Download this article
 Download this article For screen
For printing
Recent Issues

Volume 25
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
Sequential parametrized topological complexity and related invariants

Michael Farber and John Oprea

Algebraic & Geometric Topology 24 (2024) 1755–1780
Bibliography
1 M Bayeh, S Sarkar, Higher equivariant and invariant topological complexities, J. Homotopy Relat. Struct. 15 (2020) 397 MR4182878
2 G E Bredon, Introduction to compact transformation groups, 46, Academic (1972) MR0413144
3 D C Cohen, M Farber, S Weinberger, Topology of parametrized motion planning algorithms, SIAM J. Appl. Algebra Geom. 5 (2021) 229 MR4272901
4 D C Cohen, M Farber, S Weinberger, Parametrized topological complexity of collision-free motion planning in the plane, Ann. Math. Artif. Intell. 90 (2022) 999 MR4510496
5 H Colman, M Grant, Equivariant topological complexity, Algebr. Geom. Topol. 12 (2012) 2299 MR3020208
6 A N Dranishnikov, On the Lusternik–Schnirelmann category of spaces with 2–dimensional fundamental group, Proc. Amer. Math. Soc. 137 (2009) 1489 MR2465675
7 A Dranishnikov, The Lusternik–Schnirelmann category and the fundamental group, Algebr. Geom. Topol. 10 (2010) 917 MR2629770
8 A Dranishnikov, On topological complexity of twisted products, Topology Appl. 179 (2015) 74 MR3270927
9 M Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003) 211 MR1957228
10 M Farber, A K Paul, Sequential parametrized motion planning and its complexity, Topology Appl. 321 (2022) 108256 MR4491760
11 M Farber, S Weinberger, Parametrized motion planning and topological complexity, from: "Algorithmic foundations of robotics, XV" (editors S M LaValle, J M O’Kane, M Otte, D Sadigh, P Tokekar), Springer Proc. Adv. Robot. 25, Springer (2023) 1 MR4572863
12 M Farber, S Weinberger, Parametrized topological complexity of sphere bundles, Topol. Methods Nonlinear Anal. 61 (2023) 161 MR4583972
13 M Farber, M Grant, G Lupton, J Oprea, An upper bound for topological complexity, Topology Appl. 255 (2019) 109 MR3905237
14 R Fritsch, R A Piccinini, Cellular structures in topology, 19, Cambridge Univ. Press (1990) MR1074175
15 I M James, On category, in the sense of Lusternik–Schnirelmann, Topology 17 (1978) 331 MR0516214
16 S M LaValle, Planning algorithms, Cambridge Univ. Press (2006) MR2424564
17 J P May, A concise course in algebraic topology, Univ. Chicago Press (1999) MR1702278
18 J Oprea, J Strom, Mixing categories, Proc. Amer. Math. Soc. 139 (2011) 3383 MR2811292
19 P A Ostrand, Dimension of metric spaces and Hilbert’s problem 13, Bull. Amer. Math. Soc. 71 (1965) 619 MR0177391
20 R S Palais, The classification of G–spaces, 36, Amer. Math. Soc. (1960) MR0177401
21 A K Paul, D Sen, An upper bound for higher topological complexity and higher strongly equivariant complexity, Topology Appl. 277 (2020) 107172 MR4083172
22 Y B Rudyak, On higher analogs of topological complexity, Topology Appl. 157 (2010) 916 MR2593704
23 A S Schwartz, The genus of a fibre space, Tr. Mosk. Mat. Obs. 11 (1962) 99 MR151982