence collapses on the zeroth column of the second page. Since
in characteristic zero the invariants and the coinvariants are isomorphic, we conclude that the extension
homomorphism induces an isomorphism

(14) �K� fF ;F
0
g
WK ˝Q Š

�!�G� fF ;F
0
g˝Q:

In order to find the torsion classes in �G� we will construct the inverse map of the isomorphism (14) for
every pair of adjacent families of groups. This map will be simply given by the localization at fixed points
and will be the subject of the next section.

3 Localization at fixed points

For every subgroup K of G let us define the fixed-point homomorphism

(15) fK ı r
G
K W�

G
� !�K� fAK;PKg

as the composition of the restriction homomorphism rGK W�
G
� !�K� with the localization atK–fixed points

(16) fK W�
K
� !�K� fAK;PKg:

The composition fKırGK takes aG–manifold and maps it to the tubular neighborhoodN of theK–invariant
points MK . Since on the complement of N in M there are no points with isotropy K, the tubular
neighborhood N and M become cobordant in �K� fAK;PKg [5, Lemma 5.2]. Since NGK acts on the
normal bundle N of MK , the localization at K–fixed points lands in the WK–fixed submodule. Therefore
the fixed-point homomorphism becomes

(17) fK ı r
G
K W�

G
� !�K� fAK;PKg

WK :

Also, for every pair of families of subgroups in G, we have the localized fixed-point homomorphism

(18) �� W�
G
� fF ;F

0
g !

M
.K/�F�F 0

�K� fAK;PKg
WK :

This homomorphism applied to the pair of adjacent families fAK;PKg, composed with the edge homo-
morphism of the Rowlett spectral sequence (13), gives us the maps

(19) �K� fAK;PKgWA
!�G� fAK;PKg

�
�!�K� fAK;PKg

WA :

In characteristic zero, this composition is an isomorphism and therefore we obtain the isomorphism

(20) �� W�
G
� fAK;PKg˝Q Š

�!�K� fAK;PKg
WA ˝Q;

which becomes the inverse of the map in (14) for adjacent families.

Applying the Conner–Floyd spectral sequence, we see that the fixed-point homomorphism (18) in
characteristic zero becomes an isomorphism, and therefore we quote:

Theorem 3.1 [27, Theorem 1.1] The fixed-point homomorphism in characteristic zero is an isomorphism

(21) ��˝Q W�G� ˝Q Š
�!

M
.K/

�K� fAK;PKg
WK ˝Q:
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We would like to remark that the rational isomorphism obtained in Theorem 3.1 by localizing on fixed
points holds in general for any rational G–equivariant homology theory whose coefficients form a rational
G–Mackey functor [11, Theorem A.16; 32, Corollary 3.4.28].

3.1 Kernel of fixed-point homomorphism

In the unitary case, the equivariant bordism group �U;K� fAK;PKg is isomorphic to the unitary bordism
group of a disjoint union of products of complex Grassmannians [35, Theorem 2.8]. Therefore, the group
�
U;K
� fAK;PKg is a free �U� –module on even-dimensional generators. Hence, by Theorem 3.1, we

obtain the following result:

Lemma 3.2 The group of torsion elements in �U;G� is isomorphic to the kernel of the fixed-point
homomorphism � of (18):

(22) TorZ.�
U;G
� /D Ker.�U� /:

Whenever a group G satisfies the evenness conjecture in equivariant unitary bordism, the fixed-point
homomorphism �U� is automatically a monomorphism. This is the case for abelian [20] and metacyclic [28]
groups. In the next section we will show that there are groups G such that the kernel of the fixed-point
homomorphism is not trivial in dimension 2, thus defining torsion elements in �U;G2 . This fact refutes
the evenness conjecture in the general case.

In the oriented case there are many torsion classes in the bordism ring �SO
� , all of order 2 [36; 33].

Therefore we will be mainly interested in the torsion classes of the equivariant bordism group �SO;G
�

which are trivial under the fixed-point homomorphism �SO
� .

A very interesting and more general question associated to the equivariant oriented case is the following:

Are there G–equivariant oriented manifolds whose bordism class vanishes under the fixed-
point homomorphism �SO which do not bound equivariantly?

In the next section we answer this question for dimension 2. The 3–dimensional case (with its interesting
application to Chern–Simons theory) remains open for the interested reader.

Note that the equivariant bordism group �SO;K
� fAK;PKg is in general more difficult to calculate than

the unitary one. On the one hand, the fixed-point set MK need not be orientable, and on the other, the
normal bundles are classified by products of real, complex and quaternionic Grassmannians.

Since we are mainly interested in the 2– and 3–dimensional bordism groups, we know that all fixed
points are of real codimension 0 or 2 in the unitary case because the normal bundles are endowed with a
complex structure, see (2), and 0, 2 or 3 in the oriented case, because there are no 1–dimensional real
representations preserving the orientation. Here the real codimension of the fixed points matches the real
dimension of the representation of the respective isotropy group.

In the case that the fixed points are of real codimension 2, the normal bundle is of complex dimension 1
in the unitary case and of real dimension 2 in the oriented case. Since the 2–dimensional oriented
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representations can be parametrized by the 1–dimensional complex representations, we may denote by
Irr1C.K/ the set of 1–dimensional nontrivial irreducible complex representations of the group K. The
complex conjugation map on Irr1C.K/ acts freely on the representations of complex type Irr1C.K/C and
acts trivially on the representations of real type Irr1C.K/R. Denote by Irr1C.K/C=conj the quotient of
representations of complex type by complex conjugation and by Irr3R;SO.K/ the set of 3–dimensional
irreducible real representations of K in the category of oriented representations.

Proposition 3.3 Let K be a finite group. Then the relative oriented equivariant bordism groups are

�
SO;K
2 fAK;PKg D

� M
Irr1

C.K/C=conj

Z

�
˚

� M
Irr1

C.K/R

Z=2

�
;(23)

�
SO;K
3 fAK;PKg D

M
Irr3

R;SO.K/

Z=2;(24)

and the relative equivariant unitary bordism groups are

�
U;K
2 fAK;PKg D�U2 ˚

M
Irr1

C.K/

Z;(25)

�
U;K
3 fAK;PKg D 0:(26)

Proof Let us begin with the relative oriented equivariant bordism groups. Any manifold M in
�SO:K
� fAK;PKg is equivalent in the bordism group to the normal bundle N around the fixed-point set

MK [5, Lemma 5.2]. Whenever M is connected, of dimension 2 and M ¤MK , this normal bundle is
classified by a map

(27) MK
!

G
Irr1

C.K/

BU.1/;

where the K action on the bundle around the point is encoded by the irreducible representation (here we
are using that SO.2/ŠU.1/). Note that whenever V is a nontrivial 1–dimensional complex representation,
the unit ball B.R˚ V / bounds the union of B.V / and B.V /, where V denotes the representation V
with reverse orientation. This implies that in the relative oriented bordism group �K;SO

2 fAK;PKg we
have the equation B.V /CB.V / D 0. Hence whenever V is of complex type, and therefore V is not
isomorphic to V , the relative oriented bordism group �K;SO

2 fAK;PKg counts the difference between
the number of K–fixed points with normal bundle isomorphic to V and the number of K–fixed points
with normal bundle isomorphic to V ; these are the integral invariants. If V is of real type, and hence
V is isomorphic to V , the ball B.R˚V / bounds B.V / twice, and the relative oriented bordism group
�
K;SO
2 fAK;PKg counts the parity of the number of points with normal bundle isomorphic to V ; these

are the Z=2 invariants. This argument proves (23).

For the 3–dimensional case, the codimension-2 fixed points become circles, and since �SO
1 .BU.1//D 0,

we conclude that we only need to focus our attention on the isolated points of the K action. Around
each isolated fixed point of the action we obtain a 3–dimensional real and oriented representation V
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of K. This representation is irreducible in the category of oriented representations even though it may
be not irreducible as a real representation. Note that the splitting of the representation as the product
of two nonoriented representations implies that one must be a sign representation and the other must
factor through a dihedral representation in O.2/. Hence the product of these two representations will be
equivalent to a representation that factors through an oriented dihedral representation in SO.3/ which is
irreducible in the category of oriented representations. Now, the unit ball B.R˚V / bounds B.V / twice
because V and V are isomorphic. Therefore we can conclude that the isomorphism (24) counts the parity
of the number of fixed points of K with the prescribed representation on its normal bundle.

The relative unitary bordism groups are much simpler. The 3–dimensional case (26) is trivial because
both �U3 and �U1 .BU.1// are trivial. The 2–dimensional case (25) detects half of the first Chern number
of the surface whenever the action is trivial, and it counts the number of fixed points with prescribed
representation on their normal bundle. Here we are using that the isomorphism �U2

Š
�! Z is given by the

assignment Œ†� 7! 1
2
c1.†/ where c1.†/ is the first Chern number of the surface.

As a consequence of the previous result, the 2–dimensional bordism classes of interest have no isolated
fixed points for any subgroup K of G.

Corollary 3.4 The torsion subgroups of both unitary and oriented equivariant bordism of surfaces are
respectively isomorphic to the kernels of the associated fixed-point homomorphism ,

(28) TorZ.�
U;G
2 /D Ker.�U2 / and TorZ.�

SO;G
2 /D Ker.�SO

2 /:

Therefore the equivariant bordism groups Ker.�SO
2 / and Ker.�U2 / are generated by G–surfaces without

isolated K–fixed points for any subgroup K of G; in the unitary case it is moreover required that the
surfaces have trivial first Chern number.

Proof Proposition 3.3 shows that the relative oriented and unitary bordism groups �K2 fAK;PKg
are torsion-free for all subgroups K of G, except in the oriented case whenever K has 1–dimensional
complex representations of real type; such representations come from nontrivial elements in Hom.K;Z=2/.
Whenever a closed oriented surface † has one K–fixed point whose normal bundle has the structure of a
nontrivial element in Hom.K;Z=2/, the connected component of such a K–fixed point has an induced
action of Z=2. Since the Euler characteristic of the connected component is even, the number of fixed
points of this Z=2–action must also be even. Hence the original action of K on this connected component
must have an even number of fixed points, and all of them will have isomorphic complex representation
of real type on the normal bundles.

The previous argument shows that the image of the fixed-point homomorphism is torsion-free in both
oriented and unitary cases. Therefore by Theorem 3.1, we can conclude that the torsion classes are
generated by G–equivariant manifolds without isolated K–fixed points for any subgroup K of G, and in
the unitary case it is furthermore required that the underlying surface has trivial first Chern number.
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The presence of the platonic groups A4, S4, A5 or the dihedral groups D2k as subgroups of a general
groupG makes the understanding of the bordism group�SO;G

3 more interesting. We need first a definition:

Definition 3.5 Let M be a G–manifold (oriented or unitary). Define the ramification locus of the
G–action as the space

(29) M WD
[
K�G
K¤f1g

MK ;

where MK denotes the space of fixed points of the subgroup K.

Let us start with the dihedral groups:

Proposition 3.6 The equivariant bordism groups �SO;D2k

3 are generated by equivariant manifolds whose
fixed points are all of codimension 0 or empty. In particular , the fixed-point homomorphism �SO

3 is trivial.

Proof Take M a closed oriented D2k–equivariant manifold such that M=D2k is connected. Let us first
assume that no element inD2k besides the identity acts trivially (we could always take the induced action on
M of the groupD2k=L, whereL is the subgroup that acts trivially and considerM as aD2k=L–equivariant
manifold). Hence the ramification locus M is the union of 1–dimensional and 0–dimensional manifolds.

Whenever the fixed-point set MD2k is nonempty, it will consist of a finite number of isolated points. We
will argue that the number of fixed points with isomorphic normal representations is even, thus implying
that the image of the localization map (16) at D2k–fixed points

(30) fD2k
W�

SO;D2k

3 !�
SO;D2k

3 fAD2k;PD2kg

is trivial, and moreover that the fixed-point set MD2k could be removed with an equivariant cobordism
by attaching handles around pairs of fixed points with isomorphic normal representation.

If x belongs to MD2k , we claim that there is another fixed point x0 2 MD2k , such that both have
isomorphic representations of D2k on their normal neighborhoods. The reason for this is the following.
Consider the class Œx� 2M=D2k on the quotient of the ramification locus M . The connected component
of the fixed-point set of the cyclic subgroup Z=k around x defines a path on the quotient M=D2k with
the class Œx� at one end. Since M=D2k is compact, the other end of this path ends at the class of the
point Œx0�, where we have chosen x0 to be on the same connected component as x on the fixed-point
set MZ=k . The D2k representations around x and x0 are isomorphic because their restrictions to the
group Z=k give representations with opposite orientations.

Note that whenever k > 2, the points x and x0 are different. When k D 2 it could be the case that x D x0,
and if this were the case, around Œx� in M=D2k we would have a loop (the path we defined above from
x to x0 D x) and an extra path leaving from it. Following this third path from x, we will reach another
point x00, which will be different from x.

Algebraic & Geometric Topology, Volume 24 (2024)



1634 Andrés Ángel, Eric Samperton, Carlos Segovia and Bernardo Uribe

We just have shown that the fixed points in MD2k come in pairs with isomorphic representations. If the
isomorphic representation is V and B.V / denotes the unit ball in V , this pair of points could removed by
the bordism that adds the handle Œ0; 1��B.V / on the normal neighborhoods of the pair of points.

The previous construction could be carried out on all the fixed points of the conjugacy classes of subgroups
which are of dihedral type, and therefore we see thatM is equivariantly cobordant to a manifoldM 0 whose
fixed points of its dihedral subgroups are empty. Hence the ramification locus M 0 is a 1–dimensional
manifold, and therefore �SO

3 .ŒM �/D �SO
3 .ŒM 0�/D 0.

We could then choose as generators of �SO;D2k

3 manifolds without 0– and 1–dimensional fixed points.

Propositions 3.3 and 3.6 imply that the fixed-point homomorphism �SO
3 is trivial on subgroups isomorphic

to cyclic or dihedral groups. Nevertheless, the fixed-point homomorphism may be nontrivial when
evaluated on subgroups isomorphic to the platonic groups A4, S4 and A5. To understand the image of
�SO
3 for the platonic groups, we first need to define the blowup of a representation.

Definition 3.7 Let V be a finite-dimensional real G–representation. The blowup .V / of V is the total
space of the bundle of real lines P .V / of V ,

(31) .V / WD f.v; L/ 2 V �P .V / j v 2 Lg;

endowed with the natural G action: g � .v; L/ WD .gv; gL/. Denote by B..V // and S..V // the unit
ball and sphere bundles of .V /, respectively.

Note that the sphere bundle of .V / and the sphere of the representation S.V / are canonically isomorphic:

(32) � W S.V / Š�! S..V //; v 7! .v; hvi/:

So one may glue B.V /, where V is V with the opposite orientation, to B..V // along their boundary,

(33) Y.V / WD B.V /[� B..V //;

thus constructing a closed oriented G–manifold.

What is interesting about the blowup is that, for faithful 3–dimensional oriented real representations V ,
the blowup .V / only contains points with cyclic or dihedral isotropy groups. This is a key fact that will
be used in what follows.

Proposition 3.8 Let G be a finite subgroup of SO.3/. Then the fixed-point homomorphism �SO
3 is only

nontrivial on subgroups isomorphic to the platonic groups A4, S4 and A5. Moreover , its restriction

(34) �SO
3 W�

SO;G
3 !

M
.K/

K platonic

�
SO;K
3 fAK;PKgWK

is surjective.

Proof Let .K/ be a conjugacy class of subgroups of G with K isomorphic to any of the platonic
groups A4, S4 or A5. Denote by VK the 3–dimensional real representation induced by the symmetries
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of the respective platonic solid. Note that VK is isomorphic to the representation with the reverse
orientation VK , and therefore the closed oriented K–manifold Y.VK/ defined in (33) is diffeomorphic
to B.VK/[� B..VK//. Note furthermore that �K3 fAK;PKg Š Z=2 since VK is the only irreducible
representation of dimension 3.

The localization map at K–fixed points of (16)

(35) fK W�
SO;K
3 !�K3 fAK;PKg Š Z=2

maps Y.VK/ to the normal bundle of itsK–fixed points Y.VK/K . Since the blowup .VK/ has noK–fixed
points, Y.VK/KDB.VK/K and the fixed-point set consists of only one point. Hence fK.Y.VK//DB.VK/
with ŒB.VK/� the generator of the group �SO;K

3 fAK;PKg.

The commutativity of the diagram

(36)

�
SO;K
3

iGK
//

fK

��

�
SO;G
3

fKır
G
K

��

�
SO;K
3 fAK;PKg

i
NG K

K

// �
SO;K
3 fAK;PKgWK

where iLH W�
H
� !�L� given by ŒM � 7! ŒL�HM� is the induction map for the inclusion of groupsH �L,

implies that the manifold fK ı rGK .G �K Y.VK// generates the group �SO;K
3 fAK;PKgWK .

Note that whenever K ¤ K 0, we have .G �K Y.VK//K
0

D ∅. Therefore we conclude that the images
under �SO

3 of the G–manifolds G �K Y.VK/, where .K/ runs over the conjugacy classes of platonic
subgroups of G, provide the desired surjectivity.

Let us see the previous result in an example. Let G D A5 and take the A5–manifolds Y.VA5
/ and

A5 �A4
Y.VA4

/ in �SO;A5

3 . The images under �SO
3 of these two manifolds in

(37) �
SO;A5

3 fAA5;PA5g˚�SO;A4

3 fAA4;PA4g Š Z=2˚Z=2

are .1; 1/ and .0; 1/, respectively. The surjectivity of (34) follows.

3.2 Surfaces without isolated fixed points for any subgroup

Let F be a family of subgroups in G. Then denote by �G2 fFg the subgroup of �G2 fFg generated by
manifolds without isolated K–fixed points for all K 2 F , and whose underlying first Chern number is
zero in the unitary case. Since Corollary 3.4 also implies that

(38) �G2 fFg D Ker.�2j�G
2 fFg

/D TorZ.�
G
2 fFg/;

we may study the properties of �G2 restricted to families.
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Lemma 3.9 Let fF ;F 0g be an adjacent pair of families differing by the conjugacy class .K/ of the
subgroup K � G. Then the canonical map of bordism groups for families �G2 fF

0g !�G2 fFg fits into
the split exact sequence

(39) �G2 fF
0
g !�G2 fFg ! z�2.BWK/! 0;

with z�2 the reduced bordism groups.

Proof A generator in �G2 fFg not in the image of �G2 fF
0g is represented by a G–connected manifold

M such that the fixed-point set MK is a closed nonempty surface without boundary, and such that there
is a G–equivariant homomorphism G �NGKM

K Š�!M given by Œ.g;m/� 7! gm. The closed surface
MK is endowed with a free action of the group WK , thus producing a unique map up to homotopy
MK=WK ! BWK . The induction map

(40) z�2.BWK/!�G2 fFg given by L 7!G �NGK L

produces the desired section.

For the unitary case we need only to see that the first Chern number of M is zero, if and only if the first
Chern number of MK is zero, if and only if the first Chern number of MK=WK is zero.

Here we have used the isomorphism

(41) z�U2 .BWK/Š Ker.�U2 .BWK/!�U2 /;

where the forgetful map �U2 .BWK/! �U2 simply takes a framed bordism Œ†! BWK � and maps it
to Œ†�. The kernel consists of framed surfaces whose underlying first Chern number is zero. In the
oriented case z�SO

2 .BWK/D�
SO
2 .BWK/.

4 Bounding equivariant surfaces

In this section we present our main result, which is the calculation of the groups �G2 . To do this we use
the Conner–Floyd spectral sequence of Section 2.4 associated to the families of subgroups

(42) f1g D F0 � F1 � � � � � Fl DAG;

where all the pairs are adjacent, ie Fj �Fj�1 D .Kj / for some conjugacy class of subgroups .Kj /, and
such that the conjugacy classes .Kj / span all conjugacy classes of subgroups of G (and hence l C 1 is
the number of conjugacy classes of subgroups of G).

We may filter the group �G2 by the subgroups

(43) Fp�
G
2 WD Im.�G2 fFpg !�G2 /

whose associated graded groups are the quotients

(44) Grp�G2 D Fp�
G
2 =Fp�1�

G
2 :
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The commutative diagram with exact rows

(45)

�G3 fAG;Fp�1g //

��

�G2 fFp�1g //

��

�G2

�G3 fAG;Fpg // �G2 fFpg // �G2

together with the result of Lemma 3.9 implies that the following sequence is exact:

(46) �G3 fAG;Fpg
@
�! z�2.BWKp

/! Grp�G2 ! 0:

We therefore need to understand the image of the boundary map

(47) �G3 fAG;Fpg
@
�! z�2.BWKp

/

in order to determine the groups Grp�G2 .

Note that the image of the boundary map (47) is equivalent to the image of the boundary map

(48) �
WKp

3 fAWKp
; f1gg @�! z�2.BWKp

/:

This follows from the fact that the manifolds of interest will have trivial actions of the groups in the
conjugacy class .Kp/, and then one follows the same argument as presented in Lemma 3.9. Therefore we
obtain the following result:

Lemma 4.1 Consider the associated graded groups Gr��G2 of �G2 induced by the families of subgroups
presented in (42). Then

(49) Grp�G2 Š Coker.�
WKp

3 fAWKp
; f1gg @�! z�2.BWKp

//:

Hence we need to understand which surfaces with free actions equivariantly bound.

4.1 Bounding free actions on surfaces

It turns out that the only free actions on surfaces that equivariantly bound are those on which the quotient
surface is a torus. This result is originally due to the second author [29; 30] whenever the group G does
not contain any subgroup isomorphic to the platonic groups A4;S4; A5 or to the dihedral groups D2k ,
and it motivated our investigation. Here we will produce an alternative proof, generalizing it for all finite
groups. Let us first recall the definition of the Bogomolov multiplier of a finite group.

The cohomology group H 2.G;C�/ determines the isomorphism classes of central C� group extensions
of G, and therefore complex irreducible projective representations of the group G define elements in
H 2.G;C�/. Schur [31] extensively studied this cohomology group, and therefore it was called the Schur
multiplier of G [16].

Bogomolov [3] defined the subgroup B0.G/ of the Schur multiplier consisting of all elements which
vanish when restricted to all its abelian subgroups:

(50) B0.G/D
\

A�G abelian

Ker.resGA WH
2.G;C�/!H 2.A;C�//:
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The interest in this group comes from, among other things, a result Bogomolov [3, Theorem 3.1] which
states that whenever the field of G–invariants CŒG�G of the rational field CŒG� is rational over C, the
Bogomolov multiplier of the group G vanishes.

Using the fact that for finite groups H 2.G;C�/ŠH2.G;Z/, Moravec [22] showed that the Bogomolov
multiplier group B0.G/ is isomorphic to the group

(51) zB0.G/ WDH2.G;Z/=M0.G/;

where M0.G/ is the subgroup of H2.G;Z/ generated by the images

(52) Im.H2.Z�Z;Z/!H2.G;Z//

of all homomorphisms Z�Z!G. This homology version of the Bogomolov multiplier was then used
to calculate B0.G/ for several types of finite groups [22].

In this homological form, the Bogomolov multiplier appeared much earlier in [24] in connection with
SK–groups (cutting and pasting of manifolds) and in [25] as SK1 in algebraic K-theory.

Using now the fact that there are canonical isomorphisms

(53) z�U2 .BG/ Š�!�SO
2 .BG/ Š�!H2.BG;Z/;

we present a generalization of a result which was established by the second author in [30]. First we need
a lemma:

Lemma 4.2 Let † be an oriented surface with free G–action that bounds equivariantly. Then † can
be extended to an oriented G–manifold whose ramification locus is a 1–dimensional manifold (all the
isotropy groups are all cyclic).

Proof Let M be an oriented G–manifold whose boundary is the surface with free G–action †. Take a
point x in the ramification locus M and denote by Gx its isotropy group. Since the G–action is free on
the boundary, the action of Gx on the normal neighborhood of x must induce an injective homomorphism
Gx! SO.3/. Hence Gx must be isomorphic to a cyclic group, a dihedral group or any of the platonic
groups A4, S4 or A5. Whenever Gx is cyclic, x is a smooth point in the ramification locus M , because
locally Gx acts by rotations. Whenever Gx is neither trivial nor cyclic, x is a singular point on the
ramification locus. Simply note that the irreducible and oriented 3–dimensional representations of the
dihedral and the platonic groups have the origin as a singular point. Therefore the obstruction for the
ramification locus M to be a 1–dimensional manifold is the presence of points whose isotropy groups are
isomorphic to the dihedral or the platonic groups (A4, S4 and A5). Our goal is to modify M to build a
new manifold without any such isotropies.

We briefly outline the overall strategy of our desingularizing process. There are three steps:

(i) Perform the blowup construction on the normal neighborhoods of the points whose isotropies are
isomorphic to either A5, S4 or A4; this produces a new manifold M 0 with the same boundary as M and
no points with A5, S4 or A4 isotropy.
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(ii) In M 0, “cancel” as many pairs of distinct orbits of a given dihedral isotropy type possible; our
cancellation method results in a manifold M 00 that is equivariantly cobordant to M 0, relative to the
boundary †. By canceling as many pairs as possible, we guarantee that for the action of G on M 00, a
given conjugacy class of a dihedral subgroup of G occurs on at most one orbit in M 00.

(iii) The final step is the hardest. If x is a point in M 00 with dihedral isotropy Gx �G that is maximal,
we show that the action of G on G �x possesses an “involutive” element g such that yD gx¤ x, g2xD x,
Gy DGx and g commutes with a preferred rotation � 2Gx . We then classify the possibilities for hGx; gi,
and build an appropriate equivariant handle that desingularizes the orbit G � x. Inductively applying this
construction to all dihedrally stabilized points, we arrive at our desired manifold M 000. In fact, this is
oversimplifying; we must return to (ii) once at some point in this process, but the basic idea is as described.

Let us expand on (i). Take a point x 2M whose isotropy Gx is isomorphic to A5 (we will start with
the larger isotropy first). Let Nx be a normal Gx–neighborhood of x such that Nx \g �Nx D∅ for all
g 2G �Gx , and let

(54) � W B.VGx
/ Š�!Nx

be aGx–equivariant diffeomorphism with VGx
the faithful representation ofGx around x. TakeG �Nx as a

G–equivariant neighborhood around the orbitG �x and note that � induces aG–equivariant diffeomorphism
G �Gx

B.VGx
/ Š�!G �Nx . Construct the blowup B..VGx

// presented in Definition 3.7 and note that
the sphere bundles are Gx–diffeomorphic to the boundary of Nx:

(55) S..VGx
//Š S.VGx

/ Š�! @Nx :

Cut G �Nx from M and glue G �Gx
B..VGx

// along the boundary using the diffeomorphism � . Define
the new G–manifold

(56) M 0 WD .M �G �Nx/[@.G�Nx/G �Gx
B..VGx

//

and note that M 0 has the same boundary as M , but with the property that inside @Nx there are no more
points with isotropy isomorphic to A5. Cutting and pasting the blowups for every point with isotropy
isomorphic to A5 produces a manifold without points whose isotropy is isomorphic to A5. Then a similar
blowup procedure is carried out for points with isotropy isomorphic to S4, and then to points with
isotropy isomorphic to A4. The resulting manifold M 0 has the same boundary as M , but it does not
contain points with isotropy isomorphic to A5, S4 or A4. The only isotropies that appear on M 0 are
cyclic or dihedral groups. This concludes (i). (We note for the interested reader that M and M 0 are not
necessarily relatively cobordant, even though they do have the same boundary.)

For (ii), suppose x and y are two points in M 0 with equal dihedral stabilizers Gx D Gy such that x
and y are not in the same G orbit, but the representation of Gx on a regular neighborhood of x is
equivalent to the representation of Gy DGx on a regular neighborhood of y. Call this representation V .
Choose local charts around x and y such that the angle of rotations of the elements in Gx agree in both
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charts to the angles of rotations in V . Now simply attach an equivariant 4–dimensional handle of the
form Œ0; 1�� .G �Gx

B.V // to the equivariant neighborhood of fx; yg. Note that the only points in this
handle with noncyclic isotropy are those in G � fx; yg. Thus, the cobordant 3–manifold (where the open
G–equivariant regular neighborhood of G � fx; yg is replaced with the vertical boundary of our handle)
has fewer points with isotropy isomorphic to dihedral groups. Iterate this procedure, attaching such an
equivariant handle anytime we see a pair x and y with the same isotropy group Gx DGy , isomorphic
local representations, and y …G � x, until there are no more such pairs. Call the resulting manifold M 00.
Of course, since these handle attachments occur away from @M 0 D†, M 00 still has boundary †. More
precisely, M 0 and M 00 are equivariantly bordant relative to †.

Step (iii) is the most involved. Let x be a point inM 00 with dihedral isotropyGxŠD2k . Define the setƒx
of points y in M 00 such that Gy DGx and whose local representations on regular neighborhoods around y
and x, respectively, are isomorphic. By construction, if y is any other point in this set, then y 2G �x. In fact,
ƒx DNG.Gx/ �x and ƒx is bijective with the group NG.Gx/=Gx . Our goal now is to build a G–handle
that allows us to cancel the singularities in the single orbitG �x with one another in pairs in aG–equivariant
fashion. In particular, we will need to show that jG � xj is even and admits a G–invariant matching.

Let us first show that there is an element g 2NG.Gx/ such that its projection on NG.Gx/=Gx has order
two. This g will allow us to define y WDgx such that xDgy. We proceed by induction down the subgroup
lattice of G and through the different isomorphism classes of faithful local representations of these point
stabilizers. Let x be any point in M 00 whose stabilizer Gx ŠD2k is maximal among all dihedral point
stabilizers in M 00 (with respect to subgroup inclusion) and consider the restricted action of just Gx on M 00.

If k > 2, let � 2Gx be an element of order k and take its fixed-point set .M 00/� . Note that this fixed-point
set is a disjoint union of embedded circles. The group Z2 ŠGx=h�i acts on .M 00/� and the set of fixed
points is precisely ƒx . The Euler characteristic of .M 00/� being zero implies that ƒx has an even number
of points. Since jƒxjD jNGx

.Gx/=Gxj, the groupNGx
.Gx/=Gx has an element of order 2, and therefore

we may choose g 2NGx
.Gx/ as a lift of this element of order 2. If y WD gx, then by construction xD gy.

If k D 2, then there is only one isomorphism class of local representations. Let

�Gx
D fp 2M 00 j StabGx

.p/¤ f1gg

be the ramification locus of this action. Then �Gx
is a properly embedded topological graph. Because the

action of Gx on @M 00 D† is free, �Gx
\† is empty, and so in particular every vertex in this graph has

valence 6. The quotient graph �Gx
=Gx resides in the quotient manifold M 00=Gx , and its vertices are in

bijection with the vertices of �Gx
, and hence in bijection with the points in ƒx . The vertices of �Gx

=Gx

all have valence 3. Since twice the number of edges equals three times the number of vertices, we see
that each connected component of �Gx

=Gx has an even number of vertices, and hence the same is true
for each connected component of �Gx

. Note that this implies jƒxj D jNGx
.Gx/=Gxj is even. Now, as

in the previous paragraph, we again choose g 2NGx
.Gx/ lifting an element of order 2 in NGx

.Gx/=Gx

and take y WD gx with x D gy.
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In both cases k > 2 and kD 2, note that g2 2Gx , and therefore the conjugation action of g on Gx squares
to an inner automorphism of Gx . This is especially helpful when k D 2, ie when Gx ŠD4 Š Z2 �Z2,
since in this case Inn.Gx/ D 0, and we can conclude that g acts on Gx by an automorphism of order
either 1 or 2 (never 3).

We now specify a preferred “rotation subgroup generator” of Gx . When k D 2 and g conjugates Gx by a
nontrivial automorphism (necessarily of order 2, as just discussed above), then we take � in Gx to be the
unique nontrivial element of Gx fixed by conjugation with g. If g conjugates Gx trivially and there is not
a loop in �Gx

=Gx at x, then we take � to be an arbitrarily chosen element of Gx; if there is a loop at x,
then we take � to correspond to the unique element in Gx that does not stabilize points in the preimage of
the interior of the loop (here the preimage can be taken with respect to �Gx

! �Gx
=Gx). When k > 2,

our preferred � is given essentially for free: pick either one of the two nontrivial elements of Gx with
minimal (unsigned) rotation angle (in its action on Nx) and call it � .

With these choices for � , in either the k D 2 or k > 2 case we may parametrize Gx as Gx D
h�; ˛ j �k D ˛2 D 1; ˛�˛ D ��1i Š D2k for some arbitrarily chosen “reflection” ˛ in Gx . We also
know that g commutes with � whenever k D 2 (because of how we picked �), but when k > 2 it may
be that g�g�1 D ��1 since the local representations around x and y are isomorphic. If this were the
case, replace g by ˛g and note that ˛g commutes with � . Therefore we have found g 2NG.Gx/ with
gx D y ¤ x, gy D x and g�g�1 D � .

This in turn implies the following essential facts:

� When k > 2, no matter how � conjugates Gx , we must have that g2 D � l for some 0� l � k� 1.

� When k D 2, � must conjugate Gx D f1; �; ˛; �˛g Š D4 by an automorphism that leaves �
invariant. Thus � either commutes with all of Gx , or else swaps ˛ and �˛.

– If g swaps ˛ and �˛, notice that g does not commute with ˛ or ˛� , and hence g2 (which does
commute with g) cannot equal ˛ or ˛� . In other words, when g acts nontrivially on Gx , then
we must have g2 D 1 or g2 D � .

– If g commutes with all of Gx , then in principle g2 might equal any element of D4. We will
see below that in fact the only possibility is g2 D 1 2D4.

Consider the group

(57) K WD StabGfx; yg D StabNG.Gx/fx; yg D h�; ˛; gi:

Notice that by construction, if h is any element of G such that hx D y, then in fact h 2 K. (This is
because hxD gx implies g�1h2Gx DGy , and hence g�1h2Gx and so h2 gGx �K.) In other words,
we can build a G–equivariant matching on the orbit G �x by taking fx; yg to be one pair in the matching,
and inducing up to the entire orbit; the stabilizer of any edge in this matching is then conjugate to Gx .
Therefore, if we can build a K–equivariant handle that allows us to desingularize the action of K on
Nx tNy , then we may induce this to a well-defined G–equivariant handle that desingularizes the action
of G on the entire orbit G �Nx .
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We will now classify the possibilities for how K acts on Nx tNy , and build nonsingular handles for
each possibility. This will involve some casework, some of which depends on the integer k � 2 such that
Gx ŠD2k , and our success depends critically on the established fact that g commutes with � .

Notice that K sits in an exact sequence

(58) 1!Gx!K!K=Gx! 1;

where K=Gx D hg modGxi D Z2. Recall that equivalence classes of such extensions can be placed
in (noncanonical) bijection with the following pairs of data: homomorphisms f W Z2 ! Out.Gx/
such that a certain canonically associated class in H 3.Z2IZ.Gx// vanishes, together with a class
! 2H 2

f
.Z2IZ.Gx//, where Z2 acts on the coefficients Z.Gx/ in a manner induced by f .

However, not all homomorphisms f W Z2! Out.Gx/ will be pertinent to our situation, because (except
in the case k D 2 and g commutes with Gx), we already know that g2 D � l for some 0� l � k� 1. Let
us use some group cohomology to constrain the possibilities for K when k > 2.

If k is odd, then Z.Gx/D f0g, and so H 2.K=GxIZ.Gx//D f0g and there is only one thing K could
possibly be given that g2 D � l , namely

(59) K D h�; ˛; g j �k D ˛2 D 1; ˛�˛ D ��1; g�g�1 D �; g˛g�1 D ˛� l ; g2 D � li

where 0� l � k� 1.

If k > 2 is even, then Z.Gx/D h�k=2i Š Z2 and the action of K=Gx on the coefficients Z2 must be
trivial no matter what l is; therefore H 2.K=GxIZ.Gx//Š Z2 and we should expect two nonequivalent
extensions for a given l . These are precisely:

K� D h�; ˛; g j �
k
D ˛2 D 1; ˛�˛ D ��1; g�g�1 D �; g˛g�1 D ˛� l ; g2 D � li;

K� D h�; ˛; g j �
k
D ˛2 D 1; ˛�˛ D ��1; g�g�1 D �; g˛g�1 D ˛� lC.k=2/; g2 D � li;

where 0� l � k� 1.

If k D 2, rather than use group cohomology to give an upper bound on the possibilities for K, we simply
list the six known possibilities so far:

K1Dh�; ˛; g j �
2
D˛2D1; ˛�˛D�; g�g�1D�; g˛g�1D˛�; g2D1i

Dh˛; g˛ j .g˛/4D˛2D1; ˛.g˛/˛D.g˛/�1iŠD8;

K2Dh�; ˛; g j �
2
D˛2D1; ˛�˛D�; g�g�1D�; g˛g�1D˛; g2D�iŠZ2�Z4;

K3Dh�; ˛; g j �
2
D˛2D1; ˛�˛D�; g�g�1D�; g˛g�1D˛; g2D˛iŠK2;

K4Dh�; ˛; g j �
2
D˛2D1; ˛�˛D�; g�g�1D�; g˛g�1D˛; g2D�˛iŠK2;

K5Dh�; ˛; g j �
2
D˛2D1; ˛�˛D�; g�g�1D�; g˛g�1D˛�; g2D�iDK� .for lD1/ŠD8;

K6Dh�; ˛; g j �
2
D˛2D1; ˛�˛D�; g�g�1D�; g˛g�1D˛; g2D1iDK� .for lD0/ŠZ2�Z2�Z2:

Each group has order 8 as needed, so no further constraints are required to specify K, beyond which of
the two possible automorphisms fixing � we have g act on Gx by, and which element �2 2Gx is.
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All of the above listed possibilities for K are based on naive algebra. An algebraic classification of the
possibilities for K is not immediately equivalent to a geometric classification of the different possible
faithful representations of these K with K ! IsoC.B3 t B3/, which are, after all, what we need to
desingularize. In particular, we will see that K1 and K2 (and therefore K3 and K4) in the case k D 2
have no faithful representations into IsoC.B3 tB3/.

To understand how these possible abstract structures of the extension K relate to the geometry of the
action of K on Nx tNy Š B3 tB3, we parametrize so that Gx acts on each copy of B3 � R3 in the
same standard way:

�.x; y; z/D
�

cos
�
2�l

k

�
x� sin

�
2�l

k

�
y; sin

�
2�l

k

�
xC cos

�
2�l

k

�
y; z

�
;(60)

˛.x; y; z/D .x;�y;�z/:(61)

Here 0 < l < k and l is coprime with k.

Note that this standard action ofD2k onB3 is unique up to a sign, meaning any two faithful representations
D2k! SO.3/ that have � acting by rotation angle ˙2�l=k are related by a conjugacy in SO.3/. With
this, we see that the equivalence class of an isometric action ofK onNxtNy — when it exists — is entirely
determined (in the relevant sense, namely, up to conjugation by IsoC.Nx tNy/) by the representation of
Gx on either component, and the diffeomorphism affected when g swaps Nx and Ny .

We will now show that none of K1–K4 in the k D 2 case above are geometrically realizable. It suffices
to show this for K1 and K2. In both cases, we assume without loss of generality that � and ˛ act on
B3 tB3 in the standard way shown above.

For K1 the only possibilities for g are g.x; y; z/ D .�y; x; z/, g.x; y; z/ D .y;�x; z/, g.x; y; z/ D
.�y;�x;�z/ or g.x; y; z/D .y; x;�z/, since g must leave the z–axis fixed and swap the x– and y–axes.
The first two contradict g2 D 1. The second two contradict that g commutes with ˛.

For K2, since g commutes with all three generators, it leaves each axis fixed, and the possible actions are
exactly g.x; y; z/D .x;�y;�z/, g.x; y; z/D .�x; y;�z/ or g.x; y; z/D .�x;�y; z/. None of these
squares to � .

Finally, we will show that all remaining K are geometrically realizable while simultaneously achieving
our most important goal: a description of the desingularizing handle we are after for each possibility.

For each of them, we may define a faithful 4–dimensional real representation of K D h�; ˛; gi as follows:

�.x; y; z; t/D
�

cos
�
2�l

k

�
x� sin

�
2�l

k

�
y; sin

�
2�l

k

�
xC cos

�
2�l

k

�
y; z; t

�
;(62)

˛.x; y; z; t/D .x;�y;�z; t/;(63)

g.x; y; z; t/D
�

cos
�
�j

k

�
x� sin

�
�j

k

�
y; sin

�
�j

k

�
xC cos

�
�j

k

�
y;�z;�t

�
:(64)

Here j D l if k is odd, and j D l or lC
�
1
2
k
�

if k > 2 is even and K DK� or K DK�, respectively. For
the groups K5 and K6 we take j D 1 and j D 2, respectively. Note that we are continuing to assume
(without loss of generality) that � is the element in Gx that acts on Nx as rotation by the angle 2�l=k.

Algebraic & Geometric Topology, Volume 24 (2024)



1644 Andrés Ángel, Eric Samperton, Carlos Segovia and Bernardo Uribe

Clearly .x; y; z; t/ is a fixed point of g only if z D t D 0. In the two cases with k D 2, for K5 we have

g.x; y; z; t/D .�y; x;�z;�t /(65)

and for the group K6 we have

g.x; y; z; t/D .�x;�y;�z;�t /;(66)

so other than the zero point .0; 0; 0; 0/, g has no fixed points at all in R4. Thus .x; y; 0; 0/¤ .0; 0; 0; 0/ is
a fixed point of g only if k > 2 and j D l D 0. Nontrivial powers of � never share a nonzero fixed point
with g, as � acts freely on the plane z D t D 0. We conclude that any nonzero point in the z D t D 0
plane has either a trivial stabilizer, a cyclic stabilizer generated by an element of Gx , or a stabilizer of
the form h�p˛; gi Š D4 for some 0 � p � k � 1, and moreover, this third case can only occur when
k > 2 and j D l D 0. This last fact — that noncycle stabilizers occur in this plane only when k > 2— is
essential to the remainder of our argument.

Now consider the action of K on the unit sphere S3 �R4, ie on

S3 D f.x; y; z; t/ 2R4 j x2Cy2C z2C t2 D 1g:(67)

The isotropy group of both .0; 0; 0;�1/, and .0; 0; 0; 1/ is the dihedral group Gx D h�; ˛i ŠD2k and
g swaps these two points. Moreover, every other point in S3 n f.0; 0; 0;�1/; .0; 0; 0; 1/g has either
trivial or cyclic isotropy, with some minor exceptions: when k > 2 and j D l D 0 there are points in
S3 n f.0; 0; 0;�1/; .0; 0; 0; 1/g with isotropy isomorphic to D4. Denote by W a small K–equivariant
ball around the union of .0; 0; 0;�1/ and .0; 0; 0; 1/ and remove it from S3. Attach the G–equivariant
handle G �K .S3nW / to the boundary of the G–equivariant normal neighborhood of G � x on M . For
k > 2, the resulting 3–manifold has fewer points with dihedral isotropy D2k , although it may create new
points with D4 isotropy. Attach the handles inductively for all dihedral isotropies isomorphic to D2k with
k > 2 (picking maximal such isotropies at every step) and all isomorphism classes of faithful irreducible
representations, and arrive at a manifold whose isotropies are only cyclic or dihedral of order 4. Now
repeat step (ii) of the proof to arrive at a manifold with only cyclic isotropies and dihedral isotropies of
order 4 with, moreover, the property that for any x and y with Gx DGy ŠD4, we know x and y are in
the same G orbit. Finally, return to step (iii) and desingularize any remaining D4 isotropies as we did in
the case with k > 2. Since the handles we have constructed for the D4 singularities have no noncyclic
isotropies on their interior, attaching them to the remaining D4 singularities gives our final manifold M 000

with only cyclic isotropies.

We are now ready to show which surfaces with free G–actions bound equivariantly.

Theorem 4.3 Let G be a finite group. Then the oriented and unitary equivariant bordism of surfaces
with free G–actions fits into the exact sequence

(68) �G3 fAG; f1gg
@
�! z�2.BG/! zB0.G/! 0:
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Proof Let us first show that the image of the boundary map consists of toral classes in H2.BG;Z/, that
is, homology classes coming from the image of maps of tori S1 �S1! BG.

Let M be a 3–dimensional G–manifold (oriented or unitary) whose boundary @M has a free G–action;
in the oriented case take M as shown in Lemma 4.2. Note that if the ramification locus M is not empty,
then it is a smooth oriented 1–dimensional manifold; in the unitary case this follows from the fact that
fixed points of all nontrivial subgroups can only have complex codimension 0 or 1.

If M is empty then M has a free G action and therefore the boundary surface .@M/=G bounds. If M is
not empty we may consider the G–equivariant tubular neighborhood N of M in M . The manifolds N
and M define the same bordism class, since on M �N the action of G is free, and therefore @M and @N
are cobordant. The tubular neighborhood N is homeomorphic to the unit ball bundle B� of the normal
bundle � of M in M . The sphere bundle S� defines the S1–principal bundle S1! S�!M , and since
every circle bundle over the circle is topologically a torus, the sphere bundle S� is homeomorphic to a
disjoint union of 2–dimensional tori. Hence @N is a disjoint union of 2–dimensional tori, and its quotient
@N=G is a torus (since M=G is connected and �.@N=G/D �.@N/=jGj). Hence we have now proved
that the image of the boundary map @ of (68) consists only of toral classes in H2.BG;Z/.

Now let us show the converse, namely that any toral class in H2.BG;Z/ lies in the image of the boundary
map of (68). Take any toral class defined by a homomorphism ' WZ�Z!G and denote byA WD'.Z�f0g/
and C WD '.f0g �Z/ the cyclic subgroups of G that define the toral class. Denote by a WD '.1; 0/ and
c WD '.0; 1/ the generators of A and C , respectively.

Let NGA be the normalizer of A in G and note that C is a subgroup of the normalizer. Denote by �
and N� the homomorphism � W Z!NGA, �.n/ WD cn and the homomorphism to the quotient N� W Z!WA.
Consider the irreducible representation � W A! U.1/, �.a/ WD e2�i=jAj, and define the U.1/ extension of
WA by the exact sequence of groups

(69) U.1/! U.1/�ANGA!WA;

where U.1/�ANGA is defined by the equivalence relation .��.˛/; g/� .�; ˛g/ for all ˛ 2A, � 2 U.1/
and g 2NGA.

Consider the homomorphism Q� WZ!U.1/�ANGA, Q�.n/ WD Œ.1; �.cn//�, and note that its classifying map

(70) BQ� W S1! B.U.1/�ANGA/

factors through the classifying map BN� W S1! BWA.

Let E WD .BQ�/�E.U.1/�ANGA/ be the pullback of the universal bundle and note two things. First, E is
a principal U.1/�ANGA–bundle over the circle S1, and therefore it is a surface. Second, the canonical
homomorphism

(71) NGA! U.1/�ANGA given by g 7! Œ.1; g/�
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induces a free action of NGA on E. Now it is straightforward to notice that the homology class of the
surface E=NGA! BNGA! BG in z�2.BG/ agrees with the homology class defined by B'�ŒS1 �S1�.

We still need to show that the surface E equivariantly bounds. Take the quotient F DE=U.1/ and note
that F is homeomorphic to .BN�/�EWA; hence F is the principal WA–bundle over the circle that N� defines
(see the following commutative diagram):

(72)

U.1/
**

U.1/�ANGA

��

))

U.1/�ANGA

**
U.1/

**

WA

��

��
WA

��
E

))

��

// E.U.1/�ANGA/
++

F //

��

��
EWA

��

S1
BQ�

// B.U.1/�ANGA/
**

S1
BN�

// BWA

ThenE is a principalU.1/–bundle overF , and therefore we may take the associated complex vector bundle

(73) C!C �U.1/E! F:

The unit bundle D.C �U.1/E/ is a unitary manifold endowed with the action of NGA, whose boundary,
the sphere bundle S.C �U.1/E/, is homeomorphic to E:

(74) @.D.C �U.1/E//D S.C �U.1/E/ŠE:

Therefore we have just proved that

(75) ŒG �NGAD.C �U.1/E/�
@
�! ŒE=NGA�D B'�ŒS

1
�S1�;

thus showing that any toral class in z�2.BG/ equivariantly bounds.

Now we can put the pieces together to understand the torsion of the equivariant bordism group of surfaces.

4.2 Torsion of the equivariant bordism group of surfaces

By Corollary 3.4,

(76) �G2 D Ker.�2/D TorZ.�
G
2 /:

Let us now determine explicitly these torsion subgroups.

Theorem 4.4 Let G be a finite group. Then there is a canonical isomorphism

(77)
M
.K/

zB0.WK/Š TorZ.�
G
2 /;

where .K/ runs over all conjugacy classes of subgroups of G, WK D NGK=K and zB0.WK/ is the
homology version of the Bogomolov multiplier of the group WK .
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Proof Denote by Gr� TorZ.�
G
2 / the associated graded groups of the G–equivariant, unitary or oriented,

bordism groups of surfaces that are induced by the Conner–Floyd spectral sequence of the families of
subgroups of (42). Lemma 4.1 and Theorem 4.3 imply that

(78) Grp TorZ.�
G
2 /Š

zB0.WKp
/;

and since all consecutive pairs of families are adjacent, we obtain the graded isomorphism

(79) Gr� TorZ.�
G
2 /Š

M
.K/

zB0.WK/:

Now, for a fixed conjugacy class of subgroups .K/, the canonical map

(80) z�2.BWK/!�G2 given by †=WK 7!G �NGK †;

which sends the quotient space of a surface † by the free WK–action to the surface with G–action whose
isotropy groups lie in .K/, factors through zB0.WK/, thus producing a canonical homomorphism

(81) zB0.WK/!�G2 :

Bundling up all these homomorphisms we obtain a canonical map

(82)
M
.K/

zB0.WK/! TorZ.�
G
2 /

which becomes an isomorphism since it is compatible with the graded isomorphism (79).

In particular, if G is a group whose Bogomolov multipliers vanish for all groups WK with K a nontrivial
subgroup, then TorZ.�

G
2 /Š

zB0.G/. This is the case whenever G is one of the smallest p–groups with
nontrivial Bogomolov multiplier. In the last section we present two p–groups of this kind.

We are now ready to provide an explicit calculation of the unitary and oriented equivariant bordism group
of surfaces. Assembling Theorems 3.1 and 4.4, and Proposition 3.3, we obtain the following result:

Theorem 4.5 Let G be a finite group. Then the unitary and oriented equivariant bordism of surfaces
canonically decompose as follows:

�
U;G
2 Š

M
.K/

�
zB0.WK/˚�

U
2 ˚

� M
Irr1

C.K/

Z

�WK
�
;(83)

�
SO;G
2 Š

M
.K/

�
zB0.WK/˚

� M
Irr1

C.K/C=conj

Z

�WK
�
:(84)

Here .K/ runs over the conjugacy classes of subgroups of G, WK is the Weyl group NGK=K, Irr1C.K/ is
the set of 1–dimensional nontrivial irreducible complex representations of K endowed with the natural
WK action , and Irr1C.K/C=conj denotes the representations of complex type modulo complex conjugation.
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5 2–Dimensional SK–groups of classifying spaces

Jänich in [15; 14] started the study of the characterization of invariants with the additivity property of the
Euler characteristic and the signature under cutting and pasting of manifolds.

Karras and Kreck in their diploma thesis extended the ideas of Jänich to cutting and pasting in the bundle
situation. The book [17] presented and simplified these results with the definition of the SK–groups
of a space (cutting and pasting groups from the German Schneiden und Kleben). Later Neumann [24]
completely calculated the 2–dimensional SK–groups of a space in terms of what is now known as the
Bogomolov multiplier of its fundamental group. We recall in this section the main results of [17; 24] that
allow us to relate the SK–relation with the equivariant bordism relation on surfaces with free actions.

The Schneiden und Kleben groups SK�.X/ of a space are defined as the Grothendieck group of the
semigroups obtained by defining the SK–equivalence on the class of continuous maps from oriented
n–dimensional manifolds to X [17].

The SK–relation is defined as follows: given .Mi ; fi / with fi W Mi ! X , we say that .M1; f1/ and
.M2; f2/ are related by cutting and pasting along @N if M1 DN [� �N

0, M2 DN [ �N
0 and there

are homotopies f1 jN' f2 jN and f1 jN 0' f2 jN 0 .

The Schneiden und Kleben bordism groups SKn.X/ of a space are defined as the quotient of the oriented
bordism groups by the equivalence relation generated by the SK–relation:

(85) SK�.X/D�SO
� .X/=� :

The group SK2.BG/ can be interpreted as the bordism group of surfaces with free G–actions modulo the
SK–relations.

The following results summarize the main properties of the SK–relation [17, Lemmas 1.5 and 1.6].

(i) Any f W S1!X is zero in SK1.X/.

(ii) If M fibers over Sn with fiber F , then for any f WM !X , in SK�.X/,

(86) ŒM; f �D ŒSn;��ŒF; f jF �:

(iii) If ŒM2; f2� is obtained from ŒM1; f1� by surgery of type .kC 1; n� k/, then in SK�.X/

(87) ŒM1; f1�C ŒS
n;��D ŒM2; f2�C ŒS

k
�Sn�1;��:

Now, if I� denotes the subgroup of SK�.X/ generated by the spheres with constant maps to X , which is
isomorphic to the integers, we have:

Theorem 5.1 [17, Theorem 1.1] For a connected space X , there is the exact sequence

(88) 0! I�! SK�.X/! SK�.X/! 0;

which is moreover split. The map 1
2
.�� �/ W SKn.X/! ZŠ In gives the splitting.

The groups SK�.X/ fit into short exact sequences whose middle terms are the oriented bordism groups.
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Theorem 5.2 [17, Theorem 1.2] Let Fn.X/ be the submodule of �SO
n .X/ generated by all elements

which have a representative that fibers over S1. Then Fn.X/ fits into the short exact sequence

(89) 0! F�.X/!�SO
� .X/! SK�.X/! 0:

This theorem follows from the observations that any manifold that fibers over S1 gives a class that is
zero in SK�.X/, and that the kernel of the homomorphism �SO

� .X/! SK�.X/ consists of mapping
tori. The key lemma for the opposite inclusion asserts that if .M1; f1/ is obtained from .M2; f2/ by
cutting and pasting along N , then in �SO

� .X/ the class of .N [� �N 0; f1/� .N [ �N 0; f2/ is equal to
the mapping torus of the diffeomorphism of @N , ��1 ı . Any mapping torus fibers over S1 and any
fibration over S1 is a mapping torus.

In dimensions 0 and 1 the groups SKn.X/ are trivial. In dimension 2 the oriented manifolds that fiber
over the circle are tori. Therefore by Theorem 5.2 we obtain the following result:

Theorem 5.3 [24, Theorem 2] Let G be a discrete group. Then the 2–dimensional SK–group of BG is
isomorphic to the Bogomolov multiplier of G:

(90) SK2.BG/Š zB0.G/:

Reinterpreting the SK–groups of BG in view of our previous results, we know by Theorem 4.3 that
an element of SK2.BG/ is zero whenever the associated G–cover of the surface is the boundary of a
3–dimensional manifold with a G–action. By Theorem 5.2, SK2.BG/ Š Z˚ zB0.G/, and therefore a
surface †! BG is zero in the group SK2.BG/ whenever the Euler characteristic of † is 0 and the
G–cover z† of † is the boundary of a 3–dimensional manifold with a G–action.

It would be interesting to explore the relation of this work with the higher-dimensional SK–groups of
classifying spaces.

6 Small groups with nontrivial Bogomolov multiplier

We conclude this work by presenting some explicit examples of groups with nontrivial Bogomolov
multiplier which induce nontrivial torsion subgroups in the equivariant bordism groups of surfaces. Some of
the calculations were done with the help of the Homological Algebra Programming package for GAP [10].

6.1 2–Group of size 64

The smallest groups with nontrivial Bogomolov multiplier are 2–groups of order 64. There are nine of
them, and all are in the same isoclinism class. By [23, Theorem 1.2] they all have isomorphic Bogomolov
multipliers, and in this case it is the group Z=2. Among the nine isoclinic groups we chose to study
the group

(91) C8 ÌQ8;
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which is the semidirect product of the group of quaternions Q8 with the cyclic group C8 of order 8; this
group is denoted by

SmallGroup(64,182)

in the GAP small groups library. Consider the presentations Q8 D ha; b j a2 D b2; aba�1 D b�1i and
C8 D hc j c

8 D 1i, and the action of Q8 on C8 given by the equations

(92) ac D c3; bc D c5 and .ab/c D c7:

Since H 2.C8;C�/D 0DH 2.Q8;C�/, we know by the Lyndon–Hochschild spectral sequence that

(93) H 2.C8 ÌQ8;C�/ŠH 1.Q8;H
1.C8;C

�//:

Define yC8 WDHom.C8;C�/DH 1.C8;C�/ and let yC8 D h� j �8 D 1i with �.c/D e2�i=8. Take the first
two terms of the complex C �.Q8; yC8/,

(94) yC8
ı
�!Map.Q8; yC8/;

and note that

(95) ı.�k/.a˙/D ��2k; ı.�k/.b˙/D �4k; ı.�k/..ab/˙/D �2k and ı.�k/.a2/D �0:

On the other hand, take the 1–cocycle F WQ8! yC8 defined by the equations

(96) F.a˙/D �2; F .b˙/D �0; F ..ab/˙/D �2 and F.a2/D �0;

and note that F does not bound but F 2 D ı.�2/. We have therefore that

(97) H 1.Q8; yC8/Š hŒF � j ŒF
2�D 0i Š Z=2:

Now any abelian subgroup of C8ÌQ8 splits as a semidirect product of abelian groups C ÌA with C �C8
and A �Q8. Since A can only be Z=4 or Z=2, it is now straightforward to check that ŒF �jCÌA D 0.
Hence ŒF � is the generator of the Bogomolov multiplier of C8 ÌQ8 and

(98) �
U;C8ÌQ8

2 Š�
SO;C8ÌQ8

2 Š Z=2:

Finally, with the explicit description of F we can define a surface †2 of genus 2 which defines the
generator of z�U2 .B.C8 ÌQ8//. Consider the presentation of the fundamental group of the surface

(99) �1.†2/D hx; y; z; w j Œx; y�Œz; w�D 1i

and define the assignment

(100) ˆ W �1.†2/! C8 ÌQ8; x 7! a; y 7! c; z 7! ab; w 7! c;

which induces a surjective homomorphism since

(101) ˆ.Œx; y�Œz; w�/D aca�1c�1.ab/c.ab/�1c�1 D c3c�1c7c�1 D c0:

The homomorphism ˆ induces a map Bˆ W†2! B.C8 ÌQ8/, and from the construction above of F ,
we deduce that Bˆ�Œ†2� generates the group H2.B.C8 ÌQ8/;Z/.
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Hence the surface

(102) z† WD .Bˆ/�E.C8 ÌQ8/

is a unitary surface with a free action of C8 ÌQ8 which does not equivariantly bound.

By Theorem 4.4, the class of z† is the generator of the torsion subgroup of �SO;C8ÌQ8

2 :

(103) TorZ�
SO;C8ÌQ8

2 D hŒz†�i Š Z=2:

To make sure that the first Chern number vanishes, we take the bordism class

(104) Œz†�� Œ.C8 ÌQ8/�†2� 2�U;C8ÌQ8

2 Š Z=2;

and by Theorem 4.4 we conclude that this is indeed the generator of the torsion subgroup of �U;C8ÌQ8

2 :

(105) TorZ�
U;C8ÌQ8

2 D hŒz†�� Œ.C8 ÌQ8/�†2�i Š Z=2:

6.2 3–Group of size 243

The smallest 3–groups with nontrivial Bogomolov multiplier are of order 243, and the three of them are
isoclinic with Bogomolov multiplier the group Z=3. We chose to study the group

(106) G WD .C9 ÌC9/ÌC3;

which is defined by the presentation

(107) G D ha; b; c j a3 D c3; a9 D b9 D 1; Œa; b�D c8b6; Œb; c�D a3; Œa; c�D b3c6i:

The left C9 is generated by c, the right C9 by b, and the C3 by ab; their corresponding actions are

(108) bcb�1 D c4; .ab/b.ab/�1 D c8b7 and .ab/c.ab/�1 D cb3:

This group corresponds to the small group

SmallGroup(243,30)

in the small groups library of GAP [10].

The second page of the Lyndon–Hochschild spectral sequence has for terms

(109) H 2.C9 ÌC9;C�/C3 D 0; H 1.C3;H
1.C9 ÌC9;C�//D Z=3 and H 2.C3;C

�/D 0;

where the middle term encodes the information of the Bogomolov multiplier.

Consider the surface †2 of genus 2 as in (99), and define the assignment

(110) ˆ W �1.†2/! .C9 ÌC9/ÌC3; x 7! a; y 7! b6; z 7! c; w 7! b;

which induces a surjective homomorphism since Œa; b6�D a3, Œc; b�D a6 and

(111) ˆ.Œx; y�Œz; w�/D Œa; b6�Œc; b�D 1:
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The map Bˆ W†2! B..C9 ÌC9/ÌC3/ generates the Bogomolov multiplier, and therefore the surface
z† WD .Bˆ/�E..C9ÌC9/ÌC3/ generates the torsion subgroup of the equivariant oriented bordism group
of surfaces

(112) TorZ�
SO;.C9ÌC9/ÌC3

2 D hŒz†�i Š Z=3:

In the unitary case,

(113) TorZ�
U;.C9ÌC9/ÌC3

2 D hŒz†�� Œ.C9 ÌC9/ÌC3 �†2�i Š Z=3:

Then z† is a surface of genus 486 with a free action of .C9ÌC9/ÌC3 which does not equivariantly bound.

Acknowledgements

Ángel was partially supported by grant INV-2019-84-1860 from the Fondo de Investigaciones de la
Facultad de Ciencias de la Universidad de los Andes. Samperton is supported by NSF grant DMS 2038020.
Segovia is supported by cátedras CONACYT, Convocatoria PAEP-2018 and Proyecto CONACYT ciencias
básicas 2016, 284621. Uribe acknowledges and thanks the continuous support of the Alexander Von
Humboldt Foundation and of CONACYT through project CB-2017-2018-A1-S-30345-F-3125. We are
indebted to Prof. Peter Landweber for reading earlier versions of this work and for suggesting changes
which have improved the paper. Thank you Prof. Landweber.

References
[1] A Ángel, A spectral sequence for orbifold cobordism, from “Algebraic topology: old and new”, Banach

Center Publ. 85, Polish Acad. Sci. Inst. Math., Warsaw (2009) 141–154 MR Zbl

[2] A Ángel, J M Gómez, B Uribe, Equivariant complex bundles, fixed points and equivariant unitary bordism,
Algebr. Geom. Topol. 18 (2018) 4001–4035 MR Zbl

[3] F A Bogomolov, The Brauer group of quotient spaces of linear representations, Izv. Akad. Nauk SSSR Ser.
Mat. 51 (1987) 485–516 MR Zbl In Russian; translated in Math. USSR-Izv. 30 (1988) 455–485

[4] P E Conner, E E Floyd, Differentiable periodic maps, Ergebnisse der Math. 33, Academic, New York
(1964) MR Zbl

[5] P E Conner, E E Floyd, Maps of odd period, Ann. of Math. 84 (1966) 132–156 MR Zbl

[6] T tom Dieck, Bordism of G–manifolds and integrality theorems, Topology 9 (1970) 345–358 MR Zbl

[7] T tom Dieck, Orbittypen und äquivariante Homologie, I, Arch. Math. (Basel) 23 (1972) 307–317 MR Zbl

[8] T tom Dieck, Transformation groups, de Gruyter Stud. Math. 8, de Gruyter, Berlin (1987) MR Zbl

[9] J E Domínguez, C Segovia, Extending free actions of finite groups on surfaces, Topology Appl. 305 (2022)
art. id. 107898 MR Zbl

[10] GAP Group, GAP: groups, algorithms, and programming (2021) Version 4.11.1 Available at https://
www.gap-system.org

Algebraic & Geometric Topology, Volume 24 (2024)

http://dx.doi.org/10.4064/bc85-0-10
http://msp.org/idx/mr/2503524
http://msp.org/idx/zbl/1170.57027
http://dx.doi.org/10.2140/agt.2018.18.4001
http://msp.org/idx/mr/3892237
http://msp.org/idx/zbl/1408.19005
http://mi.mathnet.ru/im1306
http://msp.org/idx/mr/903621
http://msp.org/idx/zbl/0641.14005
https://doi.org/10.1070/IM1988v030n03ABEH001024
http://dx.doi.org/10.1007/978-3-662-41633-4
http://msp.org/idx/mr/176478
http://msp.org/idx/zbl/0125.40103
http://dx.doi.org/10.2307/1970515
http://msp.org/idx/mr/203738
http://msp.org/idx/zbl/0156.22001
http://dx.doi.org/10.1016/0040-9383(70)90058-3
http://msp.org/idx/mr/266241
http://msp.org/idx/zbl/0209.27504
http://dx.doi.org/10.1007/BF01304886
http://msp.org/idx/mr/310919
http://msp.org/idx/zbl/0252.55003
http://dx.doi.org/10.1515/9783110858372.312
http://msp.org/idx/mr/889050
http://msp.org/idx/zbl/0611.57002
http://dx.doi.org/10.1016/j.topol.2021.107898
http://msp.org/idx/mr/4339642
http://msp.org/idx/zbl/1478.57027
https://www.gap-system.org
https://www.gap-system.org


Oriented and unitary equivariant bordism of surfaces 1653

[11] J P C Greenlees, J P May, Generalized Tate cohomology, Mem. Amer. Math. Soc. 543, Amer. Math. Soc.,
Providence, RI (1995) MR Zbl

[12] J P C Greenlees, J P May, Localization and completion theorems for MU–module spectra, Ann. of Math.
146 (1997) 509–544 MR Zbl

[13] B Hanke, Geometric versus homotopy theoretic equivariant bordism, Math. Ann. 332 (2005) 677–696 MR
Zbl

[14] K Jänich, Charakterisierung der Signatur von Mannigfaltigkeiten durch eine Additivitätseigenschaft, Invent.
Math. 6 (1968) 35–40 MR Zbl

[15] K Jänich, On invariants with the Novikov additive property, Math. Ann. 184 (1969) 65–77 MR Zbl

[16] G Karpilovsky, The Schur multiplier, Lond. Math. Soc. Monogr. (N.S.) 2, Oxford Univ. Press (1987) MR
Zbl

[17] U Karras, M Kreck, W D Neumann, E Ossa, Cutting and pasting of manifolds: SK–groups, Math. Lect.
Ser. 1, Publish or Perish, Boston, MA (1973) MR Zbl

[18] B Kunyavskiı̆, The Bogomolov multiplier of finite simple groups, from “Cohomological and geometric
approaches to rationality problems” (F Bogomolov, Y Tschinkel, editors), Progr. Math. 282, Birkhäuser,
Boston, MA (2010) 209–217 MR Zbl

[19] P S Landweber, Equivariant bordism and cyclic groups, Proc. Amer. Math. Soc. 31 (1972) 564–570 MR
Zbl

[20] P Löffler, Bordismengruppen unitärer Torusmannigfaltigkeiten, Manuscripta Math. 12 (1974) 307–327
MR Zbl

[21] J P May, Equivariant homotopy and cohomology theory, CBMS Reg. Conf. Ser. Math. 91, Amer. Math.
Soc., Providence, RI (1996) MR Zbl

[22] P Moravec, Unramified Brauer groups of finite and infinite groups, Amer. J. Math. 134 (2012) 1679–1704
MR Zbl

[23] P Moravec, Unramified Brauer groups and isoclinism, Ars Math. Contemp. 7 (2014) 337–340 MR Zbl

[24] W D Neumann, Manifold cutting and pasting groups, Topology 14 (1975) 237–244 MR Zbl

[25] R Oliver, SK1 for finite group rings, II, Math. Scand. 47 (1980) 195–231 MR Zbl

[26] E Ossa, Unitary bordism of abelian groups, Proc. Amer. Math. Soc. 33 (1972) 568–571 MR Zbl

[27] R J Rowlett, The fixed-point construction in equivariant bordism, Trans. Amer. Math. Soc. 246 (1978)
473–481 MR Zbl

[28] R J Rowlett, Bordism of metacyclic group actions, Michigan Math. J. 27 (1980) 223–233 MR Zbl

[29] E Samperton, Schur-type invariants of branched G–covers of surfaces, from “Topological phases of matter
and quantum computation” (P Bruillard, C Ortiz Marrero, J Plavnik, editors), Contemp. Math. 747, Amer.
Math. Soc., Providence, RI (2020) 173–197 MR Zbl

[30] E G Samperton, Free actions on surfaces that do not extend to arbitrary actions on 3–manifolds, C. R.
Math. Acad. Sci. Paris 360 (2022) 161–167 MR Zbl

[31] I Schur, Über die Darstellung der endlichen Gruppen durch gebrochen lineare Substitutionen, J. Reine
Angew. Math. 127 (1904) 20–50 MR Zbl

[32] S Schwede, Global homotopy theory, New Math. Monogr. 34, Cambridge Univ. Press (2018) MR Zbl

Algebraic & Geometric Topology, Volume 24 (2024)

http://dx.doi.org/10.1090/memo/0543
http://msp.org/idx/mr/1230773
http://msp.org/idx/zbl/0876.55003
http://dx.doi.org/10.2307/2952455
http://msp.org/idx/mr/1491447
http://msp.org/idx/zbl/0910.55005
http://dx.doi.org/10.1007/s00208-005-0648-0
http://msp.org/idx/mr/2181767
http://msp.org/idx/zbl/1073.55006
http://dx.doi.org/10.1007/BF01389831
http://msp.org/idx/mr/231399
http://msp.org/idx/zbl/0164.24501
http://dx.doi.org/10.1007/BF01350617
http://msp.org/idx/mr/253360
http://msp.org/idx/zbl/0201.25701
http://msp.org/idx/mr/1200015
http://msp.org/idx/zbl/0619.20001
http://msp.org/idx/mr/362360
http://msp.org/idx/zbl/0258.57010
http://dx.doi.org/10.1007/978-0-8176-4934-0_8
http://msp.org/idx/mr/2605170
http://msp.org/idx/zbl/1204.14006
http://dx.doi.org/10.2307/2037572
http://msp.org/idx/mr/296969
http://msp.org/idx/zbl/0232.57023
http://dx.doi.org/10.1007/BF01171078
http://msp.org/idx/mr/348776
http://msp.org/idx/zbl/0282.57022
http://dx.doi.org/10.1090/cbms/091
http://msp.org/idx/mr/1413302
http://msp.org/idx/zbl/0890.55001
http://dx.doi.org/10.1353/ajm.2012.0046
http://msp.org/idx/mr/2999292
http://msp.org/idx/zbl/1346.20072
http://dx.doi.org/10.26493/1855-3974.392.9fd
http://msp.org/idx/mr/3240441
http://msp.org/idx/zbl/1327.14099
http://dx.doi.org/10.1016/0040-9383(75)90004-X
http://msp.org/idx/mr/380837
http://msp.org/idx/zbl/0311.57007
http://dx.doi.org/10.7146/math.scand.a-11885
http://msp.org/idx/mr/612696
http://msp.org/idx/zbl/0433.16022
http://dx.doi.org/10.2307/2038101
http://msp.org/idx/mr/293666
http://msp.org/idx/zbl/0215.52603
http://dx.doi.org/10.2307/1997988
http://msp.org/idx/mr/515553
http://msp.org/idx/zbl/0404.57026
http://projecteuclid.org/euclid.mmj/1029002359
http://msp.org/idx/mr/568643
http://msp.org/idx/zbl/0442.57016
http://dx.doi.org/10.1090/conm/747/15045
http://msp.org/idx/mr/4079751
http://msp.org/idx/zbl/1447.57026
http://dx.doi.org/10.5802/crmath.277
http://msp.org/idx/mr/4384330
http://msp.org/idx/zbl/1486.57032
http://dx.doi.org/10.1515/crll.1904.127.20
http://msp.org/idx/mr/1580631
http://msp.org/idx/zbl/35.0155.01
http://dx.doi.org/10.1017/9781108349161
http://msp.org/idx/mr/3838307
http://msp.org/idx/zbl/1451.55001


1654 Andrés Ángel, Eric Samperton, Carlos Segovia and Bernardo Uribe

[33] R E Stong, Notes on cobordism theory: mathematical notes, Princeton Univ. Press (1968) MR Zbl

[34] R E Stong, Complex and oriented equivariant bordism, from “Topology of manifolds” (J C Cantrell, C H
Edwards, Jr, editors), Markham, Chicago, IL (1970) 291–316 MR Zbl

[35] B Uribe, The evenness conjecture in equivariant unitary bordism, from “Proceedings of the International
Congress of Mathematicians, II” (B Sirakov, P N de Souza, M Viana, editors), World Sci., Hackensack, NJ
(2018) 1217–1239 MR Zbl

[36] C T C Wall, Determination of the cobordism ring, Ann. of Math. 72 (1960) 292–311 MR Zbl

Departamento de Matemáticas, Universidad de los Andes
Bogota, Colombia

Department of Mathematics, University of Illinois at Urbana-Champaign
Urbana, IL, United States

Current address: Mathematics Department, Purdue University
West Lafayette, IN, United States

Instituto de Matemáticas, UNAM Unidad Oaxaca
Oaxaca, Mexico

Max Planck Institut für Mathematik
Bonn, Germany

Current address: Departamento de Matemáticas y Estadística, Universidad del Norte
Barranquilla, Colombia

ja.angel908@uniandes.edu.co, eric@purdue.edu, csegovia@matem.unam.mx,
bjongbloed@uninorte.edu.co

https://sites.google.com/site/bernardouribejongbloed/

Received: 30 April 2022 Revised: 13 February 2023

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://msp.org/idx/mr/248858
http://msp.org/idx/zbl/0181.26604
http://msp.org/idx/mr/273644
http://msp.org/idx/zbl/0281.57024
https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM2018/ICM-2018-vol2-ver1-eb.pdf
http://msp.org/idx/mr/3966806
http://msp.org/idx/zbl/1450.55001
http://dx.doi.org/10.2307/1970136
http://msp.org/idx/mr/120654
http://msp.org/idx/zbl/0097.38801
mailto:ja.angel908@uniandes.edu.co
mailto:eric@purdue.edu
mailto:csegovia@matem.unam.mx
mailto:bjongbloed@uninorte.edu.co
https://sites.google.com/site/bernardouribejongbloed/
http://msp.org
http://msp.org


msp

Algebraic & Geometric Topology 24:3 (2024) 1655–1690
DOI: 10.2140/agt.2024.24.1655

Published: 28 June 2024

A spectral sequence for spaces of maps between operads

FLORIAN GÖPPL

MICHAEL WEISS

Under mild conditions on topologically enriched operadsP andQ, the derived mapping space RHom.P;Q/
is the limit (sequential homotopy inverse limit) of a tower whose nth layer admits a description in terms
of certain (small) diagrams Jn.P / and Jn.Q/. More precisely Jn.P / is a 3–term diagram of spaces
with action of †n of the form boundn.P /! P.n/! coboundn.P /, where P.n/ is the space of n–ary
operations in P. The statement takes some inspiration from manifold calculus, but the proof relies on the
homotopical theory of dendroidal spaces and the concept of dendroidal nerve of an operad.

18M75, 55P48; 18N60

1 Introduction

Operads are tools well suited to describe and classify additional algebraic structures on objects in symmetric
monoidal categories. On the other hand, they are a natural generalization of (enriched) categories allowing
morphisms to have any finite number of sources. Operads (in a more restrictive one-object setting) were
first defined by Peter May [1972]. Closely related notions can be seen in the earlier book by Boardman
and Vogt [1968]. A specific operad emerged earlier still in [Stasheff 1963a; 1963b; Sugawara 1957]. For
a very readable survey and exposition, see [Adams 1978, Section 2]. In his book, May proved the famous
recognition principle, which gives an “operadic” characterization of based spaces which are homotopy
equivalent to some n–fold loop space. Operads have since appeared in various branches of mathematics
and mathematical physics. The principal aim of this investigation was to find a way to understand spaces
of maps between operads. The “little disk” operads are important examples and test cases.

We will do this by translating the problem into the language of dendroidal spaces. These are contravariant
functors from a certain category� of trees to the category sSet of simplicial sets. The theory of dendroidal
sets and dendroidal spaces was introduced by Ieke Moerdijk and Ittay Weiss [2007] (see also [Weiss
2007]) and further investigated by Cisinski and Moerdijk [2011; 2013b; 2013a]. A simplicially enriched
operad P determines a dendroidal space NdP, known as the dendroidal nerve of P. There is a map of
derived mapping spaces from RHom.P;Q/ to RHom.NdP;NdQ/, which is a weak equivalence in the
cases we are interested in.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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1656 Florian Göppl and Michael Weiss

Although derived mapping spaces have a standard description in the context of model categories, we will
mostly avoid this description and rely on the description due to Dwyer and Kan [1980] instead. They
construct derived mapping spaces for objects in any category C equipped with a wide subcategory W
(whose morphisms play the role of weak equivalences). If W happens to be the subcategory of weak
equivalences in a model category, then these constructions yield weakly equivalent results. For our
purposes a morphism of dendroidal spaces is a weak equivalence if and only if it is a levelwise equivalence
of simplicial sets. The goal, then, is to understand the homotopy type of derived mapping spaces between
dendroidal nerves of (some) operads.

We approach this problem by mapping the space RHom.NdP;NdQ/ to a tower of derived mapping
spaces obtained by restricting NdP and NdQ to certain subcategories �hki, where 0 6 k <1. The
subcategory �hki of � is the full subcategory on trees with vertices of valence 6 kC 1 only (to put it
differently, trees in which no vertex has more than k incoming edges). We note that these categories �hki
are closed under grafting of trees. Contravariant functors from �hki to the category of simplicial sets
will be called k–truncated dendroidal spaces. A morphism of truncated dendroidal spaces is a weak
equivalence if it is a levelwise weak equivalence of simplicial sets. With these definitions it is clear that
the restriction functor Uk from dendroidal spaces to k–truncated ones preserves all weak equivalences and
thus induces maps RHom.X; Y /! RHom.UkX;UkY / for all dendroidal spaces X and Y. We arrange
these maps in a tower

:::

��

RHom.U3X;U3Y /

��

RHom.U2X;U2Y /

��

RHom.X; Y / //

00

22

33

RHom.U1X;U1Y /

of derived mapping spaces.

In Section 3.1, we set up a “dévissage” mechanism for proving homotopical statements in categories
of contravariant functors (with values in sSet) with levelwise weak equivalences. We show that every
functor admits a weak equivalence from a free CW–functor, a more restrictive instance of the concept of
CW–functor in [Dror Farjoun 1987]. These are functors admitting a CW-type decomposition into cells of
the shape Hom.�; c/��Œk�. We make use of this approximation to prove certain homotopical properties
for contravariant functors. More precisely, we show that we can verify such a property by showing that it
holds for representable functors and that it persists under formation of homotopy pushouts and disjoint
unions. Our first application of this principle is the following statement (admittedly this is unsurprising,
and it might have shorter proofs and might be regarded as obvious by some readers):
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Lemma (Lemma 3.1.1 and Corollary 3.1.7) The above tower of derived mapping spaces converges , ie
for all dendroidal spaces X and Y the induced map

RHom.X; Y /! holim
k

RHom.UkX;UkY /

is a weak homotopy equivalence.

Under additional assumptions on our objects, the homotopy fibers of this tower can be simplified. A
dendroidal Segal space is called 1–reduced if its values on the trivial tree and the 0–corolla are points and its
value on the 1–corolla is contractible. The most important example is the dendroidal nerve of a 1–reduced
simplicially enriched operad P. These are operads P that only have one object and satisfy P.0/ D �
and P.1/' �. This notion still captures our most important examples since all En–operads and many
more are 1–reduced. In this setting we can, instead of working in the category sdSet of dendroidal spaces,
restrict our attention to an easier category scdSet. This is based on a category of closed trees �cl ��.

Using this model, we define operadic boundary and coboundary objects reminiscent of the latching and
matching objects, respectively, from the theory of Reedy categories. Let cck be the closed k–corolla, an
important object of �cl with a preferred action of †k . Evaluating objects in scdSet at cck gives a functor

X 7!Xcck

from scdSet to the category of simplicial sets with †k–action. (If X D NdP, where P is a 1–reduced
operad, thenXcck

'P.k/.) We define two more functors, boundk and coboundk , from scdSet to simplicial
sets with †k–action, and natural †k–maps

boundkX !Xcck
! coboundkX:

Let Jk.X/ be this diagram, and let @Jk.X/ be the shorter diagram

boundkX ! coboundkX

obtained by composing the two arrows in Jk.X/. Both of these are understood to be diagrams in the
category of simplicial sets with an action of the symmetric group †k . (For the present purposes a
morphism of simplicial sets with †k–action will be regarded as a weak equivalence if the underlying
morphism in sSet is a weak equivalence.) Here is our main theorem (see also Remark 3.2.15 for a slightly
different formulation):

Theorem 3.2.7 Let X and Y be 1–reduced dendroidal Segal spaces , to be viewed as objects of scdSet.
Then the following square is a homotopy pullback square:

RHom.UkX;UkY / RNat.JkX; JkY /

RHom.Uk�1X;Uk�1Y / RNat.@JkX; @JkY /

Algebraic & Geometric Topology, Volume 24 (2024)



1658 Florian Göppl and Michael Weiss

This allows us to make some homotopical computations with RHom.En; EnCd /.

Theorem The homotopy fiber of

RNat.UkEn; UkEnCd /! RNat.Uk�1En; Uk�1EnCd /

is ..k�1/.d�2/C1/–connected.

The above theorem and the corollary are reminiscent of fundamental results in the manifold calculus and
can also be used in this context. A first application can be found in [Weiss 2021].

The operadic boundary and coboundary objects have also been investigated and used in [Fresse et al.
2017; Heuts 2021] in slightly different settings. Similar constructions can be seen in [Thumann 2017].

Authorship Apart from minor revisions, this is Göppl’s PhD thesis (2019, Universität Münster), advised
by Weiss. Göppl is no longer active in topology research, but his thesis was well received and, as time
went by, the case for publishing it became only stronger. It fell to Weiss to revise and submit the work
and act as corresponding author, although he is hardly an author or coauthor of the article.

Acknowledgments We are indebted to Thomas Nikolaus for some helpful suggestions. This work was
supported by the Alex von Humboldt foundation through a Humboldt Professorship award to Weiss,
2012–2017.

2 Operads and dendroidal objects

The purpose of this first section is to explain and motivate the notion of an operad. (The section is not a
self-contained introduction to the homotopy theory of operads and dendroidal objects.) In the first part of
the section we will give a short exposition of the basic definitions and theorems. The second part is devoted
to some closely related notions more approachable by homotopical methods. The theory of dendroidal
sets was introduced in [Moerdijk and Weiss 2007]. A dendroidal object is a contravariant functor on an
indexing category of trees. An important subclass of trees are the linear ones and contravariant functors
on this subcategory are simplicial objects. Most of the homotopical constructions for simplicial spaces
generalize to the dendroidal setting. Our focus will be on the dendroidal analogue of (complete) Segal
spaces [Rezk 2001].

Throughout this article we will make some use of the theory of model categories. A model structure on a
bicomplete category C is defined by a triple .Co;W;Fi/ of wide subcategories of C. (A subcategory is
called wide if it contains all identity morphisms.) These classes have to satisfy certain lifting properties
analogous to the cofibrations, weak equivalences and fibrations of topological spaces. Although we are
mostly interested in derived mapping spaces and these only depend on a class of weak equivalences,
the additional structure given by fibrations and cofibrations provides useful tools for computations of
mapping spaces and derived functors.
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2.1 Operads

Definition 2.1.1 An operad P consists of a set of objects fxig and, for every .nC1/–tuple .x1; : : : ; xnI x/
of objects, a set of morphisms P.x1; : : : ; xnI x/, subject to the following axioms:

� For every x, there is a morphism Idx 2 P.xI x/, called the identity of x.

� There are associative composition morphisms

P.y1; : : : ; ynI z/�P.x1;1; : : : ; x1;k1
Iy1/�� � ��P.xn;1; : : : ; xn;kn

Iyn/!P.x1;1; : : : ; xn;kn
I z/:

� For every .nC1/–tuple .x1; : : : ; xnIy/ and every � 2†n, there is a bijection

�� W P.x1; : : : ; xnIy/! P.x�.1/; : : : ; x�.n/Iy/

respecting the other structure.

A more complete definition is given in [Berger and Moerdijk 2007, 1.1].

A morphism of operads f W P !Q consists of a map between objects

ob.P /! ob.Q/
and structure-preserving maps

P.x1; : : : ; xnI x/!Q.f .x1/; : : : ; f .xn/If .x//:

An operad is called monochromatic if it has only one object.

The operadic (multi)composition can be understood more easily by picturing the multimorphisms as
special (planar) trees (so-called corollas) with several “input” edges and a unique “output” edge. Names
of objects (sources and target) should be attached to edges and the name of the multimorphism can be
attached to the unique vertex as a label. Grafting leads to a more complicated tree with several labels. The
following depicts the grafting of a 2–morphism u with two 3–morphisms v and w in the monochromatic
case, where the labeling of edges with objects is unnecessary:

u v w

v

u

w

It is up to the operadic structure to “simplify” the complicated tree in the right-hand side of the picture to
a 6–corolla with a single label at the unique vertex. The simplification can be thought of as something
induced (contravariantly) by a morphism from the 6–corolla to the complicated tree with three vertices
and nine edges. (In this context, it is convenient to think of trees as partially ordered sets of edges. A
morphism of trees is given by an order-preserving map of edge sets, subject to additional conditions,
which will be spelled out below.)

Algebraic & Geometric Topology, Volume 24 (2024)
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For every symmetric monoidal category C it makes sense to speak of operads enriched over C. These
still have a (discrete) set of objects. A topological operad is an operad enriched over the category of
compactly generated weak Hausdorff spaces. We will more ambiguously speak of operads enriched
over spaces to mean either topological operads or operads enriched over simplicial sets. The category of
simplicially enriched operads will be denoted by sSetOp. For later use we say that a morphism between
monochromatic topological operads is a weak equivalence if it is a levelwise weak homotopy equivalence.

To compare the theories of topological operads and simplicially enriched operads, we use a fact similar to
[Berger and Moerdijk 2013, Corollary 1.14]: that a Quillen equivalence V! V0 between suitably nice
symmetric monoidal model categories induces a Quillen equivalence V–Op! V0–Op between the model
structures on enriched operads. A (symmetric) monoidal category C equipped with a model structure is
called a (symmetric) monoidal model category if it satisfies the following two axioms:

� For every pair of cofibrations f WX ! Y and f 0 WX 0! Y 0, the map

.X ˝Y 0/q.X˝X 0/ .Y ˝X
0/! Y ˝Y 0

is a cofibration. It is a weak equivalence if f or f 0 is.

� For every cofibrant X, the morphism

QI ˝X ! I ˝X !X

is a weak equivalence. Here QI ! I denotes a cofibrant replacement of the tensor unit I.

These axioms are called the pushout–product axiom and the unit axiom, respectively. Examples include
the usual model categories of simplicial sets, compactly generated weak Hausdorff spaces, and chain
complexes.

Example 2.1.2 Let .C;˝/ be a closed symmetric monoidal category (a monoidal category is closed if
the tensor product has a right adjoint, the internal Hom) and X an object of C. The endomorphism operad
End.X/ is the operad enriched in C on one object with morphism objects

End.X/.n/D HomC.X
˝n; X/

and the obvious multicomposition by insertion. The functor Hom denotes the internal Hom functor of C.

Endomorphism operads give a way for other operads to act on objects of C. In this way, operads classify
additional algebraic structures.

Definition 2.1.3 An algebra A over a monochromatic C–operad P is an object A of C together with a
map of operads P ! End.A/.

Example 2.1.4 Let Com be the terminal topological operad. It has a single object and every mapping
space is a point. Let X be a topological space. Then any map f from Com to End.X/ turns X into an
abelian topological monoid with operation f .�2/ 2Map.X �X;X/.
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The little disk operads have been studied in great detail. May [1972] proved his famous recognition
principle that a connected space is an algebra over the little n–disk operad if and only if it is weakly
equivalent to an n–fold loop space. A more precise statement will be given after we define these operads.

Example 2.1.5 (the little disk operad) Let Dn.k/ denote the topological space of disjoint, rectilinear
(ie respecting parallel lines) embeddings

`
k I

n! In. Composition of (multi)morphisms is given by
identifying the image of one morphism with an In in the domain of the next one. The following image
shows a composition map D2.1/�D2.2/!D2.2/:

Any topological operad weakly equivalent to the operad of little n–disks is called an En–operad.

We describe another model of topological En–operads, called Fulton–MacPherson operads. This one
is less intuitive but has properties more closely related to objects we will investigate later on. It is built
from a sequence of compactified euclidean configuration spaces. This construction is due to Fulton
and MacPherson [1994] as an algebraic compactification of complex varieties and was later built in a
topological way in [Axelrod and Singer 1994; Sinha 2004].

Example 2.1.6 (the Fulton–MacPherson operad [Sinha 2004; Getzler and Jones 1994]) For every n
and k, the subgroup Gn of Aff.n/, the group of affine automorphisms, generated by translations and
scalar multiplication, of Rn acts freely on the ordered configuration space Conf.k;Rn/. The quotient
C Œk; n� is a manifold of dimension n.k � 1/� 1 with an induced †k–action. Consider the collection
(or symmetric sequence) Fn.k/ given by these manifolds for k > 2 and set Fn.0/ D Fn.1/ D ∅. The
Fulton–MacPherson En–operad FMn has the same underlying set as the free operad Free.Fn/ together
with a point in degree zero. (The definition of symmetric sequences and the free operad construction
will be given in Definition 2.1.8.) Its topology is constructed in such a way that every level FMn.k/ is a
compact, connected manifold with corners. The interior of this manifold is Fn.k/ provided k � 2. The
spaces FMn.0/ and FMn.1/ are one-point spaces.

We will now give an explicit construction. For all .i; j / 2
�
k
2

�
, define the maps

a.i;j / W Conf.k;Rn/! Sn�1; x 7!
xi � xj

kxi � xj k
:

Furthermore, for all .i; j; k/ 2
�
k
3

�
, define the maps

b.i;j;k/ W Conf.k;Rn/! Œ0;1�; x 7!
kxi � xj k

kxi � xkk
:
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The configuration space Conf.k;Rn/ embeds into Rnk � .Sn�1/.
k
2/ � Œ0;1�.

k
3/ via

x 7!

�
x;
Y
i;j

ai;j .x/;
Y
i;j;k

bi;j;k.x/

�
:

The closure of the image of this map shall be denoted by CkŒRn�. The action of Gn on the configuration
space extends to an action on CkŒRn�. The quotients of this action assemble to the operad FMn, ie
FMn.k/ WD CkŒR

n�=Gn. These quotient spaces are compact manifolds with corners. They have a natural
stratification we can use to understand the operad structure on the collection FMn.

The stratification is indexed over the category ‰k of rooted, labeled trees with k leaves (nonroot outer
edges) and no vertices of valence one or two. The set of leaves shall be labeled by the set f1; 2; : : : ; kg.
The morphisms in ‰k are given by contraction of inner edges. So there is a map S! T if S can be turned
into T by a sequence of contractions of inner edges. The stratum corresponding to a tree T with vertices
v1; : : : ; vl of valence k1; : : : ; kl is homeomorphic to

Q
C Œki � 1; n�. Its closure is the union of all the

strata indexed by trees mapping to T. In particular the interior of FMn.k/ is diffeomorphic to C Œk; n�.

We try to illustrate this with some examples. The stratifications of the first three spaces (FMn.0/, FMn.1/

and FMn.2/) are trivial. There is no noncorolla tree with fewer than three inputs and no vertex of valence
one or two. The first nontrivial stratification arises at level 3. There are four different trees in ‰3:

1 2

3

1 3

2

2 3

1 1 2 3

We see that there are three strata homeomorphic to Sn�1 �Sn�1 and the corolla stratum corresponding
to the interior of FMn.3/. (In the case nD 1 the configurations in Rn have a canonical ordering and, by
using this, we obtain FM1.k/D†k �SP.k/, where SP.k/ is a polytope found by Stasheff long before
the work of Fulton and MacPherson.) The number of strata grows quickly with the level. There are
already 26 trees in ‰4.

This stratification is compatible with the operadic structure. So, for example, the composition

FMn.2/� .FMn.2/�FMn.2//! FMn.4/

is an embedding whose image is the union of the strata corresponding to trees of the shape
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The levelwise weak equivalences of simplicially enriched operads are the weak equivalences of a model
structure on the category of monochromatic operads.

Theorem 2.1.7 [Cisinski and Moerdijk 2013b, Theorem 1.7] The category sSetOp� of monochromatic
simplicially enriched operads carries a proper cofibrantly generated model structure such that the fibrations
and weak equivalences are the levelwise fibrations and weak equivalences.

Definition 2.1.8 Let C be a symmetric monoidal category. A collection (also known as a symmetric
sequence) in C is a sequence of objects Xn (where n� 0) with actions of the symmetric group †n. More
formally, the category of collections in C is the product of functor categories

Coll.C/ WD
Y
n2N

C†n ;

where the groups are regarded as groupoids with one object. The forgetful functor taking a monochromatic
C–operad to its underlying collection has a left adjoint, called the free operad functor. It is described at
length in [Berger and Moerdijk 2003, Section 5.8]. In each level k a free operad is indexed by rooted
trees with k leaves. Let T be the groupoid of finite rooted trees and isomorphisms. More precisely, T is
the maximal subgroupoid of the dendrex category � defined in Section 2.2. Similarly, let Tƒ be the
groupoid of finite, rooted trees together with a total order � on their set of leaves. For every collection X,
we can define a functor

X W T op
! C

by setting X.�/ D I, the tensor unit of C. Every tree T 2 T can inductively be written as a grafting
cn ı .T1; : : : ; Tn/. (The tree cn is the n–corolla, the tree with a single vertex of valence nC 1. These
corollas will be introduced in Example 2.2.2.) We set

X.T / WDX.n/˝X.T1/˝ � � �˝X.Tn/:

The free operad on a collection X has the nth space

free.X/.n/Š
a

Œ.T;�/�2�0Tƒ

T has n inputs

X.T /=Aut.T; �/:

Note that objects of Tƒ can have nontrivial automorphisms. There is an understanding that we choose
a representative .T; �/ in each element of �0Tƒ. The action of †n on free.X/.n/ comes from the
action of †n on the total orderings of the leaves. The permutation � 2 †n sends .T; �/ to the chosen
representative .T 0; �0/ in the class of .T; �.�//. We need to choose an isomorphism from .T; �.�// to
the representative .T 0; �0/ in order to get an isomorphism from X.T / to X.T 0/. Consequently, that
isomorphism is well defined only modulo the action of Aut.T; �/ on X.T /. The operadic composition in
a free operad is induced by grafting of trees in the obvious way.

Remark 2.1.9 [Goerss and Jardine 1999, Theorem 5.1] Let

F W C� D WG
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be an adjunction of categories. Let .Co;W;Fi/ be a cofibrantly generated model structure on C. A
morphism f W a! b in D shall be called a fibration or weak equivalence if its image under G is. If

� G preserves filtered colimits, and

� every morphism of D with the left lifting property with respect to all fibrations is a weak equivalence,

then there exists a cofibrantly generated model structure on D with the above fibrations and weak
equivalences. Furthermore, if I is the set of generating cofibrations of C and J the set of generating
trivial cofibrations, then F.I / and F.J / are the sets of generating cofibrations and trivial cofibrations,
respectively, of D. This model structure is called the (left) transferred model structure along the adjunction
.F aG/.

Since the model structure of Theorem 2.1.7 is transferred from the category of collections, we immediately
see that any free operad on a cofibrant collection is cofibrant.

A functorial cofibrant replacement of monochromatic topological operads has been constructed in [Board-
man and Vogt 1973] and generalized to the case of operads enriched in suitable model categories in [Berger
and Moerdijk 2006] and to the multiobject case in [Berger and Moerdijk 2007]. To avoid unnecessary
complexity, only the version for monochromatic topological operads will be presented here.

Definition 2.1.10 (the Boardman–Vogt construction) Let P be a topological operad. The Boardman–
Vogt W –construction is a factorization

free.P / ,!WP ��! P

of the counit free.P /!P into a cofibration followed by a weak equivalence. The operadWP itself is also
often called the Boardman–Vogt W –construction. Under a small hypothesis on P, the BV construction
WP is a functorial cofibrant replacement of P.

To build this factorization, we start with the free operad free.P /. Recall that its n–ary operations are the
labellings of certain trees with n leaves. Each vertex in these trees (of valence kC 1) is colored by an
element of P.k/. To get WP, we furthermore equip the internal edges with a length le 2 Œ0; 1�. If some
edge e has length 0, then this point in WP is identified with the one given by contracting the edge and
composing the two adjacent operations.

Lemma 2.1.11 [Boardman and Vogt 1973; Berger and Moerdijk 2006] If the underlying collection
of P is †–cofibrant (every space of the collection is cofibrant and the action of †k on the kth space of
the collection is free for all k), then the operad WP is cofibrant.

2.2 Dendroidal sets and spaces

The concept of dendroidal set was introduced in [Moerdijk and Weiss 2007] as a generalization of
simplicial sets suited to describe and investigate the homotopy theory of operads. The homotopy theory
of dendroidal sets and spaces was developed in [Cisinski and Moerdijk 2011; 2013b; 2013a]. Dendroidal
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sets correspond to (higher) operads in exactly the same way simplicial sets do to (higher) categories.
Many constructions for simplicial objects have dendroidal analogues. A major tool in this article will be
the notion of dendroidal complete Segal spaces.

In this section we will give a short introduction to these notions and quote the most important results for
our further work.

Definition 2.2.1 A tree (or dendrex) T consists of a tuple .T;�; L/ such that .T;�/ is a partially ordered
finite set (the set of edges) with a unique minimal element (called the root) and the property that, for
each element x 2 T, the set of elements smaller than x is linearly ordered. The set L is a subset of the set
of maximal elements of T. The elements of T are called edges and the elements of L are called leaves.
An edge is inner if it is neither a leaf nor the root. For any edge x 2 T XL, the set in.x/ of elements
y > x such that there is no z with y > z > x is called the set of incoming edges (or inputs) of x. For any
x 2 T XL, the set vx WD fxg[ in.x/ is a vertex of T. (The set of vertices is in obvious bijection to T XL.)

These trees can be arranged into a category �. To define the morphisms of �, we note that every tree T
determines an operad �.T / whose set of objects is the set of edges of T. Every vertex vx contributes
a generating operation whose input set is the set of incoming edges in.x/ and whose output is x. For
example, the operad generated by

a

b

c

d e

f

vd

vb

vf

has six objects, morphisms vd 2 �.T /.bI d/, vb 2 �.T /.a; cI b/ and vf 2 �.T /.d; eIf / and their
compositions vd ıvb 2�.T /.a; cI d/, vf ıvd 2�.T /.b; eIf / and vf ıvd ıvb 2�.T /.a; c; eIf /. The
set of morphisms in� between two trees is defined to be the set of morphisms between their corresponding
operads,

Hom�.T; T 0/ WD HomOp.�.T /;�.T
0//:

Note that the morphisms do not have to preserve the root.

Example 2.2.2 The trees with exactly one vertex are of particular importance and are called corollas.
The notation is cn for a corolla with n leaves. The following figure shows the 3–corolla, the 1–corolla
and the 0–corolla:
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A presheaf on � is called a dendroidal set. More generally, for any symmetric monoidal category C, the
objects of Fun.�op;C/ are called dendroidal objects in C. The category of dendroidal objects in C will be
denoted by dC. For every object T in� there is the dendroidal set represented by T ; it is denoted by�ŒT �.

The simplex category � embeds into � as a full subcategory by sending Œn� to the linear tree with n
vertices and nC 1 edges. The operads �.T / for T in the image of this embedding have no morphisms of
higher degree and are thus equivalent to categories. They are easily seen to be the linear categories Œn�.
There is a tree � in � with exactly one edge; it is also the image of Œ0� in �. Every operad which
admits a morphism to �.�/ cannot have higher morphisms and thus Op=�.�/D Cat and �=�Š� and
dSet=�Œ��D sSet.

Several constructions on the category of simplicial sets can be generalized to the dendroidal setting and
recovered by the description of sSet as the overcategory dSet=�Œ��. One of the most important is the
nerve construction. For an operad P, the dendroidal nerve NdP is the dendroidal set given by

NdP.T /D HomOp.�.T /; P /:

The nerve functor has a left adjoint �d . It can be described as the unique colimit-preserving functor that
sends the represented presheaf �ŒT � to the operad �.T /.

For any category regarded as an operad the dendroidal nerve reduces to the ordinary nerve of a category.
Hence, the square of functors

Cat sSet

Op dSet

commutes.

Remark 2.2.3 For every T in �, there is an isomorphism of dendroidal sets

�ŒT �ŠNd�.T /:

We will now examine the category � more closely and describe the homotopy theory of dendroidal
objects.

Definition 2.2.4 Morphisms (in �) of the following kind are called inner face maps:

a

b

c

z

˛

˛.a/ ˛.b/

˛.c/y

˛.z/
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They (contravariantly) correspond to operadic composition. Morphisms of the kind

a

b

c

z

˛

x y

˛.a/

˛.b/

˛.c/

˛.z/

are called outer face maps. The degeneracies are morphisms given by deleting an inner vertex of valence 2:

a

c

b

d e

z

˛
˛.a/ ˛.b/

˛.c/D ˛.d/ ˛.e/

˛.z/

On the operads associated to these trees, this induces the map identifying the two adjacent objects and
sending the unary morphism between them to the identity on the new object. By [Moerdijk and Weiss
2007, Lemma 3.1], every morphism in � factors up to isomorphism as a composition of degeneracies
followed by a sequence of face maps.

The theory of Segal spaces was developed by Rezk [2001]. These Segal spaces are simplicial spaces
behaving like an up-to-homotopy version of the nerve of a topological category.

Its dendroidal generalization was constructed in [Cisinski and Moerdijk 2013a]. This model has the merit
of being less rigid than enriched operads in the sense that their composition law is only defined up to a
contractible choice.

More exactly, our model will be based on simplicial dendroidal sets. As a category of simplicial presheaves,
it is canonically tensored, cotensored and enriched over simplicial sets. The tensoring is given by taking a
dendrexwise product of simplicial sets.

Definition 2.2.5 LetX and Y be dendroidal spaces. A morphism f WX!Y is called a weak equivalence
if, for every tree T in �, the map XT ! YT is a weak equivalences of simplicial sets.

There are three standard choices for the classes of fibrations and cofibrations on the category of simplicial
dendroidal sets if we fix the class of dendrexwise weak equivalences as our choice for the weak equiva-
lences. The projective model structure is uniquely determined by defining a morphism to be a fibration if
and only if it is a dendrexwise Kan fibration. Dually, the injective model structure is uniquely determined
by the choice of dendrexwise cofibrations as its class of cofibrations.
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There is an intermediate model structure taking into account the Reedy structure of �. Theorem 2.2.6
describes this in more detail. This model structure is a central starting point in [Cisinski and Moerdijk
2013a]. Since we are flexible in our choice of model structure, we will not need to use this result.

Theorem 2.2.6 [Cisinski and Moerdijk 2013b, Proposition 5.2] The category sdSet of simplicial
dendroidal sets can be equipped with a generalized Reedy model structure using the Reedy structure
of �. It is cofibrantly generated and proper. The weak equivalences are the dendrexwise simplicial weak
equivalences. A map of simplicial dendroidal sets X ! Y is a fibration (resp. trivial fibration) if the
relative matching maps

X�ŒT �!X@�ŒT � �Y @�ŒT � Y �ŒT �

are fibrations (resp. trivial fibrations) for all T. (See [Cisinski and Moerdijk 2013b, Section 2.1] for the
meaning of @�ŒT �.)

Definition 2.2.7 Let T 2� be a tree. If T has at least one vertex, the spine or Segal core ScŒT � of T is
defined as a dendroidal subset of �ŒT � given by the union of all �ŒS� for subcorollas S of T. (There is
one subcorolla for each vertex of T.) For the trivial tree � without vertices, we set ScŒ��D�Œ��. Note
that we recover the definition of a spine of a simplex by applying this definition to linear trees.

These Segal cores have a close connection to operads. Remember that a simplicial set X is the nerve of a
category if and only if all maps

Xn!X1 �X0
X1 �X0

� � � �X0
X1

induced by the spine inclusions are bijections. The following lemma is the generalization of this fact to
the dendroidal setting:

Lemma 2.2.8 A dendroidal set X is the nerve of an operad if and only if the map

HomdSet.�ŒT �; X/! HomdSet.ScŒT �; X/

induced by the Segal core inclusion is a bijection for all trees T.

Similarly, a dendroidal space X is the nerve of a simplicially enriched operad if and only if the map of
simplicial sets

X�ŒT �!XScŒT �

is an isomorphism for all T.

For dendroidal spaces to model topological operads, we still want this equivalence to hold up to homotopy.
The resulting notion will extend the classical definition of a complete Segal space as a model for .1; 1/–
categories.

Definition 2.2.9 A dendroidal space X is called a dendroidal Segal space if, for all trees T, the map

XT D Hom.�ŒT �; X/DX�ŒT �! RHom.ScŒT �; X/

is a weak equivalence of simplicial sets.

Algebraic & Geometric Topology, Volume 24 (2024)



A spectral sequence for spaces of maps between operads 1669

Remark 2.2.10 Cisinski and Moerdijk [2013a] define the model structure for dendroidal Segal spaces
as the left Bousfield localization of the generalized Reedy structure on sdSet at the set of Segal core
inclusions.

(Definition 2.2.9 is not in full agreement with [Cisinski and Moerdijk 2013a], because they write
Hom.ScŒT �; X/ instead of RHom.ScŒT �; X/ and insist that dendroidal Segal spaces be Reedy-fibrant to
make up for that. Namely, the Segal core ScŒT � is Reedy-cofibrant. Therefore, Hom.ScŒT �; X/ is weakly
equivalent to RHom.ScŒT �; X/ if X is Reedy fibrant.)

Lemma 2.2.11 [Boavida de Brito and Weiss 2018, Theorem 7.8; Boavida de Brito et al. 2019, Theo-
rem 4.3] Let P be a monochromatic simplicial operad. The dendroidal space NdP given by

.NdP /T WD P .T /;

using the notation of Definition 2.1.8, satisfies the Segal property. The assignment P 7!NdP is functorial
and preserves all weak equivalences. Moreover for any two operads P and Q the morphism

RHom.P;Q/! RHom.NdP;NdQ/

is a weak equivalence.

Remark 2.2.12 In [Boavida de Brito and Weiss 2018; Boavida de Brito et al. 2019], this result is
attributed to Cisinski and Moerdijk, but it is not stated exactly in this form by Cisinski and Moerdijk. A
small adjustment is required and Boavida de Brito et al. [2019] explain this in detail. Throughout this
article we will only use the statement for 1–reduced operads. This implies that NdP is complete (and
Segal). In general, NdP is not complete.

3 A tower of derived mapping spaces

3.1 Construction of the tower

In Section 1 we have introduced the notion of dendroidal Segal spaces as a model for the homotopy
theory of topological operads. We want to use this model to describe the derived mapping spaces between
two topological operads. For any two objects X and Y in any model category C, this derived mapping
space can be defined as the space of maps HomC.X

c ; Y f / from a cofibrant replacement of X to a fibrant
replacement of Y. Although it is a slick definition, actual computations can be cumbersome because these
objects tend to be unwieldy. Moreover, although this definition inherently depends on the choice of a model
structure, the homotopy type of the derived mapping space only depends on the class of weak equivalences.
There is another more general definition of a derived mapping space due to Dwyer and Kan [1980]. For
every category C together with a subcategory W of weak equivalences, they define derived mapping
spaces in terms of zigzags of morphisms. If W happens to be the class of weak equivalences of a model
structure on C, then both definitions yield weakly equivalent derived mapping spaces.
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We start this section with a general investigation of derived mapping spaces in categories of space-valued
functors with levelwise weak equivalences under the assumption that the indexing category C can be
written as a sequential colimit of full subcategories Ci . We prove a lemma that the derived space of
natural transformations in Fun.Cop; sSet/ can be recovered up to homotopy from the mapping spaces
between the restrictions of these functors to the subcategories Ci .

Lemma 3.1.1 Let F and G be contravariant functors from C to sSet. We call a natural transformation
F !G a weak equivalence if it is an objectwise weak equivalence of simplicial sets in the sense of Kan
and Quillen. Let Ui denote the restriction functor from Fun.Cop; sSet/ to Fun.Cop

i ; sSet/. Then the natural
morphism

RHom.F;G/! holim
i

RHom.UiF;UiG/

is a weak equivalence.

We will prove this lemma in two steps. First we show that every contravariant functor admits a weak
equivalence from a functor satisfying a cellularity property. These free CW–functors are a subclass of the
CW–functors of [Dror Farjoun 1987, 1.16]. We then prove Lemma 3.1.1 for all free CW–functors F.

Definition 3.1.2 Let C be a category. A functor F W Cop! sSet is called a free CW–functor if there is a
sequence

∅D F�1 � F0 � F1 � � � � � Fi�1 � Fi � � � �

of subfunctors of F such that the following properties are satisfied:

(1) F.x/D colimi Fi .x/ for all objects x of C.

(2) For all i � 0, there exists a pushout diagram

Ki � @�Œi� Fi�1

Ki ��Œi� Fi

where Ki is a disjoint union of representable functors.

Example 3.1.3 Let G be a group regarded as a category with one object. Then the free CW–functor F
is nothing but a simplicial set F.�/ with a free G–action. The subfunctors Fi of F can be the skeletons
of F.�/.

Lemma 3.1.4 For every functor G W Cop! sSet, there is a free CW–functor F together with a natural
equivalence F !G.

Proof Fix some n � 0 and suppose, for an induction argument, that we have already constructed a
free CW–functor D together with a natural transformation u W D ! G such that, for each c in C, the
morphism uc WD.c/!G.c/ is .n�1/–connected. We want to get rid of the relative homotopy groups
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�n.G.c/;D.c// for all c 2 C. (Strictly speaking, we should write �n.Z.c/;D.c//, where Z.c/ is the
mapping cylinder of uc .) Let x 2 �n.G.c/;D.c// be a nontrivial element of this homotopy group and let

vc;x W .Kc;x; Lc;x/!G.c/

denote a representative of x, where .Kc;x; Lc;x/ is a (possibly iterated) barycentric subdivision of the
pair .�Œn�; @�Œn�/. Let Dc;x be the pushout of

Hom.�; c/�Kc;x - Hom.�; c/�Lc;x! F

(where the right-hand arrow extends, and is determined by, vc;x restricted to Lc;x). Let E be the union
along the common subfunctor D of the Dc;x , where c ranges over all objects of C and x ranges over all
nontrivial elements of the homotopy groups �n.G.c/; E.c//. The choices vc;x together with u uniquely
define a new natural transformation v WE!G. By construction this specializes to an n–connected map
E.c/! G.c/ for every c in C. It remains to be shown that the functor E is again a free CW–functor.
To do so, we show that the pairs .Kc;x; Lc;x/ are pairs of cell complexes. Each nondegenerate simplex
in Kc;x XLc;x contributes a free cell to Dc;x which is not in D. It follows that Dc;x is free CW. Since
different choices of .c; x/ lead to disjointly attached cells, the union E is free CW as well (and, what is
more important, we have shown that it is free CW relative to D).

The functor F can now be constructed as the union (sequential colimit) of an increasing sequence

F�1 � F 0 � F 1 � F 2 � � � �

of functors C! sSet, each equipped with a morphism wn W F n!G such that wn extends wn�1. Define
F�1 D ∅ and define F n and wn inductively so that F n is to F n�1 as E is to D above, and wn is
to wn�1 as v is to u. The union of the wn is a morphism w W F ! G and it is a weak equivalence by
construction.

Proposition 3.1.5 Suppose we have some property P for contravariant functors from C to sSet. Assume
the property P is preserved under levelwise weak equivalence , disjoint unions over arbitrary indexing sets
and homotopy pushouts and holds for all representable functors. Then P holds for every contravariant
functor F from C to sSet.

Proof Without loss of generality, we assume F to be a free CW–functor. We will prove this in two steps.
First we show by induction that all skeleta Fi have the desired property and then deduce the statement
for the homotopy colimit. The 0–skeleton is just a disjoint union of representable functors and as such
has the property P. To prove the induction step we have to show that FiC1 is a homotopy pushout of
functors satisfying P. Note that, because of the homotopy invariance of P, every cell Hom.�; c/��Œi�
has property P. Since we assumed the property to be preserved under disjoint union, the coproduct`

Hom.�; c/��Œi� still has the property. To conclude the induction step, we need to show our desired
property for every functor of the form Hom.�; c/� @�Œi�. But this is already covered by the induction
assumption because Hom.�; c/�@�Œi� is a free CW–functor built from cells of dimension i �1 and less.
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Next, we have to show that the pushout diagram

Ki � @�Œi� Fi�1

Ki ��Œi� Fi

is actually a homotopy pushout square. But the left-hand vertical morphism is levelwise injective and so
the pushout square is levelwise a homotopy pushout.

So far we have shown the property P for all k–skeleta Fk . We now show that the homotopy colimit F
can be written as a homotopy pushout. The argument has already been presented by Milnor [1962]. Let

tF WD F0 � Œ0; 1�[F1 � Œ1; 2�[F2 � Œ2; 3�[ � � � ;

understood as a subfunctor of F �Œ0;1/. (The intervals can be taken as copies of�Œ1�.) This construction
is also known as the telescope associated to the skeletal filtration of F. Note that the inclusion of tF
into F � Œ0;1/ is a weak equivalence and thus tF has property P if and only if F does. We want to
show that tF decomposes as a homotopy pushout of functors with property P. To do so we define the
subfunctors L1 and L2 of tF by setting

L1 WD F0 � Œ0; 1�[F2 � Œ2; 3�[ � � � and L2 WD F1 � Œ1; 2�[F3 � Œ3; 4�[ � � �

as the even and odd parts of tF, respectively. Their intersection L1\L2 is the functor

L1\L2 Š F0 � f1g[F1 � f2g[ � � � :

We can write tF as the pushout of L1 L1\L2! L2. The functors Li and L1\L2 are all weakly
equivalent to disjoint unions of skeleta Fj and thus have property P by the previous discussion. The
pushout is also a homotopy pushout because both maps L1\L2! Li are cofibrations.

Using this principle we can prove Lemma 3.1.1.

Proof of Lemma 3.1.1 We need to verify the three assumptions of the previous lemma. We fix a
levelwise fibrant functor G 2 Fun.Cop; sSet/ throughout this investigation.

First assume F to be representable by some object c and let Ck be the first subcategory of the sequence C�

to contain c. Because we assumed all subcategories Ci to be full subcategories the restriction of F to Ck

is isomorphic to the functor on Ck represented by c. The same holds for all Cn with n> k. It follows that

RHom.UnF;UnG/' UnG.c/DG.c/

for all n> k. It is immediate that the homotopy limit of the tower of derived mapping spaces is weakly
equivalent to RHom.F;G/.

Now assume F is a disjoint union of functors Fi for which the tower converges. Since disjoint unions are
certainly preserved under restrictions, we have UnF D

`
UnFi . It follows that

RHom.UnF;UnG/D
Y

RHom.UnFi ; UnG/
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for all n. We get a commutative square

RHom.F;G/
Q

RHom.Fi ; G/

holim RHom.UnF;UnG/ holim
Q

RHom.UnFi ; UnG/

The two horizontal morphism are weak equivalences by assumption; the right-hand vertical morphism is
a weak equivalence because we can commute the homotopy limit with the product. It follows that the
morphism

RHom.F;G/! holim RHom.UnF;UnG/

is a weak equivalence.

For the last step, assume F is the homotopy pushout of F1 F0! F2 and the tower converges for
all Fi . We can arrange the derived mapping spaces in a commutative cube

RHom.F;G/ RHom.F2; G/

RHom.F1; G/ RHom.F0; G/

holimn RHom.UnF;UnG/ holimn RHom.UnF2; UnG/

holimn RHom.UnF1; UnG/ holimn RHom.UnF0; UnG/

Since the contravariant RHom functor turns homotopy pushouts into homotopy pullbacks, the upper
horizontal square is a homotopy pullback. The lower horizontal square is a homotopy pullback because
the truncation Un preserves homotopy pushouts (and hence UnF is the homotopy pushout of UnF1 
UnF0! UnF2) and homotopy limits preserve homotopy pullbacks. We can thus regard this cube as a
morphism between homotopy pullback squares. This morphism induces a weak equivalence in three
columns

RHom.Fi ; G/! holim
n

RHom.UnFi ; UnG/

and thus in the fourth column as well.

We want to apply this machinery to the setting of dendroidal spaces. To do so we need to write the
indexing category � of trees as an increasing union of full subcategories

�h0i ��h1i ��h2i ��h3i � � � � ��:

A natural choice for a filtration of � comes from the observation that every finite tree has a unique
maximal valence among all its vertices. We will thus filter � by the maximal valence of the vertices.
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Definition 3.1.6 For n� 0, let�hni denote the full subcategory of� on trees without vertices of valence
nC 2 or higher. An n–truncated dendroidal space is a contravariant functor from �hni to the category
sSet of simplicial sets. The restriction functor along the inclusion �hni ,!� will be denoted by Un.

The categories �hni have the property that their direct limit is the entire category �. We can map the
derived mapping space RHom.X; Y / between two dendroidal spaces to a tower

:::

��

RHom.U3X;U3Y /

��

RHom.U2X;U2Y /

��

RHom.X; Y / //

00

22

33

RHom.U1X;U1Y /

of derived mapping spaces between their truncations. The previous discussion implies the convergence of
this tower.

Corollary 3.1.7 For every pair X and Y of dendroidal spaces , this tower converges , ie the map
RHom.X; Y /! holimn RHom.UnX;UnY / is a weak homotopy equivalence.

Of special interest will be the mapping space between the little disk operads introduced in Example 2.1.5.
Here X and Y are dendroidal spaces weakly equivalent to nerves of operads of type En and Em,
respectively.

3.2 The layers of the tower

We look for a description of the layers in the tower, ie the homotopy fibers of the forgetful map(s)
RHom.UnX;UnY /! RHom.Un�1X;Un�1Y /. There is such a description in the setting of 1–reduced
dendroidal spaces. A dendroidal space X is 1–reduced if X.�/, X.c0/ and X.c1/ are contractible spaces.
These correspond to monochromatic operads having contractible spaces in degrees 0 and 1.

Definition 3.2.1 Let �cl �� be the full subcategory whose objects are the trees without any leaves,
and let � W�cl ,!� be the inclusion functor. Objects of �cl will be called closed trees. We abbreviate
cdSet WD Fun.�cl; Set/ and scdSet WD Fun.�cl; sSet/. Objects of these categories will be called closed
dendroidal sets and closed dendroidal spaces, respectively.

The full subcategory �cl\�hni of �cl will be denoted by �hnicl. Its simplicial presheaves will be called
n–truncated closed dendroidal spaces and their category denoted by scdSethni.
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Remark 3.2.2 Morphisms in �cl are much easier to understand than morphisms in �. Recall that an
object of �cl is a finite partially ordered set T (whose elements can be called edges) subject to some
conditions. There is no need to specify a set of leaves, a subset L of T, because we are assuming that it is
empty. A morphism from T0 to T1 in �cl was defined to be a morphism of operads �.T0/!�.T1/. But
this boils down to a map f W T0! T1 which preserves the partial order relation � and which preserves
independence. That is to say, if x; y 2 T0 are distinct and neither x � y nor y � x takes place, then
neither f .x/� f .y/ nor f .y/� f .x/ takes place.

It does not follow that such an f is injective. But it does follow that, for every z 2T1, the preimage f �1.z/
is a linearly ordered subset of T0. Moreover, if x 2 T0 Xf �1.z/ satisfies x � y0 for some y0 2 f �1.z/,
then it satisfies x � y for all y 2 f �1.z/. (Suppose not; then there is y1 2 f �1.z/ such that x and y1
are independent, but f .x/ > f .y0/D f .y1/, a contradiction since f preserves independence.)

Definition 3.2.3 The closed n–corolla ccn is the unique tree in �cl with one vertex of valence nC1 and
n vertices of valence 1.

Here is an artist’s impression of cc5:
� � � � �

�

Lemma 3.2.4 [Boavida de Brito and Weiss 2018, Lemma 7.12] For all 1–reduced monochromatic
topological operads P and Q, the restriction map RHom.NdP;NdQ/! RHom.��NdP; ��NdQ/ is a
weak equivalence.

In this restricted setting we can define levelwise boundaries and coboundaries, generalizing the levelwise
boundaries in the description of the Fulton–MacPherson operad of Example 2.1.6.

Definition 3.2.5 Let X 2 sdSet be a 1–reduced dendroidal Segal space. In this definition we only use
the restriction of X to scdSet. The nth operadic boundary object is the homotopy colimit

boundnX WD hocolim
.S;f /2ccn=�hn�1icl

XS :

(This is a homotopy colimit of a contravariant functor, the functor which takes .f W ccn! S/ to XS .)
The nth operadic coboundary object is the homotopy limit

coboundnX WD holim
.S;f /2�hn�1icl=ccn

XS :

Both spaces come with an obvious†n–action. There is a natural†n–map from boundnX to Xccn
induced

by the various f in pairs .S; f /, and similarly there is a natural †n–map from Xccn
to coboundnX

induced by the various f in pairs .S; f /. The functor

Jn W sdSet! Fun.†n � Œ2�; sSet/; X 7! .boundnX !Xccn
! coboundnX/;
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sends a reduced dendroidal Segal space to the diagram consisting of these two maps. By composing the
two maps, we obtain

@Jn W sdSet! Fun.†n � Œ1�; sSet/; X 7! .boundnX ! coboundnX/:

In other words, @Jn D Jn ı �, where � W†n � Œ1�!†n � Œ2� is induced by the order-preserving injection
Œ1�! Œ2� which does not take the value 1.

Example 3.2.6 Recall the Fulton–MacPherson operad FMk , which we briefly introduced in Example 2.1.6.
Then the space boundnNd FMk has the homotopy type of the boundary of the compact manifold-with-
boundary FMk.n/. Informally, this can be seen because all the embeddings of substrata in the stratification
of FMk.n/ are cofibrations and thus the homotopy colimit in the definition of the operadic boundary object
is weakly equivalent to the colimit, which is exactly the boundary @FMk.n/. It follows that we can model
the map boundnNdEk!Ek.n/ (for the little k–disk operad Ek) by the inclusion @FMk.n/ ,! FMk.n/.

We next give a more detailed argument:

Proof of Example 3.2.6 In this proof we will use the notation of Definition 3.2.10 and Remark 3.2.11.
To show this claim we first want to reduce the indexing category ccn=�hn� 1icl to a smaller one. Every
morphism f W ccn! T for T 2 �hn� 1icl factors uniquely through a maximal subtree T0 of T with
exactly n outermost edges and all of them (as well as the root of T0) in the image of f. (By subtree we
mean something connected, so that, if x; z 2 T0 and y 2 T satisfies x � y � z, then also y 2 T0.) Let I
denote the subcategory of ccn=�hn� 1icl on all pairs .S; g/ such that S has exactly n outermost edges
and all of them as well as the root are in the image of g. We have just seen that the inclusion functor for
this subcategory has a right adjoint. Therefore, the inclusion

hocolim
.S;f /2I

FMk.S/! boundnNd FMk

(where FMk.S/ is short for .Nd FMk/S ) is a weak equivalence by [Dugger 2008, Theorem 6.7]. Note in
passing that the information provided by the f W ccn! S in a pair .S; f / amounts to nothing more than
a labeling of the outermost edges of S with labels 1; 2; : : : ; n. We take this as an excuse for writing S
instead of .S; f /, but the labeling of the outermost edges remains important and must be remembered.

Let I s denote the full subcategory of I on those objects S which have no vertices of valence 2. The
inclusion I s ! I has a left adjoint sh W I ! I s and the unit morphisms for this adjunction induce
isomorphisms FMk.sh.S//! FMk.S/ for .S; f / in I. By [Dugger 2008, Theorem 6.16], the inclusion

hocolim
S2I s

FMk.S/! hocolim
S2I

FMk.S/

is a weak equivalence. Recall the category ‰n from Example 2.1.6 of the Fulton–MacPherson operad
and let ‰�n denote the full subcategory of ‰n on all trees not equal to the n–corolla. This category ‰�n is
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equivalent to I s . We can therefore view S 7! FMk.S/ as a functor on ‰�n . It remains only to show that
the map

hocolim
S2‰�n

FMk.S/! @FMk.n/

from the homotopy colimit to the actual colimit of this functor is a homotopy equivalence. The plan is to
show that this functor FMk W‰

�
n ! sSet=FMk.n/ is projectively cofibrant. The category ‰�n is directed

in the sense that there is a faithful functor ‰�n !N. This is trivial since ‰�n is a finite poset, but here
we have a preferred choice: the map which to every tree in ‰n associates the number of its vertices.
Hence, ‰�n becomes a Reedy category by defining the degree of a tree to be the negative of its number of
vertices. Then every nonidentity morphism in ‰�n raises this degree. Let M be some model category. A
diagram D W‰�n !M is Reedy cofibrant if all its latching maps are cofibrations. But, by [Dugger 2008,
Theorem 13.12], the Reedy model structure and the projective model structure agree on upwards-directed
Reedy categories and thus D is Reedy cofibrant if and only if it is projectively cofibrant. For every
projectively cofibrant diagram, its homotopy colimit is weakly equivalent to the actual colimit. We thus
want to show that FMk is Reedy cofibrant as a functor on ‰�n . Let T 2‰�n be a labeled tree. The latching
object LatT .FMk/ is the colimit over all maps FMk.S/!FMk.T / with S ¤T. But, using the description
of the stratification of FMk.n/ given in Example 2.1.6, we see that this map is just the inclusion of a
union of substrata of the (closure of the) stratum corresponding to T and thus a cofibration.

Theorem 3.2.7 Let X and Y be 1–reduced dendroidal Segal spaces. Then the following square of
specialization or restriction maps is a homotopy pullback square:

RHom.X j�hnicl ; Y j�hnicl/ RNat.JnX; JnY /

RHom.X j�hn�1icl ; Y j�hn�1icl/ RNat.@JnX; @JnY /

In the remainder of this section we will make a reduction (by means of Proposition 3.2.9) of this theorem
to an easier statement. The idea is to factor the inclusion�hn�1icl!�hnicl through certain intermediate
subcategories Vn and Wn.

Definition 3.2.8 Let Vn be the full subcategory of �cl on �hn� 1icl and the closed n–corolla ccn. Let
Wn be the (slightly larger) full subcategory of �hnicl on all objects of �hn�1icl and all extended (closed)
n–corollas. These are the objects of �cl which are connected to ccn by a sequence of degeneracies. For
n¤ 1 they have a unique vertex of valence nC 1 and only vertices of valence 2 and 1 otherwise.

Proposition 3.2.9 Let X; Y 2 scdSet be restrictions of 1–reduced dendroidal Segal spaces. Then the
restriction map

RHom.X j�hnicl ; Y j�hnicl/! RHom.X jVn
; Y jVn

/

is a weak equivalence.
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In the following proofs we will also need the notion of subtree of a given tree T. This has already been
used in Example 3.2.6.

Definition 3.2.10 Let T be a tree in �cl. A subtree S of T consists of a subset of edges of T such that
the resulting graph is connected. In this case S should be understood as an object of �cl such that the
inclusion S � T is a morphism in �cl.

For example, the closed k–corolla cck can be realized as a subtree of the closed n–corolla ccn, in
�
n
k

�
different ways, assuming k ¤ 0.

Remark 3.2.11 [Dugger 2008, Chapter 6] Let ˛ W I ! J be a functor between small categories. For
any j 2 J, let .j # ˛/ denote the category whose objects are pairs .i; f W j ! ˛.i// and morphisms
.i; f /! .i 0; f 0/ are given by commutative triangles

j ˛.i/

˛.i 0/

f

f 0

The functor ˛ is called homotopy terminal if, for every j, the category .j #˛/ has a contractible classifying
space. Homotopy terminal functors can be used to simplify homotopy colimits. More precisely, for any
homotopy terminal ˛ and any diagram X W J ! sSet, there is a natural weak equivalence

hocolim
I

˛�X ! hocolim
J

X:

There is a dual notion of a homotopy initial functor ˇ W I ! J. It has the property that all overcategories
.ˇ # j /, defined dually to the undercategories above, are nonempty and contractible. In this case there is
a natural weak equivalence

holim
I

ˇ�Y  holim
J

Y

for all diagrams Y W J ! sSet.

In the following we write RRanF and RLanF , respectively, for derived right and left Kan extensions
along a functor F.

Lemma 3.2.12 Let X in scdSet be a 1–reduced dendroidal Segal space. Let � denote the inclusion
of Wn in �hnicl. Then the derived unit morphism

X j�hnicl ! RRan� ��.X j�hnicl/

is a weak equivalence.

Proof We allow ourselves to write RRan� ��X instead of the more complicated expression in the
statement. By definition, we have

.RRan� ��X/T ' holim
.f W S!T /2Wn=T

XS :
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(We may also write .S; f / instead of .f W S ! T /.) It suffices to show that RRan� ��X has the Segal
property. Indeed, the unit maps XT ! .RRan� ��X/T are weak equivalences for all (closed) corollas T
in �hnicl. This follows from the fact that all these corollas are already in Wn. We can furthermore assume
RRan� ��X to be projectively fibrant by choosing a fibrant model for a homotopy limit of Kan complexes.

We want to replace the indexing category Wn=T by an easier subcategory C such that its inclusion functor
is homotopy terminal. The set of objects of C is the set of subtrees, as defined in Definition 3.2.10, of T,
understood as pairs .A; a/ of subtrees A (which are objects of Wn in their own right) with fixed inclusions
a W A! T. Maps � W .A; a/! .B; b/ are given by commutative triangles

T A

B

a

�b

The inclusion of C in Wn=T has a left adjoint. (This works only because we are using Wn instead of the
smaller Vn.) Consequently, the inclusion of C into Wn=T is indeed homotopy terminal. It follows from
the contravariant version of [Dugger 2008, Theorem 6.12] that the forgetful projection

holim
.S;f /2Wn=T

XS ! holim
.A;a/2C

XA

is a weak equivalence.

Let X 0 denote the induced functor C! sSet. We want to prove that the decompositions of the X 0S given
by the Segal property of X are natural in this reduced setting, ie every morphism S ! S 0 in C induces a
map X 0S 0!X 0S which respects the product decomposition and can be defined factorwise. Let g W S! S 0

be any morphism in C. It is an inclusion of a subtree. Let fv1; : : : ; vkg be the set of vertices of T. Let
jvj jS denote the number of inputs of S at vj . Since we assumed X to be 1–reduced and to satisfy the
Segal property, we know that the morphism

XS !XScŒS�
ŠXccjv1jS

� � � � �Xccjvk jS

induced by the Segal core inclusion ScŒS�!�clŒS� is a trivial Kan fibration. By functoriality of X, the
square

XS 0 XS

XScŒS 0� XScŒS�

commutes. We only have to show that the maps XScŒS 0�!XScŒS� can be defined factorwise. But this is
immediate because the map ScŒS�! ScŒS 0� is induced by a morphism S ! S 0 over T. Let X 00 denote
the functor C! sSet defined by the composition X 0 ı Sc. We have a natural transformation X 0! X 00

which is a levelwise trivial fibration. Hence,

holim
S2C

XS ' holim
S2C

X 00S :
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Lemma 3.2.13 Let X 2 scdSet be a 1–reduced dendroidal Segal space. Write  for the inclusion
 W Vn!Wn. The derived counit map

RLan  �.X jWn
/!X jWn

is a weak equivalence.

Proof We have to show that this morphism induces a weak equivalence of simplicial sets at any tree T.
For trees in Vn there is nothing to show. So let T be an extended (closed) n–corolla. The space
.RLan  �.X jWn

//T is the homotopy colimit

hocolim
.S;f /2.T=Vn/

XS :

Here .S; f / is short for f W T ! S. We want to find an easier category C and a homotopy initial functor
C! T=Vn. Let the set of objects of C be the set of all pairs .S; f / such that S is a tree in Vn with exactly
n vertices of valence 1 and f W T ! S is a morphism such that every outermost edge (including the root)
of S is in the image of f. A morphism � W .S0; f /! .S1; g/ is given by a commutative triangle

T S0

S1

f

g �

in Wn. The category C is a full subcategory of T=Vn. The inclusion functor C! T=Vn has a right
adjoint. This implies that the inclusion is homotopy initial. By the contravariant version of [Dugger 2008,
Theorem 6.7], we get a weak equivalence

hocolim
.S;f / in C

��XS
'
�! RLan  ���XT :

In a second step we replace the indexing category C by another even easier one. Let Csh be the full
subcategory of C on the pairs .S; f / such that S has no vertices of valence 2. The inclusion ˛ W Csh! C

has a left adjoint ˇ. Clearly ˇ˛ D Id and the counit transformation for this adjunction is the identity.
Let � W IdC! ˛ˇ denote the unit transformation for this adjunction. Because X has the Segal property
and is 1–reduced, the induced map ��S WXˇ.S/!XS is a weak equivalence for every .S; f / in C. The
contravariant version of [Dugger 2008, Proposition 6.16] thus implies that the canonical morphism

hocolim
.S;f / in Csh

XS ! hocolim
.S;f / in C

XS

is a weak equivalence. The category Csh has an initial object given by the closed n–corolla ccn together
with the unit map T ! ccn. Thus,

Xccn
' hocolim
.S;f / in Csh

XS :

By our assumptions on X, this concludes the proof.

Thus, Theorem 3.2.7 reduces to:
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Theorem 3.2.14 Let X and Y be 1–reduced dendroidal Segal spaces. The following square of special-
ization maps is a homotopy pullback :

RHom.X jVn
; Y jVn

/ RNat.JnX; JnY /

RHom.X j�hn�1icl ; Y j�hn�1icl/ RNat.@JnX; @JnY /

This now follows from Theorem 4.1.2. We note that the maps in the square need careful definitions. They
will be given in Section 4. The right-hand column of this homotopy pullback square can be modified as
explained in the following remark:

Remark 3.2.15 The following square is a homotopy pullback square (and we switch from n to k):

RNat.JkX; JkY / RMap†k
.Xcck

; Ycck
/

RNat.@JkX; @JkY / RMap†k
.boundkX !Xcck

; Ycck
! coboundkY /

The horizontal maps are the obvious forgetful maps. The right-hand vertical arrow is explained by the
diagram

boundkX

Xcck
Ycck

coboundkY

(A short argument for the homotopy pullback property: compare the horizontal homotopy fibers.)
Therefore, the main theorem as stated in the introduction is equivalent to the statement that the square

RHom.UkX;UkY / RMap†k
.Xcck

; Ycck
/

RHom.Uk�1X;Uk�1Y / RMap†k
.boundkX !Xcck

; Ycck
! coboundkY /

is a homotopy pullback square. Note that UkX can be read as X j�hkicl , etc. The interesting “news”
here is that, for a homotopical description of kth layer in the tower, we need to know only the diagrams
boundkX !Xcck

(for the source) and Ycck
! coboundkY (for the target). As before, they are diagrams

of spaces with an action of †k .

3.3 The derived mapping spaces of little cube operads

In this section we will apply the machinery we developed to a concrete case. We will compute the
connectivity of the layers of the tower for RHom.NdEn; NdEnCd /. (Beware that the d in Nd means
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dendroidal and everywhere else the d is used to denote the codimension.) Rational versions of the results
of this section were obtained by Fresse, Turchin and Willwacher [Fresse et al. 2017, Chapter 10].

Remark 3.3.1 The derived mapping space RHom.NdEnj�h1icl ; NdEnCd j�h1icl/ is contractible.

Lemma 3.3.2 The pair .En.k/; boundkEn/ is homotopy equivalent to a CW pair .X; Y / with no relative
cells of dimension above n.k� 1/� 1.

Proof This follows from the construction of the Fulton–MacPherson operad. Notably, the inclusion of
the boundary @FMn.k/! FMn.k/ is a model for the operadic boundary inclusion map and the smooth
manifold FMn.k/ has dimension n.k� 1/� 1. We have shown this in Example 3.2.6.

Lemma 3.3.3 The map En.k/! coboundk.En/ is ..k�1/.n�2/C1/–connected.

Proof Munson and Volić [2015, Example 6.2.9] show that the k–cube of ordered configuration
spaces defined by S 7! Conf.S;M/ for S � f1; 2; : : : ; kg and a fixed n–dimensional manifold M
is ..k�1/.n�2/C1/–cartesian.

Theorem 3.3.4 Each homotopy fiber of

RNat.JkEn; JkEnCd /! RNat.@JkEn; @JkEnCd /

is ..k�1/.d�2/C1/–connected.

Proof By Remark 3.2.15, the homotopy fiber is equivalent to a total homotopy fiber of the square

Map.En.k/; EnCd .k// Map.En.k/; coboundkEnCd /

Map.boundkEn; EnCd .k// Map.boundkEn; coboundkEnCd /

By general principles, the connectivity of such a total homotopy fiber is not less than the connectiv-
ity of hofib.EnCd .k/! coboundkEnCd / minus the relative homotopical dimension of the inclusion
boundkEn ,! En.k/. By Lemma 3.3.2, the first number is at least .k � 1/.nC d � 2/, and the second
number is n.k�1/�1 by Lemma 3.3.3. The difference of these numbers turns out to be .k�1/.d�2/C1.

Corollary 3.3.5 Assume d � 2. The derived mapping space RHom.En; EnCd / is .d�1/–connected.
Furthermore , all spaces of derived maps between their truncations are .d�1/–connected as well.

4 Excision in categories

Let I be a small category. In this section we will investigate how spaces of natural transformations
between two I–shaped diagrams of simplicial sets change if we remove or add a new object (with
morphisms) from or to I. Throughout this section all model categories (of I–diagrams) are equipped with
the projective model structure. We choose functorial fibrant and cofibrant replacements. (Their existence
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follows from the small object argument.) As a model for derived mapping spaces RNat.F;G/, we choose
the simplicial mapping space between the cofibrant and fibrant replacements Map.F c ; Gf /.

4.1 Boundaries and coboundaries revisited

From now on we assume the indexing category I to be skeletal (distinct objects are not isomorphic).
Let x be an object of I such that no object i (distinct from x) which admits a morphism to x receives
a morphism from x. We also require that every endomorphism of x be an automorphism. This is, for
example, the case if I is a direct category. The most important example for us is the case where I D .Vn/op

and x D ccn.

The functor Jn of Definition 3.2.5 generalizes in an obvious way to a functor Jx for arbitrary I–shaped
diagrams of spaces.

Definition 4.1.1 Let I and x be as above. For any diagram F 2 Fun.I; sSet/ we define

boundx.F / WD hocolim
.f W y!x/ in I=x

F.y/ and coboundx.F / WD holim
.g W x!y/ in x=I

F.y/:

These spaces serve as a replacement for the operadic boundary and coboundary space, respectively. They
come with a natural action of the automorphism group of x. The functor

Jx W Fun.I; sSet/! sSetAut.x/�Œ2�

is now defined by sending a diagram F to the sequence

boundx.F /! F.x/! coboundx.F /:

We note this is to be viewed as a functor from Aut.x/� Œ2� to simplicial sets. Then @Jx is defined by
sending F to the subsequence

boundx.F /! coboundx.F /

with the same equivariance properties. Both functors respect levelwise weak equivalences. There is a
functor � from sSetAut.x/�Œ2� to sSetAut.x/�Œ1� given by omitting the middle object and composing the
two morphisms; we can write �.Jx/ instead of @Jx .

We obtain a commutative diagram of mapping spaces

Map.F c ; Gf / Map.JxF c ; JxGf / Map..JxF c/c ; .JxGf /f /

Map..F c/r ; .Gf /r / Map.@JxF c ; @JxGf / Map..@JxF c/c ; .@JxGf /f /

Map
�
..F c/r /c ; ..Gf /r /f

�
Map

�
@Jx

�
..F c/r /c

�
; @Jx

�
..Gf /r /f

��
Map

�
.@Jx.F

c/c/c ; .@Jx.G
f /f /f

�
where the superscripts c, f and r have the following meaning: c is for cofibrant replacement, f is for
fibrant replacement and r is for restriction from I to I X x, a full subcategory of I.
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We will informally abbreviate the outer square to

RNat.F;G/ RNat.JxF; JxG/

RNat.F r ; Gr/ RNat.@JxF; @JxG/

Justification: there are natural weak equivalences

RNat.F r ; Gr/!Map
�
..F c/r/c ; ..Gf /r/f

�
;

RNat.JxF; JxG/!Map..JxF c/c ; .JxGf /f /;

RNat.@JxF; @JxG/!Map
�
.@Jx.F

c/c/c ; .@Jx.G
f /f /f

�
given by suitable pre- and postcompositions.

Theorem 4.1.2 Let I and x 2 I be as above. Let F and G be functors from I to sSet and let F r and Gr

be their restrictions to I X x. Then the following square is a homotopy pullback :

RNat.F;G/ RNat.JxF; JxG/

RNat.F r ; Gr/ RNat.@JxF; @JxG/

4.2 Dévissage

We will prove Theorem 4.1.2 in three steps using the principle we developed in Proposition 3.1.5.
Throughout these steps, we will keep the notation of Theorem 4.1.2.

Lemma 4.2.1 Let F the homotopy pushout of F1 F0! F2. If Theorem 4.1.2 holds for the Fi , then
it holds for F.

Proof We observe that the two terms on the left-hand side turn homotopy pushouts into homotopy
pullbacks. It follows that each vertical homotopy fiber in the left-hand column for F becomes a homotopy
pullback of the respective fibers for the Fi .

To understand the right-hand homotopy fibers we note that we can arrange the resulting spaces into a cube

RHom.JxF; JxG/ RHom.JxF1; JxG/

RHom.JxF2; JxG/ RHom.JxF0; JxG/

RHom.@JxF; @JxG/ RHom.@JxF1; @JxG/

RHom.@JxF2; @JxG/ RHom.@JxF0; @JxG/

Algebraic & Geometric Topology, Volume 24 (2024)



A spectral sequence for spaces of maps between operads 1685

We want to prove that this cube is homotopy cartesian. To do so we pick a point in the initial term
RHom.@JxF; @JxG/ of the lower square and thus in each term of the lower square. Then we obtain a
square of vertical homotopy fibers and we want to show this square is homotopy cartesian.

One of these vertical homotopy fibers, the homotopy fiber of

RHom.JxF; JxG/! RHom.@JxF; @JxG/;

consists of Aut.x/–equivariant lifts

boundxF F.x/ coboundxF

boundxG G.x/ coboundxG

Thus, a lift consists of an equivariant morphism F.x/!G.x/, compatible homotopies boundxF ��Œ1�!
G.x/ and F.x/ ��Œ1�! coboundxG, and a homotopy of homotopies boundxF � .�Œ1� ��Œ1�/!
coboundxG. More formally, the space of lifts is the total homotopy fiber of the square

RHom.F.x/;G.x// RHom.F.x/; coboundxG/

RHom.boundxF;G.x// RHom.boundxF; coboundxG/

over the (three) basepoints determined by the basepoint in RHom.@JxF; @JxG/ which we selected. We
obtain similar results for the other three vertical homotopy fibers by replacing F with Fi . From these
descriptions, it is clear that the square formed by the vertical homotopy fibers is homotopy cartesian.
Therefore, the cube is homotopy cartesian.

To conclude the statement, we note that there is a morphism of homotopy cartesian cubes from

RHom.F;G/ RHom.F1; G/

RHom.F2; G/ RHom.F0; G/

RHom.F r ; Gr/ RHom.F r1 ; G
r/

RHom.F r2 ; G
r/ RHom.F r0 ; G

r/

to
RHom.JxF; JxG/ RHom.JxF1; JxG/

RHom.JxF2; JxG/ RHom.JxF0; JxG/

RHom.@JxF; @JxG/ RHom.@JxF1; @JxG/

RHom.@JxF2; @JxG/ RHom.@JxF0; @JxG/
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which we can view as a (homotopy cartesian) 4–cube or, better, as a square of squares. By assumption,
the three squares

RNat.Fi ; G/ RHom.JxFi ; JxG/

RNat.F ri ; G
r/ RHom.@JxFi ; @JxG/

are homotopy cartesian. It follows that the square

RNat.F;G/ RHom.JxF; JxG/

RNat.F r ; Gr/ RHom.@JxF; @JxG/

is homotopy cartesian as well.

Lemma 4.2.2 Let F be the levelwise disjoint union of functors F˛. If Theorem 4.1.2 holds for the F˛,
then it holds for F.

Proof The left-hand side of the square is easy to understand. If F D
`
˛ F˛, then RNat.F;G/ DQ

˛ RNat.F˛; G/; similarly, since restriction preserves disjoint unions, F rD
`
˛ F

r
˛ and RNat.F r ; Gr/DQ

˛ RNat.F r˛ ; G
r/.

On the right-hand side, we have boundxF D
`
˛ boundxF˛ . The proof follows like the previous one by

comparison of the vertical homotopy fibers. Each left-hand vertical homotopy fiber for F decomposes as
a product of the corresponding left-hand vertical homotopy fibers for the F˛.

As we have seen in the proof of the previous lemma, each right-hand vertical homotopy fiber is the total
homotopy fiber of

RHom.F.x/;G.x// RHom.boundxF;G.x//

RHom.F.x/; coboundxG/ RHom.boundxF; coboundxG/

over the three basepoints obtained by choosing a point in RNat.@JxF; @JxG/. Both terms F.x/ and
boundxF preserve disjoint unions and thus each right-hand vertical homotopy fiber splits as a product.
By assumption, the squares

RNat.F˛; G/ RHom.JxF˛; JxG/

RNat.F r˛ ; G
r/ RHom.@JxF˛; @JxG/

are homotopy cartesian.

Lemma 4.2.3 Theorem 4.1.2 holds for F representable.
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Proof Let F DHom.y;�/; in other words, F is (co)represented by y. We will distinguish three different
cases. First assume y D x. Then RHom.F;G/'G.x/ and the left-hand vertical arrow becomes

G.x/

holimx!z G.z/D coboundxG

On the right-hand side, we have JxF D .∅! Hom.x; x/! coboundxF / and consequently

@JxF D .∅! coboundxF /:

Thus, a point in the right-hand vertical homotopy fiber consists of a choice of an Aut.x/–equivariant lift

Hom.x; x/ G.x/

coboundxF coboundxG

But, since Hom.x; x/ is the free Aut.x/–space on a point (by assumption), these lifts are in one-to-one
correspondence with nonequivariant lifts of points in coboundxG to G.x/. This space is homotopy
equivalent to the left-hand homotopy fiber and the induced map between the two is a weak equivalence.
Thus, the square of Theorem 4.1.2 is a homotopy pullback.

As a second case we assume that there is a morphism y! x but y ¤ x. In this case, the left-hand vertical
morphism is homotopic to the identity

G.y/

Gr.y/DG.y/

On the right-hand side, we see that

boundxF D hocolim
z!x

Hom.y; z/' Hom.y; x/:

This is because we can write hocolimz!x Hom.y; z/ as the classifying space of the category of diagrams
of the form y! z! x with fixed y and x. That category of diagrams has a subcategory consisting of
the diagrams

y Id
�! y! x:

The inclusion of this subcategory has a right adjoint given by

.y
f
�! z

g
�! x/ 7! .y Id

�! y
gf
�! x/:

Algebraic & Geometric Topology, Volume 24 (2024)
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Thus, the morphism boundxF ! F.x/ D Hom.y; x/ is a weak equivalence. We are thus looking for
(equivariant) solutions of

Hom.y; x/ boundxG

Hom.y; x/ G.x/

coboundxF coboundxG

(the broken arrow, two primary homotopies and a secondary homotopy). But the middle morphism was
already determined to be the composition

RHom.y; x/! boundxG!G.x/

and hence the right-hand homotopy fiber is contractible as well.

Now assume there is no morphism y! x. Then boundxF as well as F.x/ are empty sets. In this case,
both vertical morphisms are isomorphisms and the square is a homotopy pullback square. Thus, the
statement holds for all representable functors.

Remark 4.2.4 In the case I op D Vn and x D ccn, the object boundxF is naturally weakly equivalent
to hocolimccn!S F.S/, where we think of F as contravariant and we only allow morphisms ccn! S

in Vn satisfying two conditions: the outer edges of S (including the root) are in the image and S has
no vertices of valence 2. This was essentially proved in Example 3.2.6. Similarly, we can restrict the
homotopy limit holimS!ccn

F.S/ to the category of subtrees (as defined in Definition 3.2.10) of ccn.
Therefore, the coboundary object is equivalent to a homotopy limit over a punctured n–cube.
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Classical homological stability from the point of view of cells

OSCAR RANDAL-WILLIAMS

We explain how to interpret the complexes arising in the “classical” homology stability argument (eg in
the framework of Randal-Williams and Wahl) in terms of higher algebra, which leads to a new proof of
homological stability in this setting. The key ingredient is a theorem of Damiolini on the contractibility of
certain arc complexes. We also explain how to directly compare the connectivities of these complexes
with that of the “splitting complexes” of Galatius, Kupers and Randal-Williams.

20J05, 55P48

1 Introduction

The goal of this note is to compare the classical approach to homological stability, specifically the
formalisation of Quillen’s approach given by Wahl and myself [17], with the more recent approach via
cellular Ek–algebras developed by Galatius, Kupers, and myself [7]. It is an insight of Krannich [14] that
the proper generality for the classical approach is to work in the category of N–graded topological spaces,
and start with a right E1–module M over an E2–algebra R equipped with compatible N–gradings, a
stabilising element � 2R.1/, and then ask about homological stability of the sequence of maps

M .0/ � ����!M .1/ � ����!M .2/ � ����!M .3/ � ����! � � � :

In practice one may often take M DR with its right R–action, but it is clarifying to separate the two
notions: it is then clear [14, Remark 2.19] that one may as well replace R by EC2 .1�.�//, the free unital
E2–algebra on a single point in grading 1, and just consider the induced EC2 .1�.�//–module structure
on M .

Viewed in this way, the constructions and results of [14; 17] beg to be explained from the point of view of
an EC2 .1�.�//–module cell-structure on M . Our first main result does this: in Theorem 3.1 we will show
that the cofibre of Krannich’s [14, Section 2.2] “canonical resolution” jR�.M /j !M may be identified
with the derived EC2 .1�.�//–module indecomposables of M , so that the high-connectivity of the “spaces
of destabilisations” jW�.A/j implies a vanishing line for the EC2 .1�.�//–module cells of M (at least after
linearising). This leads to a new proof that the high-connectivity of the jW�.A/j implies homological
stability, which we explain in Section 4. It also has consequences for homology with twisted coefficients,
and for representation stability.

© 2024 The Author, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://dx.doi.org/10.2140/agt.2024.24.1691
http://www.ams.org/mathscinet/search/mscdoc.html?code=20J05, 55P48
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


1692 Oscar Randal-Williams

Our second main result is particular to the set up of [17], where a braided monoidal groupoid G (satisfying
certain axioms) yields an E2–algebra R ' BG. In this setting, for a fixed stabilising object � of G and
each object A of G there is the space jW�.A/j of destabilisations of A, as well as spaces jZE1

�
.A/j and

jZE2
�;� .A/j of “E1– and E2–splittings of A”. Proposition 7.1 will show that under appropriate conditions

the homological connectivities of these three spaces are essentially equivalent.

Acknowledgements I would like to thank M Krannich and A Kupers for feedback on an earlier draft
of this paper, and the referee for their perspicacious comments. I was supported by the ERC under the
European Union’s Horizon 2020 research and innovation programme (grant agreement 756444) and by a
Philip Leverhulme Prize from the Leverhulme Trust.

2 Recollections

There is some tension in comparing [14] and [7], because although they both deal with E2–algebras
and modules over them, these notions are implemented in technically different ways. Namely, in [14]
Krannich considers a 2–coloured operad O equivalent to a certain suboperad the Swiss cheese operad SC2,
whose algebras .M ;R/ are then considered as an E1–module M over an E2–algebra R. On the other
hand, [7] considers unital algebras RC over the little 2–cubes operad, constructs a strictification R of
the underlying E1–algebra to an associative monoid, and then considers modules M over this monoid.
While Krannich’s formulation is more elegant, to take advantage of the large amount of machinery
already developed in [7] we find it necessary to work in that setting, and in Section 2.3 we will redevelop
Krannich’s ideas in that setting.

As the results we explain are principally of interest in the context of [7] we will freely use the basic
notation and concepts of that paper without introducing them again, and only remind the reader of the
most pressing or elaborate notions.

2.1 N–graded spaces

We shall often work in the category TopN
D Fun.N;Top/ of N–graded (compactly generated weak

Hausdorff) topological spaces, where N is considered as a category with only identity morphisms. An
object X of this category simply consists of a collection fX.n/gn2N of spaces. If V is a space, we write
n�.V / for the N–graded spaces which is V in grading n and empty otherwise.

We endow this category with the symmetric monoidal structure ˝ given by Day convolution, with N

considered as a symmetric monoidal category under addition. More prosaically, it is given by

.X ˝Y /.n/D
a

aCbDn

X.a/�Y.n/:

Using ˝ we can therefore talk of associative algebra objects in TopN , and of modules over them. We
may also talk of Ek–algebras in this category, as explained in [7].

Algebraic & Geometric Topology, Volume 24 (2024)
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2.2 The associative algebra S

Following [7, Section 12.2.1] we use the following model for E2.1�.�//, an associative unital monoid
equivalent as an E1–algebra to the free unital E2–algebra on one generator in grading 1. Let C2.n/ denote
the nth space in the little 2–cubes operad, ie the space of tuples e1; e2; : : : ; en W I 2! I 2 of rectilinear
embeddings having disjoint interiors.

Definition 2.1 Let S be the N–graded space with

S .n/D .0;1/�C2.n/=†n

for n > 0, and S .0/ given by a single point, considered as f.0;∅/g. We think of S .n/ as the space of
pairs of a t > 0 and a set of n unordered rectilinear embeddings I 2! Œ0; t �� Œ0; 1� with disjoint interiors,
by the evident rescaling. In this interpretation, translation and disjoint union provide maps

S .n/�S .m/! S .nCm/

making S an associative unital monoid in N–graded spaces, with unit .0;∅/. We write � WD.1; idI2/2S.1/,
or equivalently � W 1�.�/! S .

There is a homotopy equivalence between S .n/ and the space Cn.R2/ of configurations of n unordered
points in the plane (by passing first to the subspace with t D 1, then considering the map which sends a
collection of embeddings fei W I 2! Œ0; 1�2g to the collection of their centres

˚
ei
�
1
2
; 1
2

�
2 .0; 1/2 ŠR2

	
,

which is a fibration with contractible fibres). As such, S .n/ is a model for the classifying space of Artin’s
braid group ˇn on n strands. The map � � � W S .n � 1/! S .n/ corresponds to the homomorphism
ˇn�1! ˇn which adds one strand (to the right). We record two well-known facts about these maps:

(i) The homomorphism ˇn�1! ˇn is injective for all n.

(ii) The homomorphism ˇn�1! ˇn induces an isomorphism on homology in degrees � � 1
2
.n� 3/,

and an epimorphism in degrees � � 1
2
.n� 1/. Equivalently, the relative homology groups satisfy

H�.ˇn; ˇn�1IZ/D 0 for �< 1
2
n.

The latter was first proved by Arnold [1], and there are many more recent proofs. The former is easy:
the homomorphism lands in the subgroup ˇn�1;1 � ˇn of those braids where the strand that starts at the
rightmost point also ends at the rightmost point, and on this subgroup there is a splitting ˇn�1;1! ˇn�1

given by forgetting this rightmost strand.

2.3 Strictifying Krannich’s framework

Let M be a right S –module, and let us define the analogue of Krannich’s “canonical resolution” [14,
Section 2.2]. This is almost a semisimplicial (N–graded) space augmented over M , but is indexed on
a topological category z�inj homotopy equivalent to, but not equal to, �inj. We must first describe this
category. We will work with Moore paths, write !./ for the end of a Moore path  , and write � for
concatenation of Moore paths.

Algebraic & Geometric Topology, Volume 24 (2024)
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Figure 1: The braid �, where the points i.Œq�/ are shown open.

Definition 2.2 For Œq�; Œp�2�inj let U.Œq�; Œp�/ denote the space of pairs of a d 2S .p�q/ and a Moore
path � in S .pC 1/ from �pC1 to d � �qC1. There is a composition-law

U.Œl�; Œq�/�U.Œq�; Œp�/! U.Œl�; Œp�/

given by ..e; /; .d; �// 7! .d � e; �� .d � //, giving the structure of a topologically enriched category
U with the same objects as �inj.

For a morphism i W Œq�! Œp� 2�inj there is a path component U.Œq�; Œp�/ containing the point given by
d D �p�q and � a Moore loop corresponding to the braid on pC 1 strands where the first qC 1 strands
go behind the rest to end at i.Œq�/� Œp�, as in Figure 1. We let z�inj.Œq�; Œp�/�U.Œq�; Œp�/ consist of such
path components; one checks it defines a subcategory of U with the same objects as �inj.

As in [14, Lemma 2.11] the space z�inj.Œq�; Œp�/ is homotopy discrete, and the map

�inj.Œq�; Œp�/! �0 z�inj.Œq�; Œp�/

described above is a bijection. This yields a functor z�inj!�inj which is the identity on objects, and an
equivalence on morphism spaces.

Definition 2.3 For a right S –module M , let Rp.M / denote the N–graded space which in grading n
consists of pairs of a point a 2M .n�p� 1/ and a Moore path  in M .n/ ending at a � �pC1. Consider
this as an enriched functor z�op

inj! Top via the maps

z�inj.Œq�; Œp�/�Rp.M /!Rq.M /

given by ..d; �/; .a; // 7! .a � d;  � .a ��//. Evaluating the Moore path at 0 gives an augmentation
R�.M /!M .

One then sets
jR�.M /j WD hocolim

Œp�2z�
op
inj

Rp.M /

by analogy with the geometric realisation of a semisimplicial space. Krannich’s development of homo-
logical stability in this setting takes as its axiom the high-connectivity of the map �M W jR�.M /j !M ,
specifically that there is a k � 2 such that this map is b.n�2Ck/=kc–connected in grading n for all n.
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3 The canonical resolution and module indecomposables

Our main result is the following, showing that the homotopy cofibre of the “canonical resolution” has a
conceptual meaning: it is the derived S –module indecomposables.

Theorem 3.1 If M is a right S –module , there is an equivalence of N–graded spaces between the
homotopy cofibre of �M W jR�.M /j !M and QS

L .M /.

Let us write S>0 for the sub-N–graded space of S which is empty in grading 0 and agrees with S

otherwise. The following expands upon [14, Example 2.18].

Lemma 3.2 The augmentation �S W jR�.S /j ! S is an equivalence onto S>0.

Proof The space R0.S /.0/ consists of a point a 2 S .�1/ and a Moore path to a �� , so is empty, and so
the fibre of �S over the point of grading 0 is indeed empty.

The homotopy fibre of �S over b 2 S .n/ with n > 0 is, using [5, page 180], equivalent to the realisation
of the z�inj–space given by the homotopy fibres over b of the maps Rp.S /! S , but as these maps are
fibrations this is in turn the same as the realisation of the z�inj–space F�.b/ with p–simplices given by the
literal fibres of these maps, ie an a 2 S .n�p� 1/ and a Moore path from b to a ��pC1. There are maps

hocolim
Œp�2z�

op
inj

Fp.b/! hocolim
Œp�2z�

op
inj

�0Fp.b/! hocolim
Œp�2�

op
inj

�0Fp.b/

induced by F�.b/!�0F�.b/, and by the fact that the functor �0F�.b/ on z�op
inj canonically factors through

z�
op
inj!�

op
inj. The second map is an equivalence as z�op

inj!�
op
inj is an equivalence of enriched categories.

The first map is an equivalence as each Fp.b/ is homotopy-discrete: this is because it is a homotopy
fibre of the map S .n�p� 1/! S .n/, and by item (i) of Section 2.2 this is a map of K.�; 1/’s which is
injective on fundamental groups.

It remains to show that the semisimplicial set Œp� 7! �0Fp.b/ has contractible geometric realisation.
For any b this is the “space of destabilisations” of [17, Definition 2.1] in the case of the braid groups,
which is described in [17, Section 5.6.2] as an arc complex. By a remarkable theorem of Damiolini [4,
Theorem 2.48] (see [9, Proposition 3.2] for a published reference) this arc complex is contractible.

Proof of Theorem 3.1 The augmented z�inj–space R�.S /! S is constructed using the right S –module
structure on S , so it admits a compatible left S –module structure via

.b; .a; // 7! .b � a; b � / W S ˝Rp.S /!Rp.S /:

Furthermore, contracting the Moore path gives a deformation retraction from Rp.S / to the subspace
where the Moore path is trivial, and this subspace is isomorphic to S ˝ .pC1/�.�/ as a N–graded space,
and as a left S –module.

There is a map
�0p WM ˝Rp.S /!Rp.M /
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given by .a; .b; // 7! .a � b; a � /. If c 2 S then the map above satisfies �0p.a � c; b/D �
0
p.a; c � b/, and

hence descends to a map �p WM ˝S Rp.S /!Rp.M / from the coequaliser. The composition

B.M ;S ; Rp.S //!M ˝S Rp.S /
�p
�!Rp.M /

of the augmentation map and �p is an equivalence, using Rp.M / ' M ˝ .p C 1/�.�/ as well as
Rp.S / ' S ˝ .p C 1/�.�/ and B.M ;S ;S / ' M . By commuting the bar construction with the
homotopy colimit defining jR�.S /j, and using Lemma 3.2, we obtain equivalences

B.M ;S ;S>0/
� � B

�
M ;S ; jR�.S /j

�
��! jR�.M /j

over M . This identifies the homotopy cofibre of �M with the homotopy cofibre of the composition

B.M ;S ;S>0/! B.M ;S ;S / ��!M ;

which is equivalent to the homotopy cofibre of the first map, ie B.M ;S ;S=S>0/' B.M ;S ; 1/. The
latter bar construction should be interpreted as being formed in N–graded pointed spaces, with M and S

included in this category by implicitly adding disjoint basepoints, and with 1' S=S>0 given by

1.n/D

�
S0 if nD 0;
� if n > 0:

By [7, Corollary 9.17], B.M ;S ; 1/ agrees with QS
L .M /, as long as S and M are cofibrant in TopN .

Now each S .n/ has the structure of a smooth manifold with corners, so is cofibrant in Top; on the other
hand the cofibrancy hypotheses in M may be neglected, for the following reason. If M c ��!M is a
cofibrant replacement of M as a S –module (and so in particular M c is cofibrant in Top) then the above
applies to give B.M c ;S ; 1/'QS

L .M
c/. Now certainly QS

L .M
c/!QS

L .M / is an equivalence, but
also B�.M c ;S ; 1/! B�.M ;S ; 1/ is a levelwise equivalence (cartesian product preserves equivalences
between all objects in Top) and so B.M c ;S ; 1/! B.M ;S ; 1/ is an equivalence too — geometric reali-
sation of semisimplicial spaces preserves equivalences between all semisimplicial (compactly generated)
spaces [6, Theorem 2.2].

4 Classical homological stability revisited

Theorem 3.1 leads to a new proof of homological stability in the setting of [14] or [17] (adapted as in
Section 2.3), quite different from the standard proof but very similar in spirit to [7, Section 18]. It takes
as given homological stability (of slope 1

2
) for the free E2–algebra on one generator, ie configuration

spaces of little cubes (or points) in the plane, or equivalently the braid groups.

In the terms we have been using, homological stability may be formulated as follows. First, if X is an
N–graded space then we define bigraded homology groups by Hn;d .X/ WDHd .X.n//, and similarly
reduced homology groups of N–graded pointed spaces. Second, if M is a right S –module then we may
form the composition

� � � WM ˝ 1�.�/
M˝�
���!M ˝S �

�!M
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in the category of N–graded spaces, and write M=� for its homotopy cofibre (considered as a N–graded
pointed space). Using that .M˝1�.�//.n/DM .n�1/, the associated long exact sequence on homology
takes the form

� � � ! zHn;dC1.M=�/!Hd .M .n� 1//
.� ��/�
����!Hd .M .n//! zHn;d .M=�/! � � � :

Thus homological stability of the sequence of maps

(4-1) M .0/ � ����!M .1/ � ����!M .2/ � ����!M .3/ � ����! � � �

corresponds to the vanishing of the groups zHn;d .M=�/ for d � n.

Henceforth k will always denote a commutative ring.

Proposition 4.1 Let M be a right S –module and f WN!N be such that

Hn;d
�
M ; jR�.M /jIk

�
D 0 for d < f .n/:

Then , setting Nf .n/ WDmin
˚�
f .p/C 1

2
.n�p/

˘
j 0� p � n

	
,

zHn;d .M=� Ik/D 0 for d < Nf .n/:

In particular, if f diverges then so does Nf , ie (4-1) satisfies homological stability.

Proof By Theorem 3.1, the hypothesis of the proposition is equivalent to HS
n;d
.M Ik/D 0 for d < f .n/.

Applying the symmetric monoidal functor .�/k WD kŒSing
�
.�/� W Top! sModk we obtain an associative

monoid Sk and a module Mk over it in the category sModN
k , satisfying HSk

n;d
.Mk/D 0 for d < f .n/.

By [7, Theorem 11.21] we may find an Sk–module cellular approximation C ��!Mk, such that C

only has .n; d/–cells with d � f .n/. We write sk.C / for the filtered Sk–module given by the skeletal
filtration of C .

By considering the functor .�/=� D .�/˝Sk Sk=� , which preserves homotopy cofibre sequences of
right Sk–modules, we obtain a filtration of C =� with associated graded

gr.C =�/' gr.C /=� '
M
d�0

M
˛2Id

Sn˛;d ˝Sk=�;

where d � f .n˛/ for ˛ 2 Id .

By the discussion in Section 2.2 we have Hn;d .Sk=�/ŠHd .ˇn; ˇn�1Ik/ for ˇn the nth braid group,
and by item (ii) of Section 2.2 and the universal coefficient theorem this vanishes for d < 1

2
n. It follows

that the homology of gr.C =�/ vanishes in bidegrees .n; d/ such that d < f .n˛/C 1
2
.n� n˛/ for all

cells ˛, so in particular for d < Nf .n/. The same then holds for C =� 'Mk=� by the spectral sequence
for the skeletal filtration of C =� .

This is a simple application of Theorem 3.1, using only that S enjoys homological stability of slope 1
2

with
integral coefficients. But the principle behind the argument above shows that M will enjoy any homological
stability pattern that S does, in a range of degrees controlled by the vanishing ofH�;�

�
M ; jR�.M /j

�
. (Of
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course this is only useful when the latter has a vanishing line of slope > 1
2

; Coxeter groups [11, Section 8]
and Artin monoids [2, Theorem 8.1] give good families of examples.) As the homology of S is completely
known, such patterns (meaning improved homological stability ranges with Q– or Fp–coefficients, or
secondary and higher homological stability) can be easily analysed. A detailed analysis is given in [13,
Corollary 2.12]; we will not spell out the (rather involved) formulation here.

A converse to Proposition 4.1 holds too:

Proposition 4.2 Let M be a right S –module , and g WN!N be such that

zHn;d .M=� Ik/D 0 for d < g.n/:

Then , setting Ng.n/ WDminfg.p/C .n�p/ j 0� p � ng,

Hn;d
�
M ; jR�.M /jIk

�
D 0 for d < Ng.n/:

In practice this is not usually sharp, in that H�;�
�
M ; jR�.M /jIk

�
often vanishes with larger slope than

zH�;�.M=� Ik/ does. As mentioned above, this usually indicates the presence of secondary and higher
order homological stability for S .

In view of Theorem 3.1, a highbrow proof of Proposition 4.2 is the discussion in [7, Remark 19.3],
allowing oneself to be more flexible with the form of the stability ranges. A middlebrow proof is to
consider the Bousfield–Kan spectral sequence for the augmented z�op

inj–space �M WR�.M /!M , which —
as the morphism spaces in z�op

inj are homotopy discrete — takes the form

E1n;p;q DHn;q.Rp.M /Ik/)Hn;pCqC1
�
M ; jR�.M /jIk

�
for p � �1 with R�1.M / WD M . As Rp.M / ' M ˝ .p C 1/�.�/ we can write the E1–page as
E1n;p;q Š Hq.M .n � p � 1/Ik/, and recognise the d1–differential d1 W E1n;p;q ! E1n;p�1;q as the
alternating sum of pC1 copies of the stabilisation map .� ��/�. Thus this differential is zero if p is odd,
and is .���/� if p is even. From the assumption it is then easy to see that E2n;p;qD 0 for pCqC1< Ng.n/.
This is simply the usual spectral sequence argument for homological stability, with the logic reversed.
(As with many middlebrow arguments, it even offers a slight improvement: in the definition of Ng one can
take the minimum over those 0� p � n having the same parity as n.)

5 An extension of Theorem 3.1

The discussion of Section 3 shows that the cofibre of the canonical resolution �M W jR�.M /j !M is
equivalent to the derived S –module indecomposables QS

L .M /, so the high-connectivity of this cofibre
means that M can be constructed as a cellular S –module without using small-dimensional S –module
cells in large N–grading. Usually, such high-connectivity is proved by establishing the high-connectivity
of the fibres of �M ; the fibre W�.m/ of �M W R�.M /!M over a point m 2M is called the “space of
destabilisations” in [14, Definition 2.14(ii)]. The high-connectivity of a fibre is, of course, stronger than
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the high-connectivity of the corresponding cofibre. As such it might be expected that the high-connectivity
of the fibres W�.m/ has more consequences than the high-connectivity of QS

L .M /. The goal of this
section is to explain how this is so.

5.1 Formulation

The theory in [7] is developed not only in the category TopN of N–graded spaces, but more generally in
G–graded spaces for a (symmetric or braided) monoidal groupoid G. This allows for the treatment of
homological stability with twisted coefficients, and is also the natural context for representation stability.

Let .G;˚; b; 0/ be a braided monoidal groupoid. Let r W G!N be a strong monoidal functor, called the
rank, and choose an X 2 G with r.X/D 1. Assume furthermore that

(I) 0 2 G is the only object of rank 0, and

(II) AutG.0/ is trivial.

Endow TopG D Fun.G;Top/ with the braided monoidal structure given by Day convolution, and similarly
sModGk.

In order to discuss E2–algebras in a category which is only braided monoidal, in [7, Section 4.1] there is
introduced the category FB2 of “braided finite sets”, and the category TopFB2 replaces the category of
symmetric sequences. It is endowed with a composition product [7, Definition 4.3], monoids for which
serve as a braided version of operads. In particular there is a braided version CFB2

2 of the nonunitary little
2–cubes operad [7, Definition 12.6]. This has CFB2

2 .n/ contractible for each n > 0 (and empty for nD 0).

Using this we can make sense of E2–algebras in TopG or sModGk, and in particular we can form the free
E2–algebra on the object X�.�/ 2 TopG,

E2.X�.�// 2 AlgE2.Top
G/:

We can strictify E2.X�.�// to a unital associative algebra

zS WDE2.X�.�//;

which plays the role of S in this setting, and consider a right zS –module zM . The object zS is cofibrant in
TopG, and we will always assume that zM is too.

Taking left Kan extension along r W G!N gives

r� zS D r�E2.X�.�//DE2.1�.�//D S and r� zM DWM

(as these objects were cofibrant in TopG, this agrees with the homotopy left Kan extension), and M is a
right S –module. For each object Y 2 G there is a quotient map q W zM .Y /!M .r.Y //. This puts us in
the setting of Section 2.3: there is the canonical resolution �M W R�.M /!M , with fibre W�.m/ over
m 2M .
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The following relates the spaces jW�.m/j, in particular their connectivities, with the derived zS –module
indecomposables.

Theorem 5.1 Let zM be a right zS –module which is cofibrant in TopG. Then there is a morphism

(5-1) B. zM ; zS ; zS>0/! zM

with homotopy cofibre Q zSL . zM / and homotopy fibre over Qm 2 zM given by jW�.q. Qm//j.

In particular , if jW�.q. Qm//j is k–connected for all Qm 2 zM .Y /, then Q zSL . zM /.Y / is .kC1/–connected.

5.2 Proof of Theorem 5.1

We prove this theorem by analogy with Theorem 3.1, and so first construct an augmented z�op
inj–object

R�. zM /! zM . For each object Y 2 G and each Œp� 2 z�op
inj we define Rp. zM /.Y / by the cartesian square

(5-2)
Rp. zM /.Y / zM .Y /

Rp.M /.r.Y // M .r.Y //

q

Repeatedly using the universal property of pullbacks, we see that these assemble to Rp. zM / 2 TopG,
and that in turn these assemble to an augmented z�op

inj–object R�. zM /! zM in TopG. Furthermore, when
zM D zS we see that this object consists of left zS –modules.

As zM is assumed to be cofibrant, the quotient map zM .Y /! zM .Y /=AutG.Y / is a covering space and
the latter is a union of path-components of M .r.Y //, so the right-hand vertical map in (5-2) is a fibration;
thus this square is also homotopy cartesian. It then follows that the square

(5-3)
jR�. zM /j.Y / zM .Y /

jR�.M /j.r.Y // M .r.Y //

q

is also homotopy cartesian (Lemma 2.13 of [6] gives this for �op
inj–objects; it follows for z�op

inj–objects by
first homotopy Kan extending along the equivalence of enriched categories z�op

inj!�
op
inj).

If we let zS>0 2TopG be the object that agrees with zS on objects Y with r.Y / > 0, and is the empty space
on objects Y with r.Y /D 0 (recall that we have assumed that 0 2 G is the only such object), then this
obtains the structure of a left zS –module. It follows from Lemma 3.2 and the homotopy cartesian square
(5-3) that the augmentation gives an equivalence jR�. zS /j ! zS>0 of left zS –modules.

Proof of Theorem 5.1 We proceed as in the proof of Theorem 3.1. Applying B. zM ; zS ;�/ to the
homotopy cofibre sequence

zS>0! zS ! 1;
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and using B. zM ; zS ; zS / ��! zM , constructs the map (5-1) and identifies its homotopy cofibre with
B. zM ; zS ; 1/, which is equivalent to Q zSL . zM / by [7, Corollary 9.17].

On the other hand there are equivalences

B. zM ; zS ; zS>0/
� � B

�
zM ; zS ; jR�. zS /j

�
��! jR�. zM /j

over zM , using as in the proof of Theorem 3.1 that Rp. zS /' zS ˝ .X˚pC1/�.�/ as a left zS –module, and
similarly for zM . Finally, the homotopy fibre of jR�. zM /j.Y /! zM .Y / over Qm 2 zM .Y / is jW�.q. Qm//j
as (5-3) is homotopy cartesian.

5.3 E2–algebras coming from groupoids

A useful application of this result is as follows. As in [7, Section 17.1] (but replacing sSet by Top) there
is a T 2 AlgE2.Top

G/ with T .A/'� if r.A/ > 0 and T .0/D∅, which is also cofibrant in AlgE2.Top
G/.

Choosing an equivalence � ! T .X/ we obtain by adjunction a map X�.�/! T , which extends to
an E2–map f W E2.X�.�//! T . This can be strictified to a map Nf W zS D E2.X�.�//! T of unital
associative monoids in TopG; furthermore these are cofibrant in this category by [7, Lemma 12.7(i)]. This
gives T the structure of a right zS –module, cofibrant in TopG, to which Theorem 5.1 can be applied.

The object M WD r�T satisfies
M .n/'

G
r.Y /Dn

BAutG.Y /

because each T .Y / is contractible. If in addition

(III) the map �˚X W AutG.A˚X˚n/! AutG.A˚X˚nC1/ is injective for all n� 0, and

(IV) Y ˚X˚m Š A˚X˚n with 1�m� n implies Y Š A˚X˚n�m,

then, as explained in [14, Section 7.3], for a point m 2 BAutG.A˚X˚n/ �M the space jW�.m/j is
equivalent to the space jWn.A;X/�j of [17, Definition 2.1], also called “spaces of destabilisations”. The
following gives a conceptual meaning to these spaces of destabilisations, analogous to that given by
Theorem 3.1.

Corollary 5.2 Under the assumptions above there is an AutG.A˚X˚n/–equivariant equivalence between
the unreduced suspension of jWn.A;X/�j and Q zSL .T /.A˚X

˚n/.

Proof Apply Theorem 5.1 to zM DT , and use that T .Y /'� so that the cofibre of (5-1) is the unreduced
suspension of its fibre.

Remark 5.3 In [17, Definition 2.8] there is formulated a simplicial complex Sn.A;X/ which is an
“unordered version” of the semisimplicial setsWn.A;X/�, and is mainly useful when the braided monoidal
groupoid .G;˚; b; 0/ is in fact symmetric monoidal. In this case T has the structure of an E1–algebra,
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and a similar analysis to that which we have carried out so far will show that Sn.A;X/ is AutG.A˚X˚n/–
equivariantly equivalent to the indecomposablesQE1.X�.�//

L .T /.A˚X˚n/ of T as a module over the free
E1–algebra on one generator. We leave the details of this argument to the appropriately motivated reader.

6 Coefficient systems, representation stability, and central stability

In [7, Section 19] it is discussed how to treat coefficient systems in the setting of Section 5.3. As a
brief reminder, one fixes a commutative ring k and works in the category sModGk of functors from G to
simplicial k–modules. The constant functor k with value k has the structure of a commutative algebra
object in this category, and a coefficient system A is defined to be a right1 k–module. It is called discrete
if it takes values in k–modules (considered as discrete simplicial k–modules.)

Using .�/k WD kŒSing
�
.�/� W Top! sModk we can transport much of the previous discussion into the

category of simplicial k–modules. In particular there are unital associative monoids zSk! Tk which
are cofibrant in sModGk, and as T takes contractible values there is an equivalence of unital associative
monoids Tk

��! k, which is a cofibrant replacement of k. Any coefficient system A can therefore
be considered as a right Tk–module, and if Ac ��! A is a cofibrant replacement as such then taking
Kan extensions along r W G! N gives RA WD r�.A

c/' Lr�.A/ the structure of a right module over
Rk WD r�.Tk/. By definition of homotopy Kan extension,

Hn;d .RA/D
M

r.Y /Dn

Hd .AutG.Y /IA.Y //:

Using the right Rk–module structure and � 2H1;0.Rk/ we can form the map � � � WRA˝S
1;0!RA ,

and homological stability for the groups AutG.Y / with coefficients in A.Y / can be phrased as a vanishing
line for the homology of the cofibre RA=� .

Assuming that A is a discrete coefficient system we define

Tork
p .A;k/.Y / WDHY;d .B.A;k;k//;

and combining [7, Lemma 19.4] and [7, Theorem 19.2] shows that an appropriate vanishing line for
these Tor–groups and homological stability for Rk implies homological stability for RA. A vanishing
line for these Tor–groups sometimes goes under the name of derived representation stability for A.
These Tor–groups have a clear conceptual meaning: they measure how to construct A as a cellular
k–module. (When G is the category of finite sets and bijections, then a k–module recovers the notion of
an FI–module, and Tork

� .k;A/ recovers FI–homology in the sense of [3].)

There is another measure of the complexity of a coefficient system A, namely the central stability homology
zH�.A/ of Putman and Sam [16] and Patzt [15]. Our main goal here is to give a similar conceptual

interpretation of these homology groups, and hence to revisit Patzt’s theorem [15, Theorem 5.7] relating
zH�.A/ and Tork

� .A;k/.

1In [7, Section 19] left modules are considered, but there is no important difference.
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Proposition 6.1 A discrete coefficient system A may be considered as a right zSk–module via

zSk! Tk
��! k;

and then there are isomorphisms

H
zSk
Y;d
.A/DHY;d .B.A; zSk;k//Š zHd�1.A/Y :

Proof Following Section 5.2, the equivalence jR�. zS /j ! zS>0 and the cofibre sequence zS>0! zS ! 1

may be k–linearised, and applying B.A; zSk;�/ and using that B.A; zSk; zSk/
��! A then gives a

homotopy cofibre sequence

B
�
A; zSk; jR�. zSk/j

�
!A! B.A; zSk;k/:

We may commute homotopy colimits and write the left-hand term as jB.A; zSk; R�. zSk//j. As

Rp. zSk/' zSk˝ .X
˚pC1/�.k/

as a left zSk–module, we have B.A; zSk; Rp. zSk//' A˝ .X˚pC1/�.k/. The Bousfield–Kan spectral
sequence for the augmented z�op

inj–object B.A; zSk; R�. zSk//!A therefore takes the form

E1Y;p;q DHY;q.A˝ .X
˚pC1/�.k//)HY;pCqC1.B.A; zSk;k//

for p � �1. As A˝ .X˚pC1/�.k/ is discrete this spectral sequence is supported along the line q D 0
and so collapses at E2. By definition of Day convolution it has

E1Y;p;0 D colim
.Z;f / s.t.

f WZ˚X˚pC1
�!Y

A.Z/

and by definition of the z�op
inj–object R�. zSk/ the d1–differential is given by the alternating sum of the

maps
ı0; ı1; : : : ; ıp W colim

.Z;f / s.t.
f WZ˚X˚pC1

�!Y

A.Z/! colim
.Z0;f 0/ s.t.

f 0 WZ0˚X˚p
�!Y

A.Z0/;

where ıi braids the i th copy of X in X˚pC1 in front of the others to put it first, then adds it to Z to form
Z0 WDZ˚X ; it then applies A.Z/!A.Z˚X/ given by the right zSk–module structure. Using [15,
Proposition 4.3] one finds the same description of the complex that calculates central stability homology,
so zHp.A/Y ŠE2p;0 ŠHY;pC1.B.A; zSk;k//, as claimed.

For the following we strengthen assumption (III) of Section 5.3 to

(III0) the map �˚�W AutG.U /�AutG.V /! AutG.U ˚V / is injective for all U; V 2 G.

With the interpretations of H
zSk
�;�.Tk/ given by Corollary 5.2 and of H

zSk
�;�.A/ given by Proposition 6.1,

and the interpretation of a vanishing line for Tork
� .k;A/ in terms of a minimal k–module resolution of A,

the following is then a version of Patzt’s [15, Theorem 5.7].
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Theorem 6.2 Let f WN!N and assume that H
zSk
Y;d
.Tk/D 0 for d < f .r.Y //.

(i) If g WN!N is such that Tork
d
.k;A/.V /D0 for d <g.r.V //, thenH

zSk
Y;d
.A/D0 for d < Ng.r.Y //,

where Ng.n/ WDminff .p/Cg.n�p/ j 0� p � ng.

(ii) If h WN!N is such thatH
zSk
U;d

.A/D0 for d <h.r.U //, then Tork
d
.k;A/.Y /D0 for d < Nh.r.Y //,

where Nh.n/ is defined inductively by Nh.0/D h.0/ and

Nh.n/ WDminfh.n/; f .p/C Nh.n�p/C 1 j 1� p � ng:

Proof Consider B.B.k; zSk;Tk/;Tk;A/. By interchanging geometric realisations and using

B.Tk;Tk;A/
��!A

this is equivalent to B.k; zSk;A/. On the other hand we may descendingly filter B.k; zSk;Tk/ by
rank, as in [7, Remark 19.5]. The associated graded is equivalent to B.k; zSk;Tk/ but its zSk–module
structure is now trivial (ie induced via the augmentation zSk ! k). Thus the induced filtration of
B.B.k; zSk;Tk/;Tk;A/ has associated graded B.k; zSk;Tk/˝B.k;Tk;A/. Using (III0) we may apply
[7, Lemma 10.6] to see that the associated spectral sequence takes the form

E1Y;p;q D colim
U˚V

�!Y
r.U /Dp

HpCq
�
B.k; zSk;Tk/.U /˝B.k;Tk;A/.V /

�
)H

zSk
Y;pCq.A/:

For such U and V there is also a Künneth spectral sequence [7, Lemma 10.5]M
t 0Ct 00Dq

Tork
s .H

zSk
U;t 0.Tk/;H

Tk
V;t 00.A//)HsCt

�
B.k; zSk;Tk/.U /˝B.k;Tk;A/.V /

�
:

By assumption H
zSk
U;t 0.Tk/D 0 for t 0 <f .p/ as r.U /Dp. As A is assumed to be discrete, the discussion

before [7, Lemma 19.4] gives HTk
V;t 00.A/Š Tork

t 00.k;A/.V /.

Supposing first that Tork
d
.k;A/.V /D 0 for all d < g.r.V //, the Künneth spectral sequence implies that

HpCq
�
B.k; zSk;Tk/.U /˝B.k;Tk;A/.V /

�
D 0 for pC q < f .p/Cg.r.Y /�p/;

and so the first spectral sequence implies that H
zSk
Y;d
.A/D 0 for d < Ng.r.Y //, by definition of Ng.

Suppose now that H
zSk
Y;d
.A/D 0 for all d < h.r.Y //. Suppose for an induction that Tork

d
.k;A/.Y 0/D 0

for all d < Nh.r.Y 0// and all r.Y 0/ < r.Y /. The only object U 2 G with r.U / D 0 is U D 0 by (I),
and H

zSk
0;�.Tk/ D kŒ0� consists of free k–modules. Thus the Künneth spectral sequence collapses to

give E1Y;0;q D H
Tk
Y;q.A/. On the other hand if r.U / > 0 then r.V / < r.Y / and so by the inductive

hypothesis HTk
V;t 00.A/ D 0 for t 00 < Nh.r.V //; it then follows by the same argument as above that for

p > 0 we have E1Y;p;q D 0 when p C q < f .p/C Nh.r.Y / � p/. As the differentials have the form
d r WEr

Y;0;d
!Er

Y;r;d�r�1
, the cokernel of the edge homomorphism

H
zSk
Y;d
.A/!E1Y;0;d DH

Tk
Y;d
.A/
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is trivial for d�1<minff .p/C Nh.r.Y /�p/ j 1�p� r.Y /g. As the domain of this edge homomorphism
vanishes for d < h.r.Y //, it follows that HTk

Y;d
.A/Š Tork

d
.k;A/.Y / vanishes for d < Nh.r.Y //.

7 The space of destabilisations and the splitting complexes

In this section we continue to work in combinatorial setting of Section 5.3, and will explain the relationship
between the connectivities of the spaces of destabilisations jWn.0; X/�j defined in [17, Definition 2.1],
and the connectivities of the “E1– and E2–splitting complexes” jZE1

�
.X˚n/j and jZE2

�;� .X
˚n/j defined

in [7, Sections 17.2 and 17.3].

Proposition 7.1 Let .G;˚; b; 0/ be a braided monoidal groupoid satisfying (I), (II), (III) and (IV), and
suppose r W G!N is a bijection on isomorphism classes of objects , with X 2 G corresponding to 1 2N.
Let f WN!N be a function satisfying f .n/� n and f .nCm/� f .n/Cf .m/. Then the following are
equivalent :

(i) The homology of jWn.0; X/�j vanishes in degrees �< f .n/� 1 for all n > 1.

(ii) The homology of jZE1
�
.X˚n/j vanishes in degrees �< f .n/C 1 for all n > 1.

(iii) The homology of jZE2
�;� .X

˚n/j vanishes in degrees �< f .n/C 2 for all n > 1.

Hepworth [12, Theorem 13.2] has shown that (ii) implies (i) under slightly different connectivity hypothe-
ses; see Example 7.4.

Proof of Proposition 7.1 We will first show that (iii) is equivalent to (i), and later the simpler statement
that (iii) is equivalent to (ii). To do so we will use the abstract connectivity (see [7, Definition 11.1])
� W G! Œ�1;1�� defined by �.A/ WD f .r.A//, which by assumption satisfies � � r and � � � � � .

As before we may linearise (via .�/Z WDZŒSing
�
.�/� W Top! sModZ) the E2–map f WE2.X�.�//! T

to obtain a map fZ W E2.X�.Z//! TZ of E2–algebras in sModGZ, with TZ.A/ ' Z if r.A/ > 0 and
TZ.0/D 0. By [7, Proposition 17.14],

S0;2˝Q
E2
L .TZ/.A/' jZŒZ

E2
�;� .A/�j:

As QE2L

�
E2.X�.Z//

�
'X�.Z/ is supported on the object X ,

(7-1) H
E2
X˚n;d

�
TZ;E2.X�.Z//

�
ŠH

E2
X˚n;d

.TZ/Š zHdC2
�
jZE2
�;� .X

˚n/j
�

as long as n > 1. On the other hand, as QE2.X�.Z//
L

�
E2.X�.Z//

�
' 0�.Z/ is supported on the object 0,

linearising the conclusion of Corollary 5.2 gives

(7-2) H
E2.X�.Z//
X˚n;d

�
TZ;E2.X�.Z//

�
Š zHd�1

�
jWn.0; X/�j

�
as long as n > 0.
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The homology groups to which (iii) and (i) refer are the right-hand sides of (7-1) and (7-2) respectively;
we will compare them using the interpretations given by the left-hand sides, as relative E2–algebra
indecomposables and E2.X�.Z//–module indecomposables respectively.

Suppose first that .G;˚; b; 0/ is in fact symmetric monoidal. Then we may apply [7, Theorem 15.9] in the
category C WD sModGZ with k D 2, because G is 3–monoidal (D symmetric monoidal) and so C, with the
Day convolution monoidal structure, is too. This theorem, applied to the morphism fZ WE2.X�.Z//!TZ

with � D r and with � an abstract connectivity such that � � � � � and r � � , says the following: if
H
E2
X˚n;d

�
TZ;E2.X�.Z//

�
D 0 whenever d < �.X˚n/ then there is a morphism

(7-3) H
E2.X�.Z//
X˚n;d

�
TZ;E2.X�.Z//

�
!H

E2
X˚n;d

�
TZ;E2.X�.Z//

�
which is an isomorphism for d < .� � �/.X˚n/ and an epimorphism for d < .� � �/.X˚n/C 1.

If � is such that (iii) holds then by (7-1) the assumption for the above is satisfied, and so as � � � � � it
follows thatHE2.X�.Z//

X˚n;d

�
TZ;E2.X�.Z//

�
D 0 for d <�.X˚n/, so by (7-2) it follows that the homology

of jWn.0; X/�j vanishes in degrees �< �.X˚n/� 1 for n > 1.

In the other direction, if � is such that (i) holds then HE2.X�.Z//
X˚n;d

�
TZ;E2.X�.Z//

�
D 0 for d < �.X˚n/

by (7-2). Define abstract connectivities �k by

�k.X
˚n/ WD

�
�.X˚n/ if n� k;
�.X˚k/ if n� k;

which satisfy �k � �k � �k and �k � r . As HE2
X˚n;0

�
TZ;E2.X�.Z//

�
D 0 for all n,

H
E2
X˚n;d

�
TZ;E2.X�.Z//

�
D 0 for d < �1.X˚n/;

because �.X/� r.X/D 1 by assumption. Suppose for an induction that HE2
X˚n;d

�
TZ;E2.X�.Z//

�
D 0

for d <�k.X˚n/. Then by [7, Theorem 15.9] the map (7-3) is an epimorphism for d <.�k��k/.X˚n/C1,
and by assumption its source vanishes for d < �.X˚n/, so we conclude that its target vanishes for

d < inf.�; �k � �kC 1/.X
˚n/:

In particular it vanishes for d < inf.�; �kC1/.X˚n/ and hence also for d <�kC1.X˚n/, as �kC1�� and
�kC1� �kC1. It follows by induction thatHE2

X˚n;d

�
TZ;E2.X�.Z//

�
D 0 for d <�1.X˚n/D �.X˚n/.

Using (7-1) this translates to the homology of jZE2
�;� .X

˚n/j vanishing in degrees � < �.X˚n/C 2 for
n > 1. This finishes the proof that (iii) is equivalent to (i) if .G;˚; b; 0/ is symmetric monoidal.

If .G;˚; b; 0/ is only braided monoidal then we cannot appeal directly to [7, Theorem 15.9]; its proof
uses [7, Theorem 15.3], which is false if k D 2 and G is only braided monoidal (see Example A.2).
However, in the appendix we show that the conclusion of [7, Theorem 15.9] is nonetheless true when
k D 2 and G is only braided monoidal. Given this, the above argument goes through to show that (iii) is
equivalent to (i).
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To see that (iii) and (ii) are equivalent we use the results of [7, Section 14] for transferring vanishing lines,
along with

(7-4) H
E1
X˚n;d

.TZ/Š zHdC1
�
jZE1
�
.X˚n/j

�
from [7, Proposition 17.14]. If � is such that (ii) holds then (7-4) shows that HE1

X˚n;d
.TZ/ D 0 for

d < �.X˚n/ for n > 1, so letting

�.X˚n/ WD

�
�.X˚n/C 1 if n > 1;
n if n� 1;

we have � � � � � and HE1
X˚n;d

.TZ/D 0 for d < �.X˚n/� 1, so by [7, Theorem 14.4] it follows that
H
E2
X˚n;d

.TZ/D 0 for d < �.X˚n/� 1 (so for d < �.X˚n/ and n > 1), which via (7-1) implies that (iii)
holds. Using the same �, [7, Theorem 14.4] shows that (iii) implies (ii).

Example 7.2 Let .G;˚; b; 0/ be the free braided monoidal groupoid on one objectX , so AutG.X˚n/Šˇn
is the braid group on n strands. In this case T 2 AlgE2.Top

G/ is the free E2–algebra on X�.�/, and so
jZE2
�;� .A/j is the value at A 2 G of the object S0;2^X�.S0/ 2 TopG�. This is S2 when evaluated at X and

contractible otherwise, so in general when evaluated at X˚n its homology vanishes in degrees �< nC 2
for all n> 1. By Proposition 7.1 it then follows that jWn.0; X/�j is homologically .n�2/–connected. The
latter may be described as an arc complex [17, Section 5.6.2]. Note however that we used this connectivity
(and in fact that it is contractible) in the proof of Lemma 3.2, so this is not new information.

Example 7.3 Similarly, if .G;˚; b; 0/ is the free symmetric monoidal groupoid on one object X ,
so AutG.X˚n/ Š †n is the nth symmetric group, then T is the free E1–algebra on X�.�/. Thus
jZE2
�;� .A/j ' E1.X�.S

2//.A/ by combining [7, Theorems 13.7, 13.8 and 17.4]. At A D X˚n this
evaluates to .E†n/C ^†n .S

2/^n and so has trivial homology in degrees � < 2n, so in particular in
degrees � < nC 2 for all n > 1. By Proposition 7.1 it then follows that jWn.0; X/�j is homologically
.n�2/–connected. The latter may be identified with the “complex of injective words”, which gives a
(very complicated) new proof for the homological high-connectivity of this semisimplicial set.

Example 7.4 That jZE1
�
.X˚n/j be .n�1/–connected is called the “standard connectivity estimate” in [7,

Definition 17.6], and several examples of braided monoidal groupoids are known to satisfy this: general
linear groups over Dedekind domains [7, Section 18.2], mapping class groups of oriented surfaces [8,
Theorem 3.4], and automorphism groups of free groups [12, Corollary 4.5]. In this case Proposition 7.1
applies with f .n/ D 1

2
n to show that jWn.0; X/�j has trivial homology in degrees � < 1

2
.n� 2/, ie is

homologically 1
2
.n�3/–connected. This recovers [12, Theorem 13.2] at the level of homology.

Example 7.5 In [17, Section 5] many examples are given of braided monoidal groupoids .G;˚; b; 0/
such that jWn.0; X/�j is 12.n�3/–connected. For example, the groupoids corresponding to: automorphism
groups of free groups [17, Proposition 5.3 and Theorem 2.10], general linear groups of rings having stable
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rank � 1 [17, Lemma 5.10], mapping class groups of orientable surfaces [17, Lemma 5.25] and certain
3–manifolds [17, Section 5.7]. Setting

f .n/ WD

�1
2
.nC 1/ if n > 0;
0 if nD 0;

we have f .n/ � n and f .nCm/ � f .n/C f .m/, and jWn.0; X/�j has trivial homology in degrees
�<f .n/�1. By Proposition 7.1 it then follows that for n>1 the space jZE1

�
.X˚n/j has trivial homology

in degrees �< 1
2
.nC 3/, in all of these cases.

Appendix Comparing algebra and module cells, extended

The goal of this technical appendix is to relax very slightly the hypotheses of [7, Theorem 15.9] in the
case k D 2, as follows. (In the following S no longer denotes the free E2–algebra on one generator! The
notation is parallel to [7, Theorem 15.9].)

Theorem A.1 Suppose that S satisfies [7, Axiom 11.19], and that G is braided monoidal and Artinian.
Let �; � W G! Œ�1;1�� be abstract connectivities such that � � � � �, � � � � � and � � � � � � � . If

(i) R 2 AlgE2.C/ is such that HE2
g;d
.R/D 0 for d < �.g/� 1,

(ii) f WR! S is an E2–algebra map such that HE2
g;d
.S ;R/D 0 for d < �.g/, and

(iii) R and S are cofibrant in C, 0–connective , and reduced ,

then there is a map HR
g;d
.S ;R/! H

E2
g;d
.S ;R/ which is an isomorphism for d < .� � �/.g/, and an

epimorphism for d < .� � �/.g/C 1.

The only change from the k D 2 case of [7, Theorem 15.9] is that G is only required to be braided
monoidal, rather than symmetric monoidal.

Let us first explain the issue. The proof of [7, Theorem 15.9] uses [7, Theorem 15.3], which when G is
symmetric monoidal provides an equivalence

(A-1) E2.A_B/'E2.A/˝E
C
2 .E

C
1 .S

1
^A/˝B/

of left E2.A/–modules. However, if G is only braided monoidal then there is no such equivalence.

To explain why, recall as in Section 5.1 that to discuss E2–algebras in a category which is only braided
monoidal we use the braided version CFB2

2 of the nonunitary little 2–cubes operad [7, Definition 12.6],
which has CFB2

2 .n/ contractible for each n > 0.

Example A.2 Let GD FB2, the free braided monoidal groupoid on one generator, ie GD
F
n�0fng==ˇn,

and take SD sModZ. Let AD B D f1g�.Z/, with Z considered to be in degree 0. Then on the left-hand
side of (A-1),

E2.A_B/.fng/' .Z˚Z/˝n:
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This is because, by definition of Day convolution, in sModGZ the object .A_B/˝n is supported at fng and
is here given by Indˇn

ˇ1�����ˇ1
..Z˚Z/˝n/, so when we apply CFB2

2 .n/�ˇn � (see [7, Definition 12.6])
we obtain ZŒCFB2

2 .n/�˝ .Z˚Z/˝n ' .Z˚Z/˝n, using that CFB2

2 .n/ is contractible. In particular, in
each grading the homology of E2.A_B/ is supported in degree zero.

On the other hand, the right-hand side of (A-1) contains as a retract A˝ .S1^A/˝B . This is supported
on the object f3g where it is given by

Indˇ3
ˇ1�ˇ1�ˇ1

.Z˝ .S1 ^Z/˝Z/;

which has nontrivial first homology. Thus (A-1) cannot hold.

Our solution to this issue will be that although (A-1) need not hold when G is braided monoidal, a certain
connectivity estimate for the natural morphism B ! B.1;E2.A/;E2.A_B// that one would deduce
from (A-1) does in any case hold, and it is only this connectivity estimate that is used in the proof of [7,
Theorem 15.9]. The required connectivity estimate is as follows.

Proposition A.3 Suppose that S satisfies [7, Axiom 11.19], and that G is braided monoidal and Artinian.
Let �; � W G! Œ�1;1�� be abstract connectivities with � � � � � , � � � � � and � � � � � � � . If
A 2 C WD SG is homologically .��1/–connective and B 2 C is homologically �–connective then the
natural map

B! B.1;E2.A/;E2.A_B//

is homologically ���–connective.

Proof Let ˇa1;a2;:::;ar denote the subgroup of the braid group ˇa1Ca2C���Car consisting of those braids
which induce a permutation which preserves the decomposition

f1; 2; : : : ; a1g t fa1C 1; : : : ; a1C a2g t � � � t fa1C a2C � � �C ar�1C 1; : : : ; a1C a2C � � �C arg:

In the braided monoidal category C,

.A_B/˝n Š
_

aCbDn

Indˇn
ˇa;b

.A˝a˝B˝b/;

and so

E2.A_B/Š 1_
_

aCb�1

ResˇaCb
ˇa;b

..0;1/�CFB2
2 .aC b//C ^ˇa;b .A

˝a
˝B˝b/:

Similarly, E2.A/ Š 1_
W
n�1..0;1/�CFB2

2 .n//C ^ˇn A
˝n. Using these identities we may express

B.1;E2.A/;E2.A_B// as an analytic functor of the variables A and B in the form

(A-2)
_
a;b�0

jC.a; b/�j ^ˇa;b .A
˝a
˝B˝b/
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Figure 2: Left: the standard configuration with aD 5 and b D 2. Right: the standard 1–simplex �.2; 1; 2/.

where C.a; b/� is the semisimplicial pointed space (with free ˇa;b–action) given as follows. The space
C.a; b/p is_
a1C���CapCapC1Da

Indˇa;b
ˇa1�ˇa2�����ˇap�ˇapC1;b

�� pY
iD1

.0;1/�CFB2
2 .ai /

�
� .0;1/�CFB2

2 .apC1Cb/

�
C

;

with face maps given as in the two-sided bar construction.

Under the given connectivity assumptions A˝a˝B˝b is .��1/�a���b–connective, ie .��a���b�a/–
connective. As jC.a; b/�j is a free ˇa;b–space, the claim will follow from the decomposition (A-2) as
long as jC.a; b/�j is a–connective, and contractible for bD 0. In this case jC.a; b/�j^ˇa;b .A

˝a˝B˝b/

is contractible for b D 0, and is .��a���b/–connective otherwise, so is at least � � �–connective except
when .a; b/D .0; 1/.

To prove this connectivity statement we observe that the C.a; b/p are homotopy-discrete, because .0;1/
and CFB2

2 .n/ are all contractible, so the semisimplicial pointed space C.a; b/� is levelwise homotopy
equivalent to the semisimplicial pointed set �0C.a; b/� having

�0C.a; b/p D
_

a1C���CapCapC1Da

�
ˇa;b

ˇa1 �ˇa2 � � � � �ˇap �ˇapC1;b

�
C

:

This semisimplicial pointed set admits a system of degeneracies, by setting ai D 0, making it a simplicial
pointed set. The connectivity of this simplicial set can be analysed by the same argument as [8, Section 4],
as we now explain.

Fix a configuration of a black points and b white points in Œ0; aCb��Œ0; 1�, as shown in Figure 2, left, and
let †a;b denote the surface given by this square with these marked points. Let the poset S.a; b/ consist
of the set of isotopy classes of smoothly embedded arcs ˛ W Œ0; 1�!†a;b disjoint from the marked points
and with ˛.0/ 2 Œ0; aCb��f0g and ˛.1/ 2 Œ0; aCb��f1g, such that the left-hand side of the arc contains
a nonzero number of points, and the right-hand side contains all white points. Say that Œ˛�� Œ˛0� if ˛ and
˛0 can be represented by disjoint embedded arcs with ˛.0/� ˛0.0/ 2 Œ0; aC b�. Let S.a; b/� denote the
simplicial nerve of the poset S.a; b/. The mapping class group of †a;b , where diffeomorphisms must fix
the boundary but are allowed to permute the black or the white marked points (but not interchange them),
is the group ˇa;b , and it acts on S.a; b/�. To a set of natural numbers a0 > 0, a1; a2; : : : ; apC1 � 0 there
is an associated p–simplex �.a0; : : : ; apC1/ 2 S.a; b/p as shown in Figure 2, right, given by vertical
arcs partitioning the black points into groups of the indicated sizes. Every p–simplex is in the orbit of a
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0

1

˛

Figure 3: Left: dotted arcs 0 and 1, and a solid arc ˛ in F.fŒ0�; Œ1�g/. Right: the maximal
element of F.fŒ0�; Œ1�g/.

unique �.a0; : : : ; apC1/ (by counting the number of black points between the arcs). Furthermore, the
stabiliser of this simplex under the ˇa;b–action is the subgroup

ˇa0 � � � � �ˇap �ˇapC1;b:

We therefore recognise the pointed simplicial set �0C.a; b/� as the suspension of the simplicial set
S.a; b/�.

When bD 0 the poset S.a; 0/ has a maximal element, given by the arc having no points to its right, and so
�0C.a; 0/� is indeed contractible. When b > 0 we must show that j�0C.a; b/�j is a–connective, ie that
jS.a; b/�j is .a�2/–connected. We will do this by induction on a, using the nerve theorem as formulated
in [8, Corollary 4.2]. It clearly holds for a � 1.

Let A.†a;b/ denote the simplicial complex with vertices the isotopy classes of smoothly embedded arcs
 W Œ0; 1�!†a;b with .0/D

�
0; 1
2

�
and .1/ a black marked point. A collection Œ0�; : : : ; Œp� spans a

simplex if the i can be realised disjointly except at i .0/D
�
0; 1
2

�
. By a theorem of Hatcher and Wahl

[10, Proposition 7.2] the simplicial complex A.†a;b/ is .a�2/–connected. We consider the functor

F W Simp.A.†a;b//op
! fdownwards-closed subposets of S.a; b/op

g

which assigns to a simplex fŒ0�; : : : ; Œp�g of A.†a;b/ the subposet of S.a; b/op given by those Œ˛�’s such
that the arcs ˛; 0; : : : ; p can be realised disjointly; see Figure 3, left. This is clearly a downwards-closed
subposet, and defines a functor.

We apply the nerve theorem [8, Corollary 4.2] to this functor, with tSimp.A.†a;b//.Œ0�; : : : ; Œp�/ WD p,
tS.a;b/op.Œ˛�/ WD #fblack points to the right of ˛g, and n WD a � 1. We verify the hypotheses of this
theorem:

(i) Simp.A.†a;b// is .a�2/–connected, by Hatcher and Wahl’s theorem.

(ii) Simp.A.†a;b//<fŒ0�;:::;Œp�g is the poset of simplices of the boundary of�p , so is .p�2/–connected.
The subposet F.Œ0�; : : : ; Œp�/ � S.a; b/op has a maximal element, given by an arc which has
precisely the points 0.1/; : : : ; p.1/ to its left and runs parallel to the i as in Figure 3, right, so
is contractible.

(iii) .S.a; b/op/<Œ˛�D .S.a; b/>Œ˛�/
op, and if ˛ has k black points to its right then S.a; b/>Œ˛�Š S.k; b/,

which by induction may be supposed to be .k�2/–connected, ie
�
tS.a;b/op.Œ˛�/�2

�
–connected.

Algebraic & Geometric Topology, Volume 24 (2024)



1712 Oscar Randal-Williams

The subposet Simp.A.†a;b//Œ˛� may be identified with Simp.A.†a�k;0//, which, by Hatcher and
Wahl’s theorem, is .a�k�2/–connected, ie

�
.a�1/�tS.a;b/op.Œ˛�/�1

�
–connected.

It follows from the nerve theorem that S.a; b/op is .a�2/–connected, as required.
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Manifolds with small topological complexity

PETAR PAVEŠIĆ

We study closed orientable manifolds whose topological complexity is at most 3 and determine their
cohomology rings. For some of the admissible cohomology rings we are also able to identify corresponding
manifolds up to a homeomorphism.

55M30; 57N65

1 Introduction

Topological complexity of a (path-connected) space X , denoted by TC.X /, is a numerical homotopy
invariant introduced by M Farber [8] as a quantitative measure for the complexity of motion planning
in a configuration space X of some robot device. Although configuration spaces of robots can be quite
general topological spaces (see Kapovich and Millson [16] and Pavešić [20]), of particular importance are
those that have the structure of a manifold (eg ordered configuration spaces of manifolds, see Cohen [3];
configuration spaces of spidery linkages, see O’Hara [19]; and of general parallel mechanisms, see Shvalb,
Shoham and Blanc [24]). It is thus of interest to determine which closed manifolds M have a given value
of TC.M /. The case TC.M /D 1 is void, because a nontrivial closed manifold cannot be contractible.
Grant, Lupton and Oprea [10, Corollary 1.2] showed that the only closed manifolds with topological
complexity equal to 2 are the odd-dimensional spheres. In this paper we study closed oriented manifolds
M with TC.M /D 3. Some examples immediately spring to mind: even-dimensional spheres S2n by [8,
Theorem 8] and products of two odd-dimensional spheres, by [8, Theorems 8 and 11]. Are there any
other examples? Our main result is Theorem 3.2 in which we give an exact description of admissible
cohomology rings of manifolds whose topological complexity is at most 3.

Theorem 3.2 If M is a closed , orientable manifold with TC.M / � 3, then �1.M / is either trivial or
isomorphic to Z, and one of the following alternatives holds:

(1) H�.M IZ/Š
V
.xm/, or

(2) H�.M IZ/Š
V
.xk ;xl/ with k and l odd , k � 1, l � 3 and kC l Dm, or

(3) Hi.M IZ/D 0 for i ¤ 0; k;m with k � 2 and mD 2kC1, and H�.M IF2/Š
V
.xk ;xkC1/˝F2.

The conditions in the theorem are necessary but not sufficient to guarantee that TC.M /D 3, as illustrated
by the case of the symplectic group Sp.2/ whose cohomology is of type (2), but TC.Sp.2// D 4 (see
Section 4).

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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1714 Petar Pavešić

In the next section we recall the definition and the main properties of the topological complexity. In
Section 3 we state and prove our main result. Finally, in Section 4 we discuss specific manifolds whose
cohomology ring is described in the mentioned theorem. We also obtain some specific results for closed
orientable manifolds M that admit cellular decompositions with at most four cells: if TC.M /� 3, then
certain Hopf invariants must vanish (Proposition 4.2); if in addition M is smooth and its dimension
is even and smaller than 12, then M is the total space of an orthogonal sphere bundle over a sphere
(Proposition 4.3).

2 Preliminaries on topological complexity

For a topological space X let X I denote the space of continuous paths ˛ W I!X , and let � WX I!X �X

be the evaluation map �.˛/ WD .˛.0/; ˛.1//. Topological complexity of a path-connected topological
space X is the least integer TC.X /D n for which there exists a covering U1; : : : ;Un of X �X , where
each Ui is open and admits a continuous section to the map � W X I ! X �X [8, Definition 2]. Note
that the topological complexity of X is not defined if X is not path-connected, because in that case the
map � is not onto. We will thus assume throughout the paper that X (or M ) is a path-connected space.
Moreover, if X is a compact ANR space (which includes closed manifolds) then the requirement that the
sets in the covering are open is superfluous, since by [21, Theorem 4.6], one can consider coverings of
X �X by arbitrary subsets.

The main properties of topological complexity are listed in the following proposition, where the value
of TC.X / is related to the Lusternik–Schnirelmann category cat.X / (for which we refer to the classical
monograph [5]), and to the nilpotency of certain ideal in the cohomology ring of X �X .

Note that in this work we use the nonnormalized versions of category and topological complexity for
which cat.X / D TC.X / D 1 if X is a contractible space. Many authors use a normalized or reduced
category and topological complexity, which is one less than in our definition, so that the category and
the topological complexity of a contractible space are equal to 0. This holds in particular for the above
mentioned monograph [5] and the article [10], so the reader should be careful when comparing results
stated under different conventions.

Proposition 2.1 (1) TC.X /D 1 if and only if X is contractible.

(2) Homotopy invariance:
X ' Y D) TC.X /D TC.Y /:

(3) Category estimate:
cat.X /� TC.X /� cat.X �X /:

(4) If X is a topological group , then TC.X /D cat.X /.

(5) Cohomological estimate:
TC.X /� nil.Ker��/;

Algebraic & Geometric Topology, Volume 24 (2024)



Manifolds with small topological complexity 1715

where �� W H�.X � X IR/ ! H�.X IR/ is the homomorphism induced by the diagonal map
� WX !X �X on the cohomology with coefficients in a ring R, and nil.Ker��/ is the minimal
integer k for which all k–fold products in Ker�� are zero.

(6) Product formula: if X and Y are ANR spaces , then

TC.X �Y /� TC.X /CTC.Y /� 1:

Recall that the value of �� on the cross product u� v 2H�.X �X IR/ of elements u; v 2H�.X IR/

can be given in terms of their cup product as

��.u� v/D u � v;

and the cup product of elements u� v and u0 � v0 is given as

.u� v/ � .u0 � v0/D .�1/jvj�ju
0j.u �u0/� .v � v0/;

where jvj and ju0j are the dimensions of cohomology classes v and u0; see [11, pages 215–216]. This
explains why Farber [8, Definition 6] called Ker�� the ideal of zero-divisors of H�.X IR/. For every
u 2H�.X IR/ we have

��.u� 1� 1�u/D u � 1� 1 �uD 0;

therefore .u� 1� 1�u/ 2 Ker��. Indeed, if H�.X IR/ is a finitely generated free R–module (which
implies that H�.X�X IR/ŠH�.X IR/˝H�.X IR/ by the Künneth theorem), then Ker�� is generated
as an ideal by elements of the form .u� 1� 1�u/ because ��

�P
ui � vi

�
D
P

ui � vi D 0 impliesX
ui � vi D

X
.ui � vi � 1�uivi/D

X
.ui � 1� 1�ui/ � .1� vi/ :

3 Admissible cohomology rings

Computation of topological complexity of closed surfaces was completed in the orientable case by Farber
[8, Theorem 9] and in the nonorientable case by Dranishnikov [6] and Cohen and Vandembroucq [4].
Thus we know that the only closed surfaces whose topological complexity is 3 are the sphere S2 and
the torus S1 �S1. To avoid making unnecessary exceptions, for the rest of this section let M denote a
closed, orientable m–dimensional manifold with m� 3.

In this section we show that the condition TC.M /� 3 poses strong restrictions on the fundamental group
and the cohomology ring of M . As a starting point we take the following consequence of a deep theorem
proved by Dranishnikov, Katz and Rudyak [7].

Theorem 3.1 If TC.M /� 3, then �1.M / is either trivial or isomorphic to Z.

Proof If TC.M /� 3, then cat.M /� 3 by Proposition 2.1(3), which by [7, Theorem 1.1] implies that
�1.M / is a free group. Let us assume that the rank of �1.M / is at least 2 and consider the cup product
pairing

H 1.M IZ/�H m�1.M IZ/ ��!H m.M IZ/

Algebraic & Geometric Topology, Volume 24 (2024)



1716 Petar Pavešić

which is nonsingular by [11, Proposition 3.38]. Indeed, by the Hurewicz theorem H1.M IZ/ is free
abelian; therefore H 1.M IZ/ and H m�1.M IZ/ are also free by the universal coefficients theorem and
by Poincaré duality, respectively. Since the rank of H 1.M IZ/ is at least 2, nonsingularity of the pairing
implies that there exist linearly independent elements u; v 2H 1.M IZ/ and u0; v0 2H m�1.M IZ/ such
that u �u0 D v � v0 D g, where g is a generator of H m.M IZ/, and furthermore u � v0 D v �u0 D 0. Then
we obtain by direct computation a nontrivial four-fold product of zero-divisors,

.u� 1� 1�u/ � .u0 � 1� 1�u0/ � .v� 1� 1� v/ � .v0 � 1� 1� v0/D 2.g�g/¤ 0:

Therefore by Proposition 2.1(6), if rank.�1.M // � 2, then TC.M / � 5. Thus, if TC.M / � 3, then
�1.M / is a free group or rank 0 or 1, as claimed.

In the following theorem we determine all admissible cohomology rings for a manifold whose topological
complexity is at most 3.

Theorem 3.2 Assume that M is a closed , orientable manifold with TC.M / � 3 � dim.M /. Then
�1.M / is either trivial or isomorphic to Z and one of the following alternatives holds:

(1) H�.M IZ/Š
V
.xm/, or

(2) H�.M IZ/Š
V
.xk ;xl/ with k and l odd , k � 1, l � 3 and kC l Dm, or

(3) Hi.M IZ/D 0 for i ¤ 0; k;m with k � 2 and mD 2kC1, and H�.M IF2/Š
V
.xk ;xkC1/˝F2.

Proof In order to prove the theorem we need to consider several cases and subcases. Let g denote the
generator of the top-dimensional cohomology H m.M IR/ and for every u 2H�.M IR/ let

Ou WD u� 1� 1�u 2H�.M �M IR/

be the shorthand for the corresponding zero-divisor. By Theorem 3.1 we must consider two possibilities,
�1.M /Š Z or �1.M /D 0.

(1) If �1.M / Š Z, let u be a generator of H 1.M IZ/ Š Z and let, as in the proof of Theorem 3.1,
v 2H m�1.M IZ/ be such that u � v D g. If m� 1 is even, then

Ov2
� OuD�2.v� v/ � OuD�2.g�u�u�g/¤ 0

(note that v2 D 0 for dimensional reasons), and thus TC.M / � 4 by Proposition 2.1(6). On the other
hand, if m� 1 is odd, and if there exists a nonzero element w 2H i.M IZ/ for some 2� i �m� 2, then

Ou � Ov � Ow D w�g�g�w˙uw� v� v�uw ¤ 0;

so again TC.M /� 4.

We conclude that if �1.M /Š Z and TC.M /D 3, then H�.M IZ/ is multiplicatively generated by two
cohomology classes in dimensions 1 and m� 1, which are Poincaré duals to each other, and furthermore
m� 1 must be odd. In other words, H�.M IZ/Š

V
.x1;xk/ for some odd integer k > 1.
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(2) If M is simply connected, then we consider four subcases depending on the structure of the group

yH .M IR/ WD

m�2M
iD2

Hi.M IR/:

(2a) If yH .M IQ/¤ 0 we argue similarly as in case (1). First of all we note that yH .M IZ/ is not all
torsion, so by [11, Corollary 3.39] we may find homogeneous elements u; v 2 yH .M IZ/ of infinite order,
such that u � v D g. As in case (1), if either u or v is of even degree, then we can find a nontrivial product
of three zero-divisors, and then TC.M /� 4. Therefore, if TC.M /� 3, then both u and v must be of odd
degree, which as before implies that H�.M IZ/ contains a subring of the form

V
.xk ;xl/ where k and l

are odd integers and 1< k � l <m�1. Furthermore, if there exists an element w 2H�.M IZ/ which is
not contained in the mentioned subring, then Ou � Ov � Ow¤ 0 similarly as in the second part of case (1). Thus,
yH .M IQ/¤ 0 and TC.M /D 3 imply H�.M IZ/Š

V
.xk ;xl/.

(2b) Let us now assume that yH .M IQ/D 0 but yH .M IFp/¤ 0 for some odd prime p, and let k be the
minimal k � 2 for which Hk.M IZ/ has p–torsion. By the universal coefficient theorem for cohomology
(see [11, Theorem 3.2]) H i.M IFp/ ¤ 0 for i D k; k C 1. It then follows by Poincaré duality that
H i.M IFp/ ¤ 0 for i D m� k � 1;m� k. Therefore, H i.M IFp/ ¤ 0 in three different dimensions,
unless mD 2kC 1. In the first case, we may find (as in case (1)) three nontrivial cohomology classes u,
v and w of different dimension (with u � v D g by [11, Corollary 3.39]), for which Ou � Ov � Ow ¤ 0 and thus
TC.M /� 4.

On the other hand, if mD 2kC1, then let u 2H k.M IFp/ and v 2H kC1.M IFp/ be such that u �vD g.
If k is even, then

Ou2
� Ov D 2.u�g�g�u/C v�u2

�u2
� v ¤ 0:

Similarly, if k is odd, then Ou � Ov2 ¤ 0, so in both cases TC.M /� 4.

(2c) The next subcase arises if yH .M IQ/D 0 and yH .M IFp/D 0 for p odd but yH .M IF2/¤ 0. The
argument is similar as in (2b), except if mD 2kC1, since in that case the proof that Ou2 � Ov¤ 0 for k even
(or that Ou � Ov2 ¤ 0 for k odd) breaks down because of 2–torsion. On the other hand, if u 2H k.M IF2/

and v 2H kC1.M IF2/ such that u � v D g, and if additionally u2 ¤ 0, then

Ou2
� Ov D u2

� vC v�u2
¤ 0;

so TC.M /�4. Thus, under the assumptions of (2c), if TC.M /�3 then H�.M IF2/Š
V
.xk ;xkC1/˝F2.

(2d) The final possibility is that yH .M IR/D 0 for all coefficient rings R, which clearly implies that
H�.M IZ/Š

V
.xk/.

4 Some manifolds with small TC

Theorem 3.2 shows that the condition TC.M /� 3 is much more restrictive than the analogous condition
cat.M /� 3. Indeed the class of manifolds whose Lusternik–Schnirelmann category is at most 3 includes
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all surfaces, two-fold products of spheres, all .n�1/–connected 2n–manifolds and a variety of other
examples. In this section we study the actual manifolds M satisfying TC.M /� 3 (without the restriction
that dim.M / � 3). For some admissible cohomology rings we describe exactly the corresponding
manifolds, while in other cases we are only able to present suitable candidates and compute their
Lusternik–Schnirelmann category.

(1) The simplest case to consider are manifolds whose cohomology ring is given by Theorem 3.2(1).
In fact, since the fundamental group of M is free, M must be simply connected (except in the trivial
case M D S1). This fact, together with H�.M IZ/Š

V
.xk/ immediately yields that M is homotopy

equivalent to Sk . Finally, the positive solution to the Poincaré conjecture implies that M is actually
homeomorphic to Sk .

(2) If H�.M IZ/Š
V
.x1;xk/ as in Theorem 3.2(2), then we can use the fact that S1'K.Z; 1/ to find

a map f1 WM ! S1 which represents the cohomology class

x1 2H 1.M IZ/Š ŒM;S1�:

Similarly, there is a map fk WM !K.Z; k/ representing the cohomology class

xk 2H k.M IZ/Š ŒM;K.Z; k/�:

It is well known that K.Z; k/ can be constructed by attaching cells of dimension bigger or equal to kC2

to the sphere Sk . Since the dimension of M is mD kC 1, we may assume by cellular approximation
theorem that the image of fk is contained in Sk . Thus we obtain a map

.f1; fk/ WM ! S1
�Sk ;

which is clearly an isomorphism on the integral cohomology and is thus a homotopy equivalence, because
�1.M /Š Z. By a rigidity theorem of Kreck and Lück [17, Theorem 0.13(a)] we conclude that M is
actually homeomorphic to S1 �Sk .

(3) If H�.M IZ/Š
V
.xk ;xk/ with k odd, then M is a .k�1/–connected 2k–dimensional manifold.

Thus we may invoke C T C Wall’s classification [27] by which M �Sk�Sk provided k�3; 5; 7 .mod 8/;
see also [2, Theorem 3.1].

(4) The instances of Theorem 3.2(2) when H�.M IZ/Š
V
.xk ;xl/ for 1< k < l with k and l odd are

more complicated. First of all, they include products of odd spheres of the form Sk�S l and we know that
TC.Sk �S l/D 3. Moreover, by the above-mentioned theorem of Kreck and Lück [17, Theorem 0.13(a)],
a manifold that is homotopy equivalent to a product of odd spheres is actually homeomorphic to that
product.

The first example that is not a product of spheres is the special unitary group SU.3/ whose cohomology
is H�.SU.3/IZ/ Š

V
.x3;x5/. Singhof [25, Theorem 1(a)] proved that cat.SU.3// D 3; therefore by

Proposition 2.1(4), we conclude that TC.SU.3//D 3, as well.
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The cohomology ring of the symplectic group Sp.2/ is H�.Sp.2/IZ/Š
V
.x3;x7/. However, Schweitzer

[23] used secondary cohomology operations to prove that cat.Sp.2// D 4, which in turn implies that
TC.Sp.2//D 4. Hilton and Roitberg [13] discovered three more examples of H–spaces whose cohomology
is isomorphic to

V
.x3;x7/, which are usually denoted by E3! , E4! and E5! (and Sp.2/ corresponds

to E!). Their Lusternik–Schnirelmann category (and thus topological complexity) is equal to 4; see [5,
Chapter 4].

In fact, we have a complete description of manifolds that admit H–space structure and whose topological
complexity is equal to 3. First observe, that by the classification of H–spaces of low rank (Hilton
and Roitberg [14]; see also [12, Section III.2]), the following list exhausts all (homotopy types of)
H–spaces whose cohomology ring is isomorphic to one of the rings listed in Theorem 3.2: spheres Sk

for k 2 f1; 3; 7g, products Sk � S l for k; l 2 f1; 3; 7g, SU.3/, Ek! for k D 1; 3; 4; 5 and RP3. By a
cup-length argument, TC.RP3/D cat.RP3/D 4, which together with the above discussion yields:

Proposition 4.1 Let M be a closed orientable manifold with TC.M / D 3. If M admits an H–space
structure , then M is either SU.3/ or Sk �S l for k; l 2 f1; 3; 7g.

More generally, let us consider fibre bundles p WM ! S l with fibre Sk for some odd integers 1< k < l .
The cohomology of M is easily computed using Gysin sequence, so we obtain H�.M IZ/Š

V
.xk ;xl/

and the manifold itself admits a CW–decomposition of the form

M D Sk
[˛ el

[ˇ ekCl ;

with attaching maps ˛ W S l�1! Sk and ˇ W SkCl�1! Sk [˛ el . If ˛ is a suspension or more generally
a coH–map (eg if l < 2k � 1 so that �l�1.S

k/ is in the stable range), then Sk [˛ el is a coH–space and
cat.Sk [˛ el/D 2 (see [5]). Therefore, cat.M /� 3 but, since the cup length of M equals 2, we have that
cat.M /D 3. This yields many important examples like the complex and quaternionic Stiefel manifolds,
V2.C

n/DU.n/=U.n�2/ whose cohomology ring is given as H�.V2.C
n/IZ/Š

V
.x2n�1;x2n�3/, and

V2.H
n/D Sp.n/=Sp.n�2/ with H�.V2.H

n/IZ/Š
V
.x4n�1;x2n�5/. It is known (see [15]) that except

for the case V2.C
4/D S5 �S7, the spaces V2.C

n/ and V2.H
n/ do not split as products of spheres.

If the attaching map ˛ is not a coH–map, then cat.Sk [˛ el/D 3. In that case cat.M /D 3 if and only if
certain set of Hopf invariants H.ˇ/ contains the zero class (see [5, Chapter 6], in particular Theorem 6.19
therein).

As we have seen, there are many sphere bundles over spheres whose category is 3. Unfortunately, we
are currently lacking a general method to determine their topological complexity, so this remains an
interesting open problem. Some cases can be settled by applying a method that was recently developed
by Gonzalez, Grant and Vandembroucq [9] and which uses higher Hopf invariants. They computed
topological complexity of many two-cell complexes, but the technical details are quite formidable, and the
full analysis of three-cell complexes seems to be beyond reach at this point. Nevertheless, we were able
to combine some of their computations with results from Pavešić [22] that relate topological complexity
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of a space with topological complexity of its skeleta, to show that some sphere bundles over spheres
have topological complexity at least 4. We will work in the so-called metastable range and assume that
2k < l < 3k � 1. Under this assumption one can associate to every map ˛ W S l�1! Sk a generalized
Hopf invariant H0.˛/ W S

l�1! S2k�1 (see [9, Section 5] for relevant definitions and results), which
allows us to determine TC.Sk [˛ el/� 4.

Proposition 4.2 Let k be an odd integer and let 2k< l<3k�1. Assume that M has a CW–decomposition
of the form M D Sk [˛ el [ˇ ekCl with attaching maps ˛ W S l�1! Sk and ˇ W SkCl�1! Sk [˛ el

(this in particular applies if M is an S l–bundle over Sk). If H0.˛/¤ 0, then TC.M /� 4.

Proof Note that the inclusion Sk [˛ el ,! M is a .kCl�1/–equivalence because Sk [˛ el is the
.kCl�1/–skeleton of M . The topological complexity of Sk [˛ el was bounded from below in [9,
Theorem 5.6]: TC.Sk [˛ el/� 4. On the other hand, [22, Theorem 3.6] implies that

cat.M /� cat.Sk
[˛ el/D 3:

Therefore TC.M /� 3. Then we may apply [22, Theorem 3.1], which states that if

2 dim.Sk
[˛ el/ < k.TC.M /� 1/C .kC l � 1/

(which is clearly satisfied if l < 3k � 1), then TC.M /� TC.Sk [˛ el/� 4.

It turns out that up to dimension 10 the case of sphere bundles over spheres is generic for smooth,
even-dimensional manifolds (that is quite relevant if one is mainly interested in configuration spaces of
specific mechanical systems). In fact, we have the following result.

Proposition 4.3 Let M be a smooth , orientable , closed manifold with TC.M / � 3. If M is even-
dimensional and dim.M /� 10, then M is homotopy equivalent to the total space of an orthogonal sphere
bundle over a sphere.

Proof By the assumptions, the cohomology of M is given by cases (1) or (2) of Theorem 3.2. If M is
not simply connected, then we already proved that M is homeomorphic to a product of spheres. If M is
simply connected, then dim.M /� 10 implies that its cohomology is isomorphic to either

V
.x3;x5/ or

to
V
.x3;x7/. Thus we may apply [14, Theorem 6.1] to conclude that M is homotopy equivalent to the

total space of an orthogonal S3–bundle with base S5 or S7.

For manifolds of dimension higher than 10 we may describe a convenient Morse decomposition of M .
Smale [26, Theorem G] showed that if the dimension of M is at least 6, then it has a Morse decomposition
with the minimal number of handles compatible with its homology. Therefore, if H�.M IZ/Š

V
.xk ;xl/,

then M admits a decomposition with four handles whose indices are 0, k, l and kC l , respectively. The
union of the 0– and k–handles depends on the framing which is given by an element of �k�1.O.l//.
This group is known to be trivial for k 6� 1 .mod 8/, therefore the union of the first two handles is
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homeomorphic to Sk �Dl . By the same argument, the union of the l– and .kCl/–handles is also
homeomorphic to Sk �Dl .

Proposition 4.4 Let M be a smooth , orientable , closed manifold with dim.M / > 10 and TC.M /D 3.
If H�.M IZ/Š

V
.xk ;xl/ with k 6� 1 .mod 8/, then M can be obtained by glueing together two copies

of Sk �Dl along the common boundary Sk �S l�1.

(5) Let us finally consider manifolds that satisfy condition (3) of Theorem 3.2. The lowest-dimensional
case is a simply connected 5–dimensional manifold whose F2 cohomology is

H�.M IF2/Š
V
.x2;x3/˝F2:

Barden [1] showed that every simply connected 5–dimensional manifolds can be decomposed as a
connected sum of certain basic 5–manifolds. We are not dwelling into details but one can easily check that
the only 5–manifold that satisfies the above condition is the famous Wu manifold SU.3/=SO.3/. It admits
a CW–decomposition SU.3/=SO.3/ D S2 [ e3 [ e5, where the 3–cell is attached by a degree 2 map;
therefore the 3–skeleton of SU.3/=SO.3/ is the Moore space M.Z=2; 2/. The category of a Moore space
is 2; therefore the category of the Wu manifold is 3. However, we were not able to determine whether its
topological complexity is also 3. One can construct higher analogues of the Wu manifold using handle
decompositions, for example by gluing together two copies of a (twisted or untwisted, depending on the
dimension) DkC1–bundle over Sk along a suitable homeomorphism of the boundary. All of these spaces
have a CW–decomposition with the top-cell attached to a suspension, so their category is equal to 3.

We should also mention an interesting result that was recently proved by S Mescher [18, Proposition 6.2].
He used weighted cohomology classes to show that a closed oriented manifold M with TC.M /�3 is either
a rational homology sphere or it admits a degree 1 map from a closed oriented manifold of the form S1�P

(in other words, it is 1–dominated by a product of a .dim.M /�1/–dimensional manifold with a circle).

Let us conclude with a brief discussion on two possible extensions of the presented results. Theorem 3.2
gives a precise description of cohomology rings of closed orientable manifolds whose topological
complexity is at most 3, so it is natural to ask what can be said about nonorientable closed manifolds
M with TC.M /� 3. As in the orientable case, the fundamental group �1.M / must be free. That rank
of �1.M / cannot exceed 1 can be seen similarly as in Section 2. On the other hand, �1.M / cannot be
trivial, because M is nonorientable. We thus conclude that H�.M IF2/Š

V
.x1;xm�1/˝F2, and the

corresponding manifolds are the generalized Klein-bottles (nonorientable Sm�1–bundles over S1). Their
category is 3 but we do not know whether their topological complexity can be, at least in some cases,
also equal to 3.

Another extension that could be pursued is determination of manifolds whose topological complexity is
at most 4. Although the general case seems to be beyond reach because we have very little information
on manifolds whose category is 4, we believe that some reasonable progress could be achieved on closed
manifolds M satisfying TC.M /� 4 and cat.M /� 3.
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Steenrod problem and some graded Stanley–Reisner rings

MASAHIRO TAKEDA

“What kind of ring can be represented as the singular cohomology ring of a space?” is a classic problem
in algebraic topology, posed by Steenrod. We consider this problem when rings are the graded Stanley–
Reisner rings, in other words the polynomial rings divided by an ideal generated by square-free monomials.
We give a necessary and sufficient condition that a graded Stanley–Reisner ring is realizable when there is
no pair of generators x; y such that jxj D jyj D 2n and xy ¤ 0.

55N10; 55R35, 13F55

1 Introduction

A classical problem in algebraic topology posed by Steenrod in [14] asks which graded rings occur as the
cohomology ring of a space. Especially when the graded ring is polynomial ring, this problem was studied
by many researchers, for example Adams and Wilkerson [1], Aguadé [2], Andersen and Grodal [4],
Clark and Ewing [6], Dwyer, Miller and Wilkerson [8], Dwyer and Wilkerson [9; 10], Hubbuck [11],
Sugawara and Toda [15] and Thomas [16]. This polynomial ring case was finally solved by Andersen
and Grodal [3].

On the other hand, when the graded ring is a monomial ideal ring, in other words a polynomial ring
divided by an ideal generated by monomials, some researchers studied this problem. The realizability of
Stanley–Reisner rings, square-free monomial ideal rings, generated by degree 2 elements is proved by
Davis and Januszkiewicz in [7]. Trevisan [17] generalize their construction and prove the realizability of
monomial ideal rings generated by degree 2 elements. By using polyhedral products, the realizability of
Stanley–Reisner rings of a certain class is proved by Bahri, Bendersky, Cohen and Gitler in [5]. So and
Stanley [13] prove the realizability of graded monomial ideal ring modulo torsion. Thus there are results
about the realizability of monomial ideal rings, but there are few results about necessary conditions for
monomial ideal rings to be realizable.

In this paper we obtain a necessary and sufficiently condition for a graded Stanley–Reisner ring to be
realizable when there is no pair of generators x; y such that jxj D jyj D 2n and xy ¤ 0. At first, we
define the graded Stanley–Reisner ring. A simplicial complex with the vertex set V is a subset of the
power set of V which closed under taking subsets. In this paper we allow for there to exist x 2 V such
that fxg … K, and we assume that the empty set is always a face of the simplicial complex. Let K be

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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a simplicial complex with the vertex set V , and � W V ! 2Z>0. Then the graded Stanley–Reisner ring
SR.K; �/ is defined by

SR.K; �/Š ZŒV �=I;

where ZŒV � is the polynomial ring generated by x 2 V with jxj D �.x/ and I is the ideal generated by
monomials x1x2 � � � xk with fx1; x2; : : : ; xkg …K as a simplex. When K D f∅g, there is an isomorphism
SR.K; �/Š Z.

To state the main theorem in this paper we set notation. A simplex of a simplicial complex is maximal
when the simplex is not a face of a larger simplex in the simplicial complex. For a simplicial complex K
with the vertex set V , we define a poset (not subcomplex) Pmax.K/�K, where we regardK as a subset of
the power set of V . For � 2K, � 2 Pmax.K/ if and only if there exist maximal simplices �1; : : : ; �n 2K
such that

T
�i D � . And for �; � 2 Pmax, we have � < � when � is a face of � in K.

Theorem 1.1 Let SR.K; �/ be the finitely generated graded Stanley–Reisner ring for a simplicial
complex K with the vertex set V and � W V ! 2Z>0. Suppose that the graded Stanley–Reisner ring
SR.K; �/ satisfies the following:

� If generators x; y 2 V satisfy �.x/D �.y/D 2i for some i � 2, then xy D 0 in SR.K; �/.

Then there is a space X such that H�.X IZ/Š SR.K; �/ if and only if SR.K; �/ satisfies the following
condition:

� For � 2 Pmax.K/ the set f�.x/ j x 2 �g is equal to f2; 2; : : : ; 2g, f4; 6; : : : ; 2nC 2g[ f2; 2; : : : ; 2g
or f4; 8; : : : ; 4ng[ f2; 2; : : : ; 2g as a multiset for some n.

This is the main theorem in this paper.

Remark 1.2 In the main theorem there is an artificial assumption:

� If generators x; y 2 V satisfy �.x/D �.y/D 2i for some i � 2, then xy D 0 in SR.K; �/.

We believe that this assumption in the main theorem can be replaced by the following condition:

� If generators x; y 2 V satisfy �.x/D �.y/D 4, then xy D 0 in SR.K; �/.

This condition is the case that i D 2 in the upper assumption. Andersen and Grodal proved that the degree
of the generators of realizable polynomial is a union of copies of f2g; f4; 6; : : : ; 2nC2g or f4; 8; : : : ; 4ng.
Since in polynomial case there is one generator with degree 4 except in the case f2g, this condition implies
that the tensor products of two of polynomial rings with the case f4; 6; : : : ; 2nC 2g and f4; 8; : : : ; 4ng is
not included. Therefore this condition seems natural.

But now we are not able to prove the theorem that replaces the artificial assumption with this condition.
The reason why the artificial assumption is required is in the latter part of this paper.

We can generalize the construction of a space X with H�.X IZ/ being isomorphic to the graded Stanley–
Reisner ring to a wider classes. The following theorem is proved in Section 3.
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Theorem 1.3 Let SR.K; �/ be the finitely generated graded Stanley–Reisner ring for a simplicial
complex K with vertex set V and � W V ! 2Z>0. If SR.K; �/ satisfies the following condition , we can
construct a space X as a homotopy colimit such that H�.X IZ/Š SR.K; �/:

� There is a decomposition
`
i Ai DV such that for all i and � 2Pmax.K/, the set f�.x/ j x 2 �\Aig

is equal to f2; 2; : : : ; 2g, f4; 6; : : : ; 2ng[ f2; 2; : : : ; 2g or f4; 8; : : : ; 4ng[ f2; 2; : : : ; 2g as a multiset
for some n.

In the first half of this paper, Sections 2, 3 and 4, we construct a space X with H�.X IZ/ isomorphic to a
graded Stanley–Reisner ring, and prove Theorem 1.3. In the latter half, Sections 5 and 6, we obtain the
necessary condition that graded Stanley–Reisner rings occur as the cohomology ring of a space. At last,
by combining these results, we prove the main theorem in Section 7.

Acknowledgements The author is grateful to Donald Stanley for suggesting this issue and for valuable
advice. The author is supported by JSPS KAKENHI Grant 21J10117.

2 Homotopy colimit

In this section we recall a homotopy colimit and prove some lemmas we will use.

Let P be a finite poset. The order complex of P , �.P /, is a simplicial complex whose faces are totally
ordered subsets in P . We regard P as a category. For a functor F W P ! Top, the homotopy colimit is
defined as

hocolimP F D
a

�D.x1<x2<���<xk/2�.P/

j� j �F.xk/=�;

where the equivalence is .�.x/; y/� .x; F.�/.y// for � W � ,! � and x 2 j� j, y 2 F.max.�//.

We write P<a D fp 2 P j p < ag and P�a D fp 2 P j p � ag for some a 2 P .

Lemma 2.1 Let .P;</ be a finite poset and F WP ! Top be a functor. Let a 2P be a maximal element.
Then there is a pushout diagram

hocolimP<a F //

��

hocolimPnfag F

��

hocolimP�a F // hocolimP F

where for a subset P 0 � P hocolimP 0 F means the homotopy colimit of the functor F jP 0 W P 0! Top.

Proof By the definition of homotopy colimit, we obtain that

hocolimPnfag F [ hocolimP�a F D hocolimP F;

hocolimPnfag F \ hocolimP�a F D hocolimP<a F:
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The inclusions
hocolimP<a F ,! hocolimPnfag F;

hocolimP<a F ,! hocolimP�fag F

are cofibrations. By combining these we obtain this lemma.

Next, we see the relation between the homotopy pushout and the graded Stanley–Reisner ring. For a
subcomplex K 0 �K, let V.K 0/ be the vertex set of K 0.

Lemma 2.2 Let K be a simplicial complex with the vertex set V, and � W V ! 2Z>0. Let K1 and K2 be
subcomplexes of K. We assume the following:

� There is a space X with H�.X IZ/Š SR.K1\K2; �/.

� For i D 1; 2 there are spaces Xi with H�.Xi IZ/Š SR.Ki ; �/.

� For i D 1; 2 there are maps �i W X ! Xi such that ��i is identified with the natural projection
SR.Ki ; �/! SR.K1\K2; �/ in cohomology.

Then the cohomology ring of the homotopy pushout of the diagram

X
�1
//

�2
��

X1

X2

is isomorphic to SR.K1[K2; �/.

Proof Let pi W SR.K1[K2; �/! SR.Ki ; �/ be the natural projection for i D 1; 2. Then it is easy to
see that the following sequence is a short exact sequence as a graded module

1! SR.K1[K2; �/
p1˚p2
����! SR.K1; �/˚SR.K2; �/

��1��
�
2

����! SR.K1\K2; �/! 1:

By the Mayer–Vietoris sequence for X1 and X2 of the pushout, we obtain that the cohomology of the
homotopy pushout is isomorphic to SR.K1[K2; �/ as a graded module. Since the cohomology ring of
the homotopy pushout is a graded subring of H�.X1qX2/Š SR.K1; �/˚SR.K2; �/, this isomorphism
becomes an isomorphism as a graded ring.

3 Construction of homotopy colimit

In this section we construct a homotopy colimit representation of a space X with H�.X IZ/Š SR.K; �/
for some graded Stanley–Reisner rings SR.K; �/. This construction is an analogy to the construction
in [7]. The Davis–Januszkiewicz space that first appeared in [7] is constructed by the union of the products
of complex projective spaces. As far as looking at cohomology, our construction is like a graded version
of their construction.
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3.1 Maps between the classifying spaces of Lie groups

We define maps between the classifying spaces of Lie groups and see some properties. Consider the
inclusions

�1 W SU.n/! SU.nC 1/; �1.A/D A˚ 1 for A 2 SU.n/;

�2 W Sp.n/! Sp.nC 1/; �2.A/D A˚ 1 for A 2 Sp.n/:

For the quaternion H and the set of complex 2� 2–matrices M.2;C/, let c WH!M.2;C/ be the map

c.zC jw/D

�
z �xw

w xz

�
for z; w 2C:

Let �3 W Sp.n/! SU.2n/ be the map such that for AD .ai;j /ij 2 Sp.n/,

�3.A/D

0B@c.a1;1/ c.a1;2/ : : :c.a2;1/ c.a2;2/
:::

: : :

1CA 2 SU.2n/:

Since �i is a homomorphism, �i induces the map between classifying map. We denote these maps as same
symbol �i . Since the diagram

Sp.n/
�2
//

�3
��

Sp.nC 1/

�3
��

SU.2n/
�1
// SU.2nC 2/

is commutative, there is a commutative diagram

BSp.n/
�2
//

�3
��

BSp.nC 1/

�3
��

BSU.2n/
�1
// BSU.2nC 2/

We recall the cohomology of these classifying spaces. There is an isomorphism

H�.BSU.n/IZ/Š ZŒc2; c3; : : : ; cn�;

where ci is the i th Chern class. For degree reasons, we obtain ��3.c2nC1/D 0, and the next lemma holds.

Lemma 3.1 (cf [12, Chapter III, Theorem 5.8]) There is an isomorphism

H�.BSp.n/IZ/Š ZŒ��3.c2/; �
�
3.c4/; : : : ; �

�
3.c2n/�:

In this paper we take the generators of H�.BSp.n/IZ/ as in this lemma. Then there are equations for
�1 W BSU.n/! BSU.nC 1/ and �2 W BSp.n/! BSp.nC 1/ (cf [12, Chapter III]):

��1.ci /D

�
ci if i � n;
0 if i D nC 1;

��2.�
�
3.c2i //D

�
��3.c2i / if i � n;
0 if i D nC 1:

In summary, �1, �2 and �3 are the maps that send each generator to its corresponding generator or 0 in
cohomology.
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3.2 Construction

We define a functor by using the maps �1, �2 and �3. Let K be a simplicial complex with the vertex set V ,
and � W V ! 2Z>0 satisfying the following condition:

� There is a decomposition
`
i Ai DV such that for all i and � 2Pmax.K/, the set f�.x/ jx 2�\Aig

is equal to f2; 2; : : : ; 2g, f4; 6; : : : 2nC 2g[ f2; : : : ; 2g or f4; 8; : : : ; 4ng[ f2; : : : ; 2g as a multiset
for some n.

The simplicial complexK can be regarded as a poset by inclusions. We define a subposet P �K satisfying

� Pmax.K/� P ,

� for any � 2P and i , the set f�.x/ jx2�\Aig is equal to f2; 2; : : : ; 2g, f4; 6; : : : 2nC2g[f2; : : : ; 2g
or f4; 8; : : : ; 4ng[ f2; : : : ; 2g as a multiset for some n.

Then we regard the poset P as a category and we define a functor F W P ! Top. For � 2K,

X� D

8̂̂̂<̂
ˆ̂:

BSp.n/�
Q

fx2� j�.x/D2g

CP1 when f�.x/ j x 2 �g D f4; 8; : : : ; 4ng[ f2; : : : ; 2g,

BSU.nC 1/�
Q

fx2� j�.x/D2g

CP1 when f�.x/ j x 2 �g D f4; 6; : : : ; 2nC 2g[ f2; : : : ; 2g,

point when � is the empty set.

For � � � 2K, let
� W

Y
fx2� j�.x/D2g

CP1!
Y

fx2� j�.x/D2g

CP1

be the inclusion such that each vertex corresponds to the same vertex. Then let f�;� WX� !X� be the
map constructed by the product of the composition of �1, �2 and �3 between BSU.n/ and BSp.n/, and
� between the products of CP1. We define a functor F W P ! Top as follows:

� For � 2 P , put F.�/D
Q
i X�\Ai .

� For �; � 2 P with � � � , the map between F.�/! F.�/ is defined by the productY
i

f�\Ai ;�\Ai W
Y
i

X�\Ai !
Y
i

X�\Ai :

We define X D hocolimP F ; then the following lemma holds.

Lemma 3.2 Under the above notation , the cohomology ring of X is isomorphic to SR.K; �/.

Proof We prove this lemma by induction on jP j. Let � be a maximal simplex in K. Let K 0 be the
simplicial complex consisting of the faces of simplices in P n f�g. Then by the assumption of the
induction,

H�.hocolimPnf�g F IZ/Š SR.K 0; �/;

H�.hocolimP�� F IZ/Š ZŒ��;

H�.hocolimP<� F IZ/Š SR.K 0; �/=.V n �/Š SR.K 00; �/;
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where K 00 is the simplicial complex consisting of the simplices that a simplex in K 0 and a face of � . By
Lemma 2.1, X is represented by the following homotopy pushout diagrams

hocolimP<� F //

��

hocolimPnf�g F

��

hocolimP�� F // X

Since �1, �2 and �3 are the maps that send each generator to its corresponding generator or 0 in cohomology,
the maps in the upper diagram satisfy the condition in Lemma 2.2. Therefore by Lemma 2.2, we obtain
that H�.X IZ/Š SR.K; �/.

Proof of Theorem 1.3 By this discussion, we apply Lemma 3.2 to the case P D Pmax.K/, completing
the proof.

When the degree of generators of SR.K; �/ are only 2 and 4, Theorem 1.3 becomes a well-known result.
This corollary is directly proved by the result of Davis and Januszkiewicz [7], and a special case of
[5, Theorem 2.34].

Corollary 3.3 Let SR.K; �/ be the finitely generated graded Stanley–Reisner ring for a simplicial
complex K with the vertex set V and � W V ! 2Z>0. When the image of � is in f2; 4g, we can construct
a space X such that H�.X IZ/Š SR.K; �/.

When, in SR.K; �/, there is no pair of generators x; y 2 V such that jxj D jyj D 4 and xy ¤ 0, we don’t
have to take the decomposition of the vertex set. In this case, we can restate Theorem 1.3 as follows.

Corollary 3.4 Let SR.K; �/ be the finitely generated graded Stanley–Reisner ring for a simplicial
complex K with the vertex set V and � W V ! 2Z>0. We assume that there is no pair of generators
x; y 2 V such that jxj D jyj D 4 and xy ¤ 0 in SR.K; �/. Then if SR.K; �/ satisfies the following
condition , we can construct a space X such that H�.X IZ/Š SR.K; �/:

� For � 2Pmax.K/, the set f�.x/ j x 2 �g is equal to f2; 2; : : : ; 2g, f4; 6; : : : ; 2nC2g[f2; 2; : : : ; 2g
or f4; 8; : : : ; 4ng[ f2; 2; : : : ; 2g as a multiset.

4 Examples

In this section we look at some examples about Corollary 3.4.

Let SRŒK; ��Š ZŒx4; x6; x8�=.x6x8/. Then the corresponding diagram is

BSU.3/ BSp.1/! BSp.2/:
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Let SRŒK; ��Š ZŒx4; x6;1; x6;2; : : : ; x6;n; x8�=.x6;jx6;k for j ¤ k/, where jxi;j j D i . Then the corre-
sponding diagram is

BSp.2/

yy �� ## ))

BSU.4/ BSU.4/ � � � BSU.4/

Let SRŒK; ��ŠZŒx4; x6;1; x6;2; x8;1; x8;2�=.x6;1x6;2; x8;1x8;2/, where jxi;j j D i . Then the correspond-
ing diagram is

BSU.4/

BSU.3/ //

33

BSU.4/

BSp.2/

>>

��

BSp.1/

33

++

>>

  

BSp.2/

DD

  

BSU.3/ //

++

BSU.4/

BSU.4/

5 Approach from algebra over the Steenrod algebra

This section discusses when a graded polynomial ring has an unstable algebra structure over mod p
Steenrod algebra by using previous results. All of the properties in this section are similar to the properties
used by Aguadé in [2]. There, Aguadé obtains which polynomial algebras over Z are realizable as the
integral cohomology ring of a space when the orders of the generators are all different. To prove this,
Aguadé observes which polynomial rings have an unstable algebra structure over the mod p Steenrod
algebra by using the result of Adams and Wilkerson [1]. In this section, we consider which polynomial
rings have an unstable algebra structure over the mod p Steenrod algebra under the condition that there is
at most 1 generator with degree 4.

When a commutative graded algebra A� over Z=p has an action of mod p Steenrod algebra with Cartan
formula, we say A� an algebra over the mod p Steenrod algebra. An algebra over the mod p Steenrod
algebra A� with A2iC1 D 0 for all i is unstable if and only if for all homogeneous elements x 2 A2d ,
there are equations

Pk.x/D

�
xp if k D d;
0 if k > d

when p � 3; or Sq2k.x/D
�
x2 if k D d;
0 if k > d

when p D 2:
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When the odd-degree part of A� is equal to 0, the unstable condition can be defined by only these
equations. Conversely, if the odd-degree part of A� is not equal to 0, there are more equations needed to
define the unstable condition.

The following theorem can be obtained by combining Theorems 1.1 and 1.2 in Adams and Wilkerson [1].

Theorem 5.1 (cf Adams and Wilkerson [1, Theorems 1.1 and 1.2]) Let A� be a graded polynomial
algebra over Z=p for prime p. We assume that the following conditions hold :

� A� is an unstable algebra over the mod p Steenrod algebra.

� A� is evenly generated.

� A� is finitely generated as ring.

� The degrees of generators of A� are prime to p.

Then there is an isomorphism
A� ŠH�.BT nIZ=p/W

for some n and a group W generated by pseudoreflections.

By using this theorem, we can prove the next theorem.

Proposition 5.2 (cf Aguadé [2, Proposition 2]) LetA� be a graded polynomial algebra over Z satisfying
the following condition:

� There is a number N such that for all prime numbers p > N , A˝ Z=p has unstable algebra
structure over the mod p Steenrod algebra.

Then the degree of the generator of A� is the union of the following list :

� f2g � f4; 6; : : : ; 2ng � f4; 8; : : : ; 4ng

� f4; 8; : : : ; 4.n� 1/; 2ng for n� 4 � f4; 12g � f4; 12; 16; 24g

� f4; 10; 12; 16; 18; 24g � f4; 12; 16; 20; 24; 28; 36g � f4; 16; 24; 28; 36; 40; 48; 60g

� f4; 16g � f4; 24g � f4; 48g

We prove this proposition by the same method in the proof of [2, Proposition 2].

Proof Let p1; : : : ; pi be the primes larger than 7 which divide the degree of generators of A�. Then by
a theorem of Dirichlet we can take a prime number p > N such that

p � 7 mod 16; p � 2 mod 3; p � 3 mod 5; p � 3 mod 7; p � 2 mod pi :

By Theorem 5.1, A� ˝ Z=p is isomorphic to an invariant ring H�.BT nIZ=p/W for some n and a
group W generated by pseudoreflections. By the classification theorem of p–adic pseudoreflection groups
(cf Clark and Ewing [6]), we obtain this proposition.
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For a graded algebra A�, write QA� D A�=.A�
C
/2. The following lemma is proved by Thomas.

Theorem 5.3 (Thomas [16, Theorem 1.4]) Let A� be a finitely generated polynomial algebra over Z=2

and an unstable algebra over the mod 2 Steenrod algebra. Then for any number i and odd number n� 3,
the map

Sq2
i

WQA2
i .n�1/

!QA2
in

is a surjection.

Lemma 5.4 Let A� be a polynomial algebra over Z such that the degrees of generators are equal to
one of the following list as a multiset :

� f4; 8; : : : ; 4.n� 1/; 2ng[ f2; 2; : : : ; 2g with n� 4 and n is not a power of 2,

� f4; 12g[ f2; 2; : : : ; 2g,

� f4; 12; 16; 24g[ f2; 2; : : : ; 2g,

� f4; 10; 12; 16; 18; 24g[ f2; 2; : : : ; 2g,

� f4; 12; 16; 20; 24; 28; 36g[ f2; 2; : : : ; 2g,

� f4; 16; 24; 28; 36; 40; 48; 60g[ f2; 2; : : : ; 2g,

� f4; 24g[ f2; 2; : : : ; 2g,

� f4; 48g[ f2; 2; : : : ; 2g.

Then A�˝Z=2 doesn’t have an unstable algebra structure over the mod 2 Steenrod algebra.

Proof We assume that A� ˝ Z=2 has an unstable algebra over the mod 2 Steenrod algebra. By
Theorem 5.3, if there is a generator x with jxj D 12, then there must be a generator y with jyj D 8.
Therefore the second, third, fourth and fifth cases don’t have an unstable algebra structure over the mod 2
Steenrod algebra.

Similarly, if there is a generator x such that jxj D 60; 24; 48, then there must be a generator y with
jyj D 56; 16; 32, respectively. Therefore the sixth, seventh and eighth cases don’t have an unstable algebra
structure over the mod 2 Steenrod algebra.

It remains to show the first case. In this case we can denote nD 2im for an integer i and an odd number
m� 3. When i D 0, by [2, Proposition 3], A� doesn’t have an unstable algebra structure over the mod 2
Steenrod algebra. When i � 1, by Theorem 5.3 Sq2

iC1

WQA2
iC1.m�1/!QA2

iC1m must be a surjection.
But dim.QA2

iC1.m�1//D 1 and dim.QA2
iC1m/D 2; a contradiction. Therefore the first case doesn’t

have an unstable algebra structure over the mod 2 Steenrod algebra.

Combining these discussions, the proof is complete.

Lemma 5.5 Let A� be a polynomial algebra over Z such that the degrees of generators are equal to
f4; 16g [ f2; 2; : : : ; 2g as a multiset. Then A�˝Z=3 doesn’t have an unstable algebra over the mod 3
Steenrod algebra.

Algebraic & Geometric Topology, Volume 24 (2024)



Steenrod problem and some graded Stanley–Reisner rings 1735

Proof Let A� be the polynomial ring with the degrees of generators are equal to f4; 16g[ f2; : : : ; 2g,
and let x be the generator with degree 16 in A�. We assume that A�˝Z=3 has an unstable algebra
structure over the mod 3 Steenrod algebra. By the Adem relation, there is an equation P8 D �P1P7.
Since P8.x/D x3, it follows that x3 is in Im.P1/. On the other hand since there is no generator y with
jyj � 12 mod 16, the term xi is not included in the image P1. This is a contradiction.

Proposition 5.6 Let A� be a nontrivial graded polynomial algebra over Z such that

� there is at most one generator with degree 4, and

� for all prime numbers p, A˝Z=p has an unstable algebra structure over the mod p Steenrod
algebra.

Then the degree of the generators of A� is equal to the one of the following list as a multiset for some n:

� f2; 2; : : : ; 2g � f4; 6; : : : ; 2ng[ f2; 2; : : : ; 2g

� f4; 8; : : : ; 4ng[ f2; 2; : : : ; 2g � f4; 8; : : : ; 2nC1� 4; 2ng[ f2; 2; : : : ; 2g

Proof By Proposition 5.2 and the first condition, the degree of the generator of A� is equal to the union
of the one of the table in Proposition 5.2 and the copies of f2g. By Lemmas 5.4 and 5.5, the cases except
for the cases f4; 6; : : : ; 2ng, f4; 8; : : : ; 4ng or f4; 8; : : : ; 2nC1�4; 2ng don’t satisfies the second condition.
Thus we obtain the proposition.

Example 5.7 Let Z=2Œt1; : : : ; t2n �ŠH�.BT 2
n

IZ=2/ for n� 2. Take a subring of H�.BT 2
n

IZ=2/ as

Z=2Œt1; t2; : : : ; t2n�1�
W.Sp.2n�1//

˝Z=2Œt2n
2n�1 �;

where W.Sp.2n� 1// is the Weyl group of Sp.2n� 1/ and Z=2Œt1; t2; : : : ; t2n �W.Sp.2n�1// is the invari-
ant ring of the canonical W.Sp.2n�1//–action. Since Z=2Œt1; t2; : : : ; t2n �W.Sp.2n�1// is isomorphic to
H�.BSp.2n� 1/IZ=2/, this subring preserve the action of mod 2 Steenrod operations, and the degree
of generators of this subring is f4; 8; : : : ; 2nC1� 4; 2ng. This subring has the unstable algebra structure
over the mod 2 Steenrod algebra induced by H�.BT 2

n

IZ=2/.

When p is an odd prime number, the cohomology ring H�.BSpin.2n/IZ=p/ is isomorphic to the
polynomial ring with generator’s degree f4; 8; : : : ; 2nC1 � 4; 2ng (cf [12, Chapter III, Theorem 3.19]),
and has the unstable algebra structure over the mod p Steenrod algebra. And the ring in this example has
the unstable algebra structure over the mod 2 Steenrod algebra. Therefore by only using the method in
this section, we cannot remove the case f4; 8; : : : ; 2nC1� 4; 2ng in Proposition 5.6.

6 Stanley–Reisner ring and Steenrod algebra

Let K be a simplicial set with the vertex set V, and � W V ! 2Z>0. For a polynomial f 2 SR.K; �/ and
a monomial g, we write g < f when g ¤ 0 in SR.K; �/ and the coefficient of g in f is not equal to 0.
This notation is well-defined because the ideal I is generated by monomials.
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Lemma 6.1 Let X be a space such that H�.X IZ/Š SR.K; �/ for some graded Stanley–Reisner ring ,
and � 2 K be a maximal simplex. Then for any prime number p the ideal .V n �/ in H�.X IZ=p/ Š
SR.K; �/˝Z=p preserves the action of the mod p Steenrod algebra.

Proof We assume that the ideal .V n �/ doesn’t preserve the action of mod p Steenrod algebra. Then
by the Cartan formula, there is x 2 V n � and a monomial f 2 SR.K; �/ such that f … .V n �/ and
f < Pi .x/ for some i . Now we can take f with i being minimal, ie Pj .x/ 2 .V n �/ for j < i . We
write g D

Q
y2� y. Since f is a monomial generated by � , we get fg ¤ 0 in SR.K; �/. Then

fg < Pi .x/g;

and since i is minimal,
fg 6<

X
j>0

Pi�j .x/Pj .g/:

Therefore, by the Cartan formula,

fg < Pi .x/gC
X
j>0

Pi�j .x/Pj .g/D Pi .xg/;

and we obtain
Pi .xg/¤ 0:

Since xgD 0 in SR.K; �/, this is a contradiction, so the assumption is false. This completes the proof.

Proposition 6.2 Let X be a space such that H�.X IZ/Š SR.K; �/ for some graded Stanley–Reisner
ring. Let �1; : : : ; �m 2K be maximal simplexes. Then for any prime number p, the ring

SR.K; �/˝Z=pZ=.V n �1\ � � � \ �m/

has an unstable algebra structure over the mod p Steenrod algebra induced by the quotient map

H�.X IZ=p/Š SR.K; �/˝Z=pZ! SR.K; �/˝Z=pZ=.V n �1\ � � � \ �m/:

Proof By Lemma 6.1, for all x 2 V n �k and i , we obtain

Pi .x/ 2 .V n �k/� .V n �1\ � � � \ �n/:

Therefore the ideal .V n �1\ � � � \ �m/ preserves the action of the mod p Steenrod algebra.

Theorem 6.3 For a graded Stanley–Reisner ring SR.K; �/, let X be a space such that H�.X IZ/ Š
SR.K; �/. We assume that there is no pair of generators x; y 2 V such that �.x/D �.y/D 4 and xy ¤ 0
in SR.K; �/. Then for � 2 Pmax.K/, the set f�.x/ j x 2 �g is equal to

� f2; : : : ; 2g,

� f4; 6; : : : ; 2nC 2g[ f2; : : : ; 2g,

� f4; 8; : : : ; 4ng[ f2; : : : ; 2g, or

� f4; 8; : : : ; 2nC2� 8; 2nC2� 4; 2nC1g[ f2; : : : ; 2g

as a multiset for some n� 1.
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Proof Since � 2K, there is no relation between the generators in � . Therefore there is an isomorphism

SR.K; �/=.V n �/Š ZŒ��:

By the definition ofPmax.K/ there are maximal simplexes �1; : : : ; �m2K such that �D
T
i �i . Thus ZŒ��

satisfies the condition of Proposition 6.2. By the assumption in the statement, for any � 2Pmax.K/ there is
at most one generator with degree 4 in � . By Proposition 6.2 and this condition, the polynomial ring ZŒ��

satisfies the condition in Proposition 5.6. Therefore the set f�.x/ j x 2
T
i �ig is equal, as a multiset, to

� f2; : : : ; 2g,

� f4; 6; : : : ; 2nC 2g[ f2; : : : ; 2g,

� f4; 8; : : : ; 4ng[ f2; : : : ; 2g, or

� f4; 8; : : : ; 2nC2� 8; 2nC2� 4; 2nC1g[ f2; : : : ; 2g.

Example 6.4 Let SR.K; �/ Š ZŒx4; x6�=.x4x6/, where jxi j D i . Then Pmax.K/ D ff4g; f6gg. By
Theorem 6.3, there is no space X with H�.X IZ/Š ZŒx4; x6�=.x4x6/.

7 Proof of the main theorem

By combining Corollary 3.4 and Theorem 6.3, we can prove Theorem 1.1.

Proof of Theorem 1.1 In Corollary 3.4, we prove that if SR.K; �/ satisfies these conditions then there
is a space X such that H�.X IZ/Š SR.K; �/.

On the other hand, we assume that there is a space X such that H�.X IZ/Š SR.K; �/. By assumption,
in the statement for i D 2, SR.K; �/ satisfies the condition of Theorem 6.3. By Theorem 6.3, for any
� 2Pmax.K/ the set f�.x/ jx 2 �g is equal to f2; : : : ; 2g, f4; 6; : : : ; 2nC2g[f2; : : : ; 2g, f4; 8; : : : ; 4ng[
f2; : : : ; 2g or f4; 8; : : : ; 2nC2� 8; 2nC2� 4; 2nC1g[ f2; : : : ; 2g as a multiset. By the assumption in the
statement, there is no pair of generators x; y such that jxj D jyj D 2n for some n � 3 and xy ¤ 0 in
SR.K; �/. Since the case f4; 8; : : : ; 2nC2� 8; 2nC1� 4; 2ng[ f2; : : : ; 2g for n� 3 includes such a pair
of generators, this case doesn’t appear. Therefore for any � 2 Pmax.K/ the set f�.x/ j x 2 �g is equal to
f2; : : : ; 2g, f4; 6; : : : ; 2nC 2g[ f2; : : : ; 2g or f4; 8; : : : ; 4ng[ f2; : : : ; 2g as a multiset.

By combining these, the proof is complete.
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Dehn twists and the Nielsen realization problem for spin 4–manifolds

HOKUTO KONNO

We prove that for a closed oriented smooth spin 4–manifold X with nonzero signature, the Dehn twist
about a .C2/– or .�2/–sphere in X is not homotopic to any finite-order diffeomorphism. In particular,
we negatively answer the Nielsen realization problem for each group generated by the mapping class of a
Dehn twist. We also show that there is a discrepancy between the Nielsen realization problems in the
topological category and smooth category for connected sums of copies of K3 and S2 �S2. The main
ingredients of the proofs are Y Kato’s 10=8–type inequality for involutions and a refinement of it.

57S17

1 Main results

Given a smooth manifold X , let Diff.X / denote the group of diffeomorphisms. The Nielsen realization
problem asks whether a given finite subgroup G of the mapping class group �0.Diff.X // can be realized
as a subgroup of Diff.X /, ie whether there exists a (group-theoretic) section s W G ! Diff.X / of the
natural map Diff.X /! �0.Diff.X // over G. If there is a section, we say that G is realizable in Diff.X /.
When X is of dimD 2 and oriented closed, which is the classical case of the Nielsen realization problem,
Kerckhoff [18] proved that every G is realizable.

In contrast, Raymond and Scott [30] showed that, in every dimension � 3, there are nilmanifolds for
which the Nielsen realization fails essentially using their nontrivial fundamental groups. Focusing on
dimension 4 and simply connected manifolds, it was recently proven by Baraglia and the author [4] and
Farb and Looijenga [9] that the Nielsen realization fails for K3, the underlying smooth 4–manifold of a
K3 surface. However, to the best of the author’s knowledge, the nilmanifolds in [30] and K3 are the
only examples of 4–manifolds X that are shown to admit finite subgroups of �0.Diff.X // that are not
realizable in Diff.X /. The purpose of this paper is to expand the list of such 4–manifolds considerably. In
particular, we give infinitely many examples of simply connected 4–manifolds with distinct intersection
forms for which the Nielsen realization fails.

For a general 4–manifold, it is not obvious to find a potential example of nonrealizable finite subgroups
of the mapping class group. Following Farb and Looijenga [9], we consider Dehn twists, which are
sources of interesting examples. Given a .C2/– or .�2/–sphere S embedded in a 4–manifold X , one has
a diffeomorphism TS W X ! X called the Dehn twist, whose mapping class ŒTS � generates an order-2
subgroup of �0.Diff.X // (see Section 5.1). Our first main result is:

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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1740 Hokuto Konno

Theorem 1.1 Let X be a closed oriented smooth spin 4–manifold with nonzero signature and S be
a smoothly embedded 2–sphere in X with ŒS �2 D 2 or ŒS �2 D �2. Then the Dehn twist TS W X ! X

about S is not homotopic to any finite-order diffeomorphism of X . In particular , the order-2 subgroup of
�0.Diff.X // generated by the mapping class ŒTS � is not realizable in Diff.X /.

Theorem 1.1 generalizes the case when X D K3 due to Farb and Looijenga [9, Corollary 1.10] (see
Remark 5.2 for the comparison), and Theorem 1.1 immediately implies that the Nielsen realization fails
for quite many 4–manifolds, such as #mK3 #n S2 �S2 with m> 0 and also infinitely many examples of
irreducible 4–manifolds. See Example 5.3 for details.

Theorem 1.1 makes a striking contrast to a recent result by Lee [21, Corollary 1.5, Remark 1.7], which
implies that the Dehn twist about every .˙2/–sphere in CP2 # n.�CP2/ with n � 8 is topologically
isotopic (hence homotopic) to a smooth involution. This means that an analogous statement to Theorem 1.1
does not hold for nonspin 4–manifolds.

Another result of this paper concerns a comparison between the Nielsen realization problems in the
topological category and the smooth category. Let Homeo.X / denote the group of homeomorphisms of a
manifold X . As well as the smooth Nielsen realization, we say that a subgroup G of �0.Homeo.X // is
realizable in Homeo.X / if there is a section s WG! Homeo.X / of the natural map

Homeo.X /! �0.Homeo.X //

over G. In [4, Theorem 1.2], Baraglia and the author showed that some order-2 subgroup of �0.Diff.K3//

is not realizable in Diff.K3/, even when the corresponding subgroup in �0.Homeo.K3// is realizable in
Homeo.K3/. We generalize this result to connected sums of copies of K3 and S2 �S2:

Theorem 1.2 For m> 0 and n� 0, set X DmK3 # nS2 �S2. Then there exists an order-2 subgroup
G of �0.Diff.X // with the following properties:

� The group G is not realizable in Diff.X /. Moreover , a representative of the generator of G is not
homotopic to any finite-order diffeomorphism of X .

� The subgroup G0 � �0.Homeo.X // defined as the image o G under the natural map

�0.Diff.X //! �0.Homeo.X //

is a nontrivial group , and G0 is realizable in Homeo.X /.

In other words, a representative g 2Diff.X / of the generator of G in Theorem 1.2 is not homotopic to any
finite-order diffeomorphism, although g2 is smoothly isotopic to the identity and g is topologically isotopic
to some topological involution with nontrivial mapping class. Theorem 1.2 gives also an alternative proof
of a result by Baraglia [2, Proposition 1.2] about the realization problem along Diff.X /!Aut.H2.X IZ//

(see Section 7).

Theorems 1.1 and 1.2 shall be derived from the following constraint on the induced actions of finite-
order diffeomorphisms on homology. Let �.X / denote the signature of an oriented closed 4–manifold
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X and bC.X / denote the maximal-dimension of positive-definite subspaces of H2.X IR/. For an
involution ' on the intersection lattice, we denote by b

'
C.X / (resp. b'�.X /) the maximal-dimension

of positive-definite (resp. negative-definite) subspaces of the '–invariant part H2.X IR/
' , and we set

�'.X /D b
'
C.X /� b'�.X /.

Theorem 1.3 Let X be a closed oriented smooth 4–manifold with �.X /< 0, and let s be a spin structure
on X . Let g W X ! X be a finite-order diffeomorphism that preserves orientation of X and s, and let
' WH2.X IZ/=Tor!H2.X IZ/=Tor denote the action on homology induced from g. Suppose that ' is
of order 2 and that �'.X /¤ �.X /=2. Then

(1) �
1

16
�.X /� bC.X /� b

'
C.X /:

Moreover , if bC.X /� b
'
C.X / > 0, then

�
1

16
�.X /C 1� bC.X /� b

'
C.X /:

The main ingredients of the proof of Theorem 1.3 are Y Kato’s 10=8–type inequality for involutions [17]
(Theorem 2.2) coming from Seiberg–Witten theory and a refinement of it (Theorem 3.1). This refinement
is necessary to show the “moreover” part of Theorem 1.3, which shall be used to obtain the results on
Dehn twists (Theorem 1.1) for both .C2/– and .�2/–spheres.

Here is an outline of the contents of this paper. In Section 2, we recall Kato’s 10=8–type inequality for a
smooth involution on a spin 4–manifold. In Section 3, we give a refinement of Kato’s inequality by proving
a new Borsuk–Ulam-type theorem using equivariant K–theory. In Section 4, we prove Theorem 1.3
based on Kato’s inequality and the refinement of it in Section 3. Sections 5 and 6 are devoted to prove
Theorems 1.1 and 1.2 respectively. We conclude by giving remarks on another kind of Dehn twist and
other variants of the Nielsen realization problem in Section 7.

2 Kato’s 10=8–type inequality for involutions

Henceforth, for an oriented closed 4–manifold X , we identify H2.X / with H 2.X / via Poincaré duality.
For an involution � on X , we set b�C.X /D b

��
C .X /, and similarly define b��.X / and � �.X /. Note that, if

X has nonvanishing signature, all diffeomorphisms of X are orientation-preserving, namely, we have
Diff.X /D DiffC.X /, the group of orientation-preserving diffeomorphisms.

First, we recall the notion of even and odd involutions following [1; 6]. Let X be an oriented closed smooth
4–manifold and s be a spin structure on X . Let � WX !X be an orientation-preserving diffeomorphism
of order 2, and suppose that � preserves (the isomorphism class of) s. Then there are exactly two lifts of �
to s as automorphisms of the spin structure. We have either both lifts are of order 2 or both are of order 4.
We say that the involution � is of even type if the lifts are of order 2, and say that � is of odd type if the lifts
are of order 4. When the fixed-point set X � is nonempty, the codimension of all components of X � are the
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same, which is either 4 or 2, and the parity of � determines which of them arises: X � is of codimension-4
if � is of even type, and X � is of codimension-2 if � is of odd type [1, Proposition 8.46]; see also [31].

Lemma 2.1 Let X be an oriented closed smooth 4–manifold and s be a spin structure on X . Let
� W X ! X be an orientation-preserving diffeomorphism of order 2, and suppose that � preserves (the
isomorphism class of ) s and is of even type. Then � �.X /D �.X /=2.

Proof By Hirzebruch’s signature theorem (see for example [16, equation (12), page 177]), � �.X / can be
obtained by adding �.X /=2 to contributions from fixed surfaces of �. (Note that, for a general involution,
the contribution from isolated fixed points is zero.) However, X � does not contain surfaces since � is
even.

An important ingredient of this paper is the following 10=8–type constraint on odd smooth involutions,
proven by Y Kato [17] using Seiberg–Witten theory and Z=4–equivariant K–theory:

Theorem 2.2 (Kato [17, Theorem 2.3]) Let .X; s/ be a smooth closed oriented spin 4–manifold. Let
� W X ! X be a smooth orientation-preserving involution , and suppose that � preserves s and is of odd
type. Then

(2) �
1

16
�.X /� bC.X /� b�C.X /:

Remark 2.3 In [17], the result corresponding to Theorem 2.2 is stated using a quantity bI
C.X /, where I

acts on H 2.X IR/ as I D���. By Poincaré duality, it immediately follows that bI
C.X /DbC.X /�b�C.X /.

3 A refinement of Kato’s inequality

To deal with Dehn twists about both .C2/– and .�2/–spheres in Theorem 1.1, we shall need the following
refinement of Kato’s inequality (Theorem 2.2), which we call the refined Kato’s inequality:

Theorem 3.1 Let .X; s/ be a smooth closed oriented spin 4–manifold. Let � W X ! X be a smooth
orientation-preserving involution , and suppose that � preserves s and is of odd type. Suppose that
bC.X /� b�C.X / > 0. Then

�
1

16
�.X /C 1� bC.X /� b�C.X /:

This shall be proven in Section 3.2 using a Borsuk–Ulam-type theorem (Theorem 3.3), which we first
give in Section 3.1.

3.1 Z=4–equivariant K–theory

To show Theorem 3.1, we prove a new Borsuk–Ulam-type theorem using Z=4–equivariant K–theory.
As in Kato’s argument [17], the following approach is modeled on Bryan’s argument [6] for Pin.2/–
equivariant K–theory. A difference from Kato’s argument is that we shall use the structure of the whole
representation ring R.Z=4/.
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Set GDZ=4 and let j denote a generator; GDf1; j ;�1;�j g. (The symbol j stands for a unit quaternion
j 2 Pin.2/�H, which is a symmetry that the Seiberg–Witten equations admit.) Let C, CC and C� be
complex 1–dimensional representations of G determined by

trj C D 1; trj CC D i; trj C� D�i;

where trj denotes the trace of the action of j and i D
p
�1. Namely, C is the trivial 1–dimensional

representation, and C˙ are representations given as ˙i–multiplication of the fixed generator of G. Let zR
denote a real 1–dimensional representation of G defined through the surjective homomorphism G!Z=2

and multiplication of Z=2D f˙1g. Set zC D zR˝R C. Recall that the complex representation ring R.G/

is given by

(3) R.G/D ZŒt �=.t4
� 1/;

where t DCC.

Here we recall a general fact, which holds for any compact Lie group G, called tom Dieck’s formula by
Bryan [6]. Let V and W be finite-dimensional unitary representations of G. Let V C denote the one-point
compactification of V , naturally acted by G. We regard the point at infinity as the base point of V C. Let
f W V C!W C be a pointed G–continuous map. By the equivariant K–theoretic Thom isomorphism,
we have that zKG.V

C/ and zKG.W
C/ are free zKG.S

0/DR.G/–modules generated by the equivariant
K–theoretic Thom classes �K

G
.V / and �K

G
.W / respectively, and thus one may define the equivariant

K–theoretic mapping degree f̨ 2R.G/ of f characterized by

f ��K
G .W /D f̨ �

K
G .V /:

For an element g 2G, let V g and W g denote the fixed-point set for g, and let .V g/? and .W g/? denote
the orthogonal complement of V g and W g in V and W respectively. Let d.f g/ 2Z denote the mapping
degree, defined using just the ordinary cohomology, of the fixed-point set map f g W .V g/C! .W g/C.
For ˇ 2R.G/, define ��1ˇ 2R.G/ to be

P
i�0.�1/iƒiˇ. Then tom Dieck’s formula is:

Proposition 3.2 ([7, Proposition 9.7.2], see also [6, Theorem 3.3]) In the above setup , we have

trg. f̨ /D d.f g/ trg.��1..W
g/?� .V g/?//:

Now we are ready to prove the Borsuk–Ulam-type theorem we need:

Theorem 3.3 Let G D Z=4. For natural numbers m0;m1; n0; n1 � 0 with m0 <m1, suppose that there
exists a G–equivariant pointed continuous map

(4) f W .zCm0 ˚ .CC˚C�/
n0/C! .zCm1 ˚ .CC˚C�/

n1/C

with f .0/D 0. Then

(5) n0� n1C 1�m1�m0:
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Remark 3.4 This Borsuk–Ulam-type theorem, Theorem 3.3, may be of independent interest. Especially,
it is worth noting that Theorem 3.3 allows us to give a proof of Furuta’s celebrated 10=8–inequality [11]
using only the Z=4–symmetry of the Seiberg–Witten equations, while the original proof used a bigger
symmetry, Pin.2/. See Remark 3.5 for further comments on this.

Also, Theorem 3.3 generalizes a result by Pfister and Stolz [28, Theorem, page 286], where they proved
Theorem 3.3 for the case that m0 D 0 and n1 D 0. The argument of Pfister and Stolz is also based on
K–theory, but in a slightly different way than ours.

Proof of Theorem 3.3 Let ˛ D f̨ 2R.G/ denote the equivariant K–theoretic mapping degree of f .
We shall obtain constraints on ˛ from the actions of �1 and j . First, note that the .�1/–fixed point set
map for f is given by f �1 W .zCm0/C! .zCm1/C, and thus the assumption m0 <m1 implies d.f �1/D 0.
Hence it follows from Proposition 3.2 that tr�1.˛/D 0. Thanks to the ring structure (3) of R.G/, ˛ can
be expressed in the form

(6) ˛ D

3X
kD0

ak tk ;

where ak 2 Z. Since tr�1.t/D�1, it follows that tr�1.˛/D a0� a1C a2� a3. Thus,

(7) a0� a1C a2� a3 D 0:

Next, let us consider the j –action on ˛. First, note that f j is just the identity map on S0 D f0g[ f1g,
and hence d.f j /D 1. In general, for complex rank 1 (virtual) representations L1; : : : ;LN 2R.G/, one
has ��1

�PN
iD1 Li

�
D
QN

iD1 ��1Li . Thus, again using Proposition 3.2,

(8) trj .˛/D trj
�
��1.zC

m1�m0 ˚ .CC˚C�/
n1�n0/

�
D trj

�
��1..m1�m0/t

2
C .n1� n0/t C .n1� n0/t

3/
�

D trj
�
.1� t2/m1�m0.1� t/n1�n0.1� t3/n1�n0

�
D .1C 1/m1�m0.1� i/n1�n0.1C i/n1�n0

D 2m1�m0Cn1�n0 :

On the other hand, from the expression (6) of ˛, we have trj .˛/D a0�a2C .a1�a3/i . Since trj .˛/ 2R

by (8), we have a1� a3 D 0, and this combined with (7) implies that

(9) trj .˛/D a0� a2 D 2.a1� a2/:

Since a1� a2 2 Z, the desired inequality (5) follows from (8) and (9).

Note that the divisibility by 2 over Z of the right-hand side of (9) contributes to the “C1” term in the
inequality (5), which is the source of the refined Kato’s inequality.
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3.2 Proof of Theorem 3.1

Now we are ready to prove the refined Kato’s inequality:

Proof of Theorem 3.1 Set G D Z=4. Kato proved in [17] that the odd involution � gives rise to an
involutive symmetry I on the Seiberg–Witten equations on .X; s/, and the complexification of a finite-
dimensional approximation of the I–invariant part of the Seiberg–Witten equations is a G–equivariant
pointed continuous map f of the form (4) with f .0/D 0, where the natural numbers m0, m1, n0 and n1

in (4) satisfy
m1�m0 D bC.X /� b�C.X /; n0� n1 D�

1
16
�.X /:

By the assumption bC.X /� b�C.X / > 0, we may apply Theorem 3.3 to this f .

Remark 3.5 Furuta’s 10=8–inequality [11] was proved using the Pin.2/–symmetry of the Seiberg–Witten
equations for a closed spin 4–manifold X . Using our Borsuk–Ulam-type theorem, Theorem 3.3, we
may recover Furuta’s 10=8–inequality using only the Z=4–symmetry of the Seiberg–Witten equations
as follows. Note that G D Z=4D hj i is a subgroup of Pin.2/D S1[ jS1 �H. Restricting the Pin.2/–
symmetry to the Z=4–symmetry in Furuta’s construction [11], we have that the complexification of a
finite-dimensional approximation of the Seiberg–Witten equations is a G–equivariant pointed continuous
map f of the form (4) with f .0/D 0 for natural numbers m0, m1, n0 and n1 with

m1�m0 D bC.X /; n0� n1 D�
1
8
�.X /:

Applying Theorem 3.3 to f , we obtain

�
1
8
�.X /C 1� bC.X /

provided that bC.X / > 0. This inequality is equivalent to the 10=8–inequality [11, Theorem 1].

4 Proof of Theorem 1.3

Proof of Theorem 1.3 First, we reduce the problem to involutions following [9, Proof of Corollary 1.10].
Since the subgroup of Diff.X / generated by g has a surjective homomorphism onto h'i ŠZ=2, the order
of g is even. Let 2m be the order of g; then gm is a smooth involution. Set �D gm. Since g� D ' is of
order 2, either �� D ' or �� D id. By the condition that g�sŠ s, � also preserves s.

If �� D ', we have � �.X /¤ �.X /=2 from the assumption that �'.X /¤ �.X /=2. If �� D id, we have
� �.X /¤ �.X /=2 since we supposed �.X /¤ 0. Thus, in any of these cases, � �.X /¤ �.X /=2, and hence
it follows from Lemma 2.1 that � is of odd type. It then follows from Kato’s inequality, Theorem 2.2, that

(10) �
1

16
�.X /� bC.X /� b�C.X /� bC.X /� b

'
C.X /:

To see the “moreover” part of the theorem, suppose that bC.X /� b�C.X / > 0. Then we can replace the
left-hand side of (10) with ��.X /=16C 1 by the refined Kato’s inequality, Theorem 3.1.
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5 Proof of Theorem 1.1

5.1 Dehn twists about .˙2/–spheres

First, we recall 4–dimensional Dehn twists associated with .˙2/–spheres. We refer readers to a lecture
note by Seidel [32, Section 2] for details. While the construction of the Dehn twist in [32] is described for
a Lagrangian sphere in a symplectic 4–manifold, which is always a .�2/–sphere, the construction works
for any .�2/–sphere in a general 4–manifold without any change, and it is easy to obtain an analogous
diffeomorphism for a .C2/–sphere, described below.

Given a .�2/–sphere S in an oriented 4–manifold X , namely a smoothly embedded 2–dimensional sphere
S with ŒS �2D�2, one may construct a diffeomorphism TS WX!X called the Dehn twist about S , which
is supported in a tubular neighborhood of S in X , as follows. First, note that a tubular neighborhood
of S is diffeomorphic to T �S2 since S is a .�2/–sphere, and fix an embedding T �S2 ,! X . The
Dehn twist TS is the extension by the identity of some compactly supported diffeomorphism � of T �S2

called the model Dehn twist, which is given as the monodromy around the nodal singular fiber of the
family C3 ! C, .z1; z2; z3/ 7! z2

1
C z2

2
C z2

3
over the origin of C. The model Dehn twist � acts on

the zero-section S2 as the antipodal map and �2 is smoothly isotopic to the identity through compactly
supported diffeomorphisms of T �S2 [32, Proposition 2.1]. Hence the induced action of TS on homology
is nontrivial, more precisely, .TS /� WH2.X IZ/!H2.X IZ/ is given as

.TS /�.x/D xC .x � ŒS �/ŒS �;

and T 2
S

is smoothly isotopic to the identity. Thus the mapping class ŒTS � is nontrivial and it generates an
order-2 subgroup of �0.Diff.X //.

Next, consider the situation that a .C2/–sphere S in an oriented 4–manifold X is given. Then a tubular
neighborhood of S is diffeomorphic to TS2. Via an isomorphism between TS2 and T �S2 obtained by
fixing a metric on S2, we may implant the model Dehn twist into X as well as the .�2/–sphere case
above. We denote by TS W X ! X also this diffeomorphism, and call TS the Dehn twist as well. This
Dehn twist also generates an order-2 subgroup of �0.Diff.X //, since the corresponding statement for a
.�2/–sphere follows just from a property of the model Dehn twist, and the action on H2.X / is given by

.TS /�.x/D x� .x � ŒS �/ŒS �:

We note that every Dehn twist preserves every spin structure:

Lemma 5.1 Let X be a closed oriented smooth 4–manifold , and suppose that X admits a spin structure s.
Let S be a .C2/– or .�2/–sphere in X . Then the Dehn twist TS preserves s.

Proof Recall that TS is just the identity map on the complement of a tubular neighborhood of S in X ,
which is diffeomorphic to the disk cotangent bundle D.T �S2/. Thus it suffices to show that, given a
spin structure t on @D.T �S2/ D S.T �S2/, an extension of t to D.T �S2/ is unique. By the relative
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obstruction theory for a natural fibration B.Z=2/! B Spin.4/! BSO.4/, it follows that the extensions
of t are classified by H 1.D.T �S2/;S.T �S2/IZ=2/, which is the trivial group by the mod 2 Thom
isomorphism for T �S2! S2.

5.2 Proof of Theorem 1.1

Now we are ready to prove our main result on Dehn twists:

Proof of Theorem 1.1 By reversing the orientation, we may suppose that �.X / < 0. Note that a
.˙2/–sphere turns into a .�2/–sphere if we reverse the orientation of X . First we consider the case
that a .�2/–sphere is given in X with �.X / < 0. Let S be a .�2/–sphere, and let ' denote the induced
automorphism of H2.X IZ/ from the Dehn twist TS . Let us calculate b

'
C, b'� and �' . As described

above, ' is given by '.x/D xC.x � ŒS �/ŒS �, namely, ' acts on H2.X / as the reflection with respect to the
orthogonal complement of the subspace generated by ŒS �. Here the orthogonal complement is with respect
to the intersection form, and hence the complement contains a maximal-dimensional positive-definite
subspace. Thus,

b
'
C.X /D bC.X /; b'�.X /D b�.X /� 1; �'.X /D �.X /C 1:

From this we have that �'.X /¤ �.X /=2, since we supposed that �.X / < 0 and hence j�.X /j � 8 since
H2.X IZ/ is an even lattice. Moreover, we also have ��.X /=16> bC.X /�b

'
C.X /, again by �.X / < 0.

Now the claim of Theorem 1.1 for .�2/–spheres in X with �.X /< 0 follows from Theorem 1.3 combined
with Lemma 5.1.

Next, we consider the case that a .C2/–sphere S in X with �.X / < 0 is given. Note that, as in the
.�2/–sphere case above, ' D .TS /� is the reflection with respect to the orthogonal complement of the
subspace generated by ŒS �, but now ŒS � has positive self-intersection. Thus,

b
'
C.X /D bC.X /� 1; b'�.X /D b�.X /; �'.X /D �.X /� 1:

Again because j�.X /j � 8, it follows that �'.X /¤ �.X /=2. Moreover,

bC.X /� b
'
C.X /D 1< � 1

16
�.X /C 1:

Now the desired claim follows from the “moreover” part of Theorem 1.3 combined with Lemma 5.1.

Note that the “moreover” part of Theorem 1.3, which was derived from the refined Kato’s inequality
(Theorem 3.1), was effectively used to deal with .C2/–spheres in X with �.X / < 0 in the above proof of
Theorem 1.1.

Remark 5.2 For X DK3, the above proof of Theorem 1.1 gives an alternative proof of [9, Corollary 1.10]
by Farb and Looijenga. They gave two different proofs of [9, Corollary 1.10], and one of them is based
on Seiberg–Witten theory. We also used Seiberg–Witten theory, but in a slightly different manner: our
proof uses Kato’s result [17], rather than a result due to Bryan [6] used by Farb and Looijenga.
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Kato’s inequality (2) is useful to obtain a result for general spin 4–manifolds as in Theorem 1.1, not
only K3. This is essentially because bC is replaced with bC� b�C in Kato’s inequality (2).

Example 5.3 Theorem 1.1 tells us that quite many spin 4–manifolds X have (many) nonrealizable
order-2 subgroups of �0.Diff.X //. Indeed, there are many spin 4–manifolds that admit .˙2/–spheres.
For example, S2 � S2 admits both .C2/– and .�2/–spheres. A K3 surface, more generally, a spin
complete intersection surface M admits a .�2/–sphere. Except for M D S2�S2 we have �.M / < 0 for
such M , and thus we may apply Theorem 1.1 to M and obtain a nonrealizable subgroup, and, of course,
we may apply Theorem 1.1 also to the connected sum of M with any spin 4–manifold with � � 0. (For
the fact that M contains a .�2/–sphere, see the proof of Theorem 1.5 in [32, page 255]. In fact, one may
find a Lagrangian sphere in M , whose self-intersection is always �2. See also [15, pages 23–24] for the
topology of M , including when a complete intersection is spin.)

6 Proof of Theorem 1.2

Given an oriented closed simply connected smooth 4–manifold X , let Aut.H2.X IZ// denote the automor-
phism group of H2.X IZ/ equipped with the intersection form. Since the space of maximal-dimensional
positive-definite subspaces of H 2.X IR/ is known to be contractible, it makes sense whether a given
' 2 Aut.H2.X IZ// preserves a given orientation of the positive part of H 2.X IR/. Let us recall the
following classical fact:

Theorem 6.1 [5; 8; 23] Let �.K3/� Aut.H2.K3IZ// denote the image of the natural map

�0.Diff.K3//! Aut.H2.K3IZ//:

Then �.K3/ is the index-2 subgroup of Aut.H2.K3IZ// which consists of automorphisms that preserve
a given orientation of HC.K3/.

We shall also use:

Theorem 6.2 [4, Theorem 1.1] There exists a (group-theoretic) section s W �.K3/! �0.Diff.K3// of
the natural map �0.Diff.K3//! Aut.H2.K3IZ//.

Proof of Theorem 1.2 First, we recall a construction of a topological involution fK on K3 (ie order-2
element of Homeo.K3/) in [4, Section 3]. Let �E8 denote the negative-definite E8–manifold, namely,
simply connected closed oriented topological 4–manifold whose intersection form is the negative-definite
E8–lattice. Let fS W S

2 � S2 ! S2 � S2 be the diffeomorphism defined by .x;y/ 7! .y;x/. Since
fS has nonempty fixed-point set, which is of codimension-2, we can form an equivariant connected
sum of three copies of .S2 �S2; fS /. Take a point x0 of 3S2 �S2 outside the fixed-point set of #3fS ,
and attach two copies of �E8 with 3S2 � S2 at x0 and .#3fS /.x0/. Now we have got a topological
involution Qf W 3S2 � S2 # 2.�E8/ ! 3S2 � S2 # 2.�E8/. Let h W K3 ! 3S2 � S2 # 2.�E8/ be a
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homeomorphism obtained from Freedman theory [10], and define fK WK3!K3 by fK D h�1 ı Qf ı h,
which is a topological involution on K3.

Define a topological involution f W X ! X by an equivariant connected sum f D #mfK #n fS on
X DmK3 # nS2�S2 along fixed points, which acts on homology as follows. Recall that HC.S2�S2/

is generated by ŒS2�pt�C Œpt�S2� and H�.S2�S2/ is generated by ŒS2�pt�� Œpt�S2�. Hence f0 acts
trivially on HC.S2 �S2/, and acts on H�.S2 �S2/ by .�1/–multiplication. Thus, b

fS

C .S2 �S2/D 1

and bfS
� .S2 �S2/D 0, and hence

b
fK

C .K3/D 3; bfK
� .K3/D 8; �fK .K3/D�5;(11)

b
f
C.X /D 3mC n; bf� .X /D 8m; �f .X /D�5mC n:(12)

It follows from (11) that .fK /� preserves an orientation of HC.K3/, and hence .fK /� lies in �.K3/

by Theorem 6.1. Using the section s W �.K3/! �0.Diff.K3// given in Theorem 6.2, set ˆD s..fK /�/.
Then ˆ is a nontrivial element of �0.Diff.K3// of order 2, and hence a representative gK WK3!K3 of
ˆ is a diffeomorphism whose square g2

K
is smoothly isotopic to the identity. By smooth isotopy, we may

take gK such that gK pointwise fixes a 4–disk in K3. Similarly, we may obtain a diffeomorphism gS

of S2 �S2 which is smoothly isotopic to fS and which fixes a 4–disk pointwise. Fixing disjoint disks
D4

1
; : : : ;D4

mCn in S4, form a diffeomorphism

g D #mgK #n gS WX !X

by attaching gK ’s and gS ’s with .S4; idS4/ along the fixed disks of the gK ’s and gS ’s and D4
1
; : : : ;D4

mCn.
It is clear that g is supported outside S4

0
WD S4 n

FmCn
iD1 D4

i .

We claim that g2 is smoothly isotopic to the identity. First, for a simply connected closed oriented
4–manifold M , let Diff.M;D4/ denote the group of diffeomorphisms fixing pointwise an embedded
4–disk D4 in M . It follows from [12, Proposition 3.1] that we have an exact sequence

1! ker p! �0.Diff.M;D4//
p
�! �0.Diff.M //! 1;

where p is an obvious homomorphism and ker p is isomorphic to either Z=2 or 0, which is generated
by the mapping class of the Dehn twist �M along the 3–sphere parallel to the boundary. Set �K D �K3

and �S D �S2�S2 . Note that the relative mapping class Œ�K �@ is nontrivial in �0.Diff.K3;D4// by [19,
Proposition 1.2], while Œ�S �@ is trivial since �S can be absorbed into the S1–action on S2 �S2 given by
the rotation of one S2–component. Thus we obtain from ŒgK �

2D 1 and ŒgS �
2D 1 that ŒgK �

2
@
D Œ�K �@¤ 1

and ŒgS �
2
@
D 1. Hence Œg�2 is the product of the Dehn twists along necks between m–copies of K3 and S4

0
.

On the other hand, let �S4
0
WS4

0
!S4

0
be the diffeomorphism defined as the simultaneous Dehn twists near

all @D4
i . It follows from Lemma 6.3 below that �S4

0
is smoothly isotopic to the identity relative to @S4

0
.

Thus, Œg�2 D Œ.�S4
0

# idX nS4
0
/ ıg2�. Note that �S4

0
restricted to the neck between each K3 and S4

0
cancels

the Dehn twist �K , but �S4
0

yields the Dehn twist on each of the necks between the S2�S2’s and S4
0

. As
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a result, Œg�2 is the product of the Dehn twists along the necks between all of the S2 �S2 and S4
0

. But
each of these Dehn twists can be absorbed into the rotation of S2 �S2 as above. Thus we get Œg�2 D 1.

Let G be the subgroup of �0.Diff.X // generated by the mapping class Œg�. We claim that this group
G is the desired one. First, by construction, g� D f� on H2.X IZ/. By a theorem of Quinn [29] and
Perron [27], this implies that g and f are topologically isotopic to each other. Thus the image G0 of
G under the map �0.Diff.X //! �0.Homeo.X // lifts to the order-2 subgroup of Homeo.X / generated
by f. Since G0 is a nontrivial group as g acts homology nontrivially, this proves the statement on G0 in
the theorem.

What remains to prove is that g is not homotopic to any finite-order diffeomorphism of X . However,
using g� D f�, (12), and m> 0, it is straightforward to see that ' D g� violates the inequality (1) and
that �'.X /¤ �.X /=2. Thus the desired assertion follows from Theorem 1.3.

The following lemma and how to use it in the proof of Theorem 1.2 were suggested to the author by
David Baraglia:

Lemma 6.3 Let N > 0 and S4
0

be an N –punctured 4–sphere , S4
0
D S4 n

FN
iD1 D4

i . Let �S4
0
W S4

0
! S4

0

be the diffeomorphism defined as the simultaneous Dehn twists near all @D4
i . Then �S4

0
is smoothly

isotopic to the identity relative to @S4
0

.

Proof Regard S4 as the unit sphere of R5 DR2˚R3, and let S1 act on S4 by the standard rotation
of the R2–component. The fixed-point set † of the S1–action is given by S.0˚R3/Š S2. We may
assume that D4

i are embedded disks in S4 whose centers pi are on †. Then the normal tangent space
Npi

of † at pi in S4 is acted on by S1 as the standard rotation.

Pick a disk yD4
i in S4 that contains D4

i such that yD4
i nD4

i is diffeomorphic to the annulus S3� Œ0; 1�. Set
yS4

0
D S4 n

FN
iD1
yD4

i . The S1–action on S4 gives rise to an isotopy f'tgt2Œ0;1� � Diff. yS4
0
/ from id yS4

0
to

itself such that f't j@ yD4
i

gt gives the homotopically nontrivial loop in SO.4/� Diff.S3/Š Diff.@ yD4
i /.

On the other hand, recall that the Dehn twist � on S3 � Œ0; 1� is defined by �.y; t/D .g.t/ �y; t/, where
g W Œ0; 1�! SO.4/ is the homotopically nontrivial loop in SO.4/. By definition, � is isotopic to idS3�Œ0;1�

by an isotopy
 t 2 Diff.S3

� Œ0; 1�;S3
� f1g/;

through the diffeomorphism group fixing S3 �f1g pointwise, such that f t jS3�f0ggt gives the homotopi-
cally nontrivial loop in DiffC.S3/.

Let  i
t be copies of  t , regarded as isotopies on yD4

i nD4
i . By gluing 't with  i

t along
FN

iD1 @
yD4

i , we
obtain an isotopy from �S4

0
to idS4

0
relative to @S4

0
.

Remark 6.4 For X D K3, the above proof of Theorem 1.2 gives a slight alternative proof of [4,
Theorem 1.2], which used the adjunction inequality rather than Kato’s result [17].
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7 Additional remarks

7.1 Another kind of Dehn twist

A kind of Dehn twist different from that in Theorem 1.1 is the Dehn twist along an embedded annulus
S3� Œ0; 1� in a 4–manifold, defined using the generator of �1.SO.4//ŠZ=2, as described in the previous
section. The square of the Dehn twist of this kind is smoothly isotopic to the identity. Recently, Kronheimer
and Mrowka [19] proved that the Dehn twist � along the neck of K3 # K3 is not smoothly isotopic to the
identity, and J Lin [22] showed that the extension of � to K3 # K3 # S2 �S2 by the identity of S2 �S2

is also not smoothly isotopic to the identity. Hence it turns out that these Dehn twists generate order-2
subgroups of the mapping class groups. We remark that these subgroups also give counterexamples to the
Nielsen realization problem:

Proposition 7.1 (i) Let � be the Dehn twist along the neck of K3 # K3. Then the order-2 subgroup
of �0.Diff.K3 # K3// generated by the mapping class of � is not realized in Diff.K3 # K3/.

(ii) Let � 0 be the extension of � by the identity to K3 # K3 # S2 � S2. Then the order-2 sub-
group of �0.Diff.K3 # K3 # S2 � S2// generated by the mapping class of � 0 is not realized in
Diff.K3 # K3 # S2 �S2/.

Proof By a result of Matumoto [24] and Ruberman [31], a simply connected closed spin 4–manifold
with nonzero signature does not admit a homologically trivial locally linear involution. Since the Dehn
twist � is homologically trivial, the claim of the proposition immediately follows.

7.2 Other variants of the realization problem

Given a manifold X of any dimension, one may also consider the realization problem for infinite
subgroups of �0.Diff.X // along Diff.X /! �0.Diff.X // (or along DiffC.X /! �0.DiffC.X // when
Diff.X / ¤ DiffC.X /). To answer this problem negatively, several authors developed cohomological
obstructions, which can be thought of as descendants of an argument started by Morita [25] for surfaces.
In dimension 4, concrete results on the nonrealization were obtained in [14; 33] in this direction (see
also [13]). Concretely, Giansiracusa, Kupers and Tshishiku [14] studied X DK3, and Tshishiku [33]
considered manifolds of any dimension, but especially the result [33, Theorem 9.1] treated 4–manifolds
whose fundamental groups are isomorphic to nontrivial lattices, which does not have overlap with
4–manifolds that we considered in this paper.

Another variant of the realization problem is about the realization along the natural map

DiffC.X /! �0.HomeoC.X //

for a subgroup of the image of this map. If X is a simply connected 4–manifold, the natural map
�0.HomeoC.X //!Aut.H2.X IZ// is isomorphic [27; 29], and hence this version of realization problem
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is equivalent to the realization along the map DiffC.X /! Aut.H2.X IZ//, which has been extensively
studied by Nakamura [26], Baraglia [2; 3], and Lee [20; 21]. As noted in Section 1, Theorem 1.2 gives
an alternative proof of [2, Proposition 1.2] about the realization of an involution of H2.X IZ/.

Acknowledgements The author thanks Jin Miyazawa and Masaki Taniguchi for stimulating discussions
about Kato’s work [17], which helped him to get a feeling about [17]. The author wishes to thank David
Baraglia for pointing out a mistake in the proof of Theorem 1.2 in an earlier draft and suggesting a remedy
for it based on Lemma 6.3. The author also wishes to thank Seraphina Eun Bi Lee for explaining her
work [20; 21]. The author was partially supported by JSPS KAKENHI grants 17H06461, 19K23412, and
21K13785.

References
[1] M F Atiyah, R Bott, A Lefschetz fixed point formula for elliptic complexes, II: Applications, Ann. of Math.

88 (1968) 451–491 MR Zbl

[2] D Baraglia, Obstructions to smooth group actions on 4–manifolds from families Seiberg–Witten theory,
Adv. Math. 354 (2019) art. id. 106730 MR Zbl

[3] D Baraglia, Constraints on families of smooth 4–manifolds from Bauer–Furuta invariants, Algebr. Geom.
Topol. 21 (2021) 317–349 MR Zbl

[4] D Baraglia, H Konno, A note on the Nielsen realization problem for K3 surfaces, Proc. Amer. Math. Soc.
151 (2023) 4079–4087 MR Zbl

[5] C Borcea, Diffeomorphisms of a K3 surface, Math. Ann. 275 (1986) 1–4 MR Zbl

[6] J Bryan, Seiberg–Witten theory and Z=2p actions on spin 4–manifolds, Math. Res. Lett. 5 (1998) 165–183
MR Zbl

[7] T tom Dieck, Transformation groups and representation theory, Lecture Notes in Math. 766, Springer
(1979) MR Zbl

[8] S K Donaldson, Polynomial invariants for smooth four-manifolds, Topology 29 (1990) 257–315 MR Zbl

[9] B Farb, E Looijenga, The Nielsen realization problem for K3 surfaces, J. Differential Geom. 127 (2024)
505–549 MR

[10] M H Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357–453
MR Zbl

[11] M Furuta, Monopole equation and the 11
8

–conjecture, Math. Res. Lett. 8 (2001) 279–291 MR Zbl

[12] J Giansiracusa, The stable mapping class group of simply connected 4–manifolds, J. Reine Angew. Math.
617 (2008) 215–235 MR Zbl

[13] J Giansiracusa, The diffeomorphism group of a K3 surface and Nielsen realization, J. Lond. Math. Soc. 79
(2009) 701–718 MR Zbl

[14] J Giansiracusa, A Kupers, B Tshishiku, Characteristic classes of bundles of K3 manifolds and the Nielsen
realization problem, Tunis. J. Math. 3 (2021) 75–92 MR Zbl

Algebraic & Geometric Topology, Volume 24 (2024)

http://dx.doi.org/10.2307/1970721
http://msp.org/idx/mr/232406
http://msp.org/idx/zbl/0167.21703
http://dx.doi.org/10.1016/j.aim.2019.106730
http://msp.org/idx/mr/3981995
http://msp.org/idx/zbl/1428.57014
http://dx.doi.org/10.2140/agt.2021.21.317
http://msp.org/idx/mr/4224743
http://msp.org/idx/zbl/1489.57024
http://dx.doi.org/10.1090/proc/15544
http://msp.org/idx/mr/4607650
http://msp.org/idx/zbl/1520.57035
http://dx.doi.org/10.1007/BF01458579
http://msp.org/idx/mr/849050
http://msp.org/idx/zbl/0596.32036
http://dx.doi.org/10.4310/MRL.1998.v5.n2.a3
http://msp.org/idx/mr/1617929
http://msp.org/idx/zbl/1002.57065
http://dx.doi.org/10.1007/BFb0085965
http://msp.org/idx/mr/551743
http://msp.org/idx/zbl/0445.57023
http://dx.doi.org/10.1016/0040-9383(90)90001-Z
http://msp.org/idx/mr/1066174
http://msp.org/idx/zbl/0715.57007
http://dx.doi.org/10.4310/jdg/1717772420
http://msp.org/idx/mr/4756088
http://projecteuclid.org/euclid.jdg/1214437136
http://msp.org/idx/mr/679066
http://msp.org/idx/zbl/0528.57011
http://dx.doi.org/10.4310/MRL.2001.v8.n3.a5
http://msp.org/idx/mr/1839478
http://msp.org/idx/zbl/0984.57011
http://dx.doi.org/10.1515/CRELLE.2008.031
http://msp.org/idx/mr/2400996
http://msp.org/idx/zbl/1162.57012
http://dx.doi.org/10.1112/jlms/jdp002
http://msp.org/idx/mr/2506694
http://msp.org/idx/zbl/1171.57033
http://dx.doi.org/10.2140/tunis.2021.3.75
http://dx.doi.org/10.2140/tunis.2021.3.75
http://msp.org/idx/mr/4103767
http://msp.org/idx/zbl/1442.19013


Dehn twists and the Nielsen realization problem for spin 4–manifolds 1753

[15] R E Gompf, A I Stipsicz, 4–manifolds and Kirby calculus, Graduate Studies in Math. 20, Amer. Math. Soc.,
Providence, RI (1999) MR Zbl

[16] F Hirzebruch, D Zagier, The Atiyah–Singer theorem and elementary number theory, Math. Lect. Ser. 3,
Publish or Perish, Boston, MA (1974) MR Zbl

[17] Y Kato, Nonsmoothable actions of Z2 � Z2 on spin four-manifolds, Topology Appl. 307 (2022)
art. id. 107868 MR Zbl

[18] S P Kerckhoff, The Nielsen realization problem, Ann. of Math. 117 (1983) 235–265 MR Zbl

[19] P B Kronheimer, T S Mrowka, The Dehn twist on a sum of two K3 surfaces, Math. Res. Lett. 27 (2020)
1767–1783 MR Zbl

[20] S E B Lee, The Nielsen realization problem for high degree del Pezzo surfaces, preprint (2021) arXiv
2112.13500

[21] S E B Lee, Isotopy classes of involutions of del Pezzo surfaces, Adv. Math. 426 (2023) art. id. 109086 MR
Zbl

[22] J Lin, Isotopy of the Dehn twist on K3#K3 after a single stabilization, Geom. Topol. 27 (2023) 1987–2012
MR Zbl

[23] T Matumoto, On diffeomorphisms of a K3 surface, from “Algebraic and topological theories” (M Nagata,
S Araki, A Hattori, editors), Kinokuniya, Tokyo (1986) 616–621 MR Zbl

[24] T Matumoto, Homologically trivial smooth involutions on K3 surfaces, from “Aspects of low-dimensional
manifolds” (Y Matsumoto, S Morita, editors), Adv. Stud. Pure Math. 20, Kinokuniya, Tokyo (1992) 365–376
MR Zbl

[25] S Morita, Characteristic classes of surface bundles, Invent. Math. 90 (1987) 551–577 MR Zbl

[26] N Nakamura, Smoothability of Z�Z–actions on 4–manifolds, Proc. Amer. Math. Soc. 138 (2010) 2973–
2978 MR Zbl

[27] B Perron, Pseudo-isotopies et isotopies en dimension quatre dans la catégorie topologique, Topology 25
(1986) 381–397 MR Zbl

[28] A Pfister, S Stolz, On the level of projective spaces, Comment. Math. Helv. 62 (1987) 286–291 MR Zbl

[29] F Quinn, Isotopy of 4–manifolds, J. Differential Geom. 24 (1986) 343–372 MR Zbl

[30] F Raymond, L L Scott, Failure of Nielsen’s theorem in higher dimensions, Arch. Math. (Basel) 29 (1977)
643–654 MR Zbl

[31] D Ruberman, Involutions on spin 4–manifolds, Proc. Amer. Math. Soc. 123 (1995) 593–596 MR Zbl

[32] P Seidel, Lectures on four-dimensional Dehn twists, from “Symplectic 4–manifolds and algebraic surfaces”
(F Catanese, G Tian, editors), Lecture Notes in Math. 1938, Springer (2008) 231–267 MR Zbl

[33] B Tshishiku, Cohomological obstructions to Nielsen realization, J. Topol. 8 (2015) 352–376 MR Zbl

Graduate School of Mathematical Sciences, The University of Tokyo
Tokyo, Japan

konno@ms.u-tokyo.ac.jp

Received: 27 July 2022 Revised: 24 December 2022

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1090/gsm/020
http://msp.org/idx/mr/1707327
http://msp.org/idx/zbl/0933.57020
https://hirzebruch.mpim-bonn.mpg.de/id/eprint/115/
http://msp.org/idx/mr/650832
http://msp.org/idx/zbl/0288.10001
http://dx.doi.org/10.1016/j.topol.2021.107868
http://msp.org/idx/mr/4365044
http://msp.org/idx/zbl/1495.57021
http://dx.doi.org/10.2307/2007076
http://msp.org/idx/mr/690845
http://msp.org/idx/zbl/0528.57008
http://dx.doi.org/10.4310/MRL.2020.v27.n6.a8
http://msp.org/idx/mr/4216604
http://msp.org/idx/zbl/1460.57022
http://msp.org/idx/arx/2112.13500
http://msp.org/idx/arx/2112.13500
http://dx.doi.org/10.1016/j.aim.2023.109086
http://msp.org/idx/mr/4592264
http://msp.org/idx/zbl/07691781
http://dx.doi.org/10.2140/gt.2023.27.1987
http://msp.org/idx/mr/4621924
http://msp.org/idx/zbl/1523.57022
http://msp.org/idx/mr/1102278
http://msp.org/idx/zbl/0800.57003
http://dx.doi.org/10.2969/aspm/02010365
http://msp.org/idx/mr/1208316
http://msp.org/idx/zbl/0808.57013
http://dx.doi.org/10.1007/BF01389178
http://msp.org/idx/mr/914849
http://msp.org/idx/zbl/0608.57020
http://dx.doi.org/10.1090/S0002-9939-10-10413-4
http://msp.org/idx/mr/2644908
http://msp.org/idx/zbl/1205.57020
http://dx.doi.org/10.1016/0040-9383(86)90018-2
http://msp.org/idx/mr/862426
http://msp.org/idx/zbl/0631.57013
http://dx.doi.org/10.1007/BF02564448
http://msp.org/idx/mr/896098
http://msp.org/idx/zbl/0634.10020
http://projecteuclid.org/euclid.jdg/1214440552
http://msp.org/idx/mr/868975
http://msp.org/idx/zbl/0617.57007
http://dx.doi.org/10.1007/BF01220468
http://msp.org/idx/mr/467773
http://msp.org/idx/zbl/0387.57017
http://dx.doi.org/10.2307/2160919
http://msp.org/idx/mr/1231042
http://msp.org/idx/zbl/0838.57027
http://dx.doi.org/10.1007/978-3-540-78279-7_4
http://msp.org/idx/mr/2441414
http://msp.org/idx/zbl/1152.53069
http://dx.doi.org/10.1112/jtopol/jtu028
http://msp.org/idx/mr/3356765
http://msp.org/idx/zbl/1320.57032
mailto:konno@ms.u-tokyo.ac.jp
http://msp.org
http://msp.org




msp

Algebraic & Geometric Topology 24:3 (2024) 1755–1780
DOI: 10.2140/agt.2024.24.1755

Published: 28 June 2024

Sequential parametrized topological complexity and related invariants

MICHAEL FARBER

JOHN OPREA

Parametrized motion planning algorithms have a high degree of universality and flexibility; they generate
the motion of a robotic system under a variety of external conditions. The latter are viewed as parameters
and constitute part of the input of the algorithm. The concept of sequential parametrized topological
complexity TCr Œp WE! B� is a measure of the complexity of such algorithms. It was studied by Cohen,
Farber and Weinberger (2021, 2022) for r D 2 and by Farber and Paul (2022) for r � 2. We analyze the
dependence of the complexity TCr Œp W E ! B� on an initial bundle with structure group G and on its
fibre X viewed as a G–space. Our main results estimate TCr Œp WE! B� in terms of certain invariants of
the bundle and the action on the fibre. Moreover, we also obtain estimates depending on the base and the
fibre. Finally, we develop a calculus of sectional categories featuring a new invariant secatf Œp WE! B�

which plays an important role in the study of sectional category of towers of fibrations.
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1 Introduction

Motion planning algorithms of robotics control autonomous robots in engineering; see [LaValle 2006]. A
motion planning algorithm takes as input the initial and the desired states of the system and produces
as output a motion of the system starting at the initial states and ending at the desired states. A robot is
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1756 Michael Farber and John Oprea

“told” where it needs to go and the execution of this task, including selection of a specific route of motion,
is made by the robot itself, ie by the robot’s motion planning algorithm. Typically it is understood that
the external conditions (such as the positions of the obstacles and the geometry of the enclosing domain)
are known and are constant during the motion.

In [Cohen et al. 2021; 2022], motion planning algorithms of a new type were analyzed. These are
parametrized motion planning algorithms, which, besides the initial and desired states, take as input
the parameters characterizing the external conditions. The output of a parametrized motion planning
algorithm is a continuous motion of the system from the initial to the desired state, respecting the given
external conditions. The papers [Cohen et al. 2021; 2022] laid out the new formalism and analyzed in
full detail the problem of moving an arbitrary number n of robots in the domain with m a priori unknown
obstacles.

The recent paper [Farber and Paul 2022] developed a generalization where the robot must perform a
sequence of tasks. The topological complexity of such an algorithm is called sequential parametrized
topological complexity TCr Œp W E ! B�, where r D 2; 3; : : : , and the case r D 2 corresponds to the
situations analyzed in [Cohen et al. 2021; 2022]. Formally, TCr Œp WE! B� is an integer associated with
a fibration p WE!B where the points of the base b 2B parametrize the external conditions (for example,
positions of the obstacles) and for each b 2 B the fibre Xb D p�1.b/�E is the space of all admissible
configurations of the system under the external conditions b. To make the present work independent, we
include the definition of the concept TCr Œp WE! B� and its major properties in Section 2.

In this paper we further analyze the invariant TCr Œp W E! B� trying to understand its dependence on
classical invariants of the initial bundle p WE!B; in particular, on its base B and on its fibre X . As with
all such invariants, exact calculation is generally hard and the development of lower and upper bounds is
an essential part of the subject. This is the focus of our work.

We first show that, if the bundle p W E ! B has structure group G with fibre X a G–space, then the
equivariant sequential topological complexity of X — developed in [Bayeh and Sarkar 2020; Colman
and Grant 2012] — serves as an upper bound for TCr Œp WE! B�; see (9). The case when G acts freely
on X is especially interesting and leads to several somewhat surprising estimates. But using equivariant
topological complexity as an upper bound is fraught with danger since it can be infinite in what appear to
be innocuous situations.

As an alternative we develop the notion of weak sequential equivariant complexity, denoted by TCwr;G.X/,
and its variant TCwr;G.X IP / which we are tempted (but loathe) to call weak sequential equivariant
complexity with coefficients P (see Section 7). We will give several examples showing that these
invariants are finite even when equivariant topological complexity is infinite, so they offer the opportunity
for effective estimation in many situations. Indeed, our main result Theorem 8.1 gives lower and upper
bounds for TCr Œp WE! B� in terms of these invariants. To state it one needs to recall the invariant

G–catŒp WE! B�

Algebraic & Geometric Topology, Volume 24 (2024)
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introduced by I M James [1978, page 342]. It is defined as the smallest integer k � 0 such that the base
B admits an open cover B D U0[U1[ � � � [Uk with the property that over each set Ui the bundle E is
trivial as a G–bundle. Clearly, G–catŒp WE! B� equals the sectional category secatŒ� W P ! B� of the
associated principal bundle that constructs p WE! B . In general,

(1) G–catŒp WE! B�� cat.B/� dimB

and if the group G is 2–connected (as is the case for simply connected compact Lie groups for instance)
then we can say

(2) G–catŒp WE! B��
˙
1
4
.dimB � 3/

�
as follows by applying [Schwartz 1962, Theorem 5] to secatŒ� W P ! B�. If the structure group G is
discrete then instead of (1) one has a stronger inequality

(3) G–catŒp WE! B�� cat1.B/;

where cat1.B/ is the sectional category of the universal cover zB! B . Our main result (Theorem 8.1)
then is the following.

Theorem For a locally trivial bundle p WE DX �G P ! B D P=G one has the inequalities

(4) TCwr;G.X IP /� TCr Œp WE! B��G–catŒp WE! B�CTCwr;G.X/:

Note that the first summand in the right-hand side of (4) is independent of r and is bounded above by
the Lusternik–Schnirelmann category of the base B; the second term is the weak equivariant sequential
topological complexity of the fibre X . In our view, this estimate gets at the heart of the matter. After
all, what is a bundle? It is just a principal bundle together with an action of the structure group on the
fibre and our upper bound is expressed exactly in numerical quantities derived from these objects. In
Example 8.4 we shall see that the right-hand side can be an equality, so at least in some cases the upper
bound can be sharp. Such a posteriori knowledge then warrants a deeper study of the invariants TCwr;G.X/
and TCwr;G.X IP / and we hope the present work elicits this.

Beyond defining and applying the new invariants TCwr;G.X/ and TCwr;G.X IP /, in Sections 4, 5 and 6 we
develop a calculus of sectional categories, including a new notion denoted by secatf Œp WE! B� where
f W B ! C is a continuous map. It is this notion that allows us to estimate the sectional category of
towers of fibrations which serves as the crucial technical tool in the proof of our main results. We believe
that secatf Œp WE! B� holds independent interest and should find application in many situations orbiting
the twin galaxies of Lusternik–Schnirelmann category and topological complexity.

Acknowledgements It is a pleasure to thank Amit Paul, Debasis Sen and the referee for several useful
comments. Farber was partially supported by a grant from the EPSRC.
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2 The concept of sequential parametrized topological complexity

In this section we recall the notion of sequential parametrized topological complexity introduced in
[Farber and Paul 2022]. It is a generalization of the concept of topological complexity [Farber 2003] and
its parametrized version [Cohen et al. 2021].

Let p WE! B be a Hurewicz fibration with fibre X . Fix an integer r � 2 and set

ErB D f.e1; : : : ; er/ 2E
r
j p.e1/D � � � D p.er/g:

The symbol I D Œ0; 1� denotes the unit interval. Let EIB �E
I be the space of all paths  W I !E such

that the path p ı  W I ! B is constant. Fix r points

0� t1 < t2 < � � �< tr � 1

and consider the evaluation map

(5) …r WE
I
B !ErB ; …r./D ..t1/; .t2/; : : : ; .tr//:

…r is a Hurewicz fibration; see [Cohen et al. 2022, Appendix]. The fibre of …r is .�X/r�1, the
Cartesian .r�1/st power of the based loop space �X . A section s WErB !EIB of the fibration …r can be
interpreted as a parametrized motion planning algorithm, ie a function which assigns to every sequence of
points .e1; e2; : : : ; er/ 2ErB a continuous path  W I !E (representing motion of the system) satisfying
.ti /D ei for every i D 1; 2; : : : ; r and such that the path p ı  W I ! B is constant. The latter condition
means that the system moves under constant external conditions (such as positions of the obstacles etc).

Typically, the fibration …r does not admit continuous sections; see [Farber and Weinberger 2023a,
Corollary 1 and Lemma 1], which deal with the case r D 2; when r > 2 the arguments are similar.
Therefore the motion planning algorithms are necessarily discontinuous in most situations.

The following definition [Farber and Paul 2022] gives a measure of complexity of sequential parametrized
motion planning algorithms.

Definition 2.1 The r th sequential parametrized topological complexity of the fibration p W E ! B ,
denoted by TCr Œp WE! B�, is defined as the sectional category of the fibration …r , ie

(6) TCr Œp WE! B� WD secat.…r/:

In more detail, TCr Œp WE!B� is the minimal integer k such that there is an open cover fU0; U1; : : : ; Ukg
of ErB with the property that each open set Ui admits a continuous section si W Ui !EIB of …r .

Under some mild assumptions, instead of open covers one can consider totally general partitions:

Algebraic & Geometric Topology, Volume 24 (2024)
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Proposition 2.2 [Farber and Paul 2022, Proposition 3.6] Let E and B be metrizable separable ANRs
and let p WE! B be a locally trivial fibration. Then the sequential parametrized topological complexity
TCr Œp WE! B� equals the smallest integer n such that ErB admits a partition

ErB D F0 tF1 t � � � tFn; Fi \Fj D∅ for i ¤ j;

with the property that on each set Fi there exists a continuous section si W Fi !EIB of …r .

If two fibrations p WE! B and p0 WE 0! B are fibrewise homotopy equivalent then

TCr Œp WE! B�D TCr Œp
0
WE 0! B�I

see [Farber and Paul 2022, Corollary 4.2].

The following upper bound is a reformulation of [Farber and Paul 2022, Proposition 6.1]:

Proposition 2.3 Let p W E ! B be a locally trivial fibration with fibre X , where E, B and X are
CW–complexes. Assume that the fibre X is k–connected , where k � 0. Then

(7) TCr Œp WE! B��
l
r dimXCdimB�k

1Ck

m
:

We refer the reader to [Farber and Paul 2022] for proofs and further detail.

3 Relation with the equivariant sequential topological complexity

In this section we show that TCr Œp W E ! B� admits as an upper bound the sequential equivariant
topological complexity [Bayeh and Sarkar 2020; Colman and Grant 2012] of the fibre X . This leads to
simple estimates in terms of the dimension of the fibre in the case when the structure group G of the
fibration acts freely on X ; see Lemma 3.5 and Corollary 3.6.

3.1 Equivariant topological complexity

We shall recall a sequential analogue of the notion of equivariant topological complexity introduced by
M Bayeh and S Sarkar [2020]; it generalizes the concept of equivariant topological complexity originally
introduced and studied by H Colman and M Grant [2012].

Let G be a topological group acting on a topological space X from the left. The papers [Bayeh and
Sarkar 2020; Colman and Grant 2012] require G to be compact but we do not impose this assumption at
this stage.

The symbol XI denotes the space of all continuous paths  W I !X where I D Œ0; 1� is equipped with
the compact–open topology. The group G acts naturally on XI , where .g/.t/D g.t/ for t 2 I .

Fix an integer r � 2 and consider the Cartesian power Xr DX �X �� � ��X (r times). We shall consider
the diagonal action of G on Xr .

Algebraic & Geometric Topology, Volume 24 (2024)
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Fix r points 0D t1 < t2 < � � �< tr D 1 in the unit interval I D Œ0; 1� and consider the evaluation map

(8) �r WX
I
!Xr ;

where �r./D ..t1/; : : : ; .tr//. Clearly, �r a G–equivariant map.

Definition 3.1 For a path-connected G–space X , we denote by TCr;G.X/ the smallest integer k� 0 such
that the Cartesian power Xr DX �X �� � ��X (r times) admits an open cover Xr DU0[U1[� � �[Uk
with the following properties: each set Ui is G–invariant and admits a continuous G–equivariant section
si W Ui !XI of the fibration �r . If no such cover exists we set TCr;G.X/D1.

The invariant TC2;G.X/ coincides with the equivariant topological complexity TCG.X/ of Colman and
Grant [2012].

It is obvious from Definition 3.1 that

TCr.X/� TCr;G.X/;

where TCr.X/ is the sequential topological complexity of X introduced by Rudyak [2010].

An alternative definition of TCr;G.X/ is obtained as follows (compare [Farber and Paul 2022, Lemma 3.5]).
Let K be a path-connected locally compact metrizable space and let k1; k2; : : : ; kr 2 K be a set of r
pairwise distinct points. Consider the setXK of continuous maps ˛ WK!X equipped with compact–open
topology. The evaluation map

�Kr WX
K
!Xr ;

where …Kr .˛/D .˛.k1/; : : : ; ˛.kr// 2X
r , is continuous and G–equivariant, where we view Xr with the

diagonal action of G.

Lemma 3.2 For any path-connected locally compact metrizable space K, the number TCr;G.X/ equals
the smallest integer k� 0 such that the Cartesian powerXr admits an open coverXr DU0[U1[� � �[Uk
with the following properties: each set Ui is G–invariant and admits a continuous G–equivariant section
si W Ui !XK of �Kr .

Proof Consider the commutative diagram

XI
F 0

//

�r !!

XK
F

oo

�K
r}}

Xr

where the maps F WXK!XI and F 0 WXI !XK are defined as follows. Fix a path  W I !K satisfying
.ti /D ki for all i D 1; : : : ; r . Then F.˛/D ˛ ı  W I !X , where ˛ 2XK .
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To define the map F 0 WXI!XK we first construct a continuous function f WK! I satisfying f .ki /D ti
for all i D 1; : : : ; r . Applying the Tietze extension theorem we find continuous functions  j WK! Œ0; 1�

with  j .ti /D ıij where j D 1; : : : ; r . Then the function f Dmin
˚
1;
Pr
iD1 ti r

	
, f WK! I , has the

required properties. The map F 0 WXI !XK is defined by F 0.˛/D ˛ ıf where ˛ 2XI .

Clearly the maps F and F 0 areG–equivariant. For an openG–invariant subset U �Xr anyG–equivariant
section s WU !XI of �r defines the G–equivariant section s0D F 0 ı s WU !XK of �Kr . And vice versa,
any G–equivariant section s0 W U !XK defines s D F ı s0 W U !XI , an equivariant section of �r .

Yet another equivalent characterization of TCr;G.X/ is given by the following (see [Bayeh and Sarkar
2020]):

Lemma 3.3 For a G–space X and r � 2 the integer TCr;G.X/ equals the smallest k � 0 such that Xr

admits an open cover Xr D U0[U1[ � � � [Uk by G–invariant open sets Ui with the property that each
inclusion Uj !Xr is G–homotopic to a map with values in the diagonal X �Xr.

Now we can state our result relating the sequential parametrized topological complexity of a fibration
with the equivariant sequential topological complexity of the fibre:

Theorem 3.4 Consider a locally trivial bundle p W E ! B with path-connected fibre X and structure
group G. Let � W P ! B be a G–principal bundle such that p W E ! B coincides with the associated
bundle p W E D X �G P D .X � P /=G ! P=G D B . Then the sequential parametrized topological
complexity TCr Œp WE! B� is bounded above by TCr;G.X/, ie

(9) TCr Œp WE! B�� TCr;G.X/:

Note that the right-hand side of inequality (9) depends only on the fibre X viewed as a G–space, where
G is the structure group of the bundle.

Proof First we note that there exists the commutative diagram

XI �G P
˛
//

�r�G1

��

EIB

…r

��

Xr �G P
ˇ

// ErB

where ˛ and ˇ are homeomorphisms. Therefore,

TCr Œp WE! B�D secatŒ…r WE
I
B !ErB �D secatŒ�r �G 1 WX

I
�G P !Xr �G P �:

For k D TCr;G.X/ let Xr D U0[U1[ � � � [Uk be an open cover as in Definition 3.1. Consider the sets

Wi D .Ui �P /=G � .X
r
�P /=G:
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They are open and cover .Xr � P /=G. Any G–equivariant section si W Ui ! XI of the fibration �r
obviously defines the section �i WWi ! .XI �P /=G of the orbit spaces; here �i is the map induced by
si � 1P on the spaces of orbits. This shows that

TCr Œp WE! B�D secatŒ�r �G 1 WX
I
�G P !Xr �G P �� k:

As mentioned in [Bayeh and Sarkar 2020; Colman and Grant 2012], in some cases the number TCr;G.X/
is infinite. In particular, one has TCr;G.X/ D1 if for a subgroup H � G the fixed-point set XH is
not path-connected. In such situations the upper bound (9) becomes meaningless. We discuss below
situations when the number TCr;G.X/ is finite and admits useful upper bounds.

The following lemma uses the notion of G–equivariant homotopy lifting property (G–HLP) applied to a
map q WX !X=G. This property means that the commutative diagram

Y
f

//

inc
��

X

q

��

Y � I
F
// X=G

where X and Y are separable metric spaces and the map f W Y !X is G–equivariant, can be completed
by a G–equivariant map H W Y � I !X extending f and such that q ıH D F . A theorem of R Palais
(see [Bredon 1972, Theorem II.7.3]) states that this property is automatically satisfied for free actions of
compact Lie groups.

Lemma 3.5 Consider a locally trivial bundle p WE!B with fibre X (a path-connected separable metric
space) and structure group G. Assume that the group G acts freely on X and , moreover , that the quotient
map qr WXr !Xr=G possesses the G–HLP. Then

TCr Œp WE! B�� TCr;G.X/� cat.Xr=G/� dim.Xr=G/:

Proof In view of Theorem 3.4 we only need to prove the inequality TCr;G.X/� cat.Xr=G/. Consider
an open covering Xr=G D V0[V1[ � � � [Vk , where k D cat.Xr=G/ and each inclusion Ui �Xr=G
is homotopic to the constant map into a point x0 2 X=G � Xr=G; here X � Xr is the diagonal.
By our assumption, the projection qr W Xr ! Xr=G has the G–homotopy lifting property. The sets
Ui Dq

�1
r .Vi /�X

r areG–invariant, where iD0; 1; : : : ; k, and applying theG–homotopy lifting property
to the homotopy of Vi to x0 we find a homotopy hit W Ui ! Xr (where t 2 Œ0; 1� and i 2 f0; 1; : : : ; rg)
such that hi0 is the inclusion Ui !Xr , each map hit is G–equivariant and hi1.Ui /�X �X

r . Applying
Lemma 3.3 we obtain TCr;G.X/� k.

Corollary 3.6 Consider a locally trivial bundle p W E ! B with fibre X (which is a path-connected
separable metric space) and a compact Lie group G acting freely on X , as the structure group. Then for
any r � 2,

(10) TCr Œp WE! B�� cat.Xr=G/� r dimX � dimG:
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Proof First we note that due to the theorem of Palais [Bredon 1972, Theorem II.7.3] the assumptions of
Lemma 3.5 are satisfied. We are only left to note that dimXr=G D dimXr �dimG � r dimX �dimG;
see [Palais 1960, Corollary 1.7.32].

One can use Lemma 3.5 to give an alternative proof of [Farber and Paul 2022, Proposition 3.3] — see
also [Cohen et al. 2021, Proposition 4.3] — with some minor additional assumptions:

Corollary 3.7 Let G! P �
�! B be a principal bundle , where G is a path-connected topological group

which has the topology of a separable metric space. Then

TCr Œ� W P ! B�D cat.Gr�1/ for any r � 2:

Proof By [Farber and Paul 2022, Section 3] we know that TCr Œ� WP !B�� TCr.G/D cat.Gr�1/. We
view the fibre G as acting on itself by left translations and acting diagonally on Gr . The quotient map
qr WG

r !Gr=G admits a section s WGr=G!Gr , given by

s.g1; g2; : : : ; gr/D .e; g
�1
1 g2; g

�1
1 g3; : : : ; g

�1
1 gr/:

Therefore, we explicitly obtain a G–homeomorphism Gr Š Gr=G � G, so qr is a trivial bundle
Gr=G � G ! Gr=G and, as such, has the G–HLP. Lemma 3.5 then applies and gives the upper
bound TCr Œ� W P ! B� � cat.Gr=G/ D cat.Gr�1/. Comparing, we see that both bounds are in fact
equalities.

4 Calculus of sectional categories

In this section we introduce a new invariant secatf Œp WE!B� which generalizes the concept of sectional
category of a fibration. This invariant plays a role in estimating sectional category of towers of fibrations,
see Theorem 5.1.

Let p WE! B be a fibration and let f W B! C be a continuous map.

Definition 4.1 We define the invariant

secatf Œp WE! B�

to be the smallest integer k � 0 such that C admits a family of open subsets U0; U1; : : : ; Uk with the
properties

(a) U0[U1[ � � � [Uk � f .B/ or, equivalently, B D
Sk
iD1 f

�1.Ui /;

(b) the fibration p WE!B admits a continuous section over each open set f �1.Ui / for i D 0; 1; : : : ; k.

We set secatf Œp WE! B�D1 if no such family exists.

Open sets of the form f �1.U / � B , where U � C , can be called f –saturated. Definition 4.1 can be
rephrased as dealing with covers of the base B by f –saturated open sets admitting continuous sections
of the fibration p WE! B .
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4.1 Finiteness

The following lemma summarizes information about finiteness of the invariant secatf Œp WE! B�.

Lemma 4.2 Let p WE! B be a fibration and let f W B! C be a continuous map.

(A) If secatŒp W p�1f �1.x/! f �1.x/� > 0 for some x 2 f .B/� C then secatf Œp WE! B�D1.

(B) If B is compact and every point x 2 f .B/ � C has an open neighbourhood U � C such that
secatŒp W p�1f �1.U /! f �1.U /�D 0 then secatf Œp WE! B� <1.

Proof Under assumption (A) there is no open set U �C containing x with f �1.U / having a continuous
section. Statement (B) is obvious.

In our applications we shall typically have the map f WB!C be surjective, and more specifically, it will
often be the quotient map with respect to a group action. However, it is convenient to make no additional
assumptions at this stage.

4.2 Dependence on f

In the special case when the map f W B ! C D B is the identity map, the number secatf Œp W E ! B�

turns into the usual sectional category secatŒp WE! B�. In general, obviously,

(11) secatŒp WE! B�� secatf Œp WE! B�

and

(12) secatŒp WE! B�D secatf Œp WE! B�

assuming that secatŒp WE! B�D 0.

Moreover, for B f
�! C

g
�! C 0 one clearly has

(13) secatf Œp WE! B�� secatgf Œp WE! B�:

Lemma 4.3 Let p WE! B be a fibration and let f W B! C and f 0 W B! C 0 be two continuous maps.

(a) If there is a continuous map h W C ! C 0 such that f 0 D h ıf , then

secatf Œp WE! B�� secatf 0 Œp WE! B�:

(b) Moreover , if the restriction of h W C ! C 0 induces a homeomorphism f .B/! f 0.B/, then

secatf Œp WE! B�D secatf 0 Œp WE! B�:

Proof Statement (a) follows from inequality (13). To prove (b) assume that U � C is an open subset
with the property that f �1.U / admits a section of p. Then

h.U \f .B//D U 0 � f 0.B/

is an open subset of f 0.B/ and hence there exists an open subset V � C 0 with V \ f 0.B/D U 0. Then
f 0�1.V /D f �1.U / admits a section of p. Thus any family of open sets U0 [U1 [ � � � [Uk � f .B/
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such that f �1.Ui / admits a section of p determines a family of open subsets of the same cardinality,
V0[V1[� � �[Vk � f

0.B/ with the preimages f 0�1.Vj / admitting sections of p. This shows the inverse
inequality secatf Œp WE! B�� secatf 0 Œp WE! B�.

4.3 Induced fibrations

Lemma 4.4 Assume that a fibration p WE 0! B 0 is induced from the fibration p WE! B via the map
˛ W B 0! B as shown on the diagram

E 0
ˇ
//

p0
��

E

p
��

B 0
˛
// B

f

// C

For f W B! C set f 0 D f ı˛. Then

secatf 0 Œp
0
WE 0! B 0�� secatf Œp WE! B�:

Proof Assuming that there is a continuous section s Wf �1.U /!E of p WE!B , for U �C open, define
� Wf 0�1.U /!E by �D sı˛. Then we have pı�D˛ and by the pullback property there is a continuous
map s0 W f 0�1.U /!E 0 with p0 ı s0 D inclusion, ie s0 is a section of p0. Since f 0.B/� f .B/� C , we
see that the statement of the lemma follows.

Lemma 4.5 (maps of fibrations) If for two fibrations p WE! B and p0 WE 0! B over the same base B
there exists a map � WE!E 0 such that the diagram

E

p %%

�
// E 0

p0yy
B

commutes up to homotopy, then secatf Œp
0 WE 0! B�� secatf Œp WE! B�.

Proof If U � C is such that p admits a continuous section s over f �1.U / � B then p0 admits a
homotopy section � ı s over the same subset. Since p0 satisfies the homotopy lifting property, the
homotopy section can be made a genuine section. The statement now follows from the definition.

Lemma 4.6 Suppose that for two fibrations p WE! B and p0 WE 0! B 0 there exist continuous maps G,
˛, ˇ and Ǫ shown on the diagram

E 0

p0
��

G
// E

p
��

B
˛
//

f
��

B 0
ˇ

//

f 0
��

B

C
Ǫ

// C 0

such that the bottom left square is commutative , the upper right square is homotopy commutative and
ˇ ı˛ WB!B is homotopic to the identity IdB WB!B . Then secatf Œp WE!B�� secatf 0 Œp

0 WE 0!B 0�.
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Proof Consider the fibration q WE! B induced by the map ˛ W B! B 0 from p0 WE 0! B 0. It appears
in the commutative diagram

E
 
//

q
��

E 0

p0
��

B
˛
// B 0

Using Lemmas 4.3 and 4.4 one obtains

(14) secatf Œq WE! B�� secat Ǫ ıf Œq WE! B�� secatf 0 Œp
0
WE 0! B 0�:

Next we note that the diagram
E

Gı 
//

q ##

E

p{{
B

homotopy commutes:
p ıG ı ' ˇ ıp0 ı D ˇ ı˛ ı q ' q:

Applying Lemma 4.5 we obtain the inequality secatf Œp W E! B�� secatf Œq W E! B� which together
with (14) implies secatf Œp WE! B�� secatf 0 Œp

0 WE 0! B 0�, as claimed.

Corollary 4.7 Assume that in the diagram

E
F
//

p
��

E 0

p0
��

G
// E

p
��

B
˛
//

f
��

B 0
ˇ

//

f 0
��

B

f
��

C
Ǫ

// C 0
Ǒ

// C

the maps p and p0 are fibrations , the lower squares are commutative , the upper squares are homotopy
commutative and the maps ˛ and ˇ are mutually inverse homotopy equivalences. Then

secatf Œp WE! B�D secatf 0 Œp
0
WE 0! B 0�:

Proof This follows from applying Lemma 4.6 twice: to the diagram

E

p
��

F
// E 0

p0
��

B 0
ˇ

//

f 0
��

B
˛
//

f
��

B 0

C 0
Ǒ

// C

and to the diagram of Lemma 4.6.
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Corollary 4.8 Suppose that in the commutative diagram

E
F
//

p

��

E 0

p0

��

B
˛
//

f

��

B 0

f 0

��

C
Ǫ
// C 0

the maps p0, f and f 0 are fibrations and p is the induced fibration. If ˛ and Ǫ are homotopy equivalences
then

secatf Œp WE! B�D secatf 0 Œp
0
WE 0! B 0�:

Proof By Lemmas 4.3 and 4.4 we have secatf 0 Œp
0 WE 0!B 0�� secat Ǫf Œp WE!B�� secatf Œp WE!B�

so we must only show the inverse inequality. Since f and f 0 are fibrations and ˛ and Ǫ are homotopy
equivalences, applying the proposition on page 53 of [May 1999] we see that there exist homotopy
inverses ˇ and Ǒ for ˛ and Ǫ , respectively, such that the diagram

B 0
ˇ
//

f 0

��

B

f

��

C 0
Ǒ
// C

commutes. We obtain the commutative diagram

E

p

��

F
// E 0

p0

��

B 0
ˇ

//

f 0

��

B
˛
//

f
��

B 0

C 0
Ǒ

// C

with the composition ˛ ıˇ W B 0! B 0 homotopic to the identity map. Lemma 4.6 now gives

secatf 0 Œp
0
WE 0! B 0�� secatf Œp WE! B�:

4.4 Homotopical dimension

For a topological space A having the homotopy type of a finite-dimensional CW–complex we shall denote
by hdim.A/ the homotopical dimension of A; it is defined as the minimal dimension of a CW–complex
homotopy equivalent to A.

The following lemma will be used later.
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Lemma 4.9 Consider a locally trivial bundle p W E ! B where E and B are separable metric spaces
and the base B and the fibre F have the homotopy type of finite-dimensional CW–complexes. Assume
also that the fibre F of p WE! B has finite covering dimension dimF . Then the total space E has the
homotopy type of a finite-dimensional CW–complex and , moreover ,

(15) hdim.E/� hdim.B/C dimF:

Proof Let g WB 0!B be a homotopy equivalence whereB 0 is a CW–complex satisfying dimB 0D hdimB .
Consider the diagram

E 0
G
//

p0

��

E

p

��

B 0
g
// B

where p0 WE 0! B 0 is the fibration induced by g. Clearly G is a homotopy equivalence and

dimE 0 � dimB 0C dimF:

By [Fritsch and Piccinini 1990, Theorem 5.4.2] the space E 0 has homotopy type of a CW–complex.
Hence,

hdim.E/D hdim.E 0/� dim.E 0/� dimB 0C dimF D hdim.B/C dimF:

4.5 An upper bound

The following statement gives a useful upper bound for the invariant secatf Œp WE! B�.

Proposition 4.10 Assume that E, B and C are separable metric spaces. Let p W E! B be a fibration
and let f W B! C be a locally trivial bundle such that

(a) the space C and the fibre F0 of f W B! C have the homotopy type of CW–complexes;

(b) the fibre F1 of the fibration p WE! B is .k�1/–connected , where k � 0;

(c) the fibre F0 of the fibration f W B! C is d–dimensional , where 0� d � k.

Then one has

(16) secatf Œp WE! B��
ldimB�k

1Ck�d

m
:

Proof First we shall prove the statement under an additional assumption that C is a simplicial complex.
We shall remove this assumption afterwards.

Consider the skeleta C .i/ �C of C , where i D 0; 1; : : : . We know that for any two integers 0� i < j the
complement C .i/�C .j / is homotopy equivalent to a simplicial complex of dimension at most i � j � 1;
see for example [Farber et al. 2019, Corollary 5.3].
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We may find a chain of open subsets U0 � U1 � U2 � � � � of C such that each set Ui contains C .i/ as a
strong deformation retract.

Setting r D k� d , consider the skeleta

C .r/ � C .2rC1/ � C .3rC2/ � � � � � C ..cC1/rCc/;

where c is the smallest integer satisfying dimC � .cC 1/r C c, ie

c D
ldimC�r

1Cr

m
D

ldimB�k

1Ck�d

m
:

Each complement,
Xi D C

..iC1/rCi/
�C .irCi�1/; i D 0; 1; : : : ; c;

has the homotopy type of a simplicial complex of dimension � r . The open set

Yi D U.iC1/rCi �C
.irCi�1/

� C

deformation retracts onto Xi and therefore hdim.Yi /� r . Applying Lemma 4.9 we obtain

hdim.Vi /� r C d D k;

where
Vi D f

�1.Yi /� B; i D 0; 1; : : : ; c:

The fibre F1 of p W E ! B is .k�1/–connected, and thus we may apply the well-known result of the
obstruction theory stating that the fibration p WE! B admits a continuous section over each open set Vi ,
where i D 0; 1; : : : ; c. Since B D V0[V1[� � �[Vc , it shows that secatf Œp WE!B�� c. This completes
the proof in the case when C is a simplicial complex.

Consider now the general case, ie we shall only assume that C has the homotopy type of a CW–complex.
We can find a simplicial complex C 0 and a homotopy equivalence Ǫ W C 0! C ; see [Fritsch and Piccinini
1990, Theorem 5.2.1]. Consider the fibration f 0 W B 0! C 0 induced by Ǫ from f W B! C . The map ˛
shown on the diagram

E 0
F
//

p0

��

E

p

��

B 0
˛
//

f 0

��

B

f
��

C 0
Ǫ

// C

is a homotopy equivalence. The map ˛ induces the fibration p0 WE 0! B 0. Applying Corollary 4.8 we
obtain that

secatf 0 Œp
0
WE 0! B 0�D secatf Œp WE! B�:

Hence the upper bound (16) which we proved above for secatf 0 Œp0 WE 0!B 0� applies to secatf Œp WE!B�

as well.
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Remark 4.11 In [Farber et al. 2019] an upper bound for topological complexity was derived that made
use of an invariant which was calledfTC.X/D esecat.E p

�!X
q
�!X/

there, but which we recognize in fact to be secatqŒp W E ! X� here. In [Farber et al. 2019] it was
further shown that fTC.X/ could be identified with the notion of strongly invariant topological complexity
TC��.

zX/ introduced by A Dranishnikov [2015] earlier. A K Paul and D Sen [2020] extended both the
invariant fTC.X/ and the strongly invariant topological complexity to the realm of sequential topological
complexity and proved the analogous identification. This identification, in some sense, was the genesis
of our calculus of sectional categories and together with Theorem 3.4 begs the question of exactly
how parametrized topological complexity and various forms of equivariant topological complexity are
intertwined, especially in the case of locally trivial fibre bundles.

5 Sectional category of towers of fibrations

Consider a tower of fibrations

Er
pr
�!Er�1

pr�1
��!Er�2! � � �

p1
�!E0

and the total fibration
p D p1p2 � � �pr WEr !E0:

We shall assume that all spaces Ei are normal.

Theorem 5.1 The sectional category secatŒp WEr !E0� of the total fibration admits the lower and upper
bounds

(17) secatŒp1 WE1!E0�� secatŒp WEr !E0�

� secatŒp1 WE1!E0�C

r�1X
iD1

secat.p1p2���pi /ŒpiC1 WEiC1!Ei �:

Here p1p2 � � �pi WEi !E0 denotes the composition.

Lemma 5.2 below will be used in the proof of Theorem 5.1.

Lemma 5.2 Let C be a normal space. Consider properties A1; A2; : : : ; Ar of open subsets of C , such
that each propertyAi is inherited by open subsets and disjoint unions. Assume that for each i D 1; 2; : : : ; r
C admits an open cover consisting of ni C1 open sets satisfying the property Ai . Then C admits an open
cover consisting of N C 1 open sets , where N D

Pr
iD1 ni , satisfying all the properties A1; : : : ; Ar .

Proof For r D 2 this statement was proven in [Oprea and Strom 2011, Lemma 4.3]. The case r > 2
follows from this by induction.
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Proof of Theorem 5.1 Since the left inequality in (17) is obvious we shall concentrate on the right
one and use Lemma 5.2 to prove it. Consider the following properties A1; A2; : : : ; Ar of open subsets
of E0. We shall say that an open subset U � E0 satisfies A1 if U has a continuous section of the
fibration p1. For 2 � i � r , we shall say that an open subset U � E0 satisfies the property Ai if
the open set p�1i�1 � � �p

�1
2 p�11 .U / � Ei�1 admits a continuous section of pi . By definition, for any

i D 1; 2; : : : ; r , the set E0 admits an open cover of cardinality secat.p1p2���pi�1/Œpi WEi!Ei�1�C1 with
each set satisfying Ai . Applying Lemma 5.2, we obtain that E0 admits an open cover fUj g of cardinalityPr
iD1 ni C 1 such that each set Uj satisfies all the properties A1; : : : ; Ar . This means that there exists a

continuous section s0 W Uj !E1 of p1 and for any i D 1; 2; : : : ; r � 1, there exists a continuous section

si W p
�1
i � � �p

�1
2 p�11 .Uj /!EiC1

of the fibration pi . Hence, the composition

s D sr�1sr�2 � � � s1s0 W Uj !Er

is a well-defined continuous section of the composition p D p1p2 � � �pr W Er ! E0. This gives the
inequality (17).

For convenience of references, we state below the special case r D 2 of Theorem 5.1 which we combine
with the dimension-connectivity upper bound of Proposition 4.10:

Corollary 5.3 Consider a tower of fibrations E2
p2
�! E1

p1
�! E0 of separable metric spaces. Assume

that p1 WE1!E0 is locally trivial. Then the sectional category secatŒp WE2!E0� of the total bundle

p D p2 ıp1 WE2!E0

lies between secatŒp1 WE1!E0� and

(18) secatŒp1 WE1!E0�C secatp1
Œp2 WE2!E1�:

Moreover , under the additional assumptions that

(a) the fibre of p2 WE2!E1 is .k�1/–connected ,

(b) the space E0 and the fibre of p1 WE1!E0 have the homotopy type of CW–complexes ,

(c) the fibre of p1 WE1!E0 has dimension � d where 0� d � k,

one has

(19) secatp1
Œp2 WE2!E1��

�
dimE1� k

1C k� d

�
:

6 Product inequalities

Lemma 5.2 distills the main results of [Dranishnikov 2009; 2010; Oprea and Strom 2011; Ostrand 1965],
but for the product inequalities which we describe below we need more specific information about open
covers.
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An open cover WD fW0; : : : ; WmCkg of a space C is an .mC1/–cover if every subcollection

fWj0
; Wj1

; : : : ; Wjm
g

of mC 1 sets from W also covers C . The following simple observation (see [Farber et al. 2019] for
instance) is the basis for many arguments in this approach.

Lemma 6.1 A cover WD fW0; W1; : : : ; WkCmg is an .mC1/–cover of C if and only if each x 2 C is
contained in at least kC 1 sets of W.

An open cover can be lengthened to a .kC1/–cover, while retaining certain essential properties of the
sets in the cover.

Theorem 6.2 [Dranishnikov 2009; Ostrand 1965] Let UD fU0; : : : ; Ukg be an open cover of a normal
space C . Then , for any m D k; k C 1; : : : ;1, there is an open .kC1/–cover of C , fU0; : : : ; Umg,
extending U such that for n > k, Un is a disjoint union of open sets that are subsets of the Uj , 0� j � k.

We use these facts to obtain inequalities for product fibrations.

Lemma 6.3 (product inequality, I) Let p W E! B and p0 W E 0! B 0 be fibrations and let f W B ! C

and f 0 W B 0! C 0 be continuous maps. Assume that the spaces f .B/ and f 0.B 0/ with topology induced
from C and C 0, respectively, are normal. Then the sectional category of the product fibration

secatf �f 0 Œp�p
0
WE �E 0! B �B 0�

is bounded above by the sum

secatf Œp WE! B�C secatf 0 Œp
0
WE 0! B 0�

and it is bounded below by

maxfsecatf Œp WE! B�; secatf 0 Œp
0
WE 0! B 0�g:

Proof First we deal with the lower bounds. Fix a point b00 2B
0 and embed B into B�B 0 via b 7! .b; b00/;

also, embed C into C �C 0 via x 7! .x; x00/ where x00D f
0.b00/. For an open subset U �C �C 0, a section

of p�p0 over .f �f 0/�1.U /� B �B 0 determines obviously a section of p over f �1.U \ .C � x00//.
This implies the inequality secatf �f 0 Œp �p

0 W E �E 0! B �B 0� � secatf Œp W E ! B�. Similarly, one
obtains secatf �f 0 Œp�p

0 WE �E 0! B �B 0�� secatf 0 Œp
0 WE 0! B 0�.

Now we prove the upper bound. Let secatf Œp W E! B�D k be realized by open sets U0; : : : ; Uk � C
covering f .B/�C , with continuous sections sj W f �1.Uj /!E of p, and let secatf 0 Œp0 WE 0!B 0�Dm

be realized by open sets V0; : : : ; Vm � C 0 covering f 0.B 0/, with sections s0j W f
0�1.Vj /!E 0 of p0. By

Theorem 6.2 we can extend the family U0; : : : ; Uk to a family of open subsets U0; : : : ; UkCm of C such
that any kC 1 members of this family cover f .B/. Similarly, we can find a family V0; : : : ; VkCm of
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open subsets of C 0 extending the initial family V0; : : : ; Vm such that any mC1 members of this extended
family cover f 0.B 0/. Theorem 6.2 guarantees that every set of the form f �1.Uj / or f 0�1.Vj / admits a
continuous section of p or p0 respectively, where j D 0; 1; : : : ; kCm.

LettingWj DUj�Vj , where j D0; : : : ; kCm, we see that each set .f �f 0/�1.Wj /Df �1.Uj /�f 0�1.Vj /
admits a continuous section of p � p0. We show below that the sets Wj cover f .B/� f 0.B 0/, which
implies that secatf �f 0 Œp�p0 WE �E 0! B �B 0�� kCm.

Suppose that a point .x; y/ 2 f .B/�f 0.B 0/ is not in any of the sets Wj , where j D 0; : : : ; kCm. Since
any k C 1 sets Uj cover f .B/, we know that x belongs to at least mC 1 of the Uj , by Lemma 6.1.
Without loss of generality, we may assume that x 2 U0\U1\ � � �\Um. Then y … V0[V1[ � � �[Vm, in
view of our assumption. Therefore, y can only lie in the sets VmC1; : : : ; VkCm which is a contradiction
since y belongs to at least kC 1 of the sets Vj , by Lemma 6.1.

Next we state another product inequality dealing with fibrations over the same base.

Lemma 6.4 (product inequality, II) Let p WE!B and p0 WE 0!B be two fibrations , and let f WB!C .
We shall assume that f .B/ is normal in the topology induced from C . Then the sectional category

secatf Œp�B p
0
WE �B E

0
! B�

of the fibrewise product is bounded below by

maxfsecatf Œp WE! B�; secatf Œp
0
WE 0! B�g

and is bounded above by the sum

secatf Œp WE! B�C secatf Œp
0
WE 0! B�:

Moreover ,
secatf Œp�B p

0
WE �B E

0
! B�D secatf Œp WE! B�

if secatŒp0 WE 0! B�D 0, ie if p0 admits a section.

Proof The projection pr WE �B E 0!E appears in the commutative diagram

E �B E
0

p�Bp
0

##

pr
// E

p
��

B

and Lemma 4.5 gives secatf Œp�B p0 WE �B E 0!B�� secatf Œp WE!B�. Similarly one gets the lower
bound using secatf Œp

0 WE 0! B�, which proves the statement concerning the lower bound. Next we note
that

(20) secatf Œp�B p
0
WE �B E

0
! B�� secatf �f Œp�p

0
WE �E 0! B �B�:
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Indeed, the fibration p�B p0 WE�BE 0!B is induced from the product fibration p�p0 WE�E 0!B�B

by the diagonal map � W C ! C �C . Lemma 4.4 gives the inequality

secat.f �f /ı�Œp�B p
0
WE �B E

0
! B�� secatf �f Œp�p

0
WE �E 0! B �B�:

Finally, we can apply Lemma 4.3 and replace .f �f / ı� by f . Combining (20) with Lemma 6.3 we
obtain the upper bound.

The last statement obviously follows by combining the lower and upper bounds.

7 Weak equivariant topological complexity TCw
r;G

.X/

Let p WE! B be a bundle with fibre X and structure group G which is associated to a principal bundle
� W P ! B . In other words, E DX �G P .

As in Section 2, we fix r � 2 points 0D t1 < t2 < � � �< tr D 1 and consider the evaluation map

�r WX
I
!Xr ; �r./D ..t1/; .t2/; : : : ; .tr//; where  2XI:

Consider also the quotient map
qr WX

r
!Xr=G;

where we view G acting diagonally on Xr .

The following invariant plays an important role in our main Theorem 8.1:

(21) TCwr;G.X/D secatqr
Œ�r WX

I
!Xr �:

Explicitly, we have:

Definition 7.1 The invariant TCwr;G.X/ equals the smallest integer k � 0 such that Xr admits an open
cover Xr D U0 [U1 [ � � � [Uk by G–invariant open sets such that for each i D 0; 1; : : : ; k there is a
continuous section si W Ui !XI of �r .

Note that the section si in Definition 7.1 is not required to be G–equivariant, unlike in the case of
TCr;G.X/. This explain the adjective “weak” and the symbol “w” in the notation. We obviously have

(22) TCr.X/� TCwr;G.X/� TCr;G.X/;

where the left inequality is a special case of (11). All these inequalities become equalities when the action
of G is trivial.

Lemma 7.2 For any G–space P ,

TCwr;G.X/D secatqr��Œ�r � 1 WX
I
�P !Xr �P �;

where � W P !� is the map onto a singleton.

Proof This follows from Lemma 6.3 since clearly secat�Œ1 W P ! P �D 0.
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Next we state the dimension-connectivity upper bound:

Lemma 7.3 Assume that X is a k–connected simplicial complex and G is a topological group homeo-
morphic to a CW–complex acting freely on X and such that the map qr WXr !Xr=G is a locally trivial
bundle. If dimG � k then

(23) TCwr;G.X/�
l
r dimX�k

1Ck�dimG

m
:

Proof We apply Proposition 4.10 having in mind that the fibre .�X/r�1 of fibration �r is .k�1/–
connected.

As a special case of Lemma 7.3 we mention:

Corollary 7.4 If X is k–connected , where k � 0, and the group G is discrete and the quotient map
qr WX

r !Xr=G is a covering map then

(24) TCwr;G.X/�
l
r dimX�k

1Ck

m
:

We shall be discussing yet another invariant TCwr;G.X IP / given by

(25) TCwr;G.X IP /D secatQŒ�r � 1 WX
I
�P !Xr �P �

with Q W Xr �P ! Xr �G P being the natural projection; here X and P are G–spaces and �r is the
fibration (8). Comparing with Lemma 7.2 we see that it is similar to TCwr;G.X/ with the only distinction
that the map qr � � is replaced by Q.

Lemma 7.5 One has

(26) TCr.X/� TCwr;G.X IP /� TCwr;G.X/:

Proof Consider the commutative diagram

XI �P
�r�1

//

p1

��

Xr �P

p2

��

Q
// Xr �G P

p3

��

XI
�r

// Xr
qr

// Xr=G

where the maps p1, p2 and p3 are projections on the first factor. Since the fibration �r � 1 is induced
from �r via p2, we may apply Lemma 4.4 to conclude

TCwr;G.X/D secatqr
Œ�r WX

I
!Xr �

� secatqrıp2
Œ�r � 1 WX

I
�P !Xr �P �

D secatp3ıQŒ�r � 1 WX
I
�P !Xr �P �

� secatQŒ�r � 1 WX
I
�P !Xr �P �

D TCwr;G.X IP /:
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On the third line we used Lemma 4.3(a). This proves the right inequality in (26). The left inequality
follows from

TCwr;G.X IP /D secatQŒ�r � 1 WX
I
�P !Xr �P �

� secatŒ�r � 1 WX
I
�P !Xr �P �

D secatŒ�r WX
I
!Xr �

D TCr.X/;

where on the second line we used inequality (11) and on the third line Lemma 6.3.

The next result gives a dimension-connectivity upper bound for TCwr;G.X IP / which holds for weaker
assumptions on X compared to Lemma 7.3.

Lemma 7.6 Assume that X is a k–connected simplicial complex and G is a topological group homeo-
morphic to a CW–complex. Suppose that P ! P=G is a locally trivial bundle. If dimG � k then

(27) TCwr;G.X IP /�
l
r dimXCdimP�k

1Ck�dimG

m
:

Proof This follows by applying Proposition 4.10 to the definition (25).

Example 7.7 Consider the unit circle S1 �C with the action of the cyclic group of order two G D Z2
acting as the complex conjugation, z 7! Nz. We know from [Colman and Grant 2012] that in this case
TC2;G.S

1/ is infinite due to the fact that the set of fixed points is disconnected.

On the other hand one can consider the open cover S1�S1DU0[U1 where U0D f.z1; z2/ j z1¤�z2g
and U1 D f.z1; z2/ j z1 ¤ z2g. These sets are G–invariant and over each of these sets one has the
well-known continuous sections. Thus, TCw2;G.S

1/D 1.

Example 7.8 Consider the more general case of a sphere Sn, where n� 1, with an action of a discrete
group G. First we apply the upper bound (24) with k D n� 1 to obtain

TCwr;G.S
n/� r for any r � 2:

Second, using (26) and the result of Y Rudyak [2010] (stating that TCr.Sn/ equals r for n even and r �1
for n odd), we obtain that for any even n

(28) TCwr;G.S
n/D r:

For n odd our inequalities imply that TCwr;G.S
n/ equals either r � 1 or r .

Example 7.9 Let S1 act on S2 by rotations about the z–axis. The fixed-point set of the action is the
disconnected set fN;Sg, where N and S are the north and south poles, respectively, so the equivariant
topological complexity is infinite: TCr;S1.S2/D1 for all r � 2.
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Let us now examine the weak equivariant topological complexity TCw
2;S1.S

2/. Fix an orbit O � S2 given
by the equator and fix an orientation of O . Consider the open cover S2 �S2 D U0[U1[U2 where

U0 D f.x; y/ j x ¤�yg;

U1 D f.x; y/ j x ¤ yg� f.N; S/; .S;N /g;

U2 D f.x; y/ j x …O and y …Og:

Clearly, the sets U0, U1 and U2 are S1–invariant. We may define the motion planning rules over each of
the sets Ui as follows. For .x; y/ 2 U0, go from x to y along the shortest geodesic arc. For .x; y/ 2 U1
the point x moves along the shortest geodesic arc first to the closest point of O , then along O in the
positive direction to the point closest to y, and finally to y. For .x; y/ 2 U2 the point x moves along the
shortest geodesic arc to the closest pole (N or S), then to the closest pole to y along a fixed path and
then to y; the first and the third portions are along the shortest geodesic arc on the sphere S2. Hence
TCw

2;S1.S
2/� 2. Since 2D TC.S2/� TCw

2;S1.S
2/, we see that TCw

2;S1.S
2/D 2.

8 Bounds for the sequential parametrized topological complexity

Finally we are in position to state and prove the main result of this paper:

Theorem 8.1 Let p W E ! B be a locally trivial fibre bundle with structure group G, the fibre X and
the associated principal bundle � W P ! B . Then the sequential parametrized topological complexity
TCr Œp WE! B� admits the upper and lower bounds

(29) TCwr;G.X IP /� TCr Œp WE! B��G–catŒp WE! B�CTCwr;G.X IP /:

Proof Since E DX �G P ,

ErB DX
r
�G P and EIB DX

I
�G P for any r � 2:

The map …r W EIB ! ErB becomes �r � 1 W XI �G P ! Xr �G P , where �r./ D ..t0/; : : : ; .tr//.
Consider the commutative diagram

(30)

XI �P
Q0
//

�r�1
��

XI �G P

�r�G1
��

Xr �P
Q
// Xr �G P

whereQ WXr�P !Xr�GP andQ0 WXI �P !XI �GP are the natural projections. Using Lemma 4.5
and Theorem 5.1,

TCr Œp WE! B�D secatŒ�r �G 1 WX
I
�G P !Xr �G P �

� secatŒ.�r �G 1/ ıQ
0
WXI �P !Xr �G P �

D secatŒ.Q ı .�r � 1/ WX
I
�P !Xr �G P �

� secatŒQ WXr �P !Xr �G P �C secatQŒ�r � 1 WX
I
�P !Xr �P �:
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Next we observe that

secatŒXr �P !Xr �G P �� secatŒ� W P ! B�DG–catŒp WE! B�

and
secatQŒX

I
�P !Xr �P �D TCwr;G.X IP /:

Thus, we obtain the right inequality in (29).

For the left inequality in (29) we consider again diagram (30) and observe that the fibration

�r � 1 WX
I
�P !Xr �P

is induced from �r �G 1 WX
I �G P !Xr �G P via Q. Therefore, using Lemma 4.4 we obtain

TCr Œp WE! B�D secatŒ�r � 1 WX
I
�G P !Xr �G P �

� secatQŒ�r � 1 WX
I
�P !Xr �P �

D TCwr;G.X IP /:

Remark 8.2 Due to the right inequality in (26), the upper bound in (29) gives

(31) TCr Œp WE! B��G–catŒp WE! B�CTCwr;G.X/:

The right-hand side of this inequality has two terms, one depending only on the initial bundle p WE! B

and the other depending only on the fibre, X viewed as a G–space.

Theorem 8.1 implies that for the trivial bundle p WE!B with fibreX one has TCr Œp WE!B�DTCr.X/;
see [Farber and Paul 2022, Example 3.2]. Indeed, in this case

G–catŒp WE! B�D 0 and TCwr;G.X; P /D TCr.X/I

hence the statement follows from (29).

Example 8.3 The Klein bottle K is the total space of the bundle p W K D S1 �Z=2 S
1 ! S1 with

the associated principal bundle the 2–fold covering � W S1 ! S1 and the action of G D Z=2 on the
fibre S1 being given by reflection in the last coordinate. The inequality (31) with r D 2 and the result of
Example 7.7 give

(32) TCŒp WK! S1�D TC2Œp WK! S1�� 1C 1D 2:

Mark Grant observed that (32) is in fact an equality. The inequality TCŒp WK! S1�� 2 can be obtained
by applying [Farber and Weinberger 2023a, Theorem 2]. The bundle p W K ! S1 is the unit sphere
bundle of a rank 2 vector bundle � over the circle S1. One has w2.�/ D 0 (for dimensional reasons)
and w1.�/¤ 0 (since � is not orientable) and therefore the relative height h.w1.�/ j w2.�// equals one.
Theorem 2 from [Farber and Weinberger 2023a] now applies and gives an equality TCŒp WK! S1�D 2.

Example 8.4 Consider the principal G–bundle � W P ! B where G D S1, P D S2nC1 and B DCPn

(the Hopf bundle). Here the sphere S2nC1 is viewed as the unit sphere in CnC1 and the circle S1 acts
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on it by complex multiplication. Let X D S2 with S1–action given by rotations about the z–axis, as in
Example 7.9. Consider the fibre bundle p W E! B with fibre X D S2 where E DX �G P . Applying
(31) with r D 2 we obtain

(33) TCŒp WE! B�D TC2Œp WE! B�� secatŒ� W P ! B�CTCw2;G.X/

and from Example 7.9 we know that TCw2;G.X/D 2. On the other hand, since cat.CPn/D n, we have
secatŒ� W P ! B�� cat.B/D n (in fact, this is an equality by a cup-length argument). Thus, (33) gives
TCŒp WE! B�� nC 2.

In [Farber and Weinberger 2023b] the authors studied parametrized topological complexity of sphere
bundles. The sphere bundle p WE! B which was discussed in the previous paragraph is the unit sphere
bundle associated with the rank 3 vector bundle over B DCPn which is the Whitney sum �˚ � where �
is the canonical complex line bundle over CPn and � is a trivial real line bundle. The result of [Farber and
Weinberger 2023b, Example 20] states that TCŒp WE!B�� nC2 and moreover TCŒp WE!B�D nC2

for any even n.

Here the point is that, in the example above, the upper bound (31) is in fact sharp; that is, we have an
equality

TCŒp WE! B�DG–catŒp WE! B�CTCw2;G.S
2/:

In fact, since in general TCwr;G.X IP /�TCwr;G.X/, we see that (29) in this case is an equality as well. This
emphasizes the fact that these upper bounds can sometimes detect parametrized topological complexity
precisely.
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The multiplicative structures on motivic homotopy groups

DANIEL DUGGER

BJØRN IAN DUNDAS

DANIEL C ISAKSEN

PAUL ARNE ØSTVÆR

We reconcile the multiplications on the homotopy rings of motivic ring spectra used by Voevodsky and
Dugger. While the connection is elementary and similar phenomena have been observed in situations like
supersymmetry, neither we nor other researchers we consulted were aware of the conflicting definitions
and the potential consequences. Hence this short note.

14F42; 13A02

The homotopy groups of a motivic spectrum E form a Z�Z–graded abelian group ��;?E. If E is a motivic
ring spectrum, then the multiplication induces a ring structure on ��;?E, which, if E is commutative,
should be graded commutative, as explained in [Dugger 2014]. Voevodsky [2003] displays the dual
Steenrod algebra A�;? as a ring with graded commutativity x � y D y � x � .�1/ac for x 2 Aa;b and
y 2Ac;d — the same convention is used in [Hoyois et al. 2017; Spitzweck 2018] — while [Dugger 2014]
yields x �yD y �x �.�1/.a�b/.c�d/ �.�1/bd . These are different formulas: for instance, Voevodsky claims
�0� D ��0 and, according to [Dugger 2014], we must have that �0� D���0.

The authors were distressed to discover this, and, worryingly enough, none of those we consulted had
discovered the discrepancy (although [Dugger 2014] claims that the Betti realization is not a ring map).
Was there a subtle mistake buried in the literature somewhere? Something was surely wrong. But what?

Don’t panic

Fortunately, the results are not irreconcilable, and in fact the solution is already to be found in [Dugger
2014, Proposition 7.2]:

“The” homotopy ring of a motivic ring spectrum A is not canonical.

Let us recall the outline of this story:

(1) Taking as given the usual bigraded family of spheres Sp;q , one obtains a bigraded abelian group
��;?AD

L
p;q �p;qA. But equipping this with a product requires fixing a choice of isomorphisms

�a;b W S
a1;a2 ^ Sb1;b2 Š Sa1Cb1;a2Cb2 in the stable homotopy category. For the product to be

associative, a set of familiar pentagonal diagrams has to commute; when this happens, let us say
that the collection of �–isomorphisms is coherent.
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Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://dx.doi.org/10.2140/agt.2024.24.1781
http://www.ams.org/mathscinet/search/mscdoc.html?code=14F42, 13A02
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


1782 Daniel Dugger, Bjørn Ian Dundas, Daniel C Isaksen and Paul Arne Østvær

(2) Let S denote the motivic sphere spectrum. The set of coherent collections of �–isomorphisms is a
torsor for the group Z2.Z�Z; .�0;0S/�/ of reduced 2–cocycles on the group Z�Z with values in the
group of units in the ring �0;0S. In other words, if we fix one collection of coherent �–isomorphisms,
then any other such collection differs from it by such a reduced 2–cocycle. Recall here that a
function ˛ W Z�Z! .�0;0S/� is a 2–cocycle when ˛.uC v;w/ �˛.u; v/D ˛.v;w/ �˛.u; vCw/
for u; v; w 2 Z2, and is reduced when ˛.0; 0/D 1.

(3) Two different choices of coherent �–isomorphisms typically lead to two different ring structures
on ��;?A. The difference 2–cocycle is a coboundary precisely when there is a bigraded iso-
morphism between these rings that multiplies elements of each bidegree aD .a1; a2/ by a fixed
unit ea 2 �0;0.S/

�. Such isomorphisms are called standard isomorphisms in [Dugger 2014].

See [Dugger 2014, Section 7] for details on the above.

It turns out that the �–isomorphisms chosen in [Dugger 2014] lead to a different ring structure on ��;?A

than the one used by Voevodsky, even up to standard isomorphism. Of course, we can still translate between
the two rings, and it is not exactly that one choice is right and one is wrong — if a person keeps their wits
about them as far as remembering the different conventions, there are no contradictions. But below we
will analyze a collection of different choices and make some suggestions about which ones seem ideal. We
stress that the underlying symmetric monoidal structure of motivic spectra and the definition of homotopy
groups are the same in [Dugger 2014; Voevodsky 2003]; it is only the choice of coherent �–isomorphisms
(not explicitly spelled out in [Voevodsky 2003], but in some sense there implicitly) that differs.

That multigraded objects have flexibility in sign conventions has been observed in situations other than
motivic homotopy theory, for instance in supersymmetry [Deligne and Morgan 1999]. We comment on
this, as well as on the connection to equivariant theory, in Remarks 2 and 3 below.

The signs they are a-changin’

Regardless of the base scheme, �0;0S always contains the following four (not necessarily distinct) square
roots of 1: 1, �1, � and ��, where �1 and � are given by g 7! g�1 on the topological and Tate circles,
S1 and Gm, respectively. When choosing the coherent isomorphisms

Sa1;a2 ^Sb1;b2 Š Sa1Cb1;a2Cb2 ;

where Sa1;a2 D .S1/^.a1�a2/ ^G^a2
m , the convention in [Dugger 2014] was as follows: every time

two S1’s are moved past each other, the sign �1 appears, and every time two Gm’s are moved past
each other, we get an �. But swapping S1’s and Gm’s is not assigned any punishment in [Dugger 2014].
This convention makes sense if S1 and Gm are regarded as generic objects without any special relation
between them, which was the case in the more general settings treated in [Dugger 2014]. However, this
particular choice raises a problem: when the ground field is the complex numbers, Betti realization sends
Gm to Gm.C/ ' S1, so moving a Gm past an S1 is detected in topology. Consequently, with these
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conventions, the Betti realization map ��;?X ! ��X.C/ is not a ring homomorphism — there is an
annoying sign that comes up (see [Dugger 2014, Proposition 1.19]).

A better approach is to recognize that the isomorphism Sa1;a2 ^Sb1;b2 Š Sa1Cb1;a2Cb2 should involve
a2.b1� b2/ swaps of Gm’s past S1’s and we can choose to include a “generalized sign” factor to track
this. To this end, choose once and for all a unit u 2 �0;0S. In our applications we will have u2 D 1 and
u will play the role of a “generalized sign”, but the basic setup only needs u to be invertible. If A is
any motivic ring spectrum with unit map � W S!A, we may consider the Z�Z–graded ring .��;?A; � /

provided by [Dugger 2014] and we may consider the alternative .��;?A; �u / with

x �u y D x �y � �ua2.b1�b2/

when x 2 �a1;a2
A and y 2 �b1;b2

A (“punishing” each swap of Gm’s past S1’s by multiplying with u).
Here ˛u..a1; a2/; .b1; b2//D �ua2.b1�b2/ is the 2–cocycle from our story. The cocycle condition gives
associativity of �u, and the other axioms for a ring follow readily. If A is commutative then the same
proof as for [Dugger 2014, Proposition 1.18] shows that x �y D y �x � .�1/.a1�a2/.b1�b2/�a2b2 . So

x �u y D y �u x � .�1/.a1�a2/.b1�b2/�.�a2b2ua2.b1�b2/u�b2.a1�a2//

D y �u x � .�1/.a1b1Ca1b2Ca2b1Ca2b2/�.�a2b2ua2b1�a1b2/

D y �u x � .�1/a1b1�.�u/a2b1�a1b2�.��/a2b2 :

In particular, if �.�/D �.u/D�1 then �.��/D �.�u/D 1 and thus

x �u y D y �u x � .�1/a1b1 :

This is exactly Voevodsky’s convention for commutativity in the dual Steenrod algebra: graded commuta-
tivity with respect to the total grading (see [Voevodsky 2003, Theorem 2.2]).

Remark 1 We used a special 2–cocycle in the above computations, but this wasn’t necessary. For any
reduced 2–cocycle ˛, we can define x �˛ y D x �y �˛..a1; a2/; .b1; b2//, and then there is an associated
commutativity formula of the form

x �˛ y D y �˛ x �w..a1; a2/; .b1; b2//;

where w is a 2–cocycle that is skew-symmetric in the sense of w.a; b/D w.b; a/�1. In fact,

w.a; b/D .�1/.a1�a2/.b1�b2/�a2b2˛.a; b/�1˛.b; a/:

Proposition An invertible element u in �0;0S gives a functor A 7! .��;?A; �u / from motivic ring spectra
to Z�Z–graded rings.

Choosing uD�1 or uD � gives graded rings conforming with Voevodsky’s commutativity formulas for
ring spectra A having the property that �A.�/D�1. Choosing uD 1 gives the multiplication in [Dugger
2014].

Also , over the complex numbers , when choosing u D �1 or u D �, Betti realization gives a map of
(commutative) graded rings by forgetting weight.

Algebraic & Geometric Topology, Volume 24 (2024)
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For a given choice of u, we can ask whether the rings .��;?A; � / and .��;?A; �u / happen to be isomorphic
via a standard isomorphism. Deciding this is equivalent to checking whether ˛u is a coboundary. But, if
ˇ is a 1–cochain, then .ıˇ/.a; b/D ˇ.a/�ˇ.aC b/Cˇ.b/ and is therefore symmetric in a and b. As
˛u is not symmetric, it is not a coboundary.

If u2 D 1 then the subgroup hui of .�0;0S/� is just Z=2, and since B.Z�Z/ is the 2–torus we have
H 2.Z�ZIZ=2/D Z=2. So, as far as twisting by u goes (once u is fixed), there are only two different
standard isomorphism classes of homotopy rings that can arise: these are represented by the products
� and �u that we saw above. Allowing arbitrary twists from the subgroup f1;�1; �;��g increases the
number of possibilities to four.

Remark 2 Of course, these considerations hold in situations other than motivic homotopy theory. An
interesting example is that of C2–equivariant spectra. When over the real numbers, evaluating at complex
points gives a symmetric monoidal functor from motivic spectra to C2–equivariant spectra, where S1.C/

corresponds to the trivial representation and Gm.C/ to the sign representation � . Thus, choosing your
u’s in the same way in the motivic and in the C2–equivariant setting gives that Betti realization induces a
map of (commutative) bigraded rings.

In this C2–equivariant context, in addition to the forgetful map to nonequivariant spectra there is also
the fixed-point functor A 7! �A. This induces maps of groups �p;q.A/! �p�q.�A/, and so we can ask
whether ��;?.A/! ��.�A/ is a ring homomorphism. For uD�1 it is not, but for uD � it is. For this
reason we suggest that uD � is the best choice for both motivic and C2–equivariant homotopy. With this
convention, the graded-commutativity formula for the homotopy ring of a ring spectrum is

xy D yx � .�1/a1b1.��/a2b1Ca1b2Ca2b2 D yx � .��/.a1�a2/.b1�b2/ � �a1b1

for x 2 �a1;a2
A and y 2 �b1;b2

A.

Remark 3 We mention a connection to supersymmetry. Choosing uD 1 corresponds to the “Deligne
convention” (see [Deligne and Morgan 1999, 1.2.8]), where commuting something in degree aC b�

with something in degree cC d� would introduce the penalty .�1/acCbd� (where .�1/� is the twist
on the sign representation) while choosing uD � would result in the “Bernstein convention” with sign
.�1/.aCb�/.cCd�/.

Remark 4 Another approach to these issues is to grade the stable homotopy ring by invertible objects
rather than by isomorphism classes of invertible objects. This is sometimes referred to as a Pic–grading,
though that terminology can be confusing since Pic is often used for isomorphism classes of invertible
objects. For example, in the context of G–equivariant stable homotopy theory, one has to remember that
�V�W X depends on the pair of representations .V;W / and not just on the class V �W in RO.G/. In
the Pic–grading, �V˚W X and �W˚V X are different groups, albeit isomorphic ones.

The Pic–grading eliminates all questions of sign choices: everything works out canonically. However, the
cost is that one does not have a ring graded by a manageable collection of objects, so this approach is not
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conducive for computation. The sign issues considered in this paper arise when one tries to reduce the
Pic–grading to something practical for computation.

The effect on the motivic stable homotopy ring

These considerations led us to wonder whether any well-known relations in the motivic stable homotopy
groups change under the different sign conventions. For example, do any of the relations in [Dugger and
Isaksen 2013] depend on the sign convention? See [Isaksen and Østvær 2020] for a recent survey article
on motivic stable homotopy groups.

First of all, the relation .1� �/�2 D 0 witnesses that � must play a role in graded commutativity. When
we commute the element � in �1;1 past itself, a factor of � appears. Note that 2�2 is not zero in general;
this is detected in the R–motivic homotopy groups.

Consider the list
�; �; �; �; �top; �top; �top

of elements of degrees

.�1;�1/; .1; 1/; .3; 2/; .7; 4/; .1; 0/; .3; 0/; .7; 0/;

respectively. These seven elements are defined in the motivic stable homotopy ring over any base. As far
as we are aware, the only way to produce additional “universal” examples is to assemble these elements
with Toda brackets.

By inspection, it turns out the commutativity relations amongst these elements are the same when uD 1

or uD �. The “error” factor �a2b1Ca1b2 is not equal to one in some cases. However, in all such cases, we
are saved by the relations .1� �/�D 0 and .1� �/�D 0.

This observation led us to search further for an explicit example where the cases uD 1 and uD � give
different commutativity relations in the motivic stable homotopy ring. We inspected the 2–complete
R–motivic stable homotopy ring in a large range [Belmont and Isaksen 2022], and we found no possible
differences. Similarly, a brief, speculative investigation of 3–complete homotopy yielded no examples.

On the other hand, assume that � detects a stable homotopy element of degree .0;�1/. This assumption
holds, for example, in the p–complete context over the field C. Then the cases u D 1 and u D �

give different commutativity relations. For example, if u D 1, then �� D ��� in �3;1; but if u D �,
then �� D���� .

This investigation led us to notice a pattern in the 2–complete R–motivic stable homotopy groups that
had not been previously observed.

Conjecture Let ˛ have degree .s; w/ in the 2–complete R–motivic stable homotopy ring. If .1� �/˛ is
nonzero , then w is even.
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Coxeter systems with 2–dimensional Davis complexes, growth rates
and Perron numbers

NAOMI BREDON

TOMOSHIGE YUKITA

We study growth rates of Coxeter systems with Davis complexes of dimension at most 2. We show that if
the Euler characteristic � of the nerve of a Coxeter system is vanishing (resp. positive), then its growth
rate is a Salem (resp. Pisot) number. In this way, we extend results due to Floyd (1992) and Parry (1993).
In the case where � is negative, we provide infinitely many nonhyperbolic Coxeter systems whose growth
rates are Perron numbers.

20F55, 20F65

1 Introduction

Let � be a finitely generated group with generating set S . For an element x 2 � , we write jxjS for the
word length with respect to S . The growth rate of .�;S/ is defined by

�.�;S/D lim sup
`!1

`
p

a`;

where a` is the number of elements of � of word length `. Gromov’s polynomial growth theorem [1981]
states that � has a nilpotent subgroup of finite index if and only if there exist positive constants C > 0

and d > 0 such that a` � C `d for ` � 0. If .�;S/ satisfies the latter property, then we say that .�;S/
has polynomial growth. In this case, one has �.�;S/D 1. The pair .�;S/ is said to have exponential
growth when �.�;S/ > 1. Note that there exist pairs of groups and finite generating sets which have
neither polynomial growth nor exponential growth (see [Grigorchuk 1984] for example).

Suppose that .�;S/ is an abstract Coxeter system; that is, � is generated by S and has the presentation

� D hs1; : : : ; sN j .sisj /
kij for 1� i; j �N i;

where kii D 1 and kij � 2 (see Section 2.1). There are three types of Coxeter systems: spherical, affine,
and otherwise. If .�;S/ is spherical or affine, then it has polynomial growth. Therefore, our interest lies
in the growth rates of nonspherical, nonaffine Coxeter systems. For instance, cofinite hyperbolic Coxeter
systems are such Coxeter systems (see Section 2.2).

In the study of the growth rates of hyperbolic Coxeter systems, three kinds of real algebraic integers
appear: Salem numbers, Pisot numbers, and Perron numbers (see Section 2.3). By results of Parry [1993],
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the growth rates of 2– and 3–dimensional cocompact hyperbolic Coxeter systems are Salem numbers.
Floyd [1992] showed that the growth rates of 2–dimensional cofinite hyperbolic Coxeter systems are Pisot
numbers. Moreover, their growth rates are limits of growth rates of 2–dimensional cocompact hyperbolic
Coxeter systems. Yukita [2017; 2018] proved that the growth rates of 3–dimensional cofinite hyperbolic
Coxeter systems are Perron numbers. Kolpakov [2012] proved that the growth rates of particular 3–
dimensional cofinite hyperbolic Coxeter systems are Pisot numbers. With all the above considerations,
we are interested in the relation between the geometric properties of Coxeter systems and the arithmetic
nature of their growth rates as follows.

Let .�;S/ be an abstract Coxeter system. Its nerve L.�;S/ is the abstract simplicial complex defined
as follows (see Section 2.2). The vertex set is S . For a nonempty subset T D fsi1

; : : : ; sin
g � S , the

vertices si1
; : : : ; sin

span an .n�1/–simplex if and only if T generates a finite subgroup of � . By abuse
of notation, we write L.�;S/ for its geometric realization (see [Munkres 1984, Chapter 1, Section 3] for
details). The dimension of .�;S/ is defined as the maximal rank of a spherical parabolic subgroup of � ,
that is a subgroup generated by a subset of S . It coincides with the dimension of the Davis complex of
.�;S/; see [Davis 2008; Felikson and Tumarkin 2010].

In this paper, we study the arithmetic nature of the growth rates of nonspherical, nonaffine Coxeter systems
.�;S/ of dimension at most 2. We will prove the following main theorems.

Theorem A If �.L.�;S//D 0, then the growth rate �.�;S/ is a Salem number.

Theorem B If �.L.�;S//� 1, then the growth rate �.�;S/ is a Pisot number. Moreover , there exists
a sequence of Coxeter systems .�n;Sn/ with vanishing Euler characteristic such that the growth rate
�.�n;Sn/ converges to �.�;S/ from below.

This paper is organized as follows. In Section 2, we provide the necessary background about Coxeter
systems, their nerves, and their growth rates. Theorem A is discussed in Section 3 where we consider
Coxeter systems with vanishing Euler characteristic. This extends the result by Parry [1993]. Section 4 is
devoted to the study of Coxeter systems with positive Euler characteristic where we prove Theorem B
generalizing Floyd’s result [1992]. In Section 5, we provide some examples of infinite sequences of Coxeter
systems with negative Euler characteristic whose growth rates are Perron numbers; see Proposition 5.1.

2 Preliminaries

2.1 Coxeter systems

For a group � with generating set S D fs1; : : : ; sN g, the pair .�;S/ is called a Coxeter system if � has
the presentation

� D hs1; : : : ; sN j .sisj /
kij for 1� i; j �N i;
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4

AN .N � 1/ BN .N � 2/ DN .N � 4/

E6 E7 E8

4 5 5 k

F4 H3 H4 I2.k/

Figure 1: Irreducible spherical Coxeter systems of rank N .

where kii D 1 and kij � 2. In the case where sisj has infinite order, we put kij D1. The rank of a
Coxeter system .�;S/ is defined as the cardinality #S of S . For a subset T � S , the subgroup �T of �
generated by T is called a parabolic subgroup of � , with �∅ D f1g by convention.

Given a Coxeter system .�;S/ of rank N , define the cosine matrix associated to .�;S/ as the symmetric
matrix C.�;S/ D .cij / 2MN .R/ with entries

cij D

�
�cos.�=kij / if kij <1;

�1 if kij D1:

The Coxeter system .�;S/ is said to be spherical (resp. affine), if C.�;S/ is positive definite (resp. positive
semidefinite).

In this paper, a graph X is said to be simple if X has no loops or multiple edges. We associate to a
Coxeter system .�;S/ two kinds of edge-labeled simple graphs: the Coxeter diagram Cox.�;S/ and the
presentation diagram X.�;S/.

The Coxeter diagram Cox.�;S/ is defined as follows. The vertex set is S . Two vertices si and sj

are connected by an edge if and only if kij � 3. The edge between si and sj is labeled by kij if
kij 2 f4; 5; : : : g[ f1g. A Coxeter system .�;S/ is said to be irreducible if the underlying graph of
Cox.�;S/ is connected. It is known that a spherical (resp. affine) Coxeter system decomposes into a

4 4 4

zAN .N � 2/ zBN .N � 3/ zCN .N � 2/ zDN .N � 4/

zE6
zE7

zE8

1 4 6

zA1
zF4

zG2

Figure 2: Irreducible affine Coxeter systems of rank N C 1.
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2 2 3 2

k k
k � 2 k D 3; 4; 5

Figure 3: The presentation diagrams of the spherical Coxeter systems of rank 3.

direct product of irreducible spherical (resp. spherical and affine) Coxeter systems. The Coxeter diagrams
of irreducible spherical and affine Coxeter systems are depicted in Figures 1 and 2, respectively (see
[Humphreys 1990, pages 32 and 34]).

The presentation diagram X.�;S/ is defined as follows. The vertex set is S . Two vertices si and sj

are connected by an edge labeled by kij when kij <1. It follows that the underlying graphs of the
presentation diagrams of spherical Coxeter systems of rank N are complete graphs with N vertices. For
example, Figure 3 shows the presentation diagrams of the spherical Coxeter systems of rank 3.

Remark 2.1 If the Coxeter diagram Cox.�;S/ (resp. the presentation diagram X.�;S/) of a Coxeter
system .�;S/ is disconnected, then .�;S/ is a direct product (resp. a free product) of the Coxeter systems
corresponding to the connected components.

2.2 Geometric Coxeter groups and nerves

For more details about geometric Coxeter groups and nerves of Coxeter systems we refer to [Davis 2008;
Ratcliffe 1994].

Let us denote by Xn the n–dimensional spherical space Sn, Euclidean space En, or hyperbolic space Hn.
An n–dimensional Coxeter polytope P �Xn is the intersection of finitely many half-spaces whose interior
is nonempty and dihedral angles are of the form �=k for k � 2 or equal to zero. Given an n–dimensional
Coxeter polytope P � Xn, the set SP of the reflections in the bounding hyperplanes of P generates a
discrete subgroup �P of Isom .Xn/. The pair .�P ;SP / is a Coxeter system, and is called an n–dimensional
geometric Coxeter system associated with P . The group �P is called the n–dimensional geometric Coxeter
group associated with P . It is known that P is a fundamental polytope for �P and the orbit fgP j g 2�P g

of P gives rise to an exact tessellation of Xn. Furthermore, �P is said to be cocompact (resp. cofinite)
when P is compact (resp. not compact but of finite volume). For a hyperbolic Coxeter polytope P , we
say that �P is ideal when every vertex of P lies on the boundary at infinity @Hn. For each irreducible
spherical (resp. affine) Coxeter system .�;S/, there exists a spherical (resp. compact Euclidean) Coxeter
polytope P such that .�;S/D .�P ;SP /. Therefore, if .�;S/ is a spherical (resp. affine) Coxeter system,
then � is finite (resp. virtually nilpotent). In contrast to this, if .�;S/ is nonspherical and nonaffine, then
� contains a free group of rank at least 2; see [de la Harpe 1987].

Let .�;S/ be an abstract Coxeter system. The nerve L.�;S/ is an abstract simplicial complex defined as
follows. The vertex set is S , and for a nonempty subset T D fsi1

; : : : ; sin
g � S , the vertices si1

; : : : ; sin
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span an .n�1/–simplex if and only if the parabolic subgroup �T is finite. For simplicity of notation, we
continue to write L.�;S/ for its geometric realization (see [Munkres 1984, Chapter 1, Section 3] for
details). The dimension of .�;S/, denoted by dim.�;S/, is defined as the maximal rank of a spherical
parabolic subgroup of � , that is a subgroup generated by a subset of S . It coincides with the dimension
of the Davis complex of .�;S/; see [Davis 2008; Felikson and Tumarkin 2010].

In this paper, we consider Coxeter systems of dimension at most 2. In particular, such a class of Coxeter
systems contains hyperbolic Coxeter groups of dimension 2 and ideal hyperbolic Coxeter groups of
dimension 3. Indeed, for such groups, maximal spherical subgroups are of rank at most 2. For a Coxeter
system .�;S/ of dimension at most 2, it is easy to see that the underlying graph of X.�;S/ is the
geometric realization of the nerve L.�;S/. Therefore the Euler characteristic �.L.�;S// equals the one
of the underlying graph of X.�;S/. It is known that the Euler characteristic of a graph is the number of
vertices minus the number of edges.

2.3 Growth rates of Coxeter systems

Let .�;S/ be a Coxeter system. For x 2 � , we define its word length with respect to S by

jxjS Dminfn 2N j x D s1 � � � sn .s1; : : : ; sn 2 S/g:

By convention, j1jS D 0. The growth series f.�;S/.z/ of .�;S/ is defined by

f.�;S/.z/D
X
`�0

a`z
`;

where a` is the number of the elements of � of word length `. If .�;S/ is spherical, then f.�;S/.z/ is a
polynomial and called the growth polynomial of .�;S/.

By a result of Solomon [1966], the growth polynomials of spherical Coxeter systems can be computed in
terms of its exponents. For the list of exponents, see [Humphreys 1990]. For example, the exponents of
AN are given by 1; 2; : : : ;N , and those of I2.k/ are 1; k � 1. For positive integers m;m1; : : : ;mr , we
put

Œm�D 1C zC � � �C zm�1 and Œm1; : : : ;mr �D Œm1� � � � Œmr �:

Solomon’s formula states that for a spherical Coxeter system .�;S/ with the exponents m1; : : : ;mr , one
has f.�;S/.z/D Œm1C 1; : : : ;mr C 1�.

If .�;S/ is nonspherical, then the inverse of the radius of convergence of f.�;S/.z/ is called the growth
rate of .�;S/, denoted by �.�;S/. The Cauchy–Hadamard formula gives

�.�;S/D lim sup
`!1

`
p

a`:

Since free abelian groups of finite rank have polynomial growth [Wolf 1968], and any affine Coxeter
system contains a free abelian subgroup of finite rank and finite index, the growth rate of an affine Coxeter
system is 1.
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3

3

3
3

Figure 4: The presentation diagram of .�?;S?/.

Remark 2.2 If a Coxeter system .�;S/ decomposes as .�1;S1/ � .�2;S2/ � � � � � .�l ;Sl/, then its
growth series satisfies f.�;S/ D…if.�i ;Si /. It follows for the growth rate that �.�;S/Dmaxi �.�i ;Si/.
This does not hold when .�;S/ decomposes as a free product.

The following formula, established by Steinberg, is an important tool to compute the growth series of
Coxeter systems.

Theorem 2.3 (Steinberg’s formula [1968]) Let .�;S/ be a Coxeter system. Then the identity

(2-1)
1

f.�;S/.z
�1/
D

X
T�S

#�T<1

.�1/#T

f.�T ;T /.z/

holds for the growth series f.�;S/.z/.

Steinberg’s formula implies that the growth series is a rational function and satisfies that

1

f.�;S/.z
�1/
D

P .z/

Q.z/
;

where P .z/ and Q.z/ are monic polynomials with integer coefficients. It follows that the growth rate
�.�;S/ is the real root of P .z/whose modulus is maximal among the roots of P .z/, and hence �.�;S/�1

is a real algebraic integer.

Example 2.4 Consider the abstract Coxeter system .�?;S?/ whose presentation diagram is depicted
in Figure 4. The spherical subgroups are A1 and A2, both with multiplicity four. By Steinberg’s
formula (2-1), we compute its growth series

1

f.�?;S?/.z
�1/
D 1�

4

Œ2�
C

4

Œ2; 3�
D
Œ2; 3�� 4Œ3�C 4

Œ2; 3�
:

We write P .z/ for the numerator of 1=f.�?;S?/.z
�1/; that is,

P .z/D 1� 2z� 2z2
C z3:

One easily sees that P .�1/D 0 and that the greatest positive root of P .z/ is given by

�.�?;S?/D
3C
p

5

2
D

1

.' � 1/2
;

where ' is the golden ratio.
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Example 2.5 If .�;S/ is a Coxeter system of rank N whose presentation diagram X.�;S/ has no edges,
then �.�;S/DN � 1. Indeed, we compute by Steinberg’s formula (2-1)

1

f.�;S/.z
�1/
D 1�

N

Œ2�
D

z� .N � 1/

Œ2�
:

Example 2.6 If .�;S/ is a Coxeter system of rank N whose presentation diagram X.�;S/ is a tree
with edges labeled by 2 only, then

1

f.�;S/.z
�1/
D 1�

N

Œ2�
C

N � 1

Œ2; 2�
D
Œ2; 2��N Œ2�CN � 1

Œ2; 2�
D

z.z� .N � 2//

.1C z/2
:

Observe that the growth series does not depend on the isomorphism type of the tree, only on the number
of its vertices. Therefore, the growth rate is given by �.�;S/DN � 2.

From now on, we focus on the growth rates of nonspherical, nonaffine Coxeter systems. Three kinds
of real algebraic integers appear in the study of the growth rates of hyperbolic Coxeter systems: Salem
numbers, Pisot numbers, and Perron numbers (see [Bertin et al. 1992, page 84]).

An algebraic integer � > 1 is called a Salem number if it is a quadratic unit or is such that the inverse ��1 is
a Galois conjugate of � and the other Galois conjugates lie on the unit circle. The minimal polynomial of a
Salem number is called a Salem polynomial. Parry showed that the growth rates of 2– and 3–dimensional
cocompact hyperbolic Coxeter systems are Salem numbers [Parry 1993].

An algebraic integer � > 1 is called a Pisot number if � is an integer or if all of its other Galois
conjugates are contained in the unit open disk. The minimal polynomial of a Pisot number is called
a Pisot polynomial. Floyd showed that the growth rates of 2–dimensional cofinite hyperbolic Coxeter
systems are Pisot numbers [Parry 1993]. Moreover, for a 2–dimensional cofinite hyperbolic Coxeter
systems .�;S/, there exists a sequence of 2–dimensional cocompact hyperbolic Coxeter systems .�n;Sn/

whose growth rates �.�n;Sn/ converges to �.�;S/ from below.

An algebraic integer � > 1 is called a Perron number if � is an integer or if all of its other Galois conjugates
are strictly less than � in absolute value. Note that Salem numbers and Pisot numbers are Perron numbers.
Yukita [2017; 2018]] showed that the growth rates of 3–dimensional cofinite hyperbolic Coxeter systems
are Perron numbers. Note that Komori and Yukita [2015] and Nonaka and Kellerhals [2017] showed
that the growth rates of cofinite 3–dimensional hyperbolic ideal Coxeter systems are Perron numbers.
For a 4–dimensional cocompact Coxeter system .�P ;SP /, Kellerhals and Perren [2011] proved that the
growth rates are Perron numbers for #SP D 5 and 6. In particular, they conjectured that the growth rates
of hyperbolic Coxeter systems are Perron numbers.

This is a motivation to relate geometric properties of Coxeter systems to the arithmetic nature of their
growth rates. The aim of this paper is to extend the results of Floyd and Parry to nonspherical, nonaffine,
and nonhyperbolic Coxeter systems of dimension at most 2. Note that Charney and Davis [1991] studied
the relationship between the geometry of nerves and reciprocity of the growth series.
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We use the partial order on the set of Coxeter systems defined by McMullen [2002]. Let .�;S/ and
.� 0;S 0/ be Coxeter systems. Write .�;S/� .� 0;S 0/ when there exists an injection � W S ! S 0 such that
k.s; t/� k 0.�.s/; �.t//, where k.s; t/ and k 0.�.s/; �.t// are the orders of st and �.s/�.t/, respectively.

Theorem 2.7 [Terragni 2016, Corollary 3.2] If .�;S/� .� 0;S 0/, then �.�;S/� �.� 0;S 0/.

For a finitely generated group � with ordered finite generating set S with #S DN , we call the pair .�;S/
an N –marked group. Given two N –marked groups .�;S/ and .� 0;S 0/ we say that they are isomorphic
as marked groups when the map � W S ! S 0 sending si to s0i extends to a group isomorphism between �
and � 0. The space of N –marked groups is the set of isomorphism classes of N –marked groups equipped
with a metric topology, given by the Chabauty–Grigorchuk topology; see [Grigorchuk 1984]. Let us
denote by CN the set of marked Coxeter systems of rank N . Yukita [2024] studied the space CN and
showed that CN is compact.

Theorem 2.8 [Yukita 2024, Theorems 3.2 and 3.5] Let f.�n;Sn/g and .�;S/ be marked Coxeter
systems of rank N . We write kij .n/ (resp. kij ) for the order of si.n/sj .n/ in �n (resp. sisj in �).

(1) The sequence f.�n;Sn/g converges to .�;S/ if and only if limn!1 kij .n/D kij for 1� i; j �N .

(2) If limn!1.�n;Sn/D .�;S/, then limn!1 �.�n;Sn/D �.�;S/.

3 Growth rates of Coxeter systems with vanishing Euler characteristic

Let .�;S/ be a nonspherical, nonaffine Coxeter system of dimension at most 2 such that �.L.�;S//D 0,
where L.�;S/ denotes the geometric realization of its nerve. In this section, we prove that the growth
rate �.�;S/ is a Salem number.

We write N (resp. E) for the number of vertices (resp. edges) of the presentation diagram X.�;S/.
Recall that the Euler characteristic of a graph is the number of vertices minus the number of edges. Since
the dimension of .�;S/ is at most 2, the underlying graph of X.�;S/ coincides with L.�;S/, and hence
N DE. Suppose that the set of labels of the edges of X.�;S/ is fk1; : : : ; kr g. Let us denote by Ei the
number of edges of X.�;S/ labeled by ki .

We obtain the equality

1

f.�;S/.z
�1/
D 1�

N

Œ2�
C

rX
iD1

Ei

Œ2; ki �
D 1�

E1C � � �CEr

Œ2�
C

rX
iD1

Ei

Œ2; ki �

D 1C

rX
iD1

Ei

Œ2�

�
1

Œki �
� 1

�

D 1C

rX
iD1

Ei

Œ2�

�
z� 1

zki � 1
� 1

�
D 1C

rX
iD1

Ei
z� zki

.zC 1/.zki � 1/
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k1

k2

k3

Figure 5: The presentation diagram in the case N D 3.

by Steinberg’s formula (2-1); see also [Parry 1993, page 413]. Hence,

(3-1)
zC 1

.z� 1/f.�;S/.z
�1/
D

zC 1

z� 1
C

rX
iD1

Ei
z� zki

.z� 1/.zki � 1/
:

The following lemma is fundamental for the proof.

Lemma 3.1 [Parry 1993, Corollary 1.8] Given integers k1; : : : ; kr � 2 and E1; : : : ;Er � 1, suppose
that

(3-2)
rX

iD1

�
1�

1

ki

�
Ei > 2:

Let R.z/ be the rational function defined by

R.z/D
zC 1

z� 1
C

rX
iD1

Ei
z� zki

.z� 1/.zki � 1/
:

Then R.z/ D P .z/=Q.z/ where P .z/ and Q.z/ are relatively prime monic polynomials with integer
coefficients and equal degrees , and P .z/ is a product of distinct irreducible cyclotomic polynomials and
exactly one Salem polynomial.

Theorem 3.2 Let .�;S/ be a nonspherical , nonaffine Coxeter system of dimension at most 2. If
�.L.�;S//D 0, then the growth rate �.�;S/ is a Salem number.

Proof We apply Lemma 3.1 to (3-1). The proof is divided into three cases: the cases N D 3, N D 4,
and N � 5.

(i) Assume N D 3. By assumption, N DE D 3, and hence the presentation diagram of X.�;S/ is as in
Figure 5.

Since .�;S/ is nonspherical and nonaffine,

1

k1
C

1

k2
C

1

k3
< 1:

Therefore, �
1�

1

k1

�
C

�
1�

1

k2

�
C

�
1�

1

k3

�
> 2:

(ii) Assume N D 4. The presentation diagram X.�;S/ is one of the diagrams in Figure 6. We show
that one of the labels of X.�;S/ is at least 3.
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k1 k2
k3

k4

k1

k2

k3

k4

Figure 6: The presentation diagrams in the case N D 4.

Suppose that X.�;S/ is the diagram in Figure 6, left. If k1Dk2Dk4D 2, then the vertices of the triangle
generates a spherical parabolic subgroup of � of rank 3. This contradicts the fact that the dimension of
.�;S/ is at most 2. Therefore, one of the labels is at least 3. Suppose that X.�;S/ is the diagram in
Figure 6, right. If k1D k2D k3D k4D 2, then the Coxeter diagram Cox.�;S/ is made of two connected
components zA1 (see Figure 2 for zA1). This is a contradiction to the fact that .�;S/ is nonspherical and
nonaffine. Therefore, one of the labels is at least 3. Hence,�

1�
1

k1

�
C

�
1�

1

k2

�
C

�
1�

1

k3

�
C

�
1�

1

k4

�
� 3

�
1�

1

2

�
C

�
1�

1

3

�
> 2:

(iii) Assume N � 5. It follows that
rX

iD1

�
1�

1

ki

�
Ei D

rX
iD1

Ei �

rX
iD1

Ei

ki
DN �

rX
iD1

Ei

ki
�N �

rX
iD1

Ei

2
D

N

2
�

5

2
> 2:

Therefore, (3-2) holds, and the assertion follows from Lemma 3.1.

For later use, we show the following.

Lemma 3.3 Let .�;S/ be a nonspherical , nonaffine Coxeter system of dimension at most 2. Suppose
that the growth series f.�;S/.z/ satisfies the equality

1

f.�;S/.z
�1/
D

P .z/

Œ2; k1; : : : ; kr �
;

where P .z/ is a monic polynomial with integer coefficients. If �.L.�;S//D 0, then P .z/ is a product of
cyclotomic polynomials and exactly one Salem polynomial.

Proof As in the proof of Theorem 3.2, we apply Lemma 3.1 to (3-1):

zC 1

.z� 1/f.�;S/.z
�1/
D

P0.z/

Q0.z/
;

where P0.z/ and Q0.z/ are the relatively prime polynomials with integer coefficients. P0 is a product of
distinct irreducible cyclotomic polynomials and exactly one Salem polynomial. By assumption, we have

(3-3)
P .z/

Œ2; k1; : : : ; kr �
D
.z� 1/P0.z/

.zC 1/Q0.z/
:

Since every factor of the polynomial Œ2; k1; : : : ; kr � is a cyclotomic polynomial, the equality (3-3) implies
that P .z/ is a product of cyclotomic polynomials and exactly one Salem polynomial.
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4 Growth rates of Coxeter systems with positive Euler characteristic

Let .�;S/ be a nonspherical, nonaffine Coxeter system of dimension at most 2 such that �.L.�;S//� 1,
where L.�;S/ denotes the geometric realization of its nerve. Recall that �.L.�;S// equals the Euler
characteristic of the underlying graph of X.�;S/. In this section, we prove that the growth rate �.�;S/
is a Pisot number.

Lemma 4.1 Let .�;S/ be a nonspherical , nonaffine marked Coxeter system of dimension at most 2 and
rank N . Suppose that either the presentation diagram X.�;S/ is disconnected , or has an edge labeled by
k � 3. If �.L.�;S//� 1, then there exists a sequence of marked Coxeter systems f.�n;Sn/gn�7 of rank
N such that for n� 7,

(1) .�n;Sn/� .�nC1;SnC1/� .�;S/;

(2) dim.�n;Sn/� 2;

(3) �.L.�n;Sn//D �.L.�;S//� 1;

(4) the sequence f.�n;Sn/gn�7 converges to .�;S/ in the space CN of marked Coxeter systems of
rank N .

Proof Set S D fs1; : : : ; sN g. We denote by E and kij the number of edges of X.�;S/ and the order of
the product sisj , respectively.

Suppose first that the underlying graph of the presentation diagram X.�;S/ is disconnected. Let sp and
sq be two vertices of different connected components of the underlying graph of X.�;S/. It follows that
kpq D1. For n� 7, we define a marked Coxeter system .�n;Sn/ of rank N by the presentation

�n D hs1.n/; : : : ; sN .n/ j .si.n/sj .n//
kij .n/ D 1 for 1� i; j �N i;

where
kij .n/D

�
n if fi; j g D fp; qg;
kij otherwise:

We will show that .�n;Sn/ satisfies the desired properties. For 1 � i; j � N and n � 7, we have
kij .n/� kij .nC 1/� kij , so

.�n;Sn/� .�nC1;SnC1/� .�;S/:

In order to show that dim.�n;Sn/ � 2, it is sufficient to see that the presentation diagram X.�n;Sn/

does not contain any of the diagrams depicted in Figure 3. Since dim.�;S/ � 2, no such diagram is
contained in X.�;S/. The presentation diagram X.�n;Sn/ is obtained from X.�;S/ by adding an edge
between sp and sq labeled by n (see Figure 7). In Figure 7, we do not put labels of the edges other
than the added edge for simplicity. Since the vertices sp and sq lie in different connected components
of the underlying graph of X.�;S/, every cycle of the underlying graph of X.�n;Sn/ comes from one
of X.�;S/. Hence we see that X.�n;Sn/ does not contain any of the diagrams depicted in Figure 3.
The Euler characteristics of the underlying graphs of X.�n;Sn/ and X.�;S/ are equal to �.L.�n;Sn//
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X.�;S/

sp sq

components

adding
an edge

X.�n;Sn/

n

sp.n/ sq.n/

Figure 7: Adding an edge between sp and sq .

and �.L.�;S//, respectively. This observation implies that f.�n;Sn/gn�7 satisfies the property (3). By
definition of .�n;Sn/, we have limn!1 kij .n/ D kij for 1 � i; j � N . Property (1) of Theorem 2.8
implies that f.�n;Sn/gn�7 converges to .�;S/ in CN .

Suppose next that the underlying graph of X.�;S/ is connected, and let us show that the underlying
graph is a tree. Since every connected graph with the Euler characteristic 1 is a tree, it is sufficient to show
that �.L.�;S//D 1. By the connectivity of the underlying graph of X.�;S/, there exists a spanning
tree T of the graph. We denote by NT and ET the number of vertices and of edges of T , respectively. It
follows that N DNT , ET �E, and NT �ET D 1. Since �.L.�;S//DN �E � 1,

1�N �E �N �ET DNT �ET D 1;

and hence �.L.�;S//D 1.

Since Coxeter systems of rank at most 2 are spherical or affine, our assumption implies that N � 3. Also
by assumption, there exists an edge e between vertices sp and sq of X.�;S/, labeled by kpq � 3. Since
the underlying graph of X.�;S/ is a tree with at least 3 vertices, we can find an edge e0 incident with e.
Without loss of generality we can assume that e and e0 share the vertex sq . We write sr for the endpoint
of e0 other than sq . Since the underlying graph of X.�;S/ is a tree, the vertices sp and sr are not joined
by an edge. It follows that kpr D1. For n� 7, we define a marked Coxeter system .�n;Sn/ of rank N

by the presentation

�n D hs1.n/; : : : ; sN .n/ j .si.n/sj .n//
kij .n/ D 1 for 1� i; j �N i;

where
kij .n/D

�
n if fi; j g D fp; rg;
kij otherwise:

We will show that .�n;Sn/ satisfies the desired properties. For 1 � i; j � N and n � 7, we have
kij .n/� kij .nC 1/� kij , so .�n;Sn/� .�nC1;SnC1/� .�;S/.

The presentation diagram X.�n;Sn/ is obtained from X.�;S/ by adding an edge between sp and sr

labeled by n (see Figure 8). In Figure 8, we do not put labels of the edges other than three edges joining
two of sp, sq , and sr for simplicity.

Since the underlying graph of X.�;S/ is a tree, the graph of X.�n;Sn/ has only one cycle and the cycle
consists of three edges joining two of sp , sq , and sr . Therefore, the presentation diagram X.�n;Sn/ does
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X.�;S/ X.�n;Sn/
sr sr .n/

kpq

kqr n

kpq

kqr

sp sq

adding
an edge sp.n/ sq.n/

Figure 8: Adding an edge between sp and sr .

not contain any of the diagrams in Figure 3, which is due to the fact that kpq � 3 and n� 7. It follows
that dim.�n;Sn/� 2. The same reasoning as before allows one to conclude that

�.L.�n;Sn//D �.L.�;S//� 1:

By definition of .�n;Sn/, we have limn!1 kij .n/D kij for 1� i; j � n, and Property (1) of Theorem 2.8
implies that f.�n;Sn/gn�7 converges to .�;S/ in CN .

Remark 4.2 Suppose that .�;S/ is a nonspherical, nonaffine Coxeter system of at most dimension 2

such that �.L.�;S// � 1. If .�;S/ does not satisfy the hypothesis in Lemma 4.1, the presentation
diagram X.�;S/ is connected and its edges are labeled by 2 only. As shown in the proof, in this case,
the positivity of the Euler characteristic forces X.�;S/ to be a tree.

Corollary 4.3 Let .�;S/ be a nonspherical , nonaffine marked Coxeter system of dimension at most 2 and
rank N such that �.L.�n;Sn//� 1. Suppose that either the presentation diagram X.�;S/ is disconnected ,
or has an edge labeled by k � 3. Then there exists a sequence of marked Coxeter systems f.�n;Sn/gn�7

of rank N such that for n� 7,

(1) .�n;Sn/� .�nC1;SnC1/� .�;S/;

(2) dim.�n;Sn/� 2;

(3) �.L.�n;Sn//D 0;

(4) the sequence f.�n;Sn/g converges to .�;S/ in the space CN of marked Coxeter systems of rank N .

Proof We take a sequence of marked Coxeter systems f.�n1
;Sn1

/gn1�7 of rank N as in Lemma 4.1. If
�.L.�;S//D 1, then for n1 � 7,

�.L.�n1
;Sn1

//D �.L.�;S//� 1D 0:

Hence the sequence f.�n1
;Sn1

/gn1�7 satisfies the properties in Corollary 4.3.

Suppose that �.L.�;S//� 2. The presentation diagram X.�n1
;Sn1

/ has an edge labeled by n1 � 7 and
�.L.�n1

;Sn1
// D �.L.�;S//� 1 � 1. For each n1 � 7, by applying Lemma 4.1 to .�n1

;Sn1
/, there

exists a sequence of marked Coxeter systems f.�n1;n2
;Sn1;n2

/gn2�7 of rank N satisfying the properties in
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Lemma 4.1. Moreover, we may assume that .�n1;n2
;Sn1;n2

/� .�n0
1
;n0

2
;Sn0

1
;n0

2
/ for n1 � n0

1
and n2 � n0

2
.

If �.L.�;S//D 2, then for n1; n2 � 7,

�.L.�n1;n2
;Sn1;n2

//D �.L.�n1
;Sn1

//� 1D �.L.�;S//� 2D 0:

Therefore, the diagonal subsequence f.�n;n;Sn;n/gn�7 satisfies the properties in Corollary 4.3. Repeating
this procedure until the Euler characteristic vanishes completes the proof.

Let .�;S/ be a nonspherical, nonaffine marked Coxeter system of dimension at most 2 with �.L.�;S//�1.
For simplicity, we write � instead of �.L.�;S//.

We denote by N (resp. E) the number of vertices (resp. edges) of the presentation diagram X.�;S/. It
follows that N �E D �� 1. Suppose that the set of labels of the edges of X.�;S/ is fk1; : : : ; kr g. Let
us write Ei for the number of edges of X.�;S/ labeled by ki , so E DE1C � � �CEr .

We obtain the equality

1

f.�;S/.z
�1/
D 1�

N

Œ2�
C

rX
iD1

Ei

Œ2; ki �
D 1�

EC�

Œ2�
C

rX
iD1

Ei

Œ2; ki �

by Steinberg’s formula (2-1); see also [Floyd 1992, page 479]. Therefore,

1

f.�;S/.z
�1/
D
Œ2; k1; : : : ; kr �� .EC�/Œk1; : : : ; kr �C

Pr
iD1 Ei Œk1; : : : ; Oki ; : : : ; kr �

Œ2; k1; : : : ; kr �

D
Œ2; k1; : : : ; kr �C

Pr
iD1 Ei.1� Œki �/Œk1; : : : ; Oki ; : : : ; kr ���Œk1; : : : ; kr �

Œ2; k1; : : : ; kr �

D
Œ2; k1; : : : ; kr ��

Pr
iD1 EizŒki � 1�Œk1; : : : ; Oki ; : : : ; kr ���Œk1; : : : ; kr �

Œ2; k1; : : : ; kr �

D
Œ2; k1; : : : ; kr ��

Pr
iD1 EizŒk1; : : : ; ki � 1; : : : ; kr ���Œk1; : : : ; kr �

Œ2; k1; : : : ; kr �
:

If �D 1, then

1

f.�;S/.z
�1/
D
.Œ2�� 1/Œk1; : : : ; kr ��

Pr
iD1 EizŒk1; : : : ; ki � 1; : : : ; kr �

Œ2; k1; : : : ; kr �

D
z
�
Œk1; : : : ; kr ��

Pr
iD1 Ei Œk1; : : : ; ki � 1; : : : ; kr �

�
Œ2; k1; : : : ; kr �

:

We define the polynomial P .z/ as

P .z/D

(
Œk1; : : : ; kr ��

Pr
iD1 Ei Œk1; : : : ; ki � 1; : : : ; kr � if �D 1;

Œ2; k1; : : : ; kr ��
Pr

iD1 EizŒk1; : : : ; ki � 1; : : : ; kr ���Œk1; : : : ; kr � if �� 2:

It follows that
1

f.�;S/.z
�1/
D

�
zP .z/=Œ2; k1; : : : ; kr � if �D 1;

P .z/=Œ2; k1; : : : ; kr � if �� 2:
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In order to show that P .z/ is a product of cyclotomic polynomials and exactly one Pisot polynomial, we
use the following; see [Floyd 1992].

Lemma 4.4 [Floyd 1992, Lemma 1] Let P .z/ be a monic polynomial with integer coefficients. We
denote the reciprocal polynomial of P .z/ by zP .z/; that is , zP .z/ D zdeg P P .z�1/. Suppose that P .z/

satisfies

(i) P .0/¤ 0 and P .1/ < 0;

(ii) P .z/¤ zP .z/;

(iii) for sufficiently large integer m, .zmP .z/� zP .z//=.z� 1/ is a product of cyclotomic polynomials
and exactly one Salem polynomial.

Then the polynomial P .z/ is a product of cyclotomic polynomials and exactly one Pisot polynomial.

Theorem 4.5 Let .�;S/ be a nonspherical , nonaffine Coxeter system of dimension at most 2 with
�.L.�;S//� 1. Then the growth rate �.�;S/ is a Pisot number.

Proof Assume that .�;S/ of rank N satisfies the hypothesis of the theorem. Since .�;S/ is a nonspheri-
cal, nonaffine Coxeter system, we have that N � 3. If the presentation diagram X.�;S/ has no edges, the
growth rate �.�;S/DN � 1� 2 is a Pisot number; see Example 2.5. From now on, we assume that the
presentation diagram X.�;S/ has at least one edge. Denote by E � 1 the number of edges of X.�;S/.

Considering Remark 4.2, we divide the proof into two cases: the presentation diagram X.�;S/ is a tree
all of whose edges are labeled by 2, and otherwise.

In the first case, we have E DN � 1. Without loss of generality, we can assume that N � 4 since .�;S/
is nonaffine. Therefore, by Example 2.6, the growth rate �.�;S/DN � 2� 2 is a Pisot number.

In the other case, either the presentation diagram X.�;S/ is disconnected or it has an edge labeled by
k � 3. We fix an ordering of the generating set S . Let us take a sequence of marked Coxeter systems
f.�n;Sn/gn�7 of rank N as in Corollary 4.3. It follows from property (3) that the number of edges of
X.�n;Sn/ equals EC�.L.�;S//. In particular, for every n� 7 different from k1; : : : ; kr , the number of
edges of X.�n;Sn/ labeled by n is equal to �.L.�;S//. For simplicity, we write � instead of �.L.�;S//.
By Steinberg’s formula (2-1),

1

f.�n;Sn/.z
�1/
D 1�

N

Œ2�
C

rX
iD1

Ei

Œ2; ki �
C

�

Œ2; n�
D

Pn.z/

Œ2; k1; : : : ; kr ; n�
;

where

Pn.z/D Œ2; k1; : : : ; kr ; n��N Œk1; : : : ; kr ; n�C

rX
iD1

Ei Œk1; : : : ; Oki ; : : : ; kr ; n�C�Œk1; : : : ; kr �:

From the equality N DE1C � � �CEr C�, we obtain that

Pn.z/D Œ2; k1; : : : ; kr ; n��

rX
iD1

EizŒk1; : : : ; ki � 1; : : : ; kr ; n���zŒk1; : : : ; kr ; n� 1�:
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Define the polynomials P .z/ as

P .z/D

(
Œk1; : : : ; kr ��

Pr
iD1 Ei Œk1; : : : ; ki � 1; : : : ; kr � if �D 1;

Œ2; k1; : : : ; kr ��
Pr

iD1 EizŒk1; : : : ; ki � 1; : : : ; kr ���Œk1; : : : ; kr � if �� 2;

and zP .z/D zdeg P P .z�1/. Then

.z� 1/Pn.z/D

�
znC1P .z/� zP .z/ if �D 1;

znP .z/� zP .z/ if �� 2:

Since �.L.�n;Sn//D 0, by Lemma 3.3, the polynomial Pn.z/ is a product of cyclotomic polynomials
and exactly one Salem polynomial. In order to apply Lemma 4.4 to P .z/, we need to show that P .0/¤ 0,
P .1/ < 0, and that P .z/ is not reciprocal. First,

P .0/D

�
1�E if �D 1;

1�� if �� 2:

It follows that P .0/¤ 0. Since P .z/ is monic, we also conclude that P .z/ is not reciprocal. Finally, we
see that P .1/ < 0 as follows.

In the case �D 1,

P .1/D

rY
iD1

ki �

rX
iD1

�
Ei �

rY
jD1

kj �
ki � 1

ki

�
D

rY
iD1

ki �

�
1�

rX
iD1

Ei

�
1�

1

ki

��
:

If N � 4, then
rX

iD1

Ei

�
1�

1

ki

�
�

rX
iD1

Ei

�
1�

1

2

�
D

E

2
D

N �1

2
�

3

2
> 1:

It follows that P .1/ < 0 from

1�

rX
iD1

Ei

�
1�

1

ki

�
< 0:

For N D 3, the presentation diagram is made of two edges with labels k1 and k2. We necessarily have
k1 � 3 or k2 � 3, so

1�
�
1�

1

k1

�
�

�
1�

1

k2

�
� 1�

1

2
�

2

3
D�

1

6
< 0:

Hence P .1/ < 0.

In the case �� 2,

P .1/D 2

rY
iD1

ki �

rX
iD1

�
Ei �

rY
jD1

kj �
ki � 1

ki

�
��

rY
iD1

ki D

rY
iD1

ki �

�
2���

rX
iD1

Ei

�
1�

1

ki

��
:

Since X.�;S/ has at least one edge,

P .1/ <

rY
iD1

ki � .2��/� 0:

By Lemma 4.4, the polynomial P .z/ is a product of cyclotomic polynomials and exactly one Pisot
polynomial, and hence the growth rate �.�;S/ is a Pisot number.
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2 2

s1 s2 sN�1 sN

Figure 9: The presentation diagram X.y�; yS/.

Theorem 4.6 Let .�;S/ be a nonspherical , nonaffine Coxeter system of dimension at most 2 with
�.L.�;S//� 1. Then , there exists a sequence of Coxeter systems .�n;Sn/ of dimension at most 2 with
vanishing Euler characteristic such that the growth rate �.�n;Sn/ converges to �.�;S/ from below.

Proof We denote by N the rank of .�;S/. As in the proof of Theorem 4.5, we divide the proof into
two cases: either the presentation diagram X.�;S/ is disconnected or has an edge labeled by k � 3, and
otherwise.

In the first case, we fix an ordering of S and we take a sequence of marked Coxeter systems f.�n;Sn/gn�7

of rank N as in Corollary 4.3. By combining Theorems 2.7, 2.8, and 3.2, we conclude that the growth
rate �.�n;Sn/ is a Salem number and the sequence f�.�n;Sn/gn�7 converges to �.�;S/ from below.

In the other case, by Remark 4.2, the presentation diagram X.�;S/ is a tree with all edges labeled by 2.
Since .�;S/ is nonspherical and nonaffine, it forces N � 4. It was shown in Example 2.6 that the growth
rate of .�;S/ does not depend on the isomorphism type of the tree, only on the number of its vertices,
and that �.�;S/DN � 2� 2.

Consider the marked Coxeter system .y�; yS/ of rank N whose presentation diagram X.y�; yS/ is depicted
in Figure 9.

Let .�n;Sn/ be the marked Coxeter system of rank N whose presentation diagram X.�n;Sn/ is obtained
by adding an edge labeled by n� 3 between s1 and sN . As a direct consequence, .�n;Sn/ converges to
.y�; yS/ in the space of marked Coxeter systems CN of rank N . Since �.y�; yS/D �.�;S/, by combining
Theorems 2.7, 2.8, and 3.2, the assertion follows.

Remark 4.7 We mention that for hyperbolic groups, Fujiwara and Sela [2023] have studied the conver-
gence properties of growth rates with respect to all their finite generating sets; see also [Yukita 2024].
However, they did not characterize the arithmetic nature of growth rates.

5 Examples for the growth rates of Coxeter systems with negative Euler
characteristic

In this section, we consider Coxeter systems of dimension at most 2 with negative Euler characteristic.
We provide some infinite sequences of such Coxeter systems, and prove by a classical approach that their
growth rates are Perron numbers; see also Remark 5.2.

Let .�?;S?/ be the Coxeter system with presentation diagram depicted in Figure 10. As discussed in
Example 2.4, the radius of convergence of its growth series is given by r? D 1=�.�?;S?/D .' � 1/2,
where ' is the golden ratio.
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Figure 10: The presentation diagram of .�?;S?/.

For all the Coxeter systems .�;S/ discussed below, we assume that .�?;S?/� .�;S/; see Section 2.3.

We provide examples in terms of the underlying graphs of their presentation diagrams; see Figure 11.
For terminology, we refer to [Gallian 1998]. Such Coxeter systems all satisfy �� �1. For instance, the
family of wheel graphs WN , for all N � 6, formed by a cycle of length N � 1 and a universal vertex,
that is, a central vertex linked to each other vertex. In that case the number of edges of the graph is given
by E D 2.N � 1/. The same goes for the windmill graphs of type W.4; l/, with l � 2, made of l copies
of complete graphs K4 joined at common central vertex. The family of friendship graphs Fl DW.3; l/

for l � 3 satisfies E D 3
2
.N �1/. Several variations of those graphs can be constructed. For example, we

defined the triangulated bouquet T.c; l/ as the graph formed by l copies of c–cycles glued in a common
vertex v, such that any other vertex is linked to v. In this case, v is universal and one has

E D
2c�1

c�1
.N � 1/:

Proposition 5.1 Let .�k;N ;S/ be a nonspherical , nonaffine Coxeter system of dimension at most 2 and
rank N , such that all edges of the presentation diagram X.�k;N ;S/ are labeled by the same k � 3. Denote
by E the number of edges of X.�k;N ;S/.

If .�k;N ;S/ satisfies that

(i) .�?;S?/� .�k;N ;S/,

(ii) E D a.N � 1/ for a rational number 1< a� 1
3
.1C'/2,

then the growth rate �.�k;N ;S/ is a Perron number.

Proof We give an outline of the proof, which is classical, and omit details. Assume that .�k;N ;S/

satisfies the hypothesis of Proposition 5.1. In what follows, we denote by fk;N .z/DQk;N .z/=Pk;N .z/

the growth series of .�k;N ;S/, by rk;N its radius of convergence, and by �k;N the growth rate of .�k;N ;S/.
Recall that rk;N is the smallest positive real root of Pk;N .z/.

Figure 11: The graphs W7, W.4; 2/, F4 DW.3; 4/, and T.5; 3/.
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By Steinberg’s formula (2-1),

(5-1)
1

fk;N .z
�1/
D 1�

N

Œ2�
C

a.N � 1/

Œ2; k�
D
Œ2; k��N Œk�C a.N � 1/

Œ2; k�
:

Therefore, the denominator of fk;N .z/ is given by

Pk;N .z/D 1C .2�N /.zC z2
C � � �C zk�1/C .a� 1/.N � 1/zk

D hN .z/CRk;N .z/;

where hN .z/ is the quadratic polynomial hN .z/D 1C .2�N /.zC z2/ and Rk;N .z/ is the remaining
part.

By hypothesis, .�?;S?/� .�k;N ;S/; therefore by Theorem 2.8, we conclude that �.�?;S?/� �k;N . It
follows that the associated radii of convergence all satisfy rk;N � r?. In order to prove that rk;N is the
unique root with smallest modulus of Pk;N .z/, we use Rouché’s theorem on the open disk D.0; r?/. We
first observe that hN .z/ has a unique root in D.0; r?/, and we prove jhN .z/j � jRk;N j> 0 on jzj D r?.

We assume that N � 9; the case where N � 8 can be done by applying similar reasoning. An easy analysis
of the roots shows that for any N , hN .z/ admits a unique root in the open disk D.0; r?/. Moreover, on
the circle jzj D r?, one has

(5-2) jhN .z/j � j1C .2�N /.r2
? � r?/j:

Let z be such that jzj D r?, and put �k;N .z/ D jhk;N .z/j � jRk;N .z/j. Since a > 1, by the triangle
inequality,

jRk;N .z/j � .N � 2/.r3
? C � � �C rk�1

? /C .a� 1/.N � 1/rk
? :

Also, by (5-2), one has jhN .z/j � j1C .2�N /.r2
? � r?/j � 1C .2�N /.r2

? � r?/. It follows that

�k;N .z/�N

�
1C 2r �

1� rk
?

1� r?
� .a� 1/rk

?

�
� 3� 4r?C 2

1� rk
?

1� r?
C .a� 1/rk

? :

By analysis of each term, one can prove that ƒk;N increases with respect to N for all k � 3, and that
ƒk;N decreases with respect to k for all N � 9. Therefore,

�k;N .z/� lim
k!1

ƒk;N DN
�
1C 2r?�

1

1�r?

�
� 3� 4r?C

2

1�r?
:

We obtain that �k;N .z/ > 0 when

N >
3C 4r?� 2 1

1�r?

1C 2r?�
1

1�r?

D
11C

p
45

2
:

This is true for any N � 9, which finishes the proof.

Remark 5.2 A Coxeter system is said to be1–spanned if there exists a spanning tree of its Coxeter
diagram with edges labeled1 only. Kolpakov and Talambutsa [2022] proved that the growth rate of
1–spanned Coxeter systems are Perron numbers. By the existence of a universal vertex in the presentation
diagram of the Coxeter systems discussed above, such a spanning tree cannot be found in the corresponding
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Figure 12: The presentation diagram of .�0;S0/.

Coxeter diagrams. However, the growth series of such a Coxeter system .�;S/ of dimension 2 at most
coincides with the growth series of a 1–spanned Coxeter system obtained as follows.1 Construct a
complete graph with N vertices, with E of its edges labeled by k � 3 and the remaining ones by1.
If a vertex is chosen so that all its emanating edges are labeled by 1, the resulting graph encodes a
1–spanned Coxeter system whose growth series equals the original growth series.

In Theorems 3.2 and 4.5, we proved that growth rates of Coxeter systems of dimension at most 2 with
positive and vanishing Euler characteristic are Salem and Pisot numbers respectively. By Proposition 5.1
and Remark 5.2, the growth rates of infinitely many Coxeter systems with negative Euler characteristic
are Perron numbers.

Note that, there exist Coxeter systems of dimension at most 2 such that � � �1 whose growth rates
are Perron numbers but are neither Pisot numbers nor Salem numbers. For instance, the 3–dimensional
hyperbolic ideal Coxeter system .�0;S0/ whose presentation diagram admits labels 3 only and is depicted
in Figure 12.

Inspired by these observations, we make the following claim.

Conjecture The growth rate of any Coxeter system of dimension at most 2 is a Perron number.
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