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Möbius structures, quasimetrics and completeness

MERLIN INCERTI-MEDICI

We study cross ratios from an axiomatic viewpoint, also known as the study of Möbius spaces. We
characterise cross ratios induced by quasimetrics in terms of topological properties of their image.
Furthermore, we generalise the notions of Cauchy sequences and completeness to Möbius spaces and
prove the existence of a unique completion under an extra assumption that, again, can be expressed in
terms of the image of the cross ratio.
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1 Introduction

Let Z be a set, � a metric on Z, possibly with a point at infinity; see Section 2 for definitions. We can
define the cross ratio induced by � with the formula

(1-1) cr.z1; z2; z3; z4/ WD
�.z1; z2/�.z3; z4/

�.z1; z3/�.z2; z4/
;

where the quotient of any two infinite distances equals 1, ie infinite distances cancel each other. Provided
that no three points in the quadruple .z1; : : : ; z4/ coincide, this yields a well-defined number in Œ0;1�.

Cross ratios arise naturally in the study of negatively curved spaces: If X is a CAT.�1/ space, we can
define its boundary at infinity, which can be endowed with a family of metrics f�xgx2X , called visual
metrics. It is a classical result by Bourdon that, for a CAT.�1/ space, all visual metrics induce the same
cross ratio on the boundary. Therefore, the cross ratio provides us with an intrinsic geometric structure

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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1810 Merlin Incerti-Medici

on the boundary at infinity. This allows us to think about the pair .@X; cr/ as a topological space with a
geometric structure of its own, which leads to the study of cross ratios from an axiomatic viewpoint; see
for example [Hamenstädt 1997; Buyalo 2016]. In this context, cross ratios are also referred to as Möbius
structures and a set equipped with a Möbius structure will be called a Möbius space.

Buyalo [2016] showed how Möbius structures give rise to a topology, called Möbius topology. Furthermore,
he showed that every Möbius structure is induced by a semimetric, ie every Möbius structure arises from
formula (1-1) if � is a semimetric, that is, it satisfies the same properties as a metric, except for the triangle
inequality. Between semimetrics and metrics there is the notion of a K–quasimetric, which satisfies a
weak triangle inequality; see Section 2 for precise definitions. Quasimetrics are of particular interest
in the study of cross ratios because of involutions. Given a metric �, its involution at a point o 2 Z is
defined by

�o.z; z
0/D

�.z; z0/

�.z; o/�.o; z0/
:

A direct computation shows that �o induces the same cross ratio as �. However, if � is a metric, the
map �o may no longer be a metric which leads to technical complications when studying cross ratios
purely from a metric point of view. Quasimetrics have the advantage that, given a quasimetric �, the
involution �o is again a quasimetric; cf Proposition 5.3.6 in [Buyalo and Schroeder 2007]. Quasimetrics
are weaker than metrics in many ways. For example, they do not enjoy the same continuity properties
as metrics, as we will see in Example 4.5. However, Möbius structures induced by quasimetrics have
several nice topological features, which, together with the observation on involutions above, motivates
their study.

When studying Möbius structures that appear on boundaries at infinity, there are many results that only
require for one to ‘roughly’ know the Möbius structure. More specifically, a map f WZ!Z0 between
metric spaces — which induce cross ratios cr and cr0— is called a quasi-Möbius map if there exists a
homeomorphism � W Œ0;1/! Œ0;1/ such that for all quadruples Q of distinct points in Z, we have
cr0.f .Q// � �.cr.Q//. It is called a quasi-Möbius equivalence if it is invertible and the inverse is
quasi-Möbius as well. There are instances where it is much easier to define a Möbius structure only up
to quasi-Möbius equivalence (eg on boundaries of ı–hyperbolic spaces) and, in fact, sometimes we only
know how to define the cross ratio up to quasi-Möbius equivalences (at the time of writing, this is the case
for Morse boundaries [Charney et al. 2019]). Studying the quasi-Möbius class of a Möbius structure is of
interest as the quasi-Möbius class of the Möbius structure on a boundary often characterises the interior
space up to quasi-isometry [Paulin 1996; Charney et al. 2019]. If one wishes to determine a (sufficiently)
negatively curved space from its boundary more precisely, one needs to utilise a finer structure on the
boundary than the quasi-Möbius class. When the Möbius structure can be defined (eg on boundaries
of CAT.�1/ spaces [Bourdon 1995], Roller boundaries of CAT.0/ cube complexes [Beyrer et al. 2021],
or boundaries of rank-one Hadamard manifolds [Incerti-Medici 2020]), one can obtain stronger rigidity
results, where the Möbius structure on the boundary determines the interior space up to a .1; C /–quasi-
isometry or even up to isometry; see [Biswas 2015; Beyrer et al. 2021; Incerti-Medici 2020]. For this

Algebraic & Geometric Topology, Volume 24 (2024)



Möbius structures, quasimetrics and completeness 1811

reason both the Möbius structure and its quasi-Möbius class have become separate objects of interest
and study. Some of their properties are shared or analogous, but there are also some notable differences.
For example, we will see in Example 4.12 that Theorem A does not hold for the quasi-Möbius class.

In this paper, we put our attention to Möbius structures. We provide a characterisation of those Möbius
structures that are induced by quasimetrics in terms of the image of the cross ratio. We then study the
Möbius topology introduced by Buyalo and show that, if the cross ratio is induced by a metric, the metric
topology and the Möbius topology coincide. Finally, if a Möbius structure is induced by a quasimetric
that satisfies an additional symmetry condition, we can define the notion of Cauchy sequences for such a
Möbius structure. The main results of this paper are the following:

Theorem A Let .Z; �/ be a metric space , M the Möbius structure induced by �. Denote the metric
topology induced by � by T� and the Möbius topology induced by M by TM . Then T� D TM .

Theorem B Let .Z; �/ be a (possibly extended ) metric space and denote the induced Möbius structure
by M. The following are equivalent :

(1) .Z;M/ is complete as a Möbius space.

(2) .Z; �/ is complete as a metric space and is either bounded or has a point at infinity.

Theorem C Let .Z;M/ be a Möbius space that satisfies the symmetry condition. Then there exists a
complete Möbius space .Z;M/ with a Möbius embedding iZ WZ ,!Z such that iZ.Z/ is dense in Z.

Furthermore , if .Z0;M 0/ is a complete Möbius space with a Möbius embedding i W Z ,! Z0 such that
i.Z/ is dense in Z0, then there exists a unique Möbius equivalence f WZ!Z0 such that i D f ı iZ .

The rest of the paper is organised as follows. In Section 2, we give precise definitions for the terminology
we will require. In Section 3, we show the characterisation of Möbius structures induced by quasimetrics.
In Section 4, we review Buyalo’s definition of the Möbius topology and prove Theorem A. In Section 5,
we introduce Cauchy sequences and prove Theorem B. In Section 6, we construct the completion and
prove Theorem C.

Acknowledgements The author is grateful to Viktor Schroeder for many discussions and helpful advice.

2 Preliminaries

Let Z be a set, � WZ �Z!R a map. We say that � is a semimetric if it is symmetric, nonnegative and
�.z; z0/D 0 if and only if z D z0. We say that � is a K–quasimetric, where K � 1, if it is a semimetric
and for all x; y; z 2Z, we have �.x; z/�K max.�.x; y/; �.y; z//. Finally, we say � is a metric if it is a
semimetric and for all x; y; z 2Z, we have �.x; z/� �.x; y/C �.y; z/. Generalising the definition of

Algebraic & Geometric Topology, Volume 24 (2024)



1812 Merlin Incerti-Medici

a metric, we say that � WZ �Z! Œ0;1� is an extended metric if there exists exactly one point ! 2Z,
such that for all x 2Z n f!g, �.x; !/D1, �.!; !/D 0 and the restriction of � to .Z n f!g/� .Z n f!g/
is a metric. We call ! the point at infinity with respect to �. A motivating example for this notion is
the Riemannian sphere, seen as the union C[f1g. We define the notions of extended semimetrics and
extended K–quasimetrics analogously.

We call an n–tuple .z1; : : : ; zn/ 2Zn nondegenerate if and only if for all i ¤ j , we have zi ¤ zj .

Given a semimetric �, we can define a cross ratio. The cross ratio will be defined on admissible quadruples.

Definition 2.1 A quadruple .z1; z2; z3; z4/ 2 Z4 is admissible if there exists no triple i ¤ j ¤ k ¤ i
such that zi D zj D zk . We denote the set of admissible quadruples by A.

We define the cross ratio induced by � as follows: for .z1; z2; z3; z4/ 2A,

cr.z1; z2; z3; z4/ WD
�.z1; z2/�.z3; z4/

�.z1; z3/�.z2; z4/
2 Œ0;1�:

Admissible quadruples are exactly those quadruples, for which the expression above does not yields
division of zero by zero for any permutation of the points zi .

We also define the cross ratio triple. Write

� WD f.a W b W c/ 2RP 2 j a; b; c > 0g; x� WD�[f.0 W 1 W 1/; .1 W 0 W 1/; .1 W 1 W 0/g:

The cross ratio triple induced by � is a map crt WA! x� defined by

crt.z1; z2; z3; z4/ WD .�.z1; z2/�.z3; z4/ W �.z1; z3/�.z2; z4/ W �.z1; z4/�.z2; z3//:

Admissible quadruples are exactly those quadruples, for which at most one entry of the cross ratio triple
is zero.

We can generalise these definitions to extended semimetrics by using the following convention. Let ! 2Z
be the point at infinity with respect to �. Fractions of the form �.!; z/=�.!; z0/ for z; z0 2Z n f!g can
be replaced by 1, based on the principle that “infinite distances cancel each other”. In other words, if
z1; z2; z3 2Z n f!g, then

cr.z1; z2; z3; !/D
�.z1; z2/

�.z1; z3/
; cr.z1; z2; !; !/D 0; cr.z1; !; !; z2/D 1;

crt.z1; z2; z3; !/D .�.z1; z2/ W �.z1; z3/ W �.z2; z3//; crt.z1; z2; !; !/D .0 W 1 W 1/:

It turns out that the maps cr and crt determine each other. If crt.z1; z2; z3; z4/ D .a W b W c/, then
cr.z1; z2; z3; z4/D a=b. On the other hand, if we write

cr.z1; z3; z4; z2/ WD ˛; cr.z1; z4; z2; z3/ WD ˇ; cr.z1; z2; z3; z4/ WD ;

then
crt.z1; z2; z3; z4/D .1=3ˇ�1=3 W˛1=3�1=3 Wˇ1=3˛�1=3/:

Algebraic & Geometric Topology, Volume 24 (2024)



Möbius structures, quasimetrics and completeness 1813

In order to study the properties of the cross ratio, it is sometimes useful to reformulate the cross ratio in
an additive manner. Write

xL4 WD f.x; y; z/ 2R3 j xCyC z D 0g[ f.0;1;�1/; .�1; 0;1/; .1;�1; 0/g:

We define the cross difference M WA! xL4 induced by � to be

M.z1; z2; z3; z4/ WD
�
ln.cr.z1; z3; z4; z2//; ln.cr.z1; z4; z2; z3//; ln.cr.z1; z2; z3; z4//

�
:

The maps M and cr determine each other.

We end this section with a construction that allows us to construct different semimetrics that induce
the same cross ratio. Let � be an extended semimetric and let o 2Z be a point such that for all z ¤ o,
�.z; o/ > 0. We define the involution of � at o by

�o.x; y/ WD
�.x; y/

�.x; o/�.o; y/
:

Note that o lies at infinity with respect to �o and, if ! is a point at infinity with respect to �, then

�o.x; !/D
1

�.x; o/
:

Note that, if � was an extended semimetric, then �o is again an extended semimetric. Buyalo and
Schroeder [2007, Proposition 5.3.6] prove that for any extended K–quasimetric �, its involution �o is a
K 02–quasimetric for some K 0 �K. A direct computation shows that � and �o induce the same cross ratio.

3 Möbius structures and quasimetrics

Consider the ordered triple
�
.12/.34/; .13/.42/; .14/.23/

�
. The symmetric group of four elements S4

acts on this triple by permuting the numbers 1–4. Whenever � 2 S4 acts on the numbers, it induces a
permutation on the triple. Define '.�/ 2 S3 to be the permutation on the triple induced by the action
of � . It is easy to check that ' W S4! S3 is a group homomorphism. One can interpret the expression
.12/.34/ as denoting two opposite edges of a tetrahedron whose corners are labelled by the numbers 1–4.
In this interpretation, ' is the group homomorphism that sends a permutation of the corners to the induced
permutation of pairs of opposite edges.

Let Z be a set with at least three points. For any semimetric, denote its set of admissible quadruples by
A (recall that all semimetrics have the same admissible quadruples). We can now define a cross ratio
axiomatically.

Definition 3.1 Let Z be a set with at least three points. A map M WA! xL4 is called a Möbius structure
if and only if it satisfies the following conditions:

(1) For all P 2A and all � 2 S4, we have

M.�P /D sgn.�/'.�/M.P /:

Algebraic & Geometric Topology, Volume 24 (2024)



1814 Merlin Incerti-Medici

(2) For P 2A, M.P / 2 L4 if and only if P is nondegenerate.

(3) For P D .x; x; y; z/, we have M.P /D .0;1;�1/.

(4) Let .x; y; !; ˛; ˇ/ be an admissible 5–tuple .x; y; !; ˛; ˇ/ such that .!; ˛; ˇ/ is a nondegenerate
triple, ˛¤x¤ˇ and ˛¤y¤ˇ. Then there exists some �D�.x; y; !; ˛; ˇ/2R[f˙1g such that

M.˛x!ˇ/CM.˛!yˇ/�M.˛xyˇ/D .�;��; 0/:

Moreover, when .!; ˛; ˇ/ is nondegenerate, x ¤ ˇ and y ¤ ˛, the first component of the left-hand
side expression is well defined. Analogously, the second component of the left-hand side expression
is well defined when .!; ˛; ˇ/ is nondegenerate, x ¤ ˛ and y ¤ ˇ.

The pair .Z;M/ is called a Möbius space.

Given M, we obtain a map cr W A! Œ0;1� and a map crt W A! x� using the formulas from Section 2.
Abusing notation, we will also refer to .Z; cr/ and .Z; crt/ as Möbius spaces.

It is a straightforward computation to show that for any semimetric �, the induced cross difference M is
a Möbius structure. Buyalo [2016] proved that the converse is true as well: Every Möbius structure is the
cross difference of a semimetric. We also have a characterisation of Möbius structures that are induced
by quasimetrics.

Definition 3.2 Let Z be a set with at least three points. A map M WA! xL4 is called a strong Möbius
structure if it is a Möbius structure and the induced map crt satisfies the following condition:

Corner There exist open neighbourhoods of .1 W 0 W 0/, .0 W 1 W 0/ and .0 W 0 W 1/, such that the image of
crt doesn’t intersect these neighbourhoods.

The remainder of this section is devoted to proving the following result.

Proposition 3.3 Let .Z;M/ be a Möbius structure. There exists an extended quasimetric � inducing M
if and only if M is a strong Möbius structure.

Furthermore , whenever there exists an extended K–quasimetric inducing M, there exists a bounded
K2–quasimetric inducing M.

We begin by proving that quasimetrics induce strong Möbius structures.

Lemma 3.4 Let Z be a set , � a quasimetric on Z and crt the cross ratio induced by �. Then crt satisfies
the corner condition and , therefore , the induced cross difference M is a strong Möbius structure.

Proof Let � be a K–quasimetric on Z, M the induced Möbius structure and crt the induced cross ratio
triple. Let .w; x; y; z/ be an admissible quadruple. We want to show that crt.w; x; y; z/ cannot be close
to any of the three corner points. We will show this for the corner point .0 W 0 W 1/. The others work
analogously.

Algebraic & Geometric Topology, Volume 24 (2024)



Möbius structures, quasimetrics and completeness 1815

.1 W 0 W 0/ .0 W 1 W 0/

.0 W 0 W 1/

x�

Figure 1: A Möbius structure crt satisfies the corner condition if and only if we can find open
neighbourhoods, as depicted above, such that the image of crt in x� doesn’t intersect these
neighbourhoods.

In order for the point crt.w; x; y; z/ to be close to .0 W0 W1/, the ratio between the first and third component
has to be small, as does the ratio between the second and the third component. We will show that this
cannot happen. To prove this, we need to make several case distinctions. We leave it to the reader to check
that all cases can be handled analogously by simply permuting the roles and properties of w; x; y; z.

Let � > 0. Consider crt.w; x; y; z/D .�.w; x/�.y; z/ W �.w; y/�.x; z/ W �.w; z/�.x; y// and suppose

max.�.w; x/�.y; z/; �.w; y/�.x; z//D �:

We want to bound �.w; z/�.x; y/ in terms of �, proving that the ratios

�.w; x/�.y; z/

�.w; z/�.x; y/
and

�.w; y/�.x; z/

�.w; z/�.x; y/

cannot become too small. Assume without loss of generality that

�.w; x/� �.y; z/ and �.w; y/� �.x; z/;

and thus
�.w; x/�

p
� and �.w; y/�

p
�:

Since � is a K–quasimetric, we have

�.x; y/�K max.�.w; x/; �.w; y//:

Swapping x and y if necessary (which does not change any of the inequalities obtained above), we may
assume without loss of generality that �.w; x/� �.w; y/, and hence

�.x; y/�K�.w; x/:

Further, we have
�.z; w/�K max.�.z; y/; �.y;w//:

We now combine the inequalities above, distinguishing between two cases. If �.z; y/� �.y;w/, then

�.x; y/�.z; w/�K2�.w; x/�.z; y/�K2�;

Algebraic & Geometric Topology, Volume 24 (2024)



1816 Merlin Incerti-Medici

as � Dmax.�.w; x/�.y; z/; �.w; y/�.x; z//. If �.z; y/ < �.y;w/, then we use the previously obtained
inequalities �.w; x/; �.w; y/�

p
� to estimate

�.x; y/�.z; w/�K2�.w; x/�.y;w/�K2�:

We see that, in either case, �.x; y/�.z; w/�K2�. We use this to show that crt stays away from the corner
points. Consider the triple

.a; b; c/ WD .�.w; x/�.y; z/; �.w; y/�.x; z/; �.w; z/�.x; y// 2R3:

The argument above shows that
c �K2 max.a; b/:

Projecting .a; b; c/ to projective space, this implies that

.a W b W c/ …

�
.a0 W b0 W 1/ 2RP 2

ˇ̌̌
a0 <

1

K2
; b0 <

1

K2

�
;

which is an open neighbourhood of .0 W 0 W 1/ in RP 2. Since .a W b W c/ D crt.w; x; y; z/, we found an
open neighbourhood of .0 W 0 W 1/ that doesn’t intersect with Im.crt/. Using analogous arguments, we find
neighbourhoods of .1 W 0 W 0/ and .0 W 1 W 0/ that don’t intersect with Im.crt/. This completes the proof.

The other direction of the characterisation is based on the following result.

Lemma 3.5 Let � be a semimetric on the set Z such that � has a point at infinity. Then � is a quasimetric
if and only if its induced Möbius structure is a strong Möbius structure.

Proof Lemma 3.4 immediately implies one direction of the proof. Suppose now crt satisfies the corner
condition. We want to show that � is a quasimetric.

Denote the point at infinity with respect to � by !. Let x; y; z 2Z. If two of the points are the same, or if
one of the three points equals !, then the inequality for quasimetrics is immediately satisfied. So assume
x; y; z are mutually different and different from !. Then .x; y; z; !/ is a nondegenerate quadruple and
we can look at the cross ratio triple

crt.x; y; z; !/D .�.x; y/ W �.x; z/ W �.y; z//:

Since crt satisfies the corner condition, we know that there is an open neighbourhood of .1 W 0 W 0/,
independent of x, y and z, such that crt.x; y; z; !/ doesn’t lie within that neighbourhood. We find � > 0
such that crt.x; y; z; !/ …N�, where

N� WD f.1 W b W c/ j b; c 2 .��; �/g:

This implies that
max

�
�.x; z/

�.x; y/
;
�.y; z/

�.x; y/

�
� �;

or, equivalently,
1

�
max.�.x; z/; �.z; y//� �.x; y/:

Thus, � is a .1=�/–quasimetric.
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Lemmas 3.4 and 3.5 together with Buyalo’s result that every Möbius structure is induced by a semimetric
prove the first part of Proposition 3.3. We are left to prove the second part.

Proof of Proposition 3.3 Let � be a K–quasimetric on Z with a point at infinity. Denote the point at
infinity by !. Choose a base point o 2Z. Now define, for all x; y; z 2Z,

�.z/ WDmax.1; �.z; o// and z�.x; y/ WD
�.x; y/

�.x/�.y/
:

By Proposition 5.3.6 from [Buyalo and Schroeder 2007], z� is a K 02–quasimetric for some K 0 � K.
Furthermore,

z�.x; y/D
�.x; y/

�.x/�.y/
�K

max.�.x; o/; �.o; y//
�.x/�.y/

�K;

and thus, z� is a bounded quasimetric on Z. A straightforward computation shows that � and z� induce the
same cross ratio and therefore, the same M.

4 The Möbius topology

Let .Z;M/ be a Möbius space. In order to construct a topology onZ, we will recall Buyalo’s construction
of a family of extended semimetrics, each of which induces M. We will then use those semimetrics to
define a topology.

Since M.w; x; y; z/ 2 xL4 is a triple, we write M D .a; b; c/, where a; b; c WA! Œ�1;1� are the com-
ponents of M. Condition (4) in the definition of Möbius structures now implies that for all nondegenerate
triples .!; ˛; ˇ/ and x; y 2Z n f!g, we have

a.˛; x; !; ˇ/C a.˛; !; y; ˇ/� a.˛; x; y; ˇ/D b.˛; x; y; ˇ/� b.˛; x; !; ˇ/� b.˛; !; y; ˇ/:

Therefore, writing A WD .!; ˛; ˇ/, we can define

�A.x; y/ WD

8<:
0 if x D y;
ea.˛;x;!;ˇ/Ca.˛;!;y;ˇ/�a.˛;x;y;ˇ/ if x ¤ ˇ and y ¤ ˛;
eb.˛;x;y;ˇ/�b.˛;x;!;ˇ/�b.˛;!;y;ˇ/ if x ¤ ˛ and y ¤ ˇ:

Buyalo [2016] proved the following properties of �A.

Theorem 4.1 [Buyalo 2016] Let .Z;M/ be a Möbius space , and �A the map induced by A for any
nondegenerate triple A in Z. Let MA be the cross difference induced by �A. Then the following hold :

(1) Every �A is an extended semimetric on Z, ie �A is symmetric , nonnegative and nondegenerate.

(2) For all x ¤ !, �.!;˛;ˇ/.x; !/D1. Moreover , �.!;˛;ˇ/.˛; ˇ/D 1.

(3) Let AD .!; ˛; ˇ/, A0 D .!; ˇ; ˛/, A00 D .ˇ; ˛; !/. Then

�A D �A0 and �A00.x; y/D
�A.x; y/

�A.x; ˇ/�A.ˇ; y/
:
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(4) Let .!; ˛; ˇ; b/ be a nondegenerate quadruple in Z. Then �.!;˛;ˇ/ D ��.!;˛;b/ for some constant
� > 0.

(5) For each nondegenerate triple A, MA DM .

The following result is a straightforward computation.

Lemma 4.2 If M is induced by a semimetric �, then for every nondegenerate triple A and for all x ¤ y,

�A.x; y/D
�.x; y/

�.x; !/�.!; y/

�.˛; !/�.!; ˇ/

�.˛; ˇ/
:

Proof Let A be a nondegenerate triple and let x; y 2Z. Suppose, x ¤ ˇ and y ¤ ˛. Then

�A.x; y/D e
a.˛;x;!;ˇ/Ca.˛;!;y;ˇ/�a.˛;x;y;ˇ/

D cr.˛; !; ˇ; x/ � cr.˛; y; ˇ; !/ � cr.˛; y; ˇ; x/�1

D
�.˛; !/�.ˇ; x/�.˛; y/�.ˇ; !/�.˛; ˇ/�.x; y/

�.˛; ˇ/�.!; x/�.˛; ˇ/�.y; !/�.˛; y/�.ˇ; x/

D
�.x; y/

�.x; !/�.!; y/

�.˛; !/�.!; ˇ/

�.˛; ˇ/
:

The case when x ¤ ˛ and y ¤ ˇ is analogous.

We see that f�AgA is a family of extended semimetrics that can be constructed from a Möbius structure M.
In [Buyalo 2016], these semimetrics are used to define the following topology.

Let AD .!; ˛; ˇ/ be a nondegenerate triple. For y 2Z n f!g and r > 0, define

BA;r.y/ WD fx 2Z j �A.x; y/ < rg

to be the open ball around y of radius r with respect to �A. We take the family of all open balls for
all nondegenerate triples A, all positive radii r and all points y 2 Z n f!g as a subbasis to define a
topology TM on Z. This is the topology on Z induced by M . From now on, whenever we speak of
a Möbius space .Z;M/, we assume it to be endowed with the topology induced by M, unless stated
otherwise.

Lemma 4.3 Consider Œ0;1� with the topology where open neighbourhoods of 1 are complements of
compact sets in Œ0;1/ and open neighbourhoods of other points are just the standard euclidean open
neighbourhoods. Let .Z;M/ be a Möbius space , A a nondegenerate triple in Z and y 2 Z. Then the
maps �A. � ; y/; �A.y; � / WZ! Œ0;1� are continuous with respect to TM .

Proof First note that if y D !, then �A. � ; y/�1 is constant and hence continuous. If y ¤ !, we start
by defining the set

CA;r.y/ WD fx 2Z j �A.x; y/ > rg;
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which can be thought of as the complement of a “closed” ball (again y ¤ !). Let .a; b/ be an open
interval in R (possibly unbounded) and consider the map f WD �A. � ; y/ for some fixed y ¤ !. Then
f �1..a; b//D BA;b.y/\CA;a.y/ and continuity of f follows, if CA;a.y/ is open for all a � 0.

By Theorem 4.1, we know that for any nondegenerate triple .!; ˛; y/ and every x 2Z n fy; !g,

�.!;˛;y/.x; y/�.y;˛;!/.x; !/D 1 and �.!;˛;ˇ/.x; y/D ��.!;˛;o/.x; y/:

Therefore, we see that

�.y;˛;o/.x; !/D ��.y;˛;!/.x; !/D
�

�.!;˛;y/.x; y/
D

�

��.!;˛;ˇ/.x; y/

for y, !, ˛, ˇ, o mutually different and �;�>0 depending only on ˛, !, y, o and ˛, ˇ, !, y, respectively.
This immediately implies that B.!;˛;ˇ/;r.y/ D C.y;˛;o/;�=.�r/.!/ for some �;� > 0 (notice that the
points ! and y behave nicely). Since this is true for all !, ˛, ˇ, y, o and r as above, we see that CA;r.y/
is open for all nondegenerate triples A, all r > 0 and all y 2Z. This implies the lemma.

Remark 4.4 The proof of the continuity of �A relies on the fact that we take the open balls of all
semimetrics �A. It is not sufficient to take just one — or some — of the nondegenerate triples. Only
collectively can they define a topology such that �A. � ; y/ is continuous. In particular, the involution plays
a critical role. The following example illustrates how the topology induced by a single quasimetric does
not have this.

Example 4.5 Let X D Œ0; 1� and define

�.x; y/ WD

�
jx�yj if jx�yj< 1;
2jx�yj if jx�yj � 1:

Since for all x; y; z 2X we have

�.x; y/� 2jx�yj � 2.jx� zjC jz�yj/� 4max.�.x; z/; �.z; y//;

we see that � is a 4–quasimetric. Consider the sequence xn WD 1�1=n and the topology generated by the
“open balls” Br.x/ WD fy 2Z j �.x; y/ < rg. The sequence xn converges to 1 in the topology induced
by �. However,

�.0; xn/D 1�
1

n

n!1
���! 1¤ 2D �.0; 1/;

and therefore, � is not continuous with respect to the topology it induces. This is in significant contrast to
metric spaces or the maps �A with the Möbius topology.

Lemma 4.6 The topological space .Z;TM / is Hausdorff.

Proof Let x; y 2Z be two different points. Choose a point ˛ 2Znfx; yg. We know that for every z 2Z,

�.y;˛;x/.x; z/D
1

�.x;˛;y/.y; z/
:

Therefore, the intersection of the two open balls B.y;˛;x/;1.x/; B.x;˛;y/;1.y/ is empty.
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Consider two Möbius spaces .Z;M/ and .Z0;M 0/. We want to have a notion of maps that are compatible
with the Möbius structures.

Definition 4.7 Let .Z;M/ and .Z0;M 0/ be Möbius spaces. A map f WZ!Z0 is called a Möbius map
if and only if for every admissible quadruple .w; x; y; z/ 2A, we have

M.w; x; y; z/DM 0.f .w/; f .x/; f .y/; f .z//:

If a Möbius map f is bijective, we call it a Möbius equivalence.

Lemma 4.8 Let .Z;M/ and .Z0;M 0/ be two Möbius spaces and f W Z ! Z0 a Möbius equivalence.
Then f is a homeomorphism when we equip Z and Z0 with their respective Möbius topologies.

Proof Let A D .!; ˛; ˇ/ be a nondegenerate triple in Z. Since f is a bijection, it sends A to a
nondegenerate triple, denoted by f .A/, in Z0. Looking at the definition of the semimetric �A, we
immediately see that, since f preserves the Möbius structure, we have for all x; y 2Z that

�A.x; y/D �f .A/.f .x/; f .y//:

Thus, the map f sends an open ball BA;r.x/ in Z to the open ball Bf .A/;r.f .x// in Z0 and a subbasis
of TM to a subbasis of TM 0 . The same is true for f �1, which proves the lemma.

Classically, Möbius structures arise in the study of metric spaces. When a Möbius structure arises from a
metric, the topology constructed above coincides with the topology induced by the metric.

Theorem 4.9 Let .Z; �/ be a metric space. Let T� denote the topology on Z induced by �, and denote
the induced Möbius structure by M. Let TM be the topology induced by M and let f�AgA be the family
of semimetrics induced by M. Then T� D TM .

Proof Since Z is a metric space, Lemma 4.2 tells us that for all nondegenerate triples A and for all
x ¤ y, we have

�A.x; y/D
�.x; y/

�.x; !/�.!; y/

�.˛; !/�.!; ˇ/

�.˛; ˇ/
:

In particular, �A.x; y/ is continuous in x with respect to T� as long as x 2Z n f!g.

We need to show that the open balls in � are open with respect to TM , and that the open balls with respect
to the �A are open with respect to T�. We denote by

Bs.y/ WD fx 2Z j �.x; y/ < sg

the open ball of radius s with respect to �, and by

BA;s.y/ WD fx 2Z j �A.x; y/ < sg

the open ball of radius s with respect to �A. These sets generate T� and TM , respectively.
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We first show that BA;r.y/ is open with respect to T� for all nondegenerate triples A, and all r > 0 and
y 2Z n f!g. Let x 2 BA;r.y/, ie �A.x; y/ < r . Since �A is continuous with respect to T�, there exists
some � > 0 such that B�.x/ � BA;r.y/. We conclude that BA;r.y/ is open in T� and that T� is finer
than TM .

In order to show that TM is finer than T�, we consider the open ball Br.y/ for r > 0 and y 2 Z. Let
x 2 Br.y/. Since � is a metric, there exists a smaller ball around x contained in Br.y/, ie there exists
r 0 < r such that Br 0.x/� Br.y/. Replacing r 0 by �, it is now enough to show that for every � > 0, we
can find ı > 0 and a nondegenerate triple A such that BA;ı.x/� B�.x/.

Choose !; ˛2Z such thatA WD .!; ˛; x/ is nondegenerate. We claim that there exist ı >0 and C >0 such
that �.z; !/ < C for all z 2 BA;ı.x/. Suppose not. Then we find a sequence zn such that �A.zn; x/! 0

and �.zn; !/!1. However,

0 �A.zn; x/D
�.zn; x/�.˛; !/

�.zn; !/�.˛; x/
�
�.zn; !/� �.!; x/

�.zn; !/

�.˛; !/

�.˛; x/
!
�.˛; !/

�.˛; x/
¤ 0:

Let

0 < ı0 <min
�
�
�.˛; !/

C�.˛; x/
; ı

�
and z 2 BA;ı 0.x/:

Then
�.z; x/D

�.z; x/�.˛; !/

�.z; !/�.˛; x/

�.z; !/�.˛; x/

�.˛; !/
� �A.z; x/

C�.˛; x/

�.˛; !/
� �:

In other words, BA;ı 0.x/� B�.x/. This implies that balls with respect to � are open with respect to TM .
Hence TM is finer than T�, which completes the proof of Theorem 4.9.

Remark 4.10 This proof easily extends to extended metric spaces which have a point at infinity: Let1
denote the point at infinity in the metric space .Z; �/. Then, for any nondegenerate triple AD .1; ˛; ˇ/,
we have �AD�� for some positive number �. This immediately implies that T��TM . To prove equality,
one modifies the proof provided above.

Applying Lemma 4.8 in the context of Theorem 4.9 immediately yields the following corollary.

Corollary 4.11 Let .Z; �/ and .Z0; �0/ be — possibly extended — metric spaces , let M� and M�0 be the
induced Möbius structures , and f W .Z;M�/!Z0 a Möbius equivalence. Then f is a homeomorphism
with respect to the metric topologies T� and T�0 .

Proof We know from Lemma 4.8 that f is a homeomorphism with respect to the topologies TM ;TM 0 .
By Theorem 4.9, the Möbius topologies and the metric topologies coincide, ie TM DT� and TM 0 DT�0 .
The statement follows.

It is worth noting that the Möbius topology is not preserved under quasi-Möbius equivalences; see
Section 1 for the definition. This is illustrated by the following example.
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Example 4.12 Let X D Œ0; 1� and define

�.x; y/ WD

�
3jx�yj if jx�yj< 1;
jx�yj if jx�yj D 1:

One easily checks that � is a quasimetric and bi-Lipschitz equivalent to the standard metric on X , which
we shall denote by d . Since d and � are bi-Lipschitz equivalent, their induced Möbius structures are
quasi-Möbius equivalent. Let TM denote the Möbius topology coming from the Möbius structure induced
by � and Tstd denote the standard topology, which is the one induced by d . By Theorem 4.9, Tstd is the
Möbius topology of the Möbius structure induced by d . We will now show that Tstd ¤TM , providing an
example where two quasi-Möbius equivalent Möbius structures do not induce the same topology.

We will show our claim by proving that 1 2X is an isolated point with respect to TM . Let AD
�
1
2
; 0; 1

�
and compute

�A.x; y/ WD

8̂̂<̂
:̂

3jx�yj

9
ˇ̌
x� 1

2

ˇ̌ ˇ̌
y � 1

2

ˇ̌CA if jx�yj< 1;

1

91
4

�CA if jx�yj D 1;

where CA D �
�
0; 1
2

�
�
�
1; 1
2

�
=�.0; 1/ depends on A but not on x; y. Theorem 4.1(2) implies that CA D 9

4
.

If we fix x D 0, we obtain

�A.0; y/ WD

8<:
3

2

yˇ̌
y � 1

2

ˇ̌ if jx�yj< 1;

1 if jx�yj D 1:

Since 3
2
y=
ˇ̌
y � 1

2

ˇ̌
�
3
2

for all y > 1
2

, we see that B1C�;A.0/ D Œ0; t/[ f1g for some � > 0 sufficiently
small and t < 1

2
depending on �. On the other hand, we have

�A.1; y/ WD

8<:
3

2

j1�yjˇ̌
y � 1

2

ˇ̌ if jx�yj< 1;

1 if jx�yj D 1;

which only approaches zero for y! 1. We see that for � sufficiently small, B1C�;A.0/\B�;A.1/D f1g,
implying that f1g is an open set in the Möbius topology of the Möbius structure induced by �.

We conclude that TM ¤ Tstd, showing that the Möbius topology is not preserved under quasi-Möbius
maps in general, even if the inducing quasimetrics �; d are bi-Lipschitz equivalent.

5 Cauchy sequences and completeness

The next two sections are devoted to the notion of Cauchy sequences. We show how to define Cauchy
sequences on strong Möbius spaces in a way that is compatible with the situation when the strong Möbius
structure is induced by a metric space. In the next section, we show how to construct a completion under
an additional symmetry assumption.
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Let .Z; �/ be a metric space, M its induced strong Möbius structure. We recall that a Cauchy sequence —
in its usual sense on a metric space — is a sequence .xn/n in Z such that for all � > 0 there exists a
natural number N� such that for all m; n � N�, we have �.xm; xn/ < �. Our goal is to generalise this
notion to strong Möbius spaces. It may be tempting to simply generalise the statement above to quasi- and
semimetrics and use that as a definition, but since a Möbius structure can be induced by many different
semimetrics, a definition relying only on the Möbius structure itself is more desirable.

Before we formulate the key insight, we need some notation. Let � be a (possibly extended) semimetric
that induces M. If � has a point at infinity, we denote that point by !. We write .y j z/ WD �ln.�.y; z//
for all y; z 2 Z. Further, consider a sequence .xn;m/n;m2N in Z. We say that limn;m!1 xn;m D y, if
and only if for all � > 0 there exists an N� such that for all n;m�N�, we have �.xn;m; y/ < �.

In what follows, we will often consider a sequence .xn/n and a pair of points y; z 2Z n f!g such that
y ¤ z and neither �.xn; y/ nor �.xn; z/ converges to zero. Given a sequence .xn/n, we will refer such a
pair y; z as a good pair.

Recall that we write M D .a; b; c/, where a, b, c denote the components of M. We can now characterise
Cauchy sequences in terms of the Möbius structure.

Lemma 5.1 Let .Z; �/ be a metric space , and .xn/n2N a sequence in Z. The following are equivalent :

(1) The sequence .xn/n is either a Cauchy sequence , or �.xn; y/
n!1
���!1 for all y 2Z.

(2) There exists a good pair y; z 2Z such that limn;m!1 crt.xn; xm; y; z/D .0 W 1 W 1/.

(3) There exists a good pair y; z 2Z such that limn;m!1 c.xn; xm; y; z/D�1.

Further , if (1) holds , then (2) and (3) hold for all good pairs y; z 2Z. In addition , (2) holds for a good
pair y; z if and only if (3) holds for the same good pair y; z.

The equivalence of (1) and (2) is stated in Lemma 2.2 of [Beyrer and Schroeder 2017]. Furthermore, it is
easy to see from the proof that (1) implies (2) for every good pair. We are left to prove (2)D) (3) and
(3)D) (1). For this, we require an auxiliary result. Since it is our goal to generalise Cauchy sequences
beyond the realm of metric spaces, we will formulate this result in a more general context.

Lemma 5.2 Let .Z;M/ be a strong Möbius structure and � a quasimetric that induces M. Let .xn/n be
a sequence in Z and suppose there exists a good pair y; z 2 Z such that c.xn; xm; y; z/

n;m!1
�����!�1.

Then one of the following two statements holds:

(a) For every x 2Z n f!g, there exists some Bx > 0 such that �.xn; x/ < Bx for all n. Furthermore ,
�.xn; xm/

n;m!1
�����! 0. We say that xn is bounded.

(b) For every x 2Z n f!g, we have �.xn; x/
n!1
���!1. We say that xn diverges to infinity and write

xn!1.

Lemma 5.2 is a generalisation of the statement (3)D) (1) in Lemma 5.1.
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Remark 5.3 Lemmas 5.1 and 5.2 also hold for extended metric spaces. One can prove (1)D) (2) for
the case y D ! separately (and, by symmetry, the same proof works for z D !). The proof of (2)D) (3)
that we see below immediately generalises to extended metric spaces. For (3)D) (1), we can use the fact
that by Lemma 5.2, this statement also holds for quasimetrics. If y D ! for a given quasimetric, we can
perform involution of � at any point x 2Z n fy; zg. This provides us with a quasimetric that induces the
same strong Möbius structure, but neither y nor z lies at infinity.

Proof of Lemma 5.2 Let .xn/n be a sequence in the strong Möbius space .Z;M/, let � be a quasimetric
that induces M and let y; z be a good pair such that c.xn; xm; y; z/

n;m!1
�����!�1. By definition of the

Möbius structure induced by �, we can write

c.xn; xm; y; z/D .xnjy/C .xmjz/� .xnjxm/� .yjz/D ln
�
�.xn; xm/�.y; z/

�.xn; y/�.xm; z/

�
:

Using this equality, the statement c.xn; xm; y; z/
n;m!1
�����!�1 becomes equivalent to

(5-1)
�.xn; xm/�.y; z/

�.xn; y/�.xm; z/

n;m!1
�����! 0:

We will distinguish between two cases, which will turn out to be exactly the distinction between case (a)
and case (b). Suppose there exists some x 2Z n f!g and some constant B > 0 such that �.xn; x/ < B
for all n. We want to show that we are in case (a).

Since � is a quasimetric, we have that for all x0 2Z n f!g,

�.xn; x
0/�K max.�.xn; x/; �.x; x0//�K max.B; �.x; x0//:

Therefore, we see that �.xn; x0/ is bounded for all x0 2Z n f!g. In particular, �.xn; y/ and �.xn; z/ are
both bounded by some constant B > 0. We obtain

�.xn; xm/�.y; z/

�.xn; y/�.xm; z/
� �.xn; xm/

�.y; z/

B2
:

Since the left-hand side of this equation goes to zero by assumption, the right-hand side has to go to zero
as well. Hence we see that �.xn; xm/

n;m!1
�����! 0.

We are left to show that we end up in case (b) whenever there is no x 2 Z n f!g such that �.xn; x/ is
bounded. Suppose �.xn; x/ is unbounded for all x 2Z n f!g. Then there exists a subsequence .xni

/i of
.xn/n such that �.xni

; x/!1 for one (and hence all, since � is a quasimetric) x 2Z n f!g.

Suppose by contradiction that �.xn; x/ does not converge to infinity for one and hence all x 2Z n f!g.
Then we find another subsequence .xmj

/j of .xn/n, which is bounded. In particular, we find a constant
B > 0 such that

�.xmj
; y/� B and �.xmj

; z/� B
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for all j . From our treatment of case (a), we know that for this subsequence, �.xmj
; xmj 0 /

j;j 0!1
�����! 0.

In particular, we find a number J such that for all j; j 0 � J , we have

�.xmj
; xmj 0 / < 1:

Now we estimate the distance between the two subsequences .xmj
/j and .xni

/i . For this, we need to
take xmJ

as an auxiliary point. Since xni
diverges to infinity, there is a number I such that

�.xmJ
; xni

/ >max.K;K �B/ for all i � I:

Now we use the fact that � is a quasimetric to get that for all i � I and j � J we have

max.K;K �B/� �.xmJ
; xni

/�K max.�.xmJ
; xmj

/; �.xmj
; xni

//DK�.xmj
; xni

/;

where the last equality follows from the fact that �.xmJ
; xmj

/ < 1 for all j � J . Now consider, for i � I
and j � J ,

�.xmj
; xni

/�.y; z/

�.xmj
; y/�.xni

; z/
�
�.xmj

; xni
/�.y; z/

B�.xni
; z/

�
�.xmj

; xni
/�.y; z/

BK max.�.xni
; xmj

/; �.xmj
; z//

D
�.xmj

; xni
/�.y; z/

BK�.xni
; xmj

/

D
�.y; z/

BK
;

where in the second-to-last step we use the fact that �.xni
; xmj

/ �max.1; B/ � B � �.xmj
; z/ for all

i � I and j � J . This inequality shows that �.xmj
; xni

/�.y; z/=.�.xmj
; y/�.xni

; z// is bounded from
below by a positive constant. But by assumption, �.xmj

; xni
/�.y; z/=.�.xmj

; y/�.xni
; z// converges to

zero, a contradiction. We see that, if a subsequence .xni
/i diverges to infinity, the sequence .xn/n has to

diverge to infinity as well. Thus, we are in case (b), which completes the proof.

Proof of Lemma 5.1 Let .Z; �/ be a nonextended metric space, .xn/n a sequence in Z and y; z 2Z
such that limn!1 xn ¤ y; z.

(1)D) (2) Instead of proving just (1)D) (2), which follows directly from [Beyrer and Schroeder 2017],
we will also prove the second part of the lemma, ie that limn;m!1 crt.xn; xm; y; z/D .0 W 1 W 1/ for all
good pairs y; z.

Step 1 We start by proving that for every Cauchy sequence, we have

lim
n;m!1

crt.xn; xm; y; z/D .0 W 1 W 1/:

Suppose .xn/ is a Cauchy sequence. Note that this implies that �.xn; x/ converges for all x 2Z. Let � >0.
We find some N� 2N such that for all n;m�N� , we have �.xn; xm/ < �. Since y; z is a good pair, we
can choose � sufficiently small such that there is an N� such that, additionally, �.xn; y/; �.xn; z/ > �1=4

for all n�N�. Therefore, we get
�.xn; xm/�.y; z/

�.xn; y/�.xm; z/
<

��.y; z/

�.xn; y/�.xm; z/
<

�
p
�
�.y; z/D

p
��.y; z/:
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Thus we see that
�.xn; xm/�.y; z/

�.xn; y/�.xm; z/

n;m!1
�����! 0:

For symmetry reasons, we immediately see that also

�.xn; xm/�.y; z/

�.xn; z/�.xm; y/

n;m!1
�����! 0:

We are left to show that
�.xn; y/�.xm; z/

�.xn; z/�.xm; y/

n;m!1
�����! 1

in order to prove that crt.xn; xm; y; z/
n;m!1
�����! .0 W 1 W 1/. Since y; z is a good pair, we have

�.xn; y/�.xm; z/

�.xn; z/�.xm; y/
�
�.xn; y/.�.xn; z/C �.xn; xm//

�.xn; z/.�.xn; y/� �.xn; xm//
D

1C
�.xn; xm/

�.xn; z/

1�
�.xn; xm/

�.xn; y/

n;m!1
�����! 1;

�.xn; y/�.xm; z/

�.xn; z/�.xm; y/
�
�.xn; y/.�.xn; z/� �.xn; xm//

�.xn; z/.�.xn; y/C �.xn; xm//
D

1�
�.xn; xm/

�.xn; z/

1C
�.xn; xm/

�.xn; y/

n;m!1
������! 1:

It follows that
�.xn; y/�.xm; z/

�.xn; z/�.xm; y/

n;m!1
�����! 1

and hence crt.xn; xm; y; z/
n;m!1
�����! .0 W 1 W 1/. Note that we relied on the triangle inequality for this part

of the proof.

Step 2 We show that if .xn/ diverges to infinity, we get

lim
n;m!1

crt.xn; xm; y; z/D .0 W 1 W 1/:

Suppose that �.xn; x/!1 for all x 2Z as n goes to infinity (except for the point x 2Z that may lie at
infinity). Then, for any y; z 2Z that do not lie at infinity, we have

�.xn; xm/�.y; z/

�.xn; y/�.xm; z/
�
.�.xn; y/C �.y; xm//�.y; z/

�.xn; y/�.xm; z/

D
�.y; z/

�.xm; z/
C
�.xm; y/�.y; z/

�.xn; y/�.xm; z/

�
�.y; z/

�.xm; z/
C
.�.xm; z/C �.z; y//�.y; z/

�.xn; y/�.xm; z/

D
�.y; z/

�.xm; z/
C
�.y; z/

�.xn; y/
C

�.y; z/2

�.xn; y/�.xm; z/

n;m!1
�����! 0:
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We are left to show that �.xn; y/�.xm; z/=.�.xn; z/�.xm; y//
n;m!1
�����! 1. For this, we do the estimate

�.xn; y/�.xm; z/

�.xn; z/�.xm; y/
�
.�.xn; z/C �.y; z//.�.xm; y/C �.y; z//

�.xn; z/�.xm; y/

D 1C
�.y; z/

�.xn; z/
C

�.y; z/

�.xm; y/
C

�.y; z/2

�.xn; z/�.xm; y/

n;m!1
�����! 1:

In the same way, we have

�.xn; y/�.xm; z/

�.xn; z/�.xm; y/
�
.�.xn; z/� �.y; z//.�.xm; y/� �.y; z//

�.xn; z/�.xm; y/

D 1�
�.y; z/

�.xn; z/
�
�.y; z/

�.xm; y/
C

�.y; z/2

�.xn; z/�.xm; y/

n;m!1
�����! 1:

From these two estimates, we conclude that �.xn; y/�.xm; z/=.�.xm; y/�.xn; z//
n;m!1
�����! 1. This

concludes the proof of Step 2 and the proof that (1)D) (2).

(2)D) (3) Recall that, by definition,

c.w; x; y; z/D ln
�
�.w; x/�.y; z/

�.w; y/�.x; z/

�
;

which is a continuous map with respect to the metric topology. In particular, if crt.w; x; y; z/! .0 W1 W1/,
then

ln
�
�.w; x/�.y; z/

�.w; y/�.x; z/

�
!�1:

We see that (2)D) (3). In particular, if (2) holds for a given pair y; z then (3) holds for the same pair y; z.

(3)D) (1) This is a special case of Lemma 5.2. Since we have seen that (1)D) (2) for all good pairs y; z,
we also see that, if (3) holds for a good pair y; z, then (2) holds for the same good pair y; z. This concludes
the proof of Lemma 5.1

Among other things, Lemma 5.1 tells us that for metric spaces, we only need to find one good pair y; z
that satisfies condition (2) or (3) to get the same condition for all good pairs y; z that aren’t the limit
of .xn/n. It would be good to have the same condition in any strong Möbius space that isn’t necessarily
induced by a metric. Then we could define a sequence in a strong Möbius space to be a Cauchy sequence
if for one good pair y; z and hence all good pairs, we have crt.xn; xm; y; z/! .0 W 1 W 1/, which would be
much easier to check in practice than if we had to check all good pairs. The next lemma tells us that this
is actually true in the case of condition (3).

Lemma 5.4 Let .Z;M/ be a strong Möbius space. Let .xn/n be a sequence in Z. Suppose there is a
good pair y; z such that

c.xn; xm; y; z/
n;m!1
�����!�1:

Then the same holds for all good pairs y0; z0 2Z.
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Proof Let � be a quasimetric that induces M. By Lemma 5.2, we know that .xn/ is either bounded or
diverges to infinity. Let y0; z0 be a good pair. As we have seen in the proofs of Lemma 5.1 and 5.2, we get
the right convergence of c.xn; xm; y0; z0/ if �.xn; xm/�.y0; z0/=.�.xn; y0/�.xm; z0// converges to zero.

Case 1 Suppose .xn/n is bounded. Since y0; z0 is a good pair, we find some � > 0 and a subsequence
.xni

/i such that �.xni
; y0/� � for all i . From Lemma 5.2, we know that �.xn; xm/

n;m!1
�����! 0 and we

find a number N such that for all n;m�N; �.xn; xm/ < �=.2K/. Thus, we have for all n�N ,

� � �.xni
; y0/�K max.�.xni

; xn/; �.xn; y
0//:

Since K�.xni
; xn/�

1
2
� < �, we see that

�

K
�
1

K
�.xni

; y0/� �.xn; y
0/

for n�N . This implies the sequence .xn/n stays away from y0 for large n; specifically, �.xn; y0/� �=K
for n�N . The same is true for .xn/n and z0 and some other z� > 0. Hence, we have

�.xn; xm/�.y
0; z0/

�.xn; y0/�.xm; z0/
�K2

�.xn; xm/�.y
0; z0/

�z�

n;m!1
�����! 0:

We see that �.xn; xm/�.y0; z0/=.�.xn; y0/�.xm; z0// converges to zero; hence c.xn; xm; y0; z0/!�1.

Case 2 Suppose xn diverges to infinity. We can find a number N such that �.xn; y0/ � �.y0; z0/ and
�.xn; z

0/� �.y0; z0/ for all n�N . Then we have

�.xn; xm/�.y
0; z0/

�.xn; y0/�.xm; z0/
�
K max.�.xn; y0/; �.y0; xm//�.y0; z0/

�.xn; y0/�.xm; z0/

�
K2 max.�.xn; y0/; �.y0; z0/; �.z0; xm//�.y0; z0/

�.xn; y0/�.xm; z0/

DK2
�.y0; z0/

min.�.xn; y0/; �.xm; z0//
! 0:

Hence, we see that also in this case, �.xn; xm/�.y0; z0/=.�.xn; y0/�.xm; z0// converges to zero and,
therefore, c.xn; xm; y0; z0/!�1. This completes the proof.

One might hope that an analogous statement for condition (2) holds. However, the following example
illustrates that Lemmas 5.2 and 5.4 are the best that we can hope for.

Example 5.5 Consider the circle, represented as S1 D R=4Z. We will mostly use representatives
in Œ�2; 4� to represent points on the circle. Consider the space Z WD S1 n fŒ0�g and define a map
� WZ �Z! Œ0;1/ by

�.Œx�; Œy�/ WD

�
jx�yj if .x; y/ 2 .0; 2�2[Œ1; 3�2[Œ2; 4/2[.Œ�1; 1�nf0g/2

2jx�yj if .x; y/ 2 ..0; 1/�.2; 3//[..2; 3/�.0; 1//[..1; 2/�.3; 4//[..3; 4/�.1; 2//:

Notice the use of different representatives depending on the case. Geometrically, .Z; �/ can be thought
of as follows. Think of Z as a subset of the circle of circumference 4 with the shortest path metric. This
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circle can be embedded into R2 such that it is centred at the origin, ie it is the boundary of a disk centred
at the origin.

We can now consider the intersection of the circle with each quarter of R2. We call them the upper-right,
upper-left, lower-left and lower-right segments of S1, based on their position in the standard coordinate
system of R2.

The distance �.x; y/ between two points x and y is now defined to be the same as on S1 if x and y lie
on the same segment of S1 or if they lie on segments that are neighbours of each other. If x and y lie on
segments of S1 that lie opposite to each other, then �.x; y/ is exactly twice the length of the path from x

to y that passes through the point .0;�1/.

A straightforward computation with several case-distinctions shows that � is a 12–quasimetric. Thus, we
get a strong Möbius space .Z;M�/. Consider now the following sequence in Z:

xn D
h
1

n
.�1/n

i
:

One can show that there is a good pair for .xn/n that satisfies condition (3), but not condition (2).
Furthermore, one can even find another good pair for .xn/n that satisfies both conditions (2) and (3).
Specifically, choose y D 1:5, z D�1:5 for the first case, and y D 1:5, z D 1:6 for the second case.

The issue at hand is that even if we understand the convergence behaviour of
�.xn; xm/�.y; z/

�.xn; y/�.xm; z/
;

we cannot control the convergence behaviour of
�.xn; y/�.xm; z/

�.xn; z/�.xm; y/

if � is not a metric. So we have found a quasimetric — and thus a strong Möbius structure M� — for
which the statement “(3)D) (2)”, that we have proven for metrics in Lemma 5.1, does not hold.

This example illustrates the relationship between the different possible conditions one could use to define
Cauchy sequences in a strong Möbius space. If condition (2) holds for one good pair y; z, this does not
imply that condition (2) holds for all good pairs, unless we work with a metric space. In the same way,
if condition (3) holds for all good pairs, this doesn’t imply the same for condition (2). However, from
Lemma 5.4 we know that, if condition (3) holds for one good pair, it holds for all of them.

Example 5.5 leads us to the following definition of Cauchy sequences in a strong Möbius space.

Definition 5.6 Let .Z;M/ be a strong Möbius space. A sequence .xn/n inZ is called a Cauchy sequence
if and only if for one (and hence all) good pairs y; z in Z, we have

c.xn; xm; y; z/
n;m!1
�����!�1:

Definition 5.7 A strong Möbius space .Z;M/ is called complete if and only if all Cauchy sequences in
.Z;M/ converge.
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Using the previous lemma, the following results are easy to see.

Proposition 5.8 Let .Z;M/ and .Z0;M 0/ be two strong Möbius spaces , and let f W Z ! Z0 be a
Möbius equivalence between them.

(1) Let .xn/n be a sequence in Z. Then .xn/n is a Cauchy sequence in .Z;M/ if and only if .f .xn//n
is a Cauchy sequence in .Z0;M 0/.

(2) The strong Möbius space .Z;M/ is complete if and only if .Z0;M 0/ is.

Proof (1) The sequence .xn/n is a Cauchy sequence if and only if for some good pair y; z in Z,

c.xn; xm; y; z/!�1:

Since f is a Möbius equivalence, this implies

c0.f .xn/; f .xm/; f .y/; f .z//D c.xn; xm; y; z/!�1:

Since f is a homeomorphism by Lemma 4.8 and y; z is a good pair, so is f .y/; f .z/ for .f .xn//n. Thus,
.f .xn//n is a Cauchy sequence in .Z0;M 0/.

(2) Suppose .Z;M/ is complete and let .x0n/n be a Cauchy sequence in .Z0;M 0/. By part (1),
.f �1.x0n//n is a Cauchy sequence in .Z;M/ which converges to some x 2Z by completeness. Since
f is a homeomorphism, .x0n/n has to converge to f .x/. This implies completeness.

The notion of completeness defined above compares to the notion of completeness defined in metric
spaces as follows:

Theorem 5.9 Let .Z; �/ be a (possibly extended ) metric space , and denote the induced Möbius structure
by M. The following are equivalent :

(1) .Z;M/ is complete as a strong Möbius space.

(2) .Z; �/ is complete as a metric space and is either bounded or has a point at infinity.

Proof (1)D) (2) Suppose .Z;M/ is complete as a strong Möbius space and let .xn/n be a Cauchy
sequence in the metric sense. By Lemma 5.1, .xn/n is also a Cauchy sequence in the Möbius sense.
Hence, .xn/ has to converge in the Möbius topology. Since the Möbius topology is the same as the
metric topology on a metric space by Theorem 4.9, .xn/n converges in the metric topology and .Z; �/ is
complete in the metric sense.

(2)D) (1) Suppose .Z; �/ is complete as a metric space and let .xn/n be a Cauchy sequence in the
Möbius sense. By Lemma 5.1, .xn/n is either a Cauchy sequence in the metric sense, or it diverges to
infinity. If it is a Cauchy sequence in the metric sense, it converges in the metric topology (and thus in the
Möbius topology) by metric completeness. If xn diverges to infinity, the metric space cannot be bounded.
Hence, it has a point at infinity by assumption, and xn converges to the point at infinity in the metric and
Möbius topologies.
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6 Constructing the completion

Now that we have a notion of Cauchy sequences and a notion of completeness for strong Möbius spaces,
an obvious question is whether every strong Möbius space has a naturally unique completion, as metric
spaces do.

Certainly, if we take a metric space .Z; �/ and consider the induced Möbius structure M, the metric
completion .Z; x�/ is either complete with respect to the induced Möbius structure M , which is just an
extension of M, or one has to add one point at infinity to make it complete in the Möbius sense. Adding a
point at infinity doesn’t change that Z is dense in its completion and it is easy to see that uniqueness up
to isometry for the metric case implies uniqueness up to Möbius equivalence (even up to isometry) in the
Möbius sense.

We want to see whether we can create a completion beyond the metric case. It turns out that this requires
an extra condition. We start by doing the same construction that is used to obtain the metric completion.
We will point out where the construction fails, and distil the extra condition needed. Let .Z; crt/ be a
strong Möbius space. Define the set

Z WD f.xn/n j .xn/ a Cauchy sequence in .Z; crt/g=�;

where .xn/� .x0n/ if and only if, for every pair y¤z inZ that is a good pair for both .xn/ and .x0n/, we have

c.xn; x
0
n; y; z/!�1:

There is a canonical embedding of Z into Z defined by sending x to the constant sequence xn D x. This
is clearly a Cauchy sequence and the map x 7! Œ.x/n� is injective, since two different constant sequences
are not equivalent in the sense defined above.

The next step is to extend the Möbius structure crt to Z. We would like to define

crt
�
Œ.wn/�; Œ.xn/�; Œ.yn/�; Œ.zn/�

�
WD lim

n!1
crt.wn; xn; yn; zn/:

There are two questions that arise immediately when stating this definition. Does the limit on the right-hand
side exist and is it independent of the choice of representative of a point Œ.wn/�2Z? In general, the answer
to these two questions is no. The reason for that has already appeared in Example 5.5, namely that, if
�.xn; xm/! 0, we cannot make sure that �.xn; y/ converges for all y 2Z. Specifically, the sequence xn
discussed in Example 5.5 satisfies crt.x2n; x2nC1; y; z/! .0 W1 W4/ and crt.x2n; x2nC2; y; z/! .0 W1 W1/.
Therefore limn;m!1 crt.xn; xm; y; z/ does not exist. This example is a special case that will appear in
the definition of crt given above and makes this construction not well defined in general.

As mentioned in Example 5.5, the problem at hand is that we cannot control the behaviour of the ratio
�.xn; y/�.xm; z/=.�.xm; y/�.xn; z// for a Cauchy sequence .xn/. If we knew that crt.wn; xn; yn; zn/
could only converge to points in RP 2 that are allowed to be obtained by a Möbius structure, then we
could resolve this problem (as we will see below). The following property makes sure that these issues
cannot arise.
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.1 W 0 W 0/ .0 W 1 W 0/

.0 W 0 W 1/

Im.crt/

Figure 2: A Möbius structure crt satisfies the symmetry condition if and only if no point in the
boundary of x� can be approximated by a sequence of points in Im.�/ except for

�
1
2
W
1
2
W 0
�
,�

1
2
W 0 W 1

2

�
and

�
0 W 1

2
W
1
2

�
. In other words, the image doesn’t touch the boundary at any other than

those three points.

Definition 6.1 A Möbius structure crt or a Möbius space .Z; crt/ satisfies the symmetry condition if and
only if

Im.crt/� x�D f.a W b W c/ j a; b; c > 0g[ f.0 W 1 W 1/; .1 W 0 W 1/; .1 W 1 W 0/g;

where Im.crt/ denotes the closure of the image of crt in RP 2.

To interpret this definition, it is useful to think of � � RP 2 as a triangle. Specifically, consider the
triangle f.x; y; z/ 2R j xCyC z D 1; x; y; z � 0g. The projection of this triangle onto RP 2 is exactly
the topological closure of �. The symmetry condition tells us that any sequence of cross ratio triples
crt.wn; xn; yn; zn/ can only accumulate at points in the interior of this triangle or at one of the three
distinct points on the boundary of the triangle that are assumed by degenerate quadruples. It turns out
that this is the property needed to construct a completion.

Theorem 6.2 Let .Z;M/ be a Möbius space that satisfies the symmetry condition. Then there exists
a complete strong Möbius space .Z; crt/ with a Möbius embedding iZ W Z ,! Z— that is , satisfying
crt.iZ.w/; iZ.x/; iZ.y/; iZ.z//D crt.w; x; y; z/ for all admissible quadruples .w; x; y; z/— such that
iZ.Z/ is dense in Z.

Furthermore , if .Z0; crt0/ is a complete strong Möbius space such that there exists a Möbius embedding
i WZ ,!Z0 such that i.Z/ is dense in Z0, then there exists a unique Möbius equivalence f WZ!Z0 such
that i D f ı iZ .

The space .Z; crt/ is going to be the one constructed above. Suppose .Z; crt/ satisfies the symmetry
condition. Let � be a quasimetric inducing crt, .xn/ a Cauchy sequence in the Möbius sense and y; z
a good pair for .xn/. By symmetry of xn; xm we see that �.xn; xm/�.y; z/=.�.xn; y/�.xm; z// and
�.xn; xm/�.y; z/=.�.xm; y/�.xn; z// both converge to zero as n and m tend to infinity. Therefore, the
sequence crt.xn; xm; y; z/ can be written in the form .an Wbn Wcn/ with all three entries being nonnegative,
where we scale an; bn; cn so that an C bn C cn D 2. By the convergence statements above, an has
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to converge to zero. Since crt satisfies the symmetry condition, the only point .0 W b W c/ that can be
approximated arbitrarily well in Im.crt/ is .0 W 1 W 1/. Therefore, crt.xn; xm; y; z/

n;m!1
�����! .0 W 1 W 1/.

Remark 6.3 Theorem 6.2 has an analogue for the quasi-Möbius class. Given a strong Möbius space
.Z;M/, one can choose a bounded quasimetric � that induces the given Möbius structure by Proposition 3.3.
Using the fact that 2–quasimetrics can be deformed into metrics (see for example [Heinonen 2005]),
we find that there exists some � > 0 and a metric d such that d is bi-Lipschitz-equivalent to �� and the
Möbius structures induced by � and d respectively are quasi-Möbius equivalent. Since d is a metric,
it has a completion, which is still bounded, and by Theorem 5.9 the Möbius space induced by the
completion of .Z; d/ is complete as a Möbius space. In other words, every strong Möbius space is
quasi-Möbius equivalent to a Möbius space that is induced by a metric and admits a completion. This is
in contrast to the situation where we stay within the same Möbius class, where not every strong Möbius
structure admits a completion, as Example 5.5 shows.

The symmetry condition allows us to prove a result about convergence that will be useful in proving
Theorem 6.2.

Proposition 6.4 Let .Z; crt/ be a strong Möbius structure satisfying the symmetry condition. Let .xn/
and .yn/ be Cauchy sequences in Z, let y 2Z and let � be a quasimetric that induces crt and has a point
at infinity (eg �D �A). Then �.xn; y/ and �.xn; yn/ converge , possibly to infinity.

Recall that every sequence .xn;m/ in R parametrised by N2 with the property that limn!1 xn;m exists
for every m, limm!1 xn;m exists for every n and limn;m!1 xn;m exists, satisfies

lim
n!1

lim
m!1

xn;m D lim
m!1

lim
n!1

xn;m D lim
n;m!1

xn;m:

Proof Denote the point at infinity with respect to � by 1. By Lemma 5.2, xn is either bounded or
diverges to infinity. If xn diverges to infinity with respect to �, then �.xn; y/!1. Now assume the
Cauchy sequence xn is bounded with respect to �. By Lemma 5.2, we know that �.xn; xm/

n;m!1
�����! 0. In

particular, since � is a quasimetric, either �.xn; y/
n!1
����! 0, or there exists � > 0, such that �.xn; y/� �

for all n sufficiently large. Suppose �.xn; y/ does not converge to zero. Then y;1 are a good pair
for .xn/, c.xn; xm; y;1/

n;m!1
�����!�1 and, by the symmetry condition,

crt.xn; xm; y;1/
n;m!1
�����! .0 W 1 W 1/:

This implies that

(6-1)
�.xn; y/

�.xm; y/

n;m!1
�����! 1:

We can now use this to prove that �.xn; y/ converges for every Cauchy sequence .xn/ and any y 2Z.
If .xn/ converges to y, then �.xn; y/! 0 by definition. If .xn/ diverges to infinity with respect to �, then
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�.xn; y/!1. If .xn/ is bounded with respect to �, then 0��.xn; y/�B and hence — by compactness —
has a convergent subsequence �.xni

; y/. Applying equation (6-1) in the case mD ni yields

�.xn; y/

�.xni
; y/

n;i!1
�����! 1:

Since �.xni
; y/ converges, this implies that the limit of �.xn; y/ exists and

lim
n!1

�.xn; y/D lim
i!1

�.xni
; y/:

Now consider the two Cauchy sequences .xn/ and .yn/. If one of the sequences is bounded and the other
diverges to infinity, then �.xn; yn/!1. If both sequences diverge to infinity, replace � with an involution
�o at any point o 2Z. Both .xn/ and .yn/ are bounded with respect to �o. Convergence of �o.xn; yn/
and the fact that � is the involution of �o at the point12Z will imply convergence of �.xn; yn/.

We are left to prove convergence of �.xn; yn/ when both sequences are bounded. In this situation, we
know that �.xn; xm/; �.yn; ym/

n;m!1
�����! 0. Suppose �.xn; yn/ does not converge to zero. Then the

limits above and the fact that � is a quasimetric imply that there exists some � > 0 such that for all n
sufficiently large, �.xn; yn/ > �. We conclude that

cr.xn; xm; yn;1/D
�.xn; xm/

�.xn; yn/

n;m!1
�����! 0:

Since crt satisfies the symmetry condition, this implies that

(6-2)
�.yn; xn/

�.yn; xm/
D cr.yn; xn; xm;1/

n;m!1
�����! 1:

Furthermore, replacing either n or m by a subsequence does not change this convergence behaviour. The
same argument with the roles of .xn/ and .yn/ swapped implies

�.xn; yn/

�.xn; ym/

n;m!1
�����! 1:

Since .xn/ and .yn/ are bounded, there exist subsequences .xni
/ and .yni

/ such that �.xni
; yni

/ converges.
Equation (6-2) now implies that

lim
i;m!1

�.yni
; xni

/

�.yni
; xm/

D 1

and, therefore,
lim
i!1

�.yni
; xni

/D lim
i;n!1

�.yni
; xn/:

Using equation (6-2) with the roles of .xn/, .yn/ swapped, we obtain

lim
i;n!1

�.xn; yn/

�.xn; yni
/
D 1

and, therefore,
lim
n!1

�.xn; yn/D lim
i;n!1

�.xn; yni
/:

This implies that �.xn; yn/ converges whenever both sequences are Cauchy sequences (provided that
� has a point at infinity).
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Proof of Theorem 6.2 Let Z and crt be as defined before. We start by proving that crt is well defined.
Let .wn/, .xn/, .yn/ and .zn/ be Cauchy sequences in Z. By Proposition 6.4, �. �n ; �n / converges for any
two of the sequences. Therefore, crt.wn; xn; yn; zn/ converges as well and, by the symmetry condition, it
converges to a point in Im.crt/� x�.

We are left to show that limn!1 crt.wn; xn; yn; zn/ D limn!1 crt.w0n; x
0
n; y
0
n; z
0
n/ for .wn/ � .w0n/,

.xn/ � .x
0
n/, .yn/ � .y

0
n/ and .zn/ � .z0n/. Again, we will prove the statement for �.xn; y/ and a

quasimetric � that induces crt and has a point at infinity. Repeating this argument then implies, as above,
that the statement for crt.wn; xn; yn; zn/ holds.

So let � be a quasimetric that induces crt and has a point at infinity, denoted by 1. Let .xn/ � .x0n/.
Since c.xn; x0n; y; z/!�1 for all good pairs, it is easy to see that either �.xn; x0n/! 0 or xn and x0n
both diverge to infinity.

If .xn/ diverges to1, then x0n has to diverge to infinity too; hence limn!1 �.xn; y/D limn!1 �.x0n; y/
for all y 2Z.

Now suppose .xn/ does not diverge to1. It has to be bounded by Lemma 5.2, and �.xn; x0n/
n!1
����! 0.

By Proposition 6.4, �.xn; y/ and �.x0n; y/ both converge. Suppose �.xn; y/
n!1
����! 0. Then

�.x0n; y/�K max.�.x0n; xn/; �.xn; y//
n!1
����! 0:

Thus, limn!1 �.x0n; y/D 0D limn!1 �.xn; y/.

Finally, suppose �.xn; y/! r for some positive real number. Then, by swapping xn and x0n in the
argument above, �.x0n; y/ doesn’t converge to zero. Therefore and because .xn/ and .x0n/ are both
bounded, y;1 is a good pair for both sequences. Since the two sequences are equivalent by assumption,

c.xn; x
0
n; y;1/!�1:

The symmetry condition implies

crt.xn; x0n; y;1/! .0 W 1 W 1/:

In other words,
crt.xn; x0n; y;1/D

�.xn; y/

�.x0n; y/
! 1

and, therefore,
lim
n!1

�.xn; y/D lim
n!1

�.x0n; y/:

Analogously to the second half of the proof of Proposition 6.4, we show that limn!1 �.xn; yn/ D
limn!1 �.x0n; yn/ for all Cauchy sequences .xn/ � .x0n/; .yn/. Thus, limn!1 crt.wn; xn; yn; zn/ D
limn!1 crt.w0n; x

0
n; y
0
n; z
0
n/ and therefore, crt is well defined.

Given a Möbius space .Z; crt/ that satisfies the symmetry condition, we have constructed a new strong
Möbius space .Z; crt/. We also have a canonical map of Z into Z that preserves the Möbius structure
(hence it is also a topological embedding).
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We are left to show that Z is complete and that Z is unique. We prove completeness first. Suppose that
�m D Œ.x

.m/
n /n� 2Z is such that .�m/m is a Cauchy sequence in Z. We will often identify �m with the

representative .x.m/n /. Choose a quasimetric � on Z that induces crt and let x� be the extension to Z.
Clearly, x� induces crt. By Lemma 5.2, .�m/m either diverges to infinity, or it is bounded with respect to x�.

We analyse the point at infinity in Z with respect to x�. Let it be represented by a Cauchy sequence .zn/
in Z. Then x�..zn/; .yn//D1 for all Cauchy sequences .yn/ in Z that are not equivalent to .zn/. This
means that

1D x�..zn/; .yn//D lim
n!1

�.zn; yn/;

which is the same as saying that .zn/ diverges to infinity. So the point at infinity with respect to x� is the
equivalence class of all sequences in Z that diverge to infinity with respect to �.

Before we study the convergence of our sequence .�m/m, we need to take a look at convergence in the
Möbius topology. Given a strong Möbius space .Z0;M 0/, a sequence xn in Z0 converges to x if and only
if, for all nondegenerate triples AD .!; ˛; ˇ/ in Z0 and all y 2 Z0 such that y does not lie at infinity
with respect to �A, we have �A.xn; y/! �A.x; y/. By Lemmas 3.5 and 4.2, if a Möbius structure crt is
induced by a quasimetric �, then the induced semimetrics �A are quasimetrics and have the form

�A.x; y/D
�.x; y/

�.x; !/�.!; y/

�.˛; !/�.!; ˇ/

�.˛; ˇ/
:

We see that, as long as xn does not diverge to infinity with respect to �, it is sufficient to prove that
�.xn; y/! �.x; y/ for all y. In particular, since every strong Möbius structure is induced by a bounded
quasimetric � by Proposition 3.3, we can simply use such a quasimetric to study convergence.

Returning to the space .Z; crt/ constructed above, if we pick a bounded quasimetric � that induces crt,
then x� will be a bounded quasimetric as well. The discussion above implies that a sequence .�m/m
converges to a point � if and only if x�.�m; �/! x�.�; �/ for all � 2Z.

Back to the sequence .�m/m. Since we assume � to be bounded, any Cauchy sequence in .Z;M/ is
bounded with respect to �. We need to find a Cauchy sequence .xl/l in Z such that .�m/m converges to
that sequence in the Möbius topology as m tends to infinity. Since � is bounded, �m D Œ.x.m/n /n� can be
represented by a bounded Cauchy sequence for every m. By Lemma 5.2,

�.x.m/n ; x
.m/
n0 /

n;n0!1
�����! 0:

Thus, for every fixedm and every � >0, we find a natural numberNm such that for all n; n0�Nm, we have

�.x.m/n ; x
.m/
n0 / < �:

Let .yn/ be a Cauchy sequence in Z. Since x� is bounded, the sequence .�m/m is bounded and we find
some constant B > 0 such that x�.�m; .yn// < B for all m 2 N. Therefore, for every m we find some
natural number Nm such that for all n�Nm, we have

�.x.m/n ; yn/� 2B:
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Since .�m/m is a bounded Cauchy sequence by assumption, we also find for every � > 0 a natural
number M such that for all m;m0 �M ,

x�.�m; �m
0

/ < �:

We now use the following technical lemma.

Lemma 6.5 There exists a sequence .xl/l in Z satisfying the following properties:

(1) xl D x
.ml /
nl

.

(2) The sequences ml and nl are increasing.

(3) For every l 2N and all n� nl , we have �.x.ml /
nl

; x
.ml /
n / < 1=.lK/.

(4) For every l 2N and all m;m0 �ml , we have x�.�m; �m
0

/� 1=.2lK/.

(5) For all l � l 0 2N and all n� nl 0 , we have �.x.ml /
n ; x

.ml0 /
n / < 1=.lK/.

We first show how the lemma completes the proof of Theorem 6.2. Given such a sequence .xl/l , one
immediately sees that for all l and all l 0 � l , we have

�.xl ; xl 0/D �.x
.ml /
nl

; x
.ml0 /
nl0 /�K max

�
�.x.ml /

nl
; x.ml /
nl0

/; �.x.ml /
nl0

; x
.ml0 /
nl0 /

�
�K

1

lK
D
1

l
:

This implies that xl is bounded and a Cauchy sequence. Furthermore, for any l0 2NC and m�ml0 ,

x�.�m; .xl/l/D lim
l!1

�.x
.m/

l
; x.ml /
nl

/

� lim
l!1

K3 max
�
�.x

.m/

l
; x
.ml0

/

l
/; �.x

.ml0
/

l
; x
.ml0

/
nl0

/; �.x
.ml0

/
nl0

; x
.ml0

/
nl

/; �.x
.ml0

/
nl

; x.ml /
nl

/
�
:

For sufficiently large l , we can estimate each of the four expressions in the maximum. By property
(4) above, the limit of the first expression is at most 1=.2l0K/. The second and third expression are
both bounded by 1=.l0K/ due to property (3) for l �max.nl0 ; l0/. The fourth expression is bounded by
1=.l0K/ due to property (5) for l � l0. We conclude

x�.�m; .xl/l/� lim
l!1

K3 max
�
�.x

.m/

l
; x
.ml0

/

l
/; �.x

.ml0
/

l
; x
.ml0

/
nl0

/; �.x
.ml0

/
nl0

; x
.ml0

/
nl

/; �.x
.ml0

/
nl

; x.ml /
nl

/
�

� lim
l!1

K2

l0
D
K2

l0
:

Thus x�.�m; .xl/l/
m!1
����! 0 and for any other point .yl/l 2 Z, we find �y such that x�.�m; .yl/l/ > �y

for m sufficiently large. This implies that

crt.�m; .xl/l ; .yl/l ; .zl/l/
m!1
����! .0 W 1 W 1/ for all .yl/l ; .zl/l 2Z n f.xl/lg:

Since we assume that .�m/m does not diverge to infinity, we have that .xl/l ¤1 and we can choose
.zl/l D1 (by having chosen the original � to have a point at infinity). Then, writing y WD .yl/l and
1D .1/l , this limit takes the form

crt.�m; .xl/l ; y;1/
m!1
����! .0 W 1 W 1/:
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By the definition of crt this implies
x�.�m; y/

x�..xl/l ; y/

m!1
����! 1:

In other words, limm!1 x�.�m; y/D x�..xl/l ; y/. This implies that �m converges to .xl/.

We are left to prove the technical lemma and to show that the completion .Z; crt/ is unique up to unique
Möbius equivalence. Let .Z0; crt0/ be a complete strong Möbius space and i WZ ,!Z0 a Möbius embedding,
ie an injective map that is a Möbius equivalence onto its image. Further, assume i.Z/ is dense inZ0 with its
Möbius topology. Denote the canonical inclusion of Z into Z by iZ . Since i and iZ are both injective, we
get a bijection f W i.Z/! iZ.Z/ which sends i.x/ to iZ.x/. Since i and iZ are Möbius equivalences onto
their images, they are also homeomorphisms onto their images. Therefore, the map f is a homeomorphism
with respect to the subspace topology on i.Z/ and iZ.Z/. Since f preserves the Möbius structure and
therefore Cauchy sequences and equivalent Cauchy sequences, it extends to a bijection F WZ0!Z.

We claim that F is a Möbius equivalence. Let .w; x; y; z/ be a nondegenerate quadruple in Z0 (clearly,
F preserves the Möbius structure on degenerate, admissible quadruples). Then we can approximate these
four points by sequences wn; xn; yn; zn in i.Z/. By definition of F ,

F.w/D lim
n!1

F.wn/; F .x/D lim
n!1

F.xn/; F .y/D lim
n!1

F.yn/; F .z/D lim
n!1

F.zn/;

and hence

crt.F.w/F.x/F.y/F.z//D lim
n!1

crt.F.wn/F.xn/F.yn/F.zn//D lim
n!1

crt.f .wn/f .xn/f .yn/f .zn//

D lim
n!1

crt0.wn; xn; yn; zn/Dcrt0.w; x; y; z/:

This shows that F preserves the Möbius structure on nondegenerate quadruples. Hence, F is a Möbius
equivalence. Since all Möbius equivalences are homeomorphisms, uniqueness follows from the fact that
F ji.Z/ D f is given and the fact that i.Z/ is dense in Z0. This completes the proof of Theorem 6.2 up
to the proof of Lemma 6.5.

Proof of Lemma 6.5 We are left to construct the sequence xl . We construct xl inductively. The induction
starts as follows: Since .�m/m is a bounded Cauchy sequence, we find natural numbersM1<M2 such that

x�.�m; �m
0

/ <

8<:
1

2K
for all m;m0 �M1;

1

4K
for all m;m0 �M2:

Now we fix mDM1; m
0 DM2. We find a natural number N1 such that

�.x.M1/
n ; x.M2/

n / <
1

K
for all n�N1:

Since .x.M1/
n /n is a bounded Cauchy sequence in Z, we can choose N1 such that, additionally,

�.x.M1/
n ; x

.M1/
n0 / <

1

K
for all n; n0 �N1:
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Set
x1 WD x

.M1/
N1

:

We see that x1 satisfies conditions (3) and (4) from above. Now we do the inductive construction.

Suppose we are given points x1; : : : ; xl in Z satisfying properties (1)–(5). Since .�m/m is a Cauchy
sequence in Z, we find some MlC1 >ml such that

x�.�m; �m
0

/ <
1

2.lC1/K
for all m;m0 �MlC1:

PutmlC1 WDMlC1. Since we have chosenMlC1>ml , condition (2) stays satisfied for .ml/l . Furthermore,
mlC1 satisfies condition (4). Since �mlC1 is a Cauchy sequence, we find some natural numberN0 such that

�.x
.mlC1/
n ; x

.mlC1/

n0 / <
1

.lC1/K
for all n; n0 �N0:

Thus condition (3) is satisfied if we choose nlC1 �N0. By condition (4), we know that

x�.�mi ; �mlC1/ <
1

2iK
for all i < l C 1:

Therefore, we find some natural numbers Ni such that

�.x.mi /
n ; x

.mlC1/
n / <

1

iK
for all n�Ni :

We put N WDmax.N0; N1; : : : ; Nl ; nl/ and get

�.x.mi /
n ; x

.mlC1/
n / <

1

iK
for all n�N and i < l C 1:

Put nlC1 WDN and put
xlC1 WD x

.mlC1/
nlC1

:

By the definition of N , the sequence .nl/l satisfies condition (2). Condition (3) is satisfied since
nlC1 � N0. Condition (4) is satisfied by choice of mlC1. Finally, condition (5) is satisfied because
nlC1 �max.N1; : : : ; Nl/. Condition (1) is trivially satisfied and hence we have constructed a sequence
with properties (1)–(5). We have seen before that such a sequence is a Cauchy sequence in .Z; crt/ and
.�m/m converges to .xl/l in .Z; crt/. Hence the Cauchy sequence .�m/m converges. This implies that
.Z; crt/ is complete.
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Z=p � Z=p actions on S n � S n

JIM FOWLER

COURTNEY THATCHER

We determine the homotopy type of quotients of Sn�Sn by free actions of Z=p �Z=p where 2p > nC3.
Much like free Z=p actions, they can be classified via the first p–localized k–invariant, but there are
restrictions on the possibilities, and these restrictions are sufficient to determine every possibility in the
nD 3 case. We use this to complete the classification of free Z=p �Z=p actions on S3 �S3 for p > 3

by reducing the problem to the simultaneous classification of pairs of binary quadratic forms. Although
the restrictions are not sufficient to determine which k–invariants are realizable in general, they can
sometimes be used to rule out free actions by groups that contain Z=p�Z=p as a normal abelian subgroup.

57N65, 57S25

1 Introduction

The topological spherical space form problem asks: what groups can act freely on the sphere and how
can these group actions be classified? Conditions for which groups can act were determined during the
middle of the last century; see e.g. Smith [28], Milnor [22] and Madsen, Thomas and Wall [18]. The
question of how free cyclic groups can act on spheres was addressed in the study of lens spaces, with the
classification of all free cyclic group actions being completed recently; see Macko and Wegner [16; 17].

This question can easily be extended to actions on products of spheres. What groups can act has been
addressed in a number of papers (see e.g. Conner [7], Heller [12], Oliver [26], Adem and Smith [1],
Benson and Carlson [3], Hambleton and Ünlü [11] and Okay and Yalçin [25]), while the classification of
how the simplest of groups do act on products of spheres and what invariants distinguish them has largely
been skipped. Here we focus specifically on the how question.

To begin addressing how groups act, one might consider the simplest group actions. Free Z=p actions on
Sn�Sn for p> 1

2
.nC3/ were addressed by Thatcher [30] — the homotopy type is determined completely

by the homotopy groups and the first k–invariant. We consider quotients of free actions of Z=p �Z=p
on Sn �Sn with n > 1 odd and p > 1

2
.nC 3/. It turns out that the homotopy classification is similar

to the Z=p case — the classes are determined by the first k–invariants, but the k–invariants are more
complicated. A significant insight is the usefulness of localizing at a large prime — while the homotopy
groups of spheres are replete with torsion, �iS

n has no p–torsion for i � 2n when p is reasonably large.

© 2024 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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1842 Jim Fowler and Courtney Thatcher

From this we see that only a couple of nontrivial stages in the localized Postnikov tower carry all the
relevant data for our study.

We begin with a review of the cohomology of Z=p � Z=p in Section 2 and then proceed with the
classification. In Section 3 we determine the homotopy type in terms of a single k–invariant, or equivalently,
in terms of the transgression in a certain spectral sequence, which the reader might also prefer to think
of as an Euler class. The homotopy classification of Z=p �Z=p actions on Sn �Sn then amounts to a
choice of parameters in Z=p.

In Section 4 we find that there are strong restrictions on the possible k–invariants. In Section 5 we provide
constructions of the possible homotopy classes based on these restrictions, and in Section 6 we show that
this is the full homotopy classification of Z=p �Z=p actions on S3�S3 by reducing the classification to
that of pairs of binary quadratic forms. One of our main results is the following:

Theorem 6.6 Let p > 3 be prime. If p � 1 mod 4, then there are four homotopy classes of quotients of
S3 �S3 by free Z=p �Z=p actions. If p � 3 mod 4, then there are two classes.

Finally, in Section 8 we show that these restrictions can be used to rule out free actions by groups
containing Z=p �Z=p as a normal abelian subgroup. This is consistent with the results about Qd.p/ in a
recent paper by Okay and Yalçin [25].

We note that a subsequent paper will provide the homeomorphism classification of these quotients in the
case of linear actions.

Acknowledgements

The authors thank Ian Hambleton for helpful conversations and the reviewer for many useful suggestions,
including repairing a mistake in an earlier version of this manuscript.

2 The cohomology of Z=p � Z=p

To begin, we will need the integral cohomology of X D .Sn � Sn/=.Z=p �Z=p/. To determine this,
we first need to consider the ring structure of the integral cohomology of Z=p � Z=p. It is known
that H�.Z=pIZ=p/ D Fp Œa� ˝ ^.u/, where juj D 1, jaj D 2, and ˇ.u/ D a with ˇ the Bockstein
homomorphism, and that H�.Z=pIZ/ D ZŒa�=.pa/, where jaj D 2. It follows from the Künneth
theorem that H�.Z=p �Z=pIZ=p/ Š Fp Œa; b�˝^.u; v/, where juj D jvj D 1 and jaj D jbj D 2, but
H�.Z=p �Z=pIZ/ requires a bit more work.

The homology and cohomology groups themselves can be determined using the Künneth theorem and
universal coefficients.

Algebraic & Geometric Topology, Volume 24 (2024)
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Proposition 2.1 The integral homology groups of Z=p �Z=p are

Hk.Z=p �Z=pIZ/Š

8<:
Z for k D 0;

.Z=p/
.kC3/=2 for k > 0 odd;

.Z=p/
k=2 for k > 0 even:

The integral cohomology groups are

H k.Z=p �Z=pIZ/Š

8̂̂̂<̂
ˆ̂:

Z for k D 0;

0 for k D 1;

(Z=p/.k�1/=2 for k > 1 odd;
(Z=p/.kC2/=2 for k > 1 even:

The ring structure can then be determined by piecing together the exact sequences in cohomology
associated to the short exact sequences 0! Z=p! Z2

=p
! Z=p! 0 and 0! Z! Z! Z=p! 0. We

take G D Z=p �Z=p for notational ease. Then the triangle in the diagram

H n.GIZ/
�
// H n.GIZ=p/

Q̌
//

ˇ ''

H nC1.GIZ/
p
//

�

��

H nC1.GIZ/

H nC1.GIZ=p/

commutes, where ˇ is the Bockstein associated to the first short exact sequence above, Q̌ is the Bockstein
associated to the second one, � is the homomorphism induced by the map Z! Z=p, and p is the map
induced by multiplication by p. This along with the ring structure of H�.Z=p �Z=pIZ=p/ allows one to
find the ring structure of H�.Z=p �Z=pIZ/. This ring structure is given, among other places, in [6; 27].

Theorem 2.2 The integral cohomology ring of Z=p �Z=p is

H�.Z=p �Z=pIZ/Š ZŒa; b; c�=.pa;pb;pc; c2/;

where jaj D jbj D 2 and jcj D 3.

3 Homotopy equivalence and the k–invariants

Let G DZ=p �Z=p act freely on Sn�Sn, and let X be the resulting quotient manifold, which may only
be a TOP manifold. A simple example of such an action is given by the first Z=p acting freely on the first
Sn and the second Z=p acting freely on the second Sn in such a way that the resulting quotient manifold
is the product of two lens spaces. We wish to determine when two arbitrary free actions of Z=p �Z=p
result in homotopy equivalent quotients.

For p > 3, the fundamental group �1.X /DG acts trivially on the homology of the universal cover of X

because GL2.Z/ has no p–torsion. So by [13, Remark 2.19], it follows that X is nilpotent, and hence X

has a Postnikov tower that admits principal refinements and X can be p–localized.

Definition 3.1 A connected space X n–simple if �1.X / is abelian and acts trivially on �i.X / for 1< i�n.

Algebraic & Geometric Topology, Volume 24 (2024)
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An n–simple space has a Postnikov tower that consists of principal fibrations through the nth stage. We
briefly describe the construction, but more specific details can be found in [19]. The first stage is taken to
be X1 DK.�1.X /; 1/, with f1 WX !X1 inducing an isomorphism on �1. The map pi WXi!Xi�1 is
constructed iteratively as the fibration induced from the path space fibration over K.�iX; i C 1/ by the
map kiC1 WXi�1!K.�iX; i C 1/. The kiC1 are called k–invariants, and are thought of as cohomology
classes. There are maps fi W X ! Xi for 1 � i � n such that pi ı fi D fi�1, and each fi induces an
isomorphism on �k for all k � i . Additionally, �k.Xi/D 0 for k > i .

The bottom of the Postnikov tower for an n–simple space generically looks like:

��

Xn

��
:::

��

X3

p3

��

k5
// K.�4.X /; 5/

X2

p2

��

k4
// K.�3.X /; 4/

X //

f2

88

f3

AA

fn

HH

X1 K.G; 1/ k3
// K.�2.X /; 3/

Lemma 3.2 Let n� 3. For p > 3, X D .Sn �Sn/=.Z=p �Z=p/ is n–simple.

Proof Since �i.X /Š�i.S
n�Sn/Š�i.S

n/��i.S
n/we see that �2.X /Š�3.X /Š� � �Š�n�1.X /D0,

and hence there is one nontrivial homotopy group �iX for 1< i < nC 1: �n.X /Š �n.S
n �Sn/D Z2.

Since Aut.Z2/ only has 2– and 3–torsion and p > 3, �1 acts trivially on �i.X / for 1< i � n.

Since �i.X / is trivial for 1< i<n, X1'X2'� � �'Xn�1, and the bottom of the Postnikov tower becomes

��

Xn

pn

��

X //

fn

99

X1 K.G; 1/
knC1

// K..Z/2; nC 1/

As X is nilpotent, the Postnikov tower above the nth step admits principal refinements. Specifically, using
the notation in [20], there is a central �1.X /–series 1DGj ;rj

� � � � �Gj ;0D �j .X / for each j > n such
that Aj ;l D Gj ;l=Gj ;lC1 for 0 � l < rj is abelian and �1.X / acts trivially on Aj ;l . The .nC1/st stage
is then a finite collection of spaces XnC1;l constructed from maps knC2;l WXnC1;l !K.AnC1;l ; nC 2/
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and with XnC1;0 DXn. Similarly, the .nCi/th stage is a finite collection of spaces XnCiC1;l constructed
from maps knCiC1;l WXnCi;l !K.AnCi;l ; nC i C 1/ and with XnCi;0 DXnCi�1;rnCi�1

.

Additionally, since X is nilpotent, X can be p–localized. This is done by inductively p–localizing the
Postnikov tower, i.e. the .Xj /.p/ are inductively constructed using fibrations with the K.�; j /, where each
� is a Z.p/–module; see for example [20, Theorem 5.3.2] or Sullivan’s notes [29]. Specifically we localize
the first stage .X1/.p/ D .K.�1.X /; 1//.p/ DK..�1.X //.p/; 1/DK..Z=p/

2; 1/DX1 and localize the
nth homotopy group .�nX /.p/ D �nX ˝Z.p/ D .Z.p//

2, and then consider the following diagram:

K.�nX; n/ //

��

Xn
//

�nC1

��

X1
knC1

//

�n

��

K.�nX; nC 1//

��

K..�nX /.p/; n/ // .Xn/.p/ // .X1/.p/
.knC1/.p/

// K..�nX /.p/; nC 1//

Here .knC1/.p/ is the p–localization of knC1. The right square commutes up to homotopy and there
exists a map �nC1, that is, localization of Xn at p, such that the middle and left squares commute up to
homotopy. Similar arguments can be made for the stages above n, and then we take X.p/ D lim.Xi/.p/

and � D lim�i WX !X.p/.

We note that the unique map (up to homotopy) � localizes the homotopy and homology groups of X . In
particular, ��.�iX /D .�iX /.p/, and further, �� W ŒX.p/;Z�! ŒX;Z� is an isomorphism for any p–local
space Z [13; 20].

By [4] the unstable homotopy group �i.S
n/ has no p–torsion for i < 2p C n � 3. We restrict to

p > 1
2
.nC 3/, so that �i.X / has no p–torsion for i � 2n. It follows that Aj ;l has no p–torsion for

n < j � 2n, and since Aj ;l is finite for all j > n, .Aj ;l/.p/ D Aj ;l ˝Z.p/ D 0, K..Aj ;l/.p/; j C 1/

is a point, and .kmC1/.p/ D 0, where .kmC1/.p/ is the p–localized k–invariant associated with the
mth stage (Xm D Xj ;l ). Since the construction of the tower becomes formal after the dimension of X

(after 2n), the only nontrivial k–invariant in the localized Postnikov tower before it becomes formal is
.knC1/.p/ 2H nC1.X1I .Z.p//

2/Š .Z=p/
nC3. Given an identification of �1 and �n, this p–localized first

k–invariant then determines the homotopy type of the localization. In fact, the first nontrivial k–invariant
characterizes X up to homotopy as well.

To state Theorem 3.3, we define Gn following [2]. For nD 1; 3; 7 define Gn D GL2.Z/, and for other
positive odd n define Gn to be the subgroup of GL2.Z/ generated by�

0 1

1 0

�
;

�
0 �1

1 0

�
and

�
1 2

0 1

�
:

Theorem 3.3 Let X and Y be quotients of free Z=p �Z=p actions on Sn �Sn with odd n� 3, where
p > 3 satisfies 2pC n� 3 > 2n, and let knC1

X
and knC1

Y
denote the first nontrivial k–invariant. The

Algebraic & Geometric Topology, Volume 24 (2024)
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spaces X and Y are homotopy equivalent if and only if there are isomorphisms g1 W �1X ! �1Y and
gn W �nX ! �nY with gn 2Gn and such that

K.�1.X /; 1/
k

nC1
X
//

g1?

��

K.�n.X /; nC 1/

gn?

��

K.�1.Y /; 1/
k

nC1
Y
// K.�n.Y /; nC 1/

commutes up to homotopy , i.e. knC1
X
2H nC1.�1X I�nX / and knC1

Y
2H nC1.�1Y I�nY / are identified

through the maps induced by g1 and gn.

Lemmas 3.4 and 3.5 are used to prove this, and are related to [30, Lemmas 1 and 2], respectively.

Lemma 3.4 Let X and Y be n–simple spaces with identifications �1.X /Š �1.Y /ŠG and �n.X /Š

�n.Y /ŠH . Further suppose �i.X /D �i.Y /D 0 for 1< i < n. If , as in Theorem 3.3, the identifications
on �1 and �n provide an identification of the first nontrivial k–invariants of X and Y in H nC1.GIH /,
then the nth stages of the Postnikov towers for X and Y are homotopy equivalent , i.e. Xn ' Yn.

Proof We have isomorphisms g1 W �1X ! �1Y and gn W �nX ! �nY , and knC1
X

and knC1
Y

are the first
nontrivial k–invariants of X and Y , respectively. The k–invariant is regarded as a map

knC1
X
WK.�1.X /; 1/!K.�n.X /; nC 1/:

The isomorphism g1 induces a homotopy equivalence g1? W K.�1.X /; 1/! K.�1.Y /; 1/. Similarly,
the isomorphism gn induces a homotopy equivalence gn? WK.�n.X /; nC 1/!K.�n.Y /; nC 1/. The
identification of the first nontrivial k–invariant means that gn? ı knC1

X
is homotopic to knC1

Y
ıg1?.

The nth stage Xn of the Postnikov tower is constructed as the pullback of the path-space fibration over
K.�n.X /; nC 1/ and knC1

X
:

Xn
//

��

.K.�n.X /; nC 1//I

��

K.�1.X /; 1/
k

nC1
X

// K.�1.X /; nC 1/

A similar construction is performed for Yn. We have the following map of fibrations, and we want to
define a map f on the fibers:

Xn
//

f

��

K.�1.X /; 1/
k

nC1
X
//

g1?

��

K.�n.X /; nC 1/

gn?

��

Yn
// K.�1.Y /; 1/

k
nC1
Y
// K.�n.Y /; nC 1/

The identification of the first nontrivial k–invariants means the square on the right commutes up to
homotopy. Let h WK.�1.X /; 1/� I !K.�n.Y /; nC 1/ be a homotopy from gn? ı knC1

X
to knC1

Y
ıg1?.

With Xn defined as a pullback, a point in Xn consists of a pair .x; q/ with x 2 K.�1.X /; 1/ and
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q W I ! K.�n.X /; nC 1/ satisfying q.1/ D knC1
X

.x/. Define f W Xn ! Yn by f .x; q/ D .y; r/ with
y D g1?.x/ and r W I !K.�n.Y /; nC 1/ given by

r.t/D

�
gn?q.t/ if t � 1

2
;

h.x; 2t � 1/ if t � 1
2
:

This provides a construction for f WXn! Yn, and by a theorem of Milnor, the fibers Xn and Yn have the
homotopy types of CW complexes. Therefore we have a commuting diagram of homotopy groups

�jC1K.�1.X /; 1/ //

Š

��

�jC1K.�n.X /; nC 1/ //

Š

��

�j Xn
//

��

�j K.�1.X /; 1/ //

Š

��

�j K.�n.X /; nC 1/

Š

��

�jC1K.�1.Y /; 1/ // �jC1K.�n.Y /; nC 1/ // �j Yn
// �j K.�1.Y /; 1/ // �j K.�n.Y /; nC 1/

The five lemma gives us that �j Xn Š �j Yn for all j . Thus we have a weak equivalence between spaces
having the homotopy type of CW complexes, so we have a homotopy equivalence.

Lemma 3.5 Let M and N be nilpotent spaces such that H n.M IZ/D 0 and H n.N IZ/D 0 for n>m,
for some m> 0. If the mth stage of the Postnikov tower for M is homotopy equivalent to the mth stage of
the Postnikov tower for N , then M is homotopy equivalent to N , i.e. if Mm 'Nm then M 'N .

We note that this lemma is essentially [30, Lemma 2] — the difference being the change of “m–dimensional”
to the cohomology requirement above — and the obstruction argument proof works exactly as written.

Proof of Theorem 3.3 As has been our convention, let G D Z=p �Z=p.

In one direction, we assume there is a homotopy equivalence from X to Y . On �1, the homotopy
equivalence provides an isomorphism which then yields a homotopy equivalence between the first stage
of a Postnikov tower of X and the same of Y . The next nontrivial stage is stage n, and we have a
commutative square

Xn
//

��

Yn

��

X1
// Y1

The commutativity of this square follows by using a functorial model for the Postnikov tower; see
[10, Chapter VI.2]. The vertical maps are fibrations, and taking the cofibers of these vertical maps yields
the commutative square displayed in the statement of Theorem 3.3. The condition that gn, regarded as an
element of GL2.Z/, lies in Gn is a consequence of [2, Theorem 6.3].

To prove the other direction, we assume �1X and �1Y are identified with G and that this gives an
isomorphism g1 W �1X ! �1Y , and �nX and �nY are identified with .Z/2 and that this gives an
isomorphism gn W �nX ! �nY . These maps induce identifications �1X.p/ Š �1Y.p/ ŠG˝Z.p/ ŠG

and �nX.p/ Š �nY.p/ Š .Z/
2˝Z.p/ Š .Z.p//

2 after localizing the Postnikov systems of both X and
Y at p. We have that .X1/.p/ D K.�1X.p/; 1/ ' .Y1/.p/ D K.�1Y.p/; 1/. Let knC1

X
and knC1

Y
be

Algebraic & Geometric Topology, Volume 24 (2024)
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the first nontrivial k–invariants of X and Y , respectively, and take .knC1
X

/.p/ and .knC1
Y

/.p/ to be the
p–localized first k–invariants, respectively. Since knC1

X
and knC1

Y
are in the same homotopy class of

maps in ŒK.G; 1/ WK..Z/2; nC1/�, .knC1
X

/.p/ and .knC1
Y

/.p/ will be in the same homotopy class of maps
in ŒK.G; 1/ WK..Z.p//2; nC 1/� by construction. Since p > 3, X and Y are n–simple by Lemma 3.2.
Given that the localization of both spaces and their homotopy groups preserves this property, X.p/ and
Y.p/ are both n–simple as well, and we can apply Lemma 3.4. It follows that .Xn/.p/ ' .Yn/.p/.

Since we are assuming 2pCn�3> 2n, we have that .X2nC1;0/.p/' .Xn/.p/' .Yn/.p/' .Y2nC1;0/.p/.
It follows from Lemma 3.5 that X.p/ ' Y.p/. The maps l1 W X.p/ ! X.0/ and l2 W Y.p/ ! Y.0/, given
by inverting p, give via the naturality of localization a homotopy equivalence � W X.0/

'�! Y.0/ and
identifications of �nX.0/ and �nY.0/ with .Q/2. The following commutes up to homotopy:

X.p/
'
//

l1

��

Y.p/

l2

��

X.0/
�
// Y.0/

On the other hand, we can consider localization away from p. For X we have the commutative diagram

Sn �Sn //

q

��

.Sn �Sn/Œ1=p�

qŒ1=p�

��

X // X Œ1=p�

Since�1.X Œ1=p�/DG˝ZŒ1=p�D0, we see that�j .X Œ1=p�/Š�j ..S
n�Sn/Œ1=p�/ for all j . Thus qŒ1=p�

induces an isomorphism on every homotopy group, and is a homotopy equivalence since .Sn �Sn/Œ1=p�

and X Œ1=p� both have the homotopy types of CW complexes. Similarly we have a homotopy equivalence
.Sn � Sn/Œ1=p� ' Y Œ1=p�. Invoking [2, Theorem 6.3], we can realize any element of GL2.Z/ via a
homotopy equivalence Sn �Sn ' Sn �Sn. Composing these equivalences yields

X Œ1=p�' .Sn
�Sn/Œ1=p�' .Sn

�Sn/Œ1=p�' Y Œ1=p�;

so the map X Œ1=p�! Y Œ1=p� on �n is gn˝ZŒ1=p�.

Since we have maps X Œ1=p�!X.0/ and Y Œ1=p�! Y.0/ given by inverting everything else, the naturality
of localization gives us a map �0 W X.0/ '�! Y.0/. It is a homotopy equivalence because it induces an
isomorphism on all of the homotopy groups. We have a diagram that commutes up to homotopy:

X Œ1=p�
'
//

L1

��

Y Œ1=p�

L2

��

X.0/
�0

// Y.0/

Since X.0/ and Y.0/ are K..Q/2; n/, homotopy classes of maps from X.0/ to Y.0/ are identified with
elements of Hom.�nX ˝Q; �nY ˝Q/, but by construction, � and �0 are identified by their action on �n.
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The space X is the homotopy pullback of X.p/ and X Œ1=p� along l1 and L1. For x 2X , write x1 and
x2 for the images of x in X.p/ and X Œ1=p�, respectively, so l1.x1/ and L1.x2/ are connected by a path
in X.0/. To map into Y , a homotopy pullback, it is enough to provide maps X ! Y.p/ and X ! Y Œ1=p�

which agree up to a path in Y.0/. Combining the localization squares for X and Y and all of the maps
we have constructed between the squares, we have the following cube that commutes up to homotopy,
thereby providing maps X ! Y.p/ and X ! Y Œ1=p� which agree up to homotopy:

X X.p/

Y Y.p/

X Œ1=p� X.0/

Y Œ1=p� Y0/

l1

'

l2

'

L1

L2

From this we obtain maps of short exact sequences on homotopy for all j :

0 // �j X //

��

�j X.p/˚�j X Œ1=p� //

Š

��

�j X.0/ //

Š

��

0

0 // �j Y // �j Y.p/˚�j Y Œ1=p� // �j Y.0/ // 0

The five lemma gives isomorphisms on the homotopy groups of X and Y . This then gives a homotopy
equivalence from X to Y as they are both CW complexes.

4 Restrictions on the first k–invariant

Throughout this section we will continue to let GDZ=p�Z=p and X WD .Sn�Sn/=G, where p> 3 is an
odd prime and n� 3 is odd. The first stage of the Postnikov system provides a fibration: K.�n.X /; n/

j
�!

Xn!X1 DK.�1X; 1/. The space Xn is induced from the path-space fibration over K.�n.X /; nC 1/,
so the fundamental group �1.X1/DG acts trivially on the homology of K.�n.X /; n/. This results in an
exact sequence

� � � !H n.XnI�n.X //
j�
�!H n.K.�n.X /; n/I�n.X //

��!H nC1.X1I�n.X //;

where � is the transgression. By [21, Section 6.2], � is also the differential � D dnC1 WE
0;n
nC1
!E

nC1;0
nC1

in
the Serre spectral sequence of the fibration. As described in [8, Section 3.7], the fundamental classes of the
fiber K.�n.X /; n/ and the base X1 correspond under the transgression. If � 2H n.K.�n.X /; n/I�n.X //

is the fundamental class of the fiber, the k–invariant knC1 2H nC1.X1I�n.X // is the pullback of the
fundamental class of the base space, and �.�/D knC1.
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On the other hand, consider the Borel fibration

Sn
�Sn i

�! .Sn
�Sn/hG! BG;

where .Sn �Sn/hG WD .EG �Sn �Sn/=G ' .Sn �Sn/=G DX .

There is a map of fibrations

Sn �Sn X BG

K.�n.X /; n/ Xn BG

i

�n

f1

fn D

j pn

where the map �n W S
n �Sn!K.�n.X /; n/ classifies the fundamental class in H n.Sn �SnIZ2/, and

fn WX !Xn is the n–equivalence in the Postnikov tower. Since �1.BG/DG is a finite group generated
by odd-order elements, it acts trivially on the cohomology of the fiber (see [25]), and we obtain maps
between the induced exact sequences in cohomology:

� � � H n.X I�n.X // H n.Sn �SnI�n.X // H nC1.X1I�n.X //

� � � H n.XnI�n.X // H n.K.�n.X /; n/I�n.X // H nC1.X1I�n.X //

i� N�

j�

f �n

�

��n D

It follows that N�.��n .�//D �.�/D knC1 for the fundamental class � 2H n.K.�n.X /; n/; �n.X //, which
corresponds to the identity map under the equivalence H n.K.�n.X /; n/; �n.X //ŠHom.�n.X /; �n.X //

by the universal coefficient theorem. Further, since Hn�1.S
n�Sn/D 0, the universal coefficient theorem

also gives H n.Sn �SnIZ2/ŠH n.Sn �SnIZ/˚H n.Sn �SnIZ/.

We write .0; 1/ for the element of Hom.Z2;Z/ sending .x;y/ to y, write .1; 0/ for the element of
Hom.Z2;Z/ sending .x;y/ to x, and set �D .1;0/˚.0;1/2H n.K.�n.X /;n/I�n.X //ŠHom.Z2;Z2/Š

Hom.Z2;Z/˚Hom.Z2;Z/. Then ��n .�/D �
�
n ..1; 0/˚ .0; 1//D .˛; 0/˚ .0;  / 2H n.Sn �SnIZ2/Š

H n.Sn �SnIZ/˚H n.Sn �SnIZ/. Here ˛ and  are preferred generators for H n.Sn �SnIZ/Š Z2.
It can now be seen that knC1 D N�..˛; 0/˚ .0;  //.

It suffices to examine the transgression from the Serre spectral sequence with integral coefficients for the
Borel fibration in order to find out information about the first nontrivial k–invariant, knC1. In particular,
for Sn �Sn!X ! BG,

E
p;q
2
DH p.BGIH q.Sn

�Sn
IZ//)H pCq.X IZ/:

The first nontrivial differential is dnC1, and the transgression

dnC1 WH
0.BGIH n.Sn

�Sn
IZ//!H nC1.BGIH 0.Sn

�Sn
IZ//

here satisfies dnC1.˛/ D N�.˛; 0/ and dnC1. / D N�.0;  /. It follows that knC1 D dnC1.˛/˚ dnC1. /.
The cohomology ring of H�.BGIZ/ is given in Theorem 2.2 and we use the same notation by taking
the generators to be a, b and c, with jaj D jbj D 2, jcj D 3 and paD pb D pc D c2 D 0. Additionally,
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we take ˛ and  to be the generators in degree n of H�.Sn �SnIZ/ with ˛2 D  2 D 0, as described
above. We see that the E2 ŠEnC1 page reads

0

n

2n

0 1 2 3 4 5 : : : : : : nC 1

1 0 a; b c b2

a2; ab;
bc

ac

: : : ; b.nC1/=2
a.nC1/=2; : : :

˛;  0 ˛b; b

˛a; a
 c
˛c

gens
6

ac; bc
˛ac; ˛bc

gens
nC 3

dnC1

--

dnC1

--

˛ 0 ˛a
˛b

˛ c gens
3

˛bc

˛ac
gens

1
2
.nC 3/

where ˛b is ˛ ˝ b, etc, by abuse of notation. Note that the blank entries are not necessarily 0.

By virtue of its codomain being generated by suitable powers of a and b, the transgression

dnC1 WE
0;n
nC1
DH 0.BGIH n.Sn

�Sn
IZ//!E

nC1;0
nC1

DH nC1.BGIH 0.Sn
�Sn
IZ//

satisfies

dnC1.˛/D

.nC1/=2X
iD0

q˛;ia
.nC1/=2�ibi and dnC1. /D

.nC1/=2X
jD0

q;j a.nC1/=2�j bj ;

where the q˛;i and q;j are elements of Z=p.

This spectral sequence converges to the integral cohomology of X , and since X is a finite manifold of
dimension 2n, there are restrictions on what the coefficients q˛;i and q;j can be.

Proposition 4.1 The coefficients q˛;0 and q;0 (which are coefficients for a.nC1/=2) cannot both be zero.
Similarly, the coefficients q˛;.nC1/=2 and q;.nC1/=2 (which are coefficients for b.nC1/=2) cannot both
be zero.

Proof Since G acts freely and H 2n..Sn �Sn/=GIZ/Š Z, only quotients of the groups generated by
the E

p;q
2
ŠE

p;q
nC1

terms with pC q < 2n or p D 0 and q D 2n can survive. Assume the transgression
dnC1 WE

0;n
nC1
!E

nC1;0
nC1

satisfies dnC1.˛/D q˛;1a.n�1/=2bC � � � C q˛;.nC1/=2b.nC1/=2 and dnC1. /D

q;1a.n�1/=2bC � � � C q;.nC1/=2b.nC1/=2 for some q˛;i ; q;j 2 Z=p with 1 � i; j � 1
2
.nC 1/. In other

words, both q˛;0 and q;0 vanish.

The .nC1/st differential takes the generators in E
n�1;n
nC1

to combinations of the generators in E
2n;0
nC1

. By
Leibniz, dnC1 sends ˛˝ a.n�1/=2 to q˛;1an�1bC � � � C q˛;.nC1/=2a.n�1/=2b.nC1/=2, and similarly for
the other generators. It is not hard to see that the only other nontrivial differential, dnC1, does not hit
the subgroup generated by anC1, and there are no other differentials that map to this group. Therefore
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the generated Z=p is present in H 2n..Sn �Sn/=GIZ/ and other cohomology groups in higher degrees.
Since H 2n..Sn �Sn/=GIZ/ is torsion free and the highest nontrivial degree, we get a contradiction.

The argument for q˛;.nC1/=2 and q;.nC1/=2 both being nontrivial is similar.

Observe that Proposition 4.1 also implies that neither dnC1.˛/ nor dnC1. / can map to 0. We also see
that it holds after replacing the specified generators with their images under an automorphism of G.

Corollary 4.2 For nonzero � 2H 2.GIZ/, either dnC1.˛/ or dnC1. / is nonzero in

H nC1.GIZ/=�.nC1/=2:

Proof Suppose ' is an automorphism of G chosen so that '?�D a 2H 2.GIZ/. After twisting by ' the
action of G on Sn�Sn, the resulting quotient is homeomorphic (albeit not equivariantly homeomorphic)
to the original quotient space. In particular, in that quotient the coefficients q˛;0 and q;0, namely the
coefficients for a.nC1/=2, cannot both be zero, which corresponds in the original space to the condition in
the corollary.

5 Constructions

Now we construct examples which are more complicated than lens spaces cross lens spaces. In this
section, we take the dimension of the spheres we are acting on to be n D 2m� 1 to avoid fractions
appearing in subscripts. Let RD .r1; : : : ; rm; r

0
1
; : : : ; r 0m/ and QD .q1; : : : ; qm; q

0
1
; : : : ; q0m/ be elements

of .Z=p/2m so that R and Q together generate a copy of .Z=p/2 inside .Z=p/2m. We refer to these 4m

parameters as “rotation numbers” in analogy with the case of a lens space.

Let S2m�1 be the unit sphere in Cm, so S2m�1�S2m�1 is a submanifold of Cm�Cm. Then R acts on
S2m�1 �S2m�1 by

R � .z; z0/D .r; r 0/ � .z; z0/D .r; r 0/ � .z1; : : : ; zm; z
0
1; : : : ; z

0
m/

D .e2�ir1=pz1; : : : ; e
2� ir1=pzm; e

2�ir 0
1
=pz01; : : : ; e

2� ir 0m=pz0m/;

and similarly Q acts on S2m�1 � S2m�1. This provides an action of the group .Z=p/2 Š hR;Qi on
S2m�1 �S2m�1. In analogy with the lens space case, we call such actions “linear” and we write the
quotient as L.p;pIR;Q/. In the case of lens spaces, the k–invariant is the product of rotation numbers.
We now compute the first nontrivial k–invariant in the case of L.p;pIR;Q/. We will denote this first
nontrivial k–invariant by k in what follows.

Lemma 5.1 Let LDL.p;pIR;Q/ and suppose p >m. Then k.L/ 2H 2m..Z=p/
2IZ2/ is� mY

iD1

.riaC qib/;

mY
iD1

.r 0iaC q0ib/

�
;

where a and b are generators of H 2..Z=p/
2IZ/ as described in Section 2.
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In keeping with the analogy to the lens space, Lemma 5.1 states that the k–invariant is the product of
rotation classes in H 2..Z=p/

2IZ/.

Proof The k–invariant k.L/ 2H 2m.K.G; 1/IZ2/ is a homotopy class of maps

K.�1L; 1/!K.�2m�1L; 2m/:

The proof makes use of the naturality of the k–invariant. Suppose a Z=p subgroup of .Z=p/2 is generated
by .˛; ˇ/. Then we have a cover

NLD .S2m�1
�S2m�1/=Z=p!L.p;pIR;Q/:

By [30, page 396], the k–invariant k. NL/ 2H 2m.Z=pIZ
2/ associated to the quotient of S2m�1�S2m�1

by the subgroup h.˛; ˇ/i Š Z=p is

k. NL/D

� mY
iD1

.ri˛C qiˇ/!;

mY
iD1

.r 0i˛C q0iˇ/!

�
;

where ! is the generator in H 2.Z=pIZ/, which is identified with the generator of Z=p via H 2.Z=pIZ/Š

Ext.H1.Z=pIZ/;Z/Š Z=p.

By universal coefficients and the fact that the cohomology (except in degree zero) of Z=p and .Z=p/2

is torsion, we have Ext.H1..Z=p/
2IZ/;Z/ Š H 2..Z=p/

2IZ/ Š .Z=p/
2 and Ext.H1.Z=pIZ/;Z/ Š

H 2.Z=pIZ/Š Z=p, and H 2..Z=p/
2IZ/!H 2.Z=pIZ/ is dual to the inclusion map Z=p ,! .Z=p/

2;
the inclusion map sends the generator of Z=p to .˛; ˇ/, so the dual map sends xaCyb 2H 2..Z=p/

2IZ/

to .˛aCˇb/!.

By naturality of the k–invariant, the map H 2m..Z=p/
2IZ2/!H 2m.Z=pIZ

2/ sends k.L/ to k. NL/. We
consider only the left-hand factor of k.L/; this is some homogeneous polynomial of degree n in the
classes a; b 2H 2..Z=p/

2IZ/. Write this polynomial as f .a; b/.

Then the map H 2m..Z=p/
2IZ/!H 2m.Z=pIZ/ sends f .a; b/ to

f .˛; ˇ/! 2H 2m.Z=pIZ/;

and therefore, for ˛; ˇ 2 Z=p,

f .˛; ˇ/D

mY
iD1

.ri˛C qiˇ/:

Now assuming m< p, this equality of polynomials as functions gives rise to the desired equality

f .a; b/D

mY
iD1

.riaC qib/:

The right-hand factor of k.L/ is computed the same way.
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6 The S 3 � S 3 classification

Suppose p > 3. We now classify Z=p �Z=p actions on S3 �S3 up to homotopy. By Theorem 3.3, this
boils down to the k–invariants encoded by the transgression

d4.˛/D q˛;0a2
C q˛;1abC q˛;2b2 and d4. /D q;0a2

C q;1abC q;2b2:

We therefore package .d4.˛/; d4. // as a pair .Q1;Q2/ of binary quadratic forms over Z=p. The
homotopy classification of .S3 �S3/=.Z=p �Z=p/ amounts, algebraically, to classifying pairs of binary
quadratic forms over Z=p , up to the action of automorphisms of Z2 on the pair .Q1;Q2/. For example,
the pair .Q1;Q2/ determines the same equivariant oriented homotopy type as .Q1CQ2;Q1/. Note that
Aut.Z2/ amounts to the action of

SL˙2 .Z=p/ WD fM 2 GL2.Z=p/ j det M D˙1g

on pairs .Q1;Q2/. In what follows regard this as a left action of SL˙2 .Z=p/ so that M D.mij /2SL˙2 .Z=p/
acts via

(�) M � .Q1;Q2/D .m11Q1Cm12Q2;m21Q1Cm22Q2/:

Now we determine the classification disregarding the identification of Z=p �Z=p with �1. On the levels
of quadratic forms, we may replace the pair .Q1;Q2/ by .Q0

1
;Q0

2
/ where Q1 and Q0

1
(as well as Q2

and Q0
2
) are related by a common change of coordinates, i.e. an automorphism of Z=p �Z=p, which

amounts to GL2.Z=p/. In what follows, regard this as a right action of GL2.Z=p/ on pairs .Q1;Q2/.

Lemma 6.1 Let z be a quadratic nonresidue in Z=p . A pair of binary quadratic forms .Q1;Q2/ satisfying
the condition in Proposition 4.1 is equivalent to .xa2;yb2/ or equivalent to .a2Cxb2; 2ab/ for x;y 2Z=p .

Proof There are five [24, Theorem IV.10] equivalence classes of binary quadratic forms modulo p,
namely the trivial form Q.a; b/D 0, two degenerate forms a2 and za2, and two nondegenerate quadratic
forms a2C b2 and a2C zb2.

Suppose Q1 is degenerate, so Q1.a; b/ D a2 or Q1.a; b/ D za2. Through an automorphism of Z2

subtracting a multiple of Q1, the form Q2 becomes xabCyb2 for some x;y 2Z=p . By Proposition 4.1,
it cannot be that y D 0. Since y ¤ 0, the automorphism of Z=p � Z=p sending a to a and b to
�ax=.2y/C b preserves Q1 but transforms Q2 into yb2 � .x2=.4y//a2. Subtracting off a multiple
of Q1 via an automorphism of Z2 finally transforms Q2 into yb2. Therefore .Q1;Q2/' .xa2;yb2/

for some x;y 2 Z=p.

On the other hand, suppose Q1 is nondegenerate, meaning Q1.a; b/D a2C b2 or Q1.a; b/D a2C zb2.
As before, by subtracting off a multiple of Q1, the form Q2 becomes xabCyb2 for some x;y 2 Z=p.
Either y ¤ 0 or y D 0. If y ¤ 0, then as before Q2 is equivalent to yb2 � .x2=.4y//a2, which via an
automorphism of Z2 is transformed into a multiple of b2, and this case is then handled by the above
case in which Q1 is degenerate. If y D 0, then we are in the situation .a2C zb2;xab/ for nonzero z
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and x. We apply the automorphism given by a 7! a and b 7! 2b=x to reduce to a situation of the form
.a2Cwb2; 2ab/ for some nonzero w.

Proposition 6.2 A pair of the form .xa2;yb2/ for nonzero x;y 2 Z=p is equivalent to .a2Cwb2; 2ab/

for w 2 Z=p.

Proof By independently scaling a and b, and depending on whether or not x and y are quadratic residues,
the pair .xa2;yb2/ is equivalent to

.a2; b2/; .a2; zb2/; .za2; b2/ or .za2; zb2/

for a quadratic nonresidue z 2 Z?
=p

. By exchanging the roles of a and b and swapping the components
of the tuple, the pair .a2; zb2/ is equivalent to .za2; b2/. It is also the case that .za2; zb2/' .a2; b2/

because
.za2; zb2/ �

�
1 0

0 1=z

�
D

�
z 0

0 1=z

�
� .a2; b2/:

To conclude the proof, we show .a2; wb2/' .a2C 4w2b2; 2ab/ for w 2 Z=p . To see this, applying the
equivalence given by a 7! a=.2w/� b and b 7! aC 2wb shows

.a2; wb2/'
�

1

4w2
a2
�

1

w
abC b2; wa2

C 4w2abC 4w3b2
�
;

and then applying the automorphism of Z2 corresponding to�
1=.4w2/ �1=.2w/

w 2w2

�
2 SL2.Z=p/

implies that

.a2
C 4w2b2; 2ab/'

�
1

4w2
a2
�

1

w
abC b2; wa2

C 4w2abC 4w3b2
�
;

so .a2; wb2/' .a2C 4w2b2; 2ab/.

It remains to check that .a2C b2; 2ab/ is not equivalent to .a2C zb2; 2ab/.

Lemma 6.3 If .a2C ıb2; 2ab/ is equivalent to .a2C ı0b2; 2ab/ for nonzero ı and ı0, then ı0=ı 2 Z?4
=p

.

Proof We follow the argument in [9]. Suppose .a2C ıb2; 2ab/ is equivalent to .a2C ı0b2; 2ab/ for
nonzero ı and ı0. Then there is an R 2 GL2.Z=p/ and S 2 SL˙2 .Z=p/ such that

(1) .a2
C ıb2; 2ab/ �RD S � .a2

C ı0b2; 2ab/:

Equality of the first component in each tuple yields

(2) .r2
11C ır

2
21/a

2
C 2.r11r12C ır21r22/abC .r2

12C ır
2
22/b

2
D s11a2

C 2s12abC ı0s11b2:

Equality of the coefficients of a2 and b2 in (2) yields

s11 D ır
2
21C r2

11 and ı0s11 D ır
2
22C r2

12;
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respectively, and therefore

(3) ır2
22C r2

12 D ı
0ır2

21C ı
0r2

11:

Equality of the second component in (1) yields

(4) 2r11r21a2
C .2r12r21C 2r11r22/abC 2r12r22b2

D s21a2
C 2s22abC ı0s21b2:

Equality of the coefficients of a2 and b2 in (4) yields

s21 D 2r11r21 and ı0s21 D 2r12r22;

respectively. We conclude

(5) r12r22 D ı
0r11r21:

Squaring both sides of (3) and subtracting 4ı times (5) squared yields

.ır2
22� r2

12/
2
D .ı0ır2

21� ı
0r2

11/
2;

and so

(6) ır2
22� r2

12 D˙.ı
0ır2

21� ı
0r2

11/:

The sign in (6) cannot be positive; if it were, then adding (6) to (3) yields

2ır2
22 D 2ı0ır2

21;

so r2
22
D ı0r2

21
. But multiply both sides of (5) by r2

21
and we deduce

r12r22r2
21 D ı

0r11r2
21 D r2

22r11:

So either r22 D 0, in which case r21 D 0 and the second row of R is zero, or r12r21 D r22r11 and so
det RD 0. In either case we contradict the assumption R 2 GL2.Z=p/, and so the sign in (6) must be
negative, meaning

(7) ır2
22� r2

12 D�ı
0ır2

21C ı
0r2

11:

The difference of (3) and (7) yields
2r2

12 D 2ıı0r2
21;

so ıı0 is a square in Z=p . And if our only requirement is that R2GL2.Z=p/, then the necessary condition
that ı0ı 2 Z?2

=p
would suffice, but we also required S 2 SL˙2 .Z=p/, or equivalently that .det S/2 D 1.

From (2) and (4),
S D

�
s11 s12

s21 s22

�
D

�
ır2

21
C r2

11
ır21r22C r11r12

2r11r21 r12r21C r11r22

�
;

which means
det S D .ır2

21� r2
11/.r12r21� r11r22/:

Squaring det R results in

.det R/2 D .r11r22�r12r21/
2
D r2

11r2
22�2r11r12r21r22Cr2

12r2
21 D r4

11
ı0

ı
�2ı0r2

11r2
21Cıı

0r4
21

D
ı0

ı
.ır2

21�r2
11/

2
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by invoking (5) and applying the identities r2
12
D ıı0r2

21
and ır2

22
D ı0r2

11
, which follow from taking the

sum and difference of (3) and (7). Consequently,

.det S/2 D .ır2
21� r2

11/
2.det R/2 D

ı0

ı
.ır2

21� r2
11/

4;

so ı0=ı must be a fourth power.

In particular, .a2C b2; 2ab/ is not equivalent to .a2C zb2; 2ab/ because z was chosen specifically to be
a quadratic nonresidue.

Lemma 6.4 For nonzero ı; w 2 Z=p, the pair .a2C ıb2; 2ab/ is equivalent to .a2C ıw4b2; 2ab/.

Proof Choose r1; r2 2 Z=p so that

(8) ır1
2
� r2

2 � 1=w3 .mod p/:

This is possible; in fact, there are p� .ı=p/ solutions to (8). Then set

R WD

�
w2r2 ıw2r1

r1 r2

�
and S WD

�
ıw4r1

2Cw4r2
2

2ıw4r1r2

2w2r1r2 ıw2r2
1
Cw2r2

2

�
:

Because of (8), we have

det RD�w2.ır1
2
� r2

2/D�1=w ¤ 0 and det S D w6.ır1
2
� r2

2/2 D 1;

so R 2 GL2.Z=p/ and S 2 SL2.Z=p/.

We finish the proof by verifying

(9) .a2
C ıw4b2; 2ab/ �RD S � .a2

C ıb2; 2ab/:

Comparing the first coordinates each side of (9) shows

.r2w
2aC ır1w

2b/2C ıw4.r1aC r2b/2 D .ıw4r1
2
Cw4r2

2/ � .a2
C ıb2/C 2ıw4r1r2 � 2ab:

Similarly, the second coordinates are equal because

2.w2r2aC ıw2r1b/.r1aC r2b/D 2w2r1r2.a
2
C b2ı/C .ıw2r1

2
Cw2r2

2/2ab:

It is easier to see that .a2C ıb2; 2ab/ is equivalent to .a2C ıw8b2; 2ab/. Simply replace a by aw and
b by b=w3 to show .a2C ıw8b2; 2ab/' .w2a2C ıw2b2; .2=w2/ab/, and then scale the first by 1=w2

and the second by w2 to see that this is equivalent to .a2C ıb2; 2ab/. The challenge of Lemma 6.4 lies
in replacing w8 with w4.

Combining Lemmas 6.3 and 6.4 yields the following:

Proposition 6.5 Equivalence classes of pairs of the form .a2Cwb2; 2ab/ are in one-to-one correspon-
dence with elements of Z�

=p
=.Z�

=p
/4, where Z�

=p
denotes units modulo p.

Observe that the size of Z?
=p
=.Z�

=p
/4 depends on p mod 4. Specifically, for p � 1 mod 4, there are four

equivalence classes. These are given by .a2C zb2; 2ab/ for z representatives of classes Z?
=p
=Z?4

=p
.
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For p � 3 mod 4, there are two equivalence classes. For nonzero x;x0;y;y0 2 Z=p , the pair .xa2;yb2/

is equivalent to .x0a2;y0b2/, and every pair is equivalent to either .a2C b2; 2ab/ or .a2C zb2; 2ab/ for
a quadratic nonresidue z. So the only possibilities are .a2C b2; 2ab/' .a2; b2/ and .a2C zb2; 2ab/.

All of this algebra encodes the homotopy type of the quotients, as summarized in the following:

Theorem 6.6 Let p > 3 be prime. If p � 1 mod 4, then there are four homotopy classes of quotients of
S3 �S3 by free Z=p �Z=p actions. If p � 3 mod 4, then there are two classes.

Proof We must construct quotients of S3 �S3 by free Z=p �Z=p actions which exhibit these possible
k–invariants. For this, we rely on Lemma 5.1. We note that .a2Cwb2; 2ab/ is equivalent to

.a2
Cwb2

C .1Cw/ab; 2ab/D ..aC b/.aCwb/; 2ab/;

so let R D .1; 1; 2; 0/ and Q D .1; w; 0; 1/, and then L.p;pIR;Q/ has k–invariant equivalent to
.a2Cwb2; 2ab/. We must impose the additional condition w ¤ 0 in order to ensure that this is a free
action. With this construction in hand, the classification of quotients then follows from Proposition 6.5.

Remark 6.7 There are precedents for considering the simultaneous equivalence of forms. The case of
simultaneous equivalence of forms over Z is discussed in [23], but our situation over Z=p is easier. To
make the situation even more concrete, instead of forms, consider matrices; equivalence of forms amounts
to congruence of matrices. That setup fits into the work of Corbas and Williams [9] which considers the
action of GL2.Z=p/�GL2.Z=p/ on pairs .A;B/ of matrices, where GL2 acts on the right by congruence
and on the left as in (�).

7 Lens cross lens

Section 6 completed the classification of Z=p�Z=p actions on S3�S3, but now we narrow in on a special
case. Consider L3.pI 1;x/�L3.pI 1;y/, i.e. the product of two lens spaces with rotation numbers x and y,
respectively. Viewed as a quotient of S3 �S3 by Z=p �Z=p, this product has k–invariant .xa2;yb2/.

We can classify L3.pI 1;x/�L3.pI 1;y/ up to (simple) homotopy equivalence. When p � 3 mod 4,
any product of 3–dimensional lens spaces is (simple) homotopy equivalent to any other such product.

Proposition 7.1 Suppose p � 3 mod 4. Then for nonzero x;x0;y;y0 2 Z=p, the pair .xa2;yb2/ is
equivalent to .x0a2;y0b2/.

Proof As in the proof of Proposition 6.2, the pair .xa2;yb2/ is equivalent to

.a2; b2/' .za2; zb2/ or .a2; zb2/' .za2; b2/

for a quadratic nonresidue z 2 Z?
=p

. But when p � 3 mod 4, the quantity �z is a square, and so

.a2; zb2/' .a2;�zb2/' .a2; b2/;

meaning all pairs of the form .xa2;yb2/ are equivalent.

Algebraic & Geometric Topology, Volume 24 (2024)



Z=p �Z=p actions on Sn �Sn 1859

When p � 1 mod 4, since

.xa2;yb2/' .a2; .y=x/b2/' .a2
C 4.y=x/2b2; 2ab/;

the classification boils down to whether or not 2.y=x/ is a square modulo p.

This is related to work of Kwasik and Schultz; they proved squares of lens spaces are diffeomorphic.

Theorem 7.2 [14] For p odd and rotation numbers r and q, there is a diffeomorphism

L3.pI 1; r/�L3.pI 1; r/ŠL3.pI 1; q/�L3.pI 1; q/:

A future paper completes the homeomorphism classification of spaces resulting from “linear” actions
such as these products of lens spaces.

8 Some comments on groups containing Z=p � Z=p

While we know that Z=p and Z=p �Z=p can act freely on Sn �Sn, the exact conditions for a group to
be able to act freely on Sn �Sn remains open. Conner [7] and Heller [12] showed that for a group to
act freely on Sn �Sn the group must have rank at most 2, but Oliver [26] showed that A4 cannot act
on Sn �Sn, and so every rank-2 simple group is also ruled out [1]. Explicit examples of free actions
by subgroups of a nonabelian extension of S1 by Z=p � Z=p have been constructed [11], but Okay
and Yalçin [25] have shown that Qd.p/ D .Z=p �Z=p/Ì SL2.Fp/ cannot act freely on Sn � Sn. In
this section we show how the restrictions on the k–invariant as described in Section 4 can be useful in
determining whether or not a group G containing Z=p �Z=p as a normal abelian subgroup can act freely
on X D Sn �Sn. We continue to take p > 3 to be an odd prime and n� 3 to be odd. We align some of
our notation with that in [25] to better show the parallel calculations.

Similar to the approach in Section 4, we can consider the Borel fibration

X i
�!XhG! BG;

and the associated Serre spectral sequence

E
p;q
2
DH p.BGIH q.X IZ//)H pCq.XhG IZ/

with the first nontrivial differential dnC1. If ˛ and  are the generators in degree n of H�.X IZ/ with
˛2 D  2 D 0, then dnC1.˛/D N�.˛; 0/, dnC1. /D N�.0;  / and knC1 D dnC1.˛/˚ dnC1. /.

Set K to be the normal abelian subgroup of Z=p �Z=p in G, and consider the restriction of the spectral
sequence associated to the Borel fibration to the K action. Then Proposition 4.1 and Corollary 4.2 can
sometimes be used to determine if G can act freely on X .

The transgression for the first nontrivial differential of the restriction of the spectral sequence associated
to the Borel fibration to K is

.dnC1/K WH
0.BKIH n.X IZ//!H nC1.BKIH 0.X IZ//:

Algebraic & Geometric Topology, Volume 24 (2024)



1860 Jim Fowler and Courtney Thatcher

Let ResG
K WH

�.G/!H�.K/ be induced by the inclusion of K into G. Since the Borel construction is
natural, it follows that the k–invariant in the restricted case is knC1

K
DResG

K .dnC1.˛//˚ResG
K .dnC1. //.

Suppose G acts freely on X , so H�.XhG IZ/ŠH�.X=GIZ/ is finite-dimensional in each degree and
vanishes above 2n. It follows that the restriction to K gives that H�.XhK IZ/ŠH�.X=KIZ/ is also
finite-dimensional in each degree and vanishes above 2n as K acts freely. If both .dnC1/K .˛/ and
.dnC1/K . / are zero in H nC1.KIZ/=�.nC1/=2, for some nonzero � 2H 2.KIZ/, then X=K will fail to
be finite-dimensional by Corollary 4.2, and we get a contradiction. Hence G cannot act freely.

As an example, consider G D Qd.p/D .Z=p/2 Ì SL2.Z=p/. We show that one can use the restrictions
on the k–invariants and some of the arguments in [25] to see that Qd.p/ cannot act freely on Sn�Sn for
p an odd prime and n odd. This result is consistent with [25, Theorem 5.1].

Since cohomology is taken with Z=p coefficients in [25], we first set up a relationship between generators
from the different coefficient groups. Suppose the first nontrivial differential takes ˛ and  , also the
generators of H n.Sn�SnIZ=p/ by slight abuse of notation, to �1 and �2 in H nC1.GIZ=p/. Taking K

to be the normal elementary abelian subgroup Z=p �Z=p in G D Qd.p/ and restricting the action to K,
we have that �1; �2 2H nC1.KIZ=p/ are such that �1 D ResG

K .�1/ and �2 D ResG
K .�2/.

Recall the commuting triangle, from Section 2,

H n.KIZ/
�
// H n.KIZ=p/

Q̌
//

ˇ ''

H nC1.KIZ/
p
//

�

��

H nC1.KIZ/

H nC1.KIZ=p/

Since p is the 0 map, the vertical � is injective and Q̌ is surjective. We can write H�.KIZ=p/ D

Fp Œx;y�˝^.u; v/, where jxjDjyjD2, jujDjvjD1, ˇ.u/Dx, ˇ.v/Dy and H�.KIZ/DFp Œa; b�˝^.c/,
with jaj D jbj D 2 and jcj D 3. It is not hard to see that Q̌.x/D a, Q̌.y/D b and Q̌.uv/D c.

Now the Bockstein generally satisfies ˇ.ı"/ D ˇ.ı/"C .�1/jıjıˇ."/ D ıˇ."/ for ı being xiyj and "
being u, v or uv. We see that

ˇ.H n.KIZ=p//� hx
.nC1/=2;x.n�1/=2y; : : : ;y.nC1/=2

i � Fp Œx;y�;

since nC 1 is even. Similarly, Q̌ satisfies Q̌.ı"/D ı Q̌."/ for ı being xiyj and " being u, v or uv. Again
we see that Q̌.H n.KIZ=p// � ha

.nC1/=2; a.n�1/=2b; : : : ; b.nC1/=2i � Fp Œa; b�. As Q̌ is surjective, � is
injective, and ˇD �. Q̌/. It follows that the k–invariant �1˚�2 comes from elements in H nC1.KIZ/ for
some K action on Sn �Sn: knC1 D ��1.�1/˚ �

�1.�2/.

In [25] it is shown that the ideal generated by �1 and �2 is in fact generated by �.nC1/=2.pC1/, where
�D xyp�yxp (which is in part based on calculations in [15]). Since no power of � will contain x.nC1/=2

or y.nC1/=2, we see that dnC1.˛/ and dnC1. /, where ˛ and  generate H n.Sn�SnIZ/, have both q˛;0

and q;0 zero (where q˛;0 and q;0 are the coefficients in Proposition 4.1). We derive a contradiction.
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It is worth noting that, in [25], the calculations show that the free actions of Qd.p/ must have p smaller
than n, and nC 1 divisible by 2.p C 1/. The argument also finds a contradiction to finiteness, but
relies on [5]. We also note that while we take p to be large in our homotopy type calculations, the only
restrictions that were required in Section 4 (and hence in this section) were that p > 3 be an odd prime
and n� 3 be odd. Further, there may be a way to show a contradiction to finiteness using Proposition 4.1
more directly (without needing to make arguments with Z=p coefficients).

A similar argument could hold for any group containing .Z=p/2 that has a restriction that forces the
transgression to behave in such a way.
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Zk–stratifolds
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Generalizing the ideas of Zk–manifolds from Sullivan and stratifolds from Kreck, we define Zk–stratifolds.
We show that the bordism theory of Zk–stratifolds is sufficient to represent all homology classes of a
CW–complex with coefficients in Zk . We present a geometric interpretation of the Bockstein long exact
sequences and the Atiyah–Hirzebruch spectral sequence for Zk–bordism for k an odd number. Finally,
for p an odd prime, we give geometric representatives of all classes in H�.BZpIZp/ using Zp–stratifolds.

57R90, 58A35, 58A40; 55N20

1 Introduction

Various geometric models of homology classes use the notion of bordism. For instance, Baas [3] constructs
a generalized homology theory using the bordism of manifolds with singularities. Buoncristiano, Rourke
and Sanderson [5] give a geometric treatment of generalized homology. Certain singular spaces called Zk–
manifolds were introduced initially by Sullivan [18; 19; 20], although Morgan and Sullivan [15] gave the
first formal study of this subject. The theory of Zk–manifolds gives a geometric model for Zk–homology
classes, but Sullivan pointed out that Zk–manifolds are not general enough to represent Zk–homology.
For example, the generator of H8.K.Z; 3/IZ3/ is not represented by a Z3–manifold; see Sullivan [21].
Moreover, Brumfiel [4] shows that the nonzero classes in H2p.K.Zp; 1/IZp/ cannot be represented by
Zp–manifolds whenever p is prime. In this work, we show that for an odd prime number p, there exists
a class ˛2i 2H2i.BZpIZp/, with i � p, that cannot be represented by Zp–manifolds. Thus a geometric
model is needed to represent every homology class with Zk–coefficients. For this purpose, we focus on
the theory of stratifolds developed by Kreck [12], where the homology groups with Z–coefficients and
Z2–coefficients are represented by the bordism theories of stratifold homology SH�.X / and stratifold
homology with Z2–coefficients (this only works for Z2–coefficients).

We consider the generalized homology theory of bordism of Zk–manifolds with continuous maps to X,
denoted by ��.X IZk/. There is a long exact sequence satisfying the commutative diagram

(1)

� � � // �n.X /
�k
//

h
��

�n.X /
r
//

h
��

�n.X IZk/
ı
//

hZk

��

�n�1.X / //

h
��

� � �

� � � // Hn.X /
�k
// Hn.X /

r
// Hn.X IZk/ // Hn�1.X / // � � �
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where ı W ��.X IZk/! �n�1.X / is the Bockstein homomorphism, r W �n.X /! �n.X IZk/ is the
reduction homomorphism obtained by considering a closed manifold as a Zk–manifold with empty
Bockstein, and hZk

W��.X IZk/!H�.X IZk/ is the Hurewicz homomorphism provided by the existence
of fundamental Zk–homology classes.

Generalizing the ideas of Sullivan and Kreck, we define the bordism theory of Zk–stratifolds, and we
can consider the generalized homology theory of bordism of Zk–stratifolds with continuous maps to X,
denoted by SH�.X IZk/. We call this theory Zk–stratifold homology. Again, we have a long exact
sequence satisfying the commutative diagram

(2)

� � � // SHn.X /
�k
//

h
��

SHn.X /
r
//

h
��

SHn.X IZk/
ı
//

hZk

��

SHn�1.X / //

h
��

� � �

� � � // Hn.X /
�k

// Hn.X /
r
// Hn.X IZk/ // Hn�1.X / // � � �

In this case, the Hurewicz homomorphism hZk
W SH�.X IZk/!H�.X IZk/ is constructed in the same

vein as in the theory of Zk–manifolds. We show that Zk–stratifold homology satisfies the Eilenberg–
Steenrod axioms on CW–complexes, in particular, we show that the Mayer–Vietoris sequence axiom
holds by using a regularity argument for Zk–stratifolds; see Kreck [12]. The main result of this paper is
the following.

Theorem 1.1 An isomorphism exists between Zk–stratifold homology theory and singular homology
with Zk–coefficients. This isomorphism is valid for all CW–complexes and is compatible with the
Bockstein homomorphisms.

Führing [9] develops a smooth version of the Baas–Sullivan theory of manifolds with singularities that is
applied to the positive scalar curvature problem. In a way, stratifolds and Zk–stratifolds are another kind
of smooth version of the Baas–Sullivan theory of manifolds with singularities. One of the advantages of
stratifolds and Zk–stratifolds is a very concrete description of the filtration of the Atiyah–Hirzebruch
spectral sequence (AHSS) for oriented bordism and Zk–bordism. This geometric description of the AHSS
for Z–coefficients was given by Tene [23], and for Zk–coefficients has the following form.

Theorem 1.2 For k an odd number , the filtration for the AHSS of Zk–bordism

(3) E1n;0 � � � � �ErC2
n;0
� � � � �E2

n;0 ŠHn.X IZk/D SHn.X IZk/

coincides with the set of classes generated by singular Zk–stratifolds in X, where the singular part is of
dimension at most n� r � 2.

A fascinating application is the existence of homology classes ˛2i 2H2p.BZpIZp/, for an odd prime
number p and i � p, that cannot be represented by a Zp–manifold. This is similar to the counterexample
of Thom for the Steenrod problem [24, Chapter III], which we explain geometrically in [2].
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We organize the article as follows: Section 2 outlines some basic facts about Zk–manifolds studied
by Morgan and Sullivan [15]. In Section 3, we briefly introduce the language of stratifolds from
Kreck [12; 13]. Section 4 introduces the main theorems of this work, where we combine the theory of
Zk–manifolds from Sullivan and the theory of stratifolds from Kreck. Then we define Zk–stratifolds and
develop the basic theory of these objects. We show that the usual properties of stratifolds still remain
valid. We show that Zk–stratifold homology satisfies the Eilenberg–Steenrod axioms on CW–complexes.
Section 6 develops the existence of the fundamental class, and we postpone the proof of the existence
of the Mayer–Vietoris sequence until the appendix. In Section 7, we apply the results of Tene [23] to
give a geometric description of the Atiyah–Hirzebruch spectral sequence for Zk–bordism, for k an odd
number. In Section 8, we use this description to find homology classes with Zk–coefficients that cannot
be represented by Zk–manifolds. Finally, in Section 9, the two possible ways to represent homology with
Z2–coefficients using stratifolds are related, providing an explicit isomorphism between the two theories.
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2 Zk–manifolds

Suppose that k � 2 is a positive integer. In what follows, we outline some basic facts about Zk–manifolds
introduced by Morgan and Sullivan [15].

Note 2.1 Unless otherwise indicated, let us set the convention that the manifolds are oriented and
compact. Also, all the diffeomorphisms and embeddings are orientation-preserving.

Definition 2.2 A closed n–dimensional Zk–manifold is given by the triple MD .M; ıM; �i/, where

(1) M is a compact n–manifold, with boundary @M,

(2) ıM is a compact .n�1/–manifold without boundary, called the Bockstein, and
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Figure 1: Left: a representation of the Klein bottle as the quotient space of a Z2–manifold. Right:
a closed Z3–manifold.

(3) �i W ıM ,! @M, with i 2 Zk , are k disjoint embeddings such that we have a diffeomorphism
@M D

F
i2Zk

�i.ıM /.

Definition 2.3 There is an associated quotient space �M given by the identification on M of the k copies
of ıM together using the embeddings �i .

Example 2.4 A closed oriented manifold is a Z0–manifold (or equivalently a Z–manifold) where the
Bockstein ıM is empty.

Example 2.5 The typical example of a Z2–manifold is the cylinder M DS1�Œ0; 1�, ıM DS1 and embed-
dings �1; �2 WS

1 ,!S1�f0gtS1�f1g, with �1.S
1/DS1�f0g and �2.S

1/DS1�f1g (with the reverse
orientation on S1 � f1g). The quotient space K WD �M is the well-known Klein bottle; see Figure 1, left.

Here we observe that even though the second integral homology group is zero for the Klein bottle, we
can obtain a fundamental class after we change to Z2 coefficients, ie H2.KIZ2/Š Z2. In Section 6, we
show this fundamental class always exists for a Zk–stratifold.

Example 2.6 Consider the pair of pants P with boundary @P D S1 tS1 tS1 and Bockstein ıP D S1;
see Figure 1, right.

Definition 2.7 An .nC1/–dimensional Zk–manifold with boundary is given by the triple BD .B; ıB;  i/,
where

(1) B is a compact .nC1/–dimensional manifold, with boundary @B,

(2) ıB is a compact n–dimensional manifold, called the Bockstein, with boundary @ıB, and

(3)  i W ıB ,! @B, with i 2 Zk , are k disjoint embeddings such that the triple�
@B � int

� G
i2Zk

 i.ıB/

�
; @ıB;  i j@ıB

�
defines a closed n–dimensional Zk–manifold .M; ıM; �i/.

This closed n–dimensional Zk–manifold is called the Zk–boundary of the Zk–manifold with boundary B

and is denoted by @BD .M; ıM; �i/.
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D

Figure 2: A Z3–manifold with boundary.

Definition 2.8 As before, there is the quotient space zB which results from the identification on B of the
k embedded copies of ıB together using the embeddings  i .

Example 2.9 Consider the three-dimensional Z3–manifold with boundary B D .B; ıB;  i/, where
B DD3 is the three-dimensional closed ball (hence @B D S2), ıB DD2 is the two-dimensional closed
disc and the  i WD

2! S2 for i 2 Z3 are given by three disjoint embedded discs inside the sphere. The
Z3–boundary @BD .M; ıM; �i/ is the two-dimensional Z3–manifold from Example 2.6, where M is
the pair of pants and ıM is the circle. See Figure 2 for an illustration.

Example 2.10 Consider the two-dimensional Z3–manifold with boundary BD .B; ıB;  i/, where B

is a connected surface of genus one with only one boundary circle, the Bockstein ıB is the interval
Œ0; 1�, and the  i W Œ0; 1�! @B D S1 for i 2 Z3 are given by three disjoint embedded intervals inside the
circle. The Z3–boundary of the Z3–manifold B is a one-dimensional Z3–manifold @BD .M; ıM; �i/,
where M is the disjoint union of three copies of the interval, ıM is the disjoint union of two points
and the embeddings �i are given by the restrictions  i jıM . In Figure 3, we illustrate the Z3–stratifold
.B; ıB;  i/, where on the right-hand side we depict the boundary @B after the quotient.

Definition 2.11 Let X be a topological space and n a natural number. An n–dimensional singular Zk–
manifold in X is a closed n–dimensional Zk–manifold MD .M; ıM; �i/ together with a continuous map
f WM !X such that f ı�i D f ı�j for i; j 2Zk . A singular Zk–bordism between two n–dimensional

ıB

@B
B

Figure 3: A Z3–manifold with boundary, left, and the boundary @B after quotient, right.
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singular Zk–manifolds .M; f / and .M0; f 0/ is a Zk–manifold with boundary B D .B; ıB;  i/, with
Zk–boundary @BD .M CM 0; ıM C ıM 0; f C f 0/ together with a continuous map F W B! X such
that F ı i D F ı j for i; j 2 Zk , extending f and f 0. Recall that the Zk–manifolds are oriented. In
this definition, the sum of Zk–manifolds is given by

.M CM 0; ıM C ıM 0; f Cf 0/D .M t�M 0; ıM t�ıM 0; f tf 0/:

The Zk–bordism group group �n.X IZk/ is given by the equivalence classes of n–dimensional singular
Zk–manifolds .M; f / under this Zk–bordism relation. The elements of this group are denoted by ŒM; f �.

The Zk–bordism groups �n.X IZk/ are a generalized homology theory (this follows by Section 4 or see
[5, Chapter III]). The existence of the fundamental class ŒM�Zk

2Hn. �M IZk/, see Section 6, induces
the Hurewicz homomorphism hZk

W�n.X IZk/!Hn.X IZk/. In addition, we have the reduction map
r W�n.X /!�n.X IZk/. This map considers an n–dimensional closed manifold as a Zk–manifold with
ıM D∅. Moreover, we have the Bockstein sequence, which fits into the commutative diagram

(4)

� � � // �n.X /
�k
//

h

��

�n.X /
r
//

h

��

�n.X IZk/
ı
//

hZk

��

�n�1.X / //

h

��

� � �

� � � // Hn.X /
�k
// Hn.X /

r
// Hn.X IZk/ // Hn�1.X / // � � �

for n� 1.

3 Stratifolds

We briefly introduce the language of stratifolds from Kreck [12; 13]. For this purpose, we need the notion
of differential space [17; 12; 13].

Definition 3.1 A differential space is a pair .X;C/ where X is a topological Hausdorff space with a
countable basis and C� C 0.X / is a sheaf of real-valued continuous functions such that for f1; : : : ; fk

in C and f a smooth function on Rk , the composition f .f1; : : : ; fk/ is in C.

For a differential space, each point x 2X has associated a tangent space, denoted by TxX , which is the
space of all derivations of the germ �x.C/ of smooth functions at x. A smooth manifold is a natural
example of a differential space, which is locally diffeomorphic to Rn equipped with the sheaf of all
smooth functions.

Definition 3.2 [13, Definition 1] An n–dimensional stratifold is a differential space .S;C/ where
the sheaf C induces a suitable stratification Sk WD fx 2 S W dim TxS D kg. The union of all strata of
dimension � k is called the k–skeleton Sk . In addition, we assume:

(i) For each k, the stratum Sk , together with the restriction sheaf CjSk , is a smooth k–dimensional
manifold as a differential space.
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(ii) All skeleta are closed subsets of S .

(iii) All strata of dimension > n are empty.

(iv) For each x2S and open neighborhood U with x2U, there is a so-called bump function � WS!R�0

in C such that supp � � U and �.x/ > 0.

(v) For each x 2 Sk , the restriction gives an isomorphism �x.C/! �x.CjSk /.

Definition 3.3 A continuous map f W .S;C/! .S 0;C0/ is smooth if the precomposition by f sends every
element of C0 to an element of C. If f and the inverse f �1 are smooth, then f is called a diffeomorphism
of stratifolds. Similarly, we can define the notion of a (smooth) embedding of stratifolds by requiring that
the restriction to the image is a diffeomorphism of stratifolds.

Example 3.4 [12, Example 1, page 19] The open cone of an n–dimensional manifold,

VCM WDM � Œ0; 1/=M�f0g;

is an example of an .nC1/–dimensional stratifold, where C consists of all continuous functions on VCM

which are constant on some open neighborhood of the point produced by collapsing M � f0g, and whose
restriction to M � .0; 1/ is smooth.

Definition 3.5 Let W be a smooth manifold. A collar is a homeomorphism c W @W � Œ0; �/! U with
� > 0, where U is an open neighborhood of @W in W such that cj@W �f0g D id@W and cj@W �.0;�/ is a
diffeomorphism onto U � @W .

Definition 3.6 Let .T; @T / be a pair of topological spaces. Assume VT D T � @T and @T are stratifolds
of dimensions n and n� 1, with @T � T a closed subspace. A collar of @T into T is a homeomorphism
c W @T � Œ0; �/! U with � > 0, where U is an open neighborhood of @T in T such that cj@T�f0g D id@T

and cj@T�.0;�/ is a diffeomorphism of stratifolds onto U � @T .

Definition 3.7 An .nC1/–dimensional stratifold with boundary is a pair of topological spaces .T; @T /,
together with a collar c of @T into T , where T � @T is an .nC1/–dimensional stratifold and @T is an
n–dimensional stratifold, which is a closed subspace of T . We call @T the boundary of T .

The following example is crucial in the theory of stratifolds.

Example 3.8 [12, page 36] The closed cone C.S/ of a stratifold S has underlying topological space
T D S � Œ0; 1�=S�f0g, whose interior is S � Œ0; 1/=S�f0g and whose boundary is S � f1g. The collar is
given by the map S �

�
0; 1

2

�
! C.S/ mapping .x; t/ to .x; 1� t/.

Now, we define some important classes of stratifolds [12].

Definition 3.9 [12, page 79] An n–dimensional stratifold S is oriented if the top stratum Sn is an
oriented manifold and the stratum Sn�1 is empty.

Algebraic & Geometric Topology, Volume 24 (2024)



1870 Andrés Ángel, Carlos Segovia and Arley Fernando Torres

Definition 3.10 [12, page 43] An n–dimensional stratifold S is regular if for each x 2 S i , where
0� i � n, there is an open neighborhood U of x in S , a stratifold F with F0 a single point, an open subset
V of S i , and a diffeomorphism of stratifolds � W V �F ! U, whose restriction to V �F0 is the identity.

Remark 3.11 [12, page 24] In this paper, we restrict to a special class of stratifolds called p–stratifolds.
The construction of a p–stratifold is as follows: we start with a zero-dimensional p–stratifold, which is a
zero-dimensional manifold. Assume we construct by induction a .k�1/–dimensional p–stratifold .S;C/
and let W be a k–dimensional manifold with a smooth and proper map f W @W ! S . Then we define
the k–dimensional p–stratifold .W tf S;C0/, where C0 is constructed using a collar c W @W � Œ0; �/! U.
More precisely, the function g belongs to C0 if and only if gjS and gjW �@W are smooth and for some
ı < � we have gc.x; t/D gf .x/ for all x 2 @W and t < ı.

Note 3.12 A stratifold with boundary T is an oriented/regular stratifold if both T � @T and @T are
oriented/regular stratifolds (the collar preserves the product orientation for oriented stratifolds). Similarly,
T is a p–stratifold if both T � @T and @T are p–stratifolds.

From Section 4, until the end of this paper, all statements about stratifolds are meant as statements about
p–stratifolds; see Note 4.1.

As Kreck mentions in [13, page 303]: “The following observation is central for our construction of the
zoo of bordism groups.” For two stratifolds T and T 0 with the same boundary @T D @T 0, there is a
stratifold structure for the gluing of stratifolds T [@T T 0, where the two collars are combined to produce
a bicollar; see the details in [12, pages 36–37].

Definition 3.13 Let X be a topological space and n a natural number. An n–dimensional singular
stratifold in X is a closed (compact without boundary) n–dimensional stratifold S together with a
continuous map f W S !X . A singular bordism between two n–dimensional singular stratifolds .S; f /
and .S 0; f 0/ is a compact stratifold with boundary T , with boundary .S CS 0; f Cf 0/ together with a
continuous map F W T !X extending f and f 0. The sum of oriented stratifolds is given by

.S CS 0; f Cf 0/D .S t�S 0; f tf /:

Since one can glue n–dimensional singular stratifolds over a common boundary component, singular
bordism is an equivalence relation. The oriented stratifold homology group SHn.X / consists of the
equivalence classes of n–dimensional oriented singular stratifolds .S; f / under this bordism relation.
The elements of these groups are denoted by ŒS; f �.

The significance of the previous bordism groups lies in the positive solution for the Steenrod problem [7]
of showing that a geometric object represents integral homology classes. The precise statement is:

Theorem 3.14 (Kreck [12, Theorem 20.1, page 186]) The functor SH� defines a homology theory.
Moreover , there exists a natural transformation h from SH�. � / to singular homology H�. � IZ/ such that
h is an isomorphism for all CW–complexes.
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Figure 4: A closed Z3–stratifold.

4 Zk–stratifolds

Now we combine the theory of Zk–manifolds from Sullivan and the theory of stratifolds from Kreck.

Note 4.1 Unless otherwise indicated, let us set the convention that the stratifolds are oriented, regular
p–stratifolds. Also, all the diffeomorphisms and embeddings of stratifolds are orientation-preserving.

Definition 4.2 A closed n–dimensional Zk–stratifold is given by the triple SD .S; ıS; �i/, where

(1) S is a compact, n–dimensional stratifold, with boundary @S ,

(2) ıS is a compact .n�1/–dimensional stratifold without boundary, called the Bockstein, and

(3) the �i W ıS ! @S for i 2 Zk are k disjoint embeddings of stratifolds such that we have a diffeo-
morphism of stratifolds @S D

F
i2Zk

�i.ıS/.

Definition 4.3 There is an associated quotient space zS given by the identification on S of the k copies
of ıS together using the embeddings �i .

Example 4.4 The class of closed stratifolds and the class of Zk–manifolds are the first examples of
Zk–stratifolds.

Example 4.5 Consider the two-dimensional Z3–stratifold given by the closed cone of the disjoint union
of three circles S D C.S1 tS1 tS1/, where the boundary is @S D S1 tS1 tS1, and the Bockstein is
ıS D S1; see Figure 4.

Definition 4.6 An .nC1/–dimensional Zk–stratifold with boundary is given by the triple TD .T; ıT;  i/,
where

(1) T is a compact .nC1/–dimensional stratifold, with boundary @T ,

(2) ıT is a compact n–dimensional stratifold with boundary, called the Bockstein, with boundary @ıT ,
and
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(3) the  i W ıT ,! @T for i 2 Zk are k disjoint embeddings of stratifolds such that the triple�
@T � int

� G
i2Zk

 i.ıT /

�
; @ıT;  i j@ıT

�
defines a closed n–dimensional Zk–stratifold .S; ıS; �i/.

This closed n–dimensional Zk–stratifold is called the Zk–boundary of the Zk–stratifold T and is denoted
by @TD .S; ıS; �i/.

Definition 4.7 There is a quotient space zT resulting from the identification on T of the k copies of ıT
together using the embeddings  i .

Example 4.8 A Zk–manifold with boundary is an example of a Zk–stratifold with boundary.

Example 4.9 Consider the three-dimensional Z3–stratifold with boundary TD .T; ıT;  i/, where T

is the wedge of three closed balls D3 _D3 _D3 by the north pole of the boundary spheres, hence the
boundary is @T D S2_S2_S2. The stratifold structure over the wedge point is given by the open cone
of the disjoint union of three discs. The Bockstein is the two-dimensional closed disc ıT DD2, and the
 i WD

2! S2 _S2 _S2 for i 2 Z3 are given by the embeddings of D2 on each of the three southern
hemispheres. The Z3–boundary @TD .S; ıS; �i/ is the two-dimensional Z3–stratifold from Example 4.5,
where S D C.S1 tS1 tS1/ and the Bockstein is ıS D S1. See Figure 5 for an illustration.

Definition 4.10 The cone of a Zk–stratifold .S; ıS; �i/ is defined as follows: take the closed cone
C.ıS/ (see [12, page 36] or Example 3.8) and use k copies kC.ıS/ WD

F
i2Zk

.C.ıS/ � fig/ to get
the closed stratifold S 0 WD kC.ıS/t@S S . Now take the cone C.S 0/, which is an .nC1/–dimensional
stratifold. The cone of the Zk–stratifold .S; ıS; �i/ is given by the .nC1/–dimensional Zk–stratifold
with boundary T WD .C.S 0/;C.ıS/;  i/, where  i is the canonical inclusion in the i–component. The
Zk–boundary of T is the original Zk–stratifold .S; ıS; �i/.

Note 4.11 For an n–dimensional Zk–stratifold .S; ıS; �i/, we need n � 2 in order to for C.S 0/ and
C.ıS/ to be oriented stratifolds.

D

Figure 5: A Z3–stratifold with boundary.
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The technique to show that the cartesian product of two differentiable manifolds has a differentiable
structure is called straightening the angle. We follow the exposition given by Conner and Floyd in
[6, Section I.3]. Let RC � R consist of all nonnegative real numbers. We have the homeomorphism
� W RC � RC ! R � RC, defined using polar coordinates by �.�; �/ D .�; 2�/ with 0 � � � �=2,
such that the restriction � is a diffeomorphism of RC �RC n .0; 0/ onto R�RC n .0; 0/. Consider the
product of two differentiable manifolds B1 and B2 with collars U1 and U2 of the boundaries @B1 and @B2,
respectively. There are diffeomorphismsˆ1 WU1! @B1�RC andˆ2 WU2! @B2�RC. Let U DU1�U2.
Then ˆD ˆ1 �ˆ2 is a homeomorphism of U onto @B1 � @B2 �RC �RC and the composition with
� 0 D id�� produces a homeomorphism � 0 ıˆ W U ! @B1 � @B2 �R�RC. The differentiable structure
of @B1 � @B2 �R�RC induces a differentiable structure on U such that � 0 ıˆ is a diffeomorphism.
Then U and B1 �B2 n @B1 � @B2 have differentiable structures, and they induce the same differentiable
structure on their intersection. This structure is referred to as obtained by straightening the angle.

Proposition 4.12 If SD .S; ıS; �i/ is a closed n–dimensional Zk–stratifold , then after straightening the
angle we obtain an .nC1/–dimensional Zk–stratifold with boundary S�Œ0; 1� WD .S�Œ0; 1�; ıS�Œ0; 1�;  i/,
where the Zk–boundary .S 0; ıS 0; � 0i/ is given by

� S 0 D S � f0g t�S � f1g,

� ıS 0 D ıS � f0g t�ıS � f1g,

� � 0i D �i � f0g t �i � f1g.

Proof The technique of straightening the angle works similarly for the product of two stratifolds with
boundary. In fact, from Kreck [12, Sections A.1–A.2], we can use local retractions to show that the
product of stratifolds has a stratifold structure.

Consequently, the product space S � Œ0; 1� has the structure of compact .nC1/–dimensional stratifold
with boundary, where @ .S � Œ0; 1�/ D .@S � Œ0; 1�/[ .S � f0; 1g/ is also a stratifold with a collar into
S � Œ0; 1�. Similarly, the product ıS � Œ0; 1� is a compact n–dimensional stratifold with boundary, and
we have embeddings �i � idŒ0;1� W ıS � Œ0; 1� ,! @S � Œ0; 1� for i 2 Zk . Denote by  i the embedding
obtained as the composition of �i � idŒ0;1� with the inclusion @S � Œ0; 1� ,! @ .S � Œ0; 1�/. We associate
the Zk–stratifold with boundary .T; ıT;  i/, where T WD S � Œ0; 1� and the Bockstein ıT WD ıS � Œ0; 1�.

From Definition 4.6, it remains to show that the triple .S 0; ıS 0; � 0i/ WD .@T � int.@S� Œ0; 1�/; @ıT;  i j@ıT /

is a closed n–dimensional Zk–stratifold. We have S 0D S �f0; 1g, ıS 0D ıS �f0; 1g and the embeddings
are � 0i D i jıS 0 D �i�f0; 1g. The orientation of S � Œ0; 1� induces opposite orientations for the two copies
of S associated to f0; 1g, and similarly for ıS . The embedding �i � f0g preserves the orientation, while
the embedding �i � f1g reverses the orientation. This shows that .S 0; ıS 0; � 0i/ is a Zk–stratifold which is
the Zk–boundary of S� Œ0; 1�.

Now we state a gluing lemma for Zk–stratifolds. This result is a direct application of Proposition A.1 in
Kreck’s book [12, page 194].
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Lemma 4.13 Let T WD .T; ıT;  i/ and T0 WD .T 0; ıT 0;  0i/ be Zk–stratifolds with Zk–boundaries
@TD StS0 and @T0 D StS00, where SD .S; ıS; �i/, S0 D .S 0; ıS 0; � 0i/ and S00 D .S 00; ıS 00; � 00i / are
closed Zk–stratifolds. Then there is a Zk–stratifold with boundary

TtS T0 WD .T tS T 0; ıT tıS ıT
0;  i tıS  

0
i/;

where the Zk–boundary is S0 tS00.

Proof We consider the stratifolds Y1 WD S 0 t@S 0
F

i2Zk
 i.ıT / and Y2 WD S 00 t@S 00

F
i2Zk

 0i.ıT
0/.

Thus the boundary of the stratifold T and T 0 are @T D S t@S Y1 and @T 0 D S t@S Y2, respectively.
The work of Kreck [12, Proposotion A.1, page 194] implies that the gluing T tS T 0 is a stratifold with
boundary, where @.T tS T 0/D Y1t@S Y2. Similarly, the gluing ıT tıS ıT 0 is a stratifold with boundary,
which is the Bockstein. Thus the Zk–boundary is precisely .S 0tS 00; ıS 0t ıS 00; � 0i t �

00
i /, and the lemma

follows.

Definition 4.14 Let X be a topological space and n a natural number. An n–dimensional singular Zk–
stratifold in X is a closed n–dimensional Zk–stratifold SD .S; ıS; �i/ together with a continuous map
f W S !X such that f ı �i D f ı �j for i; j 2 Zk . A singular Zk–bordism between two n–dimensional
singular Zk–stratifolds .S; f / and .S0; f 0/ is a Zk–stratifold with boundary T D .T; ıT;  i/, with
Zk–boundary @TD .S CS 0; ıS C ıS 0; f Cf 0/ together with a continuous map F W T !X such that
F ı i D F ı j for i; j 2 Zk , extending f and f 0. Recall that the Zk–stratifolds consist of oriented,
regular p–stratifolds. In this definition, the sum of Zk–stratifolds is given by

.S CS 0; ıS C ıS 0; f Cf 0/D .S t�S 0; ıS t�ıS 0; f tf 0/:

Again, one can glue n–dimensional singular Zk–stratifolds over a common boundary component. We
state in Proposition 4.15 that singular Zk–bordism is an equivalence relation. The Zk–stratifold homology
group SHn.X IZk/ is given by the equivalence classes of n–dimensional singular Zk–stratifolds .S; f /
under the Zk–stratifold bordism relation. We denote by ŒS; f � the elements of this group.

As a consequence of Proposition 4.12 and the gluing result of Lemma 4.13, we obtain the following.

Proposition 4.15 The Zk–stratifold bordism relation is an equivalence relation.

To any closed n–dimensional stratifold S , there is an associated closed n–dimensional stratifold given by
the disjoint union kS WD

F
i2Zk

S � fig. This assignment produces the homomorphism

(5) �k W SHn.X /! SHn.X /:

To any closed n–dimensional Zk–stratifold SD .S; ıS; �i/, there is an associated closed n–dimensional
Zk–stratifold given by the disjoint union kS WD

F
i2Zk

S � fig, where the Bockstein is the whole
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boundary @S and the embeddings  i W @S !
F

i2Zk
@S � fig are the canonical inclusions. More-

over, the boundary @S D
F

i2Zk
�i.ıS/ can be considered as a k–disjoint union and we can denote

.kS; kıS;  i/ WD .kS; @S;  i/. This assignment produces the homomorphism

(6) � kk
W SHn.X IZk/! SHn.X IZk/;

which we show below is trivial.

Proposition 4.16 For every integer n� 0, the homomorphism � kk W SHn.X IZk/! SHn.X IZk/ is
zero.

Proof Take .S; f /D ..S; ıS/; f / a closed singular Zk–stratifold. Consider the stratifold with boundary
given by the cylinder T WD kS � Œ0; 1� and the Bockstein ıT WD .@S � Œ0; 1�/t@S�f1g .�S � f1g/ with
embeddings

 i W ıT ,! @T D
�
.S � f0g/t@S�f0g .@S � Œ0; 1�/t@S�f1g .�S � f1g/

�
� fig;

which are the canonical inclusions. The Zk–boundary of the Zk–stratifold .T; ıT;  i/ is the k–disjoint
union of .S; ıS/.

Similar to the work of Morgan and Sullivan [15], we have the Bockstein sequence, which fits into the
commutative diagram

(7)

// SHn.X /
�k
//

h
��

SHn.X /
r
//

h
��

SHn.X IZk/
ı
//

hZk

��

SHn�1.X / //

h
��

� � �SH0.X IZk/

��

// Hn.X /
�k

// Hn.X /
r
// Hn.X IZk/ // Hn�1.X / // � � �H0.X IZk/

The description of the maps is as follows:

� The reduction r W SHn.X /! SHn.X IZk/ is obtained by considering an n–dimensional closed
stratifold as a Zk–stratifold, ie .S; ıS; �i/ with ıS D∅.

� Multiplication � k W SHn.X /! SHn.X / takes a singular stratifold .S; f / in X and assigns the
class of the k–disjoint union of S , denoted by ŒkS; kf �.

� The Bockstein ı W SHn.X IZk/! SHn�1.X / assigns to a singular Zk–stratifold .S; f /, where
SD .S; ıS; �i/, the class ŒıS; f jıS �.

� The Hurewicz homomorphism for stratifolds, h W SHn.X /!Hn.X / for n� 0, was constructed by
Kreck [12, pages 186–187].

� The Hurewicz homomorphism for Zk–stratifolds, hZk
W SHn.X IZk/!Hn.X IZk/ for n� 0, is

constructed in Section 6, where we show the existence of the fundamental class for Zk–stratifolds.

We leave the proof of the exactness of (7) for Section 5, where the commutativity follows after we
construct the fundamental class in Section 6.
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Finally, we spend the rest of the section discussing the properties of SH�. � IZk/ as a functor. Kreck [12]
proves the Eilenberg–Steenrod axioms for the bordism groups SH�. � / in the category of CW–complexes.
We have a functor, ie id�D id and .gıf /�Dg�ıf�, which is homotopy invariant, has the Mayer–Vietoris
sequence, SHn.�/D 0 for n¤ 0 and SH0.�/D Z. Similarly, the Zk–stratifold homology satisfies the
Eilenberg–Steenrod axioms, that we show in detail below. The proof of the Mayer–Vietoris sequence is
in Section A.2.

Definition 4.17 A continuous map g WX ! Y defines a morphism between the Zk–stratifold bordism
groups by

g� W SHn.X IZk/! SHn.Y IZk/; ŒS; f � 7! ŒS;g ıf �;

for SD .S; ıS; �i/ a closed n–dimensional Zk–stratifold.

This defines a functor which is homotopy invariant, as in the following proposition.

Proposition 4.18 If g and g0 are homotopic maps from X to Y , then

g� D g0� W SHn.X IZk/! SHn.Y IZk/:

Proof There is a homotopy G WX � Œ0; 1�! Y between g and g0. Take ŒS; f � 2 SHn.X IZk/, and hence
ŒS� Œ0; 1�;G ı .f � id/� is a singular Zk–stratifold bordism (see Proposition 4.12) between g�.ŒS; f �/

and g0�.ŒS; f �/.

Proposition 4.19 For the Zk–stratifold bordism group , we have

SHn.�IZk/D

�
Zk for nD 0;

0 for n¤ 0:

Proof An important assumption here is that every n–dimensional Zk–stratifold .S; ıS/ is formed by
oriented stratifolds S and ıS . For n � 2, we use the first horizontal long exact sequence of (7), with
SHn.�/D 0 and SHn�1.�/D 0, and we conclude SHn.�IZk/D 0. For nD 1, the sequence (7) becomes

0! SH1.�IZk/! Z
�k
! Z

r
! SH0.�IZk/! 0;

then SH1.�IZk/D 0 and SH0.�IZk/D Zk .

A geometric approach for the previous proposition is as follows: for any closed n–dimensional Zk–
stratifold SD .S; ıS; �i/, with n> 1, we take the cone as in Definition 4.10. Thus we consider the usual
cone C.ıS/ and use k copies kC.ıS/ to get the closed stratifold S 0 WD kC.ıS/t@S S . Then we form
the .nC1/–dimensional Zk–stratifold with boundary T WD .C.S 0/;C.ıS/;  i/ where  i is the canonical
inclusion on the i th component. The Zk–boundary of T is the original Zk–stratifold .S; ıS; �i/. For
n D 1, we have a disjoint union of circles and intervals with orientation. Since each interval has the
boundary fC;�g, then the number of intervals must be divided by k. Thus, after capping the circles
with discs by Proposition 4.16, this element is trivial in SH1.�IZk/. Finally, for nD 0, the generator of
SH0.�IZk/ is the closed zero-dimensional Zk–stratifold .�;∅; id∅/, where we use Proposition 4.16.
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5 The Bockstein sequence

Previously, we have defined the k–disjoint union homomorphisms for stratifolds and Zk–stratifolds.
These homomorphisms are as follows �k WSHn.X /!SHn.X / and �kk WSHn.X IZk/!SHn.X IZk/,
defined in (5) and (6), respectively. The second is the trivial homomorphism by Proposition 4.16. There
is a third k–disjoint union homomorphism of the form

(8) �kk2

W SHn.X IZk/! SHn.X IZk2/;

which assigns to an n–dimensional Zk–stratifold .S; ıS/ the n–dimensional Zk2–stratifold .kS; ıS/.
There is a projection homomorphism

p W SHn.X IZk2/! SHn.X IZk/

which assigns to an n–dimensional Zk2–stratifold .S; ıS/ the n–dimensional Zk–stratifold .S; kıS/.

We skip the embeddings and singular maps in defining these homomorphisms to simplify the notation.

These homomorphisms satisfy a compatibility condition with the reduction and the Bockstein homomor-
phisms from the last section.

Proposition 5.1 Let r W SHn.X /! SHn.X IZk/ and r W SHn.X /! SHn.X IZk2/ be the reduction
homomorphisms and let ı W SHn.X IZk2/ ! SHn�1.X / be the Bockstein homomorphism for Zk2–
stratifolds. We have the following commutative diagrams:

SHn.X IZk2/
p
//

ı
��

SHn.X IZk/

ı
��

SHn�1.X /
�k

// SHn�1.X /

SHn.X /
�k

//

r

��

SHn.X /

r

��

SHn.X IZk/
�kk

// SHn.X IZk/

SHn.X /
�k

//

r

��

SHn.X /

r

��

SHn.X IZk/
�kk2

// SHn.X IZk2/

SHn.X /

r

((

r

��

SHn.X IZk2/
p
// SHn.X IZk/

SHn.X IZk2/

p

((

SHn.X IZk/�kk2

OO

�kk
// SHn.X IZk/

Proof We show the commutativity of the first three squares. Take .S; ıS/ an n–dimensional Zk2–
stratifold. We have kıS WD � k.ıS/D � k ı ı.S; ıS/ and kıS D ı.S; kıS/D ı ıp.S; ıS/. Now, for
S a closed n–dimensional stratifold, we obtain r ı �k.S/D .kS;∅/ and �kk ı r.S/D �kk.S;∅/D
.kS;∅/ in SHn.X IZk/. Similarly, we can show the commutativity of the third diagram with .kS;∅/

Algebraic & Geometric Topology, Volume 24 (2024)



1878 Andrés Ángel, Carlos Segovia and Arley Fernando Torres

ıS T ıS 0

S

Figure 6: The bordism T from ıS and ıS 0 and the two Zk–bordant Zk–stratifolds.

in SHn.X IZk2/. Finally, we show the commutativity of the last two diagrams. We have r.S/D .S;∅/D
p.S;∅/Dp.r.S// and pı�kk2

.S; ıS/Dp.kS; ıS/D .kS; kıS/D �kk.S; ıS/. The commutativity
of the second and fifth diagrams means that the composition is trivial by Proposition 4.16.

The following result shows how a stratifold bordism gives rise to a Zk–stratifold bordism.

Proposition 5.2 Assume that ıS and ıS 0 are two n–dimensional closed stratifolds such that there is a
bordism of stratifolds T with boundary @T D ıS t�ıS 0. In addition , suppose the pair .S; ıS/ is an
n–dimensional Zk–stratifold. Then .S; ıS/ is Zk–bordant to .S t@S �kT; ıS 0/.

Proof This is similar to Proposition 4.12. Consider the product space T 0 WD .S t@S �kT /� Œ0; 1� and
the Bockstein ıT 0 WD .ıS 0 � Œ0; 1�/tıS 0�f1g�T with embeddings  i W ıT

0 ,! @T 0, where

@T 0 D
�
.S t@S �kT /� f0g

�
tkıS 0�f0g k.ıS

0
� Œ0; 1�/tkıS 0�f1g

�
.S t@S �kT /� f1g

�
:

The Zk–stratifold .T 0; ıT 0;  i/ is a Zk–bordism between .S; ıS/ and .S t@S �kT; ıS 0/.

Remark 5.3 Because of the relevance of the previous result for our work, in Figure 6 we illustrate two
Zk–stratifolds that are Zk–bordant by the previous proposition. Notice that, whenever it is possible
to connect ıS to the empty set by a bordism T , then the Zk–stratifold .S; ıS/ is Zk–bordant to
.S t@S �kT;∅/.

Similar to the work of Morgan and Sullivan [15], the Zk–stratifolds bordisms groups have a Bockstein
exact sequence associated with 0!Z

�k
�!Z!Zk! 0. There is also the other Bockstein exact sequence

associated with 0!Zk
�k
�!Zk2 !Zk! 0. These two sequences are part of the commutative diagram

(9)

// SHn.X /
�k

//

r

��

SHn.X /
r
//

r

��

SHn.X IZk/
ı

//

D

��

SHn�1.X / //

r

��

// SHn.X IZk/
�k
// SHn.X IZk2/

p
// SHn.X IZk/

zı
// SHn�1.X IZk/ //

The primary purpose of the present section is to show the exactness of the two Bockstein exact sequences.
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Proposition 5.4 The sequence

� � � ! SHn.X /
�k
�! SHn.X /

r
�! SHn.X IZk/

ı
�! SHn�1.X /

�k
�! � � �

is exact.

Proof We have r ı .�k/D .�kk/ ı r D 0 by Proposition 5.1. In addition, we obtain ı ı r D 0 since the
Bockstein of a (closed) stratifold is empty. Moreover, � k ı ı D 0 since we start with a Zk–stratifold
.S; ıS; �i/, where the boundary @S is diffeomorphic to

F
i2Zk

�i.ıS/.

Now, we show exactness.

� ker r � im.�k/ Consider an n–dimensional singular stratifold .S; f / with r.ŒS; f �/D 0. Then there
is an .nC1/–dimensional Zk–bordism .T;F /D ..T; ıT /;F / such that the Zk–boundary @.T; ıT /D
.S;∅/ and F extends f . Consequently, we obtain @ıT D ıS D ∅ and hence @T D S t kıT ,
and we can take the singular stratifolds given by .ıT;F j@T / with the reverse orientation. We have
kŒ�ıT;�F j@T �D ŒS; f �.

� ker ı � im r Consider an n–dimensional singular Zk–stratifold .S; f / D ..S; ıS/; f / such that
ı.ŒS; f �/D0. Then .ıS; f jıS / is the boundary of an n–dimensional singular stratifold .T;F /, ie @T D ıS
and F extends f j@S . Proposition 5.2 and Remark 5.3 imply that the Zk–stratifold .S t@S �kT;∅/ is
Zk–bordant to Zk–stratifold .S; ıS/. There is a map f 0 W S t@S �kT !X which extends the singular
map f . Therefore, the singular Zk–stratifold ..St@S�kT;∅/; f 0/ is Zk–bordant to the original singular
Zk–stratifold ..S; ıS/; f /.

� ker.�k/ � im ı Consider an .n�1/–dimensional singular stratifold .S; f / with � k.ŒS; f �/ D 0.
Then there exists an n–dimensional singular stratifold .T;F / with @T D kS and F extends kf . Thus we
can take the n–dimensional singular Zk–stratifold ..T;S/;F / and we obtain ı.Œ.T;S/;F �/D ŒS; f �.

Denote by zı the composition SHn.X IZk/
ı
�! SHn�1.X /

r
�! SHn�1.X IZk/.

Proposition 5.5 The sequence

� � � ! SHn.X IZk/
�kk2

��! SHn.X IZk2/
p
�! SHn.X IZk/

zı
�! SHn�1.X IZk/

�kk2

��! � � �

is exact.

Proof We have p ı .�kk2

/D�kk D 0 by Proposition 5.1. Again we use Proposition 5.1, and we get

zı ıp D r ı ı ıp D .r ı .�k// ı ı D 0:

Similarly, we obtain
.�kk2

/ ı zı D .�kk2

/ ı r ı ı D .r ı .�k// ı ı D 0:

Now we show exactness.

� ker p � im.�kk2
/ Consider an n–dimensional singular Zk2–stratifold .S; f /D ..S; ıS/; f / with

p.ŒS; f �/D 0. Then there exists an .nC1/–dimensional singular Zk–stratifold with boundary .T;F /D
..T; ıT /;F / such that the Zk–boundary is @TD .S; kıS/. Thus we can consider k copies of ıT with
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the reverse orientation, which are glued with S to form a closed stratifold S t@S �kıT , which is the
boundary of T . There are k disjoint embeddings ci W ıS � Œ0; �/ ,! ıT induced by the collar of @S into
the k copies of ıT . Write ıT WD ıT �

F
i2Zk

ci.ıS � Œ0; �=2�/. We consider the Zk2–stratifold with
boundary .T; ıS � Œ0; �=2�;  i/, where  i D ci jıS�Œ0;�=2�. This is a Zk2–bordism between .S; ıS/ and
.kıT ; ıS/. This means that .�kk2

/.ŒıT ; ıS �/D ŒkıT ; ıS �D ŒS; ıS �.

� ker zı � im p Consider an n–dimensional singular Zk–stratifold .S; f / D ..S; ıS/; f / such that
zı.ŒS; f �/ D 0. Since zı D r ı ı, this means that there exists an n–dimensional singular Zk–bordism
.T;F / D ..T; ıT /;F / such that the Zk–boundary is ..ıS;∅/; f jıS /. Therefore, @T D ıS t kıT ,
F extends f jıS and @ıT D∅. Consequently, we consider k copies of T with the reverse orientation,
glued with S to form the n–dimensional stratifold with boundary S 0 D �kT t@S S . There is a map
f 0 W S 0! X also constructed by the gluing. Thus we have an n–dimensional singular Zk2–stratifold
..S 0; ıT /; f 0/. We have p.Œ.S 0; ıT /; f 0�/D Œ.S 0; kıT /; f 0�, which is equal to .S; f / by Proposition 5.2.

� ker.�kk2
/� im.zı/ Consider an .n�1/–dimensional singular Zk–stratifold .S; f /D ..S; ıS; �i/; f /

with �kk2

.ŒS; f �/D0. Then there is an n–dimensional singular Zk2–stratifold .T;F /D ..T; ıT;  i/;F /

with Zk2–boundary ..kS; ıS/; kf /. Therefore, @T D kS t@kS �k2ıT is a closed n–dimensional
stratifold. By the definition of the Zk2–boundary of a Zk2–stratifold with boundary (Definition 4.6), hence
ıSD@ıT and the embeddings are �iD i j@ıT . Therefore, the gluing St@S kıT is a closed n–dimensional
stratifold and, in addition, we obtain @T is the disjoint union of k copies of St@S kıT . Consequently, we
take the .nC1/–dimensional singular Zk–stratifold ..T;S t@S kıT /;F / and zı.Œ.T;S t@S kıT /;F �/D

Œ.S t@S kıT;∅/;F jSt@S kıT �, which is Zk–bordant to ..S; ıS; �i/; f / by Proposition 5.2.

6 Fundamental classes

Recall from Section 2 that a closed Zk–manifold .M; ıM; �i/ has an associated quotient space �M .
Similarly, we write e@M to mean the quotient space given by the identification on @M of the k copies
of ıM. Notice that in this case, we have e@M Š ıM. Similarly, for a Zk–manifold with boundary
.B; ıB;  i/, we denote by zB and f@B the quotient spaces obtained by the identification of the k copies
of ıB on B and @B, respectively.

In this section, we will construct a natural transformation from Zk–bordism stratifold homology to
homology with Zk–coefficients

(10) ˆ W SH�.X IZk/!H�.X IZk/:

We can define this natural transformation for Zk–manifolds [15]. There is no formal proof of this fact in
the literature, so we provide a detailed argument below. The case of Zk–stratifolds uses some results of
Tene [22]. We give the details of these statements at the end of this section.

Assume that M D .M; @M; �i/ is a closed n–dimensional Zk–manifold and that there is a continuous
map f WM ! X to the topological space X. There exists the fundamental class ŒM�Zk

2Hn. �M IZk/,
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and for an element ŒM; f � 2�n.X IZk/, there is a natural transformation defined by

(11) ˆ.ŒM; f �/D zf�.ŒM�Zk
/;

where zf W �M !X is the induced map from the quotient space �M .

We can find the fundamental class ŒM�Zk
using the commutative diagram

(12)

// Hn.@M IZk/ //

q�
��

Hn.M IZk/

q�
��

i�
// Hn.M; @M IZk/

q�
��

@
// Hn�1.@M IZk/

q�
��

//

// Hn.e@M IZk/ // Hn. �M IZk/
i�
// Hn. �M ;e@M IZk/

@
// Hn�1.e@M IZk/ //

In the previous diagram, the rows are the long exact sequences associated with the pairs .M; @M / and
. �M ;e@M /. The quotient map induces the vertical morphisms. We start with the well-known fundamental
class ŒM; @M � 2Hn.M; @M IZk/ which satisfies @.ŒM; @M �/D Œ@M � and

(13) Hn�1.e@M IZk/
Š�!Hn�1.ıM IZk/; q�.Œ@M �/ 7! kŒıM �:

Thus q�.Œ@M �/D0 by the coefficients. We have the isomorphism q� WHn.M;@M IZk/!Hn. �M;e@M IZk/

and Hn.e@M IZk/ŠHn .ıM IZk/D 0. Therefore, there exists a unique class ŒM�Zk
2Hn. �M IZk/ with

the property

(14) i�.ŒM�Zk
/D q�.ŒM; @M �/:

The following lemma is needed to show the existence of relative fundamental classes for Zk–manifolds.

Lemma 6.1 Let M be a closed compact oriented manifold of dimension n. Assume M is the gluing of
two compact oriented manifolds with boundary of dimension n, ie

(15) M DM1 t@M1D@M2
M2:

Then the composition
Hn.M /

i�
�!Hn.M;M1/

Š�!Hn.M2; @M2/

sends the fundamental class ŒM � 2Hn.M / to the relative fundamental class ŒM2; @M2� 2Hn.M2; @M2/,
where the isomorphism Hn.M;M1/

Š�!Hn.M2; @M2/ is provided by excision.

Proof We have the commutative diagram

(16)

Hn.M2; @M2/

exc
��

// Hn.M2;M2�fxg/

Š

��

Hn.M / // Hn.M;M1/ // Hn.M;M �fxg/

where x 2 VM2 DM2 � @M2. By classic algebraic topology [11, Lemma 3.27], the two rows send the
fundamental classes to the generators associated with the point x, which shows the lemma.
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Now we show the existence of a relative fundamental class of an .nC1/–dimensional Zk–manifold with
boundary BD .B; @B;  i/, where the Zk–boundary is @BD .M; ıM; �i/. We find the fundamental class
ŒB; @B�Zk

using the commutative diagram

(17)

HnC1.@B;M IZk/ //

q�
��

HnC1.B;M IZk/

q�
��

i�
// HnC1.B; @BIZk/

q�
��

@
// Hn.@B;M IZk/

q�
��

HnC1.f@B; �M IZk/ // HnC1. zB; �M IZk/
i�
// HnC1. zB;f@BIZk/

@
// Hn.f@B; �M IZk/

In the previous diagram, the rows are the long exact sequences associated with the triples .B; @B;M / and
. zB;f@B; �M /, respectively, and the quotient map induces the vertical morphisms. We start with the relative
fundamental class ŒB; @B�2Hn.B; @BIZk/ and using Lemma 6.1 we have @ŒB; @B�D ŒkıB; @M �, where
kıB WD

F
i2Zk

 i.ıB/, and

(18) Hn.f@B; �M IZk/
Š�!Hn.ıB; ıM IZk/; q�ŒkıB; @M � 7! kŒıB; ıM �:

Thus q�ŒkıB; @M �D 0 by the coefficients. We have isomorphisms of the form

q� WHnC1.B; @BIZk/
Š�!HnC1. zB;f@BIZk/ and HnC1.f@B; �M IZk/ŠHnC1.ıB; ıM IZk/D 0:

Therefore, there exists a unique class ŒB; @B�Zk
2HnC1. zB; �M IZk/ with the property

(19) i�.ŒB; @B�Zk
/D q�.ŒB; @B�/:

Proposition 6.2 Let BD .B; @B;  i/ be an .nC1/–dimensional Zk–manifold with boundary , where
the Zk–boundary is @BD .M; ıM; �i/. Then the class Œ@B�Zk

is the image of ŒB; @B�Zk
under the map

@ WHnC1. zB; �M IZk/!Hn. �M IZk/.

Proof We apply the differential maps to the middle square in (17), and we obtain the commutative cube

(20)

HnC1.B;M IZk/

@ ))

q�

��

i�
// HnC1.B; @BIZk/

q�

��

@

))

Hn.M IZk/
i�

//

q�

��

Hn.@BIZk/

q�

��

HnC1. zB; �M IZk/
i�

//

@ ))

HnC1. zB;f@BIZk/

@ ))

Hn. �M IZk/
i�

// Hn.f@BIZk/

We continue with the long exact sequence of the pairs .@B; kıB/ and .f@B; kf@B/ for the front square
of (20), and we obtain the middle square in the commutative diagram

(21)

Hn.M IZk/

q�
��

i�
// Hn.@BIZk/

q�
��

j�
// Hn.@B; kıBIZk/

q�
��

Š

exc
// Hn.M; @M IZk/

q�Š
��

Hn. �M IZk/
i�
// Hn.f@BIZk/

j�
// Hn.f@B; zkıBIZk/

Š

exc
// Hn. �M ;e@M IZk/
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In the previous commutative diagram, we use excision for the third square on the right. Notice that
the composition of the horizontal maps in (21) are the maps i� W Hn.M IZk/! Hn.M; @M IZk/ and
i� WHn. �M IZk/!Hn. �M ; @ �M IZk/.

We chase the class ŒB; @B�Zk
2HnC1. zB; �M IZk/ in the diagrams (20) and (21), where we obtain, as

consequences,

i�@.ŒB; @B�Zk
/D @i�.ŒB; @B�Zk

/D @q�.ŒB; @B�/D q�@.ŒB; @B�/D q�.Œ@B�/:

By Lemma 6.1, we have the equation j�.Œ@B�/D ŒM; @M �. Thus, we obtain the property (14) and the
result follows.

Proposition 6.3 The natural transformation ˆ W��.X IZk/!H�.X IZk/ is well defined.

Proof For an n–dimensional singular Zk–manifold .M; f / which is null Zk–bordant, there exists an
.nC1/–dimensional Zk–bordism .B;F / with @BDM, where F extends f . We have the commutative
diagram

(22)

ŒB; @B�Zk
2Hn. zB; �M IZk/

@
��

// Hn.X;X IZk/D 0

@

��

ŒM�Zk
2Hn. �M IZk/ // Hn.X IZk/

This ends the proposition.

In the case of stratifolds, the fundamental classes are defined by Tene [22]. More precisely, let S be a
compact oriented regular p–stratifold of dimension n and denote by .M; @M / the smooth manifold we
attach as top stratum. We have isomorphisms

(23) Hn.M; @M /
Š

exc
// Hn.S;Sn�2/ Hn.S/;

Š
oo

where Sn�2 is the .n�2/–skeleton of S . The fundamental class ŒS � 2Hn.S/ is defined as the image of
ŒM; @M � 2Hn.M; @M /.

Let .T; @T / be a compact oriented regular p–stratifold of dimension nC 1 with boundary and denote by
.B; @B/ the smooth manifold with boundary and collar attached as the top stratum. Then

(24) HnC1.B; @B/
Š

exc
// HnC1.T;Tn�1[ @T / HnC1.T; @T /;

Š
oo

where Tn�1 is the .n�1/–skeleton of T . The relative fundamental class ŒT; @T �2HnC1.T; @T / is defined
as the image of ŒB; @B� 2HnC1.B; @B/.

Proposition 6.4 [22, Lemma 3.9] Let T be a compact oriented regular stratifold of dimension nC 1,
where the boundary is @T. Then the image of ŒT; @T � under the map @ WHnC1.T; @T /!Hn.@T / is the
class Œ@T �.
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Assume S D .S; ıS; �i/ is a closed n–dimensional Zk–stratifold, where both S and ıS are compact
oriented regular p–stratifolds. Similarly as in diagram (12), we can find the fundamental class ŒS�Zk

in
Hn. zS IZk/ using the commutative diagram

(25)

Hn.@S IZk/ //

q�
��

Hn.S IZk/

q�
��

i�
// Hn.S; @S IZk/

q�
��

@
// Hn�1.@S IZk/

q�
��

Hn.f@S IZk/ // Hn. zS IZk/
i�
// Hn. zS ;f@S IZk/

@
// Hn�1.f@S IZk/

In the previous diagram, the rows are the long exact sequences associated with the pairs .S; @S/
and . zS ;f@S/. The quotient map induces the vertical morphisms. Again, we have the isomorphism
q� WHn.S; @S IZk/!Hn. zS ;f@S IZk/ and Hn.f@S IZk/ŠHn.ıS IZk/D 0. The same arguments as those
for Zk–manifolds, show that there exists a unique fundamental class ŒS�Zk

2Hn. zS IZk/ with the property

(26) i�.ŒS�Zk
/D q�.ŒS; @S �/:

The local orientations at each point define the fundamental class of a manifold. This property also follows
for stratifolds considering points inside the interior of the top stratum. Therefore, we use this fact to
generalize Lemma 6.1 for stratifolds. More precisely, let S be a compact oriented regular p–stratifold
of dimension n, which is the gluing S D S 0 t@S 0D@S 00 S

00, then in the next diagram, we have that the
fundamental classes are mapped to the generators associated with the point x:

(27)

ŒS 00; @S 00� 2Hn.S
00; @S 00/

Š
// Hn.S

00; .S 00/n�2[ @S
00/ // Hn.S

00;S 00�fxg/

Š

��

Hn.S;S
0/

Š exc

OO

ŒS � 2Hn.S/

OO

Š
// Hn.S;Sn�2/ // Hn.S;S �fxg/

Here .S 00/n�2 and Sn�2 are the .n�2/–skeletons of S 00 and S .

Similarly, we show the existence of a relative fundamental class of an .nC1/–dimensional Zk–stratifold
with boundary TD .T; @T;  i/. The Zk–boundary is @TD .S; ıS; �i/ and all stratifolds are compact
oriented regular p–stratifolds. We can find the fundamental class ŒT; @T�Zk

using the commutative
diagram

(28)

HnC1.@T;S IZk/ //

q�
��

HnC1.T;S IZk/

q�
��

i�
// HnC1.T; @T IZk/

q�
��

@
// Hn.@T;S IZk/

q�
��

HnC1.f@T ; zS IZk/ // HnC1. zT ; zS IZk/
i�
// HnC1. zT ;f@T IZk/

@
// Hn.f@T ; zS IZk/

where the rows are the long exact sequences associated with the triples .T; @T;S/ and . zT ;f@T ; zS/,
respectively, and the vertical morphisms are induced by considering the quotient spaces. The same

Algebraic & Geometric Topology, Volume 24 (2024)



Zk–stratifolds 1885

arguments show the existence of the fundamental class ŒT; @T�Zk
2HnC1. zT ; zS IZk/ with the property

(29) i�.ŒT; @T�Zk
/D q�.ŒT; @T �/:

The same arguments as those for Zk–manifolds, show that the image of ŒT; @T�Zk
under the map

@ WHnC1. zT ; zS IZk/!Hn. zS IZk/ is the class Œ@T�Zk
.

As a consequence, the following result is straightforward.

Proposition 6.5 There is a well-defined natural transformation ˆ0 W SH�.X IZk/!H�.X IZk/, which
fits into the commutative diagram

(30)

��.X IZk/
ˆ
//

��

H�.X IZk/

SH�.X IZk/

ˆ0

77

In addition , ˆ0 is an isomorphism for all CW–complexes.

7 A geometric description of the Atiyah–Hirzebruch spectral sequence for
Zk–coefficients

We assume all spaces are CW–complexes, and for a CW–complex X we denote by X k its k th skeleton.
For a generalized homology theory h, a Postnikov tower is a sequence of homology theories h.r/ and
natural transformations

(31)

h

��
(( ** ,,

� � � // h.r/ // � � � // h.2/ // h.1/ // h.0/

such that

� hn.�/! h
.r/
n .�/ is an isomorphism for n� r , and

� h
.r/
n .�/ is trivial for n> r .

These properties determine h.r/ completely, see [16, Chapter II, 4.13-4.18].

Every generalized homology theory h, has an associated Atiyah–Hirzebruch spectral sequence .Er
s;t ; d

r
s;t /.

For r � 2, Tene [23] constructs a natural isomorphism of spectral sequences Er
s;t !

yEr
s;t , where

Er
s;t D

Im
�
hsCt .X

s;X s�r /! hsCt .X
s;X s�1/

�
Im
�
hsCtC1.X sCr�1;X s/! hsCt .X s;X s�1/

� ; yEr
s;t D Im

�
h
.tCr�2/
sCt .X s/!h

.t/
sCt .X

sCr�1/
�
:

The argument of Tene [23, Section 4] that gives the isomorphisms

Er
s;t D

Im.f 0/
Im.f /

Š Im.f1/Š Im.f2/Š Im.f3/D yE
r
s;t
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we now explain with diagram (32):

(32)

h
.tCr�2/
sCt .X s/

f3
//

����

h
.t/
sCt .X

sCr�1/

Š

��

h
.tCr�2/
sCt .X s;X s�r /

))

hsCt .X
s;X s�r / //

f 0

��

f1

((

66 66

f2

,,

hsCt .X
sCr�1;X s�r / //

��

h
.t/
sCt .X

sCr�1;X s�r /
��

��

hsCtC1.X
sCr�1;X s/

f
//

66

hsCt .X
s;X s�1/ // hsCt .X

sCr�1;X s�1/
Š
// h
.t/
sCt .X

sCr�1;X s�1/

The differential ydr
s;t W
yEr

s;t !
yEr

s�r;tCr�1
is the homomorphism induced by the diagram

(33)

h
.tCr�2/
sCt .X s/ //

ˆ
��

h
.t/
sCt .X

sCr�1/

ˆ
��

hsCt�1.X
s�rC1/ //

‰
��

hsCt�1.X
s�1/

‰
��

h
.tC2r�3/
sCt�1

.X s�r / // h
.tC2r�3/
sCt�1

.X s�rC1/ // h
.tCr�1/
sCt�1

.X s�1/

where the natural transformation ˆ is defined by the composition

h.r/n .X /! h.r/n .X;X n�r�1/ Š�! hn.X;X
n�r�1/! hn�1.X

n�r�1/;

and ‰ is the natural transformation given by the composition of the natural transformations in the
Postnikov tower.

For oriented bordism ��, Tene [23] has a geometric description of the Atiyah–Hirzebruch spectral
sequence, coming from a geometric description of Postnikov tower SH .r/. This description of the
spectral sequence is similar in spirit to the Conner–Floyd spectral sequence appearing in equivariant
bordism [6] and the spectral sequence for orbifold cobordism of [1]. The bordism theory SH .r/ is
defined using oriented p–stratifolds, with all strata of codimension 0< k < r C2 empty. Thus, a singular
stratifold S in X, of the form f W S ! X , gives an element of SH

.r/
n .X / if S is an n–dimensional

stratifold with singular part of dimension at most n� r � 2. We put a similar restriction to the stratifold
bordisms, which are .nC1/–dimensional stratifolds with boundary, and the singular part is of dimension
at most n� r � 1.

Therefore, we have natural transformations �n!SH
.r/
n such that �n.�/!SH

.r/
n .�/ are isomorphisms

for n� r , and SH
.r/
n .�/ is trivial for n> r . Among other properties, we obtain that SH

.r/
n .X k/ is trivial

for kC r < n.
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For r � 2, write

(34) yEr
s;t D Im.SH

.tCr�2/
sCt .X s/! SH

.t/
sCt .X

sCr�1//;

and the differential ydr
s;t W
yEr

s;t !
yEr

s�r;tCr�1
is the homomorphism induced by the diagram

(35)

SH
.tCr�2/
sCt .X s/ //

ˆ
��

SH
.t/
sCt .X

sCr�1/

ˆ
��

�sCt�1.X
s�rC1/

‰
��

// �sCt�1.X
s�1/

‰
��

SH
.tC2r�3/
sCt�1

.X s�r / // SH
.tC2r�3/
sCt�1

.X s�rC1/ // SH
.tCr�1/
sCt�1

.X s�1/

where ˆ is a natural transformation defined by

(36) SH .r/
n .X /! SH .r/

n .X;X n�r�1/ Š�!�n.X;X
n�r�1/!�n�1.X

n�r�1/:

The isomorphism SH
.r/
n .X;X n�r�1/ Š�!�n.X;X

n�r�1/ is the restriction to the top stratum and the
map �n.X;X

n�r�1/!�n�1.X
n�r�1/ is the boundary homomorphism. The natural transformation ‰

is the composition of the natural transformations in the Postnikov tower. Therefore, for a stratifold S of
dimension sC t , with a map f W S !X s , the image of the differential dr

s;t is induced by

(37) Œf W S !X s � 7! Œf jsing.S/ ıg W @W !X s�1�;

where W is the top stratum of S and g W @W ! sing.S/ is the attaching map used to glue W to the
singular part sing.S/.

The Zk–bordism groups �n.X IZk/ form a generalized homology theory (this follows by Section 6 or
see [5, Chapter III]). The authors define bordism theory for resolutions with abelian groups in that book.
The standard resolution for Zk and the theory of this section coincide with that given by the definition
of Zk–manifolds. We construct a Postnikov tower SH .r/. � IZk/ defined with oriented Zk–stratifolds,
with all strata of codimension 0 < k < r C 2 empty. Thus a singular Zk–stratifold in X, of the form
f W .S; ıS/!X , represents an element of SH

.r/
n .X IZk/ if

� S is an n–dimensional Zk–stratifold with singular part of dimension at most n� r � 2, and

� ıS is an .n�1/–dimensional Zk–stratifold with singular part of dimension at most n� r � 3.

Similarly, the stratifold bordism .T; ıT / should be such that

� T is an .nC1/–dimensional Zk–stratifold with boundary, the singular part is of dimension at most
n� r � 1, and

� ıT is an n–dimensional Zk–stratifold with boundary, and the singular part is of dimension at most
n� r � 2.

Notice that we obtain SH .0/. � IZk/D SH. � IZk/. In what follows, we use the important property that
��.�/ has no odd torsion and just 2–torsion; see [14].
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Theorem 7.1 For k an odd number , the homology theories SH
.r/
� . � IZk/ give the Postnikov tower of

the generalized homology theory ��. � IZk/.

Proof We have natural transformations

(38)

��. � IZk/

�� **
,, --

// SH
.r/
� . � IZk/ // � � � // SH

.2/
� . � IZk/ // SH

.1/
� . � IZk/ // SH

.0/
� . � IZk/

The conditions of the Postnikov tower are proven as follows:

� Assume n � r , hence n � r � 2 � �2 and n � r � 1 � �1. Thus the Zk–stratifolds are Zk–
manifolds and the Zk–stratifolds bordism are Zk–manifolds with boundary. Therefore, the maps
�n.�;Zk/! SH

.r/
n .�;Zk/ are isomorphisms for n� r .

� Assume n > r C 1, hence n � r � 1 � 1 and n � r � 2 � 0. Thus for an n–dimensional Zk–
stratifold .S; ıS/ in SH

.r/
n .�IZk/, we construct the cone as in Definition 4.10. As a consequence,

SH
.r/
n .�IZk/D 0 for n> r C 1.

� Assume nD rC1, hence n�r �2D�1 and n�r �3D�2. Thus an n–dimensional Zk–stratifold
in SH

.r/
n .�IZk/ is a Zk–manifold .M; ıM /. Because n� r �1D 0 and n� r �2D�1, we allow

Zk–stratifold bordisms with singular points of dimension at most 0 and the Bockstein has to be an
n–dimensional manifold with boundary. In �n�1.�/ we have kŒıM �D 0, but since �� has no odd
torsion, then there exists an n–dimensional manifold with boundary N where @N D ıM. Consider
the Zk–stratifold bordism .C.kN t@M M /;N / where C.kN t@M M / is the closed cone. The
Zk–boundary is precisely the Zk–manifold .M; ıM / which shows that SH

.r/
n .�IZk/ D 0 for

nD r C 1.

For k D 2, this argument fails, and we cannot work around it using the cone of ıM because we obtain
singular points of dimension � 1.

The same arguments of Tene [23] give a geometric description of the Atiyah–Hirzebruch spectral sequence
for Zk–bordism. For r � 2 and X a CW–complex, define

(39) yEr
s;t D Im.SH

.tCr�2/
sCt .X s

IZk/! SH
.t/
sCt .X

sCr�1
IZk//;

and the differential ydr
s;t W
yEr

s;t !
yEr

s�r;tCr�1
is the homomorphism induced by the diagram

(40)

SH
.tCr�2/
sCt .X sIZk/ //

ˆ
��

SH
.t/
sCt .X

sCr�1IZk/

ˆ
��

�sCt�1.X
s�rC1IZk/

‰
��

// �sCt�1.X
s�1IZk/

‰
��

SH
.tC2r�3/
sCt�1

.X s�r IZk/ // SH
.tC2r�3/
sCt�1

.X s�rC1IZk/ // SH
.tCr�1/
sCt�1

.X s�1IZk/
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Therefore, for a singular Zk–stratifold ..S; ıS/; f W S ! X s/, we consider the top stratum, which is
a Zk–manifold with boundary .W; ıW /. Denote the Zk–boundary by .M; ıM / WD @.W; ıW / and
g WM ! sing.S/ the attaching map used to glue W to the singular part which is of dimension at most
s� r . The image of the differential dr

s;t is induced by

(41) Œ.S; ıS/; f W S !X s � 7�! Œ.M; ıM /; f jsing.S/ ıg WM !X s�r �:

We have finally proved:

Theorem 7.2 For k an odd number , the filtration of the Atiyah–Hirzebruch spectral sequence of Zk–
bordism

(42) E1n;0 � � � � �ErC2
n;0
� � � � �E2

n;0 ŠHn.X IZk/;

coincides with

(43) Er
n;0 D Im

�
SH .r�2/

n .X IZk/! SH .0/
n .X IZk/ŠHn.X IZk/

�
;

ie the set of classes generated by singular Zk–stratifolds in X with singular part of dimension at most
n� r � 2.

Notice that the Atiyah–Hirzebruch spectral sequence is trivial for k D 2; hence, the last theorem does not
apply.

8 Geometric representatives of nonrepresentable classes

The present section is motivated by the authors’ counterexamples of the Steenrod problem in [2].

The Steenrod problem [7] states the following: if z 2Hn.X / is an integral homology class, does there
exist an oriented manifold M and a map f WM !X such that z is the image of the generator of Hn.M /?

Conner and Floyd [6] rephrased the Steenrod realization problem in terms of the Atiyah–Hirzebruch
spectral sequence .Er

s;t ; d
r
s;t /. More precisely, the homomorphism from oriented bordism to integral

homology ��.X /!H�.X / is an epimorphism if and only if the differentials dr
s;t WE

r
s;t !Er

s�r;tCr�1

are trivial for all r � 2.

Using the previous section, the Steenrod realization problem for Zk–coefficients has the following form.

Theorem 8.1 If X is a CW–complex and k an odd number , then for the Atiyah–Hirzebruch spectral
sequence .Er

s;t ; d
r
s;t /, the differentials dr

s;t WEs;t !Es�r;tCr�1 are trivial for all r � 2 if and only if the
map � W�n.X IZk/!Hn.X IZk/ is an epimorphism for all n� 0.

For the rest of this section, we assume that k is an odd prime number p. Following Conner and Floyd [6],
we identify stratifolds with maps to BZp with stratifolds with free actions of Zp.

The Bockstein exact sequence of BZp implies the isomorphisms

(44) H2n�1.BZp/
mod p
ŠH2n�1.BZpIZp/ and H2n.BZpIZp/

ˇ
ŠH2n�1.BZp/
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V 2i

pS2i�1

C.M 4/�S2i�5
C.M 8/�S2i�9 � � �

Figure 7: The class ˛2i .

for n > 0 (the map ˇ was formerly denoted by ı). Take generators ˛i 2 Hi.BZpIZp/ such that
ˇ.˛i/D ˛i�1 for i even, and ˇ.˛i/D 0 for i odd. The odd generators are represented by spheres. The
generator ˛2i is determined by the identity ˇ.˛2i/D ˛2i�1. From Conner and Floyd [6, page 144], we
know that the following equation holds in bordism of BZp:

(45) p˛2i�1C ŒM
4�˛2i�5C ŒM

8�˛2i�9C � � � D 0 for i � 1:

The manifolds M 4k for k D 1; 2; : : : are constructed inductively in [6]. Therefore, there is a compact
oriented manifold V 2i , with a free action of Zp, such that

(46) @V 2i
D pS2i�1

[ .M 4
�S2i�5/[ .M 8

�S2i�9/[ � � � :

There are two representations of the generator ˛2i by Zp–stratifolds, which we will show are Zp–bordant:

(i) Denote by C.M 4l/ the cone of M 4l for l D 1; 2; : : : , and take the gluing of V 2i with

.C.M 4/�S2i�5/[ .C.M 8/�S2i�9/[ � � � :

The boundary of this construction is pS2i�1 and therefore the Bockstein is ˛2i�1. We obtain a 2i–
dimensional Zp–stratifold .S; ıS/, where S D V [ .C.M 4/�S2i�5/[ .C.M 8/�S2i�9/[ � � �

is a 2i–dimensional Zp–stratifold with singular part S2i�5 [ S2i�9 [ � � � , and the Bockstein
ıS D S2i�1 is a .2i�1/–dimensional Zp–stratifold with empty singular part. We illustrate this
construction in Figure 7.

(ii) The manifolds M 4l , with 4l < 2p � 2, belong to p��; see the paper by Floyd [8, page 336].
Therefore, there exist manifolds Ml 2�4l such that M 4l D pMl . For p D 2kC 1, consider the
cone C.M 4m/ for mD k; kC 1; : : : , and take the gluing of V 2i with

.C.M 4k/�S2i�4k�1/[ .C.M 4.kC1//�S2i�4.kC1/�1/[ � � � :

We obtain a 2i–dimensional Zp–stratifold .S; ıS/, where

S D V [ .C.M 4k/�S2i�4k�1/[ .C.M 4.kC1//�S2i�4.kC1/�1/[ � � �
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is a 2i–dimensional Zp–stratifold with singular part S2i�4k�1 [ S2i�4.kC1/�1 [ � � � , and the
Bockstein ıS D S2i�1[ .M1�S2i�5/[ � � �[ .Mk�1�S2i�4.k�1/�1/ is a .2i�1/–dimensional
Zp–stratifold with empty singular part.

Notice that for a generic Zp–stratifold .S; ıS/ 2H2i.BZp �BZpIZp/ the singular parts of S and ıS
are allowed up to dimensions 2i�2 and 2i�3, respectively. The two previous Zp–stratifolds satisfy these
dimension conditions for the singular parts. The bordism of Zp–stratifolds is of the form .T; ıT /, where
the singular parts of T and ıT are allowed up to dimensions 2i � 1 and 2i � 2, respectively. If we show
the two Zp–stratifolds in (i) and (ii) are Zp–bordant, we will have two representations of the generator ˛2i .
Apply Proposition 5.2 using the bordism in stratifolds between M1�S2i�5[� � �[Mk�1�S2i�4.k�1/�1

and the empty stratifold produced by the cone C.M1/�S2i�5[ � � � [C.Mk�1/�S2i�4.k�1/�1, which
has singular part S2i�5[ � � �S2i�4.k�1/�1. The proof of Proposition 5.2 uses a product with the interval
producing a Zp–stratifold .T 0; ıT 0/ with the singular parts of T 0 and ıT 0 of dimensions 2i�4 and 2i�5.
This shows that the two Zp–stratifolds in (i) and (ii) are Zp–bordant, consequently both Zp–stratifolds
represent the generator ˛2i .

Theorem 8.2 For X DBZp, the differentials dr
s;t are trivial for r � 2p�2. In particular , the differential

d
2p�1
2i;0

is of the form

d
2p�1
2i;0

WH2i.BZpI�0.�IZp//!H2p�2iC1.BZpI�2p�2.�IZp//;

and the image of the class ˛2i 2H2i.BZpIZp/ with i � p under the differential d2p�1 is nontrivial.

Proof We can restrict to the differentials dr
2i;0

since those starting on coordinates .2i C 1; 0/ are
always trivial since the classes ˛2iC1 are represented by spheres. From Section 7, the differential
dr

2i;0
WEr

2i;0
!Er

2i�r;r�1
has the form

Im
�
SH

.r�2/
2i

.X 2i IZp/! SH
.0/
2i
.X 2iCr�1IZp/

�
dr

��

Im
�
SH

.2r�3/
2i�1

.X 2i�r IZp/! SH
.r�1/
2i�1

.X 2i�1IZp/
�

For pD 2kC1, recall the representation of the generator ˛2i by a 2i–dimensional Zp–stratifold .S; ıS/,
where

� S D V [ .C.M 4k/ � S2i�4k�1/ [ .C.M 4.kC1// � S2i�4.kC1/�1/ [ � � � is a 2i–dimensional
Zp–stratifold with singular part S2i�4k�1[S2i�4.kC1/�1[ � � � , and

� ıSDS2i�1[.M1�S2i�5/[� � �[.Mk�1�S2i�4.k�1/�1/ is a .2i�1/–dimensional Zp–stratifold
with empty singular part.

Since r � 2p�2D 4k, we obtain 2i�4k�1� 2i�.r�2/�2; hence ˛2i belongs to SH
.r�2/
2i

.X 2i IZp/.
From Section 7, the representation of the differential dr .˛2i/ is calculated with the top stratum, which is the
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Zp–manifold .V [M 4k� Œ0; 1��S2i�4k�1[� � � ;S2i�1[.M1�S2i�5/[� � � .Mk�1�S2i�4.k�1/�1//,
which has Zp–boundary ..M 4k � S2i�4k�1/ [ .M 4.kC1/ � S2i�4.kC1/�1/ [ � � � ;∅/. Therefore,
dr .˛2i/ D .M 4k � S2i�4k�1/ [ .M 4.kC1/ � S2i�4.kC1/�1/ [ � � � and we can cone all the M 4m

since the singular parts of the bordisms in SH
.r�1/
2i�1

�
X 2i�1IZk

�
are allowed up to dimension 2i � r � 1

and 2i � 4k � 1 � 2i � r � 1 precisely when r � 4k. Therefore, the differential dr .˛2i/ is zero for
r � 4k D 2p� 2. In fact, we have E2 Š � � � ŠE2p�1 because we have a commutative diagram

(47)

Er
s;0
˝�t .�IZp/ //

dr˝id
��

Er
s;t

dr

��

Er
s�r;r�1

˝�t .�IZp/ // Er
s�r;tCr�1

as in Conner and Floyd [6, pages 17 and 41], and we have by induction that the rows are isomorphisms
for r � 2p� 2. Finally, for r D 2p� 1, the element d

2p�1
2i;0

.˛2i/DM 2p�2 �S2i�2pC1 is not zero in
H2i�2pC1.BZpI�2p�2.�IZp//, since M 2p�2 is a Milnor generator of �=p�. For pD 3, M 4 can be
taken to be CP2 and we find the obstruction to realizability with d5.

9 Z2–stratifold homology is stratifold homology with Z2–coefficients

Kreck [12, Chapter 4] introduces the theory of Z2–oriented stratifolds in order to represent homology with
Z2–coefficients. He calls this theory stratifold homology with Z2–coefficients, denoted by SH�.X IZ2/.
The elements are bordism classes of singular stratifolds where the stratum of codimension 1 is empty, but
there is no requirement of an orientation of the top stratum. There is a natural isomorphism

(48) SH�.X IZ2/!H�.X IZ2/

that, for a singular stratifold .S; f W S ! X /, takes the pushforward of the fundamental class ŒS � in
H�.S IZ2/.

This article introduces the theory of Z2–stratifolds, which also represent homology with Z2–coefficients.
This is called Z2–stratifold homology, denoted by SH�.X IZ2/. The elements are Z2–bordism classes
of singular Z2–stratifolds where the stratum of codimension 1 is empty, but we require an orientation of
the top stratum. There is a natural isomorphism

(49) SH�.X IZ2/!H�.X IZ2/

that, for a singular Z2–stratifold ..S; ıS/; f W S !X /, takes the pushforward of the fundamental class
ŒS �Z2

2Hn. zS IZ2/.

Therefore, we have the commutative diagram

(50)

SH�.X IZ2/
q

//

Š
''

SH�.X IZ2/:

Š
ww

H�.X IZ2/
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To define the map q, note that for an n–dimensional Z2–stratifold .S; ıS; �i/, the quotient space zS
is an n–dimensional Z2–oriented stratifold. This is true because the two disjoint collars associated
with the two embedded copies of the Bockstein ıS are combined to produce a bicollar on the quotient
space zS . For .S; f / an n–dimensional singular Z2–stratifold with S D .S; ıS; �i/, we have the map
q W SHn.X IZ2/! SHn.X IZ2/ defined by q.ŒS; f �/D Œ zS ; zf �, where zf is the quotient map.

The description of the inverse for the isomorphism q W SH�.X IZ2/! SH�.X IZ2/ is an open question.
Wall [26] shows a description for an n–dimensional manifold whose first Stiefel–Whitney class !1

in H 1.M IZ2/ is the restriction mod 2 of a class with integer coefficients. Thus there is a map
f WM !K.Z; 1/D S1, which can be approximated by a smooth map. Take a regular value t and
consider the cutting f �1.t/. The manifold with boundary M � f �1.t/ is orientable, and in that case
f �1.t/ is also orientable; this describes q�1 for this particular case.

Appendix

A.1 Regular values for Zk–stratifolds

In [12, page 27], Kreck defines a regular value for a smooth map f W S !N from a closed stratifold S

to a boundaryless manifold N as a point x 2 N such that for all y 2 f �1.x/ the differential dfy is
surjective, or, equivalently, x is a regular value of f jS i for all i . Kreck [12, Propositions 2.6 and 2.7,
pages 27–29] shows that the set of regular values of f is dense in N , and f �1.x/ is a stratifold of
dimension dim S � dim N .

In [12, page 35], Kreck defines a smooth map f W T ! N from a stratifold with boundary T to a
boundaryless manifold N as a continuous function whose restriction to VT D T � @T and to @T is
smooth and which commutes with the collar c W @T � Œ0; �/! U, ie there is a ı > 0 with ı � � such that
fc.x; t/D f .x/ for all x 2 @T and t < ı. Kreck [12, page 38] says x 2N is a regular value if x is a
regular value for f jT�@T and f j@T . In this case, the preimage f �1.x/ is a stratifold with boundary of
dimension dim T � dim N . This fact is a generalization of a result of [12, Proposition 2.7] using local
retractions for T � @T and @T , together with Theorem A.1. Also, by Theorem A.1, the set of regular
values is dense in N .

Theorem A.1 [10, pages 60–62] Let f WM !N be a smooth map of a manifold M with boundary
onto a boundaryless manifold N and let x 2 N a regular value of both f and @f . Then the preimage
f �1.x/ is a submanifold of M with boundary f �1.x/\ @M of dimension dim M � dim N . Moreover ,
the set of critical values of both f and @f has measure zero.

In what follows, we obtain the version for stratifolds with boundary of Propositions 4.2 and 4.3 of
Kreck [12].
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Proposition A.2 Let T be an oriented , regular stratifold with boundary , f W T !R a smooth function
and t a regular value. Then f �1.t/ is an oriented , regular stratifold with boundary.

Proof We use the work of Kreck [12, Proposition 4.2, page 44] in order to show that f jT�@T
�1.t/ and

f j@T
�1.t/ are regular stratifolds. We induce the collar by restriction. We notice f �1.t/ is an oriented

stratifold, since T n�1 D∅ and the intersection with the top stratum is an oriented manifold.

Remark A.3 In the case T is a p–stratifold with boundary, see Remark 3.11; hence the preimage
f �1.t/ is also a p–stratifold with boundary, for t a regular value. The construction of this p–stratifold
is as follows: for t a regular value, on each stratum Ti the preimage f j�1

Ti
.t/ is a submanifold of Ti

with boundary f j�1
Ti
\ @Ti by Theorem A.1. Similarly, the preimage @f j�1

@Ti
.t/ is a submanifold of @Ti .

Moreover, these submanifolds come with collars and attaching maps that construct this p–stratifold with
boundary inductively.

Proposition A.4 Let T be a regular stratifold with boundary. Then the set of regular points of a smooth
map f W T !R is an open subset of T . If , in addition , T is compact , the regular values form an open set.

Proof We know the regular points of f jT�@T and f j@T are open in T � @T and @T , respectively. By
definition fc.x; t/D f .x/ for some collar c in T . So, the regular points of f j@T extend to the collar by
an open set. Thus, we obtain the first statement. Now, in the case T is compact, the singular points that
are the complement of the regular points, form a closed set which is compact. Thus, the image under f
is closed, implying that the regular values are an open set.

A crucial fact for the Mayer–Vietoris sequence for stratifolds is the following:

Proposition A.5 [12, Proposition 2.8] Let S be a closed n–dimensional , connected stratifold and
A and B disjoint closed nonempty subsets of S . Then there is a nonempty .n�1/–dimensional stratifold P

with P � S � .A[B/. That is , P separates A and B.

Remark A.6 More precisely, Kreck [12, Proposition 2.4, page 26] constructs a smooth function f WS!R

which maps A to 1 and B to �1. The stratifold P is the preimage f �1.t/ of a regular value t 2 .�1; 1/

such that f �1.t/� S � .A[B/ and A� f �1.t;1/ and B � f �1.�1; t/. After composition with an
appropriate translation, we can assume t D 0.

We extend Proposition A.5 to the theory of Zk–stratifolds. However, it is not enough to consider stratifolds
with boundary. The reason is that the smooth function must be Zk–invariant on the boundary. One needs
a smooth function that factors as

S
f

//

pr
��

R

zS

zf

??

We need a Zk–stratifold version of the following result.
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Proposition A.7 [12, Proposition 2.4] Let A� S be a closed subset of a stratifold S , let U be an open
neighborhood of A, and f W U !R a smooth function. Then there is a smooth function g W S !R such
that gjA D f jA.

Proposition A.8 Let S D .S; ıS; �i/ be an n–dimensional compact closed Zk–stratifold , A � zS a
closed subset of the quotient space , U an open neighborhood of A and f WU !R a smooth function. Then
there exists a smooth function G W S !R that factors through the quotient space zS such that GjA D f jA

in the quotient space.

Proof We construct a smooth function on S , which is the gluing of the following two functions:

� For the first function, consider ıS inside the quotient space zS . By normality of S , there exists a
closed subset A1 � ıS such that A\ ıS � int A1 and A1 � ıS \U. By compactness and using
the collar, pr W ıS � Œ0; �/! zS , we find 0< t < � such that

pr�1.A/\ .@S � Œ0; 2t//� pr�1.A1/� Œ0; 2t/� pr�1.U /:

Proposition A.7 implies that it is possible to construct a smooth function f1 W ıS !R such that
A1 maps to 1 and f1.x/ D 0 for x 2 ıS �U \ ıS . Lift f1 to a smooth function on the whole
boundary @S and take the smooth function g1 W @S � Œ0; 2t/!R by writing g1.x; s/D f1.x/.

� For the second function, take the stratifold S1 WD S � .@S � Œ0; t �/ and again by Proposition A.7
we can construct a smooth function g2 W S1! R such that A\S1 maps to 1 and g2.x/D 0 for
x 2 S1�U \S1.

A partition of unity glues these two functions together into a smooth function G W S ! R, which is
Zk–invariant. Thus it descends to the quotient and sends A to 1 and zS �U to 0. Using Proposition 2.4 of
Kreck [12] (Proposition A.7), we apply the previous process to construct the function G W S !R, which
is Zk–invariant and is such that GjA D f jA in the quotient space.

In conclusion, we obtain the Zk–stratifold version of Kreck [12, Proposition 2.8] (Proposition A.5).

Proposition A.9 Let .S; ıS/ be an n–dimensional , compact , connected Zk–stratifold and A and B

disjoint closed nonempty subsets of the quotient space zS . Then there is a nonempty .n�1/–dimensional
Zk–stratifold .P; ıP / with zP � zS � .A[B/ and ıP � ıS � ..A[B/\ ıS/.

We construct a smooth function G W S !R that factors through the quotient space zS , and maps A to 1

and B to �1. The Zk–stratifold .P; ıP / is provided by a regular value t 2 .�1; 1/ of both S and @S ,
and we have P D G�1.t/ and ıP D Gj�1

ıS
.t/. The pair .P; ıP / is a Zk–stratifold because we choose

a regular value by Proposition A.4 and the preimage P D G�1.t/ is a stratifold with boundary, where
@P DG�1.t/\@S D

F
i2Zk

�i.G
�1.t/\ıS/D

F
i2Zk

�i.Gj
�1
ıS
.t// and the Bockstein is ıP DGj�1

ıS
.t/.
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A.2 Mayer–Vietoris sequence

Let U and V be open subsets of a space X. In this section we show that the long exact sequence

(51)

� � �
d
// SHn.U \V IZk/

i�
// SHn.U IZk/˚SHn.V IZk/

j�
// SHn.U [V IZk/

d

// SHn�1.U \V IZk/
i�

// � � �

is exact for n � 1. Denote by iU and iV the inclusions U \V ,! U and U \V ,! V. Denote by jU

and jV the inclusions U ,! U [V and V ,! U [V. We describe the homomorphisms as follows:

� i� W SHn.U \V IZk/! SHn.U IZk/˚SHn.V IZk/ is given by .iU �; iV �/.

� j� W SHn.U IZk/˚SHn.V IZk/! SHn.U [V IZk/ is given by jU �� jV �.

� The connecting homomorphism d W SHn.U [V IZk/! SHn�1.U \V IZk/ considers an element
Œ.S; ıS/;g� 2 SHn.U [V IZk/. For the projection pr W S ! zS , we obtain disjoint closed subsets
of zS given by A WD pr.g�1.X �V // and B WD pr.g�1.X �U //. By Proposition A.9, we obtain an
.n�1/–dimensional Zk–stratifold .P; ıP / such that zP � zS�.A[B/ and ıP �ıS�..A[B/\ ıS/.
We define

(52) d.Œ.S; ıS/;g�/D Œ.P; ıP /;gjP �:

In the case that A or B is empty, the Zk–stratifold .P; ıP / is empty, and the differential is zero.

Proof that d is well defined It was pointed out by Kreck [13, page 304] that in the case of bordism
of smooth manifolds, the connecting homomorphism for the Mayer–Vietoris sequence is well defined
because of the existence of a bicollar for P WDG�1.0/, ie an isomorphism with P � .��; �/, where 0 is
a regular value by the composition of a translation. For a stratifold S , this is only possible up to bordism
where we naively change S by S�P[.P�.��; �//. The formal statement is [12, Lemma B.1, page 197],
and the proof is as follows. Kreck’s Proposition 4.3 in [12] (our Proposition A.4) allows us to choose
ı > 0 such that .�ı; ı/ consists only of regular values of G. Consider a monotone smooth map � WR!R

which is the identity for jt j> ı=2 and 0 for jt j< ı=4. Take � W S �R!R mapping .x; t/ 7!G.x/��.t/,
which has 0 as regular value. Kreck’s Proposition 4.2 in [12] implies that S 0 D ��1.0/ is a regular
stratifold containing P � .�ı=4; ı=4/, which is the required bicollar. It remains to construct a bordism
between S and S 0. Now take the function  W S �R� Œ0; 1�!R defined by

.x; t; s/ 7!G.x/� .�.s/�.t/C .1� �.s//t/;

where � W Œ0; 1�! R is 0 near 0, and 1 near 1. This map has 0 as a regular value, and the preimage
Q WD �1.0/ is the bordism between S and S 0.

For the case of Zk–stratifolds, we start with a closed Zk–stratifold .S; ıS; �i/ and we need to separate
this Zk–stratifold by a bicollar over the regular Zk–stratifold

.P; ıP; �i jıP /D .G
�1.0/;Gj�1

ıS .0/; �i jGj�1
ıS
.0//:
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In such a case, the bicollar consists of a pair of embedded cylinders .G�1.0/�.��; �/;Gj�1
ıS
.0/�.��; �//

which are consistent with respect to the embeddings �i . In order to reproduce Kreck’s [12, Lemma B.1]
in the context of Zk–stratifolds, we observe that the map � W S �R! R is Zk–invariant for our case
and we take .S 0; ıS 0/ WD .��1.0/; �j�1

ıS�R.0//, which is a regular Zk–stratifold by Proposition A.2. We
construct the bicollar taking � D ı=4 with ı as in the previous paragraph. The Zk–bordism between
..S; ıS/; id/ and ..S 0; ıS 0/; �1/, where �1 is the projection on the first variable, is constructed similarly,
as in the case of stratifolds.

The remaining steps to show d is well defined are analogous to the case of stratifolds [12, pages 199–200].
The idea is to assume that Œ.S; ıS/;g� is trivial, then Œ.S 0; ıS 0/;g ı�1� is also trivial. For the modified
Zk–stratifold .S 0; ıS 0/, we can take the separating function given by the projection on the second variable.
This means that there exists a Zk–bordism .T; ıT / that has as Zk–boundary .S 0; ıS 0/. Moreover, the
separating function extends to T . This function has a regular value t very close to 0, then .P�ftg; ıP�ftg/
is null Zk–bordant taking the preimage of t . However, this last Zk–stratifold is Zk–bordant to .P; ıP /.

The following results are required to show that (51) is exact.

Proposition A.10 Suppose M is a manifold with boundary of dimension n and g WM !R a smooth
map with regular value 0. Then the preimage g�1.�1; 0� is a manifold with boundary , and the boundary
has the form

g�1.0/t.g�1.0/\@M / .g
�1.�1; 0�\ @M /:

In addition , if M is oriented , then g�1.�1; 0� is oriented.

Proof Here we will dismiss the orientation of the manifolds, which is understood depending on the
case. From [10, page 62], we have that for a manifold N without boundary and f WN ! R a smooth
map, the preimage f �1.�1; 0� is a manifold with boundary given by f �1.0/. Thus the restriction to
the boundary gj@M is such that gj�1

@M
.�1; 0� D g�1.�1; 0�\ @M is a manifold whose boundary is

gj�1
@M
.0/D g�1.0/\ @M. Furthermore, we use Theorem A.1 (or [10, pages 60–62]) which shows that

g�1.0/ is also a manifold with boundary g�1.0/\ @M. Then we glue these two manifolds obtaining a
boundaryless smooth manifold of dimension n�1. In Figure 8 we illustrate the boundary of g�1.�1; 0�.

g�1.0/

g�1.0/\ @M

g�1.�1; 0�\ @M

Figure 8: The boundary of g�1.�1; 0�.
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Now we consider the restriction gjM�@M and we obtain a smooth structure for

gj�1
M�@M .�1; 0�D g�1.�1; 0�� .g�1.�1; 0�\ @M /

with boundary g�1.0/� .g�1.0/\ @M /. We can establish a collar around g�1.0/. As g commutes
with the collar of @M, there is a collar around .g�1.�1; 0� \ @M /. Finally, similar to the proof of
Proposition 4.15, we combine the two collars of g�1.0/ and .g�1.�1; 0�\ @M /, where we smooth the
corners by straightening the angle [6, pages 9–10] (or see Section 4).

Proposition A.10 follows for stratifolds with boundary (all p–stratifolds). Notice that

g�1.�1; 0�\ @T D .g�1.�1; 0�\S/[ .g�1.�1; 0�\ kıT /

and hence g�1.�1; 0� is a stratifold with boundary where

@g�1.�1; 0�D g�1.0/[ .g�1.�1; 0�\S/[ .g�1.�1; 0�\ kıT /:

Thus we obtain the following application for Zk–stratifolds.

Corollary A.11 Suppose .T; ıT / is a Zk–stratifold with boundary of dimension n, where the Zk–
boundary is denoted by .S; ıS/. Let g W T !R be a smooth map which factors to the quotient space zT
with 0 as a regular value for g. Then the preimage�

g�1.�1; 0�;g�1.�1; 0�\ ıT
�

is a Zk–stratifold whose Zk–boundary is the Zk–stratifold�
g�1.0/[ .g�1.�1; 0�\S/; .g�1.0/\ ıT /[ .g�1.�1; 0�/\ ıS/

�
:

Now we use these tools to show the exactness of the Mayer–Vietoris sequence.

Proof of exactness of (51) We follow the arguments used for the case of stratifolds [12, pages 200–208],
where we will specify the additional details used for the case of Zk–stratifolds.

To show that we have a complex, we notice that both jU ı iU and jV ı iV are the canonical inclusion
U \ V ,! U [ V , therefore j� ı i� D 0. We show the other cases i� ı d D 0 and d ı j� D 0 in what
follows: for the first identity, we choose a representative for the homology class (with Zk–coefficients)
in U \V such that we can cut along the separating Zk–stratifold defining the boundary operator. The
two pieces separated by this Zk–stratifold induce the null Zk–bordisms on the homology groups (with
Zk–coefficients) associated with U and V . For the second identity, if Œ.S; ıS/;g� 2 SH.U IZk/, we can
choose a smooth function and the regular value such that the separating regular Zk–stratifold is empty,
therefore, d.jU �/D 0. By the same argument d.jV �/D 0.

Now we show exactness.

� ker j� � im i� Consider Œ.S; ıS/; f � 2 SHn.U IZk/ and Œ.S 0; ıS 0/; f 0� 2 SHn.V IZk/ which are
such that jU �.Œ.S; ıS/; f �/ D jV �.Œ.S

0; ıS 0/; f 0�/. There exists a Zk–bordism ..T; ıT /;F / between
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.SC tP Z/� f0g

Œ0; 1�

SC tP S�
Œ1; 2�

.S� tP Z/� f2g

Figure 9: The Zk–bordism T.

Œ.S; ıS/; jUf � and Œ.S 0; ıS 0/; jV f
0�, where F D zF ı pr for the quotient zF W zT ! U [V . For the closed

disjoint subsets AT D
zS [ zF�1.X �V / and BT D

zS 0[ zF�1.X �U /, we construct a separating function
G WT !R which is Zk–invariant with G.AT /D 1 and G.BT /D�1 and with a regular value �1< s < 1

(we can assume that s D 0) such that .G�1.0/;G�1.0/\ ıT / is a separating Zk–stratifold. We can find
a bicollar around G�1.0/ similarly to when we show that d is well defined. Therefore, Corollary A.11
implies that ..S; ıS/; f / and ..G�1.0/;G�1.0/\ ıT /;F jG�1.0// are Zk–bordant in U by the Zk–
bordism ..G�1Œ0;1/;G�1Œ0;1/ \ ıT /;F jG�1Œ0;1//, and ..G�1.0/;G�1.0/ \ ıT /;F jG�1.0// and
..S 0; ıS 0/;f 0/ are Zk–bordant in V by the Zk–bordism ..G�1.�1;0�;G�1.�1; 0�\ıT /;F jG�1.�1;0�/.
Thus,

iU �
�
Œ.G�1.0/;G�1.0/\ ıT /;F jG�1.0/�

�
D Œ.S; ıS/; f �;

iV �
�
Œ.G�1.0/;G�1.0/\ ıT /;F jG�1.0/�

�
D Œ.S 0; ıS 0/; f 0�:

� ker i�� im d Suppose we have Œ.P; ıP /; r �2SHn�1.U\V IZk/ which satisfies iU �.Œ.P; ıP /; r �/D 0

and iV �.Œ.P; ıP /; r �/ D 0. Then there exist null Zk–bordisms ..T1; ıT1/;R1/ and ..T2; ıT2/;R2/ of
iU �.Œ.P; ıP /; r �/ and iV �.Œ.P; ıP /; r �/, respectively. We construct ..T1tP T2; ıT1tıP ıT2/;R1tr R2/

with image under d equal to Œ.P; ıP /; r �.

� ker d � im j� Consider Œ.S; ıS/; f � 2 SHn.U [V IZk/ with d.Œ.S; ıS/; f �/D 0. For a separating
function G with regular value s as in the definition of d , write .P; ıP /D .G�1.s/;Gj�1

ıS
.s//, which has

a bicollar. We put

.SC; ıSC/D .G
�1Œs;1/;Gj�1

ıS Œs;1// and .S�; ıS�/D .G
�1.�1; 0�;Gj�1

ıS .�1; 0�/:

Then SDSCtP S� and ıSDıSCtıP ıS�. By the assumptions, there is ..Z; ıZ/; r/with r WZ!U\V ,
which has the Zk–boundary .P; ıP / and f jP D r jP . Consider the continuous maps fC W SCtP Z! U

and f� W S� tP Z! V . The gluing T WD ..SC tP Z/� Œ0; 1�/tZ ..S� tP Z/� Œ1; 2�/ (similarly for
the Bockstein ıT ) gives a Zk–bordism between

jU �

��
.SC tP Z; ıSC tıP ıZ/; fC

��
� jV �

��
.S� tP Z; ıS� tıP ıZ/; f�

��
and ..S; ıS/; f /. We show an illustrative picture of the Zk–bordism .T; @T / in Figure 9.
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Relative systoles in hyperelliptic translation surfaces

CORENTIN BOISSY

SLAVYANA GENINSKA

We prove that the systole function on a connected component of area-1 translation surfaces admits a local
maximum that is not a global maximum if and only if the connected component is not hyperelliptic.

32G15; 30F30

1 Introduction

We deal with flat metrics defined by abelian differentials on compact Riemann surfaces (translation
surfaces). Such flat metrics have conical singularities of angle .kC 1/2� , where k is the order of the
zero of the corresponding abelian differential. A stratum of the moduli space of abelian differentials
corresponds to translation surfaces that share the same combinatorics of zeroes.

Connected components of the strata have been classified by Kontsevich and Zorich in [6]. In each genus
g � 2, there are exactly two components that consist of hyperelliptic translation surfaces, the so-called
hyperelliptic connected components.

A saddle connection on a translation surface S is a geodesic joining two singularities (possibly the same)
and with no singularity in its interior. We define the relative systole Sys.S/ to be the length of the shortest
saddle connection of S . A sequence of area-1 translation surfaces .Sn/n2N in a stratum of the moduli
space of translation surfaces leaves any compact set if and only if Sys.Sn/! 0; see Kerckhoff, Masur and
Smillie [5, Proposition 1]. The set of translation surfaces with short relative systole and compactification
issues of strata are related to dynamics and counting problems on translation surfaces, and have been
widely studied in the last 30 years; see for instance Eskin, Kontsevich and Zorich [2], Eskin, Masur and
Zorich [3] and Kerckhoff, Masur and Smillie [5].

Here we are interested in the opposite problem: we study surfaces that are “far” from the boundary. In [1],
we have characterized global maxima for Sys, and we have shown that each stratum of genus greater than
or equal to 3 contains local but nonglobal maxima for the function Sys.

We prove that there are no such local maxima in hyperelliptic connected components (Theorem 3.1), while
they exist in every other connected component (Theorem 4.1). This gives us the following characterization:

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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Main Theorem Let C be a connected component of a stratum of area-1 surfaces with no marked points.
The relative systole function on C admits a local maximum that is not a global maximum if and only if C
is not a hyperelliptic connected component.

Note that our notion of relative systole is different from the “true systole” (ie shortest closed curve) that
has been studied by Judge and Parlier in [4]. Henceforth, for simplicity, if not mentioned otherwise the
term “systole” will mean “relative systole”.

Acknowledgments The authors thank the referee for useful comments and D-M Nguyen for suggesting
a reference.

2 Background

2.1 Translation surfaces

A translation surface is a (real compact connected) genus-g surface S with a translation atlas, ie a triple
.S;U ; †/ such that † (whose elements are called singularities) is a finite subset of S and U D f.Ui ; zi/g

is an atlas of S n† whose transition maps are translations of C'R2. We will require that for each s 2†

there is a neighborhood of s isometric to a Euclidean cone whose total angle is a multiple of 2� . One can
show that the holomorphic structure on S n† extends to S and that the holomorphic 1–form ! D dzi

extends to a holomorphic 1–form on S where † corresponds to the zeroes of ! and maybe some marked
points. We usually call ! an abelian differential. A zero of ! of order k corresponds to a singularity of
angle .kC 1/2� . By a slight abuse of notation, we allow the order of a zero to be 0, and in this case it
corresponds to a (regular) marked point.

A saddle connection is a geodesic segment joining two singularities (possibly the same) and with no
singularity in its interior. Integrating ! along the saddle connection we get a complex number. Considered
as a planar vector, this complex number represents the affine holonomy vector of the saddle connection.
In particular, its Euclidean length is the modulus of its holonomy vector.

For g � 1, we define the moduli space of abelian differentials Hg as the moduli space of pairs .X; !/
where X is a genus-g (compact connected) Riemann surface and ! a nonzero holomorphic 1–form
defined on X . The term moduli space means that we identify the points .X; !/ and .X 0; !0/ if there
exists an analytic isomorphism f WX !X 0 such that f �!0 D !.

One can also see a translation surface obtained from a polygon (or a finite union of polygons) whose
sides come by pairs, and for each pair, the corresponding segments are parallel and of the same length.
These parallel sides are glued together by translation and we assume that this identification preserves the
natural orientation of the polygons. In this context, two translation surfaces are identified in the moduli
space of abelian differentials if and only if the corresponding polygons can be obtained from each other
by cutting and gluing, and preserving the identifications.

Algebraic & Geometric Topology, Volume 24 (2024)
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The moduli space of abelian differentials is stratified by the combinatorics of the zeroes; we will denote by
H.k1; : : : ; kr / the stratum of Hg consisting of (classes of) pairs .X; !/ such that ! has exactly r zeroes,
of order k1; : : : ; kr . This space is (Hausdorff) complex analytic, and local coordinates for a stratum of
abelian differentials are obtained by integrating the holomorphic 1–form along a basis of the relative
homology H1.S; †IZ/, where † denotes the set of conical singularities of S ; see for instance [7; 8; 9].
We have the classical Gauss–Bonnet formula

P
i ki D 2g� 2, where g is the genus of the underlying

surfaces. We often restrict to the subset H1.k1; : : : ; kr / of area-1 surfaces.

2.2 Connected component of strata

Here we recall the Kontsevich–Zorich classification of the connected components of the strata of abelian
differentials [6].

A translation surface .X; !/ is hyperelliptic if the underlying Riemann surface is hyperelliptic, ie there
is an involution � such that X=� is the Riemann sphere. In this case ! satisfies ��! D�!. A connected
component of a stratum is said to be hyperelliptic if it consists only of hyperelliptic translation surfaces (note
that a connected component which is not hyperelliptic may contain some hyperelliptic translation surfaces).

Let  be a simple closed smooth curve parametrized by the arc length on a translation surface that avoids
the singularities. Then t !  0.t/ defines a map from S1 to S1. We denote by Ind. / the index of this
map. Assume that the translation surface S has only even-degree singularities S 2H.2k1; : : : ; 2kr /. Let
.ai ; bi/i2f1;:::;gg be a collection of simple closed curves as above that represents a symplectic basis of the
homology of S . Then

gX
iD1

.Ind.ai/C 1/.Ind.bi/C 1/ mod 2

is an invariant of connected components and is called the parity of the spin structure (see [6] for details).

Here is a reformulation of the classification of connected components of strata by Kontsevich and Zorich:

Theorem 2.1 [6, Theorems 1 and 2] Let HDH.k1; : : : ; kr / be a stratum of genus g � 2 translation
surfaces , without marked points.

� The stratum H contains a hyperelliptic connected component if and only if H D H.2g � 2/ or
HDH.g�1;g�1/. In this case there is only one hyperelliptic component. In genus 2, any stratum
is connected (and hyperelliptic).

� If there exists i such that ki is odd , or if g D 3, then there exists a unique nonhyperelliptic
connected component.

� If g� 4 and , for all i , ki is even , then there are exactly two nonhyperelliptic connected components
distinguished by the parity of the spin structure.

The following lemma is classical and will be useful in the next section.

Algebraic & Geometric Topology, Volume 24 (2024)
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Lemma 2.2 Let S be a translation surface in a hyperelliptic connected component and let  be a saddle
connection. Then Œ �D�Œ�. /� in H1.S; †IZ/.

Proof If the images in S of  and �. / coincide, Œ �D�Œ�. /� since they have opposite orientation.

Otherwise the images in S of  and �. / intersect at most at the ends of the curves. We note that in the case
of the stratum H.g�1;g�1/, the two singularities are interchanged by the involution; see [6, Section 2.1].

Hence, the image of  (and �. /) in the quotient sphere S=� is always a simple closed curve. Therefore it
is the boundary of a subsurface that contains ramification points of the covering. Considering its preimage,
we obtain that  [ �. / is the boundary of a subsurface of S .

3 Hyperelliptic connected component

In this section, we prove the first part of the Main Theorem.

Theorem 3.1 Let C be a hyperelliptic connected component of the moduli space of abelian differentials.
Let S 2 C be a local maximum of the relative systole function Sys. Then S is a global maximum for Sys
in C.

The proof uses the following technical lemma. We postpone its proof to the end of the section.

Lemma 3.2 Let D be a translation surface that is topologically a disk and whose boundary consists of
n–saddle connections (an “n–gon” ) with n� 4. We assume that all boundary saddle connections are of
length greater than or equal to 1. Then we can continuously deform D so that its area decreases and the
boundary saddle connections of length 1 remain of length 1.

Proof of Theorem 3.1 Let S 2 C be a translation surface that such that Sys.S/ is not a global maximum.
We use the same normalization as in [1]: after rescaling the surface we assume that Sys.S/ equals 1, and
then continuously deform S so that Sys.S/ remains 1 and Area.S/ decreases.

Let f1; : : : ; r g be the set of saddle connections realizing the systole. Recall that 1; : : : ; r are sides of
the Delaunay triangulation and that global maxima correspond to surfaces whose Delaunay cells are only
equilateral triangles; see [1, Lemma 3.1 and Theorem 3.3]. Let C1; : : : ;Ck be the connected components
of S n

S
i i . Up to renumbering we can assume that C1 is not a triangle. We consider �.C1/, where � is

the hyperelliptic involution. We study the two possible cases: whether �.C1/ equals C1 or not. Note that
C1 does not contain any singularity in its interior, since there are at most two singularities in S and if
there are two singularities P1 and P2, we must have �.P1/D P2.

Case 1 We first assume that �.C1/ ¤ C1. Since the hyperelliptic involution preserves
S

i i , up to
renumbering, �.C1/D C2.

We observe that C1 has only one boundary component. Indeed, suppose that there are more than one
such components and consider a saddle connection � in C1 that joins a singularity of one boundary
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component to a singularity of another boundary component. Then �.�/ is a curve in C2 and Œ�.�/�D�Œ��
by Lemma 2.2. But C1 n � is connected, and hence S n .�[ �.�// is connected, which is a contradiction.
Therefore C1 is a disk because it embeds in S=� , which is a sphere.

Since the boundary of C1 consists of at least four saddle connections of length 1, by Lemma 3.2 we can
continuously decrease its area while keeping the boundary saddle connections of length 1.

This continuous deformation of C1 leads to the following area-decreasing continuous deformation of S :

The component C2 is deformed in a symmetric way as C1.

For each saddle connection  in the boundary of C1, the components of S n . [ �. // correspond to
components of the complement of Œ � in the quotient sphere S=� . Since ŒC1�D ŒC2�, we have that C1

and C2 are in the same connected component of S n . [ �. //. We denote by D the other component.
By construction, the boundary of D consists of  and �. /. Note that D is empty if  and �. / have
the same image in S . We observe that if  and  0 are two distinct saddle connections in the boundary
of C1, then D and D 0 are disjoint.

We denote by 1; : : : ; k the boundary saddle connections of C1. When continuously deforming C1, each
i is rotated by an angle �i (with �1; : : : ; �k continuous functions) and �.i/ is also rotated by �i since
C2 is deformed in a symmetric way. Since the components D1

; : : : ;Dr
are disjoint, for each i we can

glue by translation the component Di
rotated by �i with the boundary saddle connections corresponding

to i and �.i/.

Since the identifications are done by translation, we get a continuous family of translation surfaces and
they are in the same stratum.

Case 2 Now we assume that �.C1/D C1.

We claim that we can cut C1 along saddle connections and obtain two discs A and B such that �.A/DB

and for each saddle connection  in the boundary of A either  is of length 1 or �. /D  (equivalently,
 is also a boundary saddle connection of B).

To prove the claim, we first consider the Delaunay cells of S . Recall that the shortest geodesics (and
hence the boundary saddle connections of C1) are sides of the Delaunay cells; see [1, Lemma 3.1]. This
induces a decomposition of C1 into Delaunay cells, and this decomposition is preserved by the involution
� because of the uniqueness of the Delaunay cell decomposition. We define a Delaunay subdivision D in
the following way: For each Delaunay cell d , if �.d/¤ d then d; �.d/ 2 D. If �.d/D d (and since d is
cyclic) it can be cut by a diagonal into two polygons d 0 and d 00 D �.d 0/. Then d 0; d 00 2 D.

Now we use the following algorithm:

� We start from a pair .d0; �.d0// in D2 and let A0 D d0 and B0 D �.d0/.

� Suppose we have constructed the disks Ak and Bk such that �.Ak/D Bk , and Ak and Bk are unions
of elements in D.
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If Ak [Bk ¤ C1, there exists an element dkC1 2 D adjacent to Ak along a saddle connection k (and
�.dkC1/ 2 D is adjacent to Bk along �.k/). We define AkC1 by gluing Ak and dkC1 along k . Note
that k is the only saddle connection in the common boundary of Ak and dkC1, because otherwise
S n .k [ �.k// would be connected, which is impossible in the hyperelliptic connected component.

If Ak [Bk D C1 we define ADAk and B D Bk .

The boundary of the disk A consists of n� 3 saddle connections of lengths at least 1.

If n � 4, then from Lemma 3.2 it can be continuously deformed so that the area decreases and the
boundary saddle connections of length 1 remain of length 1.

If n D 3 then A is a triangle. Two of its sides are boundary saddle connections of C1, and hence of
length 1. The third side of A is a saddle connection inside C1 and is, by construction of C1, of length
greater than 1 (recall that C1; : : : ;Cr are obtained after removing all saddle connections of length 1).
Such a triangle can be deformed so that the area decreases and the boundary saddle connections of length
1 remain of length 1.

We deform B in a symmetric way. Note that A and B are directly glued together in C1 along the boundary
saddle connections of lengths greater than 1. Therefore the possible changes of these saddle connections
are not a problem. The deformation of S nC1 is treated as in the previous case.

Proof of Lemma 3.2 The sum of the boundary angles (coming from the intersection of two consecutive
boundary saddle connections) of D equals .n�2/� . Therefore D has boundary angles smaller than � . If
such a boundary angle has a corresponding boundary saddle connection which is of length greater than 1,
then by slightly changing its length we can decrease the area of the corresponding triangle and hence of D.

So we can assume that for each boundary angle smaller than � the two adjacent saddle connections are
of length 1. We claim that we can find two consecutive angles such that one is smaller than � and the
other is smaller than 2� (note that since D is not necessarily embedded in the plane, it can have boundary
angles greater than 2�). Indeed, consider the sequence of consecutive boundary angles of D. If each
time an angle is smaller than � the following one is greater than or equal to 2� , then the global sum will
be greater than n� , which is not possible.

Now we consider the three consecutive saddle connections corresponding to these two angles, and see
them as a broken line on the plane. We close this line by adding a segment t to obtain a quadrilateral Q
(that can be also crossed). Without loss of generality, we can assume that t is horizontal. We have

Area.D/D Area.D0/CAreaalg.Q/;

where D0 is the translation surface obtained by “replacing” the broken line by t (see Figure 1). Here
Areaalg.Q/ means that the part of Q below the segment t is counted negatively.

Claim We can continuously deform Q without changing the lengths of its sides so that Areaalg.Q/
decreases.
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Figure 1: The disk D and the quadrilateral Q in three configurations.

Denote by MNPQ the quadrilateral Q, and by a, b, c and d the lengths of the sides of Q with a being the
length of the segment t DMN. Denote by ˛ the oriented angle from MN to MQ, and by  its opposite
angle in Q (ie the angle from PQ to PN). Without loss of generality we assume that bD cD 1, d � 1 and
0<  < � (in fact we must have  > 1

3
� , otherwise there would be a smallest saddle connection). We

also have �� < ˛ < � . Further, the sides NP and QM do not intersect since it would imply intersecting
boundary saddle connections in D (see Figure 1).

Write K D Areaalg.Q/. We compute K by adding the (algebraic) area of the triangles MNQ and NPQ.
We obtain

(1) K D 1
2
.ad sin.˛/C bc sin. //:

The expression of the length of NQ gives the second equality:

(2) a2
C d2

� 2ad cos.˛/D b2
C c2

� 2bc cos. /:

These two equations imply Bretschneider’s formula for Q:

(3) K2
D .s� a/.s� b/.s� c/.s� d/� abcd cos

�
1
2
.˛C  /

�
:

Here s D 1
2
.aC bC cC d/.

From now on we fix a, b, c and d and study the variations of the area with respect to ˛ and  . Equation (2)
implies that  depends differentially on ˛. Hence we can write K DK.˛/. We need to prove that either
K0.˛/¤ 0 or K.˛/ is a strict local maximum (note that ˛ varies in an open set). We have

.K2/0.˛/D abcd.1C  0.˛// sin
�

1
2
.˛C  /

�
cos
�

1
2
.˛C  /

�
:

We assume that K0.˛/D 0, and hence .K2/0.˛/D 0, so we are in one of the following three cases:

(i)
�
sin

�
1
2
.˛C/

�
D 0

�
The conditions �� < ˛ < � and 0<  < � imply ˛ D� < 0. Hence the

quadrilateral Q has self-intersections. Since the sides NP and QM do not intersect, the sides MN and
PQ intersect. The condition ˛ D � implies that the points M , N , P and Q are cocyclic, and since
b D c D 1 we must have d < 1, which is a contradiction.

(ii)
�
cos

�
1
2
.˛C/

�
D 0

�
Then ˛C  D � , and therefore ˛ > 0, and hence K > 0. From (2) and (3)

we have a strict local maximum for K2, and therefore for K.
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(iii) . 0.˛/D �1/ By differentiating (2) and using (1), we see that K D 0, and hence Q has a self-
intersection I DMN\PQ. By differentiating (1) and using (2), we obtain K0.˛/D 0D 1

2

�
1
2
.a2Cd2/�1

�
,

and hence a2C d2 D 2. Since d � 1, we have a � 1 � d . However, triangle inequalities for INP and
IMQ give aC c > d C b, and hence a> d , which is a contradiction.

4 Nonhyperelliptic connected components

In this section, we prove the second part of the Main Theorem.

Theorem 4.1 Each nonhyperelliptic connected component of each stratum of area-1 surfaces with no
marked points contains local maxima of the function Sys that are not global.

We will need the following lemma, which is a refinement of [1, Lemma 3.2(2)].

Lemma 4.2 Let C �H.2k1; : : : ; 2kr / be a connected component of a stratum of abelian differentials
with 2k1; : : : ; 2kr � 0. There exists a surface S 2 C realizing the global maximum for the systole function ,
and such that there exists a shortest saddle connection  joining a singularity of degree 2k1 to itself and
Ind.Œ �/D 0.

Proof We do as in the proof of [1, Lemma 3.2]. There exists a square-tiled surface in C with singularities
on each corner of the squares as in Figure 2, and we can assume that the top left horizontal segment
identifies with the bottom left horizontal segment (see Figure 2). After a suitable transformation as in the
figure, we obtain the required surface.

Proof of Theorem 4.1 In [1, Theorem 4.7] we have already constructed examples in each genus g � 3

stratum. By Theorem 3.1 each such example is in a nonhyperelliptic component. So it remains to construct
new examples only in strata with more than one nonhyperelliptic connected component.

From the theorem of Kontsevich and Zorich (Theorem 2.1) there is more than one nonhyperelliptic
connected component only for genus g � 4 strata with only even-degree singularities, and in this case
there are two nonhyperelliptic components distinguished by the parity of the spin structure.

In Figure 3 we give surfaces S2;0 2H.2; 0/ and S2;0;0 2H.2; 0; 0/ that are local but nonglobal maxima
for the systole function.

1
� � � � � � � �

��������
1

�

�

1
� � � � � � � �

��������
1

�

�

Figure 2: A global maximum with a closed shortest saddle connection  satisfying Ind.Œ �/D 0.

Algebraic & Geometric Topology, Volume 24 (2024)



Relative systoles in hyperelliptic translation surfaces 1911

2

3

4 1 5

4

2

531

S2;0 2H.2; 0/

2

3

4 1 5

531

4

2

S2;0;0 2H.2; 0; 0/

Figure 3: Local but nonglobal maxima in H.2; 0/ and H.2; 0; 0/.

We consider the following construction: Start from the surface S2;0 and a surface M that is a global
maximum for Sys in H.2k1; : : : ; 2kr /. There exists a shortest saddle connection 1 in S2;0 joining the
two singularities. By Lemma 4.2, we can assume that there exists a shortest saddle connection 2 in M

joining the singularity of degree 2k1 to itself and such that Ind.Œ2�/D 0. We can further assume that
1 and 2 are vertical and of the same length. Now we glue the two surfaces by the following classical
surgery: cut the two surfaces along 1 and 2, and glue the left side of 1 with the right side of 2 and
the right side of 1 with the left side of 2. We get a surface S in H.2k1C 4; 2k2; : : : ; 2kr / that satisfies
the hypothesis of [1, Theorem 4.1], and hence is a local but nonglobal maximum. By Theorem 3.1, the
surface S is necessarily in a nonhyperelliptic component.

We compute Spin.S/: Choose a symplectic basis .ai ; bi/i of H1.M;Z/ such that Œ2� D a1. Then a
simple computation gives

(4) Spin.S/D Spin.S0;2/CSpin.M /C Ind.a1/C 1 mod 2:

Since Ind.a1/D 0,
Spin.S/D Spin.S0;2/CSpin.M /C 1 mod 2:

When
P

i 2ki � 4, we can prescribe any value of Spin.M / by choosing M in a suitable component, and
in this way we can obtain any possible value for Spin.S/. Note that this is also true for M 2H.4/ or
M 2H.2; 2/. Indeed, in these strata there are two components, hyperelliptic and nonhyperelliptic, and
the spin structure distinguishes them; see [6, Theorem 2 and Corollary 5].

By this construction, we obtain a local but nonglobal maximum for Sys in any (nonhyperelliptic) connected
component of any stratum H.2n1; : : : ; 2nr / for r � 1, as soon as

P
i 2ni � 8 and 2nj � 4 for at least

one j 2 f1; : : : ; rg.

We do an analogous construction as above starting from S2;0;0 (see Figure 3) and M 2H.0; 2r /, with
1 2 S2;0;0 joining the two marked points and 2 2M joining the marked point to itself. We obtain a
local but nonglobal maximum in H.2rC2/. For r � 2 we can choose the spin structure of M and thus get
S in any nonhyperelliptic component of H.2rC2/. Note that for r D 1 we get S 2H.2; 2; 2/ with odd
spin structure.

There remain the following cases:
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Figure 4: Global maxima in H.2/ and H.1; 1/.

� H.6/ We do the same construction as above, starting from S2;0 and M 2 H.2/. We consider for
M 2H.2/ the surface S2 in Figure 4. We see that Œa� and Œb� in this figure have different indices mod 2.
Hence choosing 2 D a or 2 D b gives surfaces with different Spin structure; see (4).

� H.4; 2/ We do the same as for H.6/, starting from S2;0;0 and M D S2.

� The even component of H.2 ; 2 ; 2/ We do the same construction but starting from S2;0;0 and
M 2H.1; 1/, the surface S1;1 in Figure 4. We consider 2D a (joining the two singularities of degree 1).
By a direct computation, the above construction gives a surface S 2H.2; 2; 2/with Spin.S/D0 mod 2.
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Smooth singular complexes and diffeological principal bundles

HIROSHI KIHARA

In previous papers, we used the standard simplices �p (p � 0) endowed with diffeologies having several
“good” properties to introduce the singular complex SD.X/ of a diffeological space X . (Here, D denotes
the category of diffeological spaces.) On the other hand, Hector and Christensen–Wu used the standard
simplices �psub .p � 0/ endowed with the subdiffeology of RpC1 and the standard affine p–spaces Ap

(p � 0) to introduce the singular complexes SD
sub.X/ and SD

aff.X/, respectively, of a diffeological space X .
We prove that SD.X/ is a fibrant approximation of both SD

sub.X/ and SD
aff.X/. This result immediately

implies that the homotopy groups of SD
sub.X/ and SD

aff.X/ are isomorphic to the smooth homotopy groups
of X , which enables us to give a positive answer to a conjecture of Christensen and Wu. Further, we
characterize diffeological principal bundles (ie principal bundles in the sense of Iglesias-Zemmour) using
the singular functor SD

aff. By using these results, we extend the characteristic classes for D–numerable
principal bundles to those for diffeological principal bundles.

58A40; 18F15, 55U10

1 Introduction

Let D denote the category of diffeological spaces. In [Kihara 2019], we constructed diffeologies on
�p D

˚
.x0; : : : ; xp/ 2RpC1 j

P
xi D 1; xi � 0 for any i

	
(p � 0). We called them good because they

allowed us to define the singular complex SD.X/ of a diffeological spaceX , which enables us to introduce
a model structure on the category D (see Section 2.2). Further, in [Kihara 2023], we also used the singular
functor SD to introduce a simplicial category structure on D, and developed a smooth homotopy theory
based on the simplicial and model category structures on D.

On the other hand, Hector [1995] used the sets �p endowed with the subdiffeology of RpC1 .p � 0/ to
define the singular complex SD

sub.X/ of a diffeological space X . His singular complex is also used in
[Kuribayashi 2020]. Christensen and Wu [2014] also used the affine spaces

Ap D
n
.x0; : : : ; xp/ 2RpC1

ˇ̌X
xi D 1

o
endowed with the subdiffeology of RpC1 .p � 0/ to define the singular complex SD

aff.X/ in an attempt to
construct a model structure on D. Their singular complex is also used in [Bunk 2022; Kuribayashi 2020;
2021].

As is described in the references cited above, the singular complexes SD.X/, SD
sub.X/, and SD

aff.X/ are
playing crucial roles in the smooth homotopical study of diffeological spaces. However, the natural weak
equivalences between them have not yet been established.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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1914 Hiroshi Kihara

In this paper, we show that the singular complexes SD.X/, SD
sub.X/, and SD

aff.X/ are weakly equivalent
(Theorem 1.1). As a corollary of this result, we identify the homotopy groups of SD

aff.X/ and SD
sub.X/ with

the smooth homotopy groups of X , proving a conjecture of Christensen and Wu (Corollary 1.2). Though
we mainly use the singular functor SD, we also use the singular functor SD

aff to characterize diffeological
principal bundles (ie principal bundles in the sense of Iglesias-Zemmour) (Theorem 1.3). This theorem,
along with the weak equivalence between SD

aff.X/ and SD.X/, is used to extend the characteristic classes
for D–numerable principal G–bundles to those for diffeological principal G–bundles (Proposition 1.4).

Throughout this paper, D and S denote the category of diffeological spaces and the category of simplicial
sets, respectively. (See [Goerss and Jardine 1999; May 1992; Kihara 2014] for the basics of simplicial
homotopy theory.)

Weak equivalences between SD.X/, SD
sub.X/, and SD

aff.X/

The following theorem is the main result of this paper. Note that the canonical maps �p id
�!�

p
sub ,!Ap

.p � 0/ induce natural morphisms of simplicial sets SD
aff.X/! SD

sub.X/ ,! SD.X/ (see Lemma 3.1(3)
and Proposition 3.4); note that the first and second canonical maps induce the second and first morphisms
of singular complexes, respectively. Recall that SD.X/ is always Kan (ie fibrant in the category S); see
Corollary 2.6(1) (cf Remark 3.2(2)).

Theorem 1.1 The natural morphisms of simplicial sets

SD
aff.X/! SD

sub.X/ ,! SD.X/

are weak equivalences. In particular , SD.X/ is a fibrant approximation of both SD
aff.X/ and SD

sub.X/.

That SD.X/ is a fibrant approximation of SD
sub.X/ was announced in [Kihara 2019, Remark A.5].

Next we recall that �i .SD.X/; x/ is isomorphic to the smooth homotopy group �D
i .X; x/ (Theorem 2.7),

and use Theorem 1.1 to identify the homotopy groups of SD
aff.X/ and SD

sub.X/; see Section 4.4 for the
homotopy groups of a simplicial set which need not satisfy the Kan condition.

Corollary 1.2 Let .X; x/ be a pointed diffeological space. Then both �i .SD
aff.X/; x/ and �i .SD

sub.X/; x/

are naturally isomorphic to the smooth homotopy group �D
i .X; x/ for i � 0.

Christensen and Wu [2014, Theorem 4.11] showed that if SD
aff.X/ is fibrant, then �i .SD

aff.X/; x/ is
isomorphic to the smooth homotopy group �D

i .X; x/ for i � 0, and conjectured that for every diffeological
space X , �i .SD

aff.X/; x/ is isomorphic to �D
i .X; x/ for i � 0 [Christensen and Wu 2014, page 1272].

Corollary 1.2 contains their conjecture.

(Co)homology of diffeological spaces Following [Kihara 2023, Section 3.1], we define the homology
H�.X IA/ and the cohomology H�.X IA/ of a diffeological space X with coefficients in an abelian
group A by

H�.X IA/DH�.ZS
D.X/˝A/; H�.X IA/DH�

�
Hom.ZSD.X/; A/

�
;
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where the simplicial abelian group ZK freely generated by a simplicial set K is regarded as a chain
complex by setting @D

P
.�1/idi . It follows from Theorem 1.1 that the (co)homology of X is naturally

isomorphic to the (co)homologies defined using SD
sub.X/ and SD

aff.X/ instead of SD.X/. However, this
fact is actually proved in Section 3.2 as a key to proving Theorem 1.1; the (co)homology of X is also
naturally isomorphic to the cubic (co)homology introduced in [Iglesias-Zemmour 2013, pages 176–186]
(Remark 3.6).

Application to diffeological principal bundles

Let G be a diffeological group. A D–numerable principal G–bundle � W P !X is a principal G–bundle
which admits a trivialization open cover fUig of X and a smooth partition of unity subordinate to it. On
the other hand, Iglesias-Zemmour introduced a weaker notion of a principal G–bundle; such a principal
G–bundle, referred to as a diffeological principal G–bundle, is defined by local triviality of the pullback
along any plot (Definition 5.1(2)).

Though we mainly use the singular complexes SD.X/ in smooth homotopy theory, the singular complexes
SD

aff.X/, along with Theorem 1.1 play an essential role in the study of diffeological principal bundles, as
explained below.

Characterization of diffeological principal G–bundles Let C be a category with finite products, and
G a group in C. Then CG denotes the category of right G–objects of C (ie objects of C endowed with a
right G–action). For B 2 C, CG=B denotes the category of objects of CG over B , where B is regarded
as an object of CG with trivial G–action.

Since SD
aff WD!S is a right adjoint (Remark 3.2(1)), SD

aff induces the functor DG=X to SSD
aff.G/=S

D
aff.X/.

We then have the following characterization theorem for diffeological principal G–bundles (the notion of
a simplicial principal bundle is introduced in Definition 5.3).

Theorem 1.3 (1) Let � W P !X be an object of DG=X . Then � W P !X is a diffeological principal
G–bundle if and only if

SD
aff.�/ W S

D
aff.P /! SD

aff.X/

is a principal SD
aff.G/–bundle.

(2) The functor SD
aff W D! S induces a faithful functor from the category PDGdiff of diffeological

principal G–bundles to the category PSSD
aff.G/ of principal SD

aff.G/–bundles.

The essential reason why SD
aff is useful in the study of diffeological principalG–bundles is because SD

aff.X/

can be regarded as the set of global plots of X . We can use Theorem 1.3 to calculate the (co)homology
of exceptional diffeological spaces such as irrational tori and R=Q (see Section 2.3 and Example 6.7);
other cohomology theories of irrational tori were calculated by Iglesias-Zemmour and Kuribayashi (see
Remark 6.8).

Algebraic & Geometric Topology, Volume 24 (2024)



1916 Hiroshi Kihara

Characteristic classes of diffeological principal G–bundles We apply Theorem 1.3 to construct
characteristic classes for diffeological principal G–bundles.

A characteristic class for a class P of smooth principal G–bundles is a rule assigning to a principal
G–bundle � WP!X in P a cohomology class ˛.P / ofX such that ˛.f �P /Df �˛.P /. Christensen and
Wu [2021, Theorem 5.10] constructed the universal D–numerable principal G–bundle �G WEG! BG

and proved that the set of isomorphism classes of D–numerable principal G–bundles over X bijectively
corresponds to the smooth homotopy set ŒX; BG�D. Thus, a cohomology class ˛ 2Hk.BGIA/ defines
the characteristic class ˛. � / for the class of D–numerable principal G–bundles. More precisely, the
characteristic class ˛.P / 2Hk.X IA/ of a D–numerable principal G–bundle � W P !X is defined by

˛.P /D f �P ˛;

where fP WX ! BG is a classifying map of P .

We would like to extend the characteristic class ˛. � / to the class of diffeological principal G–bundles.
Since pullbacks of EG are necessarily D–numerable, the above definition of the characteristic class ˛. � /
does not apply to the class of diffeological principal G–bundles. Further, since the class of diffeological
principal G–bundles does not have the homotopy invariance property with respect to pullback, it has no
classifying space; see [Christensen and Wu 2021, Section 3].

Nevertheless, we can prove the following result.

Proposition 1.4 Let G be a diffeological group and ˛ an element of Hk.BGIA/. Then the characteristic
class ˛. � / for D–numerable principal G–bundles extends to a characteristic class for diffeological
principal G–bundles.

This paper is organized as follows. In Section 2, we recall the basic notions and results on diffeological
spaces and the singular functor SD. In Section 3, we briefly review the singular functors SD

sub and SD
aff,

and show that there exist natural morphisms between SD
aff.X/, S

D
sub.X/, and SD.X/ which induce isomor-

phisms on (co)homology. We prove Theorem 1.1 and Corollary 1.2 in Section 4. In Section 5, we recall
the notions of a diffeological principal bundle and a simplicial principal bundle, and prove Theorem 1.3.
In Section 6, we prove Proposition 1.4 and discuss the sets of characteristic classes for the three classes
PDG, PDGnum, and PDGdiff of smooth principal G–bundles (see Definition 5.1(3) for these three classes).

2 Diffeological spaces

In this section, we first recall the convenient properties of the category D of diffeological spaces, along
with the adjoint pair Q� W D� C0 WR of the underlying topological space functor and its right adjoint
(Section 2.1). Then we recall the standard simplices �p .p � 0/ and the adjoint pair j � jD WS�D WSD of
the realization and singular functors (see Section 2.2). Last, we make a brief review of some results of
[Kihara 2023], in which the adjoint pairs . Q� ; R/ and .j � jD; SD/ play an essential role (Section 2.3).
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2.1 Categories D and C0

In this subsection, we summarize the convenient properties of the category D of diffeological spaces,
recalling the adjoint pair Q� W D� C0 WR of the underlying topological space functor and its right adjoint;
see [Iglesias-Zemmour 2013; Kihara 2019] for full details.

Let us begin with the definition of a diffeological space. A parametrization of a set X is a (set-theoretic)
map p W U !X , where U is an open subset of Rn for some n.

Definition 2.1 (1) A diffeological space is a setX together with a specified setDX of parametrizations
of X satisfying the following conditions:

(i) Covering Every constant parametrization p W U !X is in DX .

(ii) Locality Let p W U !X be a parametrization such that there exists an open cover fUig of U
satisfying pjUi 2DX . Then p is in DX .

(iii) Smooth compatibility Let p W U ! X be in DX . Then for every n � 0, every open set V
of Rn, and every smooth map F W V ! U , p ıF is in DX .

The set DX is called the diffeology of X , and its elements are called plots.

(2) Let X D .X;DX / and Y D .Y;DY / be diffeological spaces, and let f WX! Y be a (set-theoretic)
map. We say that f is smooth if f ıp 2DY for every p 2DX .

The convenient properties of D are summarized in the following proposition. Recall that a topological
space X is called arc-generated if its topology is final for the continuous curves from R to X , and let C0

denote the category of arc-generated spaces and continuous maps. See [Frölicher and Kriegl 1988, pages
230–233] for initial and final structures with respect to the underlying set functor.

Proposition 2.2 (1) The category D has initial and final structures with respect to the underlying set
functor. In particular , D is complete and cocomplete.

(2) The category D is cartesian closed.

(3) The underlying set functor D ! Set is factored as the underlying topological space functor
Q� WD! C0 followed by the underlying set functor C0! Set. Further , the functor Q� WD! C0 has a
right adjoint R W C0! D.

Proof See [Christensen et al. 2014, page 90; Iglesias-Zemmour 2013, pages 35–36; Kihara 2019,
Propositions 2.1 and 2.10].

The following remark relates to Proposition 2.2.

Remark 2.3 (1) Let X be a concrete category (ie a category equipped with a faithful functor to
Set); the faithful functor X! Set is called the underlying set functor. See [Frölicher and Kriegl
1988, Section 8.8] for the notions of an X–embedding, an X–subspace, an X–quotient map, and an
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X–quotient space. D–subspaces and D–quotient spaces are usually called diffeological subspaces
and diffeological quotient spaces, respectively.

(2) For Proposition 2.2(3), recall that the underlying topological space zA of a diffeological space
AD .A;DA/ is defined to be the set A endowed with the final topology for DA [Iglesias-Zemmour
2013, 2.8] and that R assigns to an arc-generated space X the set X endowed with the diffeology

DRX D fcontinuous parametrizations in Xg:

Then we can easily see that Q� ıR D IdC0 and that the unit A! R zA of the adjoint pair . Q� ; R/ is
set-theoretically the identity map.

(3) The notion of an arc-generated space is equivalent to that of a �–generated space (see [Christensen
et al. 2014; Kihara 2019, Section 2.2]). The categories D and C0 share convenient properties (1)
and (2) in Proposition 2.2, which often enables us to deal with D and C0 simultaneously (see
[Kihara 2023]). See [Kihara 2023, Remark 2.4] for the reason why C0 is the most suitable category
as a target category of the underlying topological space functor for diffeological spaces.

2.2 Standard simplices�p

In this subsection, we recall the standard simplices�p .p�0/, along with the adjoint pair j � jD WS�D WSD

of the realization and singular functors.

In [Kihara 2019], we introduced a model structure on the category D. The principal part of our construction
of a model structure on D is the construction of so-called good diffeologies on the sets

�p D
n
.x0; : : : ; xp/ 2RpC1

ˇ̌X
xi D 1; xi � 0 for any i

o
.p � 0/

which enable us to define weak equivalences, fibrations, and cofibrations and to verify the model axioms
(see Remark 2.8). The required properties of the diffeologies on�p .p� 0/ are expressed in the following
four axioms:

Axiom 1 The underlying topological space of �p is the topological standard p–simplex �ptop for p � 0.

Recall that f W�p!�q is an affine map if f preserves convex combinations.

Axiom 2 Any affine map f W�p!�q is smooth.

For K 2 S, the simplex category � #K is defined to be the full subcategory of the overcategory S #K

consisting of maps � W �Œn�! K. By Axiom 2, we can consider the diagram � # K ! D sending
� W�Œn�!K to �n. Thus, we define the realization functor

j � jD W S! D

by jKjD D colim�#K �n.

Consider the smooth map j P�Œp�jD ,! j�Œp�jD D �p induced by the inclusion of the boundary P�Œp�
into �Œp�.
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Axiom 3 The canonical smooth injection

j P�Œp�jD ,!�p

is a D–embedding.

The D–homotopical notions, especially the notion of a D–deformation retract, are defined in the same
manner as in the category of topological spaces by using the unit interval I D Œ0; 1� endowed with a
diffeology via the canonical bijection with �1 [Kihara 2019, Section 2.4]. The kth horn of �p is a
diffeological subspace of �p defined by

ƒ
p

k
D f.x0; : : : ; xp/ 2�

p
j xi D 0 for some i ¤ kg:

Axiom 4 The kth horn ƒp
k

is a D–deformation retract of �p for p � 1 and 0� k � p.

For a subset A of the affine p–space Ap D
˚
.x0; : : : ; xp/ 2RpC1 j

P
xi D 1

	
, Asub denotes the set A

endowed with the subdiffeology of Ap (and hence of RpC1). The diffeological spaces �psub .p � 0/

satisfy Axioms 1 and 2, but �psub satisfies neither Axiom 3 nor 4 for p � 2 [Kihara 2019, Proposition A.2].
Thus, we must construct a new diffeology on �p, at least for p � 2.

Let .i/ denote the vertex .0; : : : ; 1.i/; : : : ; 0/ of �p, and let d i denote the affine map from �p�1 to �p,
defined by

d i ..k//D

�
.k/ if k < i;
.kC 1/ if k � i:

Definition 2.4 We define the standard p–simplices �p (p � 0) inductively. Set �p D�psub for p � 1.
Suppose that the diffeologies on �k (k < p) are defined. We define the map

'i W�
p�1
� Œ0; 1/!�p

by 'i .x; t/D .1� t /.i/C td i .x/, and endow �p with the final structure for the maps '0; : : : ; 'p.

The following result is established in [Kihara 2019, Propositions 3.2, 5.1, 7.1, and 8.1].

Proposition 2.5 The standard p–simplices �p .p � 0/ in Definition 2.4 satisfy Axioms 1–4.

Without explicit mention, the symbol �p denotes the standard p–simplex defined in Definition 2.4 and a
subset of �p is endowed with the subdiffeology of �p. Since the diffeology of �p is the subdiffeology
of Ap for p � 1, the D–homotopical notions, especially the notion of a D–deformation retract, coincide
with the ordinary smooth homotopical notions in the theory of diffeological spaces [Iglesias-Zemmour
2013, page 108; Kihara 2019, Remark 2.14].

Since��Df�pg is a cosimplicial diffeological space by Axiom 2, the singular complex SD.X/ is defined
by

SD.X/D D.��; X/:
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We can easily see that j � jD W S� D WSD is an adjoint pair [Kihara 2019, Proposition 9.1]. Further, we
can derive the following result from Proposition 2.5.

Corollary 2.6 (1) The natural isomorphisms

j�Œp�jD D�
p; j P�Œp�j D P�p and jƒkŒp�jD Dƒ

p

k

exist.

(2) SDX is a Kan complex for any diffeological space X .

Proof (1) See [Kihara 2019, Proposition 9.2].

(2) See [Kihara 2019, Lemma 9.4(1)].

See [Christensen and Wu 2014, Section 3.1] or [Iglesias-Zemmour 2013, Chapter 5] for the smooth
homotopy groups �D

p .X; x/ of a pointed diffeological space .X; x/. Note that SDX is always a Kan
complex (Corollary 2.6(2)) and see [Goerss and Jardine 1999, page 25] for the homotopy groups �p.K; x/
of a pointed Kan complex .K; x/.

Theorem 2.7 Let .X; x/ be a pointed diffeological space. Then there exists a natural bijection

�X W �
D
p .X; x/! �p.S

DX; x/ for p � 0;

that is an isomorphism of groups for p > 0.

Proof See [Kihara 2019, Theorem 1.4].

Remark 2.8 (1) Define a map f WX ! Y in D to be

(i) a weak equivalence if SDf W SDX! SDY is a weak equivalence in the category of simplicial sets,

(ii) a fibration if the map f has the right lifting property with respect to the inclusions ƒp
k
,!�p for

all p > 0 and 0� k � p, and

(iii) a cofibration if the map f has the left lifting property with respect to all maps that are both fibrations
and weak equivalences.

Then D is a compactly generated model category whose object is always fibrant. In fact, the sets of
morphisms of D,

ID f P�p ,!�p j p � 0g;

JD fƒ
p

k
,!�p j p > 0; 0� k � pg;

are the sets of generating cofibrations and generating trivial cofibrations, respectively [Kihara 2019,
Theorem 1.3]. See [May and Ponto 2012, Definition 15.2.1] for a compactly generated model category.
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By Theorem 2.7, weak equivalences in D are just smooth maps inducing isomorphisms on smooth
homotopy groups.

(2) The adjoint pairs
j � jD W S� D WSD and Q� W D� C0 WR

are pairs of Quillen equivalences [Kihara 2023, Theorem 1.5]. Note that the composite of these adjoint
pairs is just the adjoint pair

j � j W S� C0 WS

of the topological realization and singular functors.

2.3 Homotopy type of SD.X/

In this subsection, we recall from [Kihara 2023] the basic results on the homotopy type of SD.X/; they
are not essential in the later sections, but they are related to a few results in Section 6.

For a diffeological space X , consider the unit id WX!R zX of the adjoint pair Q� WD�C0 WR. By applying
SD.D D.��; � //, we have the natural inclusion

SD.X/ ,! S. zX/

(see Proposition 2.5, in particular Axiom 1).

If X is a nice diffeological space such as a cofibrant object or a C1–manifold in the sense of [Kriegl
and Michor 1997, Section 27], then SD.X/ ,! S. zX/ is a weak equivalence [Kihara 2023, Corollary 1.6,
Proposition 2.6, and Theorem 11.2]. Hence, we can calculate the homotopy groups and the (co)homology
groups of such nice diffeological spaces as those of the underlying topological spaces.

Conversely, if X is an exceptional diffeological space such as an irrational torus, then SD.X/ ,! S. zX/ is
not a weak equivalence; see [Kihara 2023, Appendix A]. See Section 6.2 for an approach to the homotopy
type of SD.X/ of exceptional diffeological spaces X such as irrational tori and R=Q.

Remark 2.9 The (co)homology and homotopy groups of diffeological spaces have the same desirable
properties as those of topological spaces. Further, the (co)homology and homotopy groups of a diffeo-
logical space are just those of its singular complex. Thus, we can apply various algebraic topological
and simplicial homotopical tools to the calculation of the (co)homology and homotopy groups of a
diffeological space X whether or not X is a nice diffeological space; see [Kihara 2023, Section 3.1],
Theorem 2.7, and Remark 5.8.

3 Smooth singular complexes

In this section, we summarize the basic notions and results on the smooth singular complexes SD
sub.X/

and SD
aff.X/ (Section 3.1), and then show that there exist natural morphisms between SD

aff.X/, S
D
sub.X/,
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and SD.X/ which induce chain homotopy equivalences, and hence isomorphisms on (co)homology
(Section 3.2). We also show that the singular functors SD

aff, S
D
sub, and SD transform diffeological coverings

to simplicial coverings (Section 3.3); this result is used to reduce the proof of Theorem 1.1.

3.1 Smooth singular complexes SD.X/, SD
sub.X/, and SD

aff.X/

By using the cosimplicial diffeological space �� D f�pg, the singular complex SD.X/ is defined by

SD.X/D D.��; X/;

which is intensively studied in [Kihara 2019; 2023] (see Section 2.2).

Let Ap denote the affine p–space
˚
.x0; : : : ; xp/ 2RpC1 j

P
xi D 1

	
endowed with the subdiffeology

of RpC1. Since A� D fApg is a cosimplicial diffeological space, the singular complex SD
aff.X/ is defined

by
SD

aff.X/D D.A�; X/:

The singular complex SD
aff.X/ was introduced by Christensen and Wu [2014]; they used the singular

functor SD
aff to define the classes of weak equivalences, fibrations, and cofibrations in D, but the model

axioms are not yet verified.

Let �psub denote the set �p endowed with the subdiffeology of Ap . Since ��subD f�
p
subg is a cosimplicial

diffeological space, the singular complex SD
sub.X/ is defined by

SD
sub.X/D D.��sub; X/:

The singular complex SD
sub.X/ was used by Hector [1995] to study diffeological spaces by homotopical

means such as singular (co)homology.

Now, we summarize the basic properties of �p, �psub, and Ap, and the relations among them, which
are needed later. A subset A of Ap endowed with the subdiffeology of Ap is denoted by Asub. The
notion of D–contractibility (or smooth contractibility) is defined in the obvious manner (a D–contractible
diffeological space is often called simply a contractible diffeological space if there is no confusion in
context).

Lemma 3.1 (1) The diffeological spaces �p, �psub, and Ap are smoothly contractible.

(2) The underlying topological space of �p and �psub is just the standard topological p–simplex. The
underlying topological space of Ap is just the set Ap endowed with the usual topology.

(3) The map id W�p!�
p
sub is smooth , which restricts to the diffeomorphism

id W�p � skp�2�p Š�! .�p � skp�2�p/sub;

where skp�2�p denotes the .p�2/–skeleton of �p.
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Proof (1) The smooth contractibility of �psub and Ap are obvious. See [Kihara 2019, Remark 9.3] for
the smooth contractibility of �p.

(2) The result for �p follows from Proposition 2.5. The results for �psub and Ap follow from [Kihara
2019, Lemma 2.12].

(3) See [Kihara 2019, Lemmas 3.1 and 4.2].

Remark 3.2 In this remark, we recall the left adjoints of SD
sub and SD

aff, and see that SD
sub.X/ and SD

aff.X/

need not be Kan.

(1) As mentioned above, the realization functor j � jD W S! D is a left adjoint of the singular functor
SD WD!S, and the composite of the adjoint pairs j � jD WS�D WSD and Q� WD�C0 WR is just the adjoint
pair j � j W S� C0 WS (see Remark 2.8(2)).

Similarly, we can define the realization functor j � j0D W S! D by

jKj0D D colim
�#K

�nsub;

which is a left adjoint of the singular functor SD
sub W D ! S. The composite of the adjoint pairs

j � j0D W S� D WSD
sub and Q� W D� C0 WR is also just the adjoint pair j � j W S� C0 WS (see Lemma 3.1(2)).

The realizations jKjD and jKj0D of a simplicial complex K viewed as a simplicial set [May 1992,
Example 1.4] are just the diffeological polyhedra jKjD and jKj0D respectively [Kihara 2023, Section 8.1];
they played an essential role in the proof of the homotopy cofibrancy theorem [Kihara 2023, Theorem 1.10].

Christensen and Wu [2014] defined the realization functor j � j00D W S! D by

jKj00D D colim
�#K

An;

which is a left adjoint of the singular functor SD
aff W D! S.

(2) Let us see that SD
sub.X/ need not be Kan. For this, we consider the extension problem in S

ƒ0Œ2� SD
sub.ƒ

2
0 sub/

�Œ2�

d1Cd2

where ƒ0Œ2�
d1Cd2
����! SD

sub.ƒ
2
0 sub/ is the simplicial map whose restriction to the i th face corresponds to

(the corestriction of) d i W �1! �2 for i D 1; 2. Suppose that this extension problem has a solution r .
Then we have the commutative diagram in D

jƒ0Œ2�j
0
D ƒ20 sub

�2sub

d1Cd2

r
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(see part (1)). Noticing that jƒ0Œ2�j0D can be set-theoretically identified with ƒ20, we see that r is a
D–retraction of �2sub onto ƒ20 sub, which is a contradiction [Kihara 2019, Proposition A.2(2)]; see also
[Kihara 2023, Remark 8.2].

Similarly, we can use [Bröcker and Jänich 1982, Theorem 5.13] to see that SD
aff..d

1A1[ d2A1/sub/ is
not Kan; however, it has already been shown that SD

aff.X/ need not be Kan [Christensen and Wu 2014,
Section 4.3].

3.2 Natural transformations between SD
aff, S

D
sub, and SD

In this subsection, we construct natural morphisms between SD
aff.X/, S

D
sub.X/, and SD.X/, and show

that they induce chain homotopy equivalences between ZSD
aff.X/, ZSD

sub.X/, and ZSD.X/, and hence
isomorphisms on the (co)homology with arbitrary coefficients.

First, we show that the singular functors SD, SD
sub, and SD

aff preserve homotopy. Recall the D–homotopical
notions from Section 2.2 and let 'D denote the D–homotopy relation.

Lemma 3.3 For smooth maps f; g WX ! Y , consider the conditions

(i) f 'D g WX ! Y ,

(ii) SDf ' SDg W SD.X/! SD.Y /,

(iii) H�.f IZ/DH�.gIZ/ WH�.X IZ/!H�.Y IZ/.

The implications .i/D) .ii/D) .iii/ hold. The same conclusion applies to the functors SD
sub and SD

aff, and
their homologies.

Proof For SD: see [Kihara 2019, Lemma 9.4(2)] for .i/ D) .ii/, and [May 1992, pages 12–13] for
.ii/D) .iii/.

For SD
sub: recall that �1 D�1sub; then a similar argument applies.

For SD
aff: observe that f 'D g if and only if there exists a smooth map H W X �A1 ! Y such that

H. � ; .0//D f and H. � ; .1//D g; then a similar argument applies.

Using Lemmas 3.1 and 3.3, we can prove the following result.

Proposition 3.4 There exist natural morphisms of simplicial sets

SD
aff.X/! SD

sub.X/ ,! SD.X/

which induce chain homotopy equivalences

ZSD
aff.X/! ZSD

sub.X/! ZSD.X/:

Proof We prove the result in three steps.
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Step 1: construction of natural morphisms By Lemma 3.1(3), we have the canonical morphisms of
cosimplicial diffeological spaces

�� id
�!��sub ,!A�;

which induce natural morphisms

SD
aff.X/

�
�! SD

sub.X/
�,�! SD.X/:

(Note that the first and second morphisms of cosimplicial diffeological spaces induce the second and first
morphisms of singular complexes, respectively.)

Step 2 We show that for p � 0,

H�.ZS
D
aff.�

p//ŠH�.ZS
D
sub.�

p//ŠH�.ZS
D.�p//Š ZŒ0�;

where ZŒ0� denotes the graded module with ZŒ0�0 D Z and ZŒ0�i D 0 (i ¤ 0). It is easily seen that these
isomorphisms hold for p D 0. Thus, they hold for any p � 0 by Lemmas 3.3 and 3.1(1).

Step 3 To prove the rest of the statement, we “augment” the singular chain complexes ZSD.X/,
ZSD

sub.X/, and ZSD
aff.X/ in a canonical manner (see [Eilenberg and Mac Lane 1953, page 194]); the

augmented singular chain complexes are denoted by ZSD.X/˜, ZSD
sub.X/˜, and ZSD

aff.X/˜. Then

H�.ZS
D
aff.�

p/˜/DH�.ZSD
sub.�

p/˜/DH�.ZSD.�p/˜/D 0

(by Step 2). Since each component of degree � 0 of ZSD.X/˜ (resp. ZSD
sub.X/˜, ZSD

aff.X/˜) is repre-
sentable for the set of model objects f�pgp�0 (resp. f�psubgp�0, fApgp�0) in the sense of [Eilenberg and
Mac Lane 1953, page 189], we can use [Eilenberg and Mac Lane 1953, Theorem II] to construct chain
homotopy inverses of the augmented natural chain maps

ZSD
aff.X/˜

Z�˜
�! ZSD

sub.X/˜
Z�̃
�! ZSD.X/˜

such that they restrict to chain homotopy inverses of the natural chain maps

ZSD
aff.X/

Z�
�! ZSD

sub.X/
Z�
�! ZSD.X/

(see Step 1).

Recall the definitions of H�.X IA/ and H�.X IA/ from Section 1.

Corollary 3.5 Let A be an abelian group.

(1) The natural morphisms of simplicial sets

SD
aff.X/

�
�! SD

sub.X/
�,�! SD.X/

induce isomorphisms of graded modules

H�.ZS
D
aff.X/˝A/

��
Š
�!H�.ZS

D
sub.X/˝A/

��
Š
�!H�.X IA/;

H�
�
Hom.ZSD

aff.X/; A/
�
��

Š
 �H�

�
Hom.ZSD

sub.X/; A/
�

��

Š
 �H�.X IA/:
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(2) If A is a commutative associative ring with unit , then H�.X IA/, H�
�
Hom.ZSD

sub.X/; A/
�
, and

H�
�
Hom.ZSD

aff.X/; A/
�

have natural commutative graded A–algebra structures and the isomor-
phisms between them are isomorphisms of graded A–algebras.

Proof (1) The result is immediate from Proposition 3.4.

(2) See [Kihara 2023, Remark 3.8(2)] for H�.X IA/. The argument there can also be applied to
H�Hom.ZSD

sub.X/; A/ and H�Hom.ZSD
aff.X/; A/. Since the cohomology isomorphisms in

part (1) are induced by the natural simplicial maps

SD
aff.X/! SD

sub.X/ ,! SD.X/;

they are isomorphisms of graded A–algebras.

Remark 3.6 In the study of differential forms and de Rham cohomology of diffeological spaces, Iglesias-
Zemmour [2013, pages 182–183] introduced the complex C?.X/ of reduced groups of cubic chains for a
diffeological space X , and called its homology H�.X/ the cubic homology of X .

We can easily see that H�.X/ is a smooth homotopy invariant. In fact, given a smooth homotopy
H WR�X! Y between f and g, a chain homotopy H] W C�.X/! C�C1.Y / between C�.f / and C�.g/

is defined by
Rp �
�!X 7!RpC1 DR�Rp 1��

��!R�X H
�! Y:

Thus, by an argument similar to that in the proof of Proposition 3.4, we can use [Eilenberg and Mac Lane
1953, Theorem II] to construct a natural chain homotopy equivalence between C�.X/ and ZSD.X/,
showing that H�.X/ is naturally isomorphic to H�.X/.

The basic idea of the proof that ZSD.X/, ZSD
sub.X/, and C�.X/ are chain homotopy equivalent was

briefly discussed in [Kihara 2023, Remark 3.9]. It is also shown in [Kuribayashi 2020, Section 4.1] that
ZSD

aff.X/, ZSD
sub.X/, and C�.X/ are chain homotopy equivalent.

3.3 Diffeological coverings

The notion of a diffeological fiber bundle is a generalization of that of a locally trivial fiber bundle,
and is defined by local triviality of the pullback along any plot; see [Iglesias-Zemmour 2013, 8.9]. A
diffeological fiber bundle with discrete fiber is called a diffeological covering.

Similarly, a simplicial fiber bundle is defined by triviality of the pullback along any map from �Œp�

(p� 0); see [May 1992, Definition 11.8]. A simplicial fiber bundle with discrete fiber is called a simplicial
covering.

We prove the following result, which is used in the proof of Theorem 1.1.
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Proposition 3.7 The singular functors SD, SD
sub, and SD

aff transform diffeological coverings with fiber F
to simplicial coverings with fiber F . Hence , a diffeological covering � WE!X with fiber F defines the
natural morphisms of simplicial coverings with fiber F

SD
aff.E/ SD

sub.E/ SD.E/

SD
aff.X/ SD

sub.X/ SD.X/:

SD
aff.�/ SD

sub.�/ SD.�/

Proof We prove the result in three steps.

Step 1 We show that SD.�/ W SD.E/! SD.X/ is a simplicial covering with fiber F .

Assume given a map k W �Œp�! SD.X/ and let � W �p ! X be the smooth map corresponding to k.
Noticing that �p is smoothly contractible (Lemma 3.1(1)), we then have a pullback diagram in D

�p �F E

�p X

proj �

�

(see [Iglesias-Zemmour 2013, page 264]). Note that SD is a right adjoint and consider the commutative
diagram in S consisting of two pullback squares

�Œp��SD.F / SD.�p/�SD.F / SD.E/

�Œp� SD.�p/ SD.X/

proj proj SD.�/

SD.�/

where �Œp�! SD.�p/ is the map corresponding to the p–simplex 1�p of SD.�p/. Then the outer
rectangle gives the desired local triviality of SD.�/; see [Mac Lane 1998, Exercise 8 on page 72].

Step 2 Note that �psub and Ap are smoothly contractible (Lemma 3.1(1)) and that SD
sub and SD

aff are right
adjoints (Remark 3.2(1)). Then, by an argument similar to that in Step 1, we can see that SD

sub.�/ and
SD

aff.�/ are also simplicial coverings with fiber F .

Step 3 The natural morphisms of simplicial coverings are defined by Proposition 3.4.

4 Weak equivalences between smooth singular complexes

In this section, we prove Theorem 1.1 and Corollary 1.2, using results of Section 3.

The main statement of Theorem 1.1 is divided into the following two parts:

(I) The natural map SD
sub.X/ ,! SD.X/ is a weak equivalence in S.

(II) The natural map SD
aff.X/! SD.X/ is a weak equivalence in S.

Algebraic & Geometric Topology, Volume 24 (2024)



1928 Hiroshi Kihara

After constructing a fibrant approximation functor for the category of simplicial sets in Section 4.1, we
prove parts (I) and (II) in Sections 4.2 and 4.3, respectively. We complete the proofs of Theorem 1.1 and
Corollary 1.2 in Section 4.4.

4.1 Fibrant approximation to a simplicial set

The category S of simplicial sets is a cofibrantly generated model category having

JS D fƒkŒp� ,!�Œp� j p > 0; 0� k � pg

as a set of generating trivial cofibrations. Applying the infinite gluing construction [Dwyer and Spaliński
1995, pages 104–105] for JS to a simplicial map ' WK! L, we obtain the factorization

K K 0

L

i

'
p

where i is a trivial cofibration and p is a fibration. However, since every simplicial map to the terminal
object � has a right lifting property forƒkŒ1� ,!�Œ1� (kD 0; 1), we can construct a fibrant approximation
Kˆ of K by applying the infinite gluing construction for

J0S D fƒkŒp� ,!�Œp� j p > 1; 0� k � pg

to K!�. Let Sf denote the full subcategory of S consisting of fibrant objects (ie Kan complexes). Then
the functor �ˆ W S! Sf is a fibrant approximation functor, for which Kˆ0 DK0 holds. An attachment of
�Œ2� alongƒkŒ2� adds one nondegenerate 2–simplex and one nondegenerate 1–simplex, which correspond
to the basic 2–simplex of �Œ2� and its kth face respectively.

4.2 Proof of part (I)

We prove part (I) of Theorem 1.1 (see the introduction of this section). Let us begin by reducing the
proof to simpler cases. First, consider the decomposition X D

`
X˛ into connected components; see

[Iglesias-Zemmour 2013, pages 105–107]. Since

SD
sub.X/D

a
SD

sub.X˛/ and SD.X/D
a

SD.X˛/;

we may assume that X is connected.

Next consider the universal covering$ WZ!X ; see [Iglesias-Zemmour 2013, page 264]. By Proposition
3.7, we then have the morphism of simplicial coverings with fiber �D

1 .X/

�D
1 .X/ �D

1 .X/

SD
sub.Z/ SD.Z/

SD
sub.X/ SD.X/
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Hence, we may assume that X is 1–connected (note that SD
sub.X/ need not be a Kan complex and use

[Gabriel and Zisman 1967, Chapter III, Theorem 4.2]).

Since SD.X/ is Kan (Corollary 2.6(2)), the inclusion SD
sub.X/ ,! SD.X/ extends to a map

SD
sub.X/ˆ! SD.X/;

which induces an isomorphism on the homology (Corollary 3.5). Thus, we have only to show that

�1.S
D
sub.X/ˆ; x0/D 0

for any fixed x0 2X (see Theorem 2.7 and [May 1992, Theorem 13.9]).

Recall from [Goerss and Jardine 1999, page 8; May 1992, Lemma 16.3] the following facts concerning
the topological realization functor j � j W S! C0:

� The topological realization jKj of a simplicial set K is a CW –complex having one n–cell for each
nondegenerate n–simplex of K.

� For a pointed Kan complex .K; k0/, the simplicial fundamental group �1.K; k0/ is naturally
isomorphic to the topological fundamental group �1.jKj; k0/.

For a simplicial set K, NKn denotes the set of nondegenerate n–simplices of K. The n–cell of jKj
corresponding to � 2 NKn is also denoted by � . The 1–cell � of jKj is endowed with the canonical
orientation; the 1–cell � endowed with the reverse orientation is denoted by N� . We also use the standard
notation sknK for the n–skeleton of K.

From these facts and the construction of the fibrant approximation Kˆ of K, we see the following:

� �1.S
D
sub.X/ˆ; x0/Š �1.jsk2 SD

sub.X/ˆj; x0/.

� Every element of �1.jsk2 SD
sub.X/ˆj; x0/ can be represented by a continuous map

! W .�1top;
P�1top/! .jsk1 SD

sub.X/ˆj; x0/:

Further, ! can be chosen as the concatenation of finitely many 1–cells �1; : : : ; �l , where �j D �j
or N�j for some �j 2NSD

sub.X/1.

We would like to simplify the expression �1 � � � �l for ! and show that ! is null homotopic rel P�1top.

A smooth 1–simplex � W�1sub!X of a diffeological space X is called tame if � is constant near each
vertex. By the following lemma, we may assume that each �j is tame.

Lemma 4.1 LetX be a diffeological space and � a 1–simplex of SD
sub.X/. Then there exists a 2–simplex

† of SD
sub.X/ such that d0† is the constant map to �..1//, d1† is tame , and d2†D � .

Proof We choose a nondecreasing smooth function � W Œ0; 1�! Œ0; 1� such that �� 0 near 0 and �� 1
near 1, and construct the desired 2–simplex † of SD

sub.X/ in two steps.
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Step 1: construction of F W�2
sub !�2

sub We construct a smooth map F W�2sub!�2sub (ie a 2–simplex
F of SD

sub.�
2
sub/) satisfying the following condition:

� Each diF corestricts to the i th face of �2sub and the corestriction of diF is identified with�
id if i D 0; 2;
� if i D 1;

in a canonical manner.

Set U D
˚
.x0; x1; x2/ 2�

2
sub j 0� x1 <

1
2

	
. Choose a nonincreasing smooth function � W

�
0; 1
2

�
! Œ0; 1�

such that � � 1 near 0 and � � 0 near 1
2

. Under the identification

U Š
�! Œ0; 1��

�
0; 1
2

�
; .x0; x1; x2/ 7!

�
x2

1� x1
; x1

�
;

define the self-map U f
�! U by

f .x; y/D
�
�.y/�.x/C .1��.y//x; y

�
:

Then the desired map �2sub
F
�!�2sub is defined by

F D

�
f on U;
id outside U:

Step 2: construction of † W �2
sub ! X The desired 2–simplex † of SD

sub.X/ is defined to be the
composite

�2sub
F
�!�2sub

s1
�!�1sub

�
�!X;

where s1 is defined by s1.x0; x1; x2/D .x0; x1C x2/.

Second, let us see that! can be chosen as the concatenation of �1; : : : ; �l for some �1; : : : ; �l 2NSD
sub.X/1.

For this, consider †j 2 SD
sub.X/2 defined to be the composite

�2sub
s
�!�1sub

�j
�!X;

where s.x0; x1; x2/ D .x0 C x2; x1/. Then d2†j D �j , d1†j is constant, and � 0j WD d0†j satisfies
� 0j .t/D �j .1� t /. Thus, if �j D N�j , then we can replace �j with � 0j . Hence, we may assume that ! is the
concatenation of �1; : : : ; �l .

Third, let us see that ! can be chosen as the continuous map corresponding to a single tame 1–simplex �
of SD

sub.X/. For this, we first consider the extension problem in D

ƒ21 sub X

�2sub

�2C�1
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.1/ .2/

.0/

Figure 1: The retraction r .

where �2C�1 Wƒ21 sub!X is defined to be �2 on the 0th face and �1 on the 2nd face. (the smoothness of
�2C �1 follows from the tameness of �1 and �2). We define the map † W�2sub!X to be the composite

�2sub
r
�!ƒ21 sub

�2C�1
����!X;

where r is the continuous retraction onto ƒ21 sub depicted in Figure 1. Noticing that �1 and �2 are tame,
we can easily see that † is a solution of the extension problem in D such that � WD d1† is also tame.
Thus, ! can be chosen as the concatenation of �; �3; : : : ; �l . By iterating this procedure, we may assume
that ! is the continuous map corresponding to a single tame 1–simplex � of SD

sub.X/.

Last, let us see that ! is null homotopic rel P�1top. Since X is 1–connected, the extension problem in D

P�2 X

�2

�C0C0

has a solution †, where 0 denotes the constant map to the base point x0 (see Theorem 2.7).

Now, we recall the smooth map  20 W�
2!�2 from [Kihara 2023, Steps 1–3 in the proof of Theorem 8.6].

For 0 < � < 1
2

, set Vi .�/D f.x0; x1; x2/ 2�2 j xi > 1� �g. For a given �0 with 0 < �0 < 1
2

, the smooth
map

 20 W�
2
!�2

is constructed such that

�  20 preserves each closed simplex of �2,

�  20 maps each Vi .�0=2/ to the vertex .i/,

�  20 coincides with 1�2 on �2n
S
Vi .�0/.

Thus, we see from Lemma 3.1(3) that  20 W�
2
sub!�2 is smooth.

Consider the smooth map  20 W�
2
sub!�2 defined for sufficiently small �0 > 0, and define the 2–simplex

†0 of SD
sub.X/ to be the composite

�2sub
 20
�!�2 †

�!X:

Since †0j P�2sub
D �C0C0, †0 yields a homotopy (rel P�1top) between ! and 0, which completes the proof.

Algebraic & Geometric Topology, Volume 24 (2024)



1932 Hiroshi Kihara

4.3 Proof of part (II)

We prove part (II) of Theorem 1.1 (see the introduction of this section). By Proposition 3.7 and an
argument similar to that in Section 4.2, we may assume that X is 1–connected.

Since SD.X/ is Kan (Corollary 2.6(2)), the canonical map SD
aff.X/! SD.X/ extends to a map

SD
aff.X/ˆ! SD.X/;

which induces an isomorphism on the homology (Corollary 3.5). Thus, we have only to show that

�1.S
D
aff.X/ˆ; x0/D 0

for any fixed x0 2X (see Theorem 2.7 and [May 1992, Theorem 13.9]).

Similarly to the proof of part (I), we have the following:

� �1.S
D
aff.X/ˆ; x0/Š �1.jsk2 SD

aff.X/ˆj; x0/.

� Every element of �1.jsk2 SD
aff.X/ˆj; x0/ can be represented by a continuous map

! W .�1top;
P�1top/! .jsk1 SD

aff.X/ˆj; x0/:

Further, ! can be chosen as the concatenation of finitely many 1–cells �1; : : : ; �l , where �j D �j
or N�j for some �j 2NSD

aff.X/1.

We would like to simplify the expression �1 � � � �l for ! and show that ! is null homotopic rel P�1top.

A smooth 1–simplex � WA1!X of a diffeological space X is called tame if � is constant near .�1; 0�
and near Œ1;1/, where A1 is identified with R in a canonical manner. By the following analogue of
Lemma 4.1, we may assume that each �j is tame.

Lemma 4.2 Let X be a diffeological space and � a 1–simplex of SD
aff.X/. Then there exists a 2–simplex

† of SD
aff.X/ such that d0† is the constant map to �..1//, d1† is tame , and d2†D � .

Proof SetU D
˚
.x0; x1; x2/2A2 j�1

2
<x1<

1
2

	
. Choose a nondecreasing smooth function� WR! Œ0; 1�

such that �� 0 near .�1; 0� and �� 1 near Œ1;1/, and a smooth function � W
�
�
1
2
; 1
2

�
! Œ0; 1� such

that � � 1 near 0 and � � 0 near
˚
�
1
2
; 1
2

	
. Then we can construct the desired 2–simplex † in a manner

similar to that in the proof of Lemma 4.1.

Second, let us see that ! can be chosen as the concatenation of �1; : : : ; �l for some �1; : : : ; �l 2NSD
aff.X/1.

For this, consider †j 2 SD
aff.X/2 defined to be the composite

A2 s
�!A1

�j
�!X;

where s.x0; x1; x2/ D .x0 C x2; x1/. Then d2†j D �j ; d1†j is constant, and � 0j WD d0†j satisfies
� 0j .t/D �j .1� t /. Thus, if �j D N�j , then we can replace �j with � 0j . Hence, we may assume that ! is the
concatenation of �1; : : : ; �l .
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.supp0  
2
0 /
ı
f1g

.supp0  
2
0 /
ı
f2g

.supp0  
2
0 /
ı
f0g

.0/

.1/ .2/
.supp1  

2
1 /
ı
f1;2g

.supp1  
2
1 /
ı
f0;2g

.supp1  
2
1 /
ı
f0;1g

Figure 2

Next we show the following lemma. For i D 0; 1; 2, d i WA1!A2 denotes the obvious affine extension
of d i W�1!�2 (see Section 2.2).

Lemma 4.3 Let X be a diffeological space and 0, 1, and 2 tame 1–simplices of SD
aff.X/ such that

d02 D d10, d00 D d01, and d11 D d12. If the extension problem in D

P�2 X

�2

P
i j�1

has a solution , then the extension problem in DS
d iA1 X

A2

P
i

also has a solution.

Proof We choose a solution † of the first extension problem, and use the smooth map  2 W�2!�2

constructed in [Kihara 2023, Steps 1–3 in the proof of Theorem 8.6] to modify and extend †.

To describe the basic properties of  2, we adopt the following notation. For a continuous self-map f
of �p, we set

carrk f D fx 2�
p
j f .x/¤ x; f .x/ 2 skk �

p
g and suppk f D carrk f :

Further, for a subset fi0; : : : ; ikg of f0; : : : ; pg, we set

Vfi0;:::;ikg D f.x0; : : : ; xp/ 2�
p
j xi > xj for i 2 fi0; : : : ; ikg and j … fi0; : : : ; ikgg;

.suppk f /
ı
fi0;:::;ikg

D .suppk f /
ı
\Vfi0;:::;ikg:

For a given �0 with 0 < �0 < 1
2

, the smooth maps  2
k
W �2! �2 (k D 0; 1) are defined such that they

satisfy the following conditions (see Figure 2):
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.1/ .2/

.0/

A0

A1 A2
B0

B1B2

Figure 3

�  2
k

preserves each closed simplex of �2 and  2
k
D id on skk �2 (note that sk0�2 D f.0/; .1/; .2/g

and that sk1�2 D P�2).

� .supp0  
2
0 /
ı
fig
D Vi .�0=2/ and  20 D id on �2n

S
Vi .�0/ (see Section 4.2).

� .supp0  
2
0 /
ı[ .supp1  

2
1 /
ı is a neighborhood of P�2.

� .supp1 
2
1 /
ıD.supp1 

2
1 /
ı
f1;2g

`
.supp1 

2
1 /
ı
f0;2g

`
.supp1 

2
1 /
ı
f0;1g

, and 21 preserves each Vi .�0=2/
and maps a point x of .supp1  

2
1 /
ı
fi0;i1g

to the intersection of the i th face of �2 and the line through
the vertex .i/ and x, where i ¤ i0; i1.

The map  2 W�2!�2 is defined to be the composite

�2
 21
�!�2

 20
�!�2:

Consider the smooth map  2 W�2!�2 for a sufficiently small �0 > 0 and define †0 to be the composite

�2
 2
�!�2 †

�!X:

Then †0 has the following properties:

� †0j P�2 D†j P�2 .

� †0j.supp0 
2
0 /
ı
fig

is constant.

� †0j.supp1 
2
1 /
ı
fi0;i1g

is constant along any ray from the vertex .i/ with i ¤ i0; i1.

We thus extend †0 to A2 as follows. Define †0jAi to be constant for i D 0; 1; 2, and define †0jBi to be
constant along any ray from the vertex .i/ (see Figure 3). Then we can easily see that †0 WA2!X is the
desired solution of the second extension problem.

Let us see that ! can be chosen as the continuous map corresponding to a single tame 1–simplex � of
SD

aff.X/. For this, we first consider the extension problem in D

ƒ21 X

�2

�2j�1C�1j�1
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Then we can use the continuous retraction r W �2 ! ƒ21 depicted in Figure 1 to construct a solution
† W �2! X such that the composite �1 d1

�!�2 †
�!X is constant near each vertex. Define the tame

1–simplex � of SD
aff.X/ by �j�1 D† ı d

1 and consider the extension problem in DS
d iA1 X

A2

�2C�C�1

Since this extension problem has a solution (see Lemma 4.3), ! can be chosen as the concatenation of
�; �3; : : : ; �l . By iterating this procedure, we may assume that ! is the continuous map corresponding to
a single tame 1–simplex � of SD

aff.X/.

Last, let us see that ! is null homotopic rel P�1top. Since X is 1–connected, the extension problem in D

P�2 X

�2

� j
�1
C0C0

has a solution (see Theorem 2.7). Hence, the extension problem in DS
d iA1 X

A2

�C0C0

also has a solution (Lemma 4.3), which shows that ! is null homotopic rel P�1top.

4.4 Proofs of Theorem 1.1 and Corollary 1.2

In this subsection, we complete the proofs of Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1 The proof of the main statement is given in Sections 4.2 and 4.3. Since SD.X/ is
always fibrant (Corollary 2.6(2)), the last statement is obvious.

Let S� denote the category of pointed simplicial sets, and let S�f denote the full subcategory of S�

consisting of fibrant objects (ie pointed Kan complexes). Choosing a fibrant approximation functor
R W S�! S�f , we define the i th homotopy group functor �i W S�! Gr to be the composite

S�
R
�! S�f

�i
�! Gr:

(Strictly speaking, �0 is defined as a Set�–valued functor, where Set� denotes the category of pointed
sets.) Then, up to natural isomorphisms, the functor �i W S�! Gr extends the original homotopy group
functor �i WS�f !Gr and the extension �i WS�!Gr is independent of the choice of R. Further, we can
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see that if a fibrant approximation K!K 0 and a point k of K are given, then �i .K; k/ is canonically
isomorphic to the i th homotopy group of the pointed Kan complex .K 0; k/.

Proof of Corollary 1.2 The result follows immediately from Theorems 1.1 and 2.7.

5 Diffeological principal bundles

In this section, we recall the notions of a diffeological principal bundle and a simplicial principal bundle
(Section 5.1) and establish Theorem 1.3, which characterizes diffeological principal bundles using the
singular functor SD

aff (Section 5.2).

5.1 Diffeological and simplicial principal bundles

In this subsection, we recall the three notions of principal bundles in D; the weakest notion is due to
Iglesias-Zemmour (see Definition 5.1(2)). We also make a brief review on simplicial principal bundles.

Let C be a category with finite products, and G a group in C. Then CG denotes the category of right
G–objects of C. For B 2 C, CG=B denotes the category of objects of CG over B , where B is regarded
as an object of CG with trivial G–action.

Definition 5.1 Let G be a diffeological group, and X a diffeological space.

(1) An object � WE!X of DG=X is called a locally trivial principal G–bundle if there exists an open
cover fUig of X such that for each i , a pullback diagram in D

Ui �G E

Ui X

proj �

with equivariant upper arrow exists; such an open cover fUig is called a trivialization open cover of
� WE!X . An object � WE!X of DG=X is called a D–numerable principal G–bundle if � admits a
D–numerable trivialization open cover (ie a trivialization open cover fUig which admits a smooth partition
of unity subordinate to it).

(2) An object � WE!X of DG=X is called a diffeological principalG–bundle if for any plot p WU !X ,
the pullback p�E! U is a locally trivial principal G–bundle.

(3) A morphism between locally trivial (or diffeological) principalG–bundles � WE!X and � 0 WE 0!X 0

is a commutative diagram in DG of the form

(5-1)
E E 0

X X 0

Of

� � 0

f
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Note that (5-1) is necessarily a pullback diagram in D; see [Iglesias-Zemmour 2013, 8.13 Note 2]. The
categories of locally trivial principal G–bundles, D–numerable principal G–bundles, and diffeological
principal G–bundles are denoted by PDG, PDGnum, and PDGdiff, respectively.

We have the obvious fully faithful embeddings

PDGnum ,! PDG ,! PDGdiff:

We see from the following examples that the two inclusions are proper (or strict). Recall from [Iglesias-
Zemmour 2013, 8.15] that for a diffeological group G and its diffeological subgroup H , the quotient
map � WG!G=H is a diffeological principal H–bundle.

Example 5.2 (1) Let  W Zm!Rn be a monomorphism of abelian groups with � WD .Zm/ dense.
Then the quotient diffeological group T� DRn=� is called an irrational torus. Since the underling
topology of T� is indiscrete, the diffeological principal Zm–bundle � W Rn! T� is not locally
trivial.

(2) Christensen and Wu constructed a nontrivial locally trivial principal R>0–bundle � W P !X with
X 'D �; see [Christensen and Wu 2021, Example 3.12]. By [Christensen and Wu 2021, Theorem
5.10], the locally trivial principal R>0–bundle � is not D–numerable.

To study diffeological principal bundles, we also need the notion of a simplicial principal bundle [May
1992, Chapter IV].

Definition 5.3 Let H be a simplicial group, and K a simplicial set.

(1) An object � WE!K of SH=K is called a principalH–bundle if for any map k W�Œp�!K, there
exists a pullback diagram

�Œp��H E

�Œp� K

Ok

proj

k

with Ok equivariant.

(2) A morphism between principal H–bundles � WE!K and � 0 WE 0!K 0 is a commutative diagram
in SH of the form

(5-2)
E E 0

K K 0

Of

� � 0

f

Note that (5-2) is necessarily a pullback diagram in S. The category of principal H–bundles are
denoted by PSH .
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Remark 5.4 An object � WE!K of SH=K is a principal H–bundle if and only if the action of H on
E is free and � induces the isomorphism E=H N�

Š
�!K; see [May 1992, Definition 18.1].

Let �0 WS! Set denote the 0th component functor, which is naturally isomorphic to the functor S.�Œ0�; � /.
The following simple result is used in the proof of Theorem 1.3.

Lemma 5.5 (1) The composite

D
SD

aff
�! S

�0
�! Set

is naturally isomorphic to the underlying set functor for D.

(2) The functor �0 W S! Set is a right adjoint.

Proof (1) Obvious.

(2) Define the functor d W Set! S to assign to a set A the discrete simplicial set whose 0th component
is A. Then we can easily see that .d; �0/ is an adjoint pair.

For a given set A, the discrete simplicial set dA is usually denoted by A.

5.2 Proof of Theorem 1.3

In this subsection, we prove Theorem 1.3; we begin by proving the “only if” part of (1) and (2), and then
prove the “if” part of (1).

Recall that SD
aff is a right adjoint (Remark 3.2(1)). Then we see that SD

aff.G/ is a simplicial group and that
SD

aff.�/ W S
D
aff.P /! SD

aff.X/ is an object of SSD
aff.G/=S

D
aff.X/.

Proof of the “only if” part of Theorem 1.3(1) Assume given a map k W �Œp� ! SD
aff.X/ and let

� WAp!X be the smooth map corresponding to k. Then we have a pullback diagram in D

Ap �G P

Ap X

proj �

�

with equivariant upper arrow; see [Iglesias-Zemmour 2013, 8.19]. Note that SD
aff is a right adjoint and

consider the commutative diagram in S consisting of two pullback squares with equivariant upper arrows

�Œp��SD
aff.G/ SD

aff.A
p/�SD

aff.G/ SD
aff.P /

�Œp� SD
aff.A

p/ SD
aff.X/

proj proj SD
aff.�/

SD
aff.�/

where �Œp�! SD
aff.A

p/ is the map corresponding to the p–simplex 1Ap of SD
aff.A

p/. Then the outer
rectangle gives the desired local triviality of SD

aff.�/; see [Mac Lane 1998, Exercise 8 on page 72].
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Proof of Theorem 1.3(2) Noting that SD
aff is a right adjoint, we see from part (1) that SD

aff induces a
functor from PDGdiff to PSSD

aff.G/. The faithfulness of the functor follows from Lemma 5.5(1).

Remark 5.6 The functor SD
aff W PDGdiff! PSSD

aff.G/ need not be fully faithful. In fact, let � W P !X

be the locally trivial principal R>0–bundle in Example 5.2(2), and let � 0 W P 0!X be the trivial principal
R>0–bundle. Since X 'D �, the diagram in D

X � X
x

1X

is commutative up to homotopy for x 2X . Thus, by Lemma 3.3, the diagram in S

SD
aff.X/ � SD

aff.X/
x

1SD
aff.X/

is also commutative up to homotopy. Hence, both SD
aff.P / and SD

aff.P
0/ are trivial principal SD

aff.R
>0/–

bundles (see [May 1992, Corollary 20.6]), which shows that SD
aff W PDR>0! PSSD

aff.R
>0/ is not fully

faithful. (From this argument, we also see that the faithful functor SD
aff W D! S is not fully faithful.)

Next we prove the following lemma, which is used in the proof of “if” part of Theorem 1.3(1).

Lemma 5.7 Let � W P ! X be an object of DG=X . Then � W P ! X is a diffeological principal
G–bundle if and only if � satisfies the following conditions:

(i) G acts on P freely and � W P !X induces a bijection P=G!X .

(ii) Given a solid arrow diagram in D

P

Ap X

�

�

there exists a dotted arrow, making the diagram commute.

(iii) The translation function � W P �X P !G, defined by u � �.u; v/D v, is smooth.

Proof We begin with the forward direction.

(i) Obvious.

(ii) By [Iglesias-Zemmour 2013, 8.19],

(5-3) ��P ŠAp �G in DG=Ap:

Hence, � satisfies condition (ii).
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(iii) We have only to show that � W P �X P !G preserves global plots.
Assume given a global plot f WAp! P �X P . Since the components f1 and f2 of f are global
plots of P with � ıf1 D � ıf2, we only have to show that the composite

��P �
Ap
��P ! P �

X
P �
�!G

is smooth, where � WD � ıf1 D � ıf2. By (5-3), we have the identifications

��P �
Ap
��P Š .Ap �G/ �

Ap
.Ap �G/ŠAp �G �G;

under which the composite ��P �Ap �
�P ! P �X P

�
�!G is just the smooth map

Ap �G �G!G

sending .x; g; h/ to g�1h.

For the reverse direction, assume we are given a smooth map � W Ap ! X . By condition (ii), we can
choose a section � of the pullback ��P O�

�!Ap of P �
�!X along �. Define the maps

Ap �G
��

 �
�! � �

�P

by ��.x; g/D �.x/ � g and  �.u/D
�
O�.u/; �

�
�. O�.u//; u

��
, respectively. Then we see that �� and  �

are mutually inverses in DG=Ap.

We give a proof of the “if” part of Theorem 1.3(1), completing the proof of Theorem 1.3.

Proof of the “if” part of Theorem 1.3(1) We only have to show that � W P ! X satisfies conditions
(i)–(iii) in Lemma 5.7. Throughout this proof, bear the following in mind: for a diffeological space Z,

� SD
aff.Z/0 is just the set Z,

� SD
aff.Z/ can be regarded as the set of global plots of Z.

Recall also that SD
aff is a right adjoint (see Remark 3.2(1)).

(i) Consider the pullback diagram in D

Px P

fxg X

�

for x 2X . By applying the singular functor SD
aff, we have the pullback diagram in S

SD
aff.Px/ SD

aff.P /

�Œ0� SD
aff.X/

SD
aff.�/

Since SD
aff.�/ is a principal SD

aff.G/–bundle, SD
aff.Px/Š S

D
aff.G/ in SSD

aff.G/, and hence Px ŠG in SetG
holds (see Lemma 5.5), which shows that � satisfies condition (i).
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(ii) Consider the pullback diagram in D

��P P

Ap X

�

�

and let k denote the simplicial map �Œp�! SD
aff.X/ corresponding to �. Then we have the commutative

diagram in S consisting of two pullback squares

k�SD
aff.P / SD

aff.�
�P / SD

aff.P /

�Œp� SD
aff.A

p/ SD
aff.X/

SD
aff.�/

SD
aff.�/

where �Œp�! SD
aff.A

p/ is the simplicial map corresponding to the p–simplex 1Ap of SD
aff.A

p/; see
[Mac Lane 1998, Exercise 8 on page 72]. Since SD

aff.�/ is a simplicial SD
aff.G/–bundle, k�SD

aff.P /!�Œp�

has a section s. Then the composite

�Œp� s
�! k�SD

aff.P /! SD
aff.P /

defines the desired lifting of � along � .

(iii) We show that the map � W P �X P ! G preserves global plots. Assume given a global plot
f D .f1; f2/ W Ap ! P �X P . Since f1 and f2 are global plots of P with � ı f1 D � ı f2, we set
� D � ı f1 D � ı f2 and let �1 and �2 denote the sections of ��P ! Ap corresponding to f1 and f2,
respectively. Then �1 and �2 correspond to sections of k�SD

aff.P /!�Œp�, which are denoted by s1 and s2,
respectively (see the verification of condition (ii)). Since the principal SD

aff.G/–bundle k�SD
aff.P /!�Œp�

is trivial, there exists a unique p–simplex g of SD
aff.G/ such that s1 �gD s2. We thus see that the composite

Ap
f
�! P �

X
P �
�!G

is just the global plot g.

Remark 5.8 (1) Recall the notion of a diffeological fiber bundle and that of a simplicial fiber bundle
from Section 3.3. We can then use the argument in the proof of the “only if” part of Theorem 1.3(1)
to prove the following: If � WE!X is a diffeological fiber bundle, then SD

aff.�/ WS
D
aff.E/!SD

aff.X/

is a simplicial fiber bundle.
This result along with Theorem 1.1 enables us to apply the Serre spectral sequence [May 1992,
Section 32] to diffeological fiber bundles (cf [Kihara 2023, Remark 3.8(3)]).

(2) If we restrict ourselves to locally trivial principal G–bundles (resp. locally trivial fiber bundles),
then the “only if” part of Theorem 1.3(1) (resp. the result stated in part (1)) remains true for the
functor SD (instead of SD

aff); see [Kihara 2023, Corollary 5.15(1)].
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(3) If we restrict ourselves to diffeological coverings, then the result stated in part (1) remains true for
the functor SD (instead of SD

aff); see Proposition 3.7. Similarly, if G is discrete, then Theorem 1.3
remains true for the functor SD (instead of SD

aff).

6 Characteristic classes of diffeological principal bundles

In this section, we first give a criterion for a simplicial principal bundle to be universal (Section 6.1).
We then use this criterion to determine the homotopy type of SD.X/ for a diffeological space X which
admits a diffeological principal bundle with contractible total space (Proposition 6.3), applying it to the
classifying space BG of a diffeological group G and exceptional diffeological spaces such as irrational
tori and R=Q (Section 6.2). We use the proof of Proposition 6.3 along with Theorems 1.1 and 1.3 to
prove Proposition 1.4 (Section 6.3). We end this section by discussing the sets of characteristic classes
for various classes of principal bundles and their relation (Section 6.4).

6.1 Universal simplicial principal bundles

In this subsection, we recall the basics of universal simplicial principal bundles and give a criterion for a
simplicial principal bundle to be universal.

Let H be a simplicial group. A principal H–bundle $ WE!L is called universal if L is Kan (ie fibrant
in S) and the natural map

ŒK;L�! fisomorphism classes of principal H–bundles over Kg; Œf � 7! Œf �E�;

is bijective; the base L of a universal principal H–bundle $ W E ! L is called a classifying complex
of H . By a simple argument, a classifying complex of H is unique up to homotopy. Recall that the
W –construction q WWH !WH is a universal principal H–bundle [Goerss and Jardine 1999, Chapter V,
Section 4; May 1992, Section 21] and that WH is contractible [May 1992, Proposition 21.5].

Lemma 6.1 Let H be a simplicial group , and $ WE! L be a principal H–bundle. Then the following
are equivalent :

(i) $ WE! L is universal.

(ii) L is Kan and the canonical map E!� is a weak equivalence.

(iii) E is a contractible Kan complex.

Proof (ii)() (iii) Noticing that H is Kan [May 1992, Theorem 17.1], we see that L is Kan if and
only if E is Kan (see [May 1992, Proposition 7.5]), and hence that (ii)() (iii).

(i)() (iii) We have only to prove that under the assumption that L is Kan,

$ WE! L is universal () E is contractible

(see [May 1992, Proposition 7.5]).
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Since q WWH !WH is universal, we have a morphism of principal H–bundles

(6-1)
E WH

L WH

$ q

'

Note thatH and the four simplicial sets in (6-1) are Kan and consider the morphism between the homotopy
exact sequences induced by (6-1). Then we have the equivalences

$ WE! L is universal () ' W L!WH is a homotopy equivalence () E is contractible.

Remark 6.2 Lemma 6.1 can be regarded as a variant of [Goerss and Jardine 1999, Chapter V, Theorem
3.9]. However, we record this lemma along with its proof for the following two reasons: one reason is to
avoid using the model structure on SG (see [Goerss and Jardine 1999, Section V.2]) and the other reason
is to emphasize the importance of the fibrancy of the base (cf the proof of Proposition 6.3).

6.2 Diffeological principal bundles with contractible total space

In this subsection, we determine the homotopy type of SD.X/ for a diffeological space X which admits
a diffeological principal bundle � WE!X with E weakly contractible. Here, a diffeological space Z is
called weakly contractible if the canonical map Z!� is a weak equivalence. We can easily see that

Z is weakly contractible () SD.Z/' � () �D
� .Z; z/D 0 for any z 2Z

(see Remark 2.8(1), Corollary 2.6(2), and Theorem 2.7).

Proposition 6.3 Let G be a diffeological group and � WE!X a diffeological principal G–bundle with
E weakly contractible. Then SD.X/ is a classifying complex of the simplicial group SD.G/.

Proof By Theorem 1.3, SD
aff.�/ W S

D
aff.E/! SD

aff.X/ is a principal SD
aff.G/–bundle. Let us construct a

principal SD
aff.G/–bundle SD

aff.�/
0 W SD

aff.E/
0! SD

aff.X/ˆ (see Section 4.1) and a morphism of principal
SD

aff.G/–bundles

SD
aff.E/ SD

aff.E/
0

SD
aff.X/ SD

aff.X/ˆ

SD
aff.�/ SD

aff.�/
0

First, choose a classifying map 'E W SD
aff.X/!W SD

aff.G/. Then note that W SD
aff.G/ is Kan and choose

an extension '0E W S
D
aff.X/ˆ!W SD

aff.G/. By setting SD
aff.E/

0D '0E
�
WSD

aff.G/, we then obtain the desired
diagram.

Thus, we can use [Gabriel and Zisman 1967, Chapter III, Theorem 4.2] to see that SD
aff.E/ ,! SD

aff.E/
0 is

a weak equivalence. Noticing that SD
aff.E/!� is a weak equivalence (see Theorem 1.1), we see from

Lemma 6.1 that SD
aff.�/

0 W SD
aff.E/

0! SD
aff.X/ˆ is a universal principal SD

aff.G/–bundle. Hence, SD.X/ is
a classifying complex of SD

aff.G/, and hence of SD.G/ (see Theorem 1.1).

Algebraic & Geometric Topology, Volume 24 (2024)



1944 Hiroshi Kihara

Corollary 6.4 Let G be a diffeological group. Then the singular complex SD.BG/ of the classifying
space BG is a classifying complex of the simplicial group SD.G/.

Proof Recall from [Christensen and Wu 2021, Corollary 5.5] that EG is smoothly contractible. Then
the result is immediate from Proposition 6.3.

Corollary 6.5 Suppose that X is a pointed diffeological space which has the weakly contractible
universal covering. Then the singular complex SD.X/ is the Eilenberg–Mac Lane complex K.�D

1 .X/; 1/.
In particular , the (co)homology of X is just the (co)homology of the group �D

1 .X/.

Proof Recall from [Iglesias-Zemmour 2013, 8.26] that the universal covering � WZ!X is a diffeological
principal �D

1 .X/–bundle. Then the result follows from Proposition 6.3.

Remark 6.6 (1) We can prove Corollary 6.4, using neither the functor SD
aff nor Theorem 1.1. In

fact, by Remark 5.8(2) and Lemma 6.1, SD.�G/ W S
D.EG/! SD.BG/ is a universal principal

SD.G/–bundle. However, the construction in the proof of Proposition 6.3 is useful in the proof of
Proposition 1.4.

(2) We can also prove Corollary 6.5, using neither the functor SD
aff nor Theorem 1.1. In fact, Corollary 6.5

follows from Proposition 3.7. Alternatively, Corollary 6.5 follows from [Iglesias-Zemmour 2013,
8.24] and Theorem 2.7.

Corollary 6.5 determines the homotopy type of SD.X/, and hence the (co)homology of X for well-known
homogeneous diffeological spaces X such as irrational tori and R=Q.

Example 6.7 (1) Let  W Zm!Rn be a monomorphism of abelian groups with � WD .Zm/ dense,
and consider the irrational torus T� DRn=� . By Corollary 6.5, the singular complex SD.T�/ of
T� is just the m–dimensional torus K.Zm; 1/. Hence, H�.T� IZ/Šƒ.Zm/ holds.

(2) The singular complex SD.R=Q/ of the quotient diffeological group R=Q is just the rationalized
circleK.Q; 1/, and hence zH�.R=QIZ/DH1.R=QIZ/DQ. More generally, let A be a countable
subgroup of F (DR;C). Then the singular complex SD.F=A/ of the quotient diffeological group
F=A is just K.A; 1/.

Remark 6.8 Iglesias-Zemmour [2024, Corollary, page 253] and Kuribayashi [2020, Remark 2.9; 2021,
Proposition 3.2] obtained calculational results similar to Example 6.7(1) for other cohomology theories of
irrational tori. On the other hand, the de Rham cohomology H�

dR
.T�/ is isomorphic to ƒ.Rn/ [Iglesias-

Zemmour 2013, Exercise 119], which along with Example 6.7(1), shows that the de Rham theorem does
not hold for irrational tori. This motivates the study of a forthcoming paper [Kihara � 2024].

Next we introduce new aspherical homogeneous diffeological spaces, using Corollary 6.5.

Example 6.9 Let k be a countable subfield of F (DR;C) (eg an algebraic number field or a countable
extension of Q such as Q\R or Q). For an algebraic group G over k, we can consider the homogeneous
diffeological space G.F/=G.k/.
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If G is a unipotent algebraic group over k, then the exponential map exp W g! G is an isomorphism
of algebraic varieties, where g is the Lie algebra of G; see [Milne 2017, page 289]. Thus, we have the
diffeomorphism

g.F/
exp
Š
�!G.F/

and the universal covering
G.F/!G.F/=G.k/

of G.F/=G.k/. Hence, by Corollary 6.5,

SD.G.F/=G.k//DK.G.k/; 1/;

so the (co)homology of G.F/=G.k/ is that of the group G.k/. The group Un.k/ of upper triangular
unipotent matrices and the Hisenberg group Hn.k/ (see [Onishchik and Vinberg 1994, page 54]) are
typical examples of unipotent algebraic groups.

Further if G is defined over a subring k0 of k, then

SD.G.F/=G.k0//DK.G.k0/; 1/:

We are interested in the case where k0 is the ring Ok of integers of an algebraic number field k. If k
is an algebraic number field of degree n with Q ¤ k ¤ R, then k0 (D Ok) is a finitely generated free
Z–module of rank n, and hence is dense in R.

6.3 Proof of Proposition 1.4

In this subsection, we prove Proposition 1.4.

Proof of Proposition 1.4 Let �G WEG! BG denote the universal D–numerable principal G–bundle
constructed in [Christensen and Wu 2021]. Then by Theorem 1.3(1), SD

aff.�G/ W S
D
aff.EG/! SD

aff.BG/ is
a principal SD

aff.G/–bundle.

We prove the result in two steps.

Step 1: construction of a universal principal SD
aff.G/–bundle which is an extension of SD

aff.�G /

Recall from [Christensen and Wu 2021, Corollary 5.5] that EG is smoothly contractible. Then, by the
proof of Proposition 6.3, we have a universal principal SD

aff.G/–bundle SD
aff.�G/

0 WSD
aff.EG/

0!SD
aff.BG/ˆ

and a morphism of principal SD
aff.G/–bundles

SD
aff.EG/ SD

aff.EG/
0

SD
aff.BG/ SD

aff.BG/ˆ

SD
aff.�G/ SD

aff.�G/
0

Step 2: definition of ˛.P/ Let � W P !X be a diffeological principal G–bundle. Since

SD
aff.�/ W S

D
aff.P /! SD

aff.X/

is a principal SD
aff.G/–bundle (Theorem 1.3(1)), we have a classifying map 'P W SD

aff.X/! SD
aff.BG/ˆ.
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Note that H�.ZIA/ WD H�Hom.ZSD.Z/; A/ Š H�Hom.ZSD
aff.Z/; A/ (see Corollary 3.5) and that

H�Hom.ZK;A/ ŠH�Hom.ZKˆ; A/. Then we can define ˛.P / 2Hk.X IA/ by ˛.P / D '�P˛. We
can use Theorem 1.3 to show that ˛.f �P /D f �˛.P /, and hence that ˛. � / defines a characteristic class
for diffeological principal G–bundles.

Similarly, we can use Theorem 1.3 to show that ˛. � / extends the characteristic class ˛. � / for D–numerable
principal G–bundles (see Section 1 for the definition).

Remark 6.10 The author does not know whether SD
aff.BG/ is always Kan. If SD

aff.BG/ is always Kan,
the proof of Proposition 1.4 becomes simpler (see Lemma 6.1).

Let us apply Proposition 1.4 to special cases.

Example 6.11 (1) Let � WZ!X be a Galois covering with structure group �; see [Iglesias-Zemmour
2013, page 262]. Then for a given class ˛2Hk.�IA/ (ŠHk.B�IA/), the class ˛.Z/2Hk.X IA/

is defined by Proposition 1.4.

(2) Let G be a diffeological group and H a diffeological subgroup of G. Then for a given class
˛ 2 Hk.BH IA/, the class ˛.G/ 2 Hk.G=H IA/ is defined by Proposition 1.4; see [Iglesias-
Zemmour 2013, 8.15].

If a relevant diffeological principal bundle in Example 6.11 happens to be D–numerable, then the class at
issue is just the image of ˛ under the homomorphism induced by the classifying map. However, this is not
the case in general. See the following example, which specializes both parts (1) and (2) of Example 6.11.

Example 6.12 Let  W Zm!Rn be a monomorphism of abelian groups with � WD .Zm/ dense, and
consider the diffeological principal Zm–bundle P WDRn �

�!T� over the irrational torus T� (see Examples
6.7(1) and 6.11(2)); note that T� is a diffeological group and that � is the universal covering of T� .

Since SD
aff.T�/ is already Kan (see [Christensen and Wu 2014, Proposition 4.30 or Theorem 4.34]),

SD
aff.�/ WS

D
aff.P /!SD

aff.T�/ is a universal principal Zm–bundle (see Step 1 in the proof of Proposition 1.4),
and hence, we have a classifying map 'P W SD

aff.T�/ ! SD
aff.BZm/ˆ which is obviously a homotopy

equivalence in S.

Since SD
aff.BZm/ˆ is just the Eilenberg–Mac Lane complex K.Zm; 1/, H�.BZmIA/ Š .ƒZm/˝ A.

Thus, for any ˛ 2 H�.BZmIA/, the characteristic class ˛.P / 2 H�.T� IA/ is just the image '�P .˛/
under the isomorphism H�.T� IA/

'�P
Š
 �H�.BZmIA/.

On the other hand, since � W P ! T� is not locally trivial (see Example 5.2(1)), P has no classifying
map to BZm. Further, every nonzero element ˇ 2 zH�.T� IA/ is not contained in the image of the
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homomorphism induced by any smooth map f W T� ! BZm. In fact, we have the commutative diagram

SD.T�/ SD.BZm/

S. zT�/ S.eBZm/

SD.f /

S. Qf /

(see Section 2.3). Since SD.BZm/! S.eBZm/ is a homotopy equivalence (see [Kihara 2023, Corollary
5.16]) and S. zT�/' �, SD.f / is homotopic to a constant map. (We actually show that BZm is smoothly
homotopy equivalent to the torus Tm, and hence that f is smoothly homotopic to a constant map; see a
forthcoming paper.)

6.4 Sets of characteristic classes for the classes PDG , PDGnum, and PDGdiff

In this subsection, we discuss the sets of characteristic classes for the classes (or categories) PDG,
PDGnum, and PDGdiff (see Definition 5.1) and their relation.

Let P denote one of the categories PDG, PDGnum, and PDGdiff. For an abelian group A, char.PIA/
denotes the set of characteristic classes with coefficients in A for the class P. Then, by [Christensen and
Wu 2021, Theorem 5.10] and Proposition 1.4, we have the natural bijection

char.PDGnumIA/ŠH
�.BGIA/

and the retract diagram

char.PDGnumIA/ char.PDGdiffIA/ char.PDGnumIA/
ext res

1

where res is the obvious restriction map and ext is the extension map introduced in Proposition 1.4.

We can also show that char.PDGIA/Š char.PDGnumIA/. To prove this, we define the map

ext W char.PDGnumIA/! char.PDGIA/

as follows. Let ˛. � / be an element of char.PDGnumIA/ corresponding to ˛ 2H�.BGIA/. For a given
locally trivial principal G–bundle � W P !X , consider the CW –approximation jSD.X/jD

pX
�!X in D,

which is the counit of the adjoint pair (j � jD; SD); see Remark 2.8(2) and [Kihara 2023, Section 3]. Since
we can prove that every CW –complex in D is smoothly paracompact (see [Kihara � 2024]), the pullback
p�XP is a D–numerable principal G–bundle. Thus, we can define the characteristic class ˛.P / of P by
˛.P /D ˛.p�XP / under the identification H�.X IA/ŠH�.jSD.X/jD; A/. Then it is clear that the map
ext W char.PDGnumIA/! char.PDGIA/ and the obvious restriction map

res W char.PDGIA/! char.PDGnumIA/

are mutually inverses. We can easily see from Theorem 1.3 that ext W char.PDGnumIA/! char.PDGIA/

is just the corestriction of ext W char.PDGnumIA/! char.PDGdiffIA/. (Recall that the class of locally
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trivial principal G–bundles also does not have the homotopy invariance property with respect to pullback
and hence that it has no classifying space; see [Christensen and Wu 2021, Section 3].)

We end this section by raising a problem on diffeological principal bundles.

Problem Let X be a CW –complex in D (or more generally, a cofibrant diffeological space); see [Kihara
2023, Section 3.1]. Is every diffeological principal G–bundle over X locally trivial?

This problem asks whether there exists a non-locally-trivial diffeological principal bundle over a nice
diffeological space; all the non-locally-trivial diffeological principal bundles the author knows are ones
over bad diffeological spaces.

If the problem is solved affirmatively, we can use the CW –approximation jSD.X/jD
pX
�!X to directly

construct the map
char.PDGnumIA/

ext
�! char.PDGdiffIA/

which is the inverse of char.PDGdiffIA/
res
�! char.PDGnumIA/.

Further, if the problem is solved affirmatively, then we can replace the singular functor SD
aff with SD in

Theorem 1.3 and Remark 5.8(1).

Remark 6.13 (1) Results similar to those mentioned above hold in the category T of topological spaces.
More precisely, the homotopy invariance property with respect to pullback need not hold for topological
principal G–bundles which are not numerable, and hence the class of topological principal G–bundles
does not have a classifying space; see [Andrade 2013; Christensen and Wu 2021, Section 3; Goodwillie
2012]. However, we have two ways of extending the characteristic class associated to a cohomology class
˛ of the (topological) classifying space BG; one uses the CW –approximation jS.X/j pX�!X of the base
and the other uses the theory of simplicial principal bundles. We can easily see that they define the same
extension; the resulting map is denoted by

char.PTGnumIA/
ext
�! char.PTGIA/;

where char.PTGnumIA/ and char.PTGIA/ are defined in a way similar to the diffeological case. We
then see that

char.PTGnumIA/ŠH
�.BGIA/

and that
char.PTGnumIA/

ext
res
�! � char.PTGIA/

are mutually inverses.

The results here remain true even if T is replaced with the category C0 of arc-generated spaces; see
[Kihara 2023, Proposition 5.14(1)].

(2) Since the underlying topological space functor Q� W D! C0 preserves finite products [Kihara 2019,
Proposition 2.13], it induces the functor

Q� W PDG! PC0 zG
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(see [Kihara 2023, Lemma 5.7 and Remark 5.8]). Thus, we use this functor to study the relation between
characteristic classes of smooth principal G–bundles and ones of continuous principal G–bundles.

The natural inclusion SDX ,! S zX (see Section 2.3) induces the natural homomorphism

H�.X IA/
 X
 �H�. zX IA/;

which along with [Kihara 2023, Proposition 5.14], defines the horizontal arrows in the commutative
diagram

H�.BGIA/ H�.B zGIA/

char.PDGnumIA/ char.PC0 zGnumIA/

char.PDGIA/ char.PC0 zGIA/

Š

 BG

Š

ext

Š ext

Š

We can easily see that the equality

. BG˛/.P /D  X .˛. zP //

holds for P 2 PDG.

If G is a Lie group (or more generally, in the class VD), then H�.BGIA/  BG
 �� H�.B zGIA/ is an

isomorphism (see [Kihara 2023, Theorem 11.2, and Corollaries 1.6 and 5.16]), and hence all the arrows
in the above commutative diagram are bijective. (Here, a Lie group is defined to be a group in the
category C1 of C1–manifolds in the sense of [Kriegl and Michor 1997, Section 27]; see [Kihara 2023,
Section 2.2].)
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Natural symmetries of secondary Hochschild homology
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JOHN FRANCIS

ADAM HOWARD

We identify the group of framed diffeomorphisms of the torus as a semidirect product of the torus with the
braid group on three strands; we also identify the topological monoid of framed local diffeomorphisms of
the torus in similar terms. It follows that the framed mapping class group is this braid group. We show
that the group of framed diffeomorphisms of the torus acts on twice-iterated Hochschild homology, and
explain how this recovers a host of familiar symmetries. In the case of cartesian monoidal structures, we
show that this action extends to the monoid of framed local diffeomorphisms of the torus. Based on this,
we propose a definition of an unstable secondary cyclotomic structure, and show that iterated Hochschild
homology possesses such in the cartesian monoidal setting.
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Introduction 1953

1. Moduli and isogeny of framed tori 1970

2. Natural symmetries of secondary Hochschild homology 1986

Appendix A. Some facts about continuous monoids 1998

Appendix B. Some facts about the braid group and braid monoid 2002

References 2008

Introduction

Here are our five main results, all of which are motivated by the study of factorization homology as
developed in [Ayala and Francis 2015]. We direct a reader to the body of the paper for definitions of
terms and notation, in particular of the highlighted terms, as well as precise statements and proofs.

Regard the 2–torus T2 as a framed 2–manifold via a translation-invariant framing.

Theorem X(2)(a) There is an equivalence between continuous groups

T2 Ì Braid3
'�! Difffr.T2/:

This homomorphism is given as follows:

� Translation in the group T2 defines a continuous homomorphism T2! Difffr.T2/.
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� Sheering in each coordinate supplies two extensions from semidirect products,

T2 ÌU1
Z! Difffr.T2/ T2 ÌU2

Z;

where U1 D
�

1
0

1
1

�
and U2 D

�
1
�1

0
1

�
, thereby resulting in a single extension

(0-0-1) T2 Ì hU1;U2i ! Difffr.T2/;

involving the free group on the two abstract generators U1 and U2.

� As there is an equality of matrices U1U2U1 D
�

0
1
�1

0

�
D U2U1U2, the restrictions of (0-0-1) along the

two abstractly isomorphic subgroups T2 Ì hU1U2U1i Š T2 Ì ZŠ T2 Ì hU2U1U2i can be identified,
thereby supplying a morphism from the coequalizer among continuous groups

(0-0-2) T2 Ì Braid3 ' T2 Ì hU1;U2 j U1U2U2 D U2U1U2i ! Difffr.T2/;

involving a standard presentation of the braid group on three strands.

Theorem X(2)(b) There is an equivalence between continuous monoids

T2 Ì zEC2 .Z/ '�! Immfr.T2/;

involving a central extension among monoids

Z! zEC2 .Z/! EC
2
.Z/ WD fA 2Mat2�2.Z/ j det.A/ > 0g:

Proposition 0.3.4 Let X be an1–category. Then the morphism zEC2 .Z/! EC
2
.Z/! EndGroups.T2/

determines an action by zEC2 .Z/ on the 1–category Xg:finT 2
of finite-genuine T2–modules in X. A

finite-genuine T2–module in X that is coherently invariant with respect to this zEC2 .Z/–action is simply an
Immfr.T2/op–module in X (see Remark 0.3.5):

ModImmfr.T2/op.X/' .X
g:finT 2

/
zEC2 .Z/:

In particular , there is a forgetful functor

ModImmfr.T2/op.X/! Xg:finT 2
:

We define an unstable secondary cyclotomic structure to be an zEC2 .Z/–invariant finite-genuine T2–module.
(See Remark 0.3.2.)

Theorem Y.1 Let V be a symmetric monoidal 1–category that is˝–presentable. Let A be a 2–algebra
in V. Via factorization homology, there is a canonical action

T2 Ì Braid3 ' Difffr.T2/Õ HH.2/.A/

on the twice-iterated Hochschild homology of A.

This action is given as follows:

� The action T2 Õ HH.2/.A/ is Connes’ cyclic operators.

� For i D 1; 2, the extension T2 ÌUi
Z Õ HH.2/.A/ is a canonical sheering action of the Connes

cyclic operators.

Algebraic & Geometric Topology, Volume 24 (2024)
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� There is an identification between the actions Z Õ
U1U2U1

HH.2/.A/ and Z Õ
U2U1U2

HH.2/.A/, thereby
giving the action T2 Ì Braid3 Õ HH.2/.A/.

Theorem Y.2 Let X be a presentable1–category in which products distribute over colimits. Regard X

as a symmetric monoidal 1–category via its cartesian monoidal structure. Let A be a 2–algebra in X.
Via factorization homology, the twice-iterated Hochschild homology of A is canonically endowed with
an unstable secondary cyclotomic structure:�

.T2 Ì zEC2 .Z//
op
' Immfr.T2/op Õ HH.2/.A/

�
2 .Xg:finT 2

/
zEC2 .Z/:

In other words, HH.2/.A/ canonically has the structure of an zEC2 .Z/–invariant finite-genuine T2–module.

The remainder of this introduction contextualizes then restates these results.

Conventions � We work in the1–category Spaces of spaces, or1–groupoids, an object in which is a
space. This1–category can be presented as the1–categorical localization of the ordinary category of
compactly generated Hausdorff topological spaces that are homotopy equivalent with a CW complex,
localized on the weak homotopy equivalences. So we present some objects in Spaces by naming a
topological space.

� By a pullback square among spaces we mean a pullback square in the1–category Spaces. Should the
square be presented by a homotopy-commutative square among topological spaces, then the canonical
map from the initial term in the square to the homotopy pullback is a weak homotopy equivalence.

� By a continuous group (resp. continuous monoid) we mean a group-object (resp. monoid-object) in
Spaces. A continuous monoid N determines a pointed .1; 1/–category BN , which can be presented
by the Segal space �op Bar�.N /�����! Spaces, which is the bar construction of N . For X 2 X an object in an
1–category, and for N a continuous monoid, an action of N on X , denoted by N Õ X , is an extension
hX iW �!BN hNÕX i

�����! X. The1–category of (left) N –modules in X is

ModN .X/ WD Fun.BN;X/:

Every continuous group can be strictified to a topological group (ie a group-object in the ordinary category
of topological spaces), but maps among such are more flexible (corresponding to maps of loop spaces),
as not all topological groups are cofibrant with respect to the usual model structure.

� For G Õ X an action of a continuous group on a space, the space of coinvariants is the colimit

X=G WD colim.BG hGÕX i
�����! Spaces/ 2 Spaces:

Should the action G Õ X be presented by a continuous action of a topological group on a topological
space, then this space of coinvariants can be presented by the homotopy coinvariants.

� We work with1–operads, as developed in [Lurie 2017]. As such, they are implicitly symmetric. Some
1–operads are presented as discrete operads, such as Assoc, while some are presented as topological
operads, such as the little 2–disks operad E2.

Algebraic & Geometric Topology, Volume 24 (2024)
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0.1 Moduli and isogeny of framed tori

Here we restate our first result, which identifies the entire symmetries of a framed torus.

The braid group on three strands can be presented as

(0-1-1) Braid3 Š h�1; �2 j �1�2�1 D �2�1�2i:

Through this presentation, there is a standard representation

(0-1-2) ˆ W Braid3
h�1 7!U1;�2 7!U2i
�����������! GL2.Z/ where U1 WD

�
1 1

0 1

�
and U2 WD

�
1 0

�1 1

�
:

The homomorphism ˆ defines an action Braid3
ˆ�! GL2.Z/Õ T2 as a topological group. This action

defines a topological group:
T2 Ì Braid3:

The following result, which is essentially due to Milnor, is our starting point.

Proposition 0.1.1 [Milnor 1971, Section 10] The image of ˆ is the subgroup SL2.Z/; the kernel of
ˆ is central , and is freely generated by the element .�1�2/

6 2 Braid3. Equivalently, ˆ fits into a central
extension among groups:

(0-1-3) 1! Z
h.�1�2/

6i
������! Braid3

ˆ�! SL2.Z/! 1:

Furthermore , this central extension (0-1-3) is classified by the element

ŒBSL2.Z/
B.R˝Z/

������!BSL2.R/' B2Z� 2 H2.SL2.Z/IZ/:

That is , there is a canonical top horizontal homomorphism defining a pullback among groups:

Braid3
//

ˆ
��

�SL2.R/

universal cover
��

SL2.Z/ standard

R˝Z
// SL2.R/

Consider the subgroup GLC
2
.R/�GL2.R/ consisting of those 2�2 matrices with positive determinant —

it is the connected component of the identity matrix. Consider the submonoid

R˝Z W EC2 .Z/� GLC
2
.R/

consisting of those 2� 2 matrices with positive determinant whose entries are integers. Consider the
pullback1 among monoids

(0-1-4)

zEC2 .Z/

‰
��

// �GL
C

2 .R/

universal cover
��

EC2 .Z/
R˝Z

// GLC
2
.R/

1See Remark B.2.4 for an explicit description of the monoid zEC2 .Z/.
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This morphism ‰ supplies a canonical action zEC2 .Z/
‰
�!EC2 .Z/Õ T2 as a topological group. This action

defines a topological monoid
T2 Ì zEC2 .Z/ :

Convention By way of Section B.1, in particular Corollary B.1.2, we regard all actions of Braid3 and
zEC2 .Z/ as left-actions.

For ' W �T2 Š �2
T2 a framing of the torus, we introduce as Definition 1.3.8 the continuous group of framed

diffeomorphisms, and the continuous monoid of framed local diffeomorphisms of the torus,

Difffr.T2; '/ and Immfr.T2; '/:

For '0 the standard framing of T2, which is invariant with respect to translation in the torus, we
simply write

Difffr.T2/ WD Difffr.T2; '0/ and Immfr.T2/ WD Immfr.T2; '0/:

Theorem X (1) The map from the set of homotopy classes of framings of T2 to the set of framed-
diffeomorphism-types of tori ,

�0 Fr.T2/! �0M
fr
1 ;

is canonically equivalent to the map

Z2
�Z=2Z! Z�0 given by

��
u

v

�
; �

�
7! gcd.u; v/:

Furthermore , a framing ' 2 Fr.T2/ is homotopic to one that is translation invariant if and only if it
is carried to the 0–component of Mfr

1 .

(2) Let ' W �T2 Š �T2 be a framing of the torus.

(a) There is a canonical identification of the continuous group of framed diffeomorphisms of
.T2; '/:

Difffr.T2; '/'

�
T2 Ì Braid3 if ' is homotopic to a translation-invariant framing;
(T2 Ì Z/�Z if ' is not homotopic to a translation-invariant framing:

(b) There is a canonical identification of the continuous monoid of framed local diffeomorphisms
of .T2; '/:

Immfr.T2; '/'

�
T2 Ì zEC2 .Z/ if ' is homotopic to a translation-invariant framing;
(T2 Ì.ZÌN�//�Z if ' is not homotopic to a translation-invariant framing:

(See Notation 1.4.1 for a description of lower semidirect products.)

Taking path-components, Theorem X(2)(a) has the following immediate consequence:

Corollary 0.1.2 Let ' be a framing of the torus. There is a canonical identification of the framed
mapping class group of .T2; '/ as a subgroup of the braid group on three strands:

MCGfr.T2; '/� Braid3:
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If ' is homotopic with a translation-invariant framing , this subgroup is entire. If ' is not homotopic with
a translation-invariant framing , this subgroup is conjugate with a standard subgroup ,

MCGfr.T2; '/
conjugate
Š h�1; .�1�2/

6
i Š Z�Z;

which is abstractly isomorphic with Z�Z.

Remark 0.1.3 Consider the moduli space Mfr
1 of framed tori. Theorem X(1) and (2)(a) can be phrased as

the assertion that Mfr
1 has Z�0–many path-components, with the 0–path-component the space of homotopy

coinvariants .CP1/2=Braid3
with respect to the action Braid3

ˆ�! GL2.Z/ Õ B2Z2 ' .CP1/�2, and
each other path-component the space .CP1/2=Z �BZ in which the coinvariants are with respect to
the action Z hU1i

���! GL2.Z/Õ B2Z2 ' .CP1/�2. A neat result of Milnor [1971, Section 10] gives an
isomorphism between groups:

Braid3 Š �1.S
3
XTrefoil/:

Using that S3 XTrefoil is a path-connected 1–type, this isomorphism reveals that the 0–path-component
.Mfr

1/0 �Mfr
1 fits into a fiber sequence of spaces:

.CP1/2! .Mfr
1/0! .S3

XTrefoil/:

Dehn [1938, Section 6] identified the oriented mapping class group of a punctured torus with parametrized
boundary as the braid group on three strands, as it is equipped with a homomorphism to the oriented
mapping class group of the torus. Through Corollary 0.1.2, this results in an identification between
these mapping class groups. The next result lifts this identification to continuous groups; it is proved
in Section 1.4.

Corollary 0.1.4 Fix a smooth framed embedding from the closed 2–disk D2 ,! T2 extending the
inclusion f0g ,! T2 of the identity element. There are canonical identifications2 among continuous
groups over Diff.T2/:

Difffr.T2 rel 0/' Braid3 ' Diff.T2 rel D2/:

In particular , there are canonical isomorphisms among groups over MCG.T2/:

MCGfr.T2/Š Braid3 ŠMCG.T2
XB2 rel @/;

where B2 �D2 is the open 2–ball.

Using Theorem X(2)(a), the presentation (0-1-1) of the braid group Braid3 lends to a simple (fully
homotopy coherent) description of an action by Difffr.T2/. We articulate this description as the following
result, which is proved at the end of Section 1.5, and requires a bit of setup to state.

2This composite equivalence of continuous groups can be witnessed by a span among continuous groups, Difffr.T2 rel 0/ ' �

Difffr.T2 rel D2/! Diff.T2 rel D2/, in which the leftward map is an equivalence via routine methods. The more novel aspect
of this result can then be rephrased as the rightward map being an equivalence. A quick explanation of this fact is that the space
of framings of T2, fixed at 0 2 T2, has contractible path-components; see Theorem X(1).
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Setup Let X be an1–category. Let G be a continuous group. Consider the1–category ModG.X/ of
G–modules in X. Let T be an automorphism of the continuous group G. Via pullback, T determines
an automorphism T � W .G Õ X / 7! .G T

�! G Õ X / of ModG.X/. Denote the 1–category of T –
invariant G–modules by ModG.X/

hT i, an object in which is a G–module .G Õ X / in X together with
an identification .G T

�! G Õ X / ' .G Õ X / between G–modules in X. Similarly, for S and T

automorphisms of G, the1–category of G–modules that are both S– and T –invariant is ModG.X/
hS;T i,

an object in which is a G–module .G Õ X / in X together with identifications .G S
�!G Õ X /

S

' .G Õ X /

and .G T
�!G Õ X /

T

' .G Õ X / between G–modules in X.

Now, via the standard homomorphism GL2.Z/! AutGroups.T2/, regard the matrices

U1 D

�
1 1

0 1

�
; U2 D

�
1 0

�1 1

�
and RD

�
0 1

�1 0

�
as automorphisms of the continuous group T2.

Corollary 0.1.5 Let X be an1–category. There is a pullback diagram among1–categories

ModDifffr.T2/.X/
//

��

ModT2.X/hU1;U2i

��

ModT2.X/hRi // ModT2.X/hR;Ri

In particular , for X 2 X an object , an action Difffr.T2/Õ X is

(1) an action T2 Õ
˛

X ,

(2) an identification ˛ ıR
R

' ˛ of this action ˛ with the action T2 R
�! T2 Õ

˛
X ,

(3) for i D 1; 2, extensions of R to identifications ˛ ıUi

Ui

' ˛.

A generalization of Smale’s conjecture to Haken manifolds, proved by Hatcher [1976; 1983], gives that
the standard inclusion is an equivalence between continuous groups:

Aff W T3 Ì GL3.Z/
'�! Diff.T3/:

In particular, there is an identification of the mapping class group: MCG.T3/Š GL3.Z/. Using these
identifications, we expect our methods could be used to prove the following:

Conjecture 1 Consider the 3–torus , T3 ŠR3
=Z3 , as it is equipped with its standard framing. There is a

canonical identification between continuous groups

Difffr.T3/' .T3 Ì�.SL3.R/=SL3.Z///� .�
2S3
��3S3/3 ��4S3;

in which the semidirect product is with respect to the action �.SL3.R/=SL3.Z//
Puppe
���! SL3.Z/Õ T3. In

particular , there is a central extension among groups:

1! Z3
� .Z=2Z/

2
!MCGfr.T3/! SL3.Z/! 1:
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0.2 Natural symmetries of secondary Hochschild homology

0.2.1 Hochschild homology

Notation 0.2.1 In Section 0.2.1 we fix W to be an ˝–presentable symmetric monoidal1–category.

We briefly recall a definition of the Hochschild homology and record its natural symmetries. (See
[Loday 1992] for a complete account.) Let B 2 AlgAssoc.W/ be an associative algebra. Via left and right
translation, regard the underlying object B 2W as a .B;B/–bimodule. For M a .B;B/–bimodule for B,
the Hochschild homology (of B with coefficients in M ) is

HH.B;M / WD B˝Bop˝B M ' colim.�op B˝�˝M
������!W/;

which can be constructed as the colimit of a simplicial object in W naturally associated to the pair .B;M /.

Remark For 0< i < p, the i th face map of this simplicial object is

B˝f1;:::;pg˝M ' B˝f1;:::;ig˝B˝fi;iC1g
˝B˝fiC2;:::;pg

˝M

id˝�˝id˝id
��������! B˝f1;:::;ig˝B˝B˝fiC2;:::;pg

˝M;

where � is the binary multiplication of A. The 0th face map is

B˝f1;:::;pg˝M ' Bf1g˝B˝f2;:::;pg˝M ' B˝f2;:::;pg˝M ˝Bf1g id˝r:act
�����! B˝f2;:::;pg˝M;

where r:act is the right action of B on M . The pth face map is

B˝f1;:::;pg˝M ' B˝f1;:::;p�1g
˝Bfpg˝M id˝l:act

�����! B˝f1;:::;p�1g
˝M;

where l:act is the left action of B on M .

This is functorial in the .B;B/–bimodule

BiMod.B;B/
HH.B;�/
������!W:

The Hochschild homology (of B) is the instance in which M D B as a .B;B/–bimodule:

HH.B/ WD B˝Bop˝B B DW HH.B;B/' jBarcyc
� .B/j;

which can be constructed as a geometric realization of the cyclic bar complex of B, as recalled in
Section 2.1. Also recalled in Section 2.1 is a canonical action T ' BZ Õ HH.B/,

T
hTÕHH.B/i
��������! AutW.HH.B//;

which is Connes’ cyclic operator [1983], and this is canonically functorial in the argument B:

(0-2-1) AlgAssoc.W/!ModT .W/; B 7! .T Õ HH.B//:

0.2.2 Secondary Hochschild homology

Notation 0.2.2 In Section 0.2.2 we fix V to be an ˝–presentable symmetric monoidal1–category.
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Apply Section 0.2.1 to the case W WD AlgAssoc.V/. For this situation, define the1–category

Alg2.V/ WD AlgAssoc.W/D AlgAssoc.AlgAssoc.V//;

an object in which is a 2–algebra3 (in V), which is simply an associative algebra in associative algebras
in V. Using that Hochschild homology is symmetric monoidal, the Hochschild homology of the underlying
associative algebra of a 2–algebra retains the structure of an associative algebra. For A a 2–algebra in V,
the secondary Hochschild homology (of A) is the value

(0-2-2) HH.2/.A/ WD HH.HH.A//:

This is evidently functorial in the 2–algebra, as it is equipped with the two Connes cyclic operators:

HH.2/ W Alg2.V/ WD AlgAssoc.AlgAssoc.V//

AlgAssoc.HH/
��������!ModT .AlgAssoc.V//

HH��!ModT .ModT .V//'ModT2.V/:

Remark 0.2.3 In Section 2.5, we show that our definition (0-2-2) of secondary Hochschild homology
(see Definition 2.2.8) agrees with factorization homology over a torus: HH.2/.A/'

R
T2A. As such, our

definition of secondary Hochschild homology is fit to receive a secondary trace map, which is related to
a secondary Chern character map, from secondary K–theory. (See [Toën and Vezzosi 2009; Hoyois et al.
2017] and Section 0.4.)

Warning 0.2.4 Our definition of secondary Hochschild homology does not appear to agree with the
definition introduced by Staic [2016], and further studied in [Laubacher 2017], where its cohomological
version parametrizes certain algebraic deformations. Indeed, their definitions are more akin to factorization
homology of a pair

R
S1�D2.B!A/— see [Corrigan-Salter and Staic 2016], where this is established in

the commutative context, in the language of higher-order Hochschild homology introduced by Pirashvili
[2000] — which is more similar to factorization homology

R
S2B over the 2–sphere.

Theorem X(2)(a) has the following consequence, proved in Section 2.5 using factorization homology:

Theorem Y.1 Let A 2Alg2.V/ be a 2–algebra in an˝–presentable symmetric monoidal 1–category V.
There is a canonical action of the continuous group T2 Ì Braid3 on secondary Hochschild homology:

(0-2-3) T2 Ì Braid3 Õ HH.2/.A/:

We now explain how Theorem Y.1 extends familiar, or at least expected, symmetries of HH.2/.A/, and
how the action can be phrased in terms of these expected symmetries.

Let W be an ˝–presentable symmetric monoidal1–category. Let B be an associative algebra in W.
Each endomorphism B �

�! B of the associative algebra B determines a .B;B/–bimodule structure
B� on the underlying object B, which is characterized by B id

�! B being equivariant with respect to

3Dunn’s additivity (see Theorem 0.2.7) supplies a host of examples of 2–algebras. In particular, a commutative algebra
canonically determines a 2–algebra.
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.B;B/
.id;�/
���! .B;B/. This assignment � 7! B� canonically assembles as a functor from the space of

endomorphisms of B to the1–category of .B;B/–bimodules:

EndAlg.W/.B/! BiMod.B;B/; � 7! B� :

This results in a composite functor

EndAlg.W/.B/
� 7!B�
�����! BiMod.B;B/

HH.B;�/
������!W given by � 7! HH.B;B� /:

This functor restricts to automorphisms of id 7!HH.B;Bid/DHH.B/ as a morphism between continuous
groups:

(0-2-4) �id AutAlg.W/.B/D�id EndAlg.W/.B/! AutW.HH.B//:

Now take W D Alg.V/ to be the1–category of associative algebras in an ˝–presentable symmetric
monoidal1–category V, and BDHH.A/ to be the Hochschild homology of a 2–algebra A2Alg2.V/ WD

Alg.Alg.V//. The above discussion yields the sheer symmetry

(0-2-5) Sheer1 W Z'�0T
�hTÕHH.A/i
����������!�id AutAlg.V/.HH.A// (0-2-4)

����! AutV.HH.2/.A//:

The functoriality of Connes’ cyclic operators yields a T2–action on secondary Hochschild homology of A:

(0-2-6) Connes’ W T2 hT
2ÕHH.2/.A/i

�����������! AutV.HH.2/.A//:

Corollary 2.3.3 states that the swapped iteration of Hochschild homology results in the same secondary
Hochschild homology. This yields yet another sheer symmetry

(0-2-7) Sheer2 W Z'�0T
�hTÕHH.A/i
����������!�id AutAlg.V/.HH.A// (0-2-4)

����! AutV.HH.2/.A//:

Using Theorem Y.1, the presentation (0-1-1) of the braid group Braid3 lends to the following result, which
is proved in Section 2.5.

Corollary 0.2.5 Let A be a 2–algebra in V. The sheer actions (0-2-5) and (0-2-7) and Connes’ cyclic
operators (0-2-6) generate the action

T2 Ì Braid3 Õ
(0-2-3)

HH.2/.A/

of Theorem Y.1. More specifically , the sheer actions and Connes’ cyclic operators satisfy the following
three relations , thereafter drawing the final conclusion.

(1) Consider the action4 defined by the symmetries Sheer1 and Sheer�1
2 ,

(0-2-8) Sheers W ZqZ Õ HH.2/.A/:

Defining the generators h�1; �2i D ZqZ, consider the two natural actions

Z
h�1�2�1i
�����!
h�2�1�2i
�����! ZqZ Õ

(0-2-8)
HH.2/.A/:

4The pushout appearing here is in the category of groups, where it is often referred to as a free product.
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These two symmetries are coequalized :5

Braid3

(0-1-1)
Š h�1; �2 j �1�2�1 D �2�1�2iÕ HH.2/.A/:

(2) The actions Z Õ
Sheer1

HH.2/.A/ and T2 Õ
Connes’

HH.2/.A/ intertwine as an action

T2 ÌU1
Z Õ HH.2/.A/;

where this semidirect product is defined by Z
hU1i
���! GL2.Z/' AutGroups.T2/ (see (0-1-2)).

(3) The actions Z Õ
Sheer2

HH.2/.A/ and T2 Õ
Connes’

HH.2/.A/ intertwine as an action

T2 ÌU2
Z

idÌ.�1/

Š
�����! T2 ÌU�1

2
Z Õ HH.2/.A/;

where this semidirect product is defined by Z
hU2i
���! GL2.Z/' AutGroups.T2/ (see (0-1-2)).

Defining R WD U1U2U2 D
�

0
�1

1
0

�
D U2U1U2 2 GL2.Z/' AutGroups.T2/, the above three points imply

the two actions
T2 ÌR Z

idÌh�1�2�1i
��������!
idÌh�2�1�2i
��������! T2 ÌU1;U2

.ZqZ/ Õ
(0-2-8)

HH.2/.A/

are coequalized under T2, thus generating the action

T2 Ì Braid3

idÌ(0-1-1)
Š T ÌU1;U2

h�1; �2 j �1�2�1 D �2�1�2iÕ HH.2/.A/:

Next, the short exact sequence (0-1-3) of Proposition 0.1.1 implies an identification between moduli
spaces

fextensions of Braid3 Õ HH.2/.A/ along ˆ to an action SL2.Z/Õ HH.2/.A/g

' ftrivializations of ZŠ Ker.ˆ/Õ HH.2/.A/g:

Remark 0.2.6 The action ZŠKer.ˆ/Õ HH.2/.A/ is simply an automorphism �2AutV.HH.2/.A//. So
an extension of Braid3 ÕHH.2/.A/ alongˆ to SL2.Z/ÕHH.2/.A/ exists if and only if there is an equality
in the set of path-components of the space of endomorphisms: ŒidHH.2/.A/�D Œ�� 2 �0.EndV.HH.2/.A///.
In the case that the ambient1–category of V is stable, this set of path-components has the canonical
structure of a ring6 (in which Œ�� is a unit), and so the difference Œ��� ŒidHH.2/.A/� 2 �0.EndV.HH.2/.A///
obstructs such an extension to an SL2.Z/–action.

So we are interested in identifying the action Ker.ˆ/Õ HH.2/.A/ in familiar, or at least expected, terms.
Corollary 0.2.10 does just this, in terms of the familiar/expected symmetry of secondary Hochschild

5Phrased more plainly, there is an identification between automorphisms of HH.2/.A/, namely Sheer1 ıSheer�1
2
ıSheer1 '

Sheer�1
2
ıSheer1 ıSheer�1

2
.

6For example, let k be a commutative ring and take VD .Modk;˝/, where˝ is taken over k. Then HH.2/.A/ may be presented
as a projective chain complex over k; the ring �0.EndV.HH.2/.A///D H0.Endk.HH.2/.A/// is the 0th homology of the chain
complex over k of self-maps of a such a presentation of HH.2/.A/.
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homology given by braiding-conjugation, as we now explain. A starting point for this symmetry is
given from the following result, which was essentially due to Dunn. Recall the topological operad E2 of
little 2–disks.

Theorem 0.2.7 [Dunn 1988; Lurie 2017, Theorem 5.1.2.2] There is a canonical equivalence from the
1–category of E2–algebras in V to that of 2–algebras in V:

AlgE2
.V/ '�! Alg2.V/:

After Theorem 0.2.7, the standard continuous action O.2/Õ E2 on the topological operad immediately
implies the following:

Corollary 0.2.8 There is a canonical action of the continuous group O.2/Õ Alg2.V/. In particular , for
each 2–algebra A in V, the orbit map with respect to this action lends to a canonical symmetry of A:

ˇA W Z'�1 SO.2/ '�!�1O.2/ �OrbitA
�����! AutAlg2.V/

.A/:

Remark 0.2.9 This symmetry ˇA on each 2–algebra A is braiding-conjugation. For instance, this
symmetry ˇA is the identity on the underlying object (so ˇA.1/D idA), and for � 2 E2.2/ it supplies the
commutativity of the diagram in V,

A˝A
id˝id

//

�A

��

A˝A

�A

��

given by the point;

A
id

// A ˇA.2/ W �
h1i
��! Z'��E2.2/!��A

HomV.A˝A;A/:

The next result directly follows from Observation 1.3.10 and inspection of the action Braid3 Õ HH.2/.A/
of Theorem Y.1, proved in Section 2.5.

Corollary 0.2.10 Let A be a 2–algebra in V. Through the action of Theorem Y.1, the kernel of ˆ acts
on HH.2/.A/ as ˇA. Specifically, there is a canonically commutative diagram among continuous groups:

Z

Šh.�1�2/
6i

��

ˇA
// AutAlg2.V/

.A/

HH.2/
��

Ker.ˆ/ // Braid3
Theorem Y.1

// AutV.HH.2/.A//

In particular, there is the following immediate consequence of Proposition 0.1.1.

Corollary 0.2.11 Let A be a 2–algebra in V. An SO.2/–invariant-structure on A 2 Alg2.V/ determines
a trivialization of the action Ker.ˆ/ Õ HH.2/.A/, and thereafter an extension along ˆ of the actions
Braid3! T2 Ì Braid3 Õ HH.2/.A/ to actions

SL2.Z/! T2 Ì SL2.Z/Õ HH.2/.A/:
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Example 0.2.12 The action Braid3 Õ HH.2/.A/ does not generally extend along ˆ as an action
SL2.Z/Õ HH.2/.A/. As a tautologous case, take AD Diskfr

2=R2 , regarded as a 2–algebra in Cat1=Diskfr
2
.

The unstraightening of the functor Diskfr
2=T2

forget
���! Diskfr

2
A�! Cat1=Diskfr

2
is the cocartesian fibration

Ar.Diskfr
2=T2/

evt
��!Diskfr

2=T2 , as it is equipped with the functor Ar.Diskfr
2=T2/

evs
��!Diskfr

2=T2 . This functor
evs is a localization on the evt –cocartesian morphisms. Using that a colimit of a diagram in Cat1 is the
localization on the cocartesian morphisms of its unstraightening, there is an equivalence in Cat1=Diskfr

2
,Z

T2

Diskfr
2=R2 WD colim.Diskfr

2=T2

forget
���! Diskfr

2
A�! Cat1=Diskfr

2
/ '�! Diskfr

2=T2 ;

which is evidently Difffr.T2/–equivariant. We therefore wish to show the action Ker.ˆ/Õ Diskfr
2=T2 in

Cat1=Diskfr
2

is not trivializable. Consider the composite functor

Cat1=Diskfr
2

Mor
��! Spaces=Mor.Diskfr

2
/

fiber over 2!1
���������! Spaces=S1 ;

where Mor is given by taking spaces of morphisms, and the last functor is given by taking fibers along
Diskfr

2
�0
�! Fin over the morphism 2D f1; 2g !

�! �D 1 in Fin, recognizing that Mor.Diskfr
2/j.2!1/ ' S1

is the space of 2–ary operations of the1–operad E2. Note that this composite functor carries the object
of interest Diskfr

2=T2 2 Cat1=Diskfr
2

to the object in Spaces=S1 ,

pr W T2
�S1

' Sfib.TT2/'Mor.Diskfr
2=T2/j.2!1/!Mor.Diskfr

2/j.2!1/ ' S1;

involving the unit tangent bundle of T2 and its standard framing, which is simply the projection through
this identification; the Difffr.T2/–action is the canonical one on the unit tangent bundle Sfib.TT2/ as
it maps to S1. In particular, the restricted .ZŠKer.ˆ//–action is generated by the automorphism of
.T2 �S1 pr

�! S1/ 2 Spaces=S1 that is the diagram

T2 �S1 id
//

pr &&

T2 �S1

prxx
S1

in which the homotopy witnessing commutativity is the image of 1 2 Z via the map between spaces

Z'�id Map.S1;S1/ T2��
����!�pr Map.T2

�S1;S1/:

It is routine to verify that this map is a monomorphism. In particular, this action ZÕ .T2�S1/2Spaces=S1

is not trivializable. Therefore, the action by ZŠ Ker.ˆ/ on
R

T2Diskfr
2=R2 2 Cat=Diskfr

2
is not trivializable.

0.3 Isogenic symmetries of secondary Hochschild homology

Let X be an 1–category. The action zEC2 .Z/! E2.Z/ Õ T2 as a topological group determines, via
precomposition, an action

(0-3-1) zEC2 .Z/
.�/T

' zEC2 .Z/
op Õ ModT2.X/;

where
.�/T

' is from Observation B.1.1. We propose the following. (See [Ayala et al. 2019, Appendix A]
for a definition of left-lax invariance.)
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Definition 0.3.1 The1–category of unstable secondary cyclotomic objects in an1–category X is that
of T2–modules in X that are left-laxly invariant with respect to the action (0-3-1):

Cycun.2/.X/ WDModT2.X/l:lax zEC2 .Z/:

Remark 0.3.2 Informally, an unstable secondary cyclotomic object in X consists of

� a T2–module .T2 Õ
˛

X / in X,

� for each zA 2 zEC2 .Z/, a morphism between T2–modules in X

. zAT /�.T2 Õ
˛

X / WD .T2 ‰. zAT /
�����! T2 Õ

˛
X /

c zA
��! .T2 Õ

˛
X /;

� for each pair zA; zB 2 zEC2 .Z/, a commutative square among T2–modules in X

. zAT /�. zBT /�.T2 Õ
˛

X /
. zAT /�c zB

//

'

��

. zAT /�.T2 Õ
˛

X /

c zA
��

.. zA zB/T /�.T2 Õ
˛

X /
c zA zB

// .T2 Õ
˛

X /

� for each triple zA; zB; zC 2 zEC2 .Z/, a similar commutative cube among T2–modules in X whose faces
are (possibly pulled back from) the above commutative squares,

� et cetera.

After Corollary A.0.6, which is proved in Appendix A, Theorem X(2)(b) implies the following:

Corollary 0.3.3 For each 1–category X there are canonical equivalences among1–categories over X

Cycun.2/.X/'Mod
.T2ÌzEC2 .Z//op.X/'ModImmfr.T2/op.X/;

where the equivalences are given by Corollary A.0.6 and Theorem X(2)(b ), respectively.

For X an1–category, the1–category of finite-genuine T2–modules in X is

Xg:finT2

WD Fun..Orbitfin
T2/

op;X/;

the1–category of functors from the opposite of the1–category Orbitfin
T2 of transitive T2–topological

spaces with finite isotropy and spaces of T2–equivariant maps between them. The action zEC2 .Z/!
EC2 .Z/Õ T2 as a topological group supplies an action via the equivalence of Observation B.1.1,

zEC2 .Z/' zE
C
2 .Z/

op Õ Orbitfin
T2 ; A �T2

=C WD T2
=A�1.C /

:

Precomposition by this action in turn supplies an action

(0-3-2) zEC2 .Z/' zE
C
2 .Z/

op Õ Xg:finT 2
:

After Theorem X(2)(b), we have the following immediate consequence of Proposition B.4.1.
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Proposition 0.3.4 For each 1–category X, the1–category of finite-genuine T2–modules in X invariant
with respect to (0-3-2) is equivalent (via Corollary 0.3.3) with unstable secondary cyclotomic objects in
X:

ModImmfr.T2/op.X/' Cycun.2/.X/ '�! .Xg:finT 2
/
zEC2 .Z/:

In particular , there is a forgetful functor:

ModImmfr.T2/op.X/' Cycun.2/.X/! Xg:finT 2
:

Remark 0.3.5 Proposition 0.3.4 asserts a significant cancellation of homotopy coherence data.

� A finite-genuine T2–module V in X is a specification of its C –fixed-points V C 2ModT2=C .X/

for each finite subgroup C � T2 together with coherent compatibility.

� For V a finite-genuine T2–module in X, the structure of V being invariant with respect to the action

zEC2 .Z/ Õ
(0-3-2)

Xg:finT 2

is an identification V C ' V A�1.C / for each finite subgroup C �T2 and each element A 2 zEC2 .Z/,
coherently compatibly.

So to name an object in .Xg:finT 2
/
zEC2 .Z/ a priori requires an overwhelming wrangling of coherence data.

From this perspective, Proposition 0.3.4 is notable: an object in .Xg:finT 2
/
zEC2 .Z/ is simply a T2 Ì zEC2 .Z/–

module in X— in particular, no “genuine” structure is present. Theorem Y.2 is an application of this:
via the theory of factorization homology, for A a 2–algebra in X, its secondary Hochschild homology
HH.2/.A/ easily carries the structure of an Immfr.T2/op–module. Through Proposition 0.3.4, HH.2/.A/
then has the structure of a finite-genuine T2–module that is zEC2 .Z/–invariant.

Corollary 0.3.3 lends to our last main result, which is proved as Section 2.6.

Theorem Y.2 Let X be a presentable 1–category in which finite products distribute over colimits
separately in each variable.7 Regard X as a symmetric monoidal 1–category via the cartesian symmetric
monoidal structure. For each 2–algebra A 2 Alg2.X/, the action (0-2-3) of Theorem Y.1 canonically
extends as an unstable secondary cyclotomic structure:

(0-3-3)
�
.T2 Ì zEC2 .Z//

op Õ HH.2/.A/
�
2 Cycun.2/.X/:

Remark 0.3.6 We explain a relationship between an unstable secondary cyclotomic structure and an
iterated unstable cyclotomic structure. As in the discussion preceding Proposition B.3.1, one can construct
a morphism between monoids

(0-3-4) N� �N� Bdiagonals
�����! zEC2 .Z/;

7Examples include the1–categories Spaces, Cat.1;n/, X and1–topos.
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lifting the inclusion N� �N�
diagonals
� EC2 .Z/ as diagonal matrices. With respect to (0-3-4), the product

isomorphism T �T ��! T2 is equivariant. For X an1–category, this results in a forgetful functor from
unstable secondary cyclotomic objects to iterated unstable cyclotomic objects:

(0-3-5) Cycun.2/.X/! Cycun.Cycun.X//:

This functor is generally not an equivalence.8

0.4 Remarks on secondary cyclotomic trace

We see the role of Corollary 0.3.3 as informing an approach to secondary cyclotomic traces.

Let k be a commutative ring spectrum. Let A 2 Alg2.Modk/. Recall the k–linear Dennis trace map
K.A/ tr

�! HH.A/; see, for instance, [Bökstedt et al. 1993]. The cyclic trace map is a canonical factoriza-
tion of this Dennis trace map through negative cyclic homology K.A/ trT

��! HH�.A/ WD HH.A/T ; see
[Goodwillie 1986]. Iterating this cyclic trace map results in a map between spectra K.K.A// trT .trT /

�����!

HH�.HH�.A//. Work of Toën and Vezzosi [2009], followed up by the work of Hoyois, Scherotzke and
Sibilla [Hoyois et al. 2017, Theorem 1.2], suggests (from the commutative context) that this map can be
refined as a secondary Chern character map between spectra

K.2/.A/ // HH.2/.A/T
2

K.K.A//

OO

trT .trT /
// HH�.HH�.A//

OO

from secondary K–theory to the T2–invariants of secondary Hochschild homology. We expect the work
of Mazel-Gee and Stern [2021] (in particular Theorem C (see Section 0.4.4)) on universal properties of
secondary K–theory to yield a solution both to this, and the following.

Conjecture 2 For each 2–algebra A over k, there is a canonical filler in the diagram among spectra

K.2/.A/ // HH.2/.A/T
2ÌBraid3 // HH.2/.A/T

2

K.K.A//

OO

trT .trT /
// HH�.HH�.A//

OO

For the case in which kD S is the sphere spectrum, where standard notation is THH WD HH and referred
to as topological Hochschild homology, the cyclic trace map factors further as the cyclotomic trace map,

(0-4-1) K.A/ trCyc
��! TC.A/ WD THH.A/Cyc;

8Suppose X is an ordinary category. Then the forgetful functor ModT2.X/
'
�! X is an equivalence. Using Proposition B.3.1,

which identifies the group-completion of the monoid zEC2 .Z/, the functor (0-3-5) can then be identified as restriction
Mod �GL

C

2 .Q/
.X/!Mod.Q�

>0
/2.X/ along the inclusion .Q�

>0
/2 ,! �GL

C

2 .Q/ between groups.
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through the topological cyclotomic homology which is the cyclotomic invariants with respect to a canonical
cyclotomic structure on topological Hochschild homology. The fantastic culminating result of [Dundas
et al. 2013] articulates a sense in which this cyclotomic trace map (0-4-1) is locally constant (in the algebra
A). Iterating this cyclotomic trace map results in a map between spectra K.K.A// trCyc.trCyc/

������! TC.TC.A//,
which is not locally constant (in the 2–argument A). As above, we expect that this iterated cyclotomic
trace map can be refined as a map between spectra:

K.2/.A/ // THH.2/.A/Cyc�Cyc

K.K.A//

OO

trCyc.trCyc/
// TC.TC.A//

OO

Following the developments in [Ayala et al. 2017c], we expect Definition 0.3.1 of an unstable cyclotomic
object to lend to a definition of a (stable) secondary cyclotomic object, and that Theorem Y.2 lends a
secondary cyclotomic structure on secondary topological Hochschild homology. For secondary topological
cyclotomic homology to be the invariants with respect to this structure, TC.2/.A/ WD THH.2/.A/Cyc.2/ ,
we again expect the work of Mazel-Gee and Stern [2021] (in particular Theorem C (see Section 0.4.4)) on
secondary K–theory to further lend a secondary cyclotomic trace map, which we state as the following:

Problem 1 Define (stable) secondary cyclotomic structure, and then show that secondary topological
Hochschild homology canonically possesses such. Show that the iterated cyclotomic trace map factors
through the secondary topological cyclotomic homology, compatibly with the factorization of Conjecture 2:

K.2/.A/

Conjecture 2

  

trCyc.2/

&&

K.K.A//oo

trCyc.trCyc/

((

TC.2/.A/ //

��

THH.2/.A/Cyc�Cyc

��

TC.TC.A//oo

��

THH.2/.A/T
2ÌBraid3 // THH.2/.A/T

2

THH�.THH�.A//oo

Remark 0.4.1 One might be encouraged by Remark 0.3.6 to expect that the secondary cyclotomic trace
map trCyc.2/ of Conjecture 2 is locally constant (in the 2–algebra A), thereby correcting the failure of the
iterated cyclotomic trace map trCyc.trCyc/ to be locally constant. However, we do not expect this to be so.
Namely, the local constancy of the cyclotomic trace map K.A/ trCyc

��! TC.A/ relies in an essential way on
calculations of Hesselholt [1994] which identify the fiber of the canonical map TC.V Ì A/! TC.A/
associated to a square-zero extension of A. These calculations in turn rely on the fact that, for each
i � 0, the canonical action T ' Difffr.T /Õ Confi.T /†i

on unordered configuration space canonically
factors as a T=Ci

–torsor. Because the canonical action T2 Ì Braid3 ' Difffr.T2/Õ Confi.T2/†i
does

not apparently have any such property, we do not expect the secondary cyclotomic trace map of Problem 1
to be locally constant.
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1 Moduli and isogeny of framed tori

1.1 Moduli and isogeny of tori

Vector addition, as well as the standard vector norm, gives R2 the structure of a topological abelian
group. Consider its closed subgroup Z2 �R2. The torus is the quotient in the short exact sequence of
topological abelian groups

0! Z2 inclusion
�����!R2 quot

��! T2
! 0:

Because R2 is connected, and because Z2 acts cocompactly by translations on R2, the torus T2 is
connected and compact. The quotient map R2 quot

��!T2 endows the torus with the structure of a Lie group,
and in particular a smooth manifold. Consider the submonoid

E2.Z/ WD fZ
2 A
�! Z2

j det.A/¤ 0g � EndGroups.Z
2/;

consisting of the cofinite endomorphisms of the group Z2. Using that the smooth map R2 quot
��! T2 is a

covering space and T2 is connected, there is a canonical continuous action on the topological group:

(1-1-1) E2.Z/Õ T2; Aq WD quot.A Qq/ for any Qq 2 quot�1.q/:

This action9 defines a semidirect product topological monoid

T2 Ì E2.Z/ :

Consider the topological monoid of smooth local diffeomorphisms of the torus,

Imm.T2/�Map.T2;T2/;

which is endowed with the subspace topology of the C1–topology on the set of smooth self-maps of the
torus. Notice the morphism between topological monoids

(1-1-2) Aff W T2 Ì E2.Z/! Imm.T2/ given by .p;A/ 7! .q 7!AqCp/:

Observation 1.1.1 (1) The standard inclusion GL2.Z/ ,! E2.Z/ witnesses the maximal subgroup. It
follows that the standard inclusion T2 Ì GL2.Z/ ,! T2 Ì E2.Z/ witnesses the maximal subgroup,
both as topological monoids and as continuous monoids.

(2) The standard monomorphism Diff.T2/ ,! Imm.T2/ witnesses the maximal subgroup, both as
topological monoids and as continuous monoids.

9Note that (1-1-1) indeed does not depend on Qq 2 quot�1.q/.
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We record the following classical result.

Lemma 1.1.2 The morphism (1-1-2) restricts to maximal subgroups as a homotopy equivalence

Aff W T2 Ì GL2.Z/
'�! Difffr.T2/ given by .p;A/ 7! .q 7!AqCp/:

Proof Let G be a locally path-connected topological group, which we regard as a continuous group.
Denote by G1 �G the path-component containing the identity element in G. This subspace G1 �G is a
normal subgroup, and the sequence of continuous homomorphisms

1!G1
inclusion
�����!G

quotient
�����! �0.G/! 1

is a fiber sequence among continuous groups. This fiber sequence is evidently functorial in the argument G.
In particular, there is a commutative diagram among topological groups

1 // T2 D .T2 Ì GL2.Z//1

Aff1

��

inc
// T2 Ì GL2.Z/

Aff
��

quot
// �0.T

2 Ì GL2.Z//D GL2.Z/

�0.Aff/
��

// 1

1 // Diff.T2/1
inc

// Diff.T2/
quot

// �0.Diff.T2// // 1

in which the horizontal sequences are fiber sequences. By the five lemma applied to homotopy groups,
we are reduced to showing the vertical homomorphisms Aff1 and �0.Aff/ are homotopy equivalences.

Theorem 2.D.4 of [Rolfsen 1976], along with Theorem B of [Hatcher 2013], implies �0.Aff/ is an
isomorphism. So it remains to show Aff1 is a homotopy equivalence.10 With respect to the canonical
continuous action Diff.T2/1 Õ T2, the orbit of the identity element 0 2 T2 is the evaluation map

ev0 W Diff.T2/1! T2:

Note that the composition
id W T2 Aff1

��! Diff.T2/1
ev0
��! T2

is the identity map. So it remains to show that the homotopy fiber of ev0 is weakly contractible. The
isotopy-extension theorem implies ev0 is a Serre fibration. So it is sufficient to show the fiber of ev0,
which is the stabilizer Stab0.Diff.T2/1/, is weakly contractible. Finally, Theorem 1b of [Earle and Eells
1967] states that this stabilizer is contractible.

Remark 1.1.3 By the classification of compact surfaces, the moduli space M1 of smooth tori is path-
connected, and as so is

M1 ' BDiff.T2/' B.T2 Ì GL2.Z//' .CP1/2=GL2.Z/;

in which the equivalence is by Lemma 1.1.2 and the quotient is with respect to the standard action
GL2.Z/Õ B2Z2 ' .CP1/2. In particular, this path-connected moduli space fits into a fiber sequence

.CP1/2!M1! BGL2.Z/:

10See [Gramain 1973]. We include a proof for the convenience of the reader.
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Consider the set L.2/ WD fƒ
cofin
� Z2g of cofinite subgroups of Z2.

Observation 1.1.4 � The orbit-stabilizer theorem immediately implies the composite map T2ÌE2.Z/
pr
�!

E2.Z/
Image
���!L.2/ witnesses the quotient:

.T2 Ì E2.Z//=T2ÌGL2.Z/
Š�! E2.Z/=GL2.Z/

Š�!L.2/:

� Since each finite-sheeted cover over T2 is diffeomorphic with T2, the classification of covering spaces
implies the map given by taking the image of homology Imm.T2/

Image.H1/
������!L.2/ witnesses the quotient

Imm.T2/=Diff.T2/
Š�!L.2/:

� The following diagram commutes:

T2 Ì E2.Z/
Aff
//

pr
��

Imm.T2/

Image.H1/
��

H1

ww

E2.Z/
Image

// L.2/

Corollary 1.1.5 The morphism (1-1-2) between topological monoids is a homotopy equivalence:

Aff W T2 Ì E2.Z/ '�! Imm.T2/:

Proof Consider the morphism between fiber sequences in the1–category Spaces:

T2 Ì E2.Z/
quotient

//

Aff
��

.T2 Ì E2.Z//T2ÌGL2.Z/
//

AffAff
��

B.T2 Ì GL2.Z//

BAff
��

Imm.T2/
quotient

// Imm.T2/=Diff.T2/
// BDiff.T2/

Lemma 1.1.2 implies the right vertical map is an equivalence. Observation 1.1.4 implies the middle
vertical map is an equivalence. It follows that the left vertical map is an equivalence, as desired.

1.2 Framings

A framing of the torus is a trivialization of its tangent bundle: ' W �T2 Š �2
T2 . Consider the topological

space of framings of the torus,

Fr.T2/ WD IsoBdlT2
.�T2 ; �2

T2/�Map.TT2;T2
�R2/;

which is endowed with the subspace topology of the C1–topology on the set of smooth maps between
total spaces. The quotient map R2 quot

��! T2 endows the smooth manifold T2 with a standard framing '0:
for

trans W T2
�T2 .p;q/ 7!transp.q/WDpCq

����������������! T2;

the abelian multiplication rule of the Lie group T2 is

.'0/
�1
W �2

T2
Š�! �T2 given by T2

�R2
3 .p; v/ 7! .p;D0.transp ı quot/.v// 2 TT2;

where D0 is differentiation at zero.
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The next sequence of observations culminates in an identification of this space of framings.

Observation 1.2.1 (1) Postcomposition gives the topological space Fr.T2/ the structure of a torsor
for the topological group IsoBdlT2

.�2
T2 ; �

2
T2/. In particular, the orbit map of a framing ' 2 Fr.T2/ is a

homeomorphism

(1-2-1) IsoBdlT2
.�2

T2 ; �
2
T2/

Š�! Fr.T2/ given by ˛ 7! ˛ ı':

(2) Consider the topological space Map.T2;GL2.R// of smooth maps from the torus to the standard
smooth structure on GL2.R/, which is endowed with the C1–topology. The map

(1-2-2) Map.T2;GL2.R//
Š�! IsoBdlT2

.�2
T2 ; �

2
T2/ given by a 7! .T2

�R2 .p;v/7!.p;ap.v//
�����������!T2

�R2/

is a homeomorphism.

(3) The map to the product,

(1-2-3) Map.T2;GL2.R//
Š�!Map

�
.0 2 T2/; .1 2 GL2.R//

�
�GL2.R/; a 7! .a.0/�1a; a.0//;

is a homeomorphism.

(4) Because both of the spaces T2 and GL2.R/ are 1–types with the former path-connected, the map,

�1 WMap
�
.0 2 T2/; .1 2 GL2.R//

�
'�! Hom

�
�1.0 2 T2/; �1.1 2 GL2.R//

�
;

is a homotopy equivalence.

(5) Evaluation on the standard basis for �1.0 2 T2/ Š�! �1.0 2 T /2 Š Z2 defines a homeomorphism

(1-2-4) Hom
�
�1.0 2 T2/; �1.1 2 GL2.R//

�
Š�! �1.1 2 GL2.R/

2/Š Z2:

Observation 1.2.1, together with the Gram–Schmidt homotopy equivalence GS W O.2/ '�! GL2.R/, yields
the following.

Corollary 1.2.2 A framing ' 2 Fr.T2/ determines a composite homotopy equivalence

Fr.T2/
(1-2-2)ı(1-2-1)

'
 ���������Map.T2;GL2.R//

(1-2-3)
'
����!Map

�
.0 2 T2/; .1 2 GL2.R//

�
�GL2.R/

�1�id
'
����! Hom

�
�1.0 2 T2/; �1.1 2 GL2.R//

�
�GL2.R/

(1-2-4)�id
'

������! Z2
�GL2.R/

id�GS
'
 ���� Z2

�O.2/:

Notation 1.2.3 We denote the values of the homotopy equivalence of Corollary 1.2.2 applied to the
standard framing '0 2 Fr.T2/ by

Fr.T2/ '�! Z2
�GL2.R/ given by ' 7! . E';B'/:

1.3 Moduli of framed tori

Consider the map

Act W Fr.T2/� Imm.T2/! Fr.T2/ given by .'; f / 7! .�T2
Df
Š
��! f ��T2

f �'

Š
���! f ��2

T2 D �
2
T2/:

Lemma 1.3.1 The map Act is a continuous right-action of the topological monoid Imm.T2/ on the
topological space Fr.T2/. In particular , there is a continuous action of the topological group Diff.T2/ on
the topological space Fr.T2/.
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Proof Consider the topological subspace of the topological space of smooth maps between total spaces
of tangent bundles, which is endowed with the C1–topology,

Bdlfw:iso.�T2 ; �T2/�Map.TT2;TT2/;

consisting of the smooth maps between tangent bundles that are fiberwise isomorphisms. The factorization

Act W Fr.T2/� Imm.T2/ id�D
���! Fr.T2/�Bdlfw:iso.�T2 ; �T2/ ı�! Fr.T2/

first takes the derivative, then composes bundle morphisms. The definition of the C1–topology is such
that the first map in this factorization is continuous. The second map in this factorization is continuous
because composition is continuous with respect to C1–topologies. We conclude that Act is continuous.

We now show that Act is an action. Clearly, for each ' 2 Fr.T2/, there is an equality Act.'; id/ D '.
Next, let g; f 2 Imm.T2/, and let ' 2 Fr.T2/. The chain rule, together with universal properties for
pullbacks, gives that the diagram among smooth vector bundles

�T2

D.gıf /

((

Dg
// g��T2

g�Df
// f �g��T2

f �g�'

��

Š
// .g ıf /��T2

.gıf /�'

��

�2
T2 g��2

T2

Š
oo f �g��2

T2

Š
oo .g ıf /��2

T2

Š
oo

Š

ii

commutes. Inspecting the definition of Act, the commutativity of this diagram implies the equality
Act.Act.';g/; f /D Act.';g ıf /, as desired.

Definition 1.3.2 The moduli space of framed tori11 is the space of homotopy coinvariants with respect
to this conjugation action Act:

Mfr
1 WD Fr.T2/=Diff.T2/:

Observation 1.3.3 Through Corollary 1.2.2 applied to the standard framing '0 2 Fr.T2/, the action Act
is compatible with familiar actions. Specifically, Act fits into a commutative diagram among topological
spaces:

Fr.T2/�Imm.T2/
Act

// Fr.T2/

Map.T2;GL2.R//�.T
2ÌE2.Z//

Corollary 1.2.2�Aff '

OO

id�pr
//

Corollary 1.2.2�id '
��

Map.T2;GL2.R//�E2.Z/
valuewise

multiply
//

Corollary 1.2.2�id '
��

Map.T2;GL2.R//

Corollary 1.2.2 '
��

Corollary 1.2.2 Š

OO

.Z2�GL2.R//�.T
2ÌE2.Z//

id�pr
// .Z2�GL2.R//�E2.Z/

.Ev;BIA/7!.AT Ev;BA/
// Z2�GL2.R/

11This definition is a particular case of a general definition of a moduli space of framed manifolds; see, for instance, [Ayala and
Francis 2015].

Algebraic & Geometric Topology, Volume 24 (2024)



Natural symmetries of secondary Hochschild homology 1975

We record the following basic application of group theory.

Observation 1.3.4 For Ev D
�

p
q

�
2 Z2, consider the subset TEv WD fP j P Ev D gcd.p; q/Ee1g � GL2.Z/.

(1) In the case that p � 0 and q D 0, the set TEv is identical with the stabilizer subgroup,

TEv D StabGL2
.Z/.gcd.p; q/ � Ee1/D

8̂<̂
:

GL2.Z/ if p D 0;("
1 b

0 d

#)
D

*"
1 0

0 �1

#
;

"
1 1

0 1

#+
Š O.1/Ë Z if p > 0;

in which the semidirect product is with respect to the standard action O.1/ Š�! Aut.Z/.

(2) The set TEv is not empty. Left multiplication defines a free transitive action of this stabilizer:

GL2.Z/Õ TEv for Ev D E0 and O.1/Ë Z Õ TEv for Ev ¤ E0:

(3) An element P 2 TEv determines an isomorphism between groups:

StabGL2.Z/.Ev/D P�1 StabGL2.Z/.gcd.p; q/ � Ee1/P

D

8̂<̂
:

GL2.Z/ if Ev D E0;*
P�1

"
1 0

0 �1

#
P;P�1

"
1 1

0 1

#
P

+
Š O.1/Ë Z if Ev ¤ E0:

(4) An element P D
�
w
y

x
z

�
2 TEv \SL2.Z/ determines an identification:

StabSL2.Z/.Ev/D

8̂<̂
:

SL2.Z/ if Ev D E0;*"
1Cyz z2

�y2 1�yz

#+
D hP�1U1P i Š Z if Ev ¤ E0:

The next result is phrased in terms of spaces fitting into the diagram in which each of the two squares,
and therefore their concatenated larger square, is a pullback:

(1-3-1)

.CP1/2=Z �BZ //

��

.CP1/2=Braid3

//

��

.CP1/2=GL2.Z/

��

BZ�BZ
h�1;.�1�2/

6i
//

pr
��

BBraid3
ˆ

// BSL2.Z/ // BGL2.Z/

BZ
hU1i

22

Proposition 1.3.5 (1) The standard framing '0 2 Fr.T2/ determines an identification between spaces ,

Mfr
1
'�! ..CP1/2=Braid3

/q ..CP1/2=Z �BZ/qN ;

through which '0 selects the distinguished path-component.
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(2) Furthermore , the resulting map �0 Fr.T2/! �0M
fr
1
Š�! f0gqN D Z�0 factors as a composition

�0 Fr.T2/! Z2 gcd
��! Z�0

in which the second map takes the greatest common divisor , and the first map is

Œ'� 7! ŒT _T D sk1.T
2/

'ı'�1
0 j sk1.T

2/
����������! GL2.R/� 2 �1.1 2 GL2.R//

2
Š Z2:

Proof The result follows from the following sequence of identifications in the1–category Spaces:

Mfr
1 ' .Z

2
�GL2.R//=T2ÌGL2.Z/

.by Observation 1.3.3/

' ..Z2
�GL2.R//=T2/=GL2.Z/ .iterate quotient/(1-3-2)

' .Z2
�BT 2

�GL2.R//=GL2.Z/ .trivial T 2–action/(1-3-3)

'Z2
=GL2.Z/�BGL2.Z/..CP1/2�GL2.R//=GL2.Z/ .groupoids are effective/(1-3-4)

' .BGL2.Z/qB.ZÌO.1//qN/�BGL2.Z/..CP1/2�GL2.R//=GL2.Z/ .explicit quotient/(1-3-5)

' .BGL2.Z/�BGL2.Z/..CP1/2�GL2.R//=GL2.Z//(1-3-6)

q.B.ZÌO.1//�BGL2.Z/..CP1/2�GL2.R//=GL2.Z//
qN .distribute � overq/

' ..CP1/2�GL2.R/=GL2.Z//q..CP1/2�GL2.R/=ZÌO.1//
qN .base change/(1-3-7)

' ..CP1/2=�.GL2.R/=GL2.Z/
//q..CP1/2=�.GL2.R/=ZÌO.1//

/qN .by Lemma A.0.2/(1-3-8)

' ..CP1/2=Braid3
/q..CP1/2=Z�BZ/qN : .explicit identifications/(1-3-9)

The bottom horizontal map in Observation 1.3.3 reveals that the action Z2 �GL2.R/Ô T2 Ì GL2.Z/

can be identified as the diagonal action of the action

(1-3-10) .T2 Ì GL2.Z//
op pr
�! GL2.Z/

op .�/T
���! GL2.Z/ Õ

standard
Z2

together with the action

.T2 Ì GL2.Z//
op pr
�! GL2.Z/

op include
����! GL2.R/

op Õ
right mult

GL2.R/:

The equivalence (1-3-2) identifies the T2ÌGL2.Z/–quotient as the T2–quotient followed by the GL2.Z/–
quotient. The equivalence (1-3-3) is a consequence of the T2–action being trivial on both factors. The
equivalence (1-3-4) is an instance of the general base-change identity .X �Y /=G ' .X=G/�BG .Y=G/.
The equivalence (1-3-5) is the orbit-stabilizer theorem, as we explain. By Observation 1.3.4, two
elements

�
u
v

�
;
�

s
t

�
2Z2 are in the same (1-3-10)–orbit if and only if their greatest common divisors agree:

gcd.u; v/D gcd.s; t/ 2 Z�0. In particular, there is a bijection between the set of (1-3-10)–orbits and the
subset

Z�0 Š

��
g

0

��
� Z2:
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Furthermore, the stabilizer of
�

g
0

�
2 Z2 with respect to the action GL2.Z/

op .�/T
���! GL2.Z/Õ Z2 is

StabGL2.Z/op

��
g

0

��
D

8̂<̂
:

GL2.Z/
op if g D 0;("

1 0

c d

#)op

Š .Z Ì O.1//op if g ¤ 0:

Therefore,

Z2
=GL2.Z/ '

a
g2Z�0

B StabGL2.Z/op

��
g

0

��
' BGL2.Z/qB.Z Ì O.1//qN :

The equivalence (1-3-6) is the distribution of � over q. The equivalence (1-3-7) is an instance of the
general base-change identity X=H ' BH �BG X=G . The equivalence (1-3-9) is a direct application of
Proposition 0.1.1 for the 0–cofactor, and for each other cofactor it is an application of Proposition 0.1.1,
then a consequence of the diagram (1-3-1) of pullbacks among spaces.

For ' 2 Fr.T2/ a framing of the torus, consider the orbit map of ' for this continuous action of
Lemma 1.3.1:

Orbit' W Imm.T2/
.constant' ;id/
��������! Fr.T2/� Imm.T2/ Act

��! Fr.T2/; f 7! Act.'; f /:

Recall Notation 1.2.3.

Observation 1.3.6 After Observation 1.3.3, for each framing ' 2 Fr.T2/, the orbit map for ' fits into a
solid diagram among topological spaces:

Diff.T2/ //

H1

&&

Imm.T2/
Orbit'

//

H1

%%

Fr.T2/

Corollary 1.2.2'

��

GL2.Z/ // E2.Z/
A7!.AT E';B'A/

// Z2 �GL2.R/

T2 Ì GL2.Z/

Aff

OO

//

pr

88

T2 Ì E2.Z/

Aff

OO

pr

99

The existence of the fillers follows from Observation 1.1.4.

Remark 1.3.7 The point–set fiber of Orbit' over ', which is the point–set stabilizer of the action
Fr.T2/Ô Imm.T2/ of Lemma 1.3.1, consists of those local diffeomorphisms f for which the diagram
among vector bundles

�T2

'
//

Df
��

�2
T2

f ��T2

f �'
// f ��2

T2
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commutes. For a generic framing ', a local diffeomorphism f satisfies this rigid condition if and
only if f D idT2 is the identity diffeomorphism. In the special case of the standard framing '0, a local
diffeomorphism f satisfies this rigid condition if and only if f D transf .0/ıquot is translation in the group
T2 after a group-theoretic quotient T2 quotient

����! T2. In particular, the point–set fiber of .Orbit'0
/jDiff.T2/

over '0 is T2, and the homomorphism T2 ,!Diff.T2/ witnesses the inclusion of those diffeomorphisms
that strictly fix '0.

On the other hand, the homotopy fiber of Orbit'0
over '0 is more flexible. It consists of pairs .f;  / in

which f is a local diffeomorphism and  is a homotopy

'0

� Act.'0; f /:

As we will see, every orientation-preserving local diffeomorphism f admits a lift to this homotopy fiber.
In particular, small perturbations of such f , such as multiplication by bump functions in neighborhoods
of T2, can be lifted to this homotopy fiber.

Definition 1.3.8 Let ' 2 Fr.T2/ be a framing of the torus. The space of framed local diffeomorphisms,
and the space of framed diffeomorphisms, of the framed smooth manifold .T2; '/ are respectively the
pullbacks in the1–category Spaces

Immfr.T2; '/ //

��

Imm.T2/

Orbit'
��

�
h'i

// Fr.T2/

and

Difffr.T2; '/ //

��

Diff.T2/

Orbit'
��

�
h'i

// Fr.T2/

In the case that the framing ' D '0 is the standard framing, we simply define

Immfr.T2/ WD Immfr.T2; '0/ and Difffr.T2/ WD Difffr.T2; '0/:

The next result follows directly from Lemma A.0.1 and Proposition 1.3.5(1).

Corollary 1.3.9 Let ' 2 Fr.T2/ be a framing. The space Difffr.T2; '/ is canonically endowed with
the structure of a continuous group over Diff.T2/. With respect to this structure , there is a canonical
identification given by Proposition 1.3.5(1) between continuous groups:

Difffr.T2; '/'�Œ'�M
fr
1 '

�
�..CP1/2=Braid3

/' T2 Ì Braid3 if E' D E0;
�..CP1/2=Z �BZ/' .T2 Ì Z/�Z if E' ¤ E0:

Observation 1.3.10 The kernel of ˆ acts by rotating the framing, which is to say there is a canonically
commutative diagram among continuous groups

Z

Šh.�1�2/
6i

��

'
// �1 GL2.R/

�.A7!A�'0/
// �'0

Fr.T2/

��

Ker.ˆ/ // Braid3
Afffr

// Difffr.T2/
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Here Afffr is defined in Lemma 1.4.3. Indeed, there is a canonically commutative diagram among spaces,
in which each row is an �–Puppe sequence,

Ker.ˆ/ //

��

Braid3
ˆ

//

Afffr

��

GL2.Z/
R˝Z

//

Aff
��

GL2.R/

rotate the framing '0

��

�'0
Fr.T2/ // Difffr.T2/ // Diff.T2/

Orbit'0
// Fr.T2/

1.4 Proof of Theorem X and Corollary 0.1.4

Theorem X consists of three statements. Theorem X(1) is implied by Proposition 1.3.5. Theorem X(2)(a)
is implied by Corollary 1.3.9. Theorem X(2)(b), as well as Theorem X(2)(a), is implied by Lemma 1.4.3.

Notation 1.4.1 Let Ev D
�

p
q

�
2 Z2 and r 2 Z. Define the matrices

UEv WD

�
1Cyz z2

�u2 1�yz

�T

and DEv;r WD

�
1C .r � 1/xy �.r � 1/xz

.r � 1/wy 1C .r � 1/wz

�T

for some w; z;y; z 2 Z that solve

(1-4-1) wpCxq D gcd.p; q/� 0; ypC zq D 0 and wz�xy D 1:

Denote the semidirect continuous group and continuous monoid by

T2 ÌUEv
Z and T2 ÌDEv;UEv

.N� Ë Z/;

given through the actions on the continuous group T2

Z
b 7!U b

Ev
����! SL2.Z/Õ T2 and Z Ì N�

.b;d/7!U b
Ev

DEv;d
�����������! E2.Z/Õ T2:

Remark 1.4.2 Observation 1.3.4 ensures the existence of a solution to (1-4-1). Observation 1.3.4 also
implies, for U 0

Ev
and D0

Ev;r
defined by another choice of solution to (1-4-1), that U 0

Ev
and D0

Ev;r
are respectively

canonically conjugate with UEv and DEv;r , and therefore the continuous groups and continuous monoids
are respectively canonically identified:

T2 ÌUEv
Z' T2 ÌU 0

Ev
Z and T2 ÌUEv;DEv

.Z Ì N�/' T2 ÌU 0
Ev
;D0
Ev
.Z Ì N�/:

The next result extends Corollary 1.3.9 from an assertion about Difffr.T2; '/ to one about Immfr.T2; '/.
Recall Notation 1.2.3.

Lemma 1.4.3 Let ' 2 Fr.T2/ be a framing of the torus.

(1) If E' D E0, then there are canonical equivalences in the diagrams among continuous monoids

(1-4-2)

T2 Ì zEC2 .Z/
'

Afffr
//

idÌ‰
��

Immfr.T2; '/

forget
��

T2 Ì E2.Z/
'

Aff
// Imm.T2/

and

T2 Ì Braid3
'

Afffr
//

idÌˆ
��

Difffr.T2; '/

forget
��

T2 Ì GL2.Z/
'

Aff
// Diff.T2/
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(2) If E' ¤ E0, then there are canonical equivalences in the diagrams among continuous monoids

.T 2 ÌUE' ;DE'
.Z Ì N�//�Z

'

Afffr
//

idÌ..b;d;k/7!U b
E'

DE';d /

��

Immfr.T 2; '/

forget

��

T 2 Ì E2.Z/
'

Aff
// Imm.T 2/

and

.T 2 ÌUE'
Z/�Z

'

Afffr
//

idÌ..b;k/7!U b
E'
/

��

Difffr.T 2; '/

forget

��

T 2 Ì GL2.Z/
'

Aff
// Diff.T 2/

Proof Using Observation 1.1.1, the canonical equivalences in the commutative diagrams on the right
follow from those on the left.

Consider the diagrams in the1–category Spaces, which make use of Notation 1.2.3:

(1) For E' D E0,

T2 Ì zEC2 .Z/

idÌ‰
��

pr
// zEC2 .Z/

‰

��

!
// �

h. E';B'/i

��

T2 Ì E2.Z/

Aff '
��

pr
// E2.Z/

A7!.A E';B'A/

// Z2 �GL2.R/

Corollary 1.2.2'

��

Imm.T2/
Orbit'

// Fr.T2/

(2) For E' ¤ E0,

.T2 ÌUE' ;DE'
.Z Ì N�//�Z

pr
��

pr
// .Z Ì N�/�Z

pr

��

!
// �

h.�;B'/i

��

T2 ÌUE' ;DE'
.Z Ì N�/

idÌ..b;d/7!U b
E'

DE';d /

��

pr
// Z Ì N�

.b;d/ 7!U b
E'

DE';d

��

.b;d/ 7!B'U b
E'

DE';d
// ��GL2.R/B'

h E'i�inc
��

T2 Ì E2.Z/

Aff '
��

pr
// E2.Z/

A7!.AT E';B'A/

// Z2 �GL2.R/

Corollary 1.2.2'

��

Imm.T2/
Orbit'

// Fr.T2/

where GL2.R/B' � GL2.R/ is the path-component containing B' 2 GL2.R/.

By Observation 1.3.6, each bottom rectangle canonically commutes. Lemma 1.1.2 and Corollary 1.2.2
together imply each of these bottom rectangles witnesses a pullback. Each of the top left squares, as well
as the middle left square in the lower diagram, is clearly a pullback. Corollary B.2.2 states that the top
right square in the upper diagram is a pullback. Provided the top right and middle right squares in the
lower diagram are pullbacks, we would then conclude that each of the outer squares witnesses a pullback.
The result would then follow by Definition 1.3.8 of Immfr.T2; '/.
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So it remains to show that the top right and middle right squares in the lower diagram are pullbacks. The
paths of matrices

Œ0; 1� 3 t 7!

�
1C tcd tz2

�ty2 1� tyz

�T

;

�
1C t.r � 1/xy �t.r � 1/xz

t.r � 1/wy 1C t.r � 1/wz

�T

2 GL2.R/;

determine an identification of the named map Z Ì N�!GL2.R/ with the constant map at B' . Together
with the standard identification Z ' �B' GL2.R/, this shows that the top right square in the lower
diagram is a pullback. The middle right square of the lower diagram is a pullback because the map

Z Ì .ZX f0g/! StabE2.Z/
op. E'/ given by .b; d/ 7!

��
w x

y z

��1 �
1 b

0 d

� �
w x

y z

��T

D U b
E'
D E';d

is an isomorphism between monoids, where w;x;y; z 2 Z are as in Notation 1.4.1.

By applying the product-preserving functor Spaces �0
�! Sets, Lemma 1.4.3 implies the following:

Corollary 1.4.4 There is a canonical isomorphism in the diagram of groups

Braid3
Š
//

ˆ

��

MCGfr.T2/

forget
��

GL2.Z/
Š
// MCG.T2/

Remark 1.4.5 Proposition 0.1.1 and Corollary 1.4.4 grant a central extension among groups:

1! Z!MCGfr.T2/!MCGor.T2/! 1:

Proof of Corollary 0.1.4 By construction, the diagram among spaces

T2 Ì E2.Z/
'

Corollary 1.1.5
//

pr
%%

Imm.T2/

ev0
zz

T2

canonically commutes, in which the left diagonal map is projection, and the right diagonal map evaluates
at the origin 0 2 T2. Therefore, upon taking fibers over 0 2 T2, the (left) commutative diagram (1-4-2)
among continuous monoids determines the commutative diagram among commutative monoids

zEC2 .Z/
'

//

��

Immfr.T2 rel 0/

��

E2.Z/
'

Corollary 1.1.5
//

R˝Z %%

Imm.T2 rel 0/

D0ww

GL2.R/
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in which the map R˝Z is the standard inclusion, and D0 takes the derivative at the origin 0 2 T2. To
finish, Corollary B.2.2 supplies the left pullback square in the following diagram among continuous
groups, while the right pullback square is definitional:

Braid3
//

��

�

��

Diff.T2 XB2 rel @/oo

��

GL2.Z/
R˝Z

// GL2.R/ Diff.T2 rel 0/
D0

oo

1.5 Comparison with sheering

We use Theorem X(2) to show that Difffr.T2/ is generated by sheering. We quickly tour through some
notions and results, which are routine after the above material.

Notation 1.5.1 It will be convenient to define the projection T2 pri��! T to be projection off of the i th

coordinate. So for T2 3 p D .xp;yp/, we have pr1.p/D yp and pr2.p/D xp.

Let i 2 f1; 2g. Consider the topological subgroup and topological submonoid

Diff.T2 pri��! T /� Diff.T2/ and Imm.T2 pri��! T /� Imm.T2/;

consisting of those (local) diffeomorphisms T2 f
�!T2 that lie over some (local) diffeomorphism T

Nf
�!T :

(1-5-1)
T2 f

//

pri

��

T2

pri

��

T
Nf
// T

The topological space of framings of T2 pri��! T is the subspace

Fr.T2 pri��! T /� Fr.T2/

consisting of those framings �T2
'
�! �2

T2 that lie over a framing �T
N'
�! �1

T :

(1-5-2)

�T2

'

Š
//

Dpri

��

�2
T2

pri�pri

��

�T
N'

Š
// �1

T

Because pri is surjective, for a given ' there is a unique N' as in (1-5-2), if any. Better, ' 7! N' defines a
continuous map

(1-5-3) Fr.T2 pri��! T /! Fr.T / given by ' 7! N':

Notice that the continuous right-action Act of Lemma 1.3.1 evidently restricts as a continuous right-action

Fr.T2 pri��! T /Ô Imm.T2 pri��! T /:
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Furthermore, (1-5-3) is evidently equivariant with respect to the morphism between topological monoids
Imm.T2 pri��! T /

forget
���! Imm.T /:

.Fr.T2 pri��! T /Ô Imm.T2 pri��! T //
forget
���! .Fr.T /Ô Imm.T //; ' 7! N':

Now let ' 2 Fr.T2 pri��! T / be a framing of the projection. The orbit of ' by this action is the map

Orbit' W Imm.T2 pri��! T /! Fr.T2 pri��! T / given by f 7! Act.'; f /:

The space of framed local diffeomorphisms, and the space of framed diffeomorphisms, of .T2 pri��! T ; '/

are respectively the homotopy pullbacks among spaces

Immfr.T2 pri��! T ; '/ //

��

Imm.T2 pri��! T /

Orbit'
��

�
h'i

// Fr.T2 pri��! T /

and

Difffr.T2 pri��! T ; '/ //

��

Diff.T2 pri��! T /

Orbit'
��

�
h'i

// Fr.T2 pri��! T /

As in Observation 1.2.1, the topological space Fr.T2 pri��! T / is a torsor for the topological group
Map.T2;GLfig�2.R// of smooth maps from T2 to the subgroup

GLfig�2.R/ WD fA jAEei 2 SpanfEeigg � GL2.R/

consisting of those 2� 2 matrices that carry the i th–coordinate line to itself. For each i D 1; 2, define the
intersections in GL2.R/

SL2.Z/ //

��

GL2.Z/

��

EC2 .Z/ // E2.Z/

�\GLfig�2.R/
7���������!

SLfig�2.Z/ //

��

GLfig�2.Z/

��

EC
fig�2

.Z/ // Efig�2.Z/

Lemma 1.5.2 For each iD1; 2, the homotopy equivalences between continuous monoids of Lemma 1.1.2
and Corollary 1.1.5 restrict as homotopy equivalences between continuous monoids:

T2 Ì GLfig�2.Z/

inclusion
��

Affi

'
// Diff.T2 pri��! T /

inclusion
��

T2 Ì GL.Z/ Aff
'

// Diff.T2/

and

T2 Ì Efig�2.Z/

inclusion
��

Affi

'
// Imm.T2 pri��! T /

inclusion
��

T2 Ì E2.Z/
Aff
'

// Imm.T2/

Proof Via the involution †2 Õ T2 that swaps coordinates, the case in which i D 1 implies the case in
which i D 2. So we only consider the case in which i D 1.

The left homotopy equivalence is obtained from the right homotopy equivalence by restricting to maximal
continuous subgroups. So we are reduced to establishing the right homotopy equivalence. Direct inspection
reveals the indicated factorization Aff1 of the restriction of Aff to T2 Ì Ef1g�2.Z/� T2 Ì E2.Z/. So we
are left to show that Aff1 is a homotopy equivalence.

Algebraic & Geometric Topology, Volume 24 (2024)



1984 David Ayala, John Francis and Adam Howard

Projection to the .1; 1/–entry defines a morphism between monoids, with kernel K WD
˚�

1
0

b
d

�
2Ef1g�2.Z/

	
,

which fits into a split short exact sequence of monoids:

1 // K // Ef1g�2.Z/
.1;1/–entry

// .ZX f0g/� //

�
a
0

0
1

�
7!a

ss
1

Now, because pr1 is surjective, for a given f 2 Imm.T2 pri��! T / there is a unique Nf 2 Imm.T / as in
(1-5-1). Better, Imm.T2 pri��! T / 3 f 7! Nf 2 Imm.T / defines a forgetful morphism between topological
monoids, whose kernel can be identified as the topological monoid of smooth maps from T to Imm.T /
with valuewise monoid-structure. This is to say there is a bottom short exact sequence of topological
monoids which splits as indicated:

(1-5-4)
1 // T Ì K

��

.id;h0i/Ìinclusion
// T2 Ì Ef1g�2.Z/

Aff1

��

pr1Ì.1;1/�entry
// T Ì .ZX f0g/�

��

//

�
.0;z/;

�
a
0

0
1

��
7!.z;a/

rr
1

1 // Map.T ; Imm.T // // Imm.T2 pr1��! T /
f 7! Nf

// Imm.T / //

idT�f 7!f

rr
1

Direct inspection of the definition of Aff reveals the downward factorizations making the commutative
diagram (1-5-4) among topological monoids. By the isotopy-extension theorem, the bottom short exact
sequence among topological monoids forgets as a short exact sequence among continuous monoids. Using
Lemma A.0.4, the proof is complete upon showing that the left and right downward maps are equivalences
between spaces. It is routine to verify that the map Imm.T / .ev0;H1.�//

��������! T Ì .ZX f0g/� is a homotopy
inverse to the right downward map in (1-5-4).

Now observe that the left downward morphism in (1-5-4) fits into a diagram between short exact sequences
of continuous monoids:

1 // Z

��

b 7!h0iÌ
�

1
0

b
1

�
// T Ì K

��

idÌ.2;2/�entry
// T Ì .ZX f0g/�

��

//

�
z;
�

1
0

0
d

��
7!.z;d/

rr

1

1 // Map..0 2 T /; .id 2 Imm.T ///
forget

// Map.T ; Imm.T // ev0

// Imm.T / //

constantf 7!f

rr

1

The right downward map here is a homotopy equivalence, in the same way the right downward map
in (1-5-4) is a homotopy equivalence. Through this right downward identification of Imm.T /, the left
downward map is a homotopy equivalence, with inverse given by taking �1. Using Lemma A.0.4, we
conclude that the middle downward map is a homotopy equivalence, as desired.

The Gram–Schmidt algorithm witnesses a deformation-retraction onto the inclusion from the intersection
in GL2.R/:

O.1/2 D O.1/�O.1/D O.2/\GLfig�2.R/
',�! GLfig�2.R/:
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Observation 1.5.3 For each i D 1; 2, the sequence of homotopy equivalences among topological spaces
of Corollary 1.2.2, determined by a framing ' 2 Fr.T2 pri��! T / restricts as a sequence of homotopy
equivalences among topological spaces:

Fr.T2 pri��! T / Š �Map.T2;GLfig�2.R//
'
�!Map..0 2 T2/; .1 2 GLfig�2.R///�GLfig�2.R/

' �Map
�
.0 2 T2/; .C1 2 O.1//2

�
�O.1/2 ' O.1/2:

Observation 1.5.4 For each i D 1; 2, and each framing ' 2 Fr.T2 pri��!T /, the following diagram among
topological spaces commutes:

T2 Ì Efig�2.Z/
Affi

//

.sign of .1;1/–entry;sign of .2;2/–entry/ıproj
��

Imm.T2 pri��! T /

Orbit'
��

O.1/2 Fr.T2 pri��! T /
Observation 1.5.3
oo

For each i D 1; 2, the action Z
hUi i
���! Efig�2.Z/ Õ T2 as a topological group defines the topological

submonoid
T2 ÌUi

Z� T2 Ì Efig�2.Z/:

After Lemma 1.5.2 and Observation 1.5.3, Observation 1.5.4 implies the following:

Corollary 1.5.5 For each iD1; 2, and each framing ' 2Fr.T2 pri��!T /, there are canonical identifications
among continuous monoids over the identification Affi ,

T2 ÌUi
Z

'

Afffr
i
//

idÌh�i i

��

Difffr.T2 pri��! T ; '/

forget
��

T2 Ì Braid3
'

Lemma 1.4.3
// Difffr.T2; '/

and

T2 Ì Efig�2.Z/ '

Afffr
i
//

idÌhAinclusioni
��

Immfr.T2 pri��! T ; '/

forget
��

T2 Ì zEC2 .Z/
'

Lemma 1.4.3
// Immfr.T2; '/

We now explain how the presentation (0-1-1) of Braid3 gives a presentation of the continuous group
Difffr.T2/. Observe the canonically commutative diagram among continuous groups

T2 //

��

Difffr.T2 pr1��! T /

��

Difffr.T2 pr2��! T / // Difffr.T2/

which results in a morphism from the pushout,

Difffr.T2 pr1��! T /qT2 Difffr.T2 pr2��! T /! Difffr.T2/:

Recall the element R 2 GL2.Z/ from (B-2-1). The two homomorphisms Z
h�1�2�1i
�����!
h�2�1�2i
�����! ZqZ determine

two morphisms among continuous groups under T2:

(1-5-5) T2ÌRZ
idÌh�1�2�1i
��������!
idÌh�2�1�2i
��������!T2ÌU1;U2

.ZqZ/ '�!Difffr.T2 pr1��!T /qT2Difffr.T2 pr2��!T /!Difffr.T2/:
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Corollary 1.5.6 The diagram (1-5-5) among continuous groups under T2 witnesses a coequalizer.

Proof The presentation (0-1-1) of Braid3 gives a coequalizer diagram among groups:

Z
h�1�2�1i
�����!
h�2�1�2i
�����! ZqZ

h�1 and �2i
�������! Braid3:

Taking semidirect products with respect to the action Braid3
ˆ�! GL2.Z/Õ T2 results in a coequalizer

diagram among continuous groups:

T2 ÌR Z
idÌh�1�2�1i
��������!
idÌh�2�1�2i
��������! T2 ÌU1;U2

.ZqZ/
idÌh�1 and �2i
���������! T2 Ì Braid3:

The result then follows from Corollary 1.5.5.

Proof of Corollary 0.1.5 Consider the diagram among1–categories

ModDifffr.T2/.X/
oo

ModDifffr.T2/.X/

��

oo

ModT2ÌU1
Z.X/�Mod

T2 .X/
ModT2ÌU2

Z.X/
.idÌh�1�2�1i/

��.idÌh�2�1�2i/
�

oo

ModT2.X/hU1;U2i oo

' Proposition A.0.5

OO

ModT2.X/hRi

' Proposition A.0.5

��

ModT2ÌRZ.X/

diagonal

��

ModT2ÌRZ.X/�Mod
T2 .X/

ModT2ÌRZ.X/

ModT2.X/hR;Ri

' Proposition A.0.5

OO

Corollary 1.5.6 implies the middle square is a pullback. Via Proposition A.0.5, which identifies modules
for a semidirect product in terms of invariants, the top and bottom squares are pullbacks. Therefore, the
outer square is a pullback, as desired.

2 Natural symmetries of secondary Hochschild homology

Conventions (1) We fix a symmetric monoidal 1–category V, and assume it is ˝–presentable
(meaning the underlying1–category V is presentable, and ˝ distributes over colimits separately
in each variable).

(2) In this section, we apply the results from above only to the case of the standard framing '0 of the
2–torus T2. So we suppress the framing '0 from all notation, while regarding T2 as a framed
2–manifold.

Example 2.0.1 For k a commutative ring, take

.V;˝/D .ChkŒfquasi-isosg�1�;˝L
k/

to be the1–categorical localization of chain complexes over k on quasi-isomorphisms, with derived
tensor product over k presenting the symmetric monoidal structure. More generally, for R a commutative
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ring spectrum, take .V;˝/ WD .ModR;^R/ to be the1–category of R–module spectra and smash product
over R as the symmetric monoidal structure.

2.1 Hochschild homology of an associative algebra

Let A be an associative algebra in V.

Recall the paracyclic category �	, introduced by Getzler and Jones. An object is a linearly ordered set I

with finite intervals, equipped with an order-preserving action Z Õ I with the property that i < 1 � i for
each i 2 I ; a morphism is a Z–equivariant map between linearly ordered sets. Here are some standard
facts about the paracyclic category; see, for instance, [Lurie 2015, Section 4.2].

(1) There is a canonical equivalence

Homsurj
LinOrd.�; Œ1�/ W�	

op '�!�	;

whose value on .Z Õ I/ is the set of surjective maps between linearly ordered sets from I to Œ1�, equipped
with inherited linear order and residual Z–action.

(2) The Z–action on each object in �	, and the Z–equivariance of each morphism in �	, assemble as
an action

BZ Õ �	 :

(3) There is a standard functor �
Œp� 7!Œp�?Z

�������!�	, whose value on a nonempty finite linearly ordered set
is its Z–fold join, as it is equipped with the Z–action given by translating joinands. The resulting functor

�op
!�	

op
'�	

is final.

Recall from [Loday 1992] Connes’ cyclic category ƒ in which an object is a cyclically ordered nonempty
finite set, and a morphism is a cyclic order-preserving map. For .Z Õ I/ 2 �	 an object, the Z–
coinvariants of the underlying set I=Z canonically retain a cyclic order; this association assembles as
a functor

�	!ƒ given by .Z Õ I/ 7! I=Z:

This functor witnesses the BZ–coinvariants:

�	=BZ
'�!ƒ:

Recall from [Boardman and Vogt 1973] an explicit description of the symmetric monoidal envelope
Env˝.Assoc/ of the associative operad.12 There is a canonical functor

�	! Env˝.Assoc/

12Specifically, an object is a finite set; a morphisms from I to J is a map between finite sets I
f
�! J together with a linear

order on f �1.j / for each j 2 J ; composition is composition of maps between finite sets together with joins of finite sets; the
symmetric monoidal structure is given by disjoint unions of finite sets.
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whose value on an object .Z Õ I/ 2 �	 is the quotient set I=ZZ , and whose value on a morphism
.Z Õ I/

f
�! .Z Õ J / in �	 is the induced map between quotient sets I=Z

f=Z
��! J=Z together with the

linear order on f �1
=Z .Œj �/ inherited through the canonical bijection I � f �1.j /

bijection
�����! f �1

=Z .Œj �/ for
some (any) choice of j 2 Œj � 2 J=Z. Evidently, this functor is canonically BZ invariant, thus canonically
factoring through the BZ–coinvariants:

�	=BZ 'ƒ! Env˝.Assoc/:

In particular, each associative algebra A in V determines a composite functor

Barcyc
� .A/ W�

op
!�	!ƒ! Env˝.Assoc/ A�! V;

which is the cyclic bar construction (of A). The Hochschild homology (of A) (in V) is the geometric
realization of this simplicial object:

HH.A/ WD HHV.A/ WDA˝Aop˝A A' jBarcyc
� .A/j 2 V:

This construction is evidently functorial in the argument A:

AlgAssoc.V/
HH��! V:

Using finality of �op!�	, the action T ' BZ Õ �	 determines an action T Õ HH.A/, which is
Connes’ cyclic operator [1983]. This action is evidently functorial in the argument A:

(2-1-1)

ModT .V/

forget
��

AlgAssoc.V/
HH

//

HH
77

V

When working over the sphere spectrum (which is to say VD .Spectra;^/) so that HHSpectra.A/DTHH.A/
is topological Hochschild homology, Bökstedt, Hsiang and Madsen [Bökstedt et al. 1993] extend this
T–action as a cyclotomic structure on THH.A/. In [Ayala et al. 2017c] it is demonstrated how this
cyclotomic structure on THH.A/ is derived from an action of the continuous monoid T Ì N� on the
unstable version HHSpaces.A/.

Below, we prove Theorem Y.1, which constructs a canonical .T2ÌBraid3/–action on HH.2/.A/, which
is functorial in the 2–algebra A. We then prove Theorem Y.2, which, in the case that VD .Spaces;�/,
extends this action to one by the continuous monoid T2 Ì zEC2 .Z/.

2.2 Secondary Hochschild homology of 2–algebras

In order for the Hochschild homology construction to be twice-iterated, we endow the entity A 2 V with
an algebra structure among algebras.

Definition 2.2.1 The1–category of 2–algebras (in V) is

Alg2.V/ WD AlgAssoc.AlgAssoc.V//:
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Example 2.2.2 A commutative algebra AD .A; �/ in V determines the 2–algebra .A; �; �/ in V. This
association assembles as a functor

CAlg.V/! Alg2.V/;

thus supplying a host of examples of 2–algebras.

Observation 2.2.3 Using that the tensor product of operads is defined by a “hom-tensor” adjunction,
there is a canonical equivalence between1–categories

AlgAssoc˝Assoc.V/' Alg2.V/:

In particular, swapping the two tensor-factors supplies an involution

†2 Õ Alg2.V/:

Remark 2.2.4 After Observation 2.2.3, a 2–algebra in V is an object A2V together with two associative
algebra structures �1 and �2 on A, and compatibility between them which can be stated as either of the
two equivalent structures

� a lift of the morphism A˝A
�2
��!A in V to a morphism .A; �1/˝.A; �1/

�2
��! .A; �1/ in AlgAssoc.V/,

� a lift of the morphism A˝A
�1
��!A in V to a morphism .A; �2/˝.A; �2/

�1
��! .A; �2/ in AlgAssoc.V/.

Example 2.2.5 Consider the operad E2 of little 2–disks. There is a standard morphism between operads
Assoc˝Assoc! E2; see [Dunn 1988]. Through Observation 2.2.3, restriction along this morphism
defines a functor between1–categories

(2-2-1) AlgE2
.V/! Alg2.V/;

thus supplying some rich examples of 2–algebras. For instance, for k a commutative ring, a braided-
monoidal k–linear category R is a 2–algebra in the .2; 1/–category of k–linear categories. Specifically,
for G a simply connected reductive algebraic group over C, a choice of Killing form on its Lie algebra g

determines the quantum group Uqg, and thereafter the braided-monoidal category Repq.G/ (for generic q).
(See [Chari and Pressley 1994], for instance.)

Theorem 2.2.6 (Dunn’s additivity [1988]; see also [Lurie 2017, Theorem 5.1.2.2]) The functor (2-2-1)
is an equivalence between1–categories.

Remark 2.2.7 The action O.2/Õ Alg2.V/ of Corollary 0.2.8, afforded by Theorem 2.2.6, extends the
evident .†2oO.1//–action which swaps the two associative algebra structures (as the †2–factor) and
takes opposites of the two associative algebra structures (as the two O.1/–factors).

Definition 2.2.8 Secondary Hochschild homology is the composite functor, given by twice-iterating
Hochschild homology,

HH.2/ W Alg2.V/ WD AlgAssoc.AlgAssoc.V//
HH��! AlgAssoc.V/

HH��! V;

.A; �1; �1/ 7! .HH.A; �1/;HH.�2// 7! HH.HH.A; �1/;HH.�2//:
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The canonical lift (2-1-1) supplies, for each 2–algebra A in V, two commuting actions T Õ HH.2/.A/,
functorially in the argument A:

(2-2-2)

ModT2.V/

��

Alg2.V/
HH.2/

//

HH.2/
88

V

2.3 Comparison with factorization homology

Let n � 0. Recall from [Ayala and Francis 2015] the symmetric monoidal1–category Mfldfr
n whose

objects are (finitary) framed n–manifolds, whose spaces of morphisms are spaces of framed embeddings
between them, and whose symmetric monoidal structure is given by disjoint union. Let M be a framed
n–manifold. Consider the full1–subcategories

Diskfr
n

�,!Mfldfr
n  - BDifffr.M /;

respectively consisting of those framed n–manifolds each of whose connected components is equivalent
with Rn, and of those framed n–manifolds that are equivalent with M . The left full1–subcategory is
closed with respect to the symmetric monoidal structure. Restriction along these full1–subcategories
determines the solid diagram among1–categories

(2-3-1)
AlgEn

.V/ ' � Fun˝.Diskfr
n ;V/

R
((

Fun˝.Mfldfr
n ;V/

restrict
//

restrict
oo Fun.BDifffr.M /;V/'ModDifffr.M /.V/:

Factorization homology is defined as the left adjoint to the leftward restriction functor, indicated by the
dashed arrow; factorization homology over the torus, as it is endowed with a canonical Difffr.M /–action,
is the rightward composite functor

(2-3-2)
Z

M

W AlgEn
.V/!ModDifffr.M /.V/:

Proposition 2.3.1 There is a canonical equivalence

HH'
Z

T
in Fun.AlgAssoc.V/;ModT .V//:

Proof Recall from [Ayala and Francis 2015] the functor between1–categories Diskfr
1=S1

forget
���! Diskfr

1 .
Both of these a priori1–categories are ordinary categories. Through [Lurie 2017, Example 5.1.0.7], taking
path-components defines an equivalence between1–operads E1! Assoc. Proposition 2.12 of [Ayala
et al. 2017b] states an identification between symmetric monoidal1–categories Env˝.E1/

'�! Diskfr
1 .

Consequently, taking path-components of disjoint unions of Euclidean spaces defines an equivalence
between symmetric monoidal1–categories:

�0 W Diskfr
1 ' Env˝.E1/

'�! Env˝.Assoc/:
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Similarly, taking path-components of disjoint unions of Euclidean spaces while remembering cyclic
orders from S1 defines a .T'BZ/–equivariant equivalence between1–categories filling the diagram
among1–categories

Diskfr
1=S1

'�0
��

forget
// Diskfr

1

'�0

��

�op final
// �	

inclusion
// �	

G // Env˝.Assoc/

In particular, there is a commutative diagram among1–categories

(2-3-3)

.�	/=T //

''

.�	
G/=T

��

.Diskfr
1=S1/=T

'
oo

vv

Env˝.Assoc/

We now explain the diagram among1–categories
Fun.Diskfr

1=S1 ;V/
T

colim

''
AlgAssoc.V/' Fun˝.Env˝.Assoc/;V/ // Fun.Env˝.Assoc/;V/ //

55

))

Fun.�	G;V/T

��

'

OO

colim
// VT

'

��

Fun.�	;V/T
colim

77

ModT .V/

The rightward functor on the left is the forgetful functor from symmetric monoidal functors to functors
between underlying1–categories. The equivalence on the left is the universal property of symmetric
monoidal envelopes. Restriction along the diagram (2-3-3) defines the two triangles involving unlabeled
functors, where the superscript denotes the T–invariants with respect to the action on the domain-argument
of each functor1–category. The functors labeled by colim are given by taking colimits. The right vertical
equivalence is definitional, using that the T–action on V is understood as trivial. The upper right triangle
commutes because the functor Diskfr

1=S1
'�!�	

G is an equivalence, and in particular final. Finality of
�op!�	, together with the fact that � has a final object, implies the1–groupoid-completion of �	 is
contractible. This implies the functor �	 ,!�	

G is final, which proves that the lower triangle commutes.

To finish, the definition of
R

T is the upper composite functor, while the definition of HH is the lower
composite functor.

Corollary 2.3.2 There is a canonical equivalence

HH.2/ '
Z

T2

in Fun.Alg2.V/;ModT2.V//:

Proof The sought equivalence is a concatenation of the sequence of equivalences in the1–category
Fun.Alg2.V/;ModT2.V//,

HH.2/.�/' HH.HH.�//'
Z

T

�Z
T
.�/

�
'

Z
T2

.�/;

Algebraic & Geometric Topology, Volume 24 (2024)



1992 David Ayala, John Francis and Adam Howard

which we now explain. The first equivalence is the definition of secondary Hochschild homology. The
second equivalence is two applications of Proposition 2.3.1. The third equivalence is a consequence of
the pushforward formula [Ayala and Francis 2015, Proposition 3.23].

Swapping the order of pushforward immediately implies the following:

Corollary 2.3.3 For A D .A; �1; �2/ a 2–algebra in V, the two iterations of Hochschild homology
canonically agree:

HH.HH.A; �1/;HH.�2//' HH.HH.A; �2/;HH.�1//:

2.4 Comparing sheers

Here we show the sheer symmetries of HH.2/ agree.

Consider the composite morphism between continuous groups

h�1iW Z ,! T2 ÌU1
Z

Aff1
��! Difffr.pr1/! Difffr.T2/:

Note that the composition Difffr.T2/! Diff.T2/ ' � T2 Ì GL2.Z/ carries �1 to the sheering matrix
U1 D

�
1
0

1
1

�
2 GL2.Z/.

Proposition 2.4.1 The diagram among1–categories

Alg2.V/

Z Õ
Sheer1

HH.2/

��

AlgE2
.V/

fgt1
oo

fgt2
//

R
T2

��

Alg2.V/

Z Õ

Sheer�1
2

HH.2/

��

ModZ.V/ ModDifffr.T2/.V/
h�2i
�

//
h�1i
�

oo ModZ.V/

canonically commutes. In other words , for each E2–algebra A in V, there are canonical identifications
between the two symmetries of HH.2/.A/,

(2-4-1) h�1i ' Sheer1 and h�2i ' Sheer�1
2 ;

functorially in A 2 AlgE2
.V/.

Proof By swapping the two coordinates of T2, commutativity of the left square implies commutativity
of the right square. So we only establish commutativity of the left square.

Notice that this diagram is functorial in the presentably symmetric monoidal1–category V. Therefore,
commutativity of this diagram for any presentably symmetric monoidal1–category V is implied by an
identification (2-4-1) in the case that the pair .A;V/ is initial among presentably symmetric monoidal
1–categories equipped with an E2–algebra.
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We first identify the initial presentably symmetric monoidal1–category equipped with an E2–algebra. Day
convolution supplies a symmetric monoidal structure on the1–category PShv.Diskfr

2/. By construction,
this symmetric monoidal 1–category is ˝–presentable. Also, the Yoneda embedding Diskfr

2
Yoneda
����!

PShv.Diskfr
2/ is canonically symmetric monoidal. Via the equivalence AlgE2

.V/ ' � Fun˝.Diskfr
2 ;V/, the

Yoneda functor is an E2–algebra in PShv.Diskfr
2/. Furthermore, it is initial among presentably symmetric

monoidal1–categories equipped with an E2–algebra. Indeed, for A 2 AlgE2
.V/ ' � Fun˝.Diskfr

2 ;V/

an E2–algebra in V, left Kan extension of A along the Yoneda functor is the unique colimit-preserving
symmetric monoidal filler:

Diskfr
2

Yoneda

yy

A

  

PShv.Diskfr
2/

LKE
// V

Recall the fully faithful symmetric monoidal functor Diskfr
2
��! Mfldfr

2 . The restricted Yoneda functor
associated to � is

Mfldfr
2

restricted Yoneda
����������! PShv.Diskfr

2/ given by M 7! HomMfldfr
2
.�;M /;

which is canonically symmetric monoidal. The definition of factorization homology is such that there is a
canonical morphism in Fun˝.Mfldfr

2 ;PShv.Diskfr
2//,

(2-4-2)
Z
�

Yoneda '�! HomMfldfr
2
.�;�/:

This morphism is an equivalence. Indeed, unpacking definitions and identifying presheaves with right
fibrations via the (un)straightening equivalence, the unstraightening of this morphism is a functor between
right fibrations over Diskfr

n : Z
�

Diskfr
n=Rn ! Diskfr

n=�:

As explained in Example 0.2.12, this functor is an equivalence. In particular, we have a canonical
composite equivalence

(2-4-3) HH.2/.Yoneda/'
Z

T2

Yoneda' HomMfldfr
2
.�;T2/ in PShv.Diskfr

2/;

given by Corollary 2.3.2 and (2-4-2), respectively. Also, the symmetric monoidal functor

HomMfldfr
2
.�;T ��/ W Diskfr

1
T�����!Mfldfr

2
restricted Yoneda
����������! PShv.Diskfr

2/

is the Hochschild homology of the 2–algebra in PShv.Diskfr
2/ underlying the E2–algebra �, as it is equipped

with its residual associative algebra structure:

(2-4-4) HH.Yoneda/'
Z

T�Rt�
Yoneda' HomMfldfr

2
.�;T �Rt�/ in AlgAssoc.PShv.Diskfr

2//:
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Now, taking mapping tori defines a map between pointed spaces Difffr.T /! BDifffr.T2/. Based loops
of this map is the morphism between continuous groups

h�1iW Z
'�!�T '�!�Difffr.T / �.mapping torus)

�����������! Difffr.T2/:

By construction of the morphism (0-2-4), this fills the diagram among continuous groups

Z

'

��

// Z

ww

Sheer1

{{

�Difffr.T /

�.mapping torus)
��

// �AutPShv.Diskfr
2
/.HomMfldfr

2
.�;T �R//

'

(2-4-4)
// �AutPShv.Diskfr

2
/.HH.�//

(0-2-4)
��

Difffr.T2/ // AutPShv.Diskfr
2
/.HomMfldfr

2
.�;T2//

'

(2-4-3)
// AutPShv.Diskfr

2
/.HH.2/.�//

Commutativity of the outer diagram is the sought identification (2-4-1) in the universal case.

2.5 Proof of Theorem Y.1 and Corollaries 0.2.5 and 0.2.10

We first explain the following diagram among1–categories:

(2-5-1)

Alg2.V/

Z Õ
Sheer1

HH.2/

��

AlgE2
.V/

'

fgt1oo
fgt2
'

//

R
T2

��

R
pr2

''

R
pr1

ww

Alg2.V/

Z Õ

Sheer�1
2

HH.2/

��

ModZ.V/

f
��

ModDifffr.pr1/
.V/

foo

f
''

ModDifffr.T2/.V/

f
��

f //foo ModDifffr.pr2/
.V/

f //

f
ww

ModZ.V/

f
��

V ModT2.V/
f //foo V

� The functors labeled “f” are restriction along the canonically commutative diagram among continuous
groups

Z
h�1i
// Difffr.pr1/

// Difffr.T2/ Difffr.pr2/
oo Z

h�2i
oo

�

OO

T2

OOff 88

oo // �

OO

in which, for each i D 1; 2, the morphism h�ii is the composite Z ,! T2 ÌUi
Z

Affi
��! Difffr.pri/. In

particular, each of the lower triangles canonically commutes.

� The functor
R

T2 is (2-3-2).

� For i D 1; 2, the functor
R

pri
is factorization homology over the circle T of the pushforward along

the projection T2 pri��! T off of the i th coordinate, as it is endowed with its canonical Difffr.pri/–action.
The pushforward formula

R
pri
'
R

T

R
T [Ayala and Francis 2015, Proposition 3.23], which is manifestly

Difffr.pri/–equivariant, supplies commutativity of the upper triangles.
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� The functor AlgE2
.V/

fgt1��! Alg2.V/ is restriction along the standard morphism between operads
Assoc˝Assoc standard

�����!E2. The functor AlgE2
.V/

fgt2��!Alg2.V/ is restriction along the morphism between
operads Assoc˝Assoc swap

���!Assoc˝Assoc standard
�����! E2. Theorem 2.2.6 implies that all of these functors

are equivalences.

� For i D 1; 2, the outer vertical functors are HH.2/, as it is endowed with its canonical action
Z Õ

Sheeri

HH.2/.A/ of (0-2-5) and (0-2-7) from Section 0.2, which is evidently functorial in A 2 Alg2.V/.

� Commutativity of the upper tilted squares is Proposition 2.4.1.

In particular, for each 2–algebra A 2 Alg2.V/, there is a canonical action Difffr.T2/ Õ HH.2/.A/.
Through Theorem X(2)(a), this is an action T2 Ì Braid3 Õ HH.2/.A/, which establishes the statement of
Theorem Y.1.

After Theorem Y.1, the standard presentation (0-1-1) of the braid group Braid3 immediately implies
Corollary 0.2.5(1). Via the identification

T2 ÌUi
Z '�! Difffr.pri/

of Corollary 1.5.5, commutativity of the outer squares in (2-5-1) directly implies Corollary 0.2.5(2)(3).

Next, consider the .O.2/'GL2.R//–action on Mfldfr
2 given by change-of-framing. Observe that this

action restricts to one along the full1–subcategory Diskfr
2 �Mfldfr

2 . This implies the left adjoint
R

is
O.2/–equivariant. Therefore, for each A 2 Alg2.V/ and each .†; '/ 2Mfldfr

2 , taking O.2/–orbits of both
A and .†; '/ defines a canonically commuting diagram among1–categories

O.2/
OrbitA

//

Orbit.†;'/
��

Alg2.V/R
.†;'/

��

Mfldfr
2

R
A

// V

Through Observation 1.3.10, restricting along BZ' B�1O.2/! O.2/ gives the commutative diagram
asserted in Corollary 0.2.10.

2.6 Proof of Theorem Y.2

After Corollary 0.3.3, to prove Theorem Y.2 we are left to extend the action

Difffr.T2/op .�/
�1

' Difffr.T2/ Afffr

'
 �� T2 Ì Braid3 Õ HH.2/.A/

to an action Immfr.T2/op Õ HH.2/.A/. We do this by extending factorization homology via the develop-
ments of [Ayala et al. 2018]. Namely, recall from [loc. cit.] the1–category Mfdsfr

2 of solidly 2–framed
stratified spaces. Consider the full1–subcategory Msfr

D2 �Mfdsfr
2 consisting of those solidly 2–framed

stratified spaces each of whose strata is 2–dimensional.
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Observation 2.6.1 Inspection of the definition of Mfdsfr
2 reveals the following.

(1) The moduli space of objects

Obj.Msfr
D2/'

a
Œ†;'�

BDifffr.†; '/

is that of a framed 2–manifold. That is, there is a canonical bijection between framed-diffeomorphism-
types of framed 2–manifolds and equivalence-classes of objects in Msfr

D2, and for .†; '/ a framed
2–manifold, there is a canonical identification between continuous groups:

Difffr.†; '/' AutMsfr
D2
.†; '/:

(2) Let .†; '/ and .†0; '0/ be framed 2–manifolds. The space of morphisms from .†; '/ to .†0; '0/
in Msfr

D2,
HomMsfr

D2
..†; '/; .†0; '0//'

a
Œz†
��!†�

Embfr..z†;��'/; .†0; '0//
=Diff=†.z†/

;

is the moduli space of finite-sheeted covers over † together with a framed-embedding from its total space
to .†0; '0/.

(3) Composition in Msfr
D2 is given by base change of framed embeddings along finite-sheeted covers,

followed by composition of framed-embeddings:

HomMsfr
D2
..†; '/; .†0; '0//�HomMsfr

D2
..†0; '0/; .†00; '00// ı�! HomMsfr

D2
..†; '/; .†00; '00//;�

.†; '/ �
 � .z†;��'/ f�! .†0; '0/; .†0; '0/ � 0

 � .z†0; � 0
�
'0/

g
�! .†00; '00/

�
7!
�
.†; '/

�ıpr1 ���� .z†�†0 z†
0; .pr1 ı�/

�'/
gıpr2���! .†00; '00/

�
:

(4) Evidently, framed embeddings form the left factor in a factorization system on Msfr
D2, whose right

factor is (the opposite of) framed finite-sheeted covers.

(5) Finite products exist in Msfr
D2, and are implemented by disjoint unions of framed 2–manifolds.

(6) For each framing ' of the 2–torus T2, there is a canonical identification between continuous monoids:

Immfr.T2; '/op
' EndMsfr

D2
.T2; '/:

Define the full1–subcategory
� WDsfr

D2 �Msfr
D2;

consisting of those framed 2–manifolds that are equivalent with a finite disjoint union of framed Euclidean
spaces. Regard both Dsfr

D2 and Msfr
D2 as symmetric monoidal1–categories, via their cartesian monoidal

structures.13 Notice the evident monomorphisms of symmetric monoidal1–categories

� W Diskfr
2 ,!Dsfr

D2 and � WMfldfr
2 ,!Msfr

D2;

13Indeed, notice that the full1–subcategory Dsfr
D2 �Msfr

D2 is closed under finite products.
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each of whose images consists of all objects, yet only those morphisms ..†; '/ �
 � .z†;��'/ f�! .†0; '0//

in which � is a diffeomorphism.14

Let X be a presentable 1–category in which products distribute over colimits. Consider the full 1–
subcategory

Fun�.Dsfr
2 ;X/� Fun.Dsfr

2 ;X/

consisting of those functors that preserve finite products.

Proposition 2.6.2 [Ayala et al. 2017a] Let X be a presentable1–category in which products distribute
over colimits. Restriction along � defines an equivalence between1–categories

�� W Fun�.Dsfr
2 ;X/

'�! Fun˝.Diskfr
2 ;X/' AlgE2

.X/:

The inverse of restriction along � followed by left Kan extension along � defines a composite functor
z
Z
W AlgE2

.X/' Fun˝.Diskfr
2 ;X/

.��/�1

����! Fun�.Dsfr
D2;X/

�!
�! Fun�.Msfr

D2;X/:

Proposition 2.6.3 Let X be a presentable1–category in which products distribute over colimits. The
following diagram among1–categories canonically commutes:

AlgE2
.X/

Q
R

//

R
��

Fun�.Msfr
D2;X/

restriction
// Fun.BAutMsfr

D2
.T2; '0/;X/

' Observation 2.6.1.1/
��

Fun˝.Mfldfr
2 ;X/

restriction
// Fun.BAutMfldfr

2
.T2; '0/;X/

'
// ModDifffr.T2;'0/

.X/

Proof Let A 2AlgE2
.X/' Fun˝.Diskfr

2 ;X/. Using Proposition 2.6.2, the monomorphism � determines
a canonical morphism between colimits in X:

(2-6-1)
Z

T2

A' colim.Diskfr
2=.T2;'0/

WD Diskfr
2 �Mfldfr

2
Mfldfr

2=.T2;'0/

pr
�! Diskfr

2
A
�! X/

�
�! colim.Dsfr

D2=.T2;'0/
WDDsfr

D2 �Msfr
D2

Msfr
D2=.T2;'0/

pr
�!Dsfr

D2
��
�1
.A/

������! X/'
z
Z

T2

A:

This morphism is manifestly Difffr.T2/–equivariant and functorial in A 2 AlgE2
.X/ as so. So the

proposition is proved upon showing this morphism (2-6-1) is an equivalence. The morphism (2-6-1) is an
equivalence provided the canonical functor

(2-6-2) Diskfr
2=.T2;'0/

!Dsfr
D2=.T2;'0/

is final. But the factorization system of Observation 2.6.1(4) reveals that this functor (2-6-2) is a right
adjoint. Its left adjoint is given by projecting to the right factor of the factorization system:

Dsfr
D2=.T2;'0/

! Diskfr
2=.T2;'0/

; .D �
 � zD f

�! .T2; '0// 7! . zD f
�! .T2; '0//:

The sought finality of the functor (2-6-2) follows.

14In other words, � is the inclusion of the left factor in the factorization system of Observation 2.6.1(4).
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Proposition 2.6.3, together with Observation 2.6.1(6), immediately supplies a filler in the commutative
diagram among1–categories

Fun.BEndMsfr
D2
.T 2; '0/;X/

'

Observation 2.6.1.6/
// ModImmfr.T2/op.X/

forget
��

'

Corollary 0.3.3
// Mod

.T2ÌzEC2 .Z//
op.X/

forget
��

AlgE2
.X/

hDifffr.T2/Õ
R
T2i

(2-3-1)
//

hImmfr.T2/opÕz
R

T2i

OO

ModDifffr.T2/.X/
'

Theorem X(2)(a)
// ModT2ÌBraid3

.X/

Theorem Y.2 follows from this commutative diagram, after the commutative diagram (2-5-1).

Appendix A Some facts about continuous monoids

We record some simple formal results concerning continuous monoids.

Lemma A.0.1 Let G Õ X be an action of a continuous group on a space. Let � hxi��! X be a point in
this space. Consider the stabilizer of x, which is the fiber of the orbit map of x:

(A-0-1)

StabG.x/ //

��

�

hxi
��

G 'G ��
id�hxi

//

Orbitx
��

G �X
act

// X

There is a canonical identification in Spaces between this stabilizer and the based loops at

Œx� W �
hxi
��!X

quotient
����!X=G

of the G–coinvariants ,
StabG.x/'�Œx�.X=G/;

through which the resulting composite morphism �Œx�.X=G/' StabG.x/!G canonically lifts to one
between continuous groups.

Proof By definition of a G–action, the orbit map G
Orbitx
����! X is canonically G–equivariant. Taking

G–coinvariants supplies an extension of the commutative diagram (A-0-1) in Spaces:

StabG.x/ //

��

G

Orbitx
��

quotient
// G=G ' �

.Orbitx/=G

��

�
hxi

// X
quotient

// X=G

Through the identification G=G ' �, the right vertical map is identified as � hŒx�i���! X=G . Using that
groupoids in Spaces are effective, the right square is a pullback. Because the left square is defined as a
pullback, it follows that the outer square is a pullback. The identification StabG.x/'�Œx�.X=G/ follows.
In particular, the space StabG.x/ has the canonical structure of a continuous group.

Now, this continuous group StabG.x/ is evidently functorial in the argument G Õ X 3 x. In particular,
the unique G–equivariant morphism X !

�! � determines a morphism between continuous groups:

Stabx.X /! Stab�.�/'G:
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Lemma A.0.2 Let H !G be a morphism between continuous groups. Let H Õ X be an action on a
space. There is a canonical map between spaces over G=H ,

X=�.G=H /! .X �G/=H ;

from the coinvariants with respect to the action �.G=H /
�–Puppe
�����!H Õ X . Furthermore , if the induced

map �0.H /! �0.G/ between sets of path-components is surjective , then this map is an equivalence.

Proof The construction of the �–Puppe sequence is such that the morphism �.G=H /!H witnesses
the stabilizer of � unit

��!G with respect to the action H !G Õ
left trans

G:

�.G=H / //

��

H

��

�
unit

// G

In particular, there is a canonical �.G=H /–equivariant map

X 'X �� id�unit
����!X �G:

Taking coinvariants lends to a canonically commutative diagram among spaces:

(A-0-2)

X�.G=H /

��

// .X �G/=H //

��

X=H

��

B�.G=H / // G=H // BH

This proves the first assertion.

We now prove the second assertion. Because groupoid-objects are effective in the1–category Spaces,
the H–coinvariants functor

Fun.BH; Spaces/! Spaces=BH given by .H Õ X / 7! .X=H ! BH /

is an equivalence between1–categories. In particular, it preserves products. It follows that the right square
in (A-0-2) witnesses a pullback. By definition of coinvariants of the restricted action �.G=H /!H Õ X ,
the outer square is a pullback. The connectivity assumption on the morphism H ! G implies the left
bottom horizontal map is an equivalence. So the left top horizontal map is also an equivalence, as desired.

Let BN
hNÕM i
������!Monoids be an action of a continuous monoid on a continuous monoid. This action

can be codified as unstraightening of the composite functor BN !Monoids B
�! Cat�=

.1;1/
. We denote15

this unstraightening by
.BM /=l:laxN !BN:

It is a cocartesian fibration equipped with a section. Because the .1; 1/–category BN is equipped with
a functor � !BN , the given section supplies the .1; 1/–category .BM /=l:laxN with a distinguished

15The notation here is intended to evoke a left-lax quotient. Indeed, for K F�!Cat.1;1/ a functor from an1–category, its left-lax
colimit is the .1; 1/–category defined as the domain of the unstraightening of F : .coliml:lax.F / coliml:lax.!/

�������! coliml:lax.�// WD

.Un.F /!K/. See [Ayala et al. 2019, Appendix A] for a treatment of lax .1; 1/–category theory.
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point, and so we regard .BM /=l:laxN as a pointed .1; 1/–category. The semidirect product (of N by M )
is the continuous monoid

M Ì N WD End.BM /=l:laxN
.�/;

which is endomorphisms of the point.

Remark The underlying space of this continuous monoid is canonically identified as M �N ; the 2–ary
monoidal structure �MÌN is canonically identified as the composite map between spaces

�MÌN W .M�N /�.M�N /DM�.N�M /�M
idM�swap�idN
����������!M�.M�N /�N

idM�.projM;action/�idN
���������������!M�.M�N /�N D .M�M /�.N�N /

�M��N
������!M�N:

Note the canonical morphism between monoids M Ì N !N whose kernel is M .

Dually, let BN op hMÔN i
������!Monoids be a right action. Consider the unstraightening of the composite

functor BN op ! Monoids B
�! Cat�=

.1;1/
as a pointed cartesian fibration .BM /=r:laxN op ! BN . The

semidirect product (of N by M ) is the continuous monoid

N Ë M WD End.BM /=r:laxN op .�/;

which is endomorphisms of the point. Note the canonical morphism between monoids M Ì N ! N

whose kernel is M .

Observation A.0.3 Let N Õ M be an action of a continuous monoid on a continuous monoid. There is
a canonical identification between continuous monoids under M op and over N op:

.M Ì N /op
' .N op Ë M op/:

The next result is a characterization of semidirect products.

Lemma A.0.4 Let A
i �

r�!
N be a retraction between continuous monoids (so r ı i ' idN ).

� If the canonical map between spaces

(A-0-3) Ker.r/�N inclusion�i
�������!A�A

�A
��!A

is an equivalence ,16 then there is a canonical action17 N Õ
�

Ker.r/ for which there is a canonical
equivalence between monoids

Ker.r/Ì�N 'A:

� If the canonical map between spaces

N �Ker.r/ ��inclusion
�������!A�A

�A
��!A

is an equivalence ,18 then there is a canonical action Ker.r/ Ô
�

N for which there is a canonical
equivalence between monoids

Ker.r/Ì� N 'A:

16Note that this condition is always satisfied if N is a continuous group.
17The action map associated to � can be written as N �Ker.r/ i�inclusion

�������!A�A
�A
��!A (A-0-3)

'
 ����Ker.r/�N

proj
��! Ker.r/:

18Note that this condition is always satisfied if N is a continuous group.
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Proof By way of Observation A.0.3, the two assertions imply one another by taking cartesian/cocartesian
duals of cocartesian/cartesian fibrations. So we are reduced to proving the first assertion.

Consider the retraction BA
Bi ��
Br
��!BN among pointed1–categories. Note that Bi is essentially surjective,

and that Ker.r/ is the fiber of Br over �!BN .

Let c1
hni
��!BN be a morphism. Consider the commutative diagram among1–categories

c0

h�i
//

s

��

BA

Br

��

c1

hni
//

hi.n/i

77

BN

The assumption on the retraction implies the diagonal filler is initial among all such fillers. This is to say
that the morphism i.n/ in BA is cocartesian over Br . Because Bi is essentially surjective, this shows
that Br is a cocartesian fibration. The result now follows from the definition of the semidirect product
Ker.r/Ì�N .

Proposition A.0.5 Let X be an1–category. Let BN
hNÕM i
������!Monoids be an action of a continuous

monoid N on a continuous monoid M . Consider the precomposition action

BN op hNÕM iop
�������!Monoidsop Mod�.X/

������! Cat.1;1/ :

There is a canonical identification over ModM op.X/ from the1–category of .M Ì N /op–modules in
X to that of M op–modules in X with the structure of being left-laxly invariant with respect to this
precomposition N op–action:

Mod.MÌN /op.X/'ModM op.X/l:lax N op
:

In particular , there is a canonical fully faithful functor from the (strict) N –invariants ,

ModM op.X/N ,!Mod.MÌN /op.X/;

which is an equivalence if the continuous monoid N is a continuous group.

Proof The second assertion follows immediately from the first, which is proved upon justifying the
following sequence of equivalences among1–categories, each of which is evidently over ModM .X/:

Mod.MÌN /op.X/
(a)
' Fun.B.M Ì N /op;X/

(b)
' Fun.B.N op Ë M op/;X/

(c)
' Fun=BN op.BN op;Funrel

BN op.B.N
op Ë M op/;X�BN op//

(d)
' Fun=BN op.BN op;Funrel

BN op..BM op/=r:laxN ;X�BN op//

(e)
' Fun=BN op.BN op;Fun.BM op;X/=l:laxN op/

(f)
' Fun=BN op.BN op;ModM op.X/=l:laxN op/

(g)
'ModM op.X/l:lax N op

:
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The identifications (a) and (f) are both the definition of1–categories of modules for continuous monoids
in X. The identification (b) is Observation A.0.3. By definition of semidirect product monoids, the cartesian
unstraightening of the composite functor BN

hNÕM opi
�������!Monoids B

�! Cat.1;1/ is the cartesian fibration

B.N op Ë M op/!BN op:

Being a cartesian fibration ensures the existence of the relative functor 1–category; see [Ayala and
Francis 2020]. The identification (c) comes directly from the definition of relative functor1–categories.
Further, there is a definitional identification of the right-lax coinvariants B.N op ËM op/' .BM op/=r:laxN

over BN op (see [Ayala et al. 2019, Appendix A]), which determines (d). The identification (e) follows
from the codification of the N op–action on Fun.BM op;X/ in the statement of the proposition. The
identification (g) is the definition of left-lax invariants; see [Ayala et al. 2019, Appendix A].

The commutativity of the topological group T2 determines a canonical identification T2 Š .T2/op

between topological groups, and therefore between continuous groups. Together with Observation B.1.1,
we have the following consequence of Proposition A.0.5.

Corollary A.0.6 For X an1–category , there is a canonical identification between1–categories over
ModT2.X/:

Mod
.T2ÌzEC2 .Z//op.X/'ModT2.X/l:lax zEC2 .Z/:

Appendix B Some facts about the braid group and braid monoid

Here we collect some facts about the braid group on three strands, and the braid monoid on three strands.

B.1 Ambidexterity of zEC

2 .Z/

Observation B.1.1 Taking transposes of matrices identifies the nested sequence among monoids with
the nested sequence of their opposites:

.SL2.Z/� EC2 .Z/� GLC
2
.R//

.�/T

Š .SL2.Z/
op
� EC2 .Z/

op
� GLC

2
.R/op/:

By covering space theory, these identifications canonically lift as identifications between nested sequences
among monoids and their opposites:

.Braid3 �
zEC2 .Z/� �GL

C

2 .R//
.�/T

Š .Braidop
3
� zEC2 .Z/

op
� �GL

C

2 .R/
op/:

Corollary B.1.2 For each1–category X, there are canonical identifications

ModBraid3
.X/'ModBraidop

3
.X/ and ModzEC2 .Z/

.X/'ModzEC2 .Z/
op.X/

between1–categories of (left) modules in X and those of right-modules in X.
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Remark B.1.3 The composite isomorphism Braid3
.�/T

Š
���! Braidop

3

.�/�1

Š
����! Braid3 is the involution of

Braid3 given in terms of the presentation (0-1-1) by exchanging �1 and �2. Similarly, the involution
SL2.Z/

.�/T

Š
���! SL2.Z/

op .�/
�1

Š
����! SL2.Z/ exchanges U1 and U2.

B.2 Comments about Braid3 and zEC

2 .Z/

Observation B.2.1 In Braid3 (recall the presentation of (0-1-1)), there is an identity of the generator
of Ker.ˆ/:

.�1�2�1/
4
D .�1�2/

6
D .�2�1�2/

4
2 Ker.ˆ/:

For that matter, since the matrix

(B-2-1) R WD U1U2U1 D

�
0 1

�1 0

�
D U2U1U2 2 GL2.Z/

implements rotation by �1
2
� , we have that R4 D 1 in GL2.Z/.

The following result is an immediate consequence of how zEC2 .Z/ is defined in (0-1-4), using that the
continuous group GLC

2
.R/ is a path-connected 1–type.

Corollary B.2.2 There are pullbacks among continuous monoids

Braid3
//

ˆ

��

zEC2 .Z/

‰
��

// �

h1i

��

GL2.Z/ // E2.Z/
R˝Z

// GL2.R/

In particular , there is a canonical identification between continuous groups over GL2.Z/

Braid3 '�.GL2.R/=GL2.Z//:

Observation B.2.3 The inclusion SL2.Z/ � EC2 .Z/ between submonoids of GLC
2
.R/ determines an

inclusion between topological monoids:

(B-2-2) T2 Ì Braid3! T2 Ì zEC2 .Z/ :

After Observation 1.1.1, this inclusion witnesses the maximal subgroup, both as topological monoids and
as monoid-objects in the1–category Spaces.

Remark B.2.4 We give an explicit description of zEC2 .Z/. Rawnsley [2012] gives an explicit descrip-
tion for the universal cover of SP2.R/ D SL2.R/ (and goes on to establish the pullback square of
Proposition 0.1.1). Following those methods, consider the maps

� W GL2.R/! S1 given by A 7!
.aC d/C i.b� c/

j.aC d/C i.b� c/j
;
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where AD
�

a
c

b
d

�
. As in [Rawnsley 2012], consider a map � W GL2.R/�GL2.R/!R for which

ei�.A;B/
D

1�˛A˛B�1

j1�˛A˛B�1 j
; where ˛A D

a2C c2� b2� d2� 2i.ad C bc/

.aC d/2C .b� c/2
:

In these terms, the monoid zEC2 .Z/ can be identified as the subset

zEC2 .Z/ WDf.A; s/ j�.A/D eis
g�EC2 .Z/�R with monoid-law .A; s/�.B; t/ WD .AB; sCtC�.A;B//:

B.3 Group-completion of zEC

2 .Z/

The continuous group GLC
2
.R/ is path-connected with �1.GLC

2
.R/; 1/Š Z. Consequently, there is a

central extension

(B-3-1) 1! Z! �GL
C

2 .R/
universal cover
��������! GLC

2
.R/! 1:

Consider the inclusion as scalars R�
>0

scalars,���! GLC
2
.R/. Contractibility of the topological group R�

>0

implies base change of this central extension (B-3-1) along this inclusion as scalars splits. In particular, for

R˝Q W GLC
2
.Q/� GLC

2
.R/

the subgroup with rational coefficients, there are lifts among continuous monoids, in which the squares
are pullbacks,

N� //

scalars
++

))

Q�
>0

//

++

escalars
**

R�
>0

++

++

zEC2 .Z/

��

eQ˝Z

// �GL
C

2 .Q/

��

eR˝Q

// �GL
C

2 .R/

universal cover
��

EC2 .Z/ Q˝Z

// GLC
2
.Q/

R˝Q

// GLC
2
.R/

Proposition B.3.1 Each of the diagrams among continuous monoids

N�
scalars

//

inclusion
��

E2.Z/

Q˝Z
��

Q�
>0

scalars
// GL2.Q/

and

N�
escalars

//

inclusion
��

zEC2 .Z/

eQ˝Z
��

Q�
>0

escalars
// �GL
C

2 .Q/

witnesses a pushout. In particular , because N� inclusion
�����!Q�

>0
witnesses group-completion among contin-

uous monoids , each of the right downward morphisms witnesses group-completion among continuous
monoids.

Proof We explain the following commutative diagram among spaces:

E2.Z/
R˝Z

//

(a) (( ,,

GL2.Q/
(b)

rr

colimNdiv E2.Z/ (c)
// E2.Z/Œ.N�/�1�

R˝Z

66
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The top arrow is the standard inclusion. Here, scalar matrices embed the multiplicative monoid of natural
numbers N�

scalars
� E2.Z/. The bottom right term, equipped with the diagonal arrow to it, is the indicated

localization (among continuous monoids). The up-rightward arrow is the unique morphism between
continuous monoids under E2.Z/, which exists because the continuous monoid GL2.Q/ is a continuous
group. The solid diagram of spaces is thus forgotten from a diagram among continuous monoids.

Next, the poset Ndiv is the natural numbers with partial order given by divisibility: r � s means r divides s.
Consider the functor

FE2.Z/ WN
div
! Sets ,! Spaces given by r 7! E2.Z/ and .r � s/ 7! .E2.Z/

.s=r/��
�����! E2.Z//:

The colimit term in the above diagram is colim.FE2.Z//, which can be identified as the classifying space
of the poset

Un.FE2.Z//DN �E2.Z/ with partial order .r;A/� .s;B/ meaning r � s in Ndiv and s

r
�AD B:

� The dashed arrow .a/ is the canonical map from the 1–cofactor of the colimit.

� The dashed arrow .b/ is implemented by the map z.b/ WGL2.Q/
A 7!.rA;rA�A/
���������!N�E2.Z/, where rA 2N

is the smallest natural number for which the matrix rA �A 2 E2.Z/ has integer coefficients. The triangle
with sides .a/ and .b/ evidently commutes.

� The dashed arrow .c/ is implemented by the map z.c/ W Un.FE2.Z//
.r;A/7!r�1A
���������! E2.Z/Œ.N�/�1�. The

triangle with sides .a/ and .c/ evidently commutes. We now argue that .c/ is an equivalence between spaces.

Observe the identification between continuous monoidsM
p prime

.Z�0;C/
Š�!N� given by .fp primeg ��! Z�0/ 7!

Y
p prime

p�.p/;

as a direct sum, indexed by the set of prime numbers, of free monoids each on a single generator.
For S a set of prime numbers, denote by hSi� � N� the submonoid generated by S . For S a set of
primes and for p 2 S , the above identification as a direct sum of monoids restricts as an identification
.Z�0;C/� hS X fpgi

� Š hfpgi� � hS X fpgi� Š hSi�.

Next, observe an identification of the poset Ndiv' .BN�/�= as the undercategory of the deloop. Through
this identification, the above identification supplies an identification between posets from the direct sum
(based at initial objects) indexed by the set of prime numbers:M

p prime

.Z�0;�/
Š�!Ndiv; .fp primeg ��! Z�0/ 7!

Y
p prime

p�.p/:

For S a set of prime numbers, denote by hSidiv � Ndiv the full subposet generated by S . For S a set
of primes and for p 2 S , the above identification as a direct sum of posets restricts as an identification
.Z�0;�/� hS X fpgi

div Š hfpgidiv � hS X fpgidiv Š hSidiv. In particular, the standard linear order on
the set of prime natural numbers determines the sequence of functors

(B-3-2) Ndiv loc2
��! hp > 2idiv loc3

��! hp > 3idiv loc5
��! hp > 5idiv loc7

��! � � � ;
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each of which is isomorphic with projection off of .Z�0;�/. In particular, each projection is a cocartesian
fibration, so left Kan extension along each functor is computed as a sequential colimit. Because N�

scalars
�

E2.Z/ is (strictly) central, so too is .Z�0;C/ Š hfpgi
� � E2.Z/. The next claim follows from these

observations, using induction on the standardly ordered set of primes.

Claim For each prime q, left Kan extension of FE2.Z/ along the composite functor Ndiv locq
��! hp > qidiv

is the functor
FE2.Z/Œ.hp0�qi�/�1� W hp > qidiv .locq/!.E2.Z//

���������! Spaces;

given by

r 7! E2.Z/Œ.hp
0
� qi�/�1� and .r � s/ 7! .E2.Z/Œ.hp

0
� qi�/�1�

.s=r/��
�����! E2.Z/Œ.hp

0
� qi�/�1�/;

that evaluates on each r as the localization E2.Z/Œ.hp0 � qi�/�1�, and on each relation r � s in Ndiv as
scaling by s=r .

Next, the colimit of this sequence (B-3-2) is
T

q primehp > qidiv ' � terminal. Consequently, there is a
canonical identification

colim.FE2.Z//' colim
q2f2<3<5<��� g

..locq/!.FE2.Z///' colim
q2f2<3<5<��� g

.FE2.Z/Œ.hp0�qi�/�1�/

' E2.Z/

�� [
q2f2<3<5<��� g

hp0 � qi�
��1�

D E2.Z/Œ.N
�/�1�:

� By inspection, the resulting self-map of GL2.Q/ is the identity. Indeed, the natural transformation

Un.FE2.Z//

id

''

z(c)
��

* Un.FE2.Z//

E2.Z/Œ.N�/�1�
R˝Z

// GL2.Q/

z(b)

OO

given by, for each .s;B/ 2 Un.FE2.Z//, the relation .rs�1�B; rs�1�B � .s
�1 �B// � .s;B/, witnesses an

identification of the resulting self-map of colimNdiv E2.Z/ with the identity.

We conclude that the map E2.Z/Œ.N�/�1�
R˝Z
���!GL2.Q/ is an equivalence. It follows that the left square

in the statement of the proposition is a pushout because the morphism N� inclusion
�����! Q�

>0
witnesses a

group-completion (among continuous monoids).

The same argument also implies the square

N�
scalars

//

inclusion
��

EC2 .Z/

Q˝Z
��

Q�
>0

scalars
// GLC

2
.Q/
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witnesses a pushout among continuous monoids. Base change along the central extension (B-3-1) among
continuous groups reveals that the right square is also a pushout among continuous groups.

B.4 Relationship with the finite orbit category of T 2

Recall the1–category Orbitfin
T2 of transitive T2–spaces with finite isotropy, and T2–equivariant maps

between them. Recall that the action zEC2 .Z/! E2.Z/ Õ T2 on the topological group determines an
action via Observation B.1.1:

(B-4-1) zEC2 .Z/' zE
C
2 .Z/

op Õ Orbitfin
T2 :

Proposition B.4.1 There is a canonical identification of the1–category of coinvariants with respect to
the action (B-4-1):

.Orbitfin
T2/= zEC2 .Z/

'�!B.T2 Ì zEC2 .Z//:

Proof Recall that zEC2 .Z/ � �GL
C

2 .R/ is defined as a submonoid of a group. As a result, the left-
multiplication action by its maximal subgroup, �GL

C

2 .Z/Õ zEC2 .Z/, is free. Consequently, the space of
objects Obj..B zEC2 .Z//

�=/' zEC2 .Z/= �GL
C

2 .Z/
Š�! EC2 .Z/=GLC

2
.Z/ is simply the quotient set of zEC2 .Z/ by

its maximal subgroup acting via left-multiplication, which is bijective with the quotient of EC2 .Z/ by
its maximal subgroup via the canonical projection zEC2 .Z/! EC2 .Z/. The space of morphisms between
objects represented by A;B 2 EC2 .Z/,

Hom
.B zEC2 .Z//�=

.ŒA�; ŒB�/' fX 2 EC2 .Z/ jXAD Bg � EC2 .Z/;

is simply the set of factorizations in EC2 .Z/ of B by A. In particular, the1–category .B zEC2 .Z//
�= is a

poset. We now identify this poset essentially through Pontryagin duality.

Consider the poset Pfin
T2 of finite subgroups of T2 ordered by inclusion. We now construct mutually

inverse functors between posets

(B-4-2) .B zEC2 .Z//
�= ŒA�7!Ker.T2 A

�!T2/
�������������! Pfin

T2 and Pfin
T2

C 7!ŒZ2
AC
��!Z2�

�����������! .B zEC2 .Z//
�=:

The first functor assigns to ŒA� the kernel of the endomorphism of T2 induced by a representative
A 2 EC2 .Z/Õ T2. The second functor assigns to C the endomorphism .Z2 AC

��! Z2/ 2 EC2 .Z/ defined
as follows. The preimage Z2 � quot�1.C / � R2 quot

��! R2
=Z2 DW T

2 by the quotient is a lattice in R2

that contains the standard lattice cofinitely. There is a unique pair of nonnegative-quadrant vectors
.u1;u2/ 2 .R�0/

2 � .R�0/
2 that generate this lattice quot�1.C / and agree with the standard orientation

of R2. Then AC 2 EC2 .Z/ is the unique matrix for which AC Eui D Eei for i D 1; 2. It is straightforward to
verify that the two assignments in (B-4-2) indeed respect partial orders, and are mutually inverse to one
another. Observe that the action (B-4-1) descends as an action zEC2 .Z/

op Õ Pfin
T2 , with respect to which

the equivalences (B-4-2) are zEC2 .Z/
op

–equivariant.

Algebraic & Geometric Topology, Volume 24 (2024)



2008 David Ayala, John Francis and Adam Howard

Next, reporting the stabilizer of a transitive T2–space defines a functor Orbitfin
T2

.T2ÕT / 7!StabT2 .t/
��������������! Pfin

T2 .
Evidently, this functor is conservative. Notice also that this functor is a left fibration; its straightening is
the composite functor

(B-4-3) Pfin
T2

C 7!T=C
������! Groups B

�! Spaces:

The result follows upon constructing a canonical filler in the diagram among1–categories witnessing a
pullback

Orbitfin
T2

//

��

Ar.B.T2 Ì zEC2 .Z///

Ar.Bproj/
��

Pfin
T2

'

(B-4-2)
// .B zEC2 .Z//

�=
forget

// Ar.B zEC2 .Z//

By definition of semidirect products, the canonical functor B.T2 Ì zEC2 .Z//
Bproj
���! B zEC2 .Z/ is a

cocartesian fibration. Because the1–category BT2DBT2 is an1–groupoid, this cocartesian fibration
is conservative, and therefore a left fibration. Consequently, the functor

Ar.B.T2 Ì zEC2 .Z///! Ar.B zEC2 .Z//

is also a left fibration. So the base change of this left fibration along .B zEC2 .Z//
�= forget
���! Ar.B zEC2 .Z//

is again a left fibration,

(B-4-4) Ar.B.T2 Ì zEC2 .Z///
jBT2

! .B zEC2 .Z//
�=
' Pfin

T2 ;

where the equivalence is by (B-4-2). Direct inspection identifies the straightening of this left fibration
(B-4-4) as (B-4-3).
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The shape of the filling-systole subspace in surface moduli space
and critical points of the systole function

YUE GAO

We study the space Xg �Mg consisting of surfaces with filling systoles and its subset, critical points
of the systole function. In the first part we obtain a surface with Teichmüller distance 1

5
log logg to Xg ,

and in the second and third parts prove that most points in Mg have Teichmüller distance 1
5

log logg
and Weil–Petersson distance 0:6521.

p
logg�

p
7 log logg/ to Xg . So the radius-r neighborhood of Xg

cannot cover the thick part of Mg for any fixed r > 0. In the last two parts, we get critical points with
small and large (comparable to the diameter of the thick part of Mg ) distances.
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1 Introduction

1.A Motivations

A long-standing and difficult question on the moduli space of Riemann surfaces of genus g (denoted
by Mg ) is to construct a spine of Mg (the deformation retract of Mg with minimal dimension.)1

This question is equivalent to constructing a mapping class group equivariant deformation retract with
the minimal dimension of the Teichmüller space Tg . In an unpublished manuscript, Thurston [1986b]
proposed a candidate for the spine of Mg ; see Anderson, Parlier and Pettet [Anderson et al. 2016]. This
candidate consists of surfaces whose shortest geodesics are filling, and is denoted by Xg (A finite set of

1In some papers a deformation retract of Mg is called a spine of Mg , and the ones with minimal dimension are called minimal
(or optimal) spines
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essential curves on a surface is filling if the curves cut the surface into polygonal disks.) Thurston outlined
a proof that Xg is a deformation retract of Mg , but the proof seems difficult to complete. Recently, some
progress on the dimension of Xg has been made; for example, a codimension-2 deformation retract of
Mg containing Xg (see Ji [2014]) and a .4g�5/–cell contained in Xg (see Fortier Bourque [2020]). But
determining the dimension of Xg still seems very difficult.

Our work mainly concerns the shape of Xg with respect to the Teichmüller and Weil–Petersson metrics
on Mg . The shape of Xg was first studied by Anderson, Parlier and Pettet [Anderson et al. 2016], and
our work is partly inspired by the notion of the sparseness of subsets in Mg they raised. Our question is:

Question 1.1 Does there exist a number RDR.g/ > 0 such that, for most points p 2Mg , dT .p;Xg/
(or dWP.p;Xg/) is larger than R.g/?

In other words: is Xg in some sense “sparse” in Mg?

Another motivation to study the shape of Xg is to understand the shape of the critical-point set of the
systole function. On each surface p 2Mg , the systole is the length of the shortest geodesics on p.
Therefore it can be treated as a function on Mg . Akrout [2003] showed that this function is a topological
Morse function; hence the systole function has regular and critical points. The critical-point set of this
function is denoted by Crit.sysg/. By Schmutz Schaller [1999, Corollary 20], Crit.sysg/�Xg . Therefore
conclusions on the shape of Xg imply corollaries on the shape of Crit.sysg/. On the other hand, a natural
question is to compare the shape difference between Xg and Crit.sysg/. This program is closely related
to the question of Mirzakhani as to whether long fingers exist. Details are in the following subsection.

1.B Results and perspectives

Our first result is the construction of an example of a surface in the thick part of Mg that is distant fromXg .

Proposition 3.6 When g � 3 there is a surface Sg with sys.Sg/D arccosh 2 whose distance to Xg is at
least 1

4
log.logg�K/, where K D log 12.

Remark 1.2 If a surface’s systole is sufficiently small, then its Teichmüller distance to Xg could be
arbitrarily large. But our example has constant systole while it is distant from Xg .

Before stating Theorem 4.3, we make “most points” in Question 1.1 precise.

The Weil–Petersson metric is a mapping class group equivariant Riemannian metric on the Teichmüller
space. Therefore the volume of Mg and Borel subsets of Mg with respect to this metric is well defined.
Mirzakhani [2007] invented the integration formula for geometric functions on Mg with respect to this
volume and then calculated the volume of Mg . She initiated a fast-growing area: random surfaces with
respect to the Weil–Petersson metric; see Mirzakhani [2007; 2013].

Algebraic & Geometric Topology, Volume 24 (2024)
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The random surface theory is based on the probability of Borel sets in Mg . Mirzakhani defined the
probability of a Borel set B �Mg as

PWP.B/D
volWP.B/

volWP.Mg/
:

Theorem 4.3 PWP
˚
S 2Mg j dT .S;Xg/ <

1
5

log logg
	
! 0 as g!1.

Remark 1.3 The distance 1
5

log logg is calculated from (3-1) in Lemma 3.2 and the width by Nie, Wu
and Xue [Nie et al. 2023, Theorem 2]. Actually, if we replace 1

5
by any number smaller than 1

4
, this

theorem still holds. Besides Lemma 3.2 and [Nie et al. 2023, Theorem 2], Theorem 4.3 also depends on
Mirzakhani’s Theorem 2.8 in [Mirzakhani and Petri 2019].

Theorem 4.3 gives a positive answer to Question 1.1 with respect to Teichmüller distance. When g is
sufficiently large, most points in Mg have Teichmüller distance at least 1

5
log logg to Xg .

The moduli space Mg is divided into two parts. The thick part consists of surfaces with systole larger
than or equal to " for some fixed " > 0, denoted by M�"g . This part is compact in Mg , and its diameter
with respect to the Teichmüller metric is C log.g="/ for some C > 0 by Rafi and Tao [2013]. The
complementary part of the thick part is the thin part.

By the collar lemma (see for example Buser [1992, Chapter 4]), Xg is contained in the thick part of Mg

and we have:

Corollary 4.4 PWP
˚
dT .S;Xg/ <

1
5

log logg j S lies in the thick part of Mg

	
! 0 as g!1.

From Proposition 3.6 or Corollary 4.4, the Hausdorff distance between the thick part of Mg and Xg is at
least 1

5
log logg.

The study of the shape ofXg with respect to the Teichmüller metric was pioneered by Anderson, Parlier and
Pettet [Anderson et al. 2016]. By comparing Xg with Yg , the subset of Mg with Bers’ constant bounded
above and below by constants, they obtained the following two results: the diameter of Xg is comparable
with the thick part of Mg [Anderson et al. 2016, Theorem 1.1], and the sparseness of Xg \ Yg in Yg ,
that is, most points in Yg have distance at least logg to Xg \Yg [Anderson et al. 2016, Theorem 1.3].2

The distance in Proposition 3.6 and Theorem 4.3 is smaller than that of [Anderson et al. 2016, Theorem 1.3],
but we remove the restriction to Yg and obtain the sparseness of Xg in Mg and thick part of Mg .

An immediate corollary to Proposition 3.6 or Corollary 4.4 is:

Corollary 1.4 For any R > 0, when g is sufficiently large , the R–neighborhood of Xg does not cover
the thick part of Mg . Hence the R–neighborhood of Crit.sysg/ does not cover the thick part of Mg .

For the thick part of Mg , Fletcher, Kahn and Markovic [Fletcher et al. 2013] determined the minimal
size of a point set in M�"g whose R neighborhood covers the whole thick part for any R > 0. The size

2For the meaning of the “most points” and the definition of the distance, see [Anderson et al. 2016].
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is .Cg/2g for C D C.";R/ > 0. Currently the size of Crit.sysg/ is not determined, but a known lower
bound for jCrit.sysg/j given by the Euler characteristic of Mg (see [Harer and Zagier 1986]) is quite
close to this number. However, by Corollaries 4.4 and 1.4, Crit.sysg/ is sparse in M�"g .

We also answer Question 1.1 with respect to the Weil–Petersson metric:

Theorem 5.7 PWPfS 2Mg j dWP.S;Xg/ < 0:6521.
p

logg�
p
7 log logg/g ! 0 as g!1.

Besides the tools used in the proof of Theorem 4.3, to prove this theorem we also use Wu’s estimate [2022]
of lower bounds of Weil–Petersson distance. Using this estimate, Wu [2022, Theorem 1.4] has obtained
that the probability of the Weil–Petersson

p
logg–neighborhood of all surfaces with o.logg/ Bers’

constant tends to 0 as g tends to infinity.

After answering Question 1.1, a further question is:

Question 1.5 Is there a critical point p 2 Crit.sysg/ and a large number R.g/ such that B.p;R.g//
contains no critical point except p?

This question concerns the distances between the elements of Crit.sysg/ and Xg . The radius gives a
lower bound for the Hausdorff distance between Xg and Crit.sysg/. Moreover, Question 1.5 is very
close to but slightly weaker than Mirzakhani’s question of whether there exists a long finger (see Fortier
Bourque and Rafi [2022]) when the systole has a large local maximum at p.

For such a point p, a component of the level set fq j sys.q/ > Lg that contains p but does not contain any
other critical point of the systole function is called a finger. The length of a finger is sys.p/�L. If a finger
is long, then the Teichmüller distance from p to other critical points is large (at least 1

2
log.sys.p/=L/).

We make the first attempt to compare the difference between Xg and Crit.sysg/.

For any g � 2, we take three surfaces S1g , S2g and S3g that were originally constructed by Anderson,
Parlier and Pettet [Anderson et al. 2011], Gao and Wang [2023] and Fortier Bourque and Rafi [2022],
respectively. The surfaces S1g and S3g are known critical points, and we prove S2g is a critical point by our
Proposition 6.3. Then we calculate the distance between the critical points.

Theorem 8.3 For the surfaces S1g ; S
3
g 2 Crit.sysg/, when g � 13,

dT .S
1
g ; S

3
g/ >

1
2

log.g� 6/�K;

where K D 1
2

log
�
40
3

log..4gC 4/=�/
�
.

Hence the diameter of Crit.sysg/ is comparable with the diameter of Xg and the diameter of the thick
part of Mg .

On the other hand, the distance between S1g and S2g is small.

Theorem 7.10 For any g � 2 and S1g ; S
2
g 2 Crit.sysg/,

dT .S
1
g ; S

2
g/� 2:3:

Algebraic & Geometric Topology, Volume 24 (2024)
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It is worth mentioning that to prove the surface†2g is a critical point, we use a conclusion (Proposition 6.3)
that among all surfaces with a specific symmetry, the surface with maximal systole is a critical point.
This proposition is a generalization of Schmutz Schaller [1999, Theorem 37] and Fortier Bourque [2020,
Proposition 6.3]. The key point of this generalization is to construct a domain in Mg containing the point
p we consider, and p is the maximal point of the systole function in the domain.

1.C Methods

To prove “most surfaces” are distant from Xg , we avail ourselves of lower bounds of Teichmüller and
Weil–Petersson distance (Lemma 3.2 and Wu [2022, Theorem 1.1], respectively). For “most surfaces”
there is an embedded cylinder with a large length and large width by Nie, Wu and Xue [Nie et al. 2023] and
the systoles of the surfaces are relatively small by a theorem of Mirzakhani [Mirzakhani and Petri 2019,
Theorem 2.8]. By the lower bound estimates, surfaces containing such a cylinder are distant from Xg .

Theorem 8.3 is obtained by comparing the diameter of the two surfaces. This method is from Rafi and
Tao [2013, Lemma 5.1].

The shapes of S1g and S2g are similar. Then we can construct the deformation from S1g to S2g explicitly.
From the deformation we describe in Section 7, we calculate the distance and get Theorem 7.10.

Organization In Section 2, we provide some preliminary knowledge on Teichmüller theory and the
systole. Then we prove Proposition 3.6 in Section 3 and Theorem 4.3 in Section 4. On the Weil–Petersson
distance, we prove Theorem 5.7 in Section 5. In Section 6, Proposition 6.3 is proved. Then using
Proposition 6.3, Theorem 7.10 is proved in Section 7. Finally, Theorem 8.3 is proved in Section 8.
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acknowledge Prof. Yunhui Wu and Yang Shen for suggesting consideration of the Weil–Petersson distance
version of Theorem 4.3 and acknowledge Prof. Yunhui Wu for many helpful discussions and comments
on Theorem 5.7. We acknowledge Prof. Jiajun Wang for his helpful suggestions. We acknowledge the
referee for invaluable suggestions. The author is supported by grant 12301082 of the National Natural
Science Foundation of China.

2 Preliminaries

2.A Teichmüller space

We denote by Tg the Teichmüller space consisting of marked hyperbolic surfaces with genus g, and by
Mg the moduli space consisting of hyperbolic surfaces with genus g. It is known that

Mg Š Tg=�g :

Here �g is the mapping class group of a closed orientable surface of genus g.

Algebraic & Geometric Topology, Volume 24 (2024)
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The Teichmüller metric is a complete mapping class group equivariant metric on Tg defined using the
dilatation of quasiconformal maps. For X; Y 2 Tg , the distance between X and Y is denoted by dT .X; Y /.
The formal definition of this metric is deferred to Section 7.C.1 since it is not needed for most of this paper.

2.B Thurston’s metric

Thurston [1986a] defined an asymmetric metric on the Teichmüller space. For X; Y 2 Tg and f WX! Y

a Lipschitz homeomorphism between X and Y , we let

L.f /D sup
x;y2X
x¤y

d.f .x/; f .y//

d.x; y/
:

Then this metric is defined as

dL.X; Y /D inf
f
flogL.f / j f WX ! Y is a Lipschitz homeomorphismg:

Theorem 2.1 [Thurston 1986a] For X; Y 2Mg ,

dL.X; Y /D sup
˛2C.X/

inf
f WX!Y

log
lf .˛/.Y /

l˛.X/
:

Here f is a Lipschitz homeomorphism and C.X/ is the set of simple closed curves in X .

For X; Y 2 Tg , Rafi and Tao [2013, (2)] have shown that

(2-1) 1
2
dL.X; Y /� dT .X; Y /:

2.C The topological Morse function and generalized systole

Definition 2.2 On a topological manifold M n, a function f WM n!R is a topological Morse function if,
at each point p 2M , there is a neighborhood U of p and a map  WU !Rn. Here  is a homeomorphism
between U and its image such that f ı �1 is either a linear function or

f ı �1..x1; x2; : : : ; xn//D f .p/� x
2
1 � � � � � x

2
j C x

2
jC1C � � �C x

2
n:

In the former case the point p is called a regular point of f , while in the latter case the point p is called
a singular point with index j .

On a Riemannian manifold M , l˛ WM !RC is a family of smooth functions on M indexed by ˛ 2 I ,
called the (generalized) length function. The length function family is required to satisfy the following
condition: for every p 2M there exists a neighborhood U of p and a number K > 0 such that the set
f˛ j l˛.q/�K for all q 2 U g is a nonempty finite set. The (generalized) systole function is defined as

sys.p/ WD inf
˛2I

l˛.p/ for all p 2M:

Theorem 2.3 [Akrout 2003] If , for any ˛ 2 I , the Hessian of l˛ is positively definite , then the
generalized systole function is a topological Morse function.

Algebraic & Geometric Topology, Volume 24 (2024)
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The critical point of the systole function is also characterized in [Akrout 2003]. A p 2M is a eutactic
point if and only if it is a critical point of the systole function.

We assume that, for p 2M ,
S.p/ WD f˛ 2 I j l˛.p/D sys.p/g:

Definition 2.4 For p 2M , p is eutactic if and only if 0 is contained in the interior of the convex hull of
fdl˛jp j ˛ 2 S.p/g.

An equivalent definition is:

Definition 2.5 p 2 M is eutactic if and only if for v 2 TpM , if dl˛.v/ � 0 for all ˛ 2 S.p/, then
dl˛.v/D 0 for all ˛ 2 S.p/.

2.D Teichmüller space and length function

For a marked hyperbolic surface † in the Teichmüller space Tg , ˛ � † is an essential simple closed
geodesic. Its length is denoted by l˛.†/. In another point of view, l˛ is a function on Tg :

l˛ W Tg !RC; † 7! l˛.†/:

The set of all the shortest geodesics on † is denoted by S.†/. For ˛ 2 S.†/,

l˛.†/� lˇ .†/ for all simple closed geodesics ˇ �†:

The length of the shortest geodesics of † is called systole of †.

Similarly, the systole can be treated as a function on Tg , and we denote it by sysg or shortly sys. Obviously

sys.†/D l˛.†/D inf
simple closed geodesics ˇ�†

lˇ .†/:

Remark 2.6 In a small neighborhood U of † in Tg , the systole function is realized by the minimum
lengths of finitely many simple closed geodesics.

Remark 2.7 Systole function can also be defined as a function on Mg :

sys WMg !RC; † 7! sys.†/:

However, the length function l˛ is not well-defined on Mg because of the monodromy.

By [Wolpert 1987], the Hessian of l˛ is always positive definite for any simple closed geodesic ˛ �†
with respect to the Weil–Petersson metric. Therefore:

Corollary 2.8 [Akrout 2003, corollaire, page 2] The systole function is a topological Morse function
on Tg .

The systole function is also a topological Morse function on Mg , because the systole function is an
invariant function on Teichmüller space.

The set of all the critical points of sysg in Tg is denoted by Crit.sysg/.

Algebraic & Geometric Topology, Volume 24 (2024)
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Figure 1: Hyperbolic polygons. The right-angled triangle (left), trirectangle (middle left), right-
angled pentagon (middle right) and right-angled hexagon (right).

2.E Hyperbolic trigonometric formulae

The following are from [Buser 1992, page 454] and are pictured in Figure 1:

cosh cDcot˛ cotˇ: .right-angled triangles/;(2-2)

cos'Dsinh a sinh b .trirectangles/;(2-3)

cosh cDsinh a sinh b .right-angled pentagons/;(2-4)

cosh cDsinh a sinh b cosh  � cosh a cosh b .right-angled hexagons/:(2-5)

3 The surface Sg

In this section we construct a surface Sg whose Teichmüller distance toXg is at least 1
4

log.logg�log 12/.

3.A Construction of the surface Sg when g D 3 � 2n�1

To construct a surface Sg , we first construct a tree T .n/ with m vertices. The tree’s diameter is required
to be comparable with logm.

We define the tree T .n/ by the following two properties:

(1) Every vertex, except the leaves of T .n/, has degree 3.

(2) There is a vertex O of T .n/ such that the combinatorial distance from every leaf of T .n/ to O is n.

The tree T .2/ is shown in Figure 2.

O

Figure 2: The tree T .2/.

Algebraic & Geometric Topology, Volume 24 (2024)
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Figure 3: The sphere with 6 � 2n boundary components.

Now we construct the surface Sg from the tree T .n/. We pick several isometric pairs of pants as building
blocks of Sg . Each pair consists of two regular right-angled hexagons. A boundary component of the
pants is called a cuff, and an edge of the hexagons in the interior of the pants is called a seam. We glue
the pants together according to the tree T .n/.

Then we glue together the pants. A vertex of T .n/ corresponds to a pair of pants; two pairs of pants are
glued together at a cuff if there is an edge that connects the corresponding vertices. Now we get a sphere
with 3 � 2n boundary components (Figure 3). For each pair of pants corresponding to a leaf in the tree,
we glue together the two cuffs of the pair that are not glued with the other pants. Then we get a closed
surface with genus g, where gD 3 �2n�1. At each cuff, we require the gluing to have “no twist”. In other
words, when gluing two pairs of pants together at a cuff, endpoints of seams from one pair of pants are
required to be glued with the endpoints of seams from the other; when gluing two cuffs in the same pair
of pants, ends of seams from the two sides of the cuff are required to be glued together. Therefore we
construct a unique hyperbolic surface, denoted by Sg .

In Sg , in each one-holed torus (glued from a pair of pants) corresponding to a leaf of the tree, there is
a unique simple closed curve consisting of one seam of the pants. We denote this curve by ˛k , where
k D 1; 2; : : : ; g. Now we prove that this curve is the shortest in Sg .

Lemma 3.1 The shortest closed geodesics on Sg are exactly the curves ˛1; ˛2; : : : ; ˛g , and therefore the
systole of Sg is arccosh 2.

Proof By (2-5), the edge length of regular right-angled hexagons is arccosh 2, and hence the cuff length
of the pants is 2 arccosh 2 and the seam length is arccosh 2. Therefore the length of ˛k is the seam length
of the pants, arccosh 2. If a curve in Sg intersects at least three pairs of pants, then this curve is longer
than ˛k because this curve must pass through two cuffs that belong to one of the three pants.

In a pair of pants, the only simple closed geodesics are the cuffs. The cuff length of the pants is exactly
twice the length of ˛k .

Algebraic & Geometric Topology, Volume 24 (2024)
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If a curve is contained in two neighboring pairs of pants, then it intersects the two pants’ shared cuff and
the seams opposite the cuff. However, by (2-4), the distance between the cuff and the seam is larger than
the length of ˛k .

Therefore f˛kg
g

kD1
is the set of shortest geodesics of Sg .

3.B Distance between Sg and Xg

The distance between a surface and Xg is estimated below by the following lemma:

Lemma 3.2 For a surface S 2Mg , let L> 0. If , for any filling curve set F in which each pair of curves
intersect at most once , F contains a curve longer than L, then

(3-1) dT .S;Xg/�
1
4

log
L

sys.S/
:

Proof We let S 2Mg . For any filling curve set F � S in which each pair of curves intersects at most
once, F contains a curve longer than L.

For any S 02Xg , we assume F 0�S 0 is the set of shortest geodesics in S 0. Since S 02Xg , F 0 is filling in S 0.

For any Lipschitz homeomorphisms f W S! S 0 and g W S 0! S , we let ˛ � S be a shortest geodesic in S
and ˇ � S 0 be a shortest geodesic with lg.ˇ/.S/ >L. Then by Theorem 2.1,

exp.dL.S; S 0//�
lf .˛/.S

0/

l˛.S/
�

sys.S 0/
sys.S/

:

On the other hand,

exp.dL.S 0; S//�
lg.ˇ/.S/

lˇ .S
0/
�

L

sys.S 0/
:

Then, by (2-1), dT .S; S 0/� 1
2
dL.S; S

0/ and dT .S; S 0/� 1
2
dL.S

0; S/. For any sys.S 0/ > 0,

max
�

sys.S 0/
sys.S/

;
L

sys.S 0/

�
�

r
L

sys.S/
:

Therefore,

dT .S; S
0/� 1

2
log

r
L

sys.S/
D

1
4

log
L

sys.S/
:

Now we estimate the distance between Sg and Xg using Lemma 3.2.

We let Pk , k D 1; : : : ; g be the one-holed tori corresponding to leaves of the tree T .n/. An observation is
that SgnfPkg

g

kD1
is a g–holed sphere.

Immediately we have:

Lemma 3.3 In Sg , for any filling curve set F in which each pair of curves intersects at most once , any
curve in F intersects at least one Pk in fPkg

g

kD1
.
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Proof If a curve does not intersect any Pk for k D 1; 2; : : : ; g, then it is contained in the g–holed sphere
SgnfPkg

g

kD1
, and hence is a separating curve. A separating curve cannot intersect any curve once. On

the other hand, a curve in a filling set F always intersects other curves in F .

Lemma 3.4 In Sg , for any filling curve set F in which each pair of curves intersects at most once , F
contains a curve ˇ such that

lˇ .Sg/ > n arccosh 2;
where g D 3 � 2n�1.

Proof The construction of Sg gives a natural pants decomposition on Sg . A filling curve set must
intersect every pair of pants in this decomposition because filling curve sets cut the surface into disks.

For the pants corresponding to the center vertex O shown in Figure 2, we let ˇ be a curve in F passing
through this pair of pants. Then by Lemma 3.3, ˇ intersects some one-holed sphere corresponding to
a leaf in the tree T .n/. The combinatorial distance between the vertex O and any leaf of the tree is at
least n. Then by the construction of Sg , the distance between the corresponding two pairs of pants is at
least n arccosh 2, where arccosh 2 is the length of seams of the pairs of pants used to construct Sg .

Therefore lˇ .Sg/ > n arccosh 2.

By Lemmas 3.4 and 3.2, immediately we have:

Proposition 3.5 When g D 3 � 2n�1 for any positive integer n, the distance between Sg and Xg is
larger than

dT .Sg ; Xg/ >
1
4

logn:

3.C Construction in general genus

We have proved Proposition 3.6 when g D 3 � 2n�1. Now we construct Sg when 3 � 2n�1 < g < 3 � 2n.

Take a tree T with g leaves, such that T .n/� T � T .nC 1/. By the embedding T .n/! T , we define
the vertex of O in T as the image of vertex O in T .n/. Then in the tree T , the combinatorial distance
from O to any leaf of T is larger than n.

Similarly to the construction at the beginning of this section, we can construct a genus-g surface Sg from
the tree T . By Lemma 3.2, the distance between Sg andXg is larger than 1

4
logn. Since g<3�2n, we have:

Proposition 3.6 For any g � 3, the distance from the surface Sg with sys.Sg/D arccosh 2 to the space
Xg is larger than

dT .Sg ; Xg/ >
1
4

log.logg� log 12/:

4 Sparseness of Xg

4.A Two theorems on random surfaces

We list two theorems on random surfaces we need for the proof of Theorem 4.3.
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Theorem 4.1 [Mirzakhani and Petri 2019, Theorem 2.8] There exist A;B > 0 such that , for any
sequence fcgg of positive numbers with cg < A logg, we have

PWPfS 2Mg j sys.S/ > cgg< Bcge�cg :

In a hyperbolic surface, the half collar of a simple closed geodesic  with width w is an embedded
cylinder in the surface. One of the boundary curves of the cylinder is the geodesic  , and this cylinder
consists of points with distance at most w to  on one side of  .

Theorem 4.2 [Nie et al. 2023, Theorems 1 and 2] For any " > 0, consider the following conditions:

(a) There is a simple closed curve  in S that has a half collar with width 1
2

logg�
�
3
2
C "

�
log logg.

(b) The length of the curve  in (a) is larger than 2 logg� 5 log logg.

Then
PWPfS 2Mg j S satisfies (a) and (b)g ! 1

as g!1.

4.B The sparseness of Xg

Theorem 4.3 PWP
˚
S 2Mg j dT .S;Xg/ <

1
5

log logg
	
! 0 as g!1.

Proof By Theorem 4.1, if we let cg D 1
5

log logg, then

PWP
˚
S 2Mg j sys.S/ > 1

5
log logg

	
< B

1
5

log logg

.logg/1=5
:

For S 2Mg and sys.S/� 1
5

log logg, if S satisfies Theorem 4.2(a), then for any filling curve set F in S ,
F contains a curve of length at least logg� 2 log logg since in F there must be a curve intersecting the
separating curve  in condition (a). Then by Lemma 3.2, the distance between S and Xg is bounded
below by

1
4

log
logg� 2 log logg

1
5

log logg
> 1
5

log logg:

By Theorem 4.2, PWP
˚
S 2Mg j dT .S;Xg/ >

1
5

log logg
	
! 1 as g!1 and so the theorem holds.

Recall that Xg is contained in the thick part M�"g in Mg . The thick part M�"g has positive probability
in Mg by [Mirzakhani and Petri 2019, Theorem 4.1]; immediately we have:

Corollary 4.4 PWP
˚
dT .S;Xg/ <

1
5

log logg j S lies in the thick part of Mg

	
! 0 as g!1.

5 The Weil–Petersson distance version of Theorem 4.3

Besides the Teichmüller distance, if we consider the Weil–Petersson distance to Xg , we can prove
Theorem 5.7.
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5.A Lower bounds on Weil–Petersson distance

The main tools to prove Theorem 5.7 are Theorems 4.1 and 4.2, and the lower bounds on Weil–Petersson
distance of Wu [2022].

Before stating Wu’s result, we prepare some definitions; for details, see [Wu 2022].

We let M be the space of complete Riemannian metrics on the topological surface Sg with constant
curvature �1. Then by the definition of Teichmüller space, Tg DM=Diff0.Sg/ where Diff0.Sg/ is the
group of diffeomorphism of Sg isotopic to the identity. Let � WM! Tg be the natural projection. We
recall from Rupflin and Topping [2018] that a smooth path c.t/�M is a horizontal curve if there exists
a holomorphic quadratic differential q.t/ on c.t/ such that @c.t/=@t D Re q.t/.3

On a surface X 2M for p 2X , we let injX .p/ be the injectivity radius of X at p, namely the half length
of shortest essential loop on X passing through p. Then we define

Definition 5.1 On a topological surface †g.g � 2/, fix p 2†g . For any X; Y 2 Tg , we define

j
p

injX .p/�
p

injY .p/j WD sup
c
j
p

injc.0/.p/�
p

injc.1/.p/j;

where c W Œ0; 1� !M runs over all smooth horizontal curves, with �.c.0// D X , �.c.1// D Y and
�.c.Œ0; 1//� Tg the Weil–Petersson geodesic connecting X and Y .

Theorem 5.2 [Wu 2022, Theorem 1.1] For a topological surface †g with g � 2, fix a point p 2 Sg .
Then , for any X; Y 2 Tg ,

j
p

injX .p/�
p

injY .p/j � 0:3884dWP.X; Y /;

where dWP.X; Y / is the Weil–Petersson distance.

A corollary to this theorem is also needed:

Corollary 5.3 [Wu 2022, Corollary 1.2] For X; Y 2 Tg ,

j
p

sys.X/�
p

sys.Y /j � 0:5492 dWP.X; Y /

Remark 5.4 Before this corollary, the function
p

sys. � / was proved to be uniformly Lipschitz on Tg
endowed with the Weil–Petersson metric by Wu [2019].

5.B The theorem with respect to Weil–Petersson distance

Now we begin to prove Theorem 5.7. First, we prove the following two lemmas:

Lemma 5.5 If S 2 Tg satisfies Theorem 4.2(a)–(b), then there is a curve ˛ � S , freely homotopic to the
geodesic  in the conditions (a) and (b), such that , for any point p 2 ˛,

injS .p/�
1
4

logg�
�
3
4
C
"
2

�
log logg:

3For a hyperbolic metric g 2M, the tangent space of M can be decomposed as fRe q j q is a quadratic differential on .S; g/g˚
fLg jX 2 �.TS/g. For details, see [Rupflin and Topping 2018].
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Proof By conditions (a) and (b),  � S is a simple closed geodesic of length 2 logg�5 log logg, having
a half collar of width 1

2
logg�

�
3
2
C"

�
log logg. Then let ˛ be the curve in the half collar of  consisting

of points whose distance to  is 1
4

logg�
�
3
4
C
"
2

�
log logg. The lemma follows immediately.

Lemma 5.6 For any surface S 0 2Xg , on any essential curve ˛0 � S 0 there is at least one point p0 2 ˛0

such that
injS 0.p0/� 1

2
sys.S 0/:

Proof Recall that S 0 2Xg means that the shortest geodesics on S 0 form a filling set of curves. Then any
essential curve ˛0 intersects at least one shortest closed geodesic. We pick one of the shortest geodesics that
intersects ˛0 and denote it by ˇ0. We let p0 be a point in ˛0\ˇ0. Then injS 0.p0/� 1

2
lˇ 0.S 0/D 1

2
sys.S 0/.

Theorem 5.7 PWPfS 2Mg j dWP.S;Xg/ < 0:6521.
p

logg�
p
7 log logg/g ! 0 as g!1.

Proof By Theorem 4.1, if we let cg D log logg, then

(5-1) PWPfS 2Mg j sys.S/ > log loggg< B
log logg

logg
:

Let S 2Mg satisfy Theorem 4.2(a) and (b) and sys.S/� log logg. For any S 0 2Xg , by Corollary 5.3,

(5-2) 0:5492 dWP.S; S
0/� j

p
sys.S 0/�

p
sys.S/j �

p
sys.S 0/�

p
sys.S/�

p
sys.S 0/�

p
log logg:

On the other hand, since S satisfies conditions (a) and (b), by Lemma 5.5 there is a curve ˛ � S such
that, for any p 2 ˛,

(5-3) injS .p/�
1
4

logg�
�
3
4
C
"
2

�
log logg:

We choose an arbitrary horizontal curve c.t/ W Œ0; 1� ! M�1 with �.c.0// D S , �.c.1// D S 0 and
�.c.Œ0; 1// a Weil–Petersson geodesic connecting S and S 0. Then by deforming the metric of S along
c.t/ to the metric of S 0, ˛ is also a well-defined essential simple closed curve on S 0. By Lemma 5.6,
there is a point p 2 ˛ � S 0 such that

(5-4) injS 0.p/� 1
2

sys.S 0/:

Therefore, by Definition 5.1, (5-3) and (5-4),

(5-5) 0:3884 dWP.S; S
0/� j

p
injS .p/�

p
injS 0.p/j �

p
injS .p/�

p
injS 0.p/

�

q
1
4

logg�
�
3
4
C
"
2

�
log logg�

q
1
2

sys.S 0/:

Combining (5-2) and (5-5), then eliminating sys.S 0/, we have

dWP.S; S
0/� 0:6521.

p
logg�

p
7 log logg/:

Hence, for any S satisfying (a), (b) and sys.S/� log logg,

dWP.S;Xg/� 0:6521.
p

logg�
p
7 log logg/:

Algebraic & Geometric Topology, Volume 24 (2024)



The shape of the filling-systole subspace in surface moduli space and critical points of the systole function 2025

On the other hand, by Theorem 4.2 and (5-1),

PWPfS j S satisfies (a), (b) and sys.S/� log loggg ! 1

as g!1. Therefore,

PWPfS j dWP.S;Xg/� 0:6521.
p

logg�
p
7 log logg/g ! 1

as g!1, and the theorem holds.

6 A criterion for the critical points

This section aims to prove Proposition 6.3: the surface with maximal systole among all the surfaces
admitting a specific group action must be a critical point of the systole function.

In Section 6.A, some required knowledge on the tangent space of Tg for the proof is provided. In
Section 6.B, we prove lemmas on local properties of the subspace consisting of surfaces admitting a
specific group action. At last, in Section 6.C, we prove the proposition.

6.A Tangent space of the Teichmüller space

This subsection contains some required definitions and conclusions on the tangent space of Tg for the proof
of Proposition 6.3. One may refer to [Imayoshi and Taniguchi 1992; Wolpert 1987; Liu 2023] for details.

For S 2 Tg , let � be the Fuchsian group that uniformizes S ; hence S ŠH2=� . The tangent space of Tg
is identified with the space of harmonic Beltrami differentials with respect to � , denoted by HB.H2; �/.

Here B.H2; �/ consists of a �–invariant .�1; 1/–tensor � 2 L1.H2/ with j�j < 1. A �–invariant
.�1; 1/–tensor � satisfies that for any  2 � ,

(6-1) �D .� ı /
 0

 0
almost everywhere on H2:

The map H is a projection from B.H2; �/ to itself, depending only on the complex structure of Tg , and
HB.H2; �/ is the image of this projection.

There is an exponential mapˆ WHB.H2; /!Tg , given by associating to�2HB.H2; �/ the (equivalence
class of the marked) surface H2=f ��.f �/�1, where f � is the quasiconformal map on H2 satisfying
f
�
Nz D �f

�
z and fixing 0, 1 and1. Note that ˆ is a holomorphic homeomorphism; see [Wolpert 1987].

6.B Symmetric surfaces

For genus-g surface Sg , we assume G is a finite subgroup of MCG.Sg/, and � is a marked hyperbolic
structure on Sg such that †g D .Sg ; �/2 Tg . Then we define XGg � Tg , the hyperbolic surfaces admitting
a G action:

XGg D f†g D .Sg ; �/ 2 Tg jG � Aut.†g/g:

Here Aut.†g/ is the automorphism group of the hyperbolic surface †g .
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The following lemma says that the set of G–invariant tangent vectors at S 2XGg is HB.H2; � 0/ for the
Fuchsian group � 0 that uniformizes the orbifold S=G.

Lemma 6.1 For S 2Xgg , we let S be uniformized by the Fuchsian group � , and the orbifold S=G be
uniformized by a Fuchsian group denoted by � 0. Hence � E � 0 and G Š � 0=� . Then � 2 HB.H2; �/ is
a G–invariant tangent vector to Tg if and only if � 2 HB.H2; � 0/.

Proof For g 2Aut.S/, since HB.H2; �/ consists of .�1; 1/–tensors we know g acts on HB.H2; �/ by

(6-2) g�.�/D .� ı Qg
�1/

. Qg�1/0

. Qg�1/0
;

where Qg is a lift of g onto H2.

Since a lift of g is contained in � 0 andGŠ� 0=� , by (6-2), �Dg�.�/ is equivalent to �2HB.H2; � 0/.

For the exponential map ˆ, we have:

Lemma 6.2 For the G–invariant tangent vector � 2 HB.H2; � 0/, ˆ.�/ 2XGg .

Proof The group G, as a subgroup of the mapping class group MCGg , acts on Tg . To prove ˆ.�/2XGg
is to prove ˆ.�/ is a fixed point of this action.

For g 2G and ˆ.�/DH2=f ��.f �/�1, g acts on ˆ.�/ by

H2=f ��.f �/�1 7!H2=. Qg/�1f ��.f �/�1 Qg;

where Qg is a lift of g onto H2.

By the definition of f �, f �ı. Qg/�1Df � if and only if �D .�ı Qg�1/. Qg�1/0=. Qg�1/0; namely, �Dg�.�/.
Therefore, ˆ.�/ is G–invariant if � is G–invariant.

6.C The criterion

Proposition 6.3 If R 2XGg realizes the maximum of the systole function on XGg , namely

sysR � sysS for all S 2XGg ;

then R is a critical point of the systole function in Tg .

Proof We assume that R realizes the maximum of sys on XGg , S.R/ is the set of systoles of R, R is
uniformized by the Fuchsian group � , and the orbifold R=G is uniformized by the Fuchsian group � 0.

For � 2 HB.H2; �/, if for any ˛ 2 S.R/ we have dl˛.�/ � 0, we consider � D
P
g2G g��; then by

[Fortier Bourque 2020, (6.1)],

(6-3) dl˛.�/D dl˛

�X
g2G

g��

�
D

X
g2G

dl˛.g��/D
X
g2G

dlg.˛/.�/� dl˛.�/� 0:
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The vector � D
P
g2G g�� is in HB.H2; � 0/. We let "0 be a small positive number and consider

U D f� j � 2HB.H2; � 0/ and k�k1 < "0g. Since U is an open neighborhood of 0 in HB.H2; � 0/, ˆ.U /
is an open neighborhood of R in XGg . If "0 is small enough, then for any S 2 ˆ.U / there is at least
one curve ˛ 2 S.R/ such that ˛ is a systole of S . The Hessian of l˛jˆ.U/ is positive definite since the
Hessian of l˛ is positive definite. Then by Theorem 2.3, sysjˆ.U/ is a topological Morse function.

Since R realizes the maximum of sysjXG
g

, R realizes the maximum of sysjˆ.U/ and R is a critical
point of sysjˆ.U/. HB.H2; � 0/ is the tangent space of ˆ.U / at the basepoint. By Definition 2.5, for
� 2 HB.H2; � 0/, if dl˛.�/� 0 for all ˛ 2 S.R/, then dl˛.�/D 0 for all ˛ 2 S.R/.

Therefore by (6-3), for � 2HB.H2; �/, if dl˛.�/� 0 for all ˛ 2 S.R/, then dl˛.�/D 0 for all ˛ 2 S.R/.
By Definition 2.5 R is a eutactic surface, and therefore a critical point of the systole function.

7 Small distance

7.A Construction of S 1
g and S 2

g

The surface S1g was initially constructed in [Anderson et al. 2011], while S2g was initially constructed in
[Gao and Wang 2023]. We briefly construct these two surfaces for completeness, which implies how to
obtain the Teichmüller distance between the two surfaces.

We first construct a family of genus-g hyperbolic surfaces denoted by fSg.c; t/g; each surface in this
family is determined by two parameters, c and t for c > 0 and 0 � t � 1

2
c. The example S1g is a

Sg.c1; 0/–surface for some c1 > 0, while the example S2g is a Sg.c2; t2/–surface for some c2; t2 > 0.

Let n� 3 and pick two isometric right-angled hyperbolic polygons with 2n edges admitting an order-n
rotation. Two such polygons can be glued to an n–holed sphere admitting the order-n rotation extended
from the polygons. By this rotation, all boundary curves of this n–holed sphere have equal length. The
geometry of the n–holed sphere is determined by its boundary curves’ length (denoted by c), and we denote
the corresponding n–holed sphere by S.c/. We call the boundary curves of S.c/ cuffs and the edges of the
polygons contained in the interior of S.c/ seams. By rotational symmetry, all seams also have equal length.

We pick two isometric n–holed spheres and glue them along their cuffs, getting a closed surface. As
shown in Figure 4, when gluing the two n–holed spheres, we require that every cuff of one of the n–holed
spheres is identified with a cuff in the other n–holed sphere, and every seam of one n–holed sphere is half
of a closed curve (denoted by ˛k for k D 1; 2; : : : ; n) while the other half of ˛k is a seam in the other
n–holed sphere. This constructed surface has genus g D n� 1, and the geometry of this closed surface is
determined by the cuff length c. We denote this surface by Sg.c; 0/.

For t > 0, the surface Sg.c; t/ is constructed from Sg.c; 0/ by conducting a Fenchel–Nielsen deformation
of length t simultaneously along each cuff k . Here a Fenchel–Nielsen deformation on X 2 Tg along a
simple closed geodesic ˛ �X with length t is constructed by cutting X along ˛ and then regluing the
boundary curves with a left twist of length t .
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Figure 4

There is a c1 > 0 such that on the surface Sg.c1; 0/, l.˛k/D l.k/. This surface is the surface S1g . The
shortest geodesics of S1g consist of ˛k and k for k D 1; 2; : : : ; gC 1 by the proof of [Anderson et al.
2011, Theorem 3].

In a surface Sg.c; t/, we let ˇk be the image of ˛k by a Dehn twist along kC1 (Figure 4). The orientation
of this Dehn twist is required to be opposite to the Fenchel–Nielsen deformation.

There is a pair .c2; t2/ such that on the surface Sg.c2; t2/, l.˛k/ D l.ˇk/ D l.k/. This surface is the
surface S2g . The shortest geodesics of S2g consist of ˛k , ˇk and k for k D 1; 2; : : : ; gC 1 by [Gao and
Wang 2023, Proposition 4].

7.B Symmetry on S.c; t/

We consider a group G acting isometrically on Sg.c; t/, generated by three elements, � , � and & . Here �
is the rotation of order n, � is the order-2 rotation that exchanges the two n–holed spheres, and & is the
order-2 rotation that is invariant on each n–holed sphere and when restricted to one of the two n–holed
spheres exchanges the two 2n–gons.

On the surface Sg.c; 0/, there is a reflection � extended from the reflection on one of the n–holed spheres
exchanging the two polygons of the n–holed sphere. The symmetric group generated by � , � , & and � is
denoted by G.

Remark 7.1 A reflection on the n–holed sphere can be extended to the whole surface Sg.c; t/ only if
t D 0 or t D 1

2
c.

The reflection on Sg
�
c; 1
2
c
�
, denoted by � 1

2
c , is not conjugate to �. This is because their fixed-point sets

are different. The fixed points of � on Sg.c; 0/ consist of gC1 curves (the ˇk curves), while fixed points
of � 1

2
c consist of one curve (when g is even) or two curves (when g is odd).

The surface S1g has been proved to be a critical point of the systole function; see [Fortier Bourque 2020,
Example 4.2 and Proposition 6.3].

On the other hand, it is proved in [Gao and Wang 2023] that the surface S2g is the surface with the maximal
systole among the surfaces admitting the action of G. Then immediately by Proposition 6.3, S2g is a
critical point of the systole function.
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Hence we have:

Proposition 7.2 The surfaces S1g and S2g are critical points of the systole function.

7.C Distance

This subsection aims to bound the Teichmüller distance between S1g and S2g .

Recall the parameter of the surfaces S1g D Sg.c1; 0/ and S2g D Sg.c2; t2/. To get an upper bound of
dT .S

1
g ; S

2
g/, we need an intermediate surface Sg.c2; 0/. Distance between S1g and S2g is bounded from

above by the sum of dT .S1g ; S.c2; 0// and dT .S.c2; 0/; S2g/.

7.C.1 Quadratic differential and Teichmüller geodesics Before the calculation, we need some
preparations; for details, see [Masur 2009].

For a quasiconformal map f W X ! Y for X; Y 2 Tg , the .�1; 1/–tensor �f .z/ D f Nz=fz is called the
Beltrami differential of f , where z is a local coordinate of X . We let

K.f /D sup
z2X

1Cj�f .z/j

1� j�f .z/j
:

Here �f is the complex dilatation of f defined in the last subsection.

The Teichmüller distance on Tg is defined to be

dT .X/D
1
2

inf
f�id
flogK.f / j f WX ! Y g:

A Teichmüller geodesic ray with respect to Teichmüller distance from X 2 Tg can be induced from
a holomorphic quadratic differential q on X . A holomorphic quadratic differential is a tensor locally
written as  .z/dz2, where  .z/ is a holomorphic function. We denote the space of quadratic differentials
on X by QD.X/. The bundle of quadratic differentials over Tg is denoted by QDg .

For X 2 Tg and q 2 QD.X/, for any 0 < k < 1, �k D k Nq=q is a Beltrami coefficient on X . We let fk
be the quasiconformal map induced by �k , fk W X ! X .k/. Then fk is the Teichmüller map from X

to X .k/, and the Teichmüller geodesic ray induced by .X; q/ consists of all the X .k/ for all k 2 .0; 1/.

A nonzero q 2 QD.X/ has a canonical coordinate. In this coordinate, q can be locally written as dz2 in
the neighborhood of any nonzero point of q, and q has only finitely many zero points.

The quadratic differential q determines a pair of transverse measured foliations on X , called horizontal
and vertical foliations for q and denoted by Fh.q/ and Fv.q/, respectively. In the canonical coordinate
of q, the leaves of Fh.q/ are given by y D const and the leaves of Fv.q/ are given by x D const. Here
z D xC iy is the coordinate. The measures of Fh.q/ and Fv.q/ are given by jdyj and jdxj, respectively.

ForXt on the geodesic induced by .X; q/with dT .X;Xt /D t , there is a quadratic differential qt 2QD.Xt /
as the pushforward of q by ft . We let z D xC iy be the canonical coordinate of .X; q/ and w D uC iv
be the canonical coordinate of .X; q/. Then

(7-1) uD etx and v D e�ty:
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7.C.2 Extremal length and the Jenkins–Strebel differential A quadratic differential q 2 QD.X/
is called a Jenkins–Strebel differential if any leaf of Fh.q/ and Fv.q/ is a simple closed curve, except
finitely many leaves that connect zeros of q.

For a Jenkins–Strebel differential q 2 QD.X/ and a simple closed leaf ˛ of Fh.q/, all simple closed
leaves of Fh.q/ parallel to ˛ form a cylinder in X . This cylinder is called the characteristic ring domain
of ˛ and, with respect to the metric jqj, is isometric to a Euclidean cylinder

RD Œ0; a�� .0; b/=..0; t/� .a; t/; 0 < t < b/:

We call a the length of R and b the height of R.

We need the following theorem on the Jenkins–Strebel differential:

Theorem 7.3 [Strebel 1984, Theorem 21.1] Let .1; : : : ; p/ be a finite pairwise-disjoint essential
curve system in X 2 Tg . For each i , there is a regular neighborhood R0i of i in X and R01; : : : ; R

0
p

are pairwise disjoint. Then for any .b1; : : : ; bp/ 2 Rp
C

, there is a unique Jenkins–Strebel differential
q 2 QD.X/ such that :

� i is a leaf of Fh.q/ and any simple closed leaf of Fh.q/ is freely homotopic to a i . Here
i D 1; 2; : : : ; p.

� The height of the characteristic ring domain of i is bi .

The definition of the extremal length of an essential curve ˛ in a Riemann surface X is given by

Ext˛.X/D sup
�

l˛.�/
2

Area.X; �/
:

Here the supremum is taken over all metrics � conformal to the metric on X , l˛.�/ is the length of ˛ in
the metric � and Area.X; �/ is the area of X in the metric �.

For a Euclidean cylinder with length a and height b, the extremal length of its core curve in the cylinder
is a=b; see for example [Ahlfors 1966].

Distance between points on a Teichmüller geodesic can be expressed by extremal lengths of horizontal
foliation leaves in their characteristic ring domains. For a Jenkins–Strebel differential q 2 QD.X/, we
let ˛ be a simple closed leaf of Fh.q/ and R be the characteristic ring domain of ˛ with length a and
height b. For Xt on the Teichmüller geodesic induced by .X; q/ with dT .X;Xt /D t , the characteristic
ring Rt �Xt corresponding to R�X has length eta and height e�tb. Hence for the simple closed curve
˛t corresponding to ˛, Ext˛t

.Rt /D e
2ta=b and

(7-2) dT .X;Xt /D
1

2

ˇ̌̌̌
log

Ext˛t
.Rt /

Ext˛.R/

ˇ̌̌̌
:

The last necessary tool for estimating the distance is the comparison between hyperbolic length and
extremal length by Maskit.
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For a simple closed geodesic ˛ in a hyperbolic surface X , the collar of ˛ with width w is an embedded
cylinder in X consisting of points with distance at most w to ˛.

Theorem 7.4 [Maskit 1985] In hyperbolic surface X , if a simple closed geodesic ˛ has collar C with
width arccosh.1=cos �/ then

(7-3) 1

�
l˛.X/� Ext˛.X/� Ext˛.C /�

1

2�
l˛.X/:

7.C.3 The distance between S 1
g D S.c1; 0/ and S.c2; 0/ We estimate this distance in two steps:

(1) Prove fS.c; 0/ j c > 0g is a Teichmüller geodesic induced by a Jenkins–Strebel differential on some
surface S.c; 0/.

(2) Estimate distance between two points by (7-2) and (7-3).

For c > 0, on the surface S.c; 0/ we consider the cuffs of the n–holed spheres in S.c; 0/, namely fkg
gC1

kD1
,

and assign to each k a positive number b. Then by Theorem 7.3, f.k; b/g
gC1

kD1
induces a quadratic

differential q on S.c; 0/.

Lemma 7.5 The quadratic differential q 2 QD.Sg.c; 0// is invariant under the action of G.

Proof For g 2G, the quadratic form g�q is induced by the set f.g�1.k/; b/g
gC1

kD1
. By the action of G

on Sg.c; 0/, f.g�1.k/; b/g
gC1

kD1
D f.k; b/g

gC1

kD1
. Therefore g�q D q and q is invariant.

We consider the Teichmüller geodesic induced by .S.c; 0/; q/.

Lemma 7.6 We write the Teichmüller geodesic induced by .S.c; 0/; q/ as l . Then the Teichmüller
geodesic l coincides with the curve fSg.c; 0/ j c > 0g.

Proof Since q is G–invariant by Lemma 7.5, for any surface S 0 2 l the Beltrami coefficient of the
Teichmüller map f W S.c; 0/ ! S 0 is t Nq=q for some t 2 .0; 1/. Hence this Beltrami coefficient is
G–invariant. Then, by Lemma 6.2, G isometrically acts on S 0 by

f ıg ıf �1 W S 0! S 0

for any g 2G.

Consider the set of cuffs of the n–holed spheres on Sg.c; 0/, denoted by fkg
gC1

kD1
. Its image ff .k/g

gC1

kD1
in

S 0 cuts S 0 into two n–holed spheres. Then G isometrically acts on these two n–holed spheres as G acts on
the two n–holed spheres in S.c; 0/. Hence S 0 is a S.c0; 0/–surface, where c0 is the length of f .k/ on S 0.

Therefore the Teichmüller geodesic l is contained in the curve fSg.c; 0/ j c >0g. Then by the completeness
of Teichmüller geodesics, fSg.c; 0/ j c > 0g coincides with l .

Now we are ready to estimate:

Proposition 7.7 For S1g D Sg.c1; 0/ and Sg.c2; 0/, we have

dT .S
1
g ; Sg.c2; 0//� 0:65:
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1

2

3

4

5

�=.gC 1/

1
2
s2

1
4
c2

Figure 5: Left: characteristic ring domains. Right: calculate 1
2
s2.

Proof Recall that c1 and c2 are the systoles of S1g and S2g , respectively. Then by [Anderson et al. 2011]
c1 D 4 arcsinh

p
cos.�=.gC 1//, and c2 is given by the formula in [Gao and Wang 2023, Theorem 1].

Then we use the following lemma to get the Teichmüller distance:

Lemma 7.8 The Teichmüller distance between the hyperbolic surfaces Sg.c1; 0/ and Sg.c2; 0/ with
c1 < c2 is bounded above by

1
2

log
�c2

2�c1
;

where

cos � D
�
1C

cos2.�=.gC 1//
sinh2.c2=4/

��12
:

Proof For i D 1; 2, we let f .i/
k
g
gC1

kD1
be the cuffs in Sg.ci ; 0/, qi 2 QD.Sg.ci ; 0// be the quadratic

differential induced by f. .i/
k
; b/g

gC1

kD1
for some b > 0, and R.i/

k
be the characteristic ring domain of  .i/

k
.

Then, by Theorem 7.4,

(7-4) Ext


.1/

k

.R
.1/

k
/� Ext


.1/

k

.Sg.c1; 0//�
l.

.1/

k
/

�
D
c1

�
:

The set of characteristic ring domains fR.2/
k
g
gC1

kD1
is invariant under the G–action. Then by the symmetry

of G, in Sg.c2; 0/ the ring domains R.2/
k

for k D 1; : : : ; gC 1 are bounded by the hyperbolic geodesics
connecting a center of the 2n–gons and a middle point of the seams (Figure 5, left); otherwise, fR.2/

k
g
gC1

kD1

is not G–invariant.

Therefore, if the seam length of n–holed spheres of Sg.c2; 0/ is s2, then the collar Ck of  .2/
k

with width
s2=s is contained in the characteristic ring domain R.2/

k
.

The seam length s2 is given by the trirectangle formula (2-3):

(7-5) sinh
�
1
2
s2
�

sinh
�
1
4
c2
�
D cos �

gC1
:

See Figure 5, right. Therefore, by Theorem 7.4,

(7-6) Ext


.2/

k

.R
.2/

k
/� Ext


.2/

k

.Ck/�
l.

.2/

k
/

2 arccos
�
1=cosh

�
1
2
s2
�� D c2

2 arccos
�
1=cosh

�
1
2
s2
�� :

By combining (7-2), (7-4), (7-6) and (7-5), this lemma holds.

Proposition 7.7 follows immediately by Lemma 7.8.
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l l 0

p p0

q
q0

l

l 0

p

p0

q

q0
�

k

Figure 6: Left: the homeomorphism hjCk
. Right: the lift of Ck to H2.

7.C.4 The distance between Sg.c2; 0/ and S 2
g D Sg.c2; t2/ Recall that Sg.c2; t2/ is obtained from

Sg.c2; 0/ by a Fenchel–Nielsen deformation along the cuffs fkg
gC1

kD1
in S.c2; 0/ with time t2. For the

collar Ck of k , we construct a homeomorphism h W Sg.c2; 0/! Sg.c2; t2/ such that h is an isometry
outside all these collars. Hence the dilatationK.h/ is reduced to the dilation restricted to a collarK.hjCk

/,
and the Teichmüller distance between the two surfaces is bounded from above by 1

2
logK.hjCk

/.

Proposition 7.9 For †2g and †1;2g , we have

dT .S
2
g ; Sg.c2; 0//� 1:6450:

Proof We proceed by constructing the homeomorphism h and calculating its dilatation on the largest
collar of k .

We let Ck be the collar of k with the width 1
2
s2, where s2 is the seam length of the n–holed spheres as

in Lemma 7.8. The homeomorphism h on Ck is described in Figure 6, left. A geodesic l orthogonal to
the core curve k is always mapped to a geodesic l 0. The line l is required to intersect l 0 at a point p
on k . The projection of one of the endpoints of l 0 (denoted by p0) is required to have distance 1

2
t2 to p.

We let h outside the collars be an isometry on this surface of Sg.c2; 0/; then the homeomorphism h maps
Sg.c2; 0/ to Sg.c2; t2/ by the construction on the collars.

The rest of the proof consists of the calculation of K.h/ on the collar Ck . To calculate this dilatation, we
lift Ck on the upper half-plane H2 (Figure 6, right).

We lift k to the y–axis, assuming p D i and p0 D iet2=2. The collar of k with width 1
2
s2 is lifted to a

strip
˚
rei' 2H2 j �� C 1

2
� < ' < � C 1

2
�
	
, where

(7-7) cos � D
1

cosh 1
2
s2
:

In this strip, l is the unit circle, and l 0 is the geodesic connecting i and exp
�
1
2
t2C i sin �

�
.
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The homeomorphism h can be expressed in the form

h.rei'/D rˆ.'/ei' :

When r D 1, h maps l to l 0 in Figure 6, right. By this requirement, we can calculate that

(7-8) ˆ.'/D sinh
�
1
2
t2
�cos'

sin �
C

s
sinh2

�
1
2
t2
�cos2 '

sin2 �
C 1:

The dilatation K.h/ is given by

(7-9) K.h/D
jhzjC jh Nzj

jhzj � jh Nzj
D

q
ˆ2C 1

4
ˆ02C 1

2
jˆ0jq

ˆ2C 1
4
ˆ02� 1

2
jˆ0j

:

Here z D rei' and Nz D re�i' .

Combining (7-9), (7-8), (7-7), (7-5) and the formula for .c2; t2/ in [Gao and Wang 2023, Theorem 1], we
obtain dT .Sg.c2; 0/; Sg.c2; t2//� 1

2
logK.h/� 1:6450.

Hence by Propositions 7.7 and 7.9, we have:

Theorem 7.10 For any g � 2,
dT .S

1
g ; S

2
g/� 2:3:

8 Large distance

8.A The S 3
g surface

We take the X.�/–surface in [Fortier Bourque and Rafi 2022] when nD 2 as the surface S3g . We briefly
describe this surface for completeness.

We consider the four-holed sphere admitting the order-4 rotation. We pick infinitely many copies of the
four-holed sphere fPkg

C1

kD�1
and glue them together into a surface S1 with infinite genus, as shown

in Figure 7.

The surface S1 admits an isometric action  W S1! S1 which takes every Pk to PkC1. The surface
S3g is the quotient S1=h g�1i. When g � 13, S3g is a local maximal point of the systole function.

P1 P2 P3

: : :: : :

Figure 7: The surface S1.
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O

AB

C

O

AB

Figure 8: Left: the right-angled octagon. Right: the polygon Q.

8.B The distance between S 1
g and S 3

g

This distance is obtained from diameter comparison. The diameter of S3g is comparable with g while the
diameter of S1g is comparable with logg. Then the distance between these two surfaces is comparable
with logg by the method in the proof of [Rafi and Tao 2013, Lemma 5.1].

Proposition 8.1 For the diameter of the surface S3g , we have

diam.S3g/� 0:6
�
1
2
.g� 5/

˘
:

Proof By the construction, the surface S3g consists of g�1 four-holed spheres, Pk for kD 1; 2; : : : ; g�1.

When g � 5, for any x 2 Pk and y 2 PkC2 for some k, a curve connecting x and y must pass through at
least one of the four-holed spheres other than Pk or PkC2. Without loss of generality, we assume this
curve passes through PkC1; then this curve, if given an orientation, enters PkC1 at one cuff and leaves
PkC1 at another cuff. Therefore, d.x; y/ is bounded from below by the distance between neighboring
cuffs of PkC1. We denote this distance by d . Then inductively, when k � 1

2
.g� 1/, distance between

x 2 P1 and y 2 Pk is at least d
�
1
2
.g� 1/� 2

˘
. Hence

diam.S3g/� d
�
1
2
.g� 1/� 2

˘
:

The rest of this proof is to calculate d . The distance d is the seam length of the four-holed spheres. The
seam length d is determined by the cuff length (denoted by c) of the four-holed sphere by (8-1). In
Figure 8, left, one of the two octagons forming the four-holed sphere, we have

(8-1) sinh jABj sinh jBC j D cos†O; which gives sinh
�
1
4
c
�

sinh
�
1
2
d
�
D cos

�
1
4
�
�
:

According to [Fortier Bourque and Rafi 2022, Lemma 2.5], the cuff length of the four-holed spheres is
approximately 6:980. Then by (8-1), this proposition holds.

For the surface S1g , we have:

Proposition 8.2 The diameter of the surface S1g satisfies

diam.S1g/ < 4 log
�
4gC 4

�

�
:
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3

4

5
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r3

r4
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s2

s3

s4 s5

y

Figure 9: The path between x and y.

Proof Recall that the surface S1g consists of two .gC1/–holed spheres, and each of the .gC1/–holed
spheres consists of two right-angled regular .2gC2/–gons. For any x; y 2 S1g , for the two (possibly
coinciding) regular .2gC2/–gons containing x and y, there is a curve connecting x and y, contained
in the union of these two polygons (see Figure 9). Therefore, if we denote one of the four regular
.2gC2/–gons by Q,

diam.S1g/� 2 diam.Q/;

The diameter of Q is realized by 2jOBj in Figure 8, right. In the triangle 4OAB , by (2-2),

coshjOBj D cot†O cot†B;

and so
coshjOBj D cot

�
1
4
�
�

cot �

2gC2
D cot �

2gC2
<
2gC2

�
:

Therefore,
diam.S1g/� 2 diam.Q/� 4jOBj< 4 arccosh

�
2gC2

�

�
< 4 log

�
4gC4

�

�
:

Theorem 8.3 When g � 13,

dT .S
1
g ; S

3
g/ >

1
2

log.g� 6/� 1
2

log
�
40
3

log
�
4gC4

�

��
:

Proof The proof here is similar to the proof of [Rafi and Tao 2013, Lemma 5.1].

We let f W S1g ! S3g be a Lipschitz homeomorphism with L.f / D dL.S
1
g ; S

3
g/. (The existence of

this homeomorphism is verified in [Thurston 1986a].) By Proposition 8.1, we pick x; y 2 S3g with

d.x; y/� 0:6
�1
2
.g� 5/

˘
. By Proposition 8.2, d.f �1.x/; f �1.y// < 4 log..4gC 4/=�/. Then

L.f /�
d.x; y/

d.f �1.x/; f �1.y//
>

0:6
�
1
2
.g� 5/

˘
4 log..4gC 4/=�/

>
3.g� 6/

40 log..4gC 4/=�/
:

Hence,
dL.S

1
g ; S

3
g/D logL.f / > log.g� 6/� log

�
40
3

log
�
4gC4

�

��
:

By (2-1),

dT .S
1
g ; S

3
g/�

1
2
dL.†

1
g ; †

3
g/ >

1
2

log.g� 6/� 1
2

log
�
40
3

log
�
4gC4

�

��
:
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We define a new family of graph invariants, studying the topology of the moduli space of their geometric
realizations in Euclidean spaces, using a limiting procedure reminiscent of Floer homology.

Given a labeled graph G on n vertices and d � 1, let WG;d � Rd�n denote the space of nondegenerate
realizations of G in Rd . For example, if G is the empty graph, then WG;d is homotopy equivalent to the
configuration space of n points in Rd . Questions about when a certain graph G exists as a geometric graph
in Rd have been considered in the literature and in our notation have to do with deciding when WG;d is
nonempty. However, WG;d need not be connected, even when it is nonempty, and we refer to the connected
components of WG;d as rigid isotopy classes of G in Rd . We study the topology of these rigid isotopy
classes. First, regarding the connectivity ofWG;d , we generalize a result of Maehara thatWG;d is nonempty
for d � n to show that WG;d is k–connected for d � nC kC 1, and so WG;1 is always contractible.

While �k.WG;d /D 0 for G; k fixed and d large enough, we also prove that, in spite of this, when d !1
the structure of the nonvanishing homology of WG;d exhibits a stabilization phenomenon. The nonzero
part of its homology is concentrated in at most n� 1 equally spaced clusters in degrees between d �n and
.n� 1/.d � 1/, and whose structure does not depend on d , for d large enough. This leads to the definition
of a family of graph invariants, capturing the asymptotic structure of the homology of the rigid isotopy
class. For instance, the sum of the Betti numbers of WG;d does not depend on d for d large enough; we
call this number the Floer number of the graph G. This terminology comes by analogy with Floer theory,
because of the shifting phenomenon in the degrees of positive Betti numbers of WG;d as d tends to infinity.

Finally, we give asymptotic estimates on the number of rigid isotopy classes of Rd–geometric graphs on n
vertices for d fixed and n tending to infinity. When d D 1 we show that asymptotically as n!1, each
isomorphism class corresponds to a constant number of rigid isotopy classes, on average. For d > 1 we
prove a similar statement at the logarithmic scale.
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1 Introduction

Let P D .p1; : : : ; pn/ be a point in Rd�n. The geometric graph associated to P is the labeled graph1

G.P / whose vertices and edges are, respectively,

V.G.P //D f.1; p1/; : : : ; .n; pn/g; E.G.P //D f..i; pi /; .j; pj // j i < j; kpi �pj k
2 < 1g:

Some readers might be more familiar with the following equivalent definition: G.P / is the 1–skeleton
of the Čech complex associated to the covering consisting of open balls of radius 1=

p
2 centered at the

points p1; : : : ; pn in Rd . We notice that G.P / is not an embedded graph, but it is sometimes useful to
visualize it as embedded.

If a graphG on n vertices is isomorphic as a labeled graph to a geometric graphG.P / for some P 2Rd�n,
we say it is realizable as an Rd–geometric graph on n vertices. Maehara [23] proved that when d � n,
every graph on n vertices is realizable as an Rd–geometric graph. In particular, denoting by #d;n the
number of isomorphism classes of labeled Rd–geometric graphs on n vertices, for d � n we have

(1-1) #d;n D 2.
n
2/:

This statement can be rephrased using the theory of discriminants from real algebraic geometry. To
explain this idea let us first introduce the notion of nondegenerate geometric graph: the Rd–geometric
graph G.P / is called nondegenerate if there is no pair of indices 1� i < j � n such that kpi �pj k2D 1.
Studying nondegenerate graphs is not an actual restriction, since the set of isomorphism classes of labeled
nondegenerate Rd–geometric graphs coincides with the set of all possible isomorphism classes of labeled
Rd–geometric graphs; see Lemma 16 below. Moreover, nondegenerate geometric graphs are simpler to
study, because of their stability under small perturbations of the defining points.

In this setting the discriminant consists of the set of degenerate Rd–geometric graphs

�d;n D fP 2Rd�n j there exist 1� i < j � n such that kpi �pj k2 D 1g �Rd�n:

This discriminant partitions Rd�n n�d;n into many disjoint, connected open sets, which we will call
chambers. If two points P0 and P1 belong to the same chamber in Rd�n n�d;n then clearly G.P0/ and
G.P1/ are isomorphic, but the reverse implication does not hold in general, leading to the following
definition.

Definition 1 If two points P0; P1 2 Rd�n n�d;n belong to the same chamber — that is, if there is
a continuous curve P W Œ0; 1�! Rd�n n�d;n with P.0/ D P0 and P.1/ D P1 — we will say that the
geometric graphs G.P0/ and G.P1/ are rigidly isotopic. We will call the curve P W Œ0; 1�!Rd�n n�n;d
a rigid isotopy.

As an example of Rd–geometric graphs which are isomorphic but not rigidly isotopic, consider points
P0 D .�2; 0/ and P1 D .0;�2/: the R–geometric graphs G.P0/ and G.P1/ are isomorphic; they are

1From now on, unless differently specified, the word “graph” stands for “labeled graph”.

Algebraic & Geometric Topology, Volume 24 (2024)



Moduli spaces of geometric graphs 2041

p1

p01

Figure 1: Here we are drawing points in R2 together with the circles centered at those points with
radius 1=

p
2. Let us define points P and P 0 in R2�25 in such a way that p1 is the point inside the

big circle and p01 is the point outside the big circle, while pi D p0i for i > 1 and they are the points
on the big circle. Then the two geometric graphs G.P / and G.P 0/ are isomorphic, but not rigidly
isotopic.

both the graph on 2 vertices with no edges, but they are not rigidly isotopic since any curve P.t/ 2R1�2

with P.0/D P0 and P.1/D P1 must intersect the discriminant. Another example is depicted in Figure 1.

For n and d the number of rigid isotopy classes of geometric graphs on n vertices in Rd is exactly given
by b0.Rd�n n�d;n/, and we always clearly have

b0.R
d�n
n�d;n/� #d;n:

One natural question therefore is: for what values of n and d do the two notions coincide? Moreover,
one could consider higher-dimensional notions of connectivity of Rd�n n�d;n and study the higher
homology and the homotopy groups of the space of its connected components. As we will see, this study
will lead us to a definition of a new graph invariant which reminds of Floer homology, as well as precise
asymptotics for the enumeration of rigid isotopy and isomorphism classes of geometric graphs.

Remark 2 Graphs which are realizable as Rd–geometric graphs are often called d–sphere graphs,
while the minimal dimension d such that a given graph is a d–sphere graph is called its sphericity. The
result of Maehara [23] mentioned above tells that every graph has finite sphericity; Kang and Müller [20]
prove that the problem of deciding, given a graph G, whether G is a d–sphere graph is NP–hard for
all d > 1. Note that, for every d > 0, there are graphs that are not d–sphere graphs. In the particular
case of d D 1, the 1–sphere graphs are also called indifference graphs or unit interval graphs; there are
many characterizations of such graphs, see for instance Lekkerkerker and Boland [21], Roberts [29],
Jackowski [19], Gutierrez and Oubiña [14] and Mertzios [25].
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1.1 The case d ! 1

As we will prove in Corollary 47 below, for d � nC 1 the two notions of isomorphic and rigidly isotopic
coincide, and b0.Rd�n n�d;n/ D #d;n. Therefore, adopting this language we can reformulate2 the
identity in (1-1) as:

b0.R
d�n
n�d;n/D 2

.n
2/;

which is true for d � nC 1. The realizability result of Maehara [23] and the fact that for large d “rigid
isotopy” and “isomorphism” are the same notion, seem to settle all relevant questions related to the study
of the asymptotics for the number of chambers of b0.Rd�n n�d;n/ for fixed n and large d . However, as
we will see, the topology of the chambers of the complement of the discriminant is extremely rich and
some unexpected structure emerges as d !1.

In order to explain this phenomenon, let us label the chambers of Rd�n n�d;n with the corresponding
isomorphism class of labeled geometric graphs: given a graph G on n vertices we define

WG;d D fP 2Rd�n n�d;n jG.P /ŠGg �Rd�n:

In other words, WG;d consists of all the points P 2Rd�n which are not on the discriminant and whose
associated geometric graph is isomorphic to G. For small d this set could be a union of several chambers,
but for large d it is an actual chamber, that is, a connected open set. This can be rephrased by saying that
for every graph G on n vertices and for large enough d , the homotopy group �0.WG;d / consists of a
single element. In fact, as we will show, the same statement is true for all the homotopy groups, once the
group is fixed and d becomes large enough.

Theorem 3 For every k � 0 and for d � kCnC 1, we have �k.WG;d /D 0.

Theorem 3 in fact generalizes the result of Maehara [23]. Taking the standard convention that a topological
space is said to be .�1/–connected provided it is nonempty, Theorem 3 for k D�1 is Maehara’s result
that every graph on n vertices can be realized as a geometric graph in Rd for d � n. Theorem 3 is most
likely not sharp for any value of k. Indeed even in the case of k D�1, Maehara also shows in [23] that
any graph G which is not a clique can be realized as a geometric graph in .jGj�!.G//–dimensional
space. Here !.G/ denotes the clique number of G, the maximum number of vertices in G that form a
complete subgraph. A clique can be realized (with n points in distinct positions) in R and so for any
graph G on at least two vertices, ��1.WG;d /D 0 for d � n� 1. An interesting open question would be
to improve the general lower bound on d in Theorem 3.

Notice that there is a natural sequence of inclusions

(1-2) � � � ,!WG;d ,!WG;dC1 ,! � � �

2Here and later, for a topological space X we will denote its kth Betti number by bk.X/D dimZ2
.Hk.X IZ2// and its total

Betti number by b.X/D
P1
kD0 bk.X/, whenever these numbers are defined. This will happen for all the spaces that we will

consider in this paper: they will all be homotopy equivalent to finite CW–complexes.
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obtained by simply including Rd�n into R.dC1/�n by appending a list of zeros to the coordinates of P .
The proof of Theorem 3 goes through two intermediate steps, which are of independent interest: we first
prove that for every k � 0 and for d � kCnC 1, the inclusion WG;d ,!WG;dC1 induces an injection
on the homotopy classes of maps, then we prove that the inclusion WG;d ,!WG;dCn is homotopic to a
constant map.

Example 4 (homotopy groups of the configuration space of n points in Rd ) Let us consider the graphG
consisting of n vertices and no edges. It is easy to see that the corresponding chamber WG;d is homotopy
equivalent3 to the configuration space of n distinct points in Rd :

WG;d � Confn.Rd /:

In this case one can compute exactly the homotopy groups of WG;d : for every k � 0 and for d � 3 we
have (see [11, Chapter 2, Theorem 1.1])

�k.WG;d /' �k.Confn.Rd //'
n�1M
jD1

�k.S
d�1
_ � � � _Sd�1„ ƒ‚ …

bouquet of j spheres

/:

Since �k.Sd�1_� � �_Sd�1/D 0 for d � kC2, in this case we immediately see that also �k.WG;d /D 0
for d � kC 2.

It is natural at this point to put the sequence of inclusions (1-2) into the infinite-dimensional space

R1�n D lim
��!

Rd�n

consisting of n–tuples of sequences .p1; : : : ; pn/ such that for every j D 1; : : : ; n all but finitely many
elements in the sequence pj are zero. The definition of geometric graph and discriminant also makes
sense in this infinite-dimensional space; see Section 4.1. The chambers are now defined as follows: for a
given graph G on n vertices, we set

WG;1 D fP D .p1; : : : ; pn/ 2R1�n n�1;n jG.P /ŠGg:

From Theorem 3 we deduce the following.

Theorem 5 For every graph G, the set WG;1 D lim
��!

WG;d is contractible.

1.2 Floer homology of a graph

Summarizing the picture so far: as d !1, each WG;d eventually becomes k–connected and its direct
limit WG;1 has no homotopy. Moreover, by the Hurewicz theorem, each fixed reduced Betti number of
WG;d vanishes for d large enough: more precisely, for every k > 0 there exists d.k/ > 0 such that

bk.WG;d /D 0 for all d � d.k/:

3Here and below, for two topological spaces X and Y we use the symbol X ' Y to denote that they are homeomorphic and
X � Y to denote that they are homotopy equivalent.
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But this is not the whole story. Before we continue let us discuss one more, likely familiar, example.

Example 6 (the infinite-dimensional sphere) Let G be the graph consisting of two disjoint points. Then
WG;d 'Rd �Sd�1 � Sd�1 and WG;1 ' S1 �Rd�.n�1/ � S1. In this case (1-2) becomes

� � � ,! Sd�1 ,! Sd ,! � � � ,! S1 D lim
��!

Sd :

If we now look at the Betti numbers of Sd , we see that there is a hole in dimension d that moves to infinity
as d !1, and it disappears when d D1. The sphere S1 has no cohomology except in dimension
zero, but it still has cohomology every time we cut it with a finite-dimensional space.

The phenomenon described in Example 6 can be interpreted using some extraordinary cohomology
theory, in the context of the Leray–Schauder degree and, more generally, of Floer homology theories; see
Szulkin [31], Gęba and Granas [13] and Abbondandolo [1]. This behavior has also been observed for
nonholonomic loop spaces in Carnot groups; see Agrachëv, Gentile and Lerario [4]. In all these examples
we are dealing with a sequence of spaces Xd whose direct limit X1 is contractible, but for every d large
enough, each space carries the same amount of cohomology, just shifted in its dimension. A more general
family of examples where this occurs is the iterated suspension.

Example 7 (the iterated suspension) Let X0 be a CW–complex and define Xd D SXd�1, where

SX D .X � I /=�

is the suspension of X , and the equivalence relation � is given by .x1; 0/� .x2; 0/ and .x1; 1/� .x2; 1/
for all x1; x2 2X . We have a natural sequence of inclusions

(1-3) � � � ,!Xd ,!XdC1 ,! � � �

given by mapping Xd ! SXd homeomorphically to Xd �
˚
1
2

	
. We denote by X1 D lim

��!
Xd the direct

limit of the sequence of inclusions (1-3). If X0 D fx1; x2g, then Xd D Sd and X1 D S1. For every k
the space Xd becomes eventually k–connected when d is large enough, and X1 is contractible. If one
looks at the homology of Xd , this is made by a cluster of holes that shifts to infinity as d !1. This can
be expressed, for example, by looking at the Poincaré polynomial of Xd ,

PXd
.t/D 1C td .PX0

.t/� 1/:

These holes are not present when d D1, but the sum of the Betti numbers of Xd is constant,

b.Xd /D PXd
.1/� PX0

.1/D b.X0/:

We will prove that a similar phenomenon happens for all the spaces WG;d : their reduced cohomology is
made of “clusters of holes” that “shift” to infinity as d !1; see Figure 2. In fact we show also that for
G on n vertices there are at most n� 1 such clusters. More precisely, we have the following result.

Algebraic & Geometric Topology, Volume 24 (2024)



Moduli spaces of geometric graphs 2045

0 i � d .n� 1/ � d

d !1 d !1bk.WG;d /

k

Figure 2: A plot of the Betti numbers of WG;d . The width of each nonzero cluster of holes is�
n
2

�
C 1, which is a constant. Each of these clusters is placed at a multiple of d , and as d !1

they shift to infinity. The total Betti number of WG;d , ie the shaded area, becomes constant for
d large enough.

Theorem 8 For every graph G on n vertices there exist polynomials4 QG;1; : : : ;QG;n�1 each of degree
at most

�
n
2

�
C 1 such that for d �

�
n
2

�
C 2, the Poincaré polynomial of WG;d is

PWG;d
.t/D 1C td�.

n
2/�1QG;1.t/C � � �C t

md�.n
2/�1QG;m.t/C � � �C t

.n�1/d�.n
2/�1QG;n�1.t/:

In particular , there exists ˇ.G/ > 0 such that

b.WG;d /D PWG;d
.1/� 1C

n�1X
`D1

QG;`.1/D ˇ.G/ for d large enough ,

ie the sum of the Betti numbers of WG;d becomes a constant , which depends on G only.

Each polynomial QG;m corresponds to one of the clusters above and keeps track of the Betti numbers
bk.WG;d / with 0� dm� k �

�
n
2

�
, ie with index k located “near” dm— remember that

�
n
2

�
is a constant

in this asymptotic regime. These clusters are the “Floer homologies” of the graph.

While we show that nonvanishing homology clusters around multiples of d , we also prove the following
result that holds for any n and d , in part to determine which multiples of d have to be considered.

Theorem 9 For every d and n, y�d;n is .nCd�3/–connected , but not .nCd�2/–connected. By
Alexander–Pontryagin duality this implies thatHnd�n�dC1.Rd�nn�d;n/¤0, but all higher cohomology
groups of Rd�n n�d;n vanish.

The proof of Theorem 8 uses a spectral sequence argument: each WG;d can be described as a system
of quadratic inequalities and one can use the technique developed in Agrachëv [3] and Agrachëv and
Lerario [5] for the study of its Betti numbers. In this case, as d !1, the spectral sequence that we
need to consider converges at the second step, ie E2 DE1. One can prove that both E2 and the second
differential d2 have an asymptotic stable shape: as d !1 the nonzero part of the spectral sequence
looks like a skinny table where there is no room for higher differentials and the nonzero elements of this
table are located near the rows which are labeled by indices which are multiples of d ; see Figure 3 later.

4These polynomials only depend on G and not on d .
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graph Poincaré polynomial ˇ.G/ labeled copies

1C 6td�1C 11t2d�2C 6t3d�3 24 1

1C 3td�1C 2t2d�2 6 6

1C td�1 2 3

1C 2td�1C t2d�2 4 12

1C td�1 2 12

1C td�2C td�1C t2d�3 4 4

1C td�1 2 4

1C td�1 2 12

1C td�2C td�1C t2d�3 4 3

1C td�1 2 6

1 1 1

Table 1: Poincaré polynomials and Floer numbers for WG;d for G on four vertices. For every
graph, “labeled copies” refers to the number of isomorphism classes of labeled graphs with the
same unlabeled graph.

An interesting question arising from Theorem 8 is, for a given graph G on n vertices, how to compute

ˇ.G/D lim
d!1

b.WG;d /:

We call this number the Floer number of the graph G. This number is a graph invariant, as well as the
polynomials from Theorem 8. Table 1 shows the value of this number for all the possible graphs on
four vertices, but the general case is still mysterious. There is more discussion about some of the details
of Table 1 in Example 67. Note that the polynomials QG;m are also invariants of G, but their meaning is
even more mysterious.

We can make some observations in a few cases that suggest conjectures about ˇ.G/ for general graphs.
In the case of graphs on four or fewer vertices, we see that the Poincaré polynomial of WG;d has a
general form with exponents given in terms of d . Once d is large enough that G has a realization as a
geometric graph in Rd , we see that the Poincaré polynomial is determined by the general form. From
this we conjecture that for every graph G there is a general form of the Poincaré polynomial of WG;d
with exponents given in terms of d , which is valid as long as d is large enough that WG;d is nonempty.
This would imply that as soon as G can be realized as a geometric graph in Rd , b.WG;d /D ˇ.G/. In
the case of graphs realizable in R, we would have that ˇ.G/ counts the number of chambers of WG;1.
To see this recall that in the d D 1 case, R1�n n�1;n is a disjoint union of polyhedra, so every chamber
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is contractible; therefore homology can only exist in degree zero. A first step toward the proof of this
conjecture would be to prove that all the differentials of the spectral sequence that we use in the proof of
Theorem 8 are zero for all d � n.

Example 10 (Betti numbers of the configuration space of n points in Rd ) The Poincaré polynomial of
Confn.Rd / for d � 1 is given (see [11, Chapter V, Corollary 1.4]) by

PConfn.Rd /.t/D

n�1Y
jD1

.1C jtd�1/:

Consequently, b.Confn.Rd // D PConfn.Rd /.t/.1/ � nŠ. In other words, for the graph G consisting of
n disjoint points, we have ˇ.G/D nŠ.

1.3 The case n ! 1

Concerning the other asymptotic regime, the first case of interest is when d D 1: here�1;n is a hyperplane
arrangement, since each quadric fjpi�pj j2D1g�R1�n is the union of the two hyperplanes fpi�pj D1g
and fpi �pj D�1g. It turns out that the number of chambers of the complement of such a hyperplane
arrangement, that is, the number of rigid isotopy classes of R–geometric graphs on n vertices, equals the
number of labeled semiorders of Œn�. Using techniques from analytic combinatorics, we will prove the
following theorem.

Theorem 11 The number of rigid isotopy classes of R–geometric graphs on n vertices equals

b0.R
1�n
n�1;n/D

1

n
�

q
6 log 4

3
�

�
n

e log 4
3

�n
.1CO.n�1=2//:

It is in fact possible also to compute the asymptotics of #1;n as n!1; we do this in Theorem 52.
It is remarkable that the two numbers b0.R1�n n�1;n/ and #1;n have the same asymptotic, up to a
multiplicative constant5

(1-4) b0.R
1�n
n�1;n/D

8

e1=12
� #1;n.1CO.n�1=2//:

The case when d � 2 is more delicate to handle. This is in large part because the discriminant in higher
dimensions is an arrangement of quadrics rather than an arrangement of hyperplanes. For this general
case we will prove the following upper and lower bounds for the number of rigid isotopy classes and
isomorphism classes.

Theorem 12 For d � 2 fixed and for n� 4d C 1, one has the bounds�
1

.d C 1/e2

�dn
ndn � #d;n � b0.R

d�n
n�d;n/� 2dn

�
3e

2d

�dn
ndn

5The constant 8=e1=12 is approximately 7.36.
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Note that these bounds imply that #d;n and b0.Rd�n n�d;n/ become equivalent at the logarithmic scale,
giving the following analogue of (1-4):

log b0.Rd�n n�d;n/D .log #d;n/.1C o.1// as n!1:

For the proof of the upper bound we will use the fact that �d;n is a real algebraic set: using Alexander–
Pontryagin duality, we bound the topology of the complement of the discriminant Rd�n n �d;n by
studying the topology of the one-point compactification of �d;n, which we denote by y�d;n. This one-
point compactification can also be described in an algebraic way and studied using Milnor [27]. Along
the way to proving this upper bound we also develop the notation for the spectral sequence that we use to
prove Theorem 9.

For the lower bound, our proof is a higher-dimensional version of work of McDiarmid and Müller [24]
which showed that, in the case d D 2, there exists a constant ˛ > 0 such that #2;n � ˛nn2n.

Acknowledgements Belotti is funded by Deutsche Forschungsgemeinschaft SFB-TRR 195, Symbolic
tools in mathematics and their application. Newman was supported by Deutsche Forschungsgemeinschaft
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2 Preliminaries

2.1 Geometric graphs

There are several different notions of geometric graphs in the literature. The type of geometric graph we
consider here are also sometimes called intersection graphs or space graphs. Formally the definition for
geometric graph we use here is the following.

Definition 13 (geometric graph) Given a point P 2Rd�n we denote by G.P / the labeled graph whose
vertices and edges are, respectively,

V.G.P //D f.1; p1/; : : : ; .n; pn/g; E.G.P //D f..i; pi /; .j; pj // j i < j; kpi �pj k
2 < 1g:

We say that G.P / is an Rd–geometric graph. If a labeled graph G is isomorphic to G.P / for some
P 2Rd�n, we say that G is realizable as an Rd–geometric graph.

We say that the geometric graph G.P / is nondegenerate if P …�d;n, where

�d;n D fP 2Rd�n j there exist 1� i < j � n such that kpi �pj k2 D 1g �Rd�n:

Remark 14 The reason for considering in our definition the list of pairs f.1; p1/; : : : ; .n; pn/g as the set
of vertices ofG.P /, instead of the list fp1; : : : ; png, is just formal. In other settings it may be more natural
to take p1; : : : ; pn to be distinct points in Rd and then to define a graph with vertex set fp1; : : : ; png and
edges .pi ; pj / provided that kpi �pj k2 < 1. This is the approach taken by Maehara [23], who studies
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the sphericity of graphs, the minimum dimension d in which a graph may be realized as a geometric
graph in Rd with vertices given by distinct points. For us it makes sense to associate graphs on n vertices
in Rd to points of Rd�n, therefore the actual points in Rd may not all be unique from one another. The
two-coordinate approach to describe the vertices allows for such repetition and naturally associates each
point in Rd n�d;n to unique labeled graph.

We will consider the following notions of equivalence of geometric graphs.

Definition 15 Let G.P0/ and G.P1/ be two Rd–geometric graphs on n vertices, with P0; P1 2Rd�n.
We will say that they are isomorphic if they are isomorphic as labeled geometric graphs. Moreover, if
they are both nondegenerate, we will say that they are rigidly isotopic if there exists a continuous curve
P W Œ0; 1�!Rd�n n�d;n such that P.0/D P0 and P.1/D P1.

Since �d;n is an algebraic set, its complement is a semialgebraic set and its path components are the
same as its connected components. Therefore two nondegenerate geometric graphs G.P0/ and G.P1/
are rigidly isotopic if and only if P0 and P1 belong to the same connected component of Rd�n n�d;n.

Let us introduce the notation

(2-1) #d;n WD #fisomorphism classes of geometric graphs on n vertices in Rd g:

In the definition of #d;n we did not assume the nondegeneracy of the graphs. However, the following
lemma proves that isomorphism classes of nondegenerate graphs are the same as all isomorphism classes
as in (2-1); see also [6, Lemma 2.2] for an analogous statement in the more general context of geometric
complexes.

Lemma 16 For every P 2�d;n there exists zP 2Rd�n n�d;n such that G.P / and G. zP / are isomorphic
as labeled graphs.

Proof Take P D .p1; : : : ; pn/ 2�d;n and for � > 0 small enough, consider

zP WD .1C �/P:

Then, for � small enough, we have

..i; pi /; .j; pj // 2E.G.P // () ..i; .1C �/pi /; .j; .1C �/pj // 2E.G. zP //;

which proves that G.P / and G. zP / are isomorphic as labeled graphs. Moreover, again for � small enough,
we have that zP …�d;n.

By definition, for nondegenerate graphs we have

rigidly isotopicD) isomorphic;

which means that isomorphism classes are union of rigid isotopy classes. The number of rigid isotopy
classes of geometric graphs on n vertices in Rd is given b0.Rd�n n�d;n/, and Lemma 16 implies we
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can compare the number of rigid isotopy classes with the number of isomorphism classes,

#d;n � b0.R
d�n
n�d;n/:

Below we will prove, as Corollary 47, that for d � nC 1, two Rd–geometric graphs on n vertices are
isomorphic if and only if they are rigidly isotopic, ie that

#d;n D b0.R
d�n
n�d;n/ for d � nC 1:

We will deal with the asymptotic of #d;n and b0.Rd�nn�d;n/ in the case d fixed and n!1 in Section 5.

2.2 Alexander duality and the discriminant

As we are interested in the topology of Rd�n n�d;n, the topology of �d;n should play an important role
as well, and in some cases it will be easier to study. The key tool for connecting the topology of the two
is Alexander duality. Given a compact, locally contractible, nonempty and proper subspace X of the
N –dimensional sphere SN, Alexander duality [16, Corollary 3.45] provides a way to study the topology
of X from the topology of SN nX . Namely, for every k we have the following isomorphisms between
the homology of X and the cohomology of SN nX :

zHk.X/Š zH
N�k�1.SN nX/:

Remark 17 If we are working with Z2–coefficients, as we will throughout, and with a space X � SN

with finitely generated homology, we can relate the Betti numbers ofX with those of its complement in the
sphere, ie we can freely identify homology and cohomology. When working with compact semialgebraic
sets in the sphere, this last requirement will be satisfied thanks to [9, Theorem 9.4.1].

In order to use this duality in the present setting, we work in the one-point compactification of�d;n�Rd�n,
denoted by y�d;n � Sd�n. Now y�d;n contains the point at infinity so Sd�n n y�d;n DRd�n n�d;n.

The discriminant itself is a union of quadratic hypersurfaces of the form

(2-2) �
i;j

d;n
D f.x1; : : : ; xn/ 2Rd�n j kxi � xj k

2
D 1g:

Each of these quadrics is topologically Sd�1�Rd�.n�1/ and establishing bounds on the top Betti number
of y�d;n establishes bounds on the number of rigid isotopy classes of Rd–geometric graphs on n vertices.
We take such an approach in Section 5.3.

2.3 Semialgebraic triviality

A most useful technical tool that we will use in the paper is Theorem 19, which relates the structure of
semialgebraic families and their homotopy.
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Definition 18 Let S , T and T 0 be semialgebraic sets such that T 0�T , and let f WS!T be a continuous
semialgebraic mapping. A semialgebraic trivialization of f over T 0, with fiber F , is a semialgebraic
homeomorphism � W T 0 �F ! f �1.T 0/ such that f ı � is the projection mapping � W T 0 �F ! T 0. We
say that the semialgebraic trivialization � is compatible with a subset S 0 of S if there is a subset F 0 of F
such that �.T 0 �F 0/D S 0\f �1.T 0/.

Theorem 19 (semialgebraic triviality) Let S and T be two semialgebraic sets , f W S ! T a semi-
algebraic mapping , and .Sj /jD1;:::;q a finite family of semialgebraic subsets of S . There exist a finite
partition of T into semialgebraic sets T D

Sr
lD1 Tl and , for each l , a semialgebraic trivialization

�l W Tl �Fl ! f �1.Tl/ of f over Tl compatible with Sj for j D 1; : : : ; q, ie there exists F j
l
� Fl such

that �l.Tl �F
j

l
/D Sj \f

�1.Tl/.

Proof This is [9, Theorem 9.3.2].

Corollary 20 Let S be a semialgebraic set and f W S !R be a continuous semialgebraic function. Then
for � > 0 small enough , the inclusion

fx 2 S j f � �g ,! fx 2 S j f > 0g

is a homotopy equivalence.

Proof Thanks to semialgebraic triviality, we know that for � sufficiently small there exists Tl such that
.0; ��� Tl . Then we define a map

H W ff > 0g�Œ0; 1�! ff > 0g; H.x; t/D

�
x if f .x/ … .0; �/;

�l..1�t /�.�1ı�
�1
l
/Ct�; �2ı�

�1
l
/ if f .x/ 2 .0; ��:

This is a continuous function because the two expressions agree on f �1.�/� Œ0; 1� and both of them are
continuous on closed subsets. Thus the map H is a deformation retraction of ff > 0g onto f � �.

Corollary 21 Let Y be the set of solutions in Rd of the system8̂<̂
:
q1.x/ > 0;

:::

qr.x/ > 0;

where the qi are polynomial functions. There exists ı > 0 such that for all � such that 0 < � < ı, the
inclusion of Y� n f0g in the set Y n f0g, where Y� is the set of the solutions in Rd of the system8̂̂̂<̂

ˆ̂:
q1.x/� �;

:::

qr.x/� �;

kxk2 � 1
�

,
is a homotopy equivalence.
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Proof Define ˛ WRd n f0g !R by

˛ Dmin
�
ı; q1; : : : ; qr ;

1

kxk2

�
:

Then for 0 < � < ı we have Y� n f0g D f˛ � �g and ˛ is a continuous semialgebraic function. By the
previous corollary, for � small enough we get that the inclusion Y� D f˛ � �g ,! f˛ > 0g D Y n f0g is a
homotopy equivalence.

2.4 Systems of quadratic inequalities

In this section we recall a general construction from [3; 5] for computing the Betti numbers of the set of
solutions of a system of quadratic inequalities.

To start with, let h WRNC1!RkC1 be a quadratic map, ie a map whose components hD .h0; : : : ; hk/
are homogeneous quadratic forms. Let also K �RkC1 be a closed convex polyhedral cone (centered at
the origin). We are interested in the Betti numbers of

(2-3) V D h�1.K/\SN �RNC1:

Such a set V can be seen as the set of solutions of a system of homogeneous quadratic inequalities on the
sphere SN : in fact, since K is polyhedral, we have

K D f�1 � 0; : : : ; �` � 0g

for some linear forms �1; : : : ; �` 2 .RkC1/� and

V D f�1h� 0; : : : ; �`h� 0g\S
N ;

which is a system of quadratic inequalities. (Here given a linear form � 2 .RkC1/� and a quadratic map
h WRNC1!RkC1, we simply denote by �h the composition of the two.) Every homogeneous system
can be written in this way.

We denote by Kı the polar of K, ie Kı D f� 2 .RkC1/� j �.y/� 0 for all y 2Kg, and we set

�DKı\Sk;

where Sk denotes the unit sphere in .RkC1/� with respect to a fixed scalar product. The scalar product
on RkC1 plays no role, but we will also use a scalar product on RNC1 by choosing a positive definite
quadratic form g on RNC1. This scalar product will play a role, and we denote it by h � ; � ig . It is defined
by hx; xig D g.x/ for all x 2 RNC1. For practical purposes we will omit the g subscripts when not
needed.

Once the scalar product on RNC1 has been fixed, we can associate to a quadratic form q WRNC1!R a
real symmetric matrix, via the equation

(2-4) q.x/D hx;Qxig for all x 2RNC1:

We will often use small letters for the quadratic form and capital letters for the associated matrices.
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Accordingly we can define the eigenvalues of q (with respect to g) as those of Q:

�1.q/� � � � � �NC1.q/:

The eigenvalues (and the eigenvectors) of q depend therefore on the chosen scalar product, but again we
will omit this dependence in the notation if not needed.

2.4.1 The index function Using the above notation, we will denote by indC.q/D indC.Q/ the positive
inertia index, ie the number of positive eigenvalues of the symmetric matrix Q. Note that the index of a
quadratic form does not depend on the chosen scalar product.

When we are in the situation as above, ie when given a homogeneous quadratic map h WRNC1!RkC1,
for every covector � 2 .RkC1/� we can consider the composition �h, which is a quadratic form. For
every natural number j � 0 we define the sets

�j D f! 2� j indC.!h/� j g:

These sets are open and semialgebraic, as it is easily verified. Moreover, these sets do not depend on the
choice of the scalar product g.

Over each set �j n�jC1 the function indC � j is constant, ie the number of positive eigenvalues of the
corresponding matrices is j and there exists a natural vector bundle P j ��j n�jC1 �RNC1

(2-5)
Rj P j

�j n�jC1

whose fiber over a point ! is the positive eigenspace of !hD !0h0C � � �C!khk . In fact this bundle is
the restriction of a more general bundle over the set

Dj D f! j �j .!h/¤ �jC1.!h/g;

ie the set where the j th eigenvalue of !h is distinct from the .jC1/st. We still denote this bundle by
Pj �Dj �RNC1:

(2-6)
Rj P j

Dj

Here the fiber over a point ! 2Dj consists of the eigenspace of !h associated to the first j eigenvalues
(this is well defined); note however that the bundle over Dj depends on the choice of the scalar product
(since Dj itself depends on this choice).

We denote the first Stiefel–Whitney class of this bundle by

(2-7) �j 2H
1.Dj /:

The following lemma will be useful for us.
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Lemma 22 The cup product with the class �j defines a map

(2-8) . � /` �j WH
�.�j ; �jC1/!H�C1.�j ; �jC1/:

Proof To see that the previous cup product is well defined, observe that we can write

�j D A[B; AD�jC1; B D�j \Dj :

In fact, if a point ! belongs to�j , then either ! 2�jC1, or indC.!h/D j and consequently ! 2�j\Dj .
Since both A and B are open, by excision we get

H�.�j ; �jC1/'H�.�j \Dj ; �
jC1
\Dj /:

In particular, in order to see that (2-8) is well defined, it is enough to see that

. � /` �j WH
�.�j \Dj ; �

jC1
\Dj /!H�C1.�j \Dj ; �

jC1
\Dj /

is well defined. Suppose that  2 C k.�j / is a singular cochain representing a cohomology class in
Hk.�j \Dj ; �

jC1\Dj / and �j 2C 1.Dj / is a cochain representing �j . The cup product of  and �j
is defined on a singular chain � W Œv0; : : : ; vkC1�!�j \Dj in the usual way,

. ` �j /.�/D  .� jŒv0;:::;vk�/�j .� jŒvk ;vkC1�/;

from which we see that  ` �j vanishes on CkC1.�jC1\Dj / and consequently defines an element of
HkC1.�j \Dj ; �

jC1\Dj /.

Since we have inclusions �j ��jC1 ��jC2, we also consider the connecting homomorphisms

@ WH�.�jC1; �jC2/!H�C1.�j ; �jC1/

of the long exact sequence for the triple .�j ; �jC1; �jC2/.

We summarize the directions of these homomorphisms in the noncommutative diagram of maps

H i .�jC1; �jC2/ H iC1.�j ; �jC1/

H iC1.�jC1; �jC2/ H iC2.�j ; �jC1/

@

. � /`�jC1 . � /`�j

@

Remark 23 Let @ WH i .X; Y /!H iC1.Z;X/ be the boundary operator in the exact sequence of the
triple .Z;X; Y /, where all spaces are open. Following [16, page 201], thanks to the fact that we are
working with Z2–coefficients, we have that @.Œ��/D Œ� ı� ı ı�, where ı W CiC1.Z;X/! Ci .X/ is the
boundary operator and � W Ci .X/! Ci .X; Y / is the projection operator. Let us also consider zX � A
both open and such that .X \ zX/[Y is open. If we take the relative cup product

H i .X; Y /�H 1. zX/!H 1.X; Y /

as defined in Lemma 22, then this coincides with the cup product

H i .X; Y /�H 1.A/!H 1.X; Y /
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as defined in Lemma 22, meaning that given a2H i .X; Y / and b 2H 1.A/, then a`bDa` r�.b/, where
r� is just the restriction. In the same way, if we suppose that zZ � A, we can repeat a similar reasoning
for the cup product H i .Z;X/�H 1. zZ/!H iC1.Z;X/. Now, given Œ� 2H 1.A/, we claim that

(2-9) @.Œa�` Œ�/D @Œa�` Œ�:

At the level of cochains, if we take ciC1 2 CiC1.Z;X/ to be a singular chain then @.a ` /.ciC1/D

.a ` /.� ı ıciC1/. Reasoning as in [16, proof of Lemma 3.6, page 206] shows .a ` /.� ı ıciC1/D

@a `  C .�1/ia ` ı�./ and (2-9) follows from ı�./D 0.

2.4.2 The spectral sequence For the computation of the Betti numbers of V , defined in (2-3) we will
need the following result, which is an adaptation from [3; 5]. Clearly the computation of the cohomology
of V is equivalent to that of SN nV , by Alexander duality, and in [3; 5] a spectral sequence is introduced
for computing the latter.

The delicate part here is that in [3], the spectral sequence is defined for nondegenerate systems of quadrics,
ie for systems such that the map h is transversal to the cone K, in the sense of [5]; in [22] the spectral
sequence is defined also for degenerate systems, but the second differential is not computed explicitly,
and in [5] it is defined also for degenerate systems, and the second differential is explicitly computed,
but the solutions are studied in the projective space rather than the sphere. Since in our case the system
of quadratic inequalities is always degenerate6 for m� 2, we will need to prove the existence of such a
spectral sequence and to compute its second differential.

Theorem 24 Let V D h�1.K/\SN be defined by a system of quadratic inequalities , as above. There
exists a cohomology spectral sequence .Er ; dr/r�1 converging to H�.SN nV IZ2/ such that :

(1) The second page of the spectral sequence is given , for j > 0, by

E
i;j
2 DH

i .�jC1; �jC2IZ2/:

For j D 0, the elements of the second page of the spectral sequence fit into a long exact sequence

(2-10) � � � !H i .�1IZ2/!E
i;0
2 !H i .�1; �2IZ2/

. � /^�1
����!H iC1.�1IZ2/! � � � :

(2) For j � 1 the second differential d i;j2 WH
i .�jC1; �jC2/!H iC2.�j ; �jC1/ is given by

d
i;j
2 � D @.� ` �jC1/C @� ` �j :

Proof The proof proceeds similarly to [5, Theorems 25 and 28], using a regularization process and
taking the limit over the regularizing parameter. More precisely, let q0 be a positive definite quadratic
form, chosen as in [5, Lemma 13], and for t > 0 consider the set

B.t/D f.!; x/ 2��SN j !h.x/� tq0.x/� 0g:

6This is a consequence of Lemma 33: in fact, for nondegenerate systems the difference of two nearby values of the index function
is˙1, whereas here it is always greater than 1.
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The choice of q0 as in [5, Lemma 13] makes the map ! 7! !h� tq0 nondegenerate with respect to K
and will allow us to compute the second differential of our spectral sequence. By semialgebraic triviality,
for t > 0 small enough the set B.t/ is homotopy equivalent to

B D f.!; x/ 2��SN j !h.x/ > 0g:

Moreover, the projection onto the second factor (ie p2 W��Sn!SN ) restricts to a homotopy equivalence
B � p2.B/D S

N nV ; see [22, Section 3.2]. Therefore, for t > 0 small enough,

H�.SN nV /'H�.B.t//:

We consider now the Leray spectral sequence .Er Œt �; dr Œt �/r�0 of the map

pt WD p1jB.t/ W B.t/!�:

This spectral sequence converges to the cohomology of B.t/.

For the first part of the statement, the structure of Ei;j2 in the case j > 0 is proved in [22, Section 3.2], as
follows. If t1< t2 then B.t2/ ,!B.t1/ is a homotopy equivalence and pt1 jB.t2/Dpt2 . For 0< t1< t2<ı
the inclusion defines a morphism of filtered differential graded modules

�0.t1; t2/ W .E0Œt1�; d0Œt1�/! .E0Œt2�; d0Œt2�/

turning fE0Œt �gt into an inverse system and thus f.Er Œt �; dr Œt �/gt into an inverse system of spectral
sequences. Then, we can define a new spectral sequence

.Er ; dr/ WD lim
 ��
t

f.Er Œt �; dr Œt �/g:

The proof shows that for j > 0 we have Ei;j2 Œt �DH i .�n�j Œt �; �n�j�1Œt �IZ2/, where the sets �kŒt �
are defined by

�kŒt � WD fw 2� j i
�.w � h� tg/� kg:

Moreover we also have that for j > 0 the isomorphism �2.t1; t2/ is just the homomorphism induced in
cohomology by the inclusion �j Œt2���j Œt1�, and that

E
i;j
2 D lim

 ��
t

E
i;j
2 Œt �DH i .�j ; �jC1IZ2/:

Thanks to this, by semialgebraic triviality, �2.t1; t2/ is an isomorphism for 0<t1<t2<ı with ı sufficiently
small, and therefore also �1.t1; t2/ is an isomorphism, assuring the convergence of .Er ; dr/ to B.t/; see
also the proof of [5, Theorem 25] for more details on this point. Let us call

e�t WH
�.�j ; �jC1IZ2/!H�.�n�j .t/;�n�j�1.t/IZ2/

the isomorphism induced by the inclusion. From now on we choose our scalar product on RNC1 to
be g D q0, in such a way that the matrix associated to q0 through the polarization identity (2-4) is the
identity matrix.
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For the case j D 0 we know, thanks to [2], that there exists a long exact sequence

(2-11) � � � !H i .�n�1Œt �IZ2/!E
i;0
2 Œt �!H i .�n�1Œt �; �n�2Œt �IZ2/

. � /^�1
����!H iC1.�n�1Œt �IZ2/! � � � :

We can pass to the inverse limit of these long exact sequences respect to t in the obvious way, obtaining a
long exact sequence7

� � � !H i .�1IZ2/!E
i;0
2 !H i .�1; �2IZ2/

. � /^�1
����!H iC1.�1IZ2/! � � � ;

where we have used the fact that .e�/�1 ı .. � /` �j / ı e
� D . � /` �j . We will get back to this point later.

This proves point (1) of the statement. For the point concerning the differential, thanks to [2, Theorem 3]
we know that the second differential d2Œt � of the spectral sequence .Er Œt �; dr Œt �/ with

d
i;j
2 Œt � WH i .�n�j�1Œt �; �n�j�2Œt �IZ2/!H iC2.�n�j Œt �; �n�j�1Œt �IZ2/

has the form
d
i;j
2 Œt �� D @t .i

�
t /
�1.i�t � ` �jC1/C .i

�
t /
�1.i�t @t� ` �j /;

where
@t WH

i .�n�j�1Œt �; �n�j�2Œt �IZ2/!H iC1.�n�j Œt �; �n�j�1Œt �IZ2/

is the connecting homomorphism in the exact sequence of the triple .�n�j Œt �; �n�j�1Œt �, �n�j�2Œt �/,
and the map

i�t WH
i .�n�j Œt �; �n�j�1Œt �IZ2/!H i .�n�j Œt �\Dj ; �n�j�1.t/\Dj IZ2/

is the map induced by the inclusion; this map is an isomorphism by excision.

The second differential for j > 1 of our new spectral sequence .Ei;jr ; dr/ is d i;j2 WD .e
�
t /
�1 ıd

i;j
2 .t/ı e�t .

More explicitly,

d
i;j
2 D @.i

�
t ı e

�
t /
�1..i�t ı e

�
t /� ` �jC1/C .i

�
t ı e

�
t /
�1..i�t ı e

�
t /@� ` �j /;

thanks to the naturality of the connecting homomorphism.

Let us now consider the diagram

.�j ; �jC1/

.�n�j�1Œt �\Dj ; �n�j�2Œt �\Dj / .�j \Dj ; �jC1\Dj /
jt

etıit i

where all the maps are inclusions, and all the induced homomorphisms in cohomology are isomorphisms.

7In this long exact sequence we are still using �1 because we chose our scalar product to be g0. Same for the definition of d2.t/,
where we used �j .
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We can write

(2-12) d
i;j
2 D @.j

�
t ı i

�/�1..j �t ı i
�/� ` �jC1/C .j

�
t ı i

�/�1..j �t ı i
�/@� ` �j /

D @.i�/�1.j �/�1.j �t .i
��/` j �t ı �jC1/C .i

�/�1.j �t /
�1.j �t .i

�@�/` j �t ı �j /

D @.i�/�1.i�� ` �jC1/C .i
�/�1.i�@� ` �j /;

where the pullback property of the pullback in the third equality holds true because in that case it is just
the standard cup product. Because of how we defined the cup product in Lemma 22, we have the claim.

2.5 Analytic combinatorics

In order to study the asymptotic of the number of isotopy classes of geometric graphs on the real line we
will need some tools from analytic combinatorics. For a full introduction to the topic, see [12]. Given a
generating function G.x/D

P1
nD0 anx

n of a sequence an, we want to study the asymptotics of such a
sequence. There are various techniques to do this.

Definition 25 We say that a sequence fang is of exponential order Kn, which we abbreviate as an‰Kn,
if and only if lim sup janj1=n DK.

If we have an ‰ Kn then an D Kn�.n/ with lim sup j�.n/j1=n D 1. The term �.n/ is called the
subexponential factor. In order to study the subexponential factor �.n/ we should look at the singularities
of the generating function.

Definition 26 Given two numbers � and R with R > 1 and 0 < � < �=2, define an open domain

D.�;R/ WD fz 2C j jzj<R; z ¤ 1; j arg.z� 1/j> �g:

A domain of this type is called D–domain.

Denoting by S the set of all meromorphic functions of the form

S WD f.1� z/�˛ j ˛ 2R; z 2Cg;

we recall the next result [12, Theorem VI.4], which we will need in the sequel.

Theorem 27 Let G.z/ be an analytic function at 0with a singularity at �, such thatG.z/ can be continued
to a domain of the form � �D0 for a D–domain D0, where � �D0 is the image of D0 by the mapping
z! �z. Assume there exist two functions � and � , where � is a finite linear combination of elements in
S and � 2 S , such that

G.z/D �
�
z

�

�
CO

�
�
�
z

�

��
as z! � in � �D0:

Then the coefficients of G.z/ satisfy the asymptotic estimate

an D �
�n�nCO.�

�n��n /;

where �.z/D
P1
nD0 �nz

n and ��n D n
˛�1 if �.z/D .1� z/�˛.
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Remark 28 For later use, we record the following. The Newton binomial series is defined by

.1� z/�˛ D

1X
nD0

bnz
n; where bn D

�nC˛�1
n

�
:

Using �nC˛�1
n

�
D

�.nC˛/

�.˛/�.nC 1/
;

we get the following asymptotics for its coefficients:

bn D
n˛�1

�.˛/

�
1CO

�
1

n

��
:

3 Homology of the chambers and the Floer number

3.1 Graphs and sign conditions

Recall that given a graph G on n vertices we have defined

WG;d D fP 2Rd�n n�d;n jG.P /ŠGg �Rd�n:

In other words, WG;d consists of all the points P 2Rd�n not on the discriminant whose corresponding
graph is isomorphic to G. For small d this set could be a union of several chambers, but for large d it is
an actual chamber (a connected open set).

Now we introduce an alternative notation for labeling the sets WG;d . For every 1 � i < j � n let us
denote by qij WRd�n!R the quadratic polynomial

(3-1) qij .x1; : : : ; xn/D kxi � xj k
2
� 1; where .x1; : : : xn/ 2Rd�n:

Notice that the discriminant �d;n is given by

(3-2) �d;n D

�
.x1; : : : ; xn/ 2Rd�n

ˇ̌̌ Y
i<j

qij .x1; : : : ; xn/D 0

�
D

[
i<j

�
.i;j /

d;n
;

where the sets �.i;j /
d;n

are as defined in (2-2). We denote by
�
Œn�
2

�
the set of all possible pairs .i; j / with

1� i < j � n, and by 2.
Œn�
2 / the set of all possible choices of signs �ij 2 f˙g for elements in

�
Œn�
2

�
.

Definition 29 (sign condition) For every � 2 2f
n
2g, we denote by W�;d 2Rd�n the open set

W�;d D fx D .x1; : : : ; xn/ 2Rd�n j sign.qij .x//D �ij g:

At this point, what is clear from (3-2) is that Rd�n n�d;n can be written as the union of all the possible
sign conditions. The following lemma will be useful. It tells us that we can label the chambers of
Rd�n n�d;n either with a graph or with a sign condition — however, at this point we only prove that the
sets fWG;d g and fW�;d g coincide; the fact that the chambers of Rd�n n�d;n, for d � nC 1, are exactly
the sign conditions will follow from Corollary 47.
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Lemma 30 For every G graph on n vertices , there is a sign condition � D �.G/ such that WG;d DW�;d .
Conversely, for every � there exists a G.�/ such that W�;d D WG;� . In other words , the signs of the
family of quadrics fqij g1�i<j�n on a point P determine the isomorphism class of G.P / uniquely as a
labeled graph.

Proof Given P 2Rd�n n�d;n, it is clear from the definition of geometric graph that G.P /ŠG if and
only if qi;j < 0 when .i; j / 2G and qi;j > 0 when .i; j / …G. From this it follows that WG;d DW�;d ,
where �i;j D 1 if .i; j / 2G, and �i;j D�1 if .i; j / …G.

3.2 Betti numbers of the chambers

In this section we study the asymptotic distribution of the Betti numbers of the chambers. Before giving
the main result, we will need some intermediate steps.

3.2.1 Some preliminary reductions Using Lemma 30 we can immediately switch from the graph
labeling to the sign condition, and given G there exists � such that WG;d DW�;d . In this way we describe
the chamber we are interested in with a system of quadratic inequalities, and we will take advantage of
this description.

From now on we will assume that G is not the complete graph, since for this case WG;d is convex and
therefore the study of its topology is complete. Our first step is to replace W�;d with another space which
has the same homology and which is compact. To start with, we have

W�;d D fx 2Rd�n j sign.qij .x//D �i;j for all 1� i < j � ng;

with the quadrics qij WRd�n!R defined above. Since � is fixed, it will be convenient for us to define
the new quadrics

sij D �ij qij and hij .x; z/D �ij .kxi � xj k
2
� z2/:

We set N D nd , and k D
�
n
2

�
and for every � > 0 consider the set

W�;d .�/D fŒx W z� 2RPN j hij .x; z/� �z2 for all 1� i < j � n; kxk2 � ��1z2g �RPN :

Notice that W�;d .�/\ fz D 0g D ∅, because if z D 0 then the last inequality defining W�;d .�/ forces
x D 0. Therefore, in the affine chart fz ¤ 0g the set W�;d .�/ can be described as

W�;d .�/\fz ¤ 0g D fx 2RN j sij .x/� � for all 1� i < j � n; kxk2 � ��1g;

and can be identified with a subset of W�;d .

Proposition 31 For every d > 0 there exists a �.d/ such that for all � < �.d/, the inclusion

W�;d .�/ ,!W�;d

is a homotopy equivalence.
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Proof First of all, let us notice that W�;d .�/\fz D 0g D∅, and we can write

W�;d .�/D
n
.p1; : : : ; pn/ 2Rd�n

ˇ̌
.kpi �pj k

2
� 1/�Gi;j � �; kP k

2
�
1

�

o
:

If the sign condition � is not always negative for every .i; j /— ie the graph G is not complete — we
conclude by Corollary 21.

The set W�;d .�/ is now compact and for � < �.d/ has the same homology of W�;d . For technical reasons,
this is not yet the set we will work with. Instead we will work with its double cover

V�;d .�/D fx 2 S
N
j hij .x; z/� �z

2 for all 1� i < j � n; kxk2 � ��1z2g � SN :

This will not be an obstacle for computing the Betti numbers of W�;d .�/, because of the next lemma.

Lemma 32 For every � > 0, the set Vd;�.�/ � SN consists of two disjoint copies of W�;d .�/. In
particular , for all k � 0,

bk.W�;d .�//D
1
2
bk.V�;d .�//:

Proof Let fzD0g'SN�1 be the equator in SN and observe that fzD0g\V�;d .�/D∅. This implies that

V�;d .�/D .V�;d .�/\fz > 0g/t .V�;d .�/\fz < 0g/:

The involution .x; z/ 7! .�x�z/ on the sphere SN restricts to a homeomorphism between V�;d .�/\fz>0g
and V�;d .�/\fz < 0g. Each of these sets is homeomorphic to its projection to the projective space RPN ,
which is the set W�;d .�/.

3.2.2 Systems of quadratic inequalities The set V�;d .�/ defined above is the set of solutions of a
system of quadratic inequalities, and we will now use the spectral sequence from Section 2.4 for computing
its Betti numbers with Z2–coefficients.

Let us introduce homogeneous quadrics hij;�; h0;� WRNC1!RkC1 defined for all 1� i < j � n by

hij;�.x; z/D �ij kxi � xj k
2
� �ij z

2
� �z2 and h0;�.x; z/D kxk

2
� ��1z2;

in order to reduce to the framework of Section 2.4. These quadrics can be put as the components of a
quadratic map defined by

h� D .h0;�; h1;�; h2;�; : : : ; hk;�/ WR
NC1

!RkC1;

where we are using the identification of sets of indices f1; 2; : : : ; kg D f.1; 2/; .1; 3/; : : : ; .n � 1; n/g.
Inside the space RkC1 we can consider the closed convex cone

K D fy0 � 0; y1 � 0; : : : ; yk � 0g;

so that our original set can be written as

V�;d .�/D h
�1
� .K/:

In this case the set �� Sk is the set

�D f.!0; : : : ; !k/ 2 S
k
j !0 � 0; !1 � 0; : : : ; !k � 0g:
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For every point ! D .!0; : : : ; !k/ we can consider the quadratic form !h� defined by

!h� D !0h0;�C � � �C!khk;�:

Using this notation, for every j � 0 we define the sets

�j .�/D f.!0; : : : ; !k/ 2� j indC.!H�/� j g:

These are just the sets �j defined in Section 2.4, in the case of the quadratic map h�.

For every 1 � i < j � n let us also denote by Uij 2 Sym.n;R/ the symmetric matrix representing the
quadratic form uij WRn!R defined by

uij .t1; : : : ; tn/D �ij .ti � tj /
2:

Then, if Hij 2 Sym.dn;R/ is the matrix representing the quadratic form x 7! �ij kxi � xj k
2, we have

Hij D Uij ˝ 1d :

Lemma 33 The index function indC W�!N for our family of quadrics can be written as

indC.!H�/D d � indC1 .!/C indC0;�.!/;

where

indC1 .!/D indC
�
!01nC

X
i<j

!ijUij

�
and indC0;�.!/D indC

�
�
!0

�
�

X
i<j

!ij .�ij C �/

�
:

Before giving the proof, observe that none of the functions indC1 ; indC0;� W�!N depends on d and that
indC1 does not even depend on �.

Proof Observe that, for ! D .!0; !ij / 2�, the matrix !H� is a block matrix:

!H� D

0BBBB@
�!0=��

P
i<j !ij .�ij C �/ 0 � � � 0

0
::: !01dnC

P
i<j !ijHij

0

1CCCCA
and, in particular,

indC.!H�/D indC
�
�
!0

�
�

X
i<j

!ij .�ij C �/

�
C indC

�
!01dnC

X
i<j

!ijHij

�
:

The matrix !01dnC
P
i<j !ijHij is a tensor product of matrices,

!01dnC
X
i<j

!ijHij D

�
!01d C

X
i<j

!ijUij

�
˝ 1n:
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If a matrix Q 2 Sym.n;R/ has eigenvalues �1.Q/� � � � � �n.Q/ (possibly with repetitions), the matrix
Q˝ 1d has eigenvalues

�i;j .Q˝ 1d /D �i .Q/ for i D 1; : : : ; n; j D 1; : : : ; d:

In particular,

indC.Q˝ 1d /D d � indC.Q/;

and the result now follows.

Corollary 34 For d � nC 1, the set �nd .�/ is contractible and �ndC1.�/ is empty.

Proof Let us first show that �ndC1.�/D∅. To this end, consider the set

B.�/D f.!; Œx�/ 2��RPN j !h�.x/� 0g:

By [5, Lemma 24] the projection � Dp2jB.�/ on the second factor gives a homotopy equivalence between
B.�/ and its image

�.B.�//DRPN nW�;d .�/:

Since W�;d .�/ is nonempty, we know that

(3-3) �.B.�//¤RPN :

If now there was ! 2� such that indC.!/DN C 1, then !h� > 0 and f!g �RPN � B.�/. This would
imply that �.B.�//DRPN , which contradicts (3-3).

Let us now prove that �nd .�/ is contractible. For d � nC 1, since �ndC1.�/D∅, then the set �nd .�/
can be described as

�nd .�/D findCDndg D fd � indC1 C ind0;� � ndg D findC1 D ng\ find0;�D0g:

Observe that the point ! D .1; 0; : : : ; 0/ 2� belongs to both the sets findC1 D ng and find0;� D 0g, and
their intersection is nonempty.

Now, findC1 D ng and find0;� D 0g are obtained by intersecting a convex set in RkC1 with�\Sk , as they
coincide with the set of the points where the linear families of symmetric matrices!01nC

P
i<j !ijUij and

�!0=��
P
i<j !ij .�ij C �/ are, respectively, positive definite and negative semidefinite. In other words,

findC1 D ng is the preimage of the positive definite cone under the linear map ! 7! !01d C
P
i<j !ijUij ,

and find0;� D 0g is the preimage of the negative semidefinite cone under the linear map ! 7! �!0=��P
i<j !ij .�ij C �/.

Therefore �nd .�/ is the intersection in Sk \� of convex sets, and being � itself also convex, this
intersection is contractible.
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Recalling the notation of Section 2.4, but making it dependent on �, we have the vector bundle P j .�/�
�j .�/ n�jC1.�/�RNC1

(3-4)
Rj P j .�/

�j .�/ n�jC1.�/

whose fiber over a point ! is the positive eigenspace of !H� . As above, this bundle is the restriction of a
bundle over the set

Dj .�/D f! j �j .!H�/¤ �jC1.!H�/g;

ie the set where the j th eigenvalue of !H� is distinct from the .jC1/st. We still denote this bundle by
Pj .�/�Dj .�/�RNC1:

(3-5)
Rj P j .�/

Dj .�/

Here the fiber over a point ! 2 Dj .�/ consists of the eigenspace of !H� associated to the first j
eigenvalues. We denote the first Stiefel–Whitney class of this bundle by

(3-6) �j .�/ 2H
1.Dj .�//:

Restating Theorem 24 in this setting, we get the following.

Theorem 35 There exists a cohomology spectral sequence .Er.�/; dr.�/r�1/ which converges to
H�.SN nV�;d .�/IZ2/ and is such that :

(1) The second page of the spectral sequence is given , for j > 0, by

E
i;j
2 .�/DH i .�jC1.�/;�jC2.�/IZ2/:

For j D 0, the elements of the second page of the spectral sequence fit into a long exact sequence

(3-7) � � � !H i .�1.�/IZ2/!E
i;0
2 .�/!H i .�1.�/;�2.�/IZ2/

. � /^�1.�/
�����!H iC1.�1.�/IZ2/! � � � :

(2) For j � 1, the second differential d i;j2 .�/ WH i .�jC1.�/;�jC2.�//!H iC2.�j .�/;�jC1.�// is
given by

d
i;j
2 .�/� D @.� ` �jC1.�//C @� ` �j .�/:

Remark 36 As explained in [5, Introduction], the second differential only depends on the restriction
of �j .�/ to the set �j .�/ n�jC1.�/.

Remark 37 In the previous spectral sequence, the coefficient group for the various cohomologies is
the field Z2. There is an analogous spectral sequence for coefficients in Z, but the description of its
differentials is less clear.
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3.2.3 The analysis of the spectral sequence and its asymptotic structure We will start by proving
the following proposition, which deals with the stabilization of entries of the second page of the spectral
sequence of Theorem 35.

Proposition 38 There exist semialgebraic topological spaces

�D A0 � B0 � A1 � B1 � � � � � An � Bn D∅;

vector spacesN 0;0; : : : ; N k;0 and �1 >0 such that for all �� �1, the second page of the spectral sequence
of Theorem 35 has the structure

(3-8) E
i;j
2 .�/'

8̂̂̂<̂
ˆ̂:
H i .B`; A`C1/ if j D `d ,
H i .A`; B`/ if j D `d � 1,
N i;0 if j D 0,
0 otherwise.

Proof Observe first that the second page of the spectral sequence is zero in the region

f.i; j / j i � kC 1; j > 0g;

because all the sets �j .�/ are semialgebraic and of dimension at most k (since they are contained in
�� Sk). The j D 0 row of the spectral sequence is also zero for i � kC2, since for the same reason all
the groups in the exact sequence in (3-7) are zero.

Observe now that Lemma 33 implies that the only possible values of the function indC W �! N are
0; 1; d; d C 1; : : : ; nd; nd C 1 and in particular,

(3-9) �D�0.�/��1.�/��2.�/D�3.�/D � � � D�d .�/��dC1.�/��dC2.�/D�dC3.�/

D � � � D�nd�1.�/D�nd .�/��ndC1.�/�∅:

In particular, for every `D 0; : : : ; n, we deduce the vanishing of the homology of all the relative pairs:

H�.�d`C2.�/;�d`C3.�//D � � � DH�.�.`C1/d�1.�/;�.`C1/d .�//D 0:

This proves the “otherwise” part of the claim in (3-8).

We now define the sets A`.�/D findC � d`g and B`.�/D findC � d`C 1g and observe that

A`.�/D findC1 � `g; B`.�/D .findC1 � `g\ findC0;� D 1g/[findC1 � `C 1g;

where the index functions indC0;�; indC1 W�!N are defined in Lemma 33. Since indC1 does not depend
on d nor on � and ind0;� does not depend on d , by semialgebraic triviality it follows that there exists
�1 > 0 such that the homotopy of the sequence of inclusions

�D A0.�/� B0.�/� A1.�/� B1.�/� � � � � An.�/� Bn.�/D∅

stabilizes for � � �1.
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We define A`DA`.�1/ and B`DB`.�1/. With this notation we have that the sequence of inclusions (3-9)
for � � �0 becomes, up to natural homotopy equivalences,

�D A0 � B0 � A1 D A1 D � � � D A1 � B1 � A2 D A2 D � � � D An D An � Bn �∅:

This proves the statement for the term E
i;j
2 .�/ of the spectral sequence with j D `d � 1; `d .

In the case j D 0, we observe that the dimension of Ei;02 .�/ is determined by the exact sequence

0! ker!H i�1.�1.�/;�2.�//!H i .�1.�//!E
i;0
2 .�/!H i .�1.�/;�2.�//

!H iC1.�1.�//! coker! 0;

where ker and coker refer to the map x 7! x ^ �1.�/. The homotopy of the first, the third and the
fourth element of the above sequence stabilizes for � � �1; moreover (possibly choosing a smaller �1)
also the homotopy of the bundle P 1.�/!D1.�/ from (3-5) stabilizes for � � �1 and therefore the map
x 7! x ^ �1.�// stabilizes as well, and consequently the ranks of ker and coker stabilize. This gives the
stabilization of dimZ2

.E
i;0
2 .�// to a finite number for � � �1. We set

N i;0
WD Z

dimZ2
.E

i;0
2 .�//

2 for all � � �1:

Next we deal with the stabilization of the second differential.

Proposition 39 The second differential of the spectral sequence (3-8) is zero.

Proof Observe that the only possible nonzero differential of the spectral sequence is, for d � 2,

d
�;`d
2 .�/ WE

�;`d
2 .�/!E

�C2;`d�1
2 .�/:

Let us recall that we have defined !H� D !q1 C !q2, where !q1 D .!01dn C
P
i<j !ijHij / and

!q2 D
�
�!0=��

P
i<j !ij .�ij C �/

�
z2. We introduce the vector bundles

Rd�l N`d

D1
`d

and
R E.�/

�

where D1
`d
WD f! 2� j �`d .!q1/¤ �ldC1.!q1/g, N`d �D1

`d
�Rdn is the bundle of the eigenspace of

the first `d eigenvalues of the upper-left block of !H�, and the bundle E.�/ associates to every point
of � the unique eigenvector of !q2.

Observe that D`d .�/� D1
`d

and also D`dC1.�/� D1
`d

.

The vector bundle P`d .�/ from (3-5) for j D `d has the property that

P`d .�/DN`d jD`d .�/
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when N`d is thought as a subbundle of D1
`d
�RndC1. When j D `d C 1 we have

P`dC1.�/DN`d jD`dC1.�/˚E.�/jD`dC1.�/

because the quadratic form !q has two diagonal blocks. In particular, denoting by `d and by �.�/ the
first Stiefel–Whitney class of N`d and E.�/, respectively, by naturality of characteristic classes we have
the identities

�`d D `d jD`d .�/ and �`dC1 D `d jD`dC1.�/C �.�/jD`dC1.�/:

Notice that both �`d and �`dC1 contain the restriction of the same class `d as a summand. Thanks to
Theorem 35, the second differential d�;`d2 .�/ can be written as

d
�;`d
2 .�/� D @.� ` �`dC1/C @� ` �`d D @.� ` .`d jD`dC1.�/C �.�/jD`dC1.�///C @� ` `d jD`d .�/

D @.� ` �.�/jD`dC1.�//D @.� ` �.�//;

where we have used Remark 23 (taking .Z;X; Y /D .�`d .�/;�`dC1.�/;�`dC2.�// and . zX; zZ;A/D
.D`dC1.�/;D`d .�/;D1`d /) and the fact that we are working with Z2–coefficients.

On the other hand, the bundle E.�/ is trivial, because the space � is contractible and the class �.�/ is
zero. Therefore the differential is zero and this concludes the proof.

Remark 40 It is actually possible to prove the stabilization of the second differential, up to subsequences,
in a simpler way. In fact, fd2.�/�;`d W H�.A`; B`/ ! H�C2.B`; A`C1/gd�0 is a sequence of maps
between finite-dimensional Z2–vector spaces, ie

d2.�/
�;`d
2 Hom.Za2;Z

b
2/;

where a D dimZ2
.H�.A`; B`// and b D dimZ2

.H�C2.B`; A`C1//. Since Hom.Za2;Z
b
2/ ' Za�b2 is a

finite set, then up to subsequences, d2.�/�;`d is eventually constant.

3.2.4 The asymptotics for the Betti numbers of the chamber We are now in the position of proving
the main theorem of this section, namely Theorem 8.

Proof of Theorem 8 The proof of this theorem is based on the analysis of the structure of the spectral
sequence and its last page. First observe that by Proposition 31, for all k � 0 and for all � < �.d/ we have

bk.W�;d /D bk.W�;d .�//:

For the rest of the proof we will take � � minf�.d/; �2g, where �2 � �1 is given by Proposition 39.
Lemma 32 implies now that

bk.W�;d /D
1
2
bk.V�;d .�//:

On the other hand, since the involved spaces are semialgebraic sets (hence triangulable), the Betti numbers
of V�;d .�/ are related to those of SN nV�;d .�/ through Alexander duality:

zbk.V�;d .�//D zbN�k�1.S
N
nV�;d .�//:
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n � d � 1

2 � d � 1

3 � d � 1

d � 1

0

H0.B3;A4IZ2/

H2.A3;B3IZ2/

d2

0

�
n
2

�
C 1

d3

Figure 3: This is a schematic image of the E2.�/ term of the spectral sequence we are describing.
The shaded parts correspond to the elements Ei;j2 .�/ of the spectral sequence which are possibly
nonzero.

Finally, denoting by ei;j1 .�/ the dimension of Ei;j1 .�/, where E1.�/ is the last page of the spectral
sequence from Theorem 35, we have

zbN�k�1.S
N
nV�;d .�//D

X
iCjDN�k�1

ei;j1 .�/:

Collecting all this together, for � �minf�.d/; �2g we have

(3-10) bk.W�;d /D
1

2

8̂<̂
:
1C

P
iCjDN�1 e

i;j
1 .�/ if k D 0,P

iCjDN�k�1 e
i;j
1 .�/ if 0 < k < N � 1,

�1C e
0;0
1 .�/ if k DN � 1.

Observe now that Proposition 38 implies that in the second page of the spectral sequence only the first�
n
2

�
C 1 columns are nonzero (ie those with 0 � i �

�
n
2

�
); moreover, in the second page only the rows

with j D `d and j D `d � 1 are potentially nonzero, for `D 0; : : : ; n. Therefore, for d �
�
n
2

�
C 2 all
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the higher differentials are zero, and
E1.�/DE3.�/:

On the other hand Proposition 39 implies that E2.�/ D E3.�/ D E1.�/, with the last equality for
d �

�
n
2

�
C 2.

Looking now at the top two rows of E1, by Corollary 34 we know that

E
i;dn
2 .�/D 0 for all i � 0; E

0;dn�1
2 .�/' Z2; E

i;dn�1
2 .�/D 0 for all i � 1:

Thus, for d �
�
n
2

�
C 2,

ei;dn1 .�/D 0 for all i � 0; e0;dn�11 .�/D 1; ei;dn�11 .�/D 0 for all i � 1:

From this we immediately see that for d �
�
n
2

�
C 2 we have

b0.V�;d .�//D 2 and bk.V�;d .�//D 0 for all 1� k �
�n
2

�
:

This already proves

(3-11) b0.W�;d /D 1 and bk.W�;d /D 0 for all 1� k �
�n
2

�
:

Observe now that the fact that the rows with j D `d and j D `d � 1 in E2 DE1 are the only possibly
nonzero rows for `D 0; : : : ; n influences the Betti numbers bk.W�;d / with

(3-12) k Dmd; : : : ; md �
�n
2

�
� 1;

where mD n� `. We define now, for mD 1; : : : ; n� 1,

QG;m.t/D
1

2
�

�
e0;.n�m/d�11 t .

n
2/C1C

.n
2/X
iD1

.e
.n

2/�i;.n�m/d
1 C e

.n
2/�iC1;.n�m/d�1
1 /t i C e

.n
2/;.n�m/d
1

�
:

The i th coefficient of the polynomial QG;m is bmd�.n
2/Ci�1

.WG;d /. In principle we would have to
consider also the case mD n, but Theorem 9 guarantees that there is no homology in dimension greater
than .n�1/d�nC1. The proof of Theorem 9 is proved in Section 5 as that is where we describe a different
spectral sequence which we use to prove it via duality. By (3-12), the conclusion of the theorem follows.

Remark 41 As we noticed in the introduction, since the polynomials QG;1; : : : ;QG;n�1 do not depend
on d , but only on the graph, and since these polynomials are the same for isomorphic graphs, they define
a graph invariant. Similarly the same is true for the Floer number ˇ.G/, which is just the sum of their
coefficients. Of course the polynomials are finer invariants, however we do not have a clear interpretation
of these quantities.

Remark 42 From (3-11) it immediately follows that for d �
�
n
2

�
C 2 each sign condition is connected.

In particular, if d �
�
n
2

�
C 2, two Rd–geometric graphs on n vertices are isomorphic if and only if they

are rigidly isotopic. We will actually sharpen this in Corollary 47 below.
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4 Homotopy groups of the chambers

We turn our attention now to proving Theorem 3, and we start by introducing some notation. For every
0� r �maxfn; dg let us denote by .Rd�n/r the set of matrices of rank r ,

.Rd�n/r D fP 2Rd�n j rk.P /D rg �Rd�n:

When r D n we have that .Rd�n/n deformation retracts the Stiefel manifold of orthonormal n–frames
in Rn (the retraction is given by the Gram–Schmidt procedure; in the case d D n this is simply the
deformation retraction of GL.n;R/ onto O.n/). We recall that for k � d �n� 1 this Stiefel manifold is
k–connected (see [16, Example 4.53]), ie

(4-1) �k..R
d�n/n/D 0 if k � d �n� 1:

We will need the next elementary lemma.

Lemma 43 The complement of .Rd�n/n can be written as a finite union of smooth submanifolds of
codimension at least d �nC 1.

Proof Recall that for every 0� r�maxfn; dg, the codimension of .Rd�n/r in Rd�n equals .n�r/.d�r/
(see [18, Chapter 3, Section 2, Exercise 4]) and, in particular, if r � n� 1,

(4-2) codimRd�n.Rd�n/r � d �nC 1:

Now, the complement of .Rd�n/n in Rd�n is a semialgebraic set that can be written as

Rd�n n .Rd�n/n D
n�1a
rD0

.Rd�n/r ;

and it is therefore a semialgebraic set of codimension at least d �nC 1.

We will now prove a sequence of results on the homotopy groups of the chambers. These results will imply
Theorem 3. Since WG;d might not be connected if d �

�
n
2

�
C1, part of these results are formulated using

the set ŒSk; WG;d � of homotopy classes of continuous maps from Sk to WG;d , instead of the homotopy
group �k.WG;d /. As soon as WG;d becomes connected and simply connected, we can endow ŒSk; WG;d �

with a group structure. To stress this subtlety we will keep both notations.

Proposition 44 If d � kCnC 1, the inclusion

i WWG;d \ .R
d�n/n ,!WG;d

induces a bijection between ŒSk; WG;d \ .Rd�n/n� and ŒSk; WG;d �.

Proof We need to prove that the map i� W ŒSk; WG;d \ .Rd�n/n�! ŒSk; WG;d � induced by the inclusion
is a bijection if k � d �n� 1.
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We first prove the surjectivity of i�. Let f0 W Sk!WG;d be a map representing an element of ŒSk; WG;d �.
Since WG;d is open, up to homotopies we can assume that the map f0 is smooth. Moreover, by
[18, Chapter 3, Theorem 2.5], the map f0 is homotopic to a map f1 W Sk!WG;d which is transversal
to all the strata of the complement of .Rd�n/n. If now k < d �nC 1, the transversality condition and
Lemma 43 imply that the image of f1 does not intersect these strata; therefore f1 WSk!WG;d\.R

d�n/n

and i� is surjective. (Notice that for the surjectivity we only need d � kCn.)

For the injectivity we argue similarly. Let f0; f1 W Sk ! WG;d \ .R
d�n/n be two maps such that

i ıf0 W S
k!WG;d is homotopic to iıf1 WSk!WG;d . This means there exists a mapF W Sk � I !WG;d

such that F. � ; 0/D i ıf0 and F. � ; 1/D i ıf1. Now, we can approximate F with a new map zF W Sk � I
which is smooth, homotopic to F and C 0 arbitrarily close to it, and transversal to all the strata of the
complement of .Rd�n/n. By Lemma 43, if kC 1 < d �nC 1 this implies that the image of zF does not
intersect the complement of .Rd�n/n. In particular we have a homotopy between zF . � ; 0/ and zF . � ; 1/ all
contained in WG;d \ .Rd�n/n. On the other hand, since both F. � ; 0/ and F. � ; 1/ miss the complement
of .Rd�n/n, which is closed, by compactness of Sk , any two maps C 0 sufficiently close to these maps
will be homotopic to them and will also miss this complement. In particular, if zF is sufficiently close to F ,
then F. � ; 0/ is homotopic to zF . � ; 0/, and F. � ; 1/ is homotopic to zF . � ; 1/; further, these homotopies
miss the complement of .Rd�n/n. In this way we have build a homotopy between f0 and f1 already in
WG;d \ .R

d�n/n, ie i� is injective.

4.0.1 Some useful maps We introduce now some useful maps. First recall the Gram–Schmidt map
� WRd�n!Rd�n, which orthonormalizes the columns of a matrix P 2Rd�n and is defined by

�.P /D P.P TP /�1=2:

Since the columns of �.P / are orthonormal, it follows that, if P 2Rd�nn ,

(4-3) �.P /T �.P /D 1n:

Moreover, �.P /�.P /T is the orthogonal projection on the span of the columns of P .

Let now G be a geometric graph on n vertices and d � n. Our first useful map is

(4-4) WG;n � .R
d�n/n

˛d
�!WG;d ; .Q;P / 7! .�.P /Q/:

We need to verify that the isomorphism class of the labeled graph is unchanged, ie that G.�.P /Q/'
G.Q/' G. This is true because all the relative distances of the points in �.P /Q are the same as the
distances of the points in Q. More precisely, write QD .q1; : : : ; qn/ and �.P /QD .p01; : : : ; p

0
n/, where

p0i D �.P /qi . Then, using (4-3), we have

kp0i�p
0
j k
2
D k�.P /.qi�qj /k

2
D .qi�qj /

T �.P /T �.P /.qi�qj /D .qi�qj /
T .qi�qj /D kqi�qj k

2:

The relative distances between the points are the same, so by definition it follows thatG.�.P /Q/'G.Q/.
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A second useful map is

WG;d \ .R
d�n/n

ˇd
�!WG;n � .R

d�n/n; P 7! .�.P /TP;P /:

Also for this map we need to check that its first component has target in WG;n. Again this follows from
the fact that the mutual distances of the corresponding points are preserved. Writing P D .p1; : : : ; pn/,
we have

k�.P /Tpi � �.P /
Tpj k

2
D .pi �pj /

T �.P /�.P /T .pi �pj /D .pi �pj /
T .pi �pj /D kpi �pj k

2;

where we have used the fact that �.P /�.P /T is the orthogonal projection onto the span of the columns
of P . The claim follows again from Lemma 30.

Observe that it follows immediately from the definition of the maps ˛ and ˇ that

(4-5) ˛d ıˇd D i WWG;d \ .R
d�n/n ,!WG;d :

4.0.2 Stabilization

Proposition 45 If d � kCnC 1, the map j� W ŒSk; WG;d �! ŒSk; WG;dC1� induced by the inclusion is
injective.

Proof Let g0; g1 WSk!WG;d be two continuous maps such that the compositions j ıg0 WSk!WG;dC1

and j ı g1 W Sk ! WG;dC1 are homotopic. Thanks to Proposition 44 we can assume g0 and g1 to be
elements of ŒSk; WG;d \ .Rd�n/n�. We want to prove that g0 and g1 are homotopic. For a map
f W Sk!WG;d , we consider the commutative diagram of maps

.WG;n\ .Rn
2

/n/� .Rdn/n .WG;n\ .Rn
2

/n/� .R.dC1/n/n

Sk WG;d \ .R
dn/n WG;dC1\ .R

.dC1/n/n

˛d

u

˛dC1

f

ˇdıfD.f1;f2/

j

ˇd ˇdC1

Notice that here the maps ˛d and ˛dC1, defined in (4-4), are restricted to the set of pairs .Q;P / with
rk.Q/D n; the values of these maps are in the set of matrices of rank n.

Since ˛d ıˇd D id, we can write the map f as

f D ˛d ı .ˇd ıf /D ˛d ı .f1; f2/;

where .f1; f2/ are the components of ˇd ıf . We apply now the diagram to the map f D g0 and f D g1,
writing them as

gi D ˛d ı .ˇd ıgi /D ˛d ı .gi;1; gi;2/ for i D 0; 1:

We will prove that both components are homotopic g0;1 � g1;1 and g0;2 � g1;2, which implies that g0 is
homotopic to g1.
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Since the map j ıg0 is homotopic to j ıg1, then also the first component of ˇdC1 ı j ıg0 is homotopic
to the first component of ˇdC1 ı j ıg1. But the first component of ˇdC1 ı j ıg0 equals g0;1, the first
component of ˇd ıg0, and similarly for the first component of ˇdC1 ı j ıg1. Therefore g0;1 � g1;1.

On the other hand the second components of ˇd ı g0; ˇd ı g1 W Sk ! .Rd�n/n are homotopic simply
because �k..Rd�n/n/D 0 for k � d �n� 1.

Proposition 46 For every d � n, the inclusion WG;d ,!WG;dCn is homotopic to a constant map.

Before we give the proof, let us observe that, since we do not know if WG;d is path connected, there are
several constant maps up to homotopy, one for each component; this proposition tells us that all the maps
ŒSk; WG;d � are mapped to the same constant map in WG;dCn. This also tells us that WG;d is contained
in just one connected component of WG;dCn.

Proof Since for d � n every graph is realizable as a geometric graph, pick RD .r1; : : : ; rn/ 2WG;n by
the previously cited result of Maehara [23].

Consider the homotopy ft WWG;d !R.dCn/�n defined for t 2 Œ0; 1� by

ft .P /D

�p
1� tP
p
tR

�
:

With this choice,

f0 D i WWG;d ,!WG;dCn �R.dCn/�n and f1 �

�
0

R

�
2WG;dCn:

We only need to prove that ft .WG;d /�WG;dCn for all t 2 Œ0; 1�. To this end, let us write

ft .P /D .p1.t/; : : : ; pn.t//D

�p
1� tp1 � � �

p
1� tpnp

tr1 � � �
p
trn

�
:

Because of Lemma 30, in order to show that G.ft .P //�G it is enough to show that the signs of the
family of quadrics fkpi �pj k2� 1 WR.dCn/�n!Rg evaluated on ft .P / are constants. We have

kpi .t/�pj .t/k
2
D .1� t /kpi �pj k

2
C tkri � rj k

2;

and therefore, as
sign.kpi �pj k2� 1/D sign.kri � rj k2� 1/;

it must be the case that

sign.kpi .t/�pj .t/k2� 1/D sign.kpi �pj k2� 1/D sign.kri � rj k2� 1/:

We are now ready to prove Theorem 3.

Proof of Theorem 3 We first prove that for d � nC1 the set WG;d is path connected. By Proposition 46
the map i� W ŒS0; WG;d �! ŒS0; WG;dCn� is the map that sends everything to the class of a constant map. On
the other hand this map factors through the sequence of maps induced by the inclusionsWG;d ,!WG;dC1

ŒS0; WG;d �! ŒS0; WG;dC1�! � � � ! ŒS0; WG;dCn�:
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Each map in the previous sequence is an injection for d � nC 1 by Proposition 45, therefore also
i� W ŒS

0; WG;d �! ŒS0; WG;dCn� is an injection, and ŒS0; WG;d � consists of only one element. Therefore
WG;d is path connected.

We prove now that, for d � n C 2, WG;d is also simply connected. By Proposition 46 the map
i� W ŒS

1; WG;d �! ŒS1; WG;dCn� is the map that sends everything to the class of a constant map. On the
other hand this map factors through the sequence of maps induced by the inclusions WG;d ,!WG;dC1,

ŒS1; WG;d �! ŒS1; WG;dC1�! � � � ! ŒS1; WG;dCn�1�! ŒS1; WG;dCn�:

Each map in the previous sequence is an injection for d � nC 2 by Proposition 45, therefore also
i� W ŒS

1; WG;d �! ŒS1; WG;dCn� is an injection, and ŒS1; WG;d � consists of only one element. Recall now
that ŒS1; WG;d � consists of the set of conjugacy classes in �1.WG;d / (we can omit the basepoint because
WG;d is path connected): the fact that ŒS1; WG;d � consists of one element implies that there is only one
conjugacy class in �1.WG;d /, which means that WG;d is simply connected.

Let now k � 2 and d � kCnC 1. Since �1.WG;d /D 0 for d � nC 2, it follows that

ŒSk; WG;d �D �k.WG;d /=�1.WG;d /D �k.WG;d /;

by [16, Proposition 4A.2]. By Proposition 46, the map i� W�k.WG;d /!�k.WG;dCn/ is the zero map. On
the other hand, this map factors through the sequence of maps induced by the inclusionsWG;d ,!WG;dC1,

�k.WG;d /! �k.WG;dC1/! � � � ! �k.WG;dCn�1/! �k.WG;dCn/:

Each map in the previous sequence is an injection for d � kCnC 1 by Proposition 45, therefore also
i� W �k.WG;d /! �k.WG;dCn/ is an injection, and �k.WG;d /D 0.

Notice that thanks to this theorem we have the following corollary.

Corollary 47 For d � nC 1, for each labeled graph G on Œn�, the isomorphism class WG;d is connected.

4.1 The infinite-dimensional case

The space R1�n is a pre-Hilbert space (since it is not complete) with respect to the natural scalar product.8

The notion of geometric graph and discriminant also makes sense in this infinite-dimensional space. More
precisely, given an element P D .p1; : : : ; pn/2R1�n, we build the graphG.P /whose vertices and edges
are defined as in Definition 13. The discriminant �1;n consists of points P D .p1; : : : ; pn/ 2 R1�n

such that there exists a pair 1� i < j � n with kpi �pj k2D 1. The chambers are now defined as follows:
for a given graph G on n vertices, we set

WG;1 D fP D .p1; : : : ; pn/ 2R1�n n�1;n
ˇ̌
G.P /'Gg:

It is easy to see that WG;1 is the direct limit of the sequence of inclusions in (1-2). In particular, from
Theorem 3 we deduce the following.

8The completion of R1�n is .`2.N//n D
˚
p D .x1; x2; : : : / j

P1
kD1 x

2
k
<1

	
.
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Theorem 48 For every graph G, the set WG;1 D lim
��!

WG;d is contractible.

Proof We first observe that, by Lemma 30, for d � n each WG;d is described by a list of quadratic
inequalities and therefore it is semialgebraic and it has the homotopy type of a CW–complex. Since
WG;1D lim

��!
WG;d , it follows by [26, Corollary on page 253] that also WG;1 has the homotopy type of a

CW–complex. By Whitehead’s theorem [16, Theorem 4.5], in order to prove that WG;1 is contractible it
is enough to prove that all its homotopy groups are zero.

But this is a consequence of Theorem 3: since Sk is compact and WG;d comes with the final topology,
any map f W Sk!WG;1 will factor through a map f W Sk!WG;d . We can assume d large enough so
that �k.WG;d /D 0. It follows that the map f is contractible.

5 Increasing the number of points

5.1 Geometric graphs on the real line

We now want to study the number of possible isotopy classes of geometric graphs on the real line when the
number of points is large: this is precisely the case d D 1, and n large. If we look at the discriminant�1;n,
this is an arrangement of hyperplanes, namely

�1;n D f.x1; : : : ; xn/ 2R1�n j there exist i; j such that jxi � xj j D 1g:

Remark 49 There is a way to compute explicitly the number b0.R1�n n�1;n/ using a generalized
version of the Mayer–Vietoris spectral sequence for semialgebraic sets. For nD 3 this gives 19, for nD 4
it gives 183, and for nD 5 it gives 2371. The computations becomes tricky for larger n; however, these
numbers are the beginning of a known integer sequence, which is the sequence of labeled semiorders
on Œn�.

The remark leads us to an obvious observation. An interval order for intervals fIigniD1 of unit length
(=semiorder for Œn�) is the partial order corresponding to their left-to-right precedence relation, ie one
interval Ii is considered less than another Ij if and only if Ii is completely to the left of Ij . In the
case d D 1, the number of components of the complement of �1;n is exactly the number of possible
semiorders for Œn�. This is because, once we defined the intervals Œpi � 1; pi � for all i , each component
of R1�n n�1;n is uniquely determined by whether pi < pj � 1 or pi – pj � 1; see [30, page 73].

Remark 50 The type of semiorders introduced are usually addressed as semiorders on n labeled items.
The number of distinct semiorders on n unlabeled items is given by the Catalan numbers fCngn.

Let us define f .n/ WD number of labeled semiorders of Œn�. There is an explicit generating function for
this sequence; see [30, page 78, Corollary 5.12]. We have

G.x/ WD
X
n�0

f .n/
xn

nŠ
D C.1� e�x/;
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where C is the generating function of the known sequence of Catalan numbers fCng. More explicitly,X
n�0

Cnx
n
D C.x/D

1�
p
1� 4x

2x
:

Theorem 51 The number of rigid isotopy classes of R–geometric graphs on n vertices is equal to

b0.R
1�n
n�1;n/D

1

n
�

q
6 log 4

3
�

�
n

e log 4
3

�n
.1CO.n�1=2//:

Proof First of all let us notice that Theorem 27 can be applied to G.x/ since we have only one singularity
in log 4

3
and we can extend the function to a log 4

3
D–domain, and actually to the whole of CnŒlog 4

3
;C1/.

The function C.x/ has a unique singularity at x D 1
4

. It is easy to see that

C.x/D 2� 2
p
1� 4xCO.1� 4x/:

By composition we get
G.x/D 2� 2

p
4e�x � 3CO.4e�x � 3/;

and, from this,

G.x/D 2� 2

q
3 log 4

3
�

s
1�

x

log 4
3

CO

�
1�

x

log 4
3

�
D F

�
x

log 4
3

�
CO

�
1�

x

log 4
3

�
:

We can now apply Theorem 27. We get
f .n/

nŠ
D
�
log 4

3

��n
� �nCO

��
log 4

3

��n 1
n2

�
;

where F.x/D
P1
nD0 �nz

n. Using Remark 28 and �
�
�
1
2

�
D�2

p
� we get

f .n/

nŠ
D
�
log 4

3

��n
�

1
p
�n3
�

q
3 log 4

3
CO

��
log 4

3

��n 1
n2

�
;

and, by Stirling’s approximation,

f .n/D

�
n

e log 4
3

�n
�
1

n
�

q
6 log 4

3
CO

��
n

e log 4
3

�n
n�3=2

�
:

With these computations we know asymptotically the number of isotopy classes of geometric graphs
on the real line. However, as we discussed before, different isotopy classes can correspond to the
same isomorphism class. It is therefore natural to ask for the number #1;n of isomorphism classes of
R–geometric graphs, for n large. In [15], Hanlon computes the exponential generating function for this
sequence (and calls the corresponding graphs labeled unit-interval graphs).

The exponential generating function for f#1;ngn is

ƒ.x/D exp.�.x//� 1;

where �.x/ is the generating function for the sequence fbngn of isomorphism classes of connected
R–geometric graphs on n vertices. More explicitly, we have

�.x/D 1
4
.1� 2z/� 1

4

r
1� 3z

1C z
; where z D ex � 1:
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Reasoning as before, we prove the following theorem.

Theorem 52 The number of isomorphism classes of R–geometric graphs on n vertices is equal to

#1;n D
e1=12

8
�
1

n
�

q
6 log 4

3
�

�
n

e log 4
3

�n
.1CO.n�1=2//:

Proof First of all let us notice that Theorem 27 can be applied toƒ.x/ since we have only one singularity
at log 4

3
and we can extend the function to a log 4

3
D–domain, actually to C n

�
log 4

3
;C1

�
. We start with

1Cƒ.x/D exp
�
1
4
� .3� 2ex/

�
� exp

�
�
1
4

p
4e�x � 3

�
:

Then
1Cƒ.x/D

�
e1=12CO

�
1�

x

log 4
3

��
�
�
�
1
4

p
4e�x � 3C 1CO.4e�x � 3/

�
;

1Cƒ.x/D e1=12� 1
4
e1=12

q
3 log 4

3

s
1�

x

log 4
3

CO

�
1�

x

log 4
3

�
:

Finally,
#1;n
nŠ
D

1
8
e1=12 �

�
log 4

3

��n
�

1
p
�n3
�

q
3 log 4

3
CO

��
log 4

3

��n 1
n2

�
;

#1;n D 1
8
e1=12 �

�
n

e log 4
3

�n
�
1

n
�

q
6 log 4

3
CO

��
n

e log 4
3

�n
n�3=2

�
:

Even though in the general case we still do not have a clear understanding of the relation between
b0.R1�n n�1;n/ and #1;n, in the case d D 1 we have the following corollary.

Corollary 53 We have

b0.R
1�n
n�1;n/D

8

e1=12
� #1;n.1CO.n�1=2//; where

8

e1=12
D 7:3603 : : : :

The number 8= 12
p
e can be roughly interpreted as the average number of rigid isotopy classes realizing a

particular R–geometric graph isomorphism type.

5.2 Asymptotic enumeration in higher dimensions

While the situation for isotopy classes of geometric graphs on the real line is given by the number
of semiorders on Œn�, such a closed-form description apparently does not exist for larger values of d .
Nonetheless we are able to obtain reasonable bounds on the asymptotics following methods of McDiarmid
and Müller [24], who study asymptotic enumeration of labeled disk graphs in R2. A disk graph in R2

is a graph given by an arrangement of open disks in R2 where the vertices are the disks and there is an
edge between a pair of them if and only if the corresponding disks intersect one another. In the case
that all the disks have the same radius, this is exactly the setting of our geometric graphs in the case
d D 2. McDiarmid and Müller show that the number of labeled graphs on n vertices which are unit disk
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graphs in R2 — in our notation, #2;n — is order exp.2n log.n/C‚.n//, and adapting their method we
prove the following theorem. In particular we prove that the right asymptotic rate of growth both for #d;n
and for b0.Rd�n n�d;n/ is exp.dn log.n/C‚.n//. We will prove the following theorem, which is a
consequence of Theorems 56 and 58.

Theorem 54 For d � 2 fixed and n� 4d C 1, one has the bounds�
1

.d C 1/e2

�dn
ndn � #d;n � b0.R

d�n
n�d;n/� 2dn

�
3e

2d

�dn
ndn:

In the d D 1 case we saw that, on average, the number of rigid isotopy classes for an R–geometric graph
is a specific constant. Moreover, it is easy to see that there are nŠ rigid isotopy classes for the empty
graph on n vertices in R. In higher dimensions we leave the generalization of these as open questions:
On average how many rigid isotopy classes correspond to a particular Rd–geometric graph? Does this
average depend on n? What is the maximum for the number of rigid isotopy classes corresponding to an
Rd–geometric graph?

5.3 General case: the upper bound

While McDiarmid and Müller are primarily interested in enumerating labeled geometric graphs in the
plane, in our notation the number #2;n, their upper bound holds for general d , as they point out in [24].
The key lemma in their proof of their upper bound is the following result of Warren [32].

Theorem 55 [32] If P1; : : : ; Pm are polynomials of degree at most t in real variables z1; : : : ; zk , then
the number of distinct sign patterns�

sign.P1.xz//; : : : ; sign.Pm.xz//
�
2 f�1; 1gm

that occur in Rk n
Sm
iD1fxz j Pi .xz/D 0g is at most�

4etm

k

�k
:

Given n; d we take the
�
n
2

�
polynomials in variables .x1; : : : ; xn/2Rdn given by qi;j .x/Dkxi�xj k2�1,

defined in (3-1). Then each sign pattern of these
�
n
2

�
degree 2 polynomials in dn variables corresponds

to a unique isomorphism class of labeled geometric graphs on n vertices in Rd . Therefore we have the
bound

#d;n �
�
4e

d

�nd
nnd :

However, a single sign pattern could be a disjoint union of several rigid isotopy classes, so we need a
different argument to bound b0.Rd�n n�d;n/. We prove the following theorem.

Theorem 56 (upper bound) For fixed d and for n� 4d C 1, we have the bound

b0.R
d�n
n�d;n/� 2dn

�
3e

2d

�dn
ndn:
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Before the proof, we introduce some notation. One defines the unit-distance graph on Rd to be the
graph whose vertex set is all of Rd , and two vertices x and y are connected by an edge if and only if
kx�yk D 1. We remark that the unit-distance graph on Rd , especially in the case d D 2, is studied in
the case of the well-known Hadwiger–Nelson problem of establishing the chromatic number of the plane,
that is, the chromatic number of the unit-distance graph on R2.

Given two graphs G and H , a graph homomorphism from G to H is a map � W V.G/! V.H/ such that
if .u; v/ is an edges of G then .�.u/; �.v// is an edge of H . Thus each quadric �i;j

d;n
is the space of

images of homomorphisms from the graph on Œn� with an edge between vertex i and vertex j into the
unit-distance graph on Rd . More generally, we denote an intersection of quadrics by �G

d;n
for a graph

G D .Œn�; E/ by

(5-1) �Gd;n WD
\

.i;j /2E

�
.i;j /

d;n
:

Then �G
d;n

is the space of images of homomorphisms from the graph G to the unit-distance graph on Rd .
Putting all of this together, we have that �d;n itself is the set of all points in Rd�n that are the image
of a graph homomorphism for a nonempty graph on n vertices, ie �d;n is the union of the �G

d;n
across

nonempty graphs G on n vertices.

Remark 57 Let us denote with y�G
d;n

the one-point compactification of the set �G
d;n

defined in (5-1),
where G is any graph on Œn�. This is an algebraic set X of RndC1 D .x1; : : : ; xn; z/, defined by kC 1
equations, which are

kxi � xj k
2
D .1� z/2

for .i; j / an edge of G, and the equation of the sphere kx1k2C� � �Ckxnk2C z2 D 1. In fact, if we look
at the explicit expression of the stereographic projection we get an homeomorphism between �G

d;n
and

X n .f.0; 1/g/, and from this the claim.

Proof By Alexander duality (Section 2.2) b0.Rd�n n�d;n/ D bdn�1.y�d;n/C 1, where y�d;n is the
one-point compactification of the discriminant. Therefore, it is sufficient to bound bdn�1.y�d;n/. Let us
consider the Mayer–Vietoris spectral sequence for simplicial complexes; see [7, Section 3.2] for a complete
construction. Thanks to the previous remark, y�d;n is an algebraic set and we can use the mentioned
spectral sequence with respect to the algebraic covering f y�G

d;n
gG , where G varies over nonempty labeled

graphs on Œn�. The E1 page of the spectral sequence has

(5-2) E
i;j
1 D

M
G a graph on Œn�

with exactly iC1 edges

H j .y�Gd;n/;

and we have the bound

(5-3) bdn�1.y�d;n/�

dn�1X
iD0

dimZ2
.E

i;.dn�1�i/
1 /:
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Using [27, Theorem 2] and the fact that for any labeled graph G on Œn� the topological space y�G
d;n

is an algebraic set defined by equations of degree 2 in Rdn, we get that its total Betti number is at
most 2.3/dn�1. Using this, we have

bdn�1.y�d;n/�

dnX
kD1

��n
2

�
k

�
2.3/dn � 2.3/dn

dnX
kD1

��n
2

�
k

�
� 2.3/dndn

��n
2

�
dn

�
� 2.3/dndn

�
n2e

2dn

�dn
;

where in the third inequality we used n� 4d C 1.

5.4 General case: the lower bound

For the lower bound on the number of labeled disk graphs, McDiarmid and Müller give a procedure for
inductively generating many distinct labeled disk graphs. Here we generalize this procedure to higher
dimensions.

For each k � d C 1 we construct a family Uk;d of nonisomorphic labeled geometric graphs on k vertices
in Rd . If we let uk;d denote the number of graphs in Uk;d , we show that for k � d C 1,

ukC1;d �

��
k

d C 1

��d
uk;d :

This recursion implies the following result, which we prove in Section 5.4.1.

Theorem 58 (lower bound) We have for n > d C 1 that�
n

.d C 1/e2

�dn
� #d;n:

For the base of the recursion, we start with the regular d–simplex in Rd with edges of length 1 and
vertices given by P1; P2; : : : ; PdC1. The 1–skeleton of the d–simplex is a geometric graph in Rd ; this
will be the singleton element of UdC1;d . Though this graph is degenerate, it will still contribute to #d;n,
which is always a lower bound for b0.Rd�n n�d;n/, by the discussion following Lemma 16.

To construct the families Uk;d for d C 1 < k � n, we need the following technical lemma, which
generalizes [24, Lemma 4.1].

Lemma 59 There exist constants �0 > 0 and C > 0 such that for all 0 < � < �0 and all pi 2 B.Pi ; �/
for all i 2 Œd �, there exists a unique point

q.p1; : : : ; pd / 2 B.PdC1; C�/

with kq�pik D 1 for all i 2 f1; : : : ; dg.

In other words, for � small enough, this lemma tells us that there is a well-defined Lipschitz-continuous
function q on B.P1; �/�B.P2; �/� � � � �B.Pd ; �/, with Lipschitz constant C , mapping .x1; : : : ; xd / to
the unique point of the intersection of sphere S.x1; 1/\S.x2; 1/\ � � � \S.xd ; 1/ closest to PdC1. The
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d D 2 case is [24, Lemma 4.1], and is essentially proved directly via a closed form for q in terms of
p1; p2 2 B.P1; �/�B.P2; �/, which is well defined and Lipschitz continuous for � small enough. For
larger values of d , writing down the closed form of q would be much more complicated. Therefore,
we instead describe algorithmically how one would compute q given p1; : : : ; pd sufficiently close to
P1; P2; : : : ; Pd , respectively, and show that q will ultimately be a combination of Lipschitz-continuous
functions.

Proof of Lemma 59 We show that for � small enough, the intersection S.p1; 1/\ � � � \S.pd ; 1/ with
pi 2 B.Pi ; �/ for all i is two points qC.p1; : : : ; pd / and q�.p1; : : : ; pd /, with qC.p1; : : : ; pd / the
closer of the two to PdC1, and that qC W B.P1; �/� � � � �B.Pd ; �/!Rd is Lipschitz continuous.

We will prove that qC is well defined and Lipschitz-continuous close to P1; P2; : : : ; Pd by describing
the algorithm one would use to compute qC and show that each step of the algorithm is given by
composition or addition of Lipschitz-continuous functions. Given a tuple of points .p1; p2; : : : ; pd / 2
B.P1; �/�B.P2; �/� � � � �B.Pd ; �/, with � sufficiently small, one could compute qC via the following
recursive procedure.

First find the .d�2/–dimensional sphere given by the intersection of S.p1; 1/ and S.p2; 1/. Now
for any 0 � k � d � 1, a k–dimensional sphere in Rd may be described completely by its center,
its radius, and the affine subspace of dimension k C 1 in which it is contained. In other words a
k–dimensional sphere in Rd is described by a point in Rd , a positive real number, and an element
of the Grassmannian Gr.k C 1; d/. Given p1 and p2 in Rd with the distance from p1 to p2 smaller
than 2, the intersection S.p1; 1/\S.p2; 1/ is a .d�2/–dimensional sphere. It follows that taking � small
enough so that kp1 � p2k2 < 4 for any p1; p2 2 B.P1; �/�B.P2; �/, we have a continuous function
.C;R;G/ W B.P1; �/�B.P2; �/! Rd �RC �Gr.d � 1; d/. This map sends .p1; p2/ to the .d�2/–
dimensional sphere S.p1; 1/\S.p2; 1/ with center C.p1; p2/ and radius R.p1; p2/ living in the affine
hyperplane C.p1; p2/CG.p1; p2/.

Now given .p1; : : : ; pd / 2 B.P1; �/� � � � �B.Pd ; �/ with � small enough, we have that the intersection
of C.p1; p2/CG.p1; p2/ with S.p1; 1/[S.p2; 1/[� � �[S.pd ; 1/�Rd gives an arrangement of d �1
.d�2/–dimensional spheres in the affine hyperplane C.p1; p2/CG.p1; p2/. The center and radii of these
spheres will be determined by how C.p1; p2/CG.p1; p2/ intersects each S.pi ; 1/. By induction we find
the two points of intersection of these .d�2/–dimensional spheres in the .d�1/–dimensional Euclidean
space given by the affine hyperplane C.p1; p2/CG.p1; p2/. Once these two points of intersection have
been found, we pick the one that is closest to PdC1 to be qC.p1; : : : ; pd /.

It can be verified routinely that .C;R;G/, as defined above, is Lipschitz continuous in each coordinate.
Moreover, the intersection ofC.p1; p2/CG.p1; p2/with S.p1; 1/[S.p2; 1/[� � �[S.pd ; 1/�Rd , when
pi is sufficiently close to Pi for all i , can be described by a 2.d�1/–tuple of points .c2; r2; : : : ; cd ; rd /,
where each ci belongs to C.p1; p2/CG.p1; p2/ and ri 2 .0; 1�. Here ci and ri are, respectively, the
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center and the radius of the .d�2/–dimensional sphere given by S.pi ; 1/\ .C.p1; p2/CG.p1; p2// for
i � 3, with c2 and r2, respectively, the center and radius of the .d�2/–dimensional sphere given by the
intersection S.p1; 1/\S.p2; 1/, ie c2 and r2 are C.p1; p2/ and R.p1; p2/.

By continuity, C.p1; p2/ can be made arbitrarily close to C.P1; P2/, G.p1; p2/ can be made arbitrarily
close to G.P1; P2/, and R.p1; p2/ can be made arbitrarily close to R.P1; P2/. From here one can verify
that for � small enough, there is a Lipschitz-continuous function

� WBGr.d�1;d/.G.P1; P2/; �/�BRd .C.P1; P2/; �/�BR.R.P1; P2/; �/�BRd .P3; �/�� � ��BRd .Pd ; �/

! .Rd�1 �R/d�1

mapping an element of the domain to the arrangement of .d�1/ many .d�2/–dimensional spheres in
the affine hyperplane as described above. By induction we have that the S0 at the intersection of the
arrangement is Lipschitz continuous on the image of �, and finally picking the closest of the two points
to the fixed point PdC1 is Lipschitz continuous too. Note that the base case for the induction can simply
be the d D 1 case; given two points in R, picking the one closest to a fixed point is always Lipschitz
continuous when the center of the two points lives in some small enough interval around a second fixed
point.

Let us take the sequence 0 < �1 < � � �< �n defined by �i D �0=C n�i , where �0 and C as in the previous
lemma and we are assuming C > 1. To construct elements of Uk;d recursively from Uk�1;d , we will
also use as an inductive hypothesis that all the elements P D .p1; : : : ; pk/ 2 Uk;d satisfy the properties

(P1) kpi �Pj k< �i with i � j mod d C 1,

(P2) S.pi1 ; 1/\ � � � \S.pidC1
; 1/D∅ for all distinct fi1; : : : ; idC1g.

These two conditions hold for UdC1;d , whose vertices are P1; : : : ; PdC1.

Condition (P1) above naturally partitions the vertices of G 2Uk;d into d C1 distinct classes given by the
clustering of the vertices of G around the points P1; : : : ; Pd ; PdC1. The proof of the claimed recursive
lower bound on uk;d will be that if G 2 Uk�1;d and, without loss of generality, k � 0 mod .d C 1/ then
picking a transversal � D fpi1 ; pi2 ; : : : ; pid g of vertices of G where il � l mod .d C 1/ for every i , we
give a procedure to choose a position for a new vertex pk to be added to G so that the neighborhood
of pk is unique for each choice of � and so that (P1) and (P2) are satisfied still satisfied after adding pk .
As pk will depend on � and each choice of � gives a distinct neighborhood for pk , we have that there
are at least as many combinatorially distinct ways to extend G as there are choices for � .

If we denote by P.G/ for G 2 Uk�1;d the set of all such transversals, that is, the number of d–tuples
.i1; : : : ; id / with 1� ij < k such that ij � j mod d C 1, we have

jPj � b.k� 1/=.d C 1/cd :
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Now let M� be defined as the intersection of the open balls

M� WD B.pi1 ; 1/\ � � � \B.pid ; 1/:

We have the following lemma, which in the 2–dimensional case is [24, Claim 4.3]. The proof, which we
omit, is exactly analogous to the 2–dimensional case and relies on the fact that for each �D .i1; : : : ; id /2P ,
S.pi1 ; 1/\ � � � \ S.pid ; 1/\B.PdC1; �k/ is a single point due to Lemma 59, and that single point is
unique for each choice of � by condition (P2).

Lemma 60 There exist nonempty open sets O� �M� such that for all � ¤ � 2 P , we have either
O� \M� D∅, or O� \M� D∅.

Now, for each � 2 P , let us pick an arbitrary

q� DO� n

k�1[
iD1

S.pi ; 1/;

and we have that the Rd–geometric graph obtained by adding the vertex q� to G, which we will denote
by .G; q�/, satisfies conditions (P1) and (P2). Moreover, for every choice of � we obtain a unique way
to extend G, by the following lemma.

Lemma 61 If � ¤ � 2 P.G/ for G 2 Uk�1;d , then the geometric graphs .G; q�/ and .G; q� / are not
isomorphic.

This holds because q� and q� will have different sets of neighbors, generalizing [24, Claim 4.4].

Lemma 62 If � ¤ � 2 P.G/ for G 2Uk�1;d , then N.q�/¤N.q� /, where N.v/ denotes the neighbors
of a point v in Rd in the geometric graph .G; v/, that is , the vertices of G at distance less than 1 from v.

Proof For � ¤ � we have that � �N.q�/ if and only if q� 2M� . Clearly � �N.q� / and � �N.q�/,
but by Lemma 60 it cannot be the case that both � �N.q�/ and � �N.q� /.

Now, for each G 2 Uk�1;d and � 2 P.G/ we construct a geometric graph .P; q�/ which satisfies
conditions (P1) and (P2) and which satisfies Lemma 61. Then

uk;d � jPj �uk�1;d �
j
k�1

dC1

kd
�uk�1;d :

5.4.1 Proof of Theorem 58 We have

#n;d � un;d �
� n�1Y
iDdC1

j
i

dC1

k�d
�

� n�1Y
iDdC1

i�d

dC1

�d
�

�
.n� d � 1/Š

.d C 1/n�d�1

�d
:

Using the estimate

kŠ�
�
k

e

�k
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we get

#n;d �
�
n� d � 1

.d C 1/e

�d.n�d�1/
�

�
n

.d C 1/e

�dn� n

d C 1

��d.dC1/
;

where for the last inequality we used�
1�

d C 1

n

�d.n�d�1/
� e�d.dC1/;

which derives from �
1C

d C 1

n� d � 1

�d.n�d�1/
� ed.dC1/:

We then use .n=.d C 1//d.dC1/ � .ed /n to obtain the lower bound.

5.5 The top Betti numbers

The goal of this section will be to finally prove Theorem 9 regarding the low-degree Betti numbers of the
one-point compactification of the discriminant. We will prove it using the generalized nerve lemma of
Björner.

Theorem 63 (special case of [8, Theorem 6]) Let X be a regular CW–complex and .Xi /i2I a family
of subcomplexes such that X D

S
i2I Xi . Suppose that every nonempty finite intersection Xi1 \ � � �\Xit

is .k�tC1/–connected. Then X is k–connected if and only if the nerve N .Xi / is k–connected.

Recall that given a CW–complex X and a covering by subcomplexes .Xi /i2I the nerve of the covering
N .Xi / is the simplicial complex on the vertex set I , where � D Œi1; : : : ; it � is a face of the nerve if and
only if Xi1 \ � � � \Xit is nonempty.

The covering that we will use for y�d;n will be given by .y�i;j
d;n
/1�i<j�n, where y�i;j

d;n
denotes the

compactification in Rd�n of the space �i;j
d;n
D f.x1; : : : ; xn/ 2Rd�n j kxi � xj k2 D 1g.

Now each intersection of a set of �i;j
d;n

spaces is naturally associated to a graph G and a space �G
d;n

described in (5-1).

To be able to apply the generalized nerve lemma, a key step will be to establish the following about the
topology of y�G

d;n
.

Lemma 64 For any graph G with ˇ0.G/ connected components , �G
d;n

is a direct product of a compact
setK WDK.G/ of dimension at most .d�1/.n�ˇ0/ and Rd�ˇ0 . Therefore y�G

d;n
is .dˇ0�1/–connected.

This proof will use the connection to homomorphisms to unit-distance graphs defined in the discussion
around (5-1).

Proof of Lemma 64 LetH be a component ofG and let T be a spanning tree ofH . Clearly�H
d;jV.H/j

�

�T
d;jV.H/j

as any homomorphism from H to the unit-distance graph on Rd induces a homomorphism
from T to the unit-distance graph on Rd . Moreover, we have that �T

d;jV.H/j
� Rd � .Sd�1/jE.T /j.
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Indeed, we may regard T as being a rooted tree and we can map the root of T to any point of Rd

and from there every vertex may live anywhere on the sphere of radius 1 centered at the image of its
parent vertex. Now taking �H

d;jV.H/j
and modding out by the Rd factor coming from the choice of

image for the root in T , we have a closed subset of the compact set .Sd�1/jE.T /j D .Sd�1/jV.H/j�1.
Thus, without fixing the image of the root, we have that �H

d;jV.H/j
is the direct product of Rd and the

compact space K.H/ given by the closed subset of .Sd�1/jV.H/j�1. It is clear that we may describe any
homomorphism from G to the unit-distance graph on Rd as a product of graph homomorphisms on the
connected components. We have that

�Gd;n ŠK.G/�Rdˇ0 ;

where K.G/ is the direct product of K.H/ over all connected components H . Thus K.G/ is contained in
some .n�ˇ0/–fold product of .d�1/–dimensional spheres, so it is at most .d�1/.n�ˇ0/–dimensional.

We now turn our attention to the compactification of �G
d;n

. By the description of �G
d;n

, we have that �G
d;n

is a dˇ0–ranked vector bundle over a compact CW–complex (since we are working with semialgebraic
sets), so its compactification is the Thom space of this vector bundle, which is .dˇ0�1/–connected by
[28, Lemma 18.1].

Proof of Theorem 9 We apply Theorem 63 to prove that y�d;n is .nCd�3/–connected. Consider
the cover of y�d;n by .y�i;j

d;n
/1�i<j�n as discussed above, so that for any t , the t–fold intersection of

complexes in the cover is of the form y�G
d;n

for some graph G on t edges. Moreover, we observe that the
nerve of this covering is just the simplex on

�
n
2

�
vertices, as any intersection of the spaces in the cover at

least contains the point at infinity, so in particular, the nerve is .nCd�3/–connected. Thus it suffices
to check that y�G

d;n
is nC d � 3� t C 1D n� t C d � 2 connected for any graph G on n vertices with

t edges. By Lemma 64, it suffices to verify that, for such a graph, n� t C d � 2 � dˇ0.G/� 1. This
always holds for d � 1 because ˇ0 � 1, ˇ1 � 0 and n� t D ˇ0�ˇ1.

To show that y�n;d is not .nCd�2/–connected, we use duality and verify that Rd�n n�d;n has at least
one dn�1�.nCd �2/D .n�1/.d �1/ reduced homology class. The path components of Rd�nn�d;n
are the rigid isotopy classes of the graph on n vertices in Rd . We consider the rigid isotopy classes of
the empty graph on n vertices. The rigid isotopy classes of the empty graph on n vertices give all the
configurations of n points in Rd such that the distance between any pair of them is larger than 1. This is
homotopy equivalent to Confn.Rd / (see Examples 4 and 10), which has its top positive reduced Betti
number in dimension .n� 1/.d � 1/.

6 Examples

Here we work out a few examples for computing the Betti numbers of Rd�n n�d;n for small values
of d and n. We start with the case that d D 1. In the case that d D 1, computing the topology of y�G1;n
across all graphs G on n vertices is sufficient to compute b0.R1�n n�1;n/. While we have shown the
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number of rigid isotopy classes of R–geometric graphs on n vertices is given by the number of labeled
semiorders on n elements, we work out a computation for nD 3 here primarily to show how spectral
sequences and Alexander–Pontryagin duality can be used to compute the exact number of rigid isotopy
classes of R–geometric graphs.

Example 65 (nD 3, d D 1) By Alexander–Pontryagin duality, it suffices to compute the Betti numbers
of y�1;3. This is a union of three compactified quadrics given by the solutions in R to jxi � xj j2 D 1 for
1 � i < j � 3. Each of these is simply the disjoint union of two hyperplanes in R1�3. Thus y�1;3 is a
2–dimensional cell complex and we know by Theorem 9 that this complex is 1–connected so only the
second Betti number is interesting. This is not surprising, as the dual in S3 of y�1;3 is R3 n�1;3, which
is a disjoint union of finite intersections of halfspaces, so only its zeroth Betti number is interesting.

Now by computing the E1 page of the Mayer–Vietoris spectral sequence given by the covering of y�1;3
by .y�i;j1;3/1�i<j�n, we have that the Euler characteristic of y�1;3 will be given by

�.y�1;3/D
X

0�i�2;0�j�2

.�1/iCj dim.Ei;j1 /:

On the other hand, �.y�1;3/D 1C b2.y�1;3/, so computing the first page is enough.

Now
E
i;j
1 D

M
G a graph on f1; 2; 3g

with exactly iC1 edges

H j .y�G1;3/:

So we can compute dim.Ei;j1 / for every value of i and j . If i D 0 we are looking at y�G1;3 for G a graph
with three vertices and one edge. Suppose the edge is between vertex 1 and vertex 2. Then we may place
vertex 1 anywhere on R then vertex 2 at either point of the S0 centered at the location of vertex 1. Next
vertex 3 may be mapped into R arbitrarily. So �G1;3 is given by S0�R�R, which compactifies in R3 to
S2 _S2, and there are three graphs with exactly 1 edge. Next we look at graphs with two edges. If G is
such a graph then it is easy to see that �G1;3 is R�S0 �S0, which compactifies to S1 _S1 _S1 _S1;
there are three such choices for G. Finally, if G is the triangle, then there is no way to map G into
the unit-distance graph on R, so �G1;3 D ∅, which compactifies to the point at infinity. Therefore the
following table stores the values of dim.Ei;j1 /:

2 6 0 0
1 0 12 0
0 3 3 1

j "; i ! 0 1 2

From this table we compute the Euler characteristic to be 19, so b2.y�1;3/D 18, from which it follows by
duality that b0.R3 n�1;3/D 18C 1D 19, recovering the number of labeled semiorders on f1; 2; 3g.
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We could take the same approach to compute b0.R1�n n�1;n/ for any n. For any graph G, �G1;n is
always a product of a finite set X WDX.G/ (which is possibly empty) and Rˇ0.G/, so y�G1;n is a wedge of
jX j spheres of dimension ˇ0.G/, or the point at infinity if X D∅. Moreover, X.G/ will be empty if and
only if there is no way to map G into the unit-distance graph on the real line, but this means that X.G/ is
empty if and only if G is not bipartite.

On the other hand, if G is bipartite we can compute jX.G/j exactly, meaning that this approach could
be used to compute the first page of the spectral sequence for d D 1 and any value of n. However, we
should not expect to be able to do so in a reasonable amount of time for large n, assuming P ¤ NP as we
explain below.

We have discussed�G
d;n

as the space of graph homomorphisms fromG into the unit-distance graph on Rd ,
but it turns out that given two graphs G and H , it is in general NP–complete to decide if there are any
graph homomorphisms from G to H by a result of Hell and Nešetřil [17]. Indeed, [17] shows that for any
nonbipartite graph H it is NP–complete to decide whether a graph G admits any homomorphism into H .
For us this means that we should not be able to even decide in general if �G

d;n
is empty or not if d � 2,

as the unit-distance graph on Rd for d � 2 is not bipartite. Now for d D 1, �G
d;n

will be computable,
but a result Dyer and Greenhill [10] shows that the problem of enumerating graph homomorphism into
a fixed bipartite graph H is #P–complete unless H is a special type of bipartite graph, which does not
include the unit-distance graph on R. Given these results, we should look for other ways to exactly count
the number of isotopy classes given d and n, than computing the full Mayer–Vietoris spectral sequence.
To have at least some explicit examples for larger d we work out the Betti numbers for nD 3; 4 and any
d � 2, though the methods we use are rather ad hoc and don’t generalize to higher values of n.

Example 66 (nD 3, d � 2) Here we explicitly compute the topology of each rigid isotopy class on
three vertices. The space WG;d for G the complete graph on three vertices is contractible, in fact it is
easy to see that it is convex.

For G on two edges we observe that WG;d has the topology of Sd�1. To see this we consider G as a path
on three vertices, the first vertex on the path can go anywhere, the second vertex can go anywhere in the
punctured ball of radius 1 around the first vertex; it must be punctured since only vertices with identical
closed neighborhoods can map to the same point. After mapping the first two vertices the final vertex can
be moved freely in some contractible subspace of Rd determined by the position of the first two vertices.

Now, for G on one edge we observe that WG;d has the topology of the configuration space of two points
in Rd , which is just Sd�1. Finally, if G is the empty graph, then WG;d is homotopy equivalent to the
configuration space of three points in Rd , which is known to have b0 D 1, bd�1 D 3 and b2.d�1/ D 2.

Putting this all together, we have that the empty graph contributes 1 to b0, 3 to bd�1 and 2 to b2.d�1/,
the three graphs on one edge each contribute 1 to b0 and 1 to bd�1, the three graphs on two edges
also each contribute 1 to b0 and 1 to bd�1, and the complete graph contributes 1 to b0. So we have
8C 9xd�1C 2x2d�2 as the Poincaré polynomial for Rd�3 n�d;3.
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Example 67 (nD 4, d � 2) The case nD 4 is more interesting, but again the computation is rather
ad hoc. We examine each graph G on four vertices and compute the Poincaré polynomial for WG;d
summarized in Table 1. These Poincaré polynomials are essentially computed by inspection; we don’t
give the full details for the computations. For example, the graph given by a path on three vertices and an
isolated vertex has the homotopy type of Sd�1�Sd�1. With one vertex of the path fixed, the next vertex
is free to go anywhere in the punctured ball around the first vertex. Next the final vertex of the path may
be placed freely inside some contractible set. So the path contributes a factor of Sd�1. Finally, after the
path is placed in Rd , the union of the balls around its vertices gives a contractible space in Rd and the
isolated vertex may be placed anywhere outside of this contractible space, so this contributes the other
Sd�1 factor. From Table 1 we can determine ˇ.G/ for any graph on four vertices, and determine that the
Poincaré Polynomial of Rd�4 n�d;4 is

64C 7xd�2C 92xd�1C 7x2d�3C 35x2d�2C 6x3d�3:

In particular, in the case of the plane there are 71 rigid isotopy classes of graphs on four vertices, while
there are 64 labeled graphs on four vertices, all of which can be realized as geometric graphs in the plane.
We can also recover the number of rigid isotopy classes for four points on the real line with the observation
that the 4–cycle and the star cannot be realized as geometric graphs in R. Therefore in the case d D 1, the
211 coming from evaluating the Poincaré polynomial at xD 1 overcounts by the contribution of 4 for each
4–cycle and for each star, so the overcount is 28, bringing the total number of chambers to 211�28D 183.
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Classical shadows of stated skein representations at roots of unity

JULIEN KORINMAN

ALEXANDRE QUESNEY

We extend some results of Bonahon, Wong, Bullock and Turaev concerning the skein algebras of closed
surfaces to Lê’s stated skein algebras associated to open surfaces. We prove that the stated skein algebra
with deforming parameter C1 embeds canonically into the center of the stated skein algebra whose
deforming parameter is an odd root unity. We also construct an isomorphism between the stated skein
algebra atC1 and the algebra of regular functions of the relative SL2–character variety of the surface. As
a result, we associate to each isomorphism class of irreducible or local representations of the stated skein
algebra an invariant which is a point in the relative character variety.

57R56

1 Introduction

A punctured surface is a pair †D .†;P/, where † is a compact oriented surface and P is a (possibly
empty) finite subset of † which intersects nontrivially each boundary component. We write †P WD†nP.
The set @† nP consists of a disjoint union of open arcs which we call boundary arcs.

Warning In this paper, the punctured surface † will be called open if the surface † has nonempty
boundary and closed if † is closed. This convention differs from the traditional one, where some authors
refer to an open punctured surface as a punctured surface † D .†;P/ with † closed and P ¤ ∅ (in
which case †P is not closed).

We will consider two related objects associated to a punctured surface, namely the Kauffman-bracket
skein algebra and the SL2.C/–character variety. These objects have been well studied in the case where
the punctured surface is closed. They were recently generalized to open punctured surfaces in such a way
that they have a nice behavior relative to the operation of gluing two boundary arcs together. The goal of
this paper is to extend some classical results concerning skein algebras and character varieties to the case
of open punctured surfaces. Before we state the main results, let us give a brief historical background.

Historical background Closed surfaces: Culler and Shalen [1983] defined the SL2.C/ character variety
XSL2

.M / of a manifold M whose fundamental group is finitely generated. This affine variety is closely
related to the moduli space of flat connections on a trivial SL2.C/ bundle over M and, therefore, it is
related to Chern–Simons topological quantum field theory, gauge theory and low-dimensional topology;
see [Labourie 2013; Marché 2012; 2016] for surveys. If † is a closed oriented surface, the smooth part
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of XSL2
.†/ carries a symplectic form, first defined in [Atiyah and Bott 1983] in the context of gauge

theory. This symplectic structure was used by Goldman [1986] to equip the algebra of regular functions
CŒXSL2

.†/� with a Poisson bracket. A similar Poisson structure for character varieties of punctured closed
surfaces was introduced by Fock and Rosly [1999] (see also [Alekseev et al. 2002] for an alternative
construction) in the differential geometric context.

Turaev [1988] and Hoste and Przytycki [1992] independently defined the Kauffman-bracket skein algebra
SA.†/ as a tool to study the Jones polynomial and the SU.2/ Witten–Reshetikhin–Turaev TQFTs. Skein
algebras are defined for any commutative unital ring R together with an invertible element A 2R� and a
closed punctured surface †.

Skein algebras are deformations of the algebra of regular functions of character varieties of closed
punctured surfaces. In particular, this means that there is an isomorphism of Poisson algebras between
SC1.†/ and CŒXSL2

.†/�. In more detail, this relies on a (noncanonical) isomorphism from SC1.†/

to S�1.†/ [Barrett 1999]. The latter algebra carries a natural Poisson bracket (see Section 2.5). An
isomorphism of algebras between S�1.†/ and CŒXSL2

.†/� was defined by Bullock [1997], assuming that
the skein algebra is reduced, ie that its nilradical is null. This latter fact was later proved independently
in [Przytycki and Sikora 2000] and [Charles and Marché 2012]. Turaev [1991] showed that Bullock’s
isomorphism is Poisson.

In TQFT, skein algebras appear through their nontrivial finite-dimensional representations. Skein algebras
admit such representations if and only if the parameter A is a root of unity. A recent result of Bonahon and
Wong [2016] states, in particular, that when A has odd order, there exists an embedding of SC1.†/ into the
center of SA.†/. Since each simple representation induces a character on the center of the skein algebra,
using Bullock’s isomorphism, one can associate to each isomorphism class of simple representation a
point in the character variety. This invariant is called the classical shadow of the representation.

Open surfaces: Lê [2018] generalized the Kauffman-bracket skein algebras to open punctured surfaces
based on the original work of Bonahon and Wong [2011]. We call it stated skein algebra and denote it by
S!.†/. It depends on an invertible element ! 2R�. When the surface is closed, it coincides with the
classical skein algebra with parameter AD !�2. An important feature of the stated skein algebra is its
behavior under gluing of surfaces. More precisely, let a and b be two boundary arcs of an open punctured
surface †, and let us denote by †ja#b the surface obtained from † by gluing a and b. Lê showed that
there is an injective algebra morphism

(1) i ja#b W S!.†ja#b/ ,! S!.†/

which is coassociative in that it does not depend on the order we glue the arcs, ie for four distinct boundary
arcs a, b, c and d , one has i ja#b ı i jc#d D i jc#d ı i ja#b . In particular, for each topological triangulation �
of †, one has an injective morphism of algebras

(2) i� W S!.†/ ,!
O

T2F.�/

S!.T /:
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Here T denotes the triangle, ie a disc with three punctures on its boundary. A punctured surface is
triangulable if it can be obtained from a disjoint union of triangles by gluing some pair of boundary arcs
(ie faces of triangles) together. A topological triangulation is the data of such a union of triangles together
with the pairs of glued boundary arcs. In (2), the tensor product runs over the faces of the triangulation;
see Section 2 for precise definitions.

As applications, Lê provided a simple proof that the algebra S!.†/ has no zero divisor (the case of closed
triangulable punctured surfaces was proved earlier in [Bonahon and Wong 2011] using the quantum trace
and the case of closed unpunctured surfaces was proved in [Przytycki and Sikora 2019]) and he obtained
a simpler formulation of Bonahon and Wong’s [2011] quantum trace map.

Motivated by Lê’s construction, Korinman [2019] defined a generalization of character varieties to open
punctured surfaces. We denote it by XSL2

.†/. This (relative) character variety is a Poisson affine variety
which coincides with the classical one when the surface is closed. It shares a similar gluing property
to the stated skein algebra; namely, there exist injective Poisson morphisms i ja#b W CŒXSL2

.†ja#b/� ,!
CŒXSL2

.†/� and i� W CŒXSL2
.†/� ,!N

T2F.�/CŒXSL2
.T /� between the Poisson algebras of regular

functions. However, the Poisson structure on CŒXSL2
.†/� depends on a choice of an orientation o of the

boundary arcs of the punctured surface. We denote by f � ; � go its Poisson bracket.

Main results Let† be a punctured surface. Lê’s morphism (2) embeds the skein algebra of a triangulated
surface into a tensor product of the skein algebras of the triangle. However, it does not provide a full
description of the stated skein algebra in terms of these smaller pieces. In a first result we provide
such a description; it goes as follows. Note that (1) endows the skein algebra of the bigon B (ie a disc
with two punctures on its boundary) with a bialgebra structure. It is in fact a Hopf algebra and one
can show that it is canonically isomorphic to the classical quantum SL2–algebra Oq ŒSL2� described in
[Chari and Pressley 1994; Kassel 1995] (with q D !�4). Note also that (1) induces Hopf comodule
maps �L

a W S!.†/! S!.B/˝S!.†/ and �R
b
W S!.†/! S!.†/˝S!.B/ obtained by gluing a bigon on

a boundary arc, a or b, of †; see Section 2.2 for details.

Theorem 1.1 The sequence

0! S!.†ja#b/
ija#b��! S!.†/

�L
a��ı�R

b������! S!.B/˝S!.†/

is exact , where �.x˝y/D y˝x.

Theorem 1.1 can be reformulated using co-Hochschild cohomology, whose 0th group (see Definition 2.26
and [Hess et al. 2009]) computes the skein algebra

S!.†ja#b/Š coHH0.Oq ŒSL2�; aS!.†/b/;

where aS!.†/b is seen as a bicomodule over Oq ŒSL2� via the comodule maps �L
a and �R

b
.
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Theorem 1.1 provides, for any topological triangulation � of †, an isomorphism of algebras

S!.†/Š coHH0

� O
e2VE.�/

Oq ŒSL2�;
O

T2F.�/

S!.T /

�
;

where the first tensor product runs over the inner edges of the triangulation and the second over the faces
of the triangulation. Hence S!.†/ is completely determined by the combinatoric of the triangulation
together with S!.T / and its appropriated structures of comodule over Oq ŒSL2�. This is a key feature in
the proofs of the next two theorems.

Our second result is a generalization to open punctured surfaces of Bonahon and Wong’s [2016] main
theorem in the case where the root of unity has odd order. Given N � 1, denote by TN .X / the N th

Chebyshev polynomial of first kind.

Theorem 1.2 Suppose that ! is a root of unity of odd order N � 1. There exists an embedding

j† W SC1.†/ ,! Z.S!.†//

of the (commutative) stated skein algebra with parameter C1 into the center of the stated skein algebra
with parameter !. Moreover , the morphism j† is characterized by the property that it sends a closed
curve  to TN . / and a stated arc ˛""0 to ˛.N /""0 , where ˛.N /""0 is the tangle made by stacking N parallel
copies of ˛""0 on top of the others.

In Theorem 1.2 we restrict ourselves to roots of unity of odd order for simplicity. Theorem 1.2 should
be compared to [Lê and Paprocki 2019, Theorem 8.1]. A marked 3–manifold is a pair .M;N/ where
M is an oriented 3–manifold and N � @M is an oriented submanifold whose connected components
are diffeomorphic to Œ0; 1�. To such a pair and � 2C�, Lê and Paprocki [2019] associate a vector space
S�.M;N/, which generalizes the Muller algebra. And for a root of unity � such that �4 has arbitrary
order N > 1 (not necessary odd), Lê and Paprocki [2019, Theorem 8.1] defined an injective linear map
ˆ� W S.�/N 2 .M;N/ ,! S�.M;N/. If .†;P/ is a punctured surface with no inner punctures and nontrivial
boundary, .M;N/ WD .†� .0; 1/;P� .0; 1// is a marked 3–manifold and S�.M;N/ is a subalgebra of
the stated skein algebra S�.†;P/. If � has odd order N > 1, the embedding j† of Theorem 1.2 restricts
to the embedding ˆ� of [Lê and Paprocki 2019, Theorem 8.1]. A generalization of Theorem 1.2 for
roots of unity of even order has been recently proved by Bloomquist and Lê [2022, Theorem 1.2] though
in this case the source of j† is the skein algebra at � WD !N 2

and the image is not always central but
rather spanned by .�1/1CN 0–transparent elements, where N 0 WD ord.!4/ (see [Bloomquist and Lê 2022,
Theorem 4.10] for details). Also a generalization of Theorem 1.2 for skein algebras of arbitrary connected
reductive groups G and for marked surfaces having 0 or 1 boundary arc was found by Ganev, Jordan and
Safronov [Ganev et al. 2024].

In the last result we generalize to open punctured surfaces Bullock’s isomorphism [1997] and Turaev’s
theorem [1991]; we prove that the stated skein algebra is a deformation of the relative character variety.
The fundamental result in this direction is as follows.
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The CŒŒ„��–module SC1.†/ŒŒ„�� WD SC1.†/˝C CŒŒ„�� is endowed with a star product ?„. The latter is
obtained by pulling back the product of SC1.†/ along an isomorphism SC1.†/ŒŒ„�� Š�!S!„.†/ of vector
spaces, where !„ WD exp

��1
4
„� (see Section 2.7 for details). This equips SC1.†/ with a Poisson algebra

structure; its Poisson bracket f � ; � gs is defined by

f ?„ g�g ?„ f D „ff;ggs .mod „2/ for all f;g 2 SC1.†/:

The superscript s stands for “skein”. See Section 2.7.3 for an explicit description.

Theorem 1.3 Suppose that † has a topological triangulation �. Let o� be an orientation of the edges of
� and o be the induced orientation of the boundary arcs of †. There exists an isomorphism of Poisson
algebras

‰.�;o�/ W .SC1.†/; f � ; � gs/ Š�! .CŒXSL2
.†/�; f � ; � go/:

Moreover , the above isomorphism exists for small punctured surfaces (see Definition 2.8), for which it
only depends on o.

The isomorphism ‰.�;o�/ induces, by tensoring with CŒŒ„��, an isomorphism of vector spaces

CŒXSL2
.†/�ŒŒ„�� Š�! SC1.†/ŒŒ„��:

Denote by ?.�;o�/ the product on CŒXSL2
.†/�ŒŒ„�� obtained by pulling back the product ?„ by this

isomorphism.

Corollary 1.4 For any triangulable punctured surface †, the algebra
�
CŒXSL2

.†/�ŒŒ„��; ?.�;o�/
�

is a
deformation quantization of the character variety with Poisson structure given by o.

Theorems 1.2 and 1.3 allow us to extend Bonahon and Wong’s [2016] classical shadow to open punctured
surfaces. Indeed, suppose that ! is a root of unity of odd order. A finite-dimensional representation
S!.†/! End.V / that sends each element of the image of j† W SC1.†/ ,! S!.†/ to scalar operators,
induces a character on the algebra SC1.†/ŠCŒXSL2

.†/�, hence defines a point in XSL2
.†/. To sum up,

and calling these representations central, one has the following.

Corollary 1.5 When ! is a root of unity of odd order and † is triangulable , to each isomorphism class
of central representations of the stated skein algebra S!.†/, one can associate an invariant which is a
point in the relative character variety XSL2

.†/.

Central representations include the families of irreducible representations, local representations and
representations induced by simple modules of the balanced Chekhov–Fock algebras using the quantum
trace map (see Section 3.3 for details).

Soon after the prepublication of this paper on arXiv, Costantino and Lê [2022] prepublished independently
some results similar to Theorems 1.1 and 1.3. More precisely, [Costantino and Lê 2022, Theorem 4:7] is
identical to Theorem 1.1, and [Costantino and Lê 2022, Theorem 8.12] is closely related, though different,

Algebraic & Geometric Topology, Volume 24 (2024)



2096 Julien Korinman and Alexandre Quesney

to our Theorem 1.3. Instead of using the generalized character variety XSL2
.†/ defined in [Korinman

2019], the authors defined a twisted character variety �.†/ (without Poisson structure) and constructed a
canonical algebra isomorphism between the stated skein algebra inC1 and the algebra of regular functions
of �.†/, whereas our isomorphism in Theorem 1.3 depends on the noncanonical choice .�; o�/ of a
triangulation and an orientation of the edges (and is Poisson). Inspired by their enlightening approach, in
this new version of the paper we add the following clarification of the isomorphism in Theorem 1.3. As
explained before, when the punctured surface is closed, the “standard” isomorphisms between SC1.†/

and CŒXSL2
.†/� are indexed by spin structures. In Section 3.3, we define the notion of relative spin

structure for punctured surfaces, which coincides with the standard definition when the punctured surface
is closed. The motivation for this definition is its good behavior for the operation of gluing boundary
arcs together. In particular we associate to each combinatorial data .�; o�/, appearing in Theorem 1.3, a
relative spin structure and prove:

Theorem 1.6 The isomorphism ‰.�;o�/ of Theorem 1.3 only depends on the relative spin structure
associated to .�; o/.

In fact, in Theorem 3.20, we provide explicit formulas for the value of ‰.�;o�/ on stated arcs and closed
curves in terms of the relative spin structure. When the punctured surface is closed, we show that our
isomorphism coincides with the standard isomorphism associated to classical spin structures. We also
give, in Section 3.3.5, a detailed comparison between the isomorphism in Theorem 1.3 and Costantino
and Lê’s isomorphism [2022, Theorem 8.12].

Even though our proof of Theorem 1.2 makes uses of triangulations, the theorem is proved for arbitrary
punctured surfaces, including (nontriangulable) closed surfaces without punctures, thus providing an
alternative proof of the results in [Bonahon and Wong 2016]. However, our proof of Theorem 1.3 only
works for triangulable punctured surfaces (and for the bigon), so it does not provide an alternative proof
of the result of [Bullock 1997] for closed unpunctured surfaces.

Plan of the paper In the second section we briefly recall from [Lê 2018] the definition and general
properties of the stated skein algebra and prove Theorem 1.1. We then use the triangular decomposition
to reduce the proof of Theorem 1.2 to the cases of the bigon and the triangle for which the proof is a
simple computation. We eventually characterize the Poisson bracket arising in skein theory. In the third
section, we briefly recall from [Korinman 2019] the definition of character varieties for open surfaces.
Again, using triangular decompositions, we reduce the proof of Theorem 1.3 to the cases of the bigon
and the triangles for which the proof is elementary. We then introduce and study the notion of relative
spin structure and give in Theorem 3.20 an explicit description of the isomorphism of Theorem 1.3, from
which Theorem 1.6 is a straightforward consequence. In the appendix, we prove a technical result needed
in the proof of Theorem 1.2 and derive a generalization of the main theorem of [Bonahon 2019].
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Notation Throughout the paper we reserve the notation A WD !�2 and q WD !�4.

2 Stated skein algebras

2.1 Definitions and general properties of the stated skein algebras

We briefly review from [Lê 2018] the definition and main properties of the stated skein algebras.

Definition 2.1 A punctured surface is a pair †D .†;P/ where † is a compact oriented surface and
P is a finite subset of † which intersects nontrivially each boundary component. A boundary arc is a
connected component of @† nP. The punctured surface is open when @†¤∅ and closed otherwise.

Definition of stated skein algebras Let †D .†;P/ be a punctured surface and write †P WD† nP. A
tangle in †P � .0; 1/ is a compact framed, properly embedded 1–dimensional manifold T �†P � .0; 1/
such that for every point of @T � @†P � .0; 1/ the framing is parallel to the .0; 1/ factor and points
in the direction of 1. Here, by framing, we refer to a thickening of T to an oriented surface. Define
the height of a point .v; h/ 2 †P � .0; 1/ to be h. If b is a boundary arc and T a tangle, the points of
@bT WD @T \ b� .0; 1/ are totally ordered by their height and we impose that no two points in @bT have
the same height. A tangle has vertical framing if for each of its points, the framing is parallel to the .0; 1/
factor and points in the direction of 1. Two tangles are isotopic if they are isotopic through the class of
tangles that preserves the partial boundary height orders. By convention, the empty set is a tangle only
isotopic to itself.

Every tangle is isotopic to a tangle with vertical framing. We can further isotope a tangle such that it
is in general position with the standard projection � W†P � .0; 1/!†P with �.v; h/D v, that is such
that �jT W T !†P is an immersion with at most transversal double points in the interior of †P. We call
a diagram of T the image D D �.T / together with the over/undercrossing information at each double
point. An isotopy class of diagram D together with a total order of @bD D @D \ b for each boundary
arc b define uniquely an isotopy class of tangle. Here isotopy of diagrams refers to isotopies where
endpoints of diagrams are not allowed to cross. When choosing an orientation o.b/ of a boundary arc b

and a diagram D, the set @bD receives a natural total order �o by setting that the points are increasing
when going in the direction of o.b/. We will represent tangles by drawing a diagram and an orientation
(an arrow) for each boundary arc. When a boundary arc b is oriented, @bD is ordered by �o according
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to the orientation. The data of an isotopy class of diagram D and a choice o of orientations of the
boundary arcs define uniquely an isotopy class of tangle T by imposing that for every boundary arc a,
for v;w 2 @aD such that v �o w, the endpoint of @aT corresponding to w has higher height than the
endpoint corresponding to v. A state of a tangle is a map s W @T !f�;Cg. A pair .T; s/ is called a stated
tangle. We define a stated diagram .D; s/ in a similar manner.

Let R be a commutative unital ring and ! 2R� an invertible element.

Definition 2.2 The stated skein algebra S!.†/ is the free R–module generated by isotopy classes of
stated tangles in †P � .0; 1/ modulo the relations (3) and (4), which are

� the Kauffman bracket relations

(3) D !�2 C!2 and D�.!�4C!4/ I
� the boundary relations

(4) C
C D

�
� D 0; C� D ! and !�1 �

C �!�5 C� D :

According to our graphical conventions, in these skein relations, the boundary points are consecutive in the
height order. The product of two classes of stated tangles ŒT1; s1� and ŒT2; s2� is defined by isotoping T1

and T2 in †P�
�

1
2
; 1
�

and †P�
�
0; 1

2

�
, respectively, and then setting ŒT1; s1� � ŒT2; s2�D ŒT1[T2; s1[s2�.

Bases for stated skein algebras A closed component of a diagram D is trivial if it bounds an embedded
disc in †P. An open component of D is trivial if it can be isotoped, relatively to its boundary, inside
some boundary arc. A diagram is simple if it has neither double points nor trivial component. The empty
set is considered as a simple diagram. Let o be an orientation of the boundary arcs of † and denote by
�o the total orders induced on each boundary arc. A state s W @D! f�;Cg is o�increasing if for any
boundary arc b and any points x;y 2 @bD, x <o y implies s.x/ < s.y/. Here we choose the convention
�<C. We denote by ŒD; s� 2 S!.†/ the class of the stated tangle associated to .D; s/ (note that ŒD; s�
depends on the orientation o).

Definition 2.3 We denote by Bo � S!.†/ the set of classes ŒD; s� such that D is simple and s is
o–increasing.

Theorem 2.4 [Lê 2018, Theorem 2.11] The set Bo is an R–module basis of S!.†/.

Height exchange moves Important properties that we will use throughout the paper are the following
height exchange moves (5) and (6) proved in [Lê 2018, Lemma 2.4]. Note that the formula (20) of
Lemma 2.4 of [loc. cit.] contains a misprint. It is corrected here in (6):

C
C D !2 C

C ;
C� D !�2 C� ;

�
� D !2 �

� ;(5)

!�3 �
C �!3 �

C D .!�4�!4/ :(6)

Algebraic & Geometric Topology, Volume 24 (2024)



Classical shadows of stated skein representations at roots of unity 2099

Remark 2.5 An important case that we will be led to consider is the stated skein algebra at parameter
! DC1. As shown in [Lê 2018, Corollary 2.5] it is commutative; this is a direct consequence of (3) and
the height exchange formulas (5) and (6).

Trivial arcs relations We will also use the following trivial arcs relations. Set

C D
�

CCC CC�
C�C C��

�
WD
�

0 !

�!5 0

�
and C�1 D�A3C D

�
0 �!�5

!�1 0

�
:

Lemma 2.6 [Lê 2018, Lemma 2.3] One has the following trivial arcs relations:

(7) i
j
D C i

j and i
j

D .C�1/ij :

Splitting morphisms Suppose that † has two boundary arcs, say a and b. Let †ja#b be the punctured
surface obtained from † by gluing a and b. Denote by � W †P ! .†ja#b/Pja#b

the projection and
c WD �.a/D �.b/. Let .T0; s0/ be a stated framed tangle of †ja#bPja#b

� .0; 1/ transversed to c � .0; 1/
and such that the heights of the points of T0\ c � .0; 1/ are pairwise distinct and such that framings of
the points of c � .0; 1/ are vertical. Let T � †P � .0; 1/ be the framed tangle obtained by cutting T0

along c. Using the partition @T D @aT t��1.@T0/t @bT , a state on T can be written .sa; s; sb/ where
sa, s and sb are states on @aT , @T0 and @bT , respectively. Both the sets @aT and @bT are in canonical
bijection with the set T0\ c by the map � . Hence the two sets of states sa and sb are both in canonical
bijection with the set St.c/ WD fs W c \T0! f�;Cgg. Let i ja#b W S!.†ja#b/! S!.†/ be the linear map
given, for any .T0; s0/ as above, by

i ja#b.ŒT0; s0�/ WD
X

s2St.c/

ŒT; .s; s0; s/�:

Theorem 2.7 [Lê 2018, Theorem 3.1] The linear map i ja#b is an injective morphism of algebras.
Moreover the gluing operation is coassociative in the sense that if a, b, c and d are four distinct boundary
arcs , then i ja#b ı i jc#d D i jc#d ı i ja#b .

Note that the splitting morphism i ja#b does not depend on any choice of the boundary arcs.

Triangulations

Definition 2.8 A small punctured surface is one of the following four connected punctured surfaces: the
sphere with one or two punctures; the disc with only one puncture (on its boundary); and the bigon (disc
with two punctures on its boundary).

Definition 2.9 A punctured surface is said to admit a triangulation if each of its connected components
has at least one puncture and is not small.
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Definition 2.10 Suppose †D .†;P/ admits a triangulation. A topological triangulation � of † is a
collection E.�/ of arcs in † (named edges) which satisfy the following conditions: the endpoints of the
edges belong to P; the interior of the edges are pairwise disjoint and do not intersect P; the edges are
not contractible and are pairwise nonisotopic in †P, if fixed their endpoints; and the boundary arcs of †
belong to E.�/. Moreover, the collection E.�/ is required to be maximal for these properties.

Each connected component of †nE.�/ is called a face and the set of faces is denoted by F.�/. Given a
topological triangulation �, the punctured surface is obtained from the disjoint union

F
T2F.�/ T of

triangles by gluing the triangles along the boundary arcs corresponding to the edges of the triangulation.
Very often, we will let T be both a face (which is an open contractible space) and the triangle (which is a
disc with exactly three punctures on its boundary). We hope that this abuse of notation is harmless. By
composing the associated splitting morphisms, one obtains an injective morphism of algebras

i� W S!.†/ ,!
O

T2F.�/

S!.T /:

Filtrations The stated skein algebra has natural filtrations defined as follows. Let S D fa1; : : : ; ang
be a set of boundary arcs of † and fix an orientation o of the boundary arcs of †. For a basis element
ŒD; s� of Bo, write d.ŒD; s�/ WDPa2S j@aDj. The map d extends to a map d W S!.†/! Z�0 by the
formula d

�P
i xi ŒDi ; si �

� WDmaxijxi¤0 d.ŒDi ; si �/. It follows from the relations (3) and (4) that for each
x;y 2S!.†/, we have d.xy/� d.x/Cd.y/. Given m� 0, denote by Fm �S!.†/ the subvector space
of those vectors x satisfying d.x/�m. These subspaces satisfy Fm � FmC1, S!.†/D

S
m�0 Fm and

Fm1
�Fm2

� Fm1Cm2
; hence they form an algebra filtration of the stated skein algebra.

Definition 2.11 The sequence .Fm/m�0 is called the filtration of S!.†/ associated to the orientation o

and the set S of boundary arcs. For an element X DPi2I xi ŒDi ; si � 2S!.†/, developed in the basis Bo,
we call the leading term of X the element

lt.X / WD
X
j2I

d.ŒDj ;sj �/Dd.X /

xj ŒDj ; sj �:

2.2 Alternative bases

In the next subsection, we will need alternative bases of S!.†/ which we now introduce. We fix an
arbitrary orientation o for each boundary arc. Recall that o induces a total order �o on each boundary arc
that we use to associate a tangle to a diagram.

Notation 2.12 Let D.†/ be the set of isotopy classes of simple diagrams and CD.†/ be its subset of
classes of connected diagrams. Fix an arbitrary total order � on CD.†/ and fix an orientation o of the
boundary arcs of † as before. For ŒD� 2 CD.†/, we denote by ŒT .D/� the isotopy class of the tangle
T .D/ with vertical framing whose projection is D and such that if @T .D/D fv1; v2g with v1 and v2 in

Algebraic & Geometric Topology, Volume 24 (2024)



Classical shadows of stated skein representations at roots of unity 2101

ŒD; s�
�C

C

� C

CC
C

˛

ˇ 

ŒT .D/; s�

�

C
C

� C

C
C
C

Figure 1: A stated diagram ŒD; s� in the triangle and its associated stated tangle ŒT .D/; s�. Here,
we use the order  � ˇ � ˛. Here s is o–increasing so ŒT .D/; s� 2 TBo.

the same boundary arc a with v1 �o v2, then h.v1/ < h.v2/. For a general class of diagram ŒD� 2D.†/

with connected components D D Fn
iD1 Di , where ŒDi � � ŒDiC1�, we denote by ŒT .D/� the class of

the tangle T .D/ WDFn
iD1 T .Di/ in †P � .0; 1/, where T .DiC1/ is on the top of T .Di/ in the height

direction. See Figure 1 for an illustration. Let � W @D Š�! @T .D/ be the unique bijection such that, for
a a boundary arc, � restricts to a bijection �ja W @aD! @aT .D/ which preserves the order �o on @aD

and the height order on @aT .D/. Recall that @aD D D \ a and that @aT .D/ D T .D/\ a� .0; 1/. A
state s on D defines a state s ı ��1 on T .D/ and we denote by ŒT .D/; s� the class of the stated tangle
.T .D/; s ı ��1/.

Definition 2.13 We denote by TBo � S!.†/ the set of classes ŒT .D/; s� with ŒD� 2 D.†/ and s an
o–increasing state.

Note that in our pictures the orientation o is never represented, the arrows always refer to the height order
and not to o. The following lemma was proved in [Lê 2018], during the proof of Theorem 4.6, in the
particular case where † is a triangle.

Proposition 2.14 The set TBo is a basis of S!.†/.

As an immediate consequence of Proposition 2.14, we get:

Corollary 2.15 The stated skein algebra is algebraically generated by the classes of closed curves and
stated arcs.

Here by closed curves and stated arcs we mean connected stated diagrams with no crossing which are
closed and open, respectively. Obviously, it is sufficient to prove Proposition 2.14 in the case where † is
connected. If @†D∅ or if † is a disc with one puncture on its boundary or a bigon whose boundary
arcs points towards the same puncture, then TBo DBo so the proposition follows from Theorem 2.4 in
those cases. For the bigon whose boundary arcs point towards distinct punctures, Proposition 2.14 was
proved in [Lê 2018, Step 1 of the proof of Theorem 4.1]. So we now assume that † admits a topological
triangulation � that we fix. The proof of Proposition 2.14 is an easy adaption of Lê’s argument from
the case of the triangle to the case of a triangulable punctured surface. The key feature is to consider a
suitable filtration that we now introduce.

Algebraic & Geometric Topology, Volume 24 (2024)



2102 Julien Korinman and Alexandre Quesney

For a diagram D and an edge e 2E.�/, we denote by i.D; e/2N the geometric intersection of D with e;
that is, the minimal number of intersection points when isotoping D in such a way that it intersects e

transversally. We write
jDj WD

X
e2E.�/

i.D; e/;

and, for i 2N, we set
Fi WD SpanfŒD; s� such that jDj � ig:

Lemma 2.16 (1) One has Fi �Fj � FiCj .

(2) The submodule Fi has basis the set Bi of elements ŒD; s� 2Bo such that jDj � i .

(3) For ŒD; s� 2Bo, there exists n 2 Z such that

ŒT .D/; s��AnŒD; s� .mod FjDj�2/:

Proof (1) Let ŒD1; s1� and ŒD2; s2� be two classes such that

(i) D1[D2 has only transversed double intersection points in the interior of †P away from the edges
of �, and

(ii) D1 and D2 are transversed to the edges of E.�/ with minimal intersection such that

jDi j D jDi \E.�/j; i D 1; 2:

Let D denote the diagram obtained by stacking D1 on top of D2 and s the state corresponding to
s1 and s2 such that ŒD; s� D ŒD1; s1�ŒD2; s2�. Then jDj � jD \ E.�/j D jD1j C jD2j. Therefore,
ŒD1; s1�ŒD2; s2� 2 FjD1jCjD2j and the first assertion is proved.

(2) To prove the second assertion, first note that since Bi is a subset of Bo, it is free. We need to show
that Bi generates Fi . We proceed in two steps:

Step 1 We first prove that any class of stated diagram ŒD; s� is a linear combination of elements ŒDi ; si �

with jDi j D jDj and such that Di has no crossing.

Step 2 We then prove that any ŒD; s�, where D has no crossing, is a linear combination of elements
of BjDj.
The two steps imply that Bi generates Fi and conclude the proof of the second assertion.

To prove the first step, fix an arbitrary stated diagram .D; s/. A resolution of D is a diagram obtained
from D by replacing each crossing by either (positive resolution of the crossing) or (negative
resolution). Write Res.D/ the set of resolutions and for D0 2 Res.D/, denote by n.D0/ the difference
between the numbers of positive and negative resolution crossings in D0. Then, by the Kauffman-bracket
skein relation (3), one has

ŒD; s�D
X

Di2Res.D/

An.Di /ŒDi ; s�;

where for each resolution Di , one has jDi \E.�/j D jD \E.�/j D jDj, so jDi j D jDj and Step 1 is
proved.
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To prove the second step, consider a stated diagram .D; s/ where D has no crossing. If s is o–increasing,
let .D0; s/ be the stated diagram obtained from .D; s/ by removing its trivial components, so jD0j � jDj.
Then there exists a scalar c such that ŒD; s� D cŒD0; s� and ŒD0; s� 2 BjDj. Otherwise, we show by
induction on the number m.D; s/ of pairs of points v <o w in @D lying in the same boundary arc such
that .s.v/; s.w// D .C;�/, that .D; s/ is a linear combination of elements of BjDj. Consider such a
pair .v; w/ of points which are consecutive for <o, and let s0 be the state on D which agrees with s on
@D n fv;wg and such that .s0.v/; s0.w//D .�;C/. The skein relations

D !�1 �
C �!�5 C� ; D ! C� �!5 �

C

show that there exists n 2 Z such that ŒD; s� � !nŒD; s0� .mod FjDj�1/ (because the stated diagram
representing either the term or is in FjDj�1). Since m.D; s0/ < m.D; s/, we conclude by
decreasing induction on m that ŒD; s� is a linear combination of elements ŒDi ; si � where Di has no
crossing and si is o–increasing. Now write ŒDi ; si � D ci ŒD

0
i ; si �, where ci is a scalar and .D0i ; si/ is

obtained from .Di ; si/ by removing its trivial components so that ŒD0i ; si � 2 BjDj. This concludes Step 2
and the proof of the second item.

(3) Let us first make an obvious but useful remark. Let D be a diagram transversed to E.�/. We say that
D contains a returning arc if there exists a face T such that D\T contains a connected component that
is an arc with both endpoints in the same edge. If D contains a returning arc, then D is not in minimal
intersection position with respect to E.�/ so for all states s, ŒD; s� 2 FjDj�2.

Now consider ŒD; s� 2 Bo and denote by TD the projection diagram of the tangle T .D/ so that
ŒT .D/; s�D ŒTD; s� (think of Figure 1). We further suppose that TD is transversed to E.�/ in minimal
position and has its crossings outside E.�/. In the decomposition

ŒTD; s�D
X

Di2Res.TD/

An.Di /ŒDi ; s�;

we claim that there is exactly one resolution D0 2 Res.TD/ such that D0 D D and that any other
resolution Di ¤D0 contains a returning arc, so satisfies ŒDi ; si � 2 FjDj�2. Since resolving a crossing is
a local operation, it is sufficient to prove the claim in the case of the triangle; this was done by Lê [2018,
Lemma 4.7]. Recall that Lê’s proof consists noting that if ŒT .D/; s� has two connected components, it
has 0 or 1 crossing (after eventually isotoping TD) and when there is one crossing in TD, exactly one of
the two resolutions does not contain returning arc. The results then follows by induction on the number
of components of T .D/ using the fact that the arcs in T .D/ are stacked on top of each other.

So we have ŒT .D/; s��An.D/ŒD; s� .mod FjDj�2/ and the proof is completed.

Obviously one has Fi � FiC1 and
S

i�0 Fi D S!.†/. The first assertion of Lemma 2.16 implies that
.Fi/i�0 forms an algebra filtration of S!.†/. Consider the graded algebra Gr� associated to the filtration.
In other words, we set Gr0 WD F0, Gri WD Fi =Fi�1 for i � 1 and Gr� WD

L
i�0 Gri . It follows from

the second assertion of Lemma 2.16 that Gri has basis the set Bo
i of classes ŒD; s� 2Bo such that jDj D i .
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Since the set fBo
i gi�0 forms a partition of Bo, the natural graded morphism  W S!.†/! Gr� is an

isomorphism. To prove Proposition 2.14, we will derive from the third assertion of Lemma 2.16 that the
image of TBo through  is a basis of Gr�.

Proof of Proposition 2.14 As noted previously, if † is closed or if † is bigon or a disc with one
puncture on its boundary, then TBo DBo so the lemma follows from Theorem 2.4. Otherwise, we can
consider a topological triangulation and consider the associated graded isomorphism  W S!.†/!Gr�.
Let TBo

i �TBo be the subset of elements ŒT .D/; s� such that jDj D i . Since  .Bo
i / is a basis of Gri , the

third assertion of Lemma 2.16 implies that the image  .TBo
i / is also a basis of Gri . Therefore  .TBo/

is a basis of Gr�, so TBo is a basis of S!.†/.

2.3 Removing a puncture

Let † D .†;P/ and consider a punctured surface †0 WD .†;P[ fp0g/ obtained from † by adding a
puncture p0 2†P to P. The goal of this subsection is to define and study a map ' WS!.†0/!S!.†/. Let
T.†/ denote the set of stated tangles in †P � .0; 1/ and denote by J.†/�RŒT.†/� the ideal generated
by the skein relations (3) and (4) and by the elements .T; s/� .T 0; s/, where T and T 0 are isotopic; so
by definition, one has S!.†/ WDRŒT.†/� =J.†/. The inclusion map � W†P[fp0g � .0; 1/ ,!†P � .0; 1/
induces a linear map ' WRŒT.†0/�!RŒT.†/� sending a stated tangle .T; s/ to .�.T /; s ı ��1/.

First suppose that p0 is in the interior of †P. In this case, ' obviously sends isotopic stated tangles to
isotopic stated tangles and skein relations to skein relations, so it sends J.†0/ to J.†/ and it induces a
linear map ' W S!.†0/! S!.†/ by passing to the quotient. It is clear that ' is a morphism of algebras.
Moreover, since any tangle in †P � .0; 1/ can be isotoped in †P[fp0g � .0; 1/, the map ' is surjective.

When p0 lies in some boundary arc, say a, of †, the construction is more subtle. Denote by b and c

the two boundary arcs of †0 which are the connected components of a n fp0g. The linear map ' still
sends skein relations to skein relations; however if .T; s/ and .T 0; s0/ are two isotopic stated tangles, then
'.T; s/ and '.T 0; s0/ are no longer necessarily isotopic. Indeed, recall that in our definition of isotopy, for
any boundary arc d , the height order of @dT should be preserved. Now if we choose T and T 0 isotopic
in †P[fp0g � .0; 1/, the isotopy relating T to T 0 preserves the height orders of @bT and @cT , but not
necessarily the height order of @aT , so '.T; s/ and '.T 0; s0/ might not be isotopic.

Even worse, T might have two endpoints in @bT and @cT with the same height, so �.T / is not a tangle
in our sense since it would have two points in @a�.T / with the same height.

To remedy this problem, we introduce the subset T0.†0/ � T.†0/ of stated tangles .T; s/ in †P[fp0g
such that for any two points v 2 @b.T / and v0 2 @c.T /, one has h.v/ < h.v0/ (h is the height function).
Since any stated tangle .T; s/ 2 T.†0/ is isotopic to a stated tangle in T0.†0/, one has

S!.†
0/DRŒT0.†0/� =J.†0/\RŒT0.†0/�:
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Now, the restriction '0 W RŒT0.†0/� ! RŒT.†/� of '0 preserves skein relations and .T; s/ is iso-
topic to .T 0; s0/ implies that '0.T; s/ is isotopic to '0.T 0; s0/; therefore '0 induces a linear map
' W S!.†0/! S!.†/ which is obviously an algebra morphism and is surjective.

Definition 2.17 The off-puncture ideal Ip0
� S!.†

0/ is the ideal generated by

(1) the elements  �  0, where  and  0 are noncontractible simple closed curves in †P[fp0g which
are isotopic in †P;

(2) the elements ˛""0 �˛0""0 , where ˛""0 and ˛0""0 are nontrivial simple stated arcs in †P[fp0g which
are isotopic in †P;

(3) when p0 is an inner puncture, the element p0
CqCq�1, where p0

is a peripheral curve encircling
p0 (recall that q D !�4);

(4) when p0 is on the boundary of†P, the elements p̨0��0�C
�
�0 , where p̨0

is the trivial arc encircling
p0 as

p̨0��0 D
p̨0 �

p0

�0

such that the endpoint with state � has bigger height than the endpoint with state �0.

The purpose of this subsection it to prove:

Proposition 2.18 The following sequence is exact :

(8) 0! Ip0
! S!.†

0/ '�! S!.†/! 0:

The surjectivity of ' follows from the preceding discussion and the inclusion Ip0
�ker.'/ is an immediate

consequence of the definitions and the trivial arcs relations (7) (where the equalities '. p̨0��0/D C
�
�0 are

proved), so we need to prove the inclusion ker.'/� Ip0
.

Notation 2.19 � Let .D; s/ be a connected simple stated diagram in †P[fp0g (so either a closed
curve or a stated arc or the empty diagram) and define a scalar c.D; s/ 2 R as follows. If �.D/
is simple in †P, set c.D; s/ D 1. If p0 is an inner puncture and .D; s/ D p0

is a peripheral
curve around p0, write c.p0

/D�q� q�1. If p0 is on the boundary of †P and �.D/ is a trivial
arc encircling p0, let c.D; s/ be the unique element C

�
�0 or .C�1/

�
�0 such that '.D; s/D c.D; s/

(using the trivial arcs relations (7)).

� For a not necessarily connected stated diagram .D; s/ D F
i2I .Di ; si/, where the .Di ; si/ are

its connected components, write c.D; s/ DQi2I c.Di ; si/. Let J � I be the subset of indices
j 2 I such that �.Dj / is simple. The reduction of D is the simple diagram Dred WDFj2J Dj . By
definition, one has

(9) '
�
ŒT .D/; s�

�D c.D; s/'
�
Œ.T .Dred/; s/�

�
:
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Lemma 2.20 Let M and M 0 be two free R–modules with respective bases B and B0. Let � WB0!B

and c WB0!R two maps and suppose that there exists B0red�B0 such that the restriction �jB0redB0red!B

is surjective and such that c.b0red
/D 1 for all b0red 2B0red. Consider the linear morphism ' WM 0!M

defined by '.b0/ WD c.b0/�.b0/, for b0 2B0. Then

ker.'/D Spanfb0� c.b0/b0red such that �.b0red
/D �.b0/; b0red 2B0red

; b0 2B0g:

Proof Let V �M 0 be the submodule linearly spanned by the elements b0�c.b0/b0red with�.b0red
/D�.b0/

for b0red2B0red and b02B0. By definition, '.b0�c.b0/b0red
/D c.b0/.�.b0/��.b0red

//D0 so the inclusion
V � ker.'/ is obvious. Conversely, consider an arbitrary element x DPb02B0 ˛b0b0 2 ker.'/. Fix a right
inverse � WB!B0red to �; that is a map such that � ı �D id. For b 2B, write xb WD

P
b02��1.b/ ˛b0b0

so that x DP
b2B xb . Since B is a basis, the elements '.xb/ are linearly independent so '.x/ D 0

implies that '.xb/D 0 for all b 2B. Let b 2B be such that xb ¤ 0 and let us prove that xb 2 V . Let
b0red WD �.b/ 2B0red. Since '.xb/D 0, one has

P
b02��1.b/ ˛b0c.b0/D 0. Now

xb D
X

b02��1.b/

˛b0b
0 D

X
b02��1.b/

˛b0.b
0� c.b0/b0red

/C
� X

b02��1.b/

˛b0c.b
0/
�

b0red

D
X

b02��1.b/

˛b0.b
0� c.b0/b0red

/ 2 V:

Proof of Proposition 2.18 Applying Lemma 2.20 to M D S!.†/, M 0 D S!.†
0/, B D TBo.†/,

B0DTBo.†0/ and B0red the subset of B0 of diagrams .T .D/; s/ such that DredDD and � the reduction
map, we obtain that ker.'/ is spanned by elements of the form ŒT .D/; s� � c.D; s/ŒT .Dred/; s�. By
definition, the off-puncture ideal is the ideal generated by the elements ŒT .D/; s�� c.D; s/ŒT .Dred/; s�,
where D is connected. Let us prove by induction on the number of connected components of D that
ŒT .D/; s��c.D; s/ŒT .Dred/; s� 2Ip0

. If D is connected or reduced, this is immediate. Otherwise, .D; s/
contains a connected component .D0; s0/ such that �.D0/ is either contractible or a trivial arc. Decompose
.D; s/D .D1; s1/t .D0; s0/t .D2; s2/ so that for any connected component C1 �D1, one has C1 �D0

and for any connected component C2 �D2 one has D0 � C2 (recall that � was defined in Section 2.2).
By definition, ŒT .D/; s�D ŒT .D2/; s2�ŒT .D0/; s0�ŒT .D1/; s1� in S!.†

0/ (this is where working with the
basis TBo is important), where si are the restriction of s to Di . Therefore

ŒT .D/; s�� c.D; s/ŒT .Dred/; s�

D ŒT .D2/; s2�
�
ŒT .D0/; s0�� c.D0; s0/

�
ŒT .D1/; s1�

C c.D0; s0/
�
ŒT .D2[D1/; s2[ s1�� c.D2[D1; s2[ s1/ŒT ..D2[D1/

red/; s�
�

� c
�
ŒT .D0; s0/�� c.D0; s0/ŒT .D0red/; s�

�
.mod Ip0

/;

where c D c.D0; s0/ and D0 DD2[D1 has one connected component less than D, so we can apply the
induction hypothesis to prove that ŒT .D/; s�� c.D; s/ŒT .Dred/; s� 2 Ip0

.
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2.4 Hopf comodule maps

Recall that the bigon B is a disc with two punctures on its boundary. It has two boundary arcs, say bL

and bR. Consider the simple diagram ˛ made of a single arc joining bL and bR. For n � 0, denote by
˛.n/ the diagram made of n parallel copies of ˛. Denote by ˛""0 the class in S!.B/ of the stated diagram
.˛; s/ where s.˛\ bL/D " and s.˛\ bR/D "0. It is proved in [Lê 2018, Theorem 4.1] that the stated
skein algebra S!.B/ is presented by the four generators ˛""0 , with "; "0 D˙, and the following relations,
where we put q WD !�4:

˛CC˛C� D q�1˛C�˛CC; ˛CC˛�C D q�1˛�C˛CC; ˛CC˛�� D 1C q�1˛C�˛�C;
˛��˛C� D q˛C�˛��; ˛��˛�C D q˛�C˛��; ˛��˛CC D 1C q˛C�˛�C;

˛�C˛C� D ˛C�˛�C:
Consider a disjoint union BtB0 of two bigons. When gluing the boundary arcs bR with b0

L
, we obtain

another bigon. Denote by � W S!.B/! S!.B/˝S!.B/ the composition

� W S!.B/
ij

bR#b0
L����! S!.BtB0/ Š�! S!.B/˝S!.B/:

The map � is characterized by the formula �.˛""0/D .˛"C˝˛C"0/C .˛"�˝˛�"0/. Define an algebra
morphism � W S!.B/! R and an antialgebra morphism (that is S is linear and S.xy/ D S.y/S.x/)
S WS!.B/!S!.B/ by the formulas �.˛""0/D ı""0 , S.˛CC/D ˛��;S.˛��/D ˛CC;S.˛C�/D�q˛C�
and S.˛�C/ D �q�1˛�C. The coproduct �, the counit � and the antipode S endow S!.B/ with the
structure of a Hopf algebra. This Hopf algebra is canonically isomorphic to the so-called quantum SL2

Hopf algebra Oq ŒSL2� as defined in [Brown and Goodearl 2002, Definition I.1.10; Chari and Pressley
1994, Definition 7:1:1; Kassel 1995, Chapter IV Section 6; Manin 1988] where the generators ˛CC, ˛�C,
˛C� and ˛�� are denoted by a, b, c and d .

For later use, let us write the coproduct, counit and antipode by the more compact form�
�.˛CC/ �.˛C�/
�.˛�C/ �.˛��/

�
D
�
˛CC ˛C�
˛�C ˛��

�
˝
�
˛CC ˛C�
˛�C ˛��

�
;�

�.˛CC/ �.˛C�/
�.˛�C/ �.˛��/

�
D
�

1 0

0 1

�
and

�
S.˛CC/ S.˛C�/
S.˛�C/ S.˛��/

�
D
�

˛�� �q˛C�
�q�1˛�C ˛CC

�
:

Note that when q DC1, we recover the Hopf algebra of regular functions of SL2.C/.

Consider a punctured surface† with boundary arc a. When gluing the boundary a of† with the boundary
arc bL of B we obtain the same punctured surface †. Define a left Hopf comodule map (see eg [Kassel
1995, Definition III.7.1]) �L

a W S!.†/! S!.B/˝S!.†/ as the composition

�L
a W S!.†/

ija#bL���! S!.Bt†/ Š�! S!.B/˝S!.†/:

Similarly, define a right Hopf comodule map �R
a W S!.†/! S!.†/˝S!.B/ as the composition

�R
a W S!.†/

ijbR#a���! S!.†tB/ Š�! S!.†/˝S!.B/:
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B B B
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� X
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�
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i;jD˙

C
�

i

j
˝ i

j

Figure 2: Top: the coproduct in S!.B/. Bottom: the comodule map.

The coassociativity of �L
a and �R

a follows from the coassociativity of the splitting morphisms. Figure 2
illustrates the coproduct and the (left) comodule map.

2.5 The image of the splitting morphism

The goal of this subsection is to prove Theorem 1.1 that we rewrite here for convenience of the reader:

Theorem 2.21 Let † be a punctured surface , and a and b two distinct boundary arcs. Then the sequence

0! S!.†ja#b/
ija#b��! S!.†/

�L
a��ı�R

b������! S!.B/˝S!.†/

is exact , where �.x˝y/D y˝x.

Throughout this subsection, we fix an orientation o of its boundary arcs (though Theorem 2.21 is obviously
independent of this choice).

Notation 2.22 For a boundary arc a and a diagram D, we write na.D/ WD j@aDj. Given n� 1, define
the set St.n/ WD f�;Cgn and the subset St".n/� St.n/ which consists of n–tuples ."1; : : : ; "n/ such that
i < j implies "i � "j . If s D ."1; : : : ; "n/ 2 St.n/, denote by s" D ."0

1
; : : : ; "0n/ 2 St".n/ the unique

element such that the number of indices i such that "i DC is equal to the number of indices j such that
"0j DC. Given s D ."1; : : : ; "n/ 2 St.n/, denote by k.s/ the number of pairs .i; j / such that i < j and
"i > "j . For s 2 St".n/, let

Hs.q/ WD
X

s02St.n/
s0"Ds

q2k.s0/:

Let a and b be two boundary arcs of † and consider the filtration associated to S WD fa; bg and o of
Definition 2.11.
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Lemma 2.23 Let .D; s/ be an o–oriented simple stated diagram and consider v1 and v2 two points
which both belong either to @aD or to @bD. Suppose that v1 <o v2 and that there is no v 2 @D such
that v1 <o v <o v2. Further assume that s.v1/ D C and s.v2/ D �. Let s0 be the state of D such that
s0.v1/ D �, s0.v2/ D C and s0.v/ D s.v/ if v 2 @D n fv1; v2g. Then one has lt.ŒD; s�/ D q lt.ŒD; s0�/,
where the leading term lt is defined in Definition 2.11.

Proof This is a straightforward consequence of the boundary relations (4) and the height exchange
formulas (5) and (6).

Let .D; s/ be an o–oriented simple stated diagram of † and write s D .sa; s0; sb/ as in the definition of
the gluing map before Theorem 2.7. By Lemma 2.23 we have the equality

lt
�
ŒD; .sa; s0; sb/�

�D qk.sa/Ck.sb/ lt
�
ŒD; .s"a ; s0; s

"
b
/�
�
:

Fix an orientation oB of the left and right boundary arcs of the bigon. Consider the filtration of

S!.B/˝S!.†/Š S!.Bt†/
associated to the set of boundary arcs S 0 WDfbL; bR;a;bg and the orientations o and oB, as in Definition 2.11.
Given X 0 2 S!.B/˝S!.†/, we denote by lt0.X 0/ the associated leading term. By definition of the left
comodule map, we have the formula

�L
a

�
ŒD; .sa; s0; sb/�

�D X
s2St.na.D//

Œ˛.na.D//; .sa; s/�˝ ŒD; .s; s0; sb/�:

Lemma 2.24 Let ŒD; .sa; s0; sb/� be an element of the basis Bo. Then

lt0
�
�L

a

�
ŒD; .sa; s0; sb/�

��D X
s2St".na.D//

Hs.q/Œ˛
.j@a.D/j/; .sa; s/�˝ ŒD; .s; s0; sb/�;

lt0
�
� ı�R

b

�
ŒD; .sa; s0; sb/�

��D X
s2St".nb.D/

Hs.q/Œ˛
.j@b.D/j/; .s; sb/�˝ ŒD; .sa; s0; s/�;

where the summands are written in the basis associated to .o; oB/ of S!.B/˝S!.†/.

Proof This is a straightforward consequence of Lemma 2.23.

Proof of Theorems 1.1 and 2.21 We want to show that the sequence

0! S!.†ja#b/
ija#b��! S!.†/

�L
a��ı�R

b������! S!.B/˝S!.†/

is exact, where �.x ˝ y/ D y ˝ x. The injectivity of i ja#b was proved in [Lê 2018]. The inclusion
Im.i ja#b/� ker.�L

a�� ı�R
b
/ follows from the coassociativity of the comodule maps. To prove the reverse

inclusion, consider an element X WDPi2I xi ŒDi ; si � 2 ker.�L
a � � ı�R

b
/ developed in the basis Bo.

If lt.X / D 0, then X is a linear combination of diagrams which do not intersect a and b; hence X

belongs to the image of i ja#b . Suppose that lt.X / > 0. We will find an element Y 2 S!.†ja#b/ such that
lt.i ja#b.Y //D lt.X /. Now X belongs to the image of i ja#b if and only if Z WDX � i ja#b.Y / belongs to
this image. Since d.Z/ < d.X /, the proof will follow by induction on d.X /.
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Consider the set zD of pairs .D; s0/ for which there exists some states sa and sb such that the basis element
ŒD; .sa; s0; sb/� appears in the expression of X . Given zD D .D; s0/ 2 zD, denote by StX . zD/ the set of
couples .sa; sb/ such that ŒD; .sa; s0; sb/� appears in the expression of X . We rewrite the development of
X in the basis as

X D
X

zDD.D;s0/2zD

X
.sa;sb/2StX . zD/

xŒD;.sa;s0;sb/�ŒD; .sa; s0; sb/�:

Consider the subset zDmax � zD of pairs .D; s0/ such that d.X /D na.D/C nb.D/. By Lemma 2.24,

lt0.�L
a.X //

D
X

.D;s0/2zDmax

X
.sa;sb/2StX ..D;s0//

xŒD;.sa;s0;sb/�

X
s2St".na.D//

Hs.q/Œ˛
.na.D//; .sa; s/�˝ ŒD; .s; s0; sb/�;

lt0.� ı�R
b .X //

D
X

.D;s0/2zDmax

X
.sa;sb/2StX ..D;s0//

xŒD;.sa;s0;sb/�

X
s02St".nb.D//

Hs0.q/Œ˛
.nb.D//; .s0; sb/�˝ ŒD; .sa; s0; s

0/�:

From the equality lt0.�L
a.X //D lt0.� ı�R

b
.X //, we find that for any pair .D; s0/ 2 zDmax, for any pair

.sa; sb/2StX ..D; s0// and for any state s 2St".na.D//, there exists a unique pair .s0a; s0b/2StX ..D; s0//

and a unique state s0 2 St".nb.D// such that

xŒD;.sa;s0;sb/�Hs.q/Œ˛
.na.D//; .sa; s/�˝ ŒD; .s; s0; sb/�

D xŒD;.s0a;s0;s
0
b
/�Hs0.q/Œ˛

.nb.D//; .s0; s0b/�˝ ŒD; .s0a; s0; s
0/�:

We deduce the following:

� For any .D; s0/ 2 zDmax, we have na.D/D nb.D/D 1
2
d.X /. We will denote by n this integer.

� We have the equalities s0 D sa D sb and s D s0a D s0
b
. Hence for any .D; s0/ 2 zDmax, we have

StX ..D; s0//D f.s; s/; s 2 St".n/g.
� For any .D; s0/ 2 zDmax and s 2 St".n/, the coefficient xŒD;.s;s0;s/�Hs.q/ is independent of s. We

will denote this coefficient by x.D;s0/.

With the above notation, we rewrite the leading term of X as

lt.X /D
X

.D;s0/2zDmax

x.D;s0/

X
s2St".n/

ŒD; .s; s0; s/�:

Given .D; s0/ 2 zDmax, since na.D/ D nb.D/ D n, there exists a diagram D0 of †ja#b such that D is
obtained from D0 by cutting along the common image in †ja#b of a and b by the projection. Define the
element

Y WD
X

.D;s0/2zDmax

x.D;s0/ŒD0; s0� 2 S!.†/:

By the above expression, lt.X /D lt.i ja#b.Y //.
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Consider a topological triangulation � of †. The punctured surface † is obtained from the disjoint union
†� WD

F
T2F.�/ T by gluing the triangles along their common edges. Denote by VE.�/ � E.�/ the

subset of edges which are not boundary arcs. Each edge e 2 VE.�/ lifts in †� to two boundary arcs eL

and eR . By composing all the left comodule maps �L
eL

together (the order does not matter thanks to the
coassociativity property in Theorem 2.7) one gets a Hopf comodule map

�L W
O

T2F.�/

S!.T /!
� O

e2VE.�/
S!.B/

�
˝
� O

T2F.�/

S!.T /

�
:

Similarly, composing all the right comodule maps �R
eR

together gives

�R W
O

T2F.�/

S!.T /!
� O

T2F.�/

S!.T /

�
˝
� O

e2VE.�/
S!.B/

�
:

Recall the definition of i� in Section 2.1.

Corollary 2.25 The following sequence is exact :

0! S!.†/
i��!

O
T2F.�/

S!.T /
�L��ı�R������!

� O
e2VE.�/

S!.B/

�
˝
� O

T2F.�/

S!.T /

�
:

Proof Theorem 1.1 applied to each inner edge provides an isomorphism between S!.†/ and the
intersection, over the inner edges e, of Ker.�L

eL
� � ı�R

eR
/. We conclude by observing that the latter

intersection is Ker.�L� � ı�R/.

We can reformulate the above exact sequence in terms of co-Hochschild cohomology.

Definition 2.26 Given a coalgebra C with a bicomodule M , with comodules maps �L WM ! C ˝M

and �R WM !M ˝C , the 0th co-Hochschild cohomology group is coHH0.C;M / WD ker.�L�� ı�R/.

We refer to [Hess et al. 2009] for a self-contained introduction to co-Hochschild (co)homology. The
above triangular decomposition of skein algebra can be rewritten as

S!.†/Š coHH0

� O
e2VE.�/

Oq ŒSL2�;
O

T2F.�/

S!.T /

�
:

2.6 The center of stated skein algebras at odd roots of unity

Here we prove Theorem 1.2. We prove it for the bigon, then for the triangle, and we conclude with the
general case. Let us start by the following classical result.

Lemma 2.27 Let R be a ring and q 2R� a root of unity of order N > 1. Suppose that A is an R–algebra
and x;y 2A are such that yx D qxy. Then .xCy/N D xN CyN .
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Proof By [Kassel 1995, Proposition IV.2.2],

.xCy/N D
NX

kD0

�N

k

�
q
xkyN�k ;

where �N

k

�
q
WD

k�1Y
iD0

�
1� qN�i

1� qiC1

�
:

Since qN D 1, the coefficients
�
N
k

�
q

vanish for 1� k �N � 1, and we get the desired formula.

2.6.1 The case of the bigon Recall from Section 2.2 that the Hopf algebra S!.B/ is canonically
isomorphic to Oq ŒSL2�. In this case, Theorem 1.2 is a well-known theorem of Lusztig. More precisely,
it is proved in [Lusztig 1990] (see also [Lusztig 1993, Theorem 3.5.1]) that there exists a morphism of
braided Hopf algebras Fr� W PUqsl2! PUC1sl2 which induces a braided functor Fr WRep.SL2/!Repq.SL2/

between the category of finite-rank representations of SL2 and the category Repq.SL2/ of finite-rank
PUqsl2 modules. Since Oq ŒSL2� (resp. OŒSL2�) is isomorphic to the coend of the forgetful functor

F W Repq.SL2/ ! ModR (resp. of the forgetful functor Rep.SL2/ ! ModR) the Frobenius functor
Fr induces a morphism j W OŒSL2�! Oq ŒSL2�. Moreover, as noticed in [Negron 2021], the image of Fr lies
in the Mügen center of Repq.SL2/ so the image of j is central. We refer to [Negron 2021, Section 5.1]
for details on this approach. A down-to-earth construction of j , based on elementary computations using
the definition of Oq ŒSL2� by generators and relations, was described by Brown and Goodearl and goes as
follows:

Lemma 2.28 [Brown and Goodearl 2002, Proposition III.3.1] Suppose that q WD !�4 is a root of
unity of odd order N � 1. There exists a injective morphism of Hopf algebras jB W SC1.B/! S!.B/

characterized by jB.˛""0/ WD .˛""0/N whose image lies in the center of S!.B/.

2.6.2 The case of the triangle Denote by ˛, ˇ and  the three arcs of Figure 3 and � the automorphism of
S!.T / induced by the rotation sending ˛, ˇ and  to ˇ,  and ˛, respectively. In [Lê 2018, Theorem 4.6],
it was proved that the stated skein algebra S!.T / is presented by the generators ˛""0 , ˇ""0 and ""0 , and
the following relations together with their images through � and �2:

˛�"˛C"0 DA2˛C"˛�"0 �!�5C "
"0 ;(10)

˛"�˛"0C DA2˛"C˛"0��!�5C "
"0 ;(11)

ˇ�"˛�0"0 DA˛""0ˇ��0 �A2C "
�0"0�;(12)

˛�"ˇ"0C DA2˛C"ˇ"0��!�5""0 ;(13)

˛"�C"0 DA2˛"C�"0 C!ˇ"0":(14)

Here we use the notation A WD !�2, C�� D CCC WD 0, C�C WD �!5 and CC� WD !.
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c b

a

˛

ˇ 

˛" "0

Figure 3: Left: the three diagrams ˛, ˇ and  . Middle: the stated diagram representing ˛""0 .
Right: the diagram � .2;1;1/.

When ! DC1, the algebra SC1.T / has the following simpler presentation. Consider the commutative
unital polynomial algebra A WDRŒ˛""0 ; ˇ""0 ; ""0 j"; "0 D˙�. Given ı 2 f˛; ˇ;  g, denote by Mı the 2� 2

matrix with coefficients in A defined by

Mı WD
�
ıCC ıC�
ı�C ı��

�
and write C WD � 0

�1
1
0

�
and 1 WD �1

0
0
1

�
.

Lemma 2.29 The algebra SC1.T / is isomorphic to

RŒ˛""0 ; ˇ""0 ; ""0 j "; "0 D˙�=.det.M˛/D det.Mˇ/D det.M /D 1; MCMˇCM˛C D 1/:

Proof That SC1.T / commutative is a particular case of [Lê 2018, Corollary 2.5]. After setting ! DC1

we see that (10) and (11) coincide; (14) is the image of (13) by rotation, and the latter is a particular
case of (12). Moreover, a direct inspection shows that the other part of (10) and of (12) correspond to
det.M˛/D 1 and .MC /�1 DMˇCM˛C , respectively.

Lemma 2.30 Suppose that ! is a root of unity of odd order N � 1. For every "; "0; �; �0 2 f�;Cg with
"¤ �0, one has

˛N
�0"0ˇ

N
�"�˛N

""0ˇ
N
��0 D N

"0;�:

Proof We suppose that ."; �0/D .�;C/. The proof in the case where ."; �0/D .C;�/ is similar and
left to the reader. For n� 0, let Dn be the simple diagram made of n parallel copies of ˛ and n parallel
copies of ˇ and consider the orientation o depicted in Figure 4. For � D .�1; : : : ; �n/ 2 f�;Cgn let
�_ WD f��n; : : : ;��1g. For �;�0 2 f�;Cgn, let s�;�0 be the state of Dn sending all points of @bDn

to "0, all points of @aDn to � and the points .p1; : : : ;pn;p
0
1
; : : : ;p0n/ of @cDn ordered by o, to the states

.�1; : : : ; �n; �
0
1
; : : : ; �0n/. Write X�;�0 WD ŒDn; s�;�0 �.

Using the skein relations (4), as illustrated in Figure 4, we find that

(15) X�;�0"0;� D !�1X.�;C/;.�;�0/�!�5X.�;�/;.C;�0/;

where .�;C/ WD .�1; : : : ; �n;C/ and .�;�0/ WD .�; �0
1
; : : : ; �0n/. Let nC.�/ be the number of indices

i 2 f1; : : : ; ng such that �i DC. Using (15), we prove by induction of n that

(16) ."0�/
n D

X
�2f�;Cgn

.!�1/nC.�/.�!�5/n�nC.�/X�;�_ :
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X�;�0 �1
�2

�n

�0
1

�0
2

�0
n

"0
"0

"0

n

� ��

n

"0�X�;�0 D

�1

�n

�0
1

�0
n

"0

"0

"0

� � �

D !�1

�1

�n

C�
�0

1

�0
n

"0

"0

"0

� � �

�!�5

�1

�n�C
�0

1

�0
n

"0
"0

"0

� � �

Figure 4: Top: the element X�;�0 . Bottom: an illustration of (15).

Let m.�/ WD #f1� i < j � n j .�i ; �j /D .C;�/g and denote by �C the unique element of f�;Cgn such
that nC.�/D nC.�C/ and m.�C/D 0. Note that m.�/Dm.�_/. Using the skein relation (4), we find
that for any �; �0 2 f�;Cgn,

(17) X�;�0 D qm.�/Cm.�0/X�C;�0C :

For 1� k �N , let �.k/C 2 f�;CgN be the unique element such that m.�
.k/
C /D 0 and nC.�.k/C /D k, ie

�
.k/
C i
D
�� for 1� i �N � k;

C for i >N � k:

Putting (16) and (17) together, one finds that

."0�/
N D

NX
kD0

.!�1/k.�!�5/N�k

� X
�2f�;CgN
nC.�/Dk

q2m.�/

�
X
�
.k/
C ;�

.k/_
C

:

Now, a simple computation shows that� X
�2f�;CgN
nC.�/Dk

q2m.�/

�
D q2nN�n.n�1/

X
1�i1<i2<���<in�N

q2.i1C���Cin/ D
�

1 if k D 0 or k DN;

0 otherwise:

Therefore,

."0�/
N DX

�
.N /
C ;�.N /�

�X
�.N /� ;�

.N /
C
D ˛NC"0ˇN

���˛N�"0ˇN
�C:

Note that we used that .�1/N D�1, so that N is odd.
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Lemma 2.31 Suppose that ! is a root of unity of odd order N � 1. There exists an injective mor-
phism of algebras jT W SC1.T /! S!.T /, whose image lies in the center of S!.T /, characterized by
jT .ı""0/ WD .ı""0/N for ı 2 f˛; ˇ;  g and "; "0 D˙. Moreover , if a is a boundary arc of T , the following
diagrams commute:

SC1.T / SC1.B/˝SC1.T /

S!.T / S!.B/˝S!.T /

�L
a

jT jB˝jT

�L
a

SC1.T / SC1.T /˝SC1.B/

S!.T / S!.T /˝S!.B/

�R
a

jT jT˝jB

�R
a

Proof We proceed in a similar way to Lemma 2.28, by showing first that the extension of the assignment
jT .ı""0/ WD ıN

""0 to a morphism of algebras is well defined. In virtue of Lemma 2.29 and by the rotation
automorphism, it is enough to show that ˛N

""0 lies in the center of S!.T / and that jT sends det.M˛/� 1

and MCMˇCM˛C � 1 to zero.

First note that the relations (10) and (11) put together coincide with the defining relations of S!.B/;
hence one has an inclusion of algebras � W S!.B/ ,! S!.T / defined by �.˛""0/ D ˛""0 . By applying
Lemma 2.28, one obtains an inclusion � ı jB W SC1.B/ ,! S!.T / which coincides with jT on the ˛""0’s.
It remains to show that the ˛N

""0’s commute with the ˇ��0’s and the ��0’s, and that jT vanishes on
MCMˇCM˛C � 1.

We have ˛N
""0ˇ�" DA�Nˇ�"˛

N
""0 D ˇ�"˛N

""0 . From

˛NC"ˇ"0� D ˛N�1C" .A�2˛�"ˇ"0CC!�1""0/D .A�3NC1˛�"ˇ"0CC!�1AN�1""0/˛
N�1C"

and
ˇ"0�˛NC" D .A˛�"ˇ"0CC!""0/˛N�1C" ;

one obtains

˛NC"ˇ"0��ˇ"0�˛NC" D .A.A�3N � 1/˛�"ˇ"0CC!.AN � 1/""0/˛
N�1C" D 0:

Similarly, we compute

˛N�"ˇ"0C D ˛N�1�" .A2˛C"ˇ"0��!�5""0/D .ANC1˛C"ˇ"0��!�3AN ""0/˛
N�1�" ;

ˇ"0C˛N�" D .A˛C"ˇ"0��!�3""0/˛
N�1�" :

Thus we find

˛N�"ˇ"0C�ˇ"0C˛N�" D .A.AN � 1/˛C"ˇ"0��!�3.AN � 1/""0/˛
N�1�" D 0:

So we have proven that ˛N
""0 commutes with every elements ˇ��0 . The commutativity of ˛N

""0 with each
element ��0 is shown in a very similar way.

Next, showing that jT vanishes on MCMˇCM˛C � 1 amounts to showing that

ˇN
�"˛

N
�0"0 �˛N

""0ˇ
N
��0 D N

"0;� for "¤ �0:
This was proved in Lemma 2.30.
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Now let us prove that jT is injective. To this end, let us consider the following basis of S!.T /.

Consider the counterclockwise orientation o of the boundary arcs of T as in Figure 3. Given

kD .k˛; kˇ; k / 2 .Z�0/3;

denote by �k the (not simple) diagram ˛k˛ˇkˇ k ; see Figure 3 for an example. By Proposition 2.14
the set of classes Œ�k; s�, where s is o–increasing, forms a basis of S!.T /.

By construction, jT sends the elements Œ�k; s� of SC1.T /, where s is o–increasing, to some basis elements
Œ�N k; s0�, where s0 is also o increasing, therefore jT is injective.

It remains to prove that jT is a morphism of Hopf comodules. To avoid confusion, let us denote by x""0

the generators of S!.B/ and reserve the notation ˛""0 for the element of S!.T /. By definition, we have
�L

c .˛""0/D x"C˝˛C"0Cx"�˝˛�"0 . Write u WD x"C˝˛C"0 and v WD x"�˝˛�"0 . Since uvD q�2vu,
by Lemma 2.27 we have .uC v/N D uN C vN , so

�L
c .jB.˛""0//D .�L

c .˛""0//
N D .uC v/N D uN C vN

D xN
"C˝˛NC"0 CxN

"�˝˛N�"0 D jB˝ jT .�
L
c .˛""0//:

The proof that �L
b
.jB.˛""0//D jB˝ jT .�

L
b
.˛""0// is done using a similar computation and the equality

�L
a.jB.˛""0//D jB˝ jT .�

L
a.˛""0// holds since both sides are equal to 1˝ ˛N

""0 . By symmetry in the
generators ˛, ˇ,  , we have proved that jB commutes with the left comodule maps. That it commutes
with the right comodule maps is proved similarly.

2.6.3 The general case: proof of Theorem 1.2 We restate Theorem 1.2 here for the convenience of
the reader:

Theorem 2.32 Suppose that ! is a root of unity of odd order N � 1 and † a punctured surface. There
exists an embedding

j† W SC1.†/ ,! Z.S!.†//

of the (commutative) stated skein algebra with parameter C1 into the center of the stated skein algebra
with parameter !. Moreover , the morphism j† is characterized by the property that it sends a closed
curve  to TN . / and a stated arc ˛""0 to ˛.N /""0 , where ˛.N /""0 is the tangle made by stacking N parallel
copies of ˛""0 on top of the others.

Recall from Section 2.2 that closed curves and arcs do not have self-intersection points by definition. We
divide the proof in five steps.

In Step 1, we show that the decomposition Theorem 1.1 together with the two previous sections provide
an injective morphism of algebras

(18) j.†;�/ W SC1.†/ ,! S!.†/;
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which is central. We study further properties of j.†;�/ and we show that it is does not depend on a
topological triangulation �. The other steps are devoted to making explicit the morphism j.†;�/ on arcs
and loops. In Steps 2–4, we suppose that the punctured surface has a nondegenerated triangulation (see
below); in Step 5 we treat the other punctured surfaces.

In Step 2, we prove that j.†;�/ sends the stated arcs that have their endpoints on two different boundary
arcs of †, to their N th power.

In Step 3, we prove that j.†;�/ sends some particular closed curves of †P to their N th Chebyshev
polynomial of first kind.

Step 4 is more involved. We first prove a structural result. Adding a puncture on a surface † gives rise to
a surjective map ' from the skein algebra of the new punctured surface to that of the initial one defined
in Section 2.3. We show that j.†;�/ commutes with these surjections (see Lemma 2.40). From this, we
deduce the image by j.†;�/ of stated arcs that have both their endpoints on the same boundary arc of †
and of any closed curve of †P.

In Step 5, we treat the remaining cases of connected punctured surfaces that do not admit a nondegenerate
topological triangulation (including those with no puncture). The proof consists, again, in adding a
puncture and using the previous study.

These five steps prove Theorem 1.2.

Throughout this section, † is a punctured surface, � a topological triangulation † and ! a root of unity
of odd order N � 1. Except for Steps 1 and 5, the triangulation � is required to be nondegenerate, that
is, such that each of its inner edges separates two distinct faces.

Step 1: formal definition Assume that † admits a (possibly degenerate) triangulation �. Consider the
diagram

(19)

0 SC1.†/
N

T2F.�/ SC1.T /
�N

e2VE.�/ SC1.B/
�˝ �NT2F.�/ SC1.T /

�

0 S!.†/
N

T2F.�/ S!.T /
�N

e2VE.�/ S!.B/
�˝ �NT2F.�/ S!.T /

�
i�

9!j.†;�/

�L��ı�R

˝T jT .˝ejB/˝.˝T jT /

i� �L��ı�R

where both lines are exact by Theorem 1.1 and the vertical maps are given by Lemmas 2.28 and 2.31.

The existence of an injective morphism j.†;�/ W SC1.†/ ,! S!.†/ follows from the exactness of the
lines and the injectivity of

N
T2F.�/ jT (and the fact that all maps involved in the diagram are algebra

morphisms). Moreover, since jT is central, so is j.†;�/.

Let us show that j.†;�/ is compatible with the gluing maps.
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Lemma 2.33 If a and b are two boundary arcs of †, the following diagram commutes:

SC1.†ja#b/ S!.†ja#b/

SC1.†/ S!.†/

j†a#b

ija#b ija#b

j†

Proof Let �a#b the topological triangulation of †ja#b that is induced by �. Let us consider the diagram

SC1.†ja#b/ SC1.†/ ˝T SC1.T /

S!.†ja#b/ S!.†/ ˝T S!.T /

ija#b

j.†ja#b ;�a#b/

i�a#b

i�

j.†;�/ ˝T jT

ija#b

i�a#b

i�

The outer triangles commute by coassociativity of the gluing maps. Two of the three squares commute by
diagram (19). Since i� is injective, the remaining (left-hand side) square commutes.

We now prove that the morphism j.†;�/ does not depend on �. We first need a preliminary result.

Lemma 2.34 Let Q be a square (ie a disc with four punctures on its boundary) and �Q a topological
triangulation of Q. If ˛""0 2 S!.Q/ is the class of a stated arc , then j.Q;�Q/.˛""0/D ˛N

""0 . In particular ,
j.Q;�Q/ does not depend on �Q.

Proof Let e be the inner edge of �Q which is a common boundary arc of two triangles T1 and T2.
Make the intersection ˛ \ e transversal and minimal via an isotopy on ˛. If the intersection is empty,
then ˛ is included in one of the triangles and the lemma follows from Lemma 2.31. If ˛\ e is not empty,
then it has only one element. Therefore, by letting ˛Ti WD ˛\Ti for i D 1; 2, one has

i�Q.˛""0/D ˛T1

"C˝˛T2C"0 C˛T1
"� ˝˛T2�"0 :

Write x WD ˛T1

"C˝˛T2C"0 and y WD ˛T1
"� ˝˛T2�"0 and note that xy D q�2yx. By Lemma 2.27,

i�Q.˛N
""0/D i�Q.˛""0/

N D .xCy/N D xN CyN D .jT1
˝ jT2

/ ı i�Q.˛""0/:

Hence, j.Q;�Q/.˛""0/D ˛N
""0 .

Lemma 2.35 The morphism j.†;�/ does not depend on �.

Proof Every two triangulations can be related by a finite sequence of flips on the edges. Therefore, it is
enough to prove that if �0 differs from � by a flip of one edge, then j.†;�/ D j.†;�0/.

Let e be an inner edge of � that bounds two distinct faces T1 and T2. Consider the topological
triangulation �0 obtained from � by flipping the edge e inside the square QD T1[T2. Let

i W S!.†/ ,! S!.† nQ/˝S!.Q/
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0

1

T � Œ0; 1�

N

Figure 5: Instance of tangles TT and T
.N /
T .

be the gluing morphism. By Lemma 2.34, the morphism jQ W SC1.Q/ ,! S!.Q/ does not depend on the
triangulation of Q. Therefore, by Lemma 2.33, both the morphisms j.†;�/ and j.†;�0/ make the diagram

SC1.†/ SC1.† nQ/˝SC1.Q/

S!.†/ S!.† nQ/˝S!.Q/

i

j.†;�0/ j.†;�/ j.†nQ;�†nQ/˝jQ

i

commutative. This proves that j.†;�/ D j.†;�0/.

Step 2: arcs with endpoints in distinct boundary arcs We now assume that the triangulation � is
nondegenerate.

Lemma 2.36 If ˛""0 2 S!.†/ is the class of a stated arc such that its endpoints lie on two different
boundary arcs , then j†.˛""0/D ˛N

""0 .

Proof By the defining property of j†, as depicted in diagram (19), it is enough to prove that

(20) i�.˛N
""0/D

� O
T2F.�/

jT

�
i�.˛""0/:

Without lost of generality, we suppose that the arc ˛ is in minimal and transverse position with the
edges of �. Let T be a (vertical framed) tangle of †P � .0; 1/ that projects on ˛ and such that its height
projection is an injective map (this is possible since ˛ is an arc). Note that for each T 2 F.�/, the tangle
TT WD T \ .T � .0; 1// may have various connected components; since the height projection is injective,
these components are ordered by height. Let T .N / be a tangle of N parallel copies of T obtained by
stacking N copies of T , but close enough to have the following property. For each T 2 F.�/, if T1 and
T2 are two connected components of TT such that T1 is below T2, then, in T

.N /
T WD T .N /\ .T � .0; 1//,

each copy of T1 is below all the copies of T2. See Figure 5 for an illustration. Note that since ˛ is an
arc with boundary points at two distinct boundary arcs, the tangle T .N / is a representative of the N th

product of ˛""0 in S!.†/; otherwise it may not be true.

The left-hand term of (20) can be described as the cutting of T .N / along each edge of the triangulation,
and summing the result over all possible states at each edge. More formally, it is described as follows.
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Let K be a subset of edges of � that intersect ˛. We let StK .˛/ be the set of maps

s W T \ .K � .0; 1//! f�;Cg:
We identify StK .˛/ with

F
e2K Stfeg.˛/, which allows us to write s 2 StK .˛/ as tse. We will only

consider the two sets K: the set E of all the internal edges of � that intersect ˛, and the set K D feg for
an edge e.

For s 2 StE.˛/, write s.N / WD .s; : : : ; s/2 StE.˛/�N . We denote by s0 the state of ˛""0 (so ˛""0 D ŒT; s0�).

For s D .s1; : : : ; sN / 2 StE.˛/�N , we let

˛.s/ WD
O

T2F.�/

ŒT
.N /
T ; .s t s

.N /
0

/j@T � 2
O

T2F.�/

S!.T /;

where we associate, to the k th copy of T
.N /
T , the restriction of the state sk . With this notation, the left-hand

term of (20) can be written as

(21) i�.˛N
""0/D

X
s2StE.˛/�N

˛.s/:

Now, let us describe the right-hand term of (20). Note that the construction of T .N / ensures that, for
each triangle T and each state s of TT , one has jT .ŒTT ; s�/D ŒT .N /

T ; s.N /�. Therefore, using that jT is
an algebra morphism,

(22)
� O

T2F.�/

jT

�
i�.˛""0/D

X
s2StE.˛/

˛.s.N //:

Let Y be the set of nondiagonal states StE.˛/�N n f.s; : : : ; s/ j s 2 StE.˛/g. The sum in (21) and in (22)
differ by the sum of ˛.s/ for s 2 Y .

Let us fix an edge e of E and let us split Y into J tYe where Ye is the set of N –tuples of states at e, that
is, Ye D fs 2 Y j s W T .N /\ .e� .0; 1//! f�;Cgg. Therefore, showing (20) amounts to showing thatX

s02J

X
s2Ye

˛.s0 t s/D 0:

In fact, let us show that, for each s0 2 J , one has
P

s2Ye
˛.s0 t s/D 0.

Let T1 and T2 be the two triangles adjoining e (they are distinct since � is assumed nondegenerate)
and let Q�†P be the resulting square. Denote by iQ W S!.Q/ ,!

N
T2F.�/ S!.T / the corresponding

embedding and write TQ WD T \ .Q� .0; 1//. For each s0 2 J ,X
s2Ye

˛.s0 t s/D
� O

T¤T1;T2

ŒT
.N /
T ; s0j@T �

�
˝ �iQ.ŒT .N /

Q
; s0j@Q�/� .jT1

˝ jT2
/ ı iQ.ŒT

.N /
Q

; s0jQ�/
�
:

The last term is zero by Lemma 2.34 and the commutativity of the diagrams in Lemma 2.31.
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Step 3: closed curves that intersect� nicely

Definition 2.37 The N th Chebyshev polynomial of first kind is the polynomial TN .X / 2 ZŒX � defined
by the recursive formulas T0.X /D 2, T1.X /DX and TnC2.X /DXTnC1.X /�Tn.X / for n� 0.

The following proposition is at the heart of (our proof of) the so-called “miraculous cancellations” from
[Bonahon and Wong 2016]. We postpone its proof to the appendix.

Proposition 2.38 If ! is a root of unity of odd order N � 1, then in S!.B/,

TN .˛CCC˛��/D ˛NCCC˛N��:

Recall that we suppose that the triangulation is nondegenerate.

Lemma 2.39 Let  2 S!.†/ be the class of a closed curve. If the closed curve can be chosen such that it
intersects an edge of � once and only once , then j†. /D TN . /.

Proof Consider the punctured surface †.e/ obtained from † by replacing e by two arcs e0 and e00

parallel to e with the same endpoints and removing the bigon between e0 and e00. Consider the injective
morphism i je0#e00 W S!.†/ ,! S!.†.e//. By Lemma 2.33, the following diagram commutes:

SC1.†/ S!.†/

SC1.†.e// S!.†.e//

j†

ije0#e00 ije0#e00
j†.e/

By cutting  along e, we get an arc ˇ � †.e/ such that, by the hypothesis, i je0#e00. /D ˇCCC ˇ��.
Consider the algebra morphism ' W S!.B/! S!.†.e// sending ˛""0 to ˇ""0 . One has

j†.e/ ı i je0#e00. /D j†.e/.ˇCCCˇ��/
D '.˛NCCC˛N��/ (by Lemma 2.36)

D '.TN .˛CCC˛��// (by Proposition 2.38)

D i je0#e00.TN . //:

Hence, by the above diagram, j†. /D TN . /.

Step 4: adding a puncture Let †0 D .†;P[fp0g/ be a punctured surface obtained from †D .†;P/
by adding one puncture p0 2†P and consider the algebra morphism ' W S!.†0/! S!.†/ of Section 2.3.
We assume that † is equipped with a nondegenerated triangulation.

Lemma 2.40 The following diagram is commutative:

SC1.†
0/ S!.†

0/

SC1.†/ S!.†/

j†0

' '

j†
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Proof First consider the diagram

(23)
0 IC1

p0
SC1.†

0/ SC1.†/ 0

0 Ip0
S!.†

0/ S!.†/ 0

j†0

'

j†0 j†

'

where IC1
p0
� SC1.†

0/ and Ip0
� S!.†

0/ denote the off-puncture ideals in SC1.†
0/ and S!.†

0/, respec-
tively (see Definition 2.17). By Proposition 2.18, both lines are exact so we need to prove the inclusion
j†0.IC1

p0
/� Ip0

to conclude. We divide the proof in two steps.

Step 1 We first suppose that †D T0 is a triangle. In this case, T 0
0

is a punctured triangle and we have
two possibilities depending whether p0 is in the boundary or the interior of T0. Some nondegenerate
triangulations �0

0
of T 0

0
are drawn in Figure 6.

Claim The off-kernel ideal Ip0
is generated by elements ˛""0 �˛0""0 and  �  0, where ˛ and ˛0 are arcs

isotopic in T0 whose endpoints lie in distinct boundary arcs and  and  0 are curves isotopic in T0 which
intersect each edge of �0

0
once.

If the claim is proved, then for ˛""0 �˛0""0 and  �  0 some generators of Ip0
, Lemma 2.36 implies that

jT 0
0
.˛""0 �˛0""0/� Ip0

and Lemma 2.39 implies that jT 0
0
. �  0/D TN . /�TN .

0/ 2 Ip0
. The claim

implies the inclusion jT 0
0
.IC1

p0
/� Ip0

, which concludes the proof in the case of the triangle. To prove the
claim, recall from Proposition 2.18 that Ip0

is generated by elements ˛""0 �˛0""0 and  �  0 with ˛ and
˛0 isotopic in T0 and  and  0 isotopic in T0. First note that when p0 lies in the boundary of T0, then
T 0

0
does not contain any noncontractible simple closed curve and the nontrivial arcs of T 0

0
have endpoints

in distinct boundary arcs, so the claim is immediate in this case. When p0 lies in the interior of T0, there
is only one nontrivial simple closed curve (which encircles p0 once) and this curves intersects each edges
of �0

0
once. However T 0

0
contains three nontrivial arcs with endpoints in the same boundary arcs which

are related by a 2
3
� radian rotation. Let ı be one of these arcs and

ı""0 D
"

"0 ı

Since x WD ı""0 �C "0
" 2 Ip0

, we need to show that x belongs to the ideal Jp0
generated by elements

˛""0 �˛0""0 with ˛ and ˛0 isotopic in T0 with distinct endpoints. This is done by a simple application of
the skein relation (4):

x D "

"0 ı
� "

"0 D
X

�DC;�
C���

 
"

"0
�
�� � "

"0
�
��
!
:

Therefore x belongs to the ideal generated by elements

"0 �� �
"0 ��

This proves the claim and concludes the proof of the lemma in the case where †D T0.
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p0

T 0
0

p0

Figure 6: Punctured triangles T 0
0

and their nondegenerated triangulations.

Step 2 We consider the general case. Recall that † is equipped with a nondegenerate triangulation
� and let T0 be the face containing the point p0. Let †0 be the (possibly empty) punctured surface
made of the faces of � distinct from T0 so that † is obtained from T0 t†0 by gluing some pairs of
boundary arcs together and let i W S!.†/ ,! S!.T0/˝S!.†0/ denote the gluing map. Similarly, let
i 0 W S!.†0/ ,! S!.T 00/˝S!.†0/ be the gluing map of †0. Consider the diagram

SC1.T
0
0
/˝SC1.†0/ S!.T 00/˝S!.†0/

SC1.†
0/ S!.†

0/

S!.†
0/ S!.†/

SC1.T0/˝SC1.†0/ S!.T0/˝S!.†0/

jT 0
0
˝j†0

'0˝id '0˝id

i0 j†0

'

i0

'

i

j†

i

jT0
˝j†0

In this diagram,

� the outer square commutes by Step 1;

� the squares on the top and bottom commute by Lemma 2.33;

� the squares on the left and right sides commute by definition of '.

Therefore the innermost square commutes.

Notation 2.41 For ˛""0 2 S!.†/ the class of a stated arc, we denote by ˛.N /""0 be the class of the stated
tangle made by stacking N parallel copies of ˛""0 on top of the others in the framing direction. More
precisely, if both endpoints of ˛ lie in different boundary arcs, then ˛.N /""0 D .˛""0/N . If ˛ has its two
endpoints, say v and w, in the same boundary arc with h.v/ < h.w/ such that v has state " and w
has state "0, then ˛.N /""0 is the class of the stated tangle .˛.N /; s.N // defined as follows. The tangle
˛.N / is made of N parallel copies ˛.N / D ˛1 [ � � � [ ˛N of ˛ such that the height order is given by
h.v1/ < h.v2/ < � � � < h.vN / < h.w1/ < � � � < h.wN /. The state s.N / sends the points vi to " and the
points wj to "0.

Lemma 2.42 If ˛""0 2 S!.†/ is the class of a stated arc such that its endpoints lie on the same boundary
arcs , then j†.˛""0/D ˛.N /""0 .
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Proof Since the two endpoints of ˛ lie on the same boundary arc a, we can pick a puncture p0 2 a

that lies between these two endpoints. Denote by †0 D .†;P[ fp0g/ the punctured surface obtained
by adding this puncture, and ' W S!.†0/! S!.†/ the morphism of Section 2.3. With the notation of
Section 2.3, the two components of a n fp0g are two boundary arcs b and c of †0 and we choose the
convention such that ˛ 2T.0/.†/. Note that ˛.N / is in T.0/.†/ as well. To avoid confusion, we denote by
˛0 the arc ˛ seen as an arc in †P[fp0g, so that �.˛0/D ˛. By Lemma 2.36, j†0.˛0""0/D .˛0""0/N D ˛0.N /""0 .
By commutativity of the diagram in Lemma 2.40 and by definition of ', the image j†.˛""0/ is the class
in S!.†/ of the unique stated tangle in T.0/.†/ which is isotopic to ˛0.N /""0 : this is ˛.N /""0 .

Lemma 2.43 If  2 S!.†/ is the class of a closed curve , then j†. /D TN . /.

Proof If the closed curve can be chosen such that it intersects an edge of � once and only once, then this
is Lemma 2.39. Otherwise, we can refine the triangulation by adding an inner puncture in order to have
this property. Denote by †0 the resulting punctured surface and let  0 2 SC1.†

0/ be such that �. 0/D  .
Lemma 2.39 implies that j†0. 0/D TN .

0/ and Lemma 2.40 implies that j†. /D TN . /.

Step 5: punctured surfaces which do not admit nondegenerate triangulations It remains to prove
Theorem 1.2 for connected punctured surfaces which do not admit nondegenerate topological triangula-
tions; that is, for the small punctured surfaces, for the disc with one inner puncture and one puncture on
its boundary and for the unpunctured surfaces †D .†;∅/ with empty set of puncture.

The disc with only one puncture (on its boundary) and the sphere with zero or one puncture both have
trivial skein algebra, while the sphere with two punctures has a commutative skein algebra. Therefore,
Theorem 1.2 holds trivially for them. It remains to prove:

Lemma 2.44 Theorem 1.2 holds when † is either a disc with one inner puncture and one puncture on its
boundary or an unpunctured surface †D .†;∅/ of genus at least one.

Proof Choose an inner puncture p0 2 V†P and consider the punctured surface†0 WD .†;P[fp0g/. Since
†0 admits a nondegenerate triangulation, our previous study shows the existence of the Chebyshev mor-
phism j†0 WSC1.†

0/ ,!Z.S!.†
0//. Consider the off-puncture ideals IC1

p0
�SC1.†

0/ and Ip0
�S!.†

0/.
Exactly the same argument used in the proof of Lemma 2.40 shows the inclusion j†0.IC1

p0
/� Ip0

. By
Proposition 2.18, both lines in the following diagram are exact:

0 IC1
p0

SC1.†
0/ SC1.†/ 0

0 Ip0
S!.†

0/ S!.†/ 0

j†0

'

j†0 9!j†
'

Therefore there exists a unique algebra morphism j† W SC1.†/ ! S!.†/ which makes the diagram
commute. Since j† is obtained from j†0 by passing to the quotient, its image is also central and one has
the equalities j†.Œ �/D TN .Œ �/ and j†.˛""0/D ˛.N /""0 for any closed curve  and any stated arc ˛""0 .
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2.7 A Poisson bracket on SC1.†/

In this section, we define and make explicit a Poisson structure on SC1.†/.

2.7.1 Preliminaries We briefly recall some general facts concerning deformation quantization.

Let A be a complex commutative unital algebra, CŒŒ„�� be the ring of formal series in a parameter „ and
AŒŒ„�� WDA˝C CŒŒ„��. A star product ? on A is an associative product on AŒŒ„�� such that if f DPi fi„i

and g DPi gi„i are elements of AŒŒ„��, then

f ?g D f0g0 mod „;
where f0g0 denotes the product of f0 and g0 in A. A star product induces a Poisson structure on A by
the formula

(24) f ?g�g ?f D „ff;gg mod „2;

for all f;g 2A. The algebra .AŒŒ„��; ?/ is called a deformation quantization of the commutative Poisson
algebra .A; f � ; � g/. We refer to [Kontsevich 2003; Gutt et al. 2005, II.2] for detailed discussions. A
morphism of star products between .A; ?A/ and .B; ?B/ is an algebra morphism  WAŒŒ„��!BŒŒ„�� whose
restriction to A�AŒŒ„�� induces a morphism � WA!B. Note that such a � is, in fact, a morphism of
Poisson algebras for the induced Poisson algebra structures. An isomorphism

 W .AŒŒ„��; ?1/
Š�! .AŒŒ„��; ?2/

of star products is called a gauge equivalence if  .f / D f .mod „/. If two star products are gauge
equivalent, they induce the same Poisson bracket on A.

To end this preamble, let us mention that deformation quantization is well behaved with respect to the
tensor product. Indeed, if AŒŒ„�� and BŒŒ„�� are deformation quantizations of A and B, respectively, then
AŒŒ„��˝BŒŒ„��Š .A˝B/ŒŒ„�� is a deformation quantization of A˝B. Note also that the Poisson structure
on A˝B given by (24) is

(25) ff ˝g; f 0˝g0g D ff 0˝fg;g0gC ff; f 0g˝gg0

for f; f 0 2A and g;g0 2B.

2.7.2 Formal definition Let † be a punctured surface and o an orientation of its boundary arc. Denote
by SC1.†/ the stated skein algebra associated to the ring C with ! D C1 and denote by S!„.†/ the
stated skein algebra associated to the ring CŒŒ„�� with !„ WD exp

��1
4
„�. The convention is chosen so

that q D exp.„/. Recall the basis Bo from Definition 2.3. Since Bo is independent of !, one has an
isomorphism of CŒŒ„��–modules

(26)  o W SC1.†/ŒŒ„�� Š�! S!„.†/:

Note that o tells us how to lift the basis elements ŒD; s� of SC1.†/ (which are independent of the height
order) in S!„.†/. We emphasize that  o is not an algebra morphism.
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Definition 2.45 Pulling back the product of S!„.†/ along  o gives a star product ?„ on SC1.†/. We
denote by f � ; � gs the resulting Poisson bracket on SC1.†/ given by (24).

Here the superscript s stands for “skein”.

Remark 2.46 For any two orientations o1 and o2 of the boundary arcs of†, the automorphism . o2/�1ı
 o1 WSC1.†/ŒŒ„�� Š�!SC1.†/ŒŒ„�� is a gauge equivalence; hence the Poisson bracket f � ; � gs does not depend
on o.

By definition, .SC1.†/ŒŒ„��; ?„/ is a quantization deformation of the Poisson algebra .SC1.†/; f � ; � gs/.
Moreover, this structure of Poisson algebra is compatible with decompositions of surfaces. More precisely,
one has the following.

Lemma 2.47 The gluing maps i ja#b W SC1.†ja#b/ ,! SC1.†/, the maps

i� W SC1.†/ ,!
O

T2F.�/

SC1.T /

and the coproduct maps �L and �R are Poisson morphisms.

Proof This follows from the fact that each of these morphisms arises from a morphism of star products.

2.7.3 Explicit formula This section is devoted to making explicit the Poisson bracket f � ; � gs on stated
diagrams. It will be expressed in terms of resolutions of stated diagrams, which are defined at crossings
and at points on the boundary arcs.

Throughout this section, † is a punctured surface.

Resolution at a crossing Let .D; s/ be a stated diagram and c a crossing of D. Denote by DC and
D� the diagrams obtained from D by replacing the crossing c by its positive and negative
resolution, respectively. The resolution of .D; s/ at the crossing c is defined by

Resc.D; s/ WD ŒDC; s�� ŒD�; s� 2 SC1.†/:

Resolution at boundary points Let b1; : : : ; bk be the boundary arcs of †P.

Definition 2.48 A height order on a stated diagram .D; s/ of †P is a k–tuple o D .o1; : : : ; ok/ of
bijections of sets oi W @bi

D! f1; : : : ; j@bi
Djg.

Note that the product of symmetric groups Sn1
� � � � �Snk

acts freely and transitively on the set of height
orders by left composition.

To a height order o on .D; s/ corresponds a stated tangle with same height order and which projects to
.D; s/. Therefore, one can consider the class of .D; s; o/ in S!.†/. If !DC1, the class ŒD; s; o�2SC1.†/

is independent of o, and we denote it simply by ŒD; s�.

Let us choose a boundary arc bi and suppose there are two points pH and pL of @bi
D such that

oi.pH / D oi.pL/C 1 (ie pH is the oi–successor of pL). Let Qo be the order on bi that is induced by
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the orientation of †. To alleviate notation, we write p <Qo q for Qo.p/ < Qo.q/. For instance, in the stated
diagram C� , if pL is the endpoint with s.pL/ D C, pH the endpoint with s.pH / D � and o is the
orientation given by the arrow, then pL >Qo pH whereas pL <o pH (because the o and Qo orientation of
the boundary arc where live pL and pH are opposite).

Let � 2 Sni
be the transposition that exchanges the oi order of pH and pL. The resolution of .D; s/

along � , denoted by Res� .D; s; o/ 2 SC1.†/, is given by8̂̂̂<̂
ˆ̂:

1
2
ŒD; s� if s.pH /D s.pL/ and pL<Qo pH or .s.pH /; s.pL//D .�;C/ and pH <Qo pL;

�1
2
ŒD; s� if s.pH /D s.pL/ and pH <Qo pL or .s.pH /; s.pL//D .C;�/ and pL<Qo pH ;

1
2
ŒD; s��2ŒD; �s� if .s.pH /; s.pL//D .C;�/ and pH <Qo pL;

�1
2
ŒD; s�C2ŒD; �s� if .s.pH /; s.pL//D .�;C/ and pL<Qo pH ;

where �s is the state that differs from s only by exchanging the states of pH and pL.

Let us extend the resolution to several points, namely any permutation of the boundary heights on a given
boundary component. For two transpositions �1 and �2 of o–consecutive points, let

(27) Res�1ı�2
.D; s; o/D Res�1

.D; s; �2 ı o/CRes�2
.D; s; o/:

Definition 2.49 For a permutation � 2Sn1
�� � ��Snk

, the resolution Res� .D; s; o/ is defined via (27), by
considering the decomposition of � into transpositions of o–consecutive points. This is clearly independent
of the choice of decomposition into transpositions.

Remark 2.50 The resolution Res� .D; s; o/ is invariant under isotopy of .D; s/. Also, Resid.D; s; o/D 0.

Lemma 2.51 In the skein algebra S!„.†/, the following two statements hold.

(1) Let D and D be two diagrams that differ from each other only by a change of a crossing c. Then

ŒD ; s; o�� ŒD ; s; o�D „Resc.D ; s/ mod „2:

(2) Let .D; s; o/ be an o–ordered stated diagram. For � 2 Sn1
� � � � �Snk

,

ŒD; s; o�� ŒD; s; � ı o�D „Res�.D; s; o/ mod „2:

In the two statements , the resolutions Res are seen in S!„.†/ via the isomorphism  Qo of (26).

Proof Recall that !„ D exp
��1

4
„�� 1� 1

4
„ .mod „2/. The first equality follows from (3):

� D .!�2�!2/ C .!2�!�2/ �
�

�
�
„ .mod „2/:

Let us prove the second equality when � a transposition of two consecutive points pH ;pL with pH >o pL.
If s.pH /D s.pL/D ", then (5) gives

"
"
D !2 "

"
and "

"
D !�2 "

"

from which we deduce

"
"
� "

"
�
�
�1

2
"
"

�
„ .mod „2/ ; "

"
� "

"
�
�
C1

2
"
"

�
„ .mod „2/:
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Note that in the stated skein algebra at ! D C1, the height order is irrelevant; said differently, at
!„ D exp

��1
4
„�, we have the skein relation

i
j
� i

j
.mod „/:

Now, if either pH <Qo pL and .s.pH /; s.pL//D .�;C/ or if pL <Qo pH and .s.pH /; s.pL//D .C;�/
then, using (5),

C� D !�2 C� and C� D !�2 C�
from which we deduce

C� � C� �
�
C1

2
C�
�
„ .mod „2/ ; C� � C� �

�
�1

2
C�
�
„ .mod „2/:

If pH <Qo pL and .s.pH /; s.pL//D .C;�/, then (6) and (4) imply that

�
C D !�2 �

C C .!2�!�6/ C�
from which we deduce

�
C �

�
C D

�
1

2
�
C � 2 C�

�
„ .mod „2/:

Eventually the case where pL <Qo pH and .s.pH /; s.pL//D .�;C/ is deduced from this case by taking
the opposite of the preceding equality. This concludes the proof of the second equality of the lemma
when � is a transposition. The case of a general permutation � follows by induction on the number of
transpositions in a decomposition of � .

Proposition 2.52 Let .D1; s2; o1/ and .D2; s2; o2/ be two height ordered stated diagrams such that D1

and D2 intersect transversally in the interior of †P. Let .D1D2; s1s2/ be the stated diagram obtained by
staking D1 on top of D2, o1o2 the resulting height order and � the permutation sending o2o1 to o1o2. In
SC1.†/, the Poisson bracket from Definition 2.45 satisfies

fŒD1; s1�; ŒD2; s2�gs D
X

c2D1\D2

Resc.D1D2; s1s2/CRes�.D1D2; s1s2; o1o2/:

Proof In the algebra S!„.†/, the product gives ŒD1; s1; o1� � ŒD2; s2; o2� D ŒD1D2; s1s2; o1o2� and
ŒD2; s2; o2� � ŒD1; s1; o1�D ŒD2D1; s2s1; o2o1�. We pass from the diagram D1D2 to D2D1 by changing
each crossing in the intersection of the diagrams and changing the height order using � , so the formula is
a consequence of Lemma 2.51.

Remark 2.53 Neither f � ; � gs nor the formula in Proposition 2.52 depend on a choice of orientation of the
boundary arcs by Remark 2.46. When† is a closed surface, we recover Goldman’s formula [1986]. When
† has nontrivial boundary and no inner punctures, the subalgebra of the stated skein algebra generated by
tangles with states having only value C is isomorphic to the Muller algebra defined in [Muller 2016] (see
also [Lê 2018, Section 6]). The Poisson bracket restricts to the corresponding subalgebra of SC1.†/ and
the resulting Poisson algebra is isomorphic to Yuasa’s Poisson algebra [2015].
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Example 2.54 The Poisson bracket f�;�gs on the commutative algebra SC1.B/ is given by

f˛CC; ˛C�gs D�˛C�˛CC; f˛CC; ˛�Cgs D�˛�C˛CC;
f˛��; ˛C�gs D ˛C�˛��; f˛��; ˛�Cgs D ˛�C˛��;
f˛C�; ˛�Cgs D 0; f˛CC; ˛��gs D�2˛C�˛�C:

Example 2.55 For the triangle T , the Poisson structure is described by the formulas in Example 2.54 by
replacing ˛ by each of the three arcs ˛, ˇ and  , together with the following relations and their images
through the automorphisms � and �2:

f"�; ˛�0"gs D�1
2
"�˛�0"; f��; ˛�0Cgs D 1

2
��˛�0C; fC�; ˛�0�gs D�3

2
C�˛�0�C 2ˇ��0 :

3 Relative character varieties

3.1 Relative character varieties for open surfaces

In this subsection we briefly recall from [Korinman 2019] the definition and main properties of character
varieties for open surfaces.

The character variety of a closed punctured connected surface † is the algebraic quotient (familiar in
geometric invariant theory)

XSL2
.†/ WD Hom.�1.†P/;SL2.C//==SL2.C/

under the action by conjugation of SL2.C/. Recall that by “closed”, we mean that † is closed though in
this case †P is not closed when P¤∅. Goldman [1986] defined a Poisson structure on its algebra of
regular functions. It follows from [Barrett 1999; Bullock 1997; Przytycki and Sikora 2000; Turaev 1991]
that, given a spin structure S on † with quadratic form !S , there is a Poisson isomorphism

�S W .SC1.†/; f � ; � gs/ Š�!
�
CŒXSL2

.†/�; f � ; � g�:
For each noncontractible closed curve  , it is given by �S . /D .�1/!S .Œ �/C1� , where � is the regular
function � .Œ��/ WD Tr.�. //.

Korinman [2019] introduced a generalization of the character varieties to punctured surfaces which are
not necessarily closed and which is closely related to the construction of Fock and Rosly [1999] and
specifies to the constructions in [Alekseev and Malkin 1995; Alekseev et al. 1998; 2002; Guruprasad et al.
1997] when the marked surface is connected and has exactly one boundary arc (see [Korinman 2019] for
a precise comparison). We will also denote it by XSL2

.†/.

Notation 3.1 For a topological space X , we let …1.X / denote its fundamental groupoid: objects are the
points in X and morphisms are homotopy classes of oriented paths. We let s and t denote the source and
target maps, which for a morphism ˛ W v1! v2 are given by s.˛/D v1 and t.˛/D v2. By convention,
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we compose the morphisms from left to right, ie if ˛1 W v1! v2 and ˛2 W v2! v3 are two paths, their
composition is a path ˛1˛2 W v1 ! v3. For S � X , we denote by …1.X;S/ the full subcategory of
…1.X / whose objects are points in S . For a group G, the set Hom.…1.X;S/;G/ denotes the set of
functors � W…1.X;S/!G, where G is seen as a category with one element. With our conventions, if
t.˛1/D s.˛2/, then �.˛1˛2/D �.˛1/�.˛2/.

Let RSL2
.†/ be the set of functors � W…1.†P/! SL2 whose restriction to …1.@†P/�…1.†P/ is the

constant map with value the neutral element 12 2 SL2. Let G be the group of maps g W†P! SL2 whose
restriction to @†P is constant with value 12 and with finite support. It acts on RSL2

.†/ by the formula

g � �.˛/ WD g.s.˛//�1�.˛/g.t.˛//; � 2RSL2
.†/;g 2 G; ˛ 2…1.†P/:

Both RSL2
.†/ and G have a structure of affine scheme and the action is algebraic so we can define the

GIT quotient

(28) XSL2
.†/ WDRSL2

.†/==G:

The character variety turns out to be an affine Poisson variety whose Poisson structure (given by a
generalized Goldman formula) depends on a choice of orientation of the boundary arcs. It is proved in
[Korinman 2019, Theorem 1.1] that its algebra of regular functions CŒXSL2

.†/� is well behaved under
triangular decompositions: for a topological triangulation �, there are an injective Poisson morphism
i� WCŒXSL2

.†/� ,!N
T2F.�/CŒXSL2

.T /� and Poisson Hopf comodule maps �L and �R such that the
following sequence is exact:

(29) 0!CŒXSL2
.†/� i��!

O
T2F.�/

CŒXSL2
.T /� �

L��ı�R������!
� O

e2VE.�/
CŒSL2�

�
˝
� O

T2F.�/

CŒXSL2
.T /�

�
:

In the present paper, we proceed by describing the character variety for the bigon and the triangle, together
with the Hopf comodule maps �L and �R. Then, in virtue of the above property, we characterize the
Poisson structure of the relative character variety for any triangulated punctured surface as the kernel of
�L� � ı�R.

First, recall that sl2 denotes the Lie algebra of the 2� 2 traceless matrices. It has a basis formed by

H WD
�

1 0

0 �1

�
; E WD

�
0 1

0 0

�
and F WD

�
0 0

1 0

�
:

In order to define the Poisson structure, we will need the following.

Definition 3.2 The classical r–matrices r˙ 2 sl˝2
2

are the bivectors rC WD 1
2
H ˝H C 2E˝F and

r� WD 1
2
H˝HC2F˝E. Their symmetric part � D 1

2
H˝HCE˝FCF˝E is the invariant bivector

associated to the (suitably normalized) Killing form and we denote by NrC WDE˝F �F ˝E DW �Nr�
their skew-symmetric part.

The classical r–matrices satisfy the classical Yang–Baxter equation (see [Chari and Pressley 1994,
Section 2.1; Drinfeld 1983] for details).
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Notation 3.3 Given a a boundary arc of †, we write o.a/DC if the o–orientation of a coincides with
the orientation induced by the orientation of †P, and write o.a/D� if the orientation are opposite.

3.1.1 The bigon Consider the bigon B and write o.bL/D "1 and o.bR/D "2.

Definition 3.4 The relative character variety of the bigon is XSL2
.B/ WD SL2.C/. Denote by

N D
�

xCC xC�
x�C x��

�
the 2� 2 matrix with coefficients in CŒXSL2

.B/�. The Poisson bracket associated to o is defined by

fN ˝N g"1;"2 WD Nr "1.N ˝N /C .N ˝N / Nr "2 :

Here we used the classical notation fN˝N g to denote the matrix defined by fN˝N g""0��0Dfx""0 ;x��0g
(see for instance [Chari and Pressley 1994, Section 2.2.A] for details on this notation).

Denote the Poisson variety .CŒSL2�; f � ; � g"1;"2/ by CŒSL2�
"1;"2 . Note that f � ; � g"1;"2 D�f � ; � g�"1;�"2 .

By [Korinman 2019, Lemma 4.1], the coproduct � W CŒSL2�
"1;"2 ! CŒSL2�

"1;"˝CŒSL2�
�";"2 and the

antipode S W CŒSL2�
"1;"2 ! CŒSL2�

�"1;�"2 are Poisson morphisms. In particular, the Poisson brackets
f � ; � g�;C and f � ; � gC;� are the only ones which endow SL2.C/ with a Poisson–Lie structure.

3.1.2 The triangle Consider the triangle T and fix an orientation o of each of its three boundary arcs a,
b and c. We will use the notation s.˛/D t.ˇ/ WD c, s. /D t.˛/ WD b and s.ˇ/D t. / WD a. Here, for
instance, we think of ˛ as an oriented path joining a point in c D s.˛/ (source) to a point in b D t.˛/

(target).

Definition 3.5 The relative character variety of the triangle is the affine variety

XSL2
.T / WD f.M˛;Mˇ;M / 2 SL2.C/

3 jMMˇM˛ D 1g:
Given ı 2 f˛; ˇ;  g, denote by

Nı WD
�
ı.C;C/ ı.C;�/
ı.�;C/ ı.�;�/

�
the 2� 2 matrix with coefficients in CŒXSL2

.T /�. The Poisson bracket f � ; � go is defined by the formulas

fNı˝Nıgo WD Nr o.s.ı//.Nı˝Nı/C .Nı˝Nı/ Nr o.t.ı//; ı 2 f˛; ˇ;  g;
fN˛˝N go WD �.N˛˝ 1/r o.b/.1˝N /;

fN ˝Nˇgo WD �.N ˝ 1/r o.a/.1˝Nˇ/;

fNˇ˝N˛go WD �.Nˇ˝ 1/r o.c/.1˝N˛/:

Note that, writing

S.Nı/ WD
�

ı.�;�/ �ı.C;�/
�ı.�;C/ ı.C;C/

�
;
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the last expressions can be rewritten in the form

fN˛˝S.N /go D .N˛˝S.N //r
o.b/;

fN ˝S.Nˇ/go D .N ˝S.Nˇ//r
o.a/;

fNˇ˝S.N˛/go D .Nˇ˝S.N˛//r
o.c/:

Given a boundary arc d 2 fa; b; cg, we define a left Hopf-comodule

�L
d WCŒXSL2

.T /�!CŒSL2�
.Co.d/;�o.d//˝CŒXSL2

.T /�; 
�L

d
.ı.C;C// �L

d
.ı.C;�//

�L
d
.ı.�;C// �L

d
.ı.�;�//

!
WD
�� xCC xC�

x�C x��
�˝Nı if s.ı/D d;

1˝Nı otherwise:

Similarly, define a right Hopf-comodule �R
d
WCŒXSL2

.T /�!CŒXSL2
.T /�˝CŒSL2�

.�o.d/;Co.d// by 
�R

d
.ı.C;C// �R

d
.ı.C;�//

�R
d
.ı.�;C// �R

d
.ı.�;�//

!
WD
�

Nı˝
� xCC xC�

x�C x��
�

if t.ı/D d;

Nı˝ 1 otherwise:

By [Korinman 2019, Lemma 4.6], both �L
d

and �R
d

are Poisson morphisms.

3.1.3 The general case Let † be a punctured surface, � a topological triangulation of †, and o� an
orientation of each edge of �. For a face T 2 F.�/, let oT be the orientation of its boundary arcs given
by o�. Equip the algebra

N
T2F.�/CŒXSL2

.T /�oT with the Poisson bracket defined in Definition 3.5.
Each inner edge e 2 VE.�/ lifts to two oriented boundary arcs in †� WD

F
T2F.�/ T . We denote by eL

the lift of e whose orientation coincides with the induced orientation of †� and by eR the other lift. The
comodule maps �L

eL
and �R

eR
induce the comodule maps

�L W
O

T2F.�/

CŒXSL2
.T /�oT !

� O
e2VE.�/

CŒSL2�
�;C

�
˝
� O

T2F.�/

CŒXSL2
.T /�oT

�
;

�R W
O

T2F.�/

CŒXSL2
.T /�oT !

� O
T2F.�/

CŒXSL2
.T /�oT

�
˝
� O

e2VE.�/
CŒSL2�

�;C
�
:

Definition 3.6 The relative character variety XSL2
.†/ is the affine variety whose algebra of regular

functions is the kernel of �L� � ı�R.

Lemma 3.7 [Korinman 2019, Theorem 1.4] As a Poisson variety, XSL2
.†/ only depends , up to

canonical isomorphism , on the marked surface † and the orientation o of the boundary arcs (so does not
depend on the triangulation � or on o�).

We denote by f � ; � go the Poisson bracket on CŒXSL2
.†/�. More precisely, in [Korinman 2019], we endow

the variety XSL2
.†/ WD RSL2

.†/==G (which only depends on †) with a Poisson structure, given by a
generalization of Goldman formula, which only depends on o. We then construct a splitting morphism
i� and prove in [Korinman 2019, Theorem 1.4] that we have the exact sequence (29), thus XSL2

.†/ can
be alternatively defined using Definition 3.6.
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Moreover when † is closed, the Poisson variety XSL2
.†/ is canonically isomorphic to the “classical”

(Culler–Shalen) character variety with its Goldman Poisson structure [Korinman 2019, Theorem 1.1].

3.2 Relation between relative character varieties and stated skein algebras

The goal of this subsection is to prove Theorem 1.3 which we recall here for the reader’s convenience:

Theorem 3.8 Suppose that † has a topological triangulation �. Let o� be an orientation of the edges of
� and o be the induced orientation of the boundary arcs of †. There exists an isomorphism of Poisson
algebras

‰.�;o�/ W .SC1.†/; f � ; � gs/ Š�! .CŒXSL2
.†/�; f � ; � go/:

Moreover , the above isomorphism exists for small punctured surfaces (see Definition 2.8), for which it
only depends on o.

We first prove this theorem for the bigon and the triangle, then we prove the general case using a topological
triangulation.

3.2.1 The case of the bigon Let

M WD
�
˛CC ˛C�
˛�C ˛��

�
; N WD

�
xCC xC�
x�C x��

�
and C WD

�
0 1

�1 0

�
be three matrices with coefficients in SC1.B/, CŒSL2� and C, respectively.

Lemma 3.9 For "1; "2 2 f�;Cg, there is a Poisson isomorphism

‰"1;"2 W .SC1.B/; f � ; � gs/ Š�!CŒSL2�
"1;"2

defined by

‰"1;"2.M / WD

8̂̂̂<̂
ˆ̂:

N if ."1; "2/D .�;C/;
CNC if ."1; "2/D .C;�/;
�CN if ."1; "2/D .C;C/;
�NC if ."1; "2/D .�;�/:

Proof That ‰"1;"2 is an isomorphism of algebras follows from the fact that det.C /D 1. Let us see the
compatibility of ‰"1;"2 with the Poisson structures. For ."1; "2/ D .�;C/, this follows from a direct
comparison of Definition 3.4 and Example 2.54. Indeed,

fN ˝N g�;C D Nr�.N ˝N /C .N ˝N / NrC

D .F ˝E �E˝F /.N ˝N /C .N ˝N /.E˝F �F ˝E/

D
�

0 xCC
0 x�C

�
˝
�

xC� 0

x�� 0

�
�
�

xC� 0

x�� 0

�
˝
�

0 xCC
0 x�C

�
C
�

0 0

xCC xC�

�
˝
�

x�C x��
0 0

�
�
�

x�C x��
0 0

�
˝
�

0 0

xCC xC�

�
:
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We recover the formulas computed in Example 2.54. For ."1; "2/D .C;C/, we prove that the isomorphism
' W CŒSL2�

�;C Š�! CŒSL2�
C;C given by ' WD ‰C;C ı .‰�;C/�1, is a Poisson morphism. Note that

'.N /D�CN and that .C ˝C / Nr " D Nr�".C ˝C /. It follows that

f'.N /˝'.N /gC;C D NrC.CN ˝CN /C .CN ˝CN / NrC

D .C ˝C /. Nr�.N ˝N /C .N ˝N / NrC/D '˝2.fN ˝N g�;C/;
which proves the claim. The two remaining cases for ."1; "2/ are proved similarly.

3.2.2 The case of the triangle For ı 2 f˛; ˇ;  g, let

Mı WD
�
ıCC ıC�
ı�C ı��

�
and Nı WD

�
ı.C;C/ ı.C;�/
ı.�;C/ ı.�;�/

�
be two matrices with coefficients in SC1.T / and CŒXSL2

.T /�, respectively.

Lemma 3.10 There is a Poisson isomorphism ‰o W .SC1.T /; f � ; � gs/ Š�!
�
CŒXSL2

.T /�; f � ; � go� defined
by

‰o.Mı/ WD

8̂̂̂<̂
ˆ̂:

Nı if .o.s.˛//; o.t.˛///D .�;C/;
CNıC if .o.s.˛//; o.t.˛///D .C;�/;
�CNı if .o.s.˛//; o.t.˛///D .C;C/;
�NıC if .o.s.˛//; o.t.˛///D .�;�/;

for each ı 2f˛; ˇ;  g. Moreover , if d 2fa; b; cg is a boundary arc of T , the following diagrams commute:

SC1.T / SC1.B/˝SC1.T /

CŒXSL2
.T /� CŒSL2�˝CŒXSL2

.T /�

�L
d

‰oŠ ‰o.d/;�o.d/˝‰oŠ
�L

d

SC1.T / SC1.T /˝SC1.B/

CŒXSL2
.T /� CŒXSL2

.T /�˝CŒSL2�

�R
d

‰oŠ ‰o˝‰�o.d/;o.d/Š
�R

d

Proof That ‰o is an algebra morphism follows from Lemma 2.29. For ı 2 f˛; ˇ;  g, the equality
.‰o/˝2.fı""0 ; ı��0go/ D f‰o.ı""0/; ‰o.ı��0/gs follows from the same computation that the proof of
Lemma 3.9. For o.a/D o.b/D o.c/DC,

fN˛˝N go D�.N˛˝ 1/
�

1

2
H ˝H C 2E˝F

�
.1˝N /

D�1

2

�
˛.C;C/ �˛.C;�/
˛.�;C/ �˛.�;�/

�
˝
�
 .C;C/  .C;�/
� .�;C/ � .�;�/

�
�2

�
0 ˛.C;C/
0 ˛.�;C/

�
˝
�

0 0

 .C;C/  .C;�/
�
:

We recover the formulas of Example 2.55; hence .‰o/˝2.f˛""0 ; ��0go/D f‰o.˛""0/; ‰o.��0/gs . We
get similar formulas by permuting cyclically the arcs  , ˇ and ˛. This proves that ‰o is a Poisson
morphism when o.a/D o.b/D o.c/DC. For another choice o0 of orientation of the boundary arcs, we
prove that ‰o0 is Poisson by showing that the isomorphism ‰o0 ı .‰o/�1 is Poisson. This follows from a
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similar computation to the one in the proof of Lemma 3.9 by using the fact that .C˝C /r "D r�".C˝C /.
The fact that the two diagrams in the lemma commute follows from a straightforward computation.

3.2.3 The general case: proof of Theorem 1.3 Consider a topological triangulation � of a punctured
surface †, together with a choice o� of orientation of its edges. Consider the commutative diagram

0 SC1.†/ ˝T SC1.T / .˝eSC1.B//˝ .˝T SC1.T //

0 CŒXSL2
.†/� ˝T CŒXSL2

.T /� .˝eCŒSL2�
�;C/˝ .˝T CŒXSL2

.T /�/

i�

Š9!‰.�;o�/

�L��ı�R

Š˝T‰
oT Š.˝e‰

�;C/˝.˝T‰
o.T//

i� �L��ı�R

In this diagram, both lines are exact and all morphisms are Poisson by Lemma 2.47 and [Korinman 2019];
hence there exists a unique Poisson isomorphism ‰.�;o�/ W .SC1.†/; f � ; � gs/ Š�! .CŒXSL2

.†/�; f � ; � go/
induced by restriction of ˝T‰

o.T/. This concludes the proof.

3.3 Relative spin structures and explicit formulas

The goal of this subsection is to give an explicit formula for the morphism ‰.�;o�/, when evaluated on
the generators of SC1.†/. A key point is to have a global method to compute some signs that depend
on the combinatorial data .�; o�/. We provide such a method by introducing the notion of relative spin
structure, which gives a geometric interpretation these signs. We end the section by relating the ‰.�;o�/

with the morphism of [Costantino and Lê 2022, Theorem 8.12].

3.3.1 Relative spin structures Since the classical identifications between skein algebras of closed
punctured surfaces and character varieties are indexed by spin structures, it is natural to expect that the
combinatorial data .�; o�/ indexing the isomorphism of Theorem 1.3 encode a generalization of the
notion of spin structures which would have a good behavior for the operation of gluing boundary arcs
together. Before defining this notion, we introduce some notation.

Notation 3.11 (1) In this subsection, † D .†;P/ will denote a triangulable punctured surface, o
an orientation of its boundary arcs and .�; o�/ a combinatorial data, and we equip †P with a
Riemannian structure compatible with the orientation. For each boundary arc a, we fix a point
va 2 a. If @†¤∅, we write V WD fvaga where a runs through the set of boundary arcs. If † is
closed, we fix an arbitrarily point va in each connected component a of †P and write V WD fvaga.

(2) Let � W U†P ! †P denote the unitary tangent bundle. For Ev D .v;u/ 2 U†P, we denote by
�EvD .v;�u/ the vector with opposite orientation. Let �1=2

Ev W Ev!�Ev be the class in …1.U†P/ of
a path making a half-twist in the fiber over �.Ev/ in the direction given by the orientation and write
�Ev WD �1=2

Ev �
1=2

�Ev . For simplicity, for a path ˛ W Ev1! Ev2, we will write �1=2˛ and ˛�1=2 instead of
�1=2
�Ev1

˛ and ˛�1=2
Ev2

with no confusion possible. When @†¤∅, for each boundary arc a, we denote
by Eva 2 U†P the lift of va pointing in the direction of o. When † is closed, we fix an arbitrarily
lift Eva of each va. We write yVC WD fEvaga and yV WD fEva;�Evaga.
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Definition 3.12 A relative spin structure on † is a functor W 2 Hom.…1.U†P; yVC/;Z=2Z/ such that
W .�Ev/D 1 for all Ev 2 yVC. We denote by Spin.†/ the set of relative spin structures on †.

Remark 3.13 When † is closed and connected, an element W 2 Spin.†/ is a group morphism
W W �1.U†P; EvC0 / ! Z=2Z such that W .�EvC

0
/ D 1. Since Z=2Z is abelian, such a morphism is

equivalent to a group morphism W WH1.U†P;Z=2Z/!Z=2Z satisfying W .Œ� �/D 1. Such a morphism
W defines a regular double covering zU of U†P such that the covering on each fiber is nontrivial. Since
Spin.2/ is the only nontrivial double covering of SO.2/, the space zU is the total space of a Spin.2/ fiber
bundle over †P lifting the bundle of orthogonal frames induced by the metric; hence it defines a spin
structure. There is actually a one-to-one correspondence between isomorphism classes of spin structures
and such morphisms W (see [Milnor 1963] for details). Therefore a relative spin structure is the same
as a “standard” spin structure in the closed case. When the surface has nonempty boundary, an element
W 2 Spin.†/ still induces a group morphism W , thus a spin structure. However, the functor W contains
more information than W which permits to “glue” relative spin structures together.

Let a and b be two distinct boundary arcs of † and denote by p W†P!†Pja#b the projection. Write
c WD p.a/D p.b/. We assume that

(1) the restriction p W†P n .a[ b/!†Pja#b n c is an isometry,

(2) the restriction p W a! c and p W b! c are isometries, and

(3) the orientations o of a and b coincide when gluing the arcs and p.va/D p.vb/DW vc .

The projection induces a lift Evc 2 U†Pja#b of vc and a functor

p� W…1.U†P; yVC/!…1.U†Pja#b; yV a#bC [fEvcg/:

Lemma 3.14 For W 2 Spin.†/, there exists a unique W ja#b 2 Spin.†ja#b/ such that

W ja#b.p�.˛//DW .˛/

for all ˛ 2…1.U†P; yVC/.

Proof Note that the image of p� generates the groupoid …1.U†Pja#b; yV a#bC [fEvcg/ in the sense that
any path ˛ 2 …1.U†Pja#b; yV a#bC [ fEvcg/ can be written as a composition ˛ D p�.˛1/ � � �p�.˛n/ for
some ˛i 2…1.U†P; yVC/. Hence for W 2 Spin.†/, there exists a unique functor�W W…1.U†Pja#b; yV a#bC [fEvcg/! Z=2Z

such that �W .��.˛//DW .˛/ for all ˛ 2…1.U†P; yVC/, and W ja#b has to be the restriction of �W to
the full subcategory …1.U†Pja#b; yV a#bC /.

Note that the map ra#b WSpin.†/!Spin.†ja#b/ sending W to W ja#b is surjective but not injective. Indeed
when lifting a functor in Hom.…1.U†P; yVC/;Z=2Z/ to a functor in Hom.…1.U†P; yVC[fEvcg/;Z=2Z/

there is a Z=2Z ambiguity. Note also that if a, b, c and d are four distinct boundary arcs, one obviously
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has ra#b ı rc#d D rc#d ı ra#b . In particular, once some combinatorial data .�; o�/ of † are fixed, any
relative spin structure on † can be obtained by gluing some relative spin structure on each face of the
triangulation.

3.3.2 Lifts of embedded curves and the function w Let us call embedded arc a smooth embedding
˛ W Œ0; 1�! †P such that ˛.0/; ˛.1/ 2 @†P. To any embedded arc and any simple closed curve, we
associate two lifts in U†P as follows.

For ˛ an embedded arc oriented from the boundary arc a to the boundary arc b, we isotope ˛ (in the class
of embedded arc) such that ˛.0/ D va, ˛.1/ D vb , the vectors ˛0.0/ and ˛0.1/ are tangent to a and b,
and such that ˛0.0/ points in the direction of a opposite to the orientation induced by the orientation of
†P and ˛0.1/ points in the direction of b induced by the orientation of †P. The positive lift of ˛ is the
homotopy class ǪC 2…1.U†P; yV / of the continuous map t 7! .˛.t/; ˛0.t/=k˛0.t/k/.
For v a point in a boundary arc a, we write o.v/ D 0 if the orientation of a agrees with the induced
orientation of †P and o.v/D 1 otherwise. The o–lift Ǫ o 2…1.U†P; yVC/ is defined by the formula

(30) ǪC D .�1=2/1�o.s.˛// Ǫ o.�1=2/o.t.˛//:

Let  be a smooth embedded curve and v 2 V . We define OCv as the as the homotopy class of a map
t 7! �

ˇ.t/; ˇ0.t/=kˇ0.t/k� where ˇ is a smooth immersion ˇ W Œ0; 1�! †P which is isotopic to  such
that ˇ.0/D v D ˇ.1/ and ˇ0.0/ points in the direction induced by the orientation of the surface for OCv .
Similarly, we define O o

v as the homotopy class of a map t 7! �
ˇ.t/; ˇ0.t/=kˇ0.t/k� where this time ˇ0.0/

points in the direction of o for O o
v . If † is closed and  is in a connected component b, we impose that

OCv D O o
v is defined from an immersion ˇ such that .ˇ.0/; ˇ0.0//D vb .

Notation 3.15 For W 2 Spin.†/ and ˛ an embedded arc, we write w.˛/ WDW . Ǫ o/ 2 Z=2Z. For  a
closed curve we write w. / WDW . O o

v /.

Remark 3.16 The value w. / associated to a closed curve is obviously independent of the choice of
the point v. Moreover, as noted in Remark 3.13, the value W . O / only depends on the homology class
Œ O o� 2 H1.U†PIZ=2Z/ and is closely related to the Johnson quadratic form as follows. Let figiD1;:::;n

be a collection of simple closed curves. Johnson [1980, Theorem 1.A] proved that the class

y WD
nX

iD1

Œ O o
i �C nŒ� � 2 H1.U†PIZ=2Z/

only depends on the homology class of x WDPn
iD1Œi � 2 H1.†PIZ=2Z/; hence the assignation x 7! y

defines a map (not a morphism) H1.†PIZ=2Z/! H1.U†PIZ=2Z/. Moreover, for a (relative) spin
structure W , Johnson [1980, Theorem 1.B] proved that the map ! W H1.†PIZ=2Z/! Z=2Z defined by
!
�Pn

iD1Œi �
� WD nCPn

iD1w.Œi �/ .mod 2/ satisfies the relation

!.Œ˛Cˇ�/D !.Œ˛�/C!.Œˇ�/ChŒ˛�; Œˇ�iI
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hence ! is a quadratic form for .H1.†PIZ=2Z/; h � ; � i/, where h � ; � i represents the intersection form.
Thus the values w. / in Notation 3.15 are related to the Johnson quadratic form of the underlying spin
structure by !.Œ �/D w. /C 1 .mod 2/.

3.3.3 Relative spin structures associated to combinatorial data In order to assign a relative spin
structure to some combinatorial data .�; o�/ in a canonical way, we need to assign to each triangle T ,
equipped with an orientation oT of its boundary arcs, a canonical relative spin structure and then glue the
triangles along their faces. Let ˛, ˇ and  be the three paths in Figure 3 which generate the groupoid
…1.T ;V / with relation ˇ˛D 1. Note that for any choice of oT , one has the relation O oT ǑoT Ǫ oT D ��2.
Hence a relative spin structure W on T is described by three elements W . Ǫ oT /;W . ǑoT /;W . O oT /2Z=2Z

such that W . Ǫ oT /CW . ǑoT /CW . O oT /D 0. Therefore there exist four different relative spin structures
on T .

Definition 3.17 The distinguished relative spin structure on T is the relative spin structure W such that
W . Ǫ oT / DW . ǑoT / DW . O oT / D 0. For † a punctured surface with combinatorial data .�; o�/, we
associate a relative spin structure W .�;o�/ 2 Spin.†/ by gluing together the distinguished spin structures
on the faces of the triangulation.

Note that the distinguished relative spin structure W on T satisfies w.˛/ D w.ˇ/ D w. / D 0 and
w.˛�1/D w.ˇ�1/D w.�1/D 1.

Remark 3.18 Since we associate to each face a specific (named distinguished) relative spin structure,
there is no reason to believe that every spin structure on †P can be associated to some combinatorial data.
Moreover we will not investigate under which condition two combinatorial data induce the same relative
spin structure. Novak and Runkel [2015] showed that any spin structure on a surface can be encoded by
the combinatorial data consisting in a triangulation (with no degenerate face), an orientation of the edges
and a choice of distinguished vertex for each face. Moreover they proved that two such combinatorial
data induce the same spin structure if and only if they can be related by a sequence of elementary moves.
It would be interesting to compare their approach to Definition 3.17.

We now state an explicit formula for the values w.˛/ associated to a relative spin structure W .�;o�/.
For each edge e 2 E.�/, fix a point ve 2 e and let V� D fvege2E.�/. When @†¤ ∅, we assume that
V�\@†P D V . When † is closed, we assume that V � V�. Let Eve 2U†P be the lift of ve oriented in
the direction of o� and set yV�C WD fEve j e 2 E.�/g and yV� WD fEve;�Eve j e 2 E.�/g. Note that the set

yG� WD f. Ǫ oT /˙1; . ǑoT /˙1; . O o
T /
˙1 j T 2 F.�/g

generates the groupoid …1.U†P; yV�C /. By definition of the gluing operation, the functor W .�;o�/ is the
restriction of the functor �W 2 Hom.…1.U†P; yV�C /;Z=2Z/ characterized by�W . Ǫ oT

T /D �W . ǑoT
T /D �W . O oT

T /D 0
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for every face T and �W .�Ev/ D 1 for any Ev 2 yV�C . Set G� WD �. yG�C/ D f˛˙1
T ; ˇ˙1

T ; ˙1
T IT 2 F.�/g

and for ı 2G� a path in T , write w.ı/ WD �W . OıoT /. Hence w.ı/D 0 if ıD ˛T , ˇT or T and w.ı/D 1

if ı D ˛�1
T , ˇ�1

T or �1
T .

Let ˛ be either an embedded arc or a closed curve and choose a decomposition

(31) ˛ D ˛1 � � �˛n; ˛i 2G�;

such that either ˛i and ˛iC1 lie in different faces Ti ¤ TiC1 of �, or Ti D TiC1 is a degenerate triangle,
with two boundary arcs glued together to give an arc c in †P, and ˛i˛iC1 crosses c D t.˛i/D s.˛iC1/

transversally. In the above statement, the indices i are taken in Z=nZ when ˛ is a closed curve. Note
that such a decomposition is obtained by isotoping ˛ transversally with minimal intersection to the edges
of the triangulation, and then cutting ˛ along the edges. For .T ; oT / a triangle with oriented edges, a an
edge and va 2 a, recall that we write oT .va/D 0 if the orientation of a corresponds to the orientation
induced by the orientation of T and write oT .va/DC1 otherwise.

Lemma 3.19 The function w associated to the relative spin structure W .�;o�/ is characterized by the
formula

w.˛/D
�Pn

iD1w.˛i/C
Pn�1

iD1 oTi
.t.˛i// .mod 2/ if ˛ is an embedded arc;Pn

iD1w.˛i/C
Pn

iD1 oTi
.t.˛i// .mod 2/ if ˛ is a closed curve:

Proof First note that for the positive lifts,

ǪC D ǪC
1
� � � ǪCn :

This equality follows from the fact that the embedded curve chosen to represent ǪC can be isotoped
such that it crosses tangentially the edges of � in such a way that, when cutting along the edges, one
obtains the composition ǪC

1
� � � ǪCn . Note also that this equality is essentially [Costantino and Lê 2022,

Proposition 8.11]. Recall from (30) that ǪCi D .�1=2/1�o.s.˛i // Ǫ oi .�1=2/o.t.˛i // and note that, since we
assume that the faces Ti and TiC1 are distinct,

.1� oTi
.t.˛i///C oTiC1

.s.˛iC1//D 2oTiC1
.s.˛i//

(where indices are understood modulo n when ˛ is a closed curve). When ˛ is an arc, we thus obtain the
equality

Ǫ oT1

1
� � � Ǫ oTn

n D �
Pn�1

iD1 oTi
.t.˛i //.�1=2/1�o.s.˛// ǪC.�1=2/o.t.˛//;

from which we deduce that

w.˛/ WDW . Ǫ o/DW
�
.��1=2/1�o.s.˛// ǪC.��1=2/o.t.˛//

�
DW

�
��

Pn�1
iD1 oTi

.t.˛i // Ǫ oT1

1
� � � Ǫ oTn

n

�
D

n�1X
iD1

oTi
.t.˛i//C

nX
iD1

w.˛i/ .mod 2/:

The computation when ˛ is a closed curve is done in the same manner.
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3.3.4 Explicit formulas for the isomorphism In order to describe the isomorphism ‰.�;o�/ of
Theorem 1.3 more explicitly, let us recall from [Korinman 2019] a set of generators for the ring of
regular functions of the relative character varieties.

For ˛ an embedded arc, seen as a path in the fundamental groupoid, and "; "0 D˙, the regular function
F˛""0 2CŒXSL2

.†/� is defined on the class Œ�� of a functor � 2RSL2
.†P/ by

�.˛/D
�

F˛CC.�/ F˛C�.�/
F˛�C.�/ F˛��.�/

�
:

For  a closed curve, represented by an arbitrary path v 2…1.†P;V /, one defines F 2CŒXSL2
.†/�

by F .Œ��/ WD Tr.�.v//. Since the trace is invariant by conjugacy, the value Tr.�.v// does not depend
on the choice of base point v nor on the representative � in the class Œ��. The functions F˛""0 and F

generate the algebra CŒXSL2
.†/�. For ˛ an arc, we set

N˛ WD
�

F˛CC F˛C�
F˛�C F˛��

�
the 2� 2 matrix with coefficients in CŒXSL2

.†/�. Note that

N˛�1 D
�

F˛�� �F˛C�
�F˛�C F˛CC

�
:

For ˛ an embedded arc and "; "0 D˙, we denote by ˛""0 2 SC1.†/ the class of the arc ˛ with state " at
s.˛/ and "0 at t.˛/. We write

M˛ WD
�
˛CC ˛C�
˛�C ˛��

�
the 2� 2 matrix with coefficients in SC1.†/. Note that

M˛�1 D .M˛/
| D

�
˛CC ˛�C
˛C� ˛��

�
:

Recall the isomorphism ‰.�;o�/ of Theorem 1.3 and recall that C�1 D �0
1
�1

0

�
.

Theorem 3.20 For each embedded arc ˛,

(32) ‰.�;o�/.M˛/D .�1/w.˛/.C�1/1�o.˛.0//N˛.C�1/o.˛.1//:

For each closed curve  ,

(33) ‰.�;o�/. /D .�1/w./F :

Remark 3.21 When † is closed, recall from Remarks 3.13 and 3.16 that W .�;o�/ is a standard spin
structure associated to a quadratic form ! such that w. / D !.Œ �/C 1. Hence in the closed case,
the isomorphism ‰.�;o�/ coincides with the “standard” isomorphisms described at the beginning of
Section 3.1.
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Recall that ‰.�;o�/ is defined by the diagram

(34)

SC1.†/ ˝T SC1.T /

CŒXSL2
.†/� ˝T CŒXSL2

.T /�

i�

Š‰.�;o�/ Š˝T‰
oT

i�

For x 2 SC1.T /, we still denote by x the element in ˝T SC1.T / having 1 in the factors SC1.T
0/ for

T 0 ¤ T and x in the factor SC1.T /. Hence for ı 2G� a path in T , the matrix Mı is considered as a
2� 2 matrix with coefficients in ˝T SC1.T /. Similarly, the matrix Nı is considered as a 2� 2 matrix
with coefficients in ˝T CŒXSL2

.T /�.

Proof We first show that if (32) holds for an arc ˛, then it holds for ˛�1. This follows from the fact that
w.˛�1/D w.˛/C 1, from the equalities .C�1/| D C and A�1 D�C�1A|C�1 for A 2 SL2.C/, and
from the computation

‰.M˛�1/D‰.M |
˛ /D .�1/w.˛/C o.t.˛//.N˛/

|C 1�o.s.˛//

D .�1/w.˛/C1.C�1/1�o.s.˛�1//.�C�1N
|
˛ C�1/.C�1/o.t.˛

�1//

D .�1/w.˛
�1/.C�1/1�o.s.˛�1//N˛�1.C�1/o.t.˛

�1//:

Next let us prove the theorem for the triangle T . The fact that (32) holds for the arcs ˛T , ˇT and T is an
immediate consequence of the definition of ‰oT in Lemma 3.10 and from the definition of the canonical
spin structure in T . By the preceding arguments, (32) also holds for the arcs ˛�1

T , ˇ�1
T and �1

T , and the
theorem is proved for T .

In the general case, consider an arc ˛ and choose a decomposition

˛ D ˛1 � � �˛n; ˛i 2G�;

as before. By the gluing formula for stated skein algebras [Lê 2018, Theorem 3.1], i�.M˛/DM˛1
� � �M˛n

.
By definition of the morphism i� in (29), i�.N˛/DN˛1

� � �N˛n
. By the preceding case of the triangle,

.˝T‰
oT /.M˛i

/D .�1/w.˛i /.C�1/1�oTi
.s.˛i //N˛i

.C�1/oTi
.t.˛/:

Hence, by Lemma 3.19,

.˝T‰
oT / ı i�.M˛/D i�

�
.�1/w.˛/.C�1/1�o.s.˛//N˛.C�1/o.t.˛//

�
;

and (32) follows from the commutativity of the diagram (34). The proof for a closed curved is done
similarly by taking the trace of the above equality.

3.3.5 Comparison with Costantino and Lê’s isomorphism Let † be a connected punctured surface
with nontrivial boundary. Costantino and Lê [2022] defined the twisted character variety �.†/ as the
space of functors O� 2 Hom.…1.U†P; yV /;SL2.C// such that O�.�1=2

Ev / D C�1 for any Ev 2 yV . Let S
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denote the maximal spectrum of SC1.†/. For � 2 S, seen as a character � W SC1.†/!C�, and for ˛ an
oriented arc, write

�.˛/ WD
�
�.˛CC/ �.˛C�/
�.˛C�/ �.˛��/

�
:

Costantino and Lê [2022, Theorem 8.12] defined an affine isomorphism ‚ W S Š�! �.†/ sending a
character � to a functor O� such that �.˛/ D O�. ǪC/ for any embedded (even immersed) arc and such
that �. /D Tr. O�. OC// for any closed curve. Composing ‚ with the isomorphism induced by ‰.�;o�/,
one obtains an isomorphism XSL2

.†/ Š �.†/. By Theorem 3.20, this isomorphism sends a functor
� 2 Hom.…1.†P;V /;SL2.C// to a functor O� 2 Hom.…1.U†P; yV /;SL2.C// characterized by the
formulas O�. Ǫ o/ D .�1/w.˛/�.˛/ for any arc ˛, Tr. O�. O o/ D .�1/w./ Tr.�. // for any closed curve 
and O�.�1=2

Ev /D C�1 for any Ev 2 yV .

3.4 Classical Shadows

Suppose that ! 2C is a root of unity of odd order N > 1. A central representation of the stated skein
algebra is a finite-dimensional representation r W S!.†/! End.V / which sends each element of the
image of the morphism j of Theorem 1.2 to scalar operators. Fix a topological triangulation � of †
and an orientation o� of its edges. Then r induces a character on SC1.†/

‰.�;o�/

Š����!CŒXSL2
.†/� and this

character induces a point in the relative character variety XSL2
.†/ that we call the classical shadow of r ,

as in [Bonahon and Wong 2016] in the closed case. By definition, the classical shadow only depends on
the isomorphism class of r .

To motivate the results of this paper, we list three families of central representations. First, irreducible
representations are obviously central. Then choose for each triangle T 2F.�/ an irreducible representation
rT W S!.T /! End.VT / and consider the composition

r W S!.†/ i��!
O

T2F.�/

S!.T /
˝T rT���! End.˝T VT /:

Such a representation is central and were called local representations in [Bai et al. 2007]. Eventually,
consider the balanced Chekhov–Fock algebra Z!.†;�/ defined in [Bonahon and Wong 2011] after the
original construction of [Fock and Chekhov 1999]. Given a triangulated marked surface, Bonahon and
Wong [2011] defined an algebra morphism (the quantum trace) Tr W S!.†/! Z!.†;�/ (see also [Lê
2018]). One motivation is the fact that the representation theory of the balanced Chekhov–Fock algebra
is easier to study than the one of the skein algebras (see [Bonahon and Liu 2007; Bonahon and Wong
2017]). For an irreducible representation � W Z!.†;�/! End V of the balanced Chekhov–Fock algebra,
we call the quantum Teichmüller representation, the composition

r W S!.†/ Tr�! Z!.†;�/
��! End.V /:

Quantum Teichmüller representations are central.
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Appendix Proof of Proposition 2.38 and an application

A.1 Proof of Proposition 2.38

We divide the proof of Proposition 2.38 into five lemmas.

Throughout this section, we write A WD !�2. Denote by A D .Œ0; 1� � S1; fp;p0g/ the annulus with
punctures pDf0g�f1g and p0Df1g�f1g in each of its boundary components and let bDf0g�S1nfpg and
b0Df1g�S1nfp0g be its boundary arcs. Let  � Œ0; 1��S1 be the curve f1

2
g�S1. Let ı.n/; �.n/� Œ0; 1��S1

be the arcs with endpoints b and b0 such that ı.n/ spirals n times in the counterclockwise direction and �.n/

spirals n times in the clockwise direction while oriented from b0 to b. The arcs are drawn in Figure 7. By
convention, ı.0/ and �.0/ represent the empty diagram. Denote by ˇ the arc Œ0; 1��f�1g. By convention,
if ˛ is one of the arcs ˇ, ı.n/ or �.n/, we denote by ˛""0 2 S!.A/ the class of the corresponding stated
tangle with sign " in b and "0 in b0. The following lemma and its proof are quite similar, though stated in
a different skein algebra, to [Lê 2015, Proposition 2.2].

Lemma A.1 In S!.A/, the elements TN . / and ˇ""0 commute.

Proof First note that a direct application of the Kauffman bracket skein relations implies that

 � ı.n/""0 DAı
.nC1/
""0 CA�1ı

.n�1/
""0 and  � �.n/""0 DA�

.n�1/
""0 CA�1�

.nC1/
""0

when n� 1. Next we show by induction on n� 0 that Tn. / �ˇ""0 DAnı
.n/
""0 CA�n�

.n/
""0 . The statements

is an immediate consequence of the definitions when n D 0 and a direct application of the Kauffman
bracket relations when nD 1. Suppose that the results holds for n and nC 1. Then

TnC2. /ˇ""0 D  �TnC1. / �ˇ""0 �Tn. / �ˇ""0
D  � .AnC1ı

.nC1/
""0 CA�.nC1/�

.nC1/
""0 /� .Anı

.n/
""0 CA�n�

.n/
""0 /

DAnC2ı
.nC2/
""0 CA�.nC2/�nC2

""0 ;

and the statement follows by induction. Similarly, we show that ˇ""0 �Tn. /DA�nı
.n/
""0 CAn�

.n/
""0 . Hence,

TN . / �ˇ""0 �ˇ""0 �TN . /D .AN �A�N /.ı
.N /
""0 � �.N /""0 /D 0:

A

b0 b

ˇ

p

p0



A ı.2/
Q

b1

b2

b3

b4

ˇ

˛

Q ı.2/

Figure 7: The annulus A, the square Q and some arcs and curves.
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Denote by Q the square, ie a disc with four punctures on its boundary. Let b1; : : : ; b4 be its four boundary
arcs labeled in the counterclockwise order. When gluing b1 along b3, we obtain the annulus with b2 sent to
b and b4 sent to b0. We denote by i jb1#b3

WS!.A/ ,!S!.Q/ the gluing morphism. Let ˛; ˇ; ı.n/; �.n/�Q

be the arcs which are glued together to form  , ˇ, ı.n/ and �.n/, respectively, as in Figure 7. Fix an
arbitrary orientation o of the boundary arcs of Q and consider the filtration .Fm/m�0 associated to
S D fb1; b3g of Definition 2.11. Write d W S!.Q/!Z�0 the corresponding map and Gm WDFm =Fm�1

the corresponding graduation.

Lemma A.2 lt..˛CCC˛��/N /D lt.TN .˛CCC˛��//D ˛NCCC˛N��.

Proof First note that in G4, we have ˛��˛CC D q2˛CC˛��. So it follows from Lemma 2.27 that
in G2N , we have lt..˛CC C ˛��/N / D ˛NCC C ˛N��. Since TN .X /�X N is a polynomial of degree
strictly smaller that N , the degree of TN .˛CCC ˛��/� .˛CCC ˛��/N is strictly smaller than 2N ;
thus lt.TN .˛CCC˛��//D lt..˛CCC˛��/N /.

Let ˛.n/ be the diagram made of n parallel copies of ˛. Using the identifications @ı.n/D@�.n/D@˛.n/[@ˇ,
we denote by ı.n/

.s;";"0/; �
.n/

.s;";"0/ 2S!.Q/ the classes of the tangles ı.n/ and �.n/ with states given by a state
s of ˛.n/ and a state ."; "0/ of ˇ.

Lemma A.3 For 0< n<N and s a state of ˛.n/,

lt
�
ŒŒ˛.n/; s�; ˇ""0 �

�D .An�A�n/.ı
.n/

.s;";"0/� �
.n/

.s;";"0//;

where we used the notation Œx;y�D xy �yx.

Proof The diagram obtained by stacking ˛.n/ on top of ˇ has n crossings and thus 2n resolutions using
the Kauffman bracket relation. We remark that the resolution obtained by replacing each crossing by
is Anı

.n/

.s;";"0/ while the resolution obtained by replacing each crossing by is A�n�
.n/

.s;";"0/. These two
resolutions have degree 2n and all the others resolutions have degrees strictly smaller; thus

lt.Œ˛.n/; s� �ˇ""0/DAnı
.n/

.s;";"0/CA�n�
.n/

.s;";"0/:

We similarly prove lt.ˇ""0 � Œ˛.n/; s�/DA�nı
.n/

.s;";"0/CAn�
.n/

.s;";"0/ and conclude by taking the difference.

Lemma A.4 If x 2 S!.Q/ is a polynomial in S!.Q/ in the elements ˛""0 such that d.x/ < 2N and
such that x commutes with all elements ˇ�;�0 , then x is a constant.

Proof Let x DP
i2I xi Œ˛

ni ; si � be the decomposition in the basis of stated tangles with increasing
states si and denote by 2n < 2N its degree. Suppose, for the sake of contradiction, that n ¤ 0. Let
J D fj 2 I j ni D ng � I , so lt.x/DPj2J xj Œ˛

n; sj �. The hypothesis on x and Lemma A.3 imply that

0D lt.Œx; ˇ""0 �/D
X
j2J

xj .A
n�A�n/.ı

.n/

.sj ;";"0/� �
.n/

.sj ;";"0//:
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Since the elements ı.n/
.sj ;";"0/ and �.n/

.sj ;";"0/ are linearly independent for n� 1, we conclude that

xj .A
n�A�n/D 0

for all j 2 J . Since 0< n<N and N is odd, we obtain that xj D 0 for all j 2 J thus lt.x/D 0. This
gives the contradiction.

The set B0 WD f˛a�C˛bCC˛cC�; a; b; c � 0g [ f˛a�C˛b��˛cC�; a; b; c � 0g forms a basis of the algebra
S!.B/. This fact is Exercise 7 in Chapter IV, Section 6 of [Kassel 1995], and is proved as follows. Choose
an orientation o of the boundary arcs of B such that bL and bR points towards different punctures and
consider the filtration associated to S D fbL; bRg. For each element of the basis Bo, there exists exactly
one element of B0 which has the same leading term. For x 2 S!.B/, denote by c.x/ 2R the coefficient
of 1 in the decomposition of the basis B0.

Lemma A.5 c.TN .˛CCC˛��//D 0.

Proof Let n� 1 be an odd integer and let us show that c..˛CCC˛��/n/D 0. The proof will then follow
from the fact that TN .X / is an odd polynomial, thus is a linear combination of such elements, and the
fact that c is linear. The product ..˛CCC˛��/n/ develops as a sum of terms of the form x D x1 � � �xn

where xi is either ˛CC or ˛��. Using the defining relations of S!.B/, we can further develop each term
x as a linear combination of terms of the form ˛a�C˛bCC˛aC� and ˛a�C˛b��˛aC� where 2aC b has the
same parity as n. Since n is odd, each of these summands satisfies b ¤ 0 so c.x/D 0.

Proof of Proposition 2.38 Consider the element x WD TN .˛CCC ˛��/� ˛NCC � ˛N�� 2 S!.Q/. By
Lemma A.2, its degree is strictly smaller that 2N . By Lemma A.1, in S!.A/ the elements TN . / and
ˇ""0 commute. The image through the algebra morphism i jb1#b3

W S!.A/ ,! S!.Q/ of TN . / and ˇ""0
are respectively TN .˛CCC˛��/ and ˇ""0 , thus they commute. By Lemma 2.36, the elements ˛NCC and
˛N�� also commute with ˇ""0 so x commutes with each element ˇ""0 . Lemma A.4 implies that x is a
constant and Lemma A.5 implies that this constant is null.

A.2 A generalization of a theorem of Bonahon

Proposition 2.38 provides the following generalization of the main theorem of [Bonahon 2019]. Let A be
an R–algebra and � WCq ŒSL2�

˝k !A be a morphism of algebras. Let �i be the i th component of �. For
1� i � k, consider the following two matrices with coefficients in A:

Ai WD
�
�i.˛CC/ �i.˛C�/
�i.˛�C/ �i.˛��/

�
; A

.N /
i WD

�
�i.˛CC/N �i.˛C�/N
�i.˛�C/N �i.˛��/N

�
:

The following proposition was proved in [Bonahon 2019, Theorem 1] in the particular case where
�i.˛C�/�i.˛�C/D 0 for each i 2 f1; : : : ; kg.
Proposition A.6 If q is a root of unity of odd order N > 1, then

TN .Tr.A1 � � �Ak//D Tr.A.N /
1
� � �A.N /

k
/:
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Proof By Proposition 2.38 and using that both � and the .k�1/st coproduct

�.k�1/ WCq ŒSL2�!Cq ŒSL2�
˝k

are morphisms of algebras,

TN ı � ı�.k�1/.˛CCC˛��/D � ı�.k�1/.˛NCCC˛N��/:

We conclude by remarking that

� ı�.k�1/.˛CCC˛��/D Tr.A1 � � �Ak/ and � ı�.k�1/.˛NCCC˛N��/D Tr.A.N /
1
� � �A.N /

k
/;

where the second equality follows from the fact that jB is a morphism of Hopf algebras (Lemma 2.28),
hence commutes with �.k�1/.
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We give an affirmative answer to many cases of a question due to Shalom, which asks if the commensurator
of a thin subgroup of a Lie group is discrete. Let K < � < G be an infinite normal subgroup of an
arithmetic lattice � in a rank-one simple Lie group G, such that the quotient QD �=K is infinite. We
show that the commensurator of K in G is discrete, provided that Q admits a surjective homomorphism
to Z. In this case, we also show that the commensurator of K contains the normalizer of K with finite
index. We thus vastly generalize a 2021 result of the authors, which showed that many natural normal
subgroups of PSL2.Z/ have discrete commensurator in PSL2.R/.
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1 Introduction

Let G be a semisimple Q–algebraic group, and let G.Z/ denote its group of integer points. Roughly
speaking, a subgroup � of G is called arithmetic if it is commensurable in a wide sense with G.Z/;
see Witte Morris [36]. That is, there is an element g 2 G such that the group G.Z/\ �g has finite
index in both G.Z/ and �g. In general, if G is an algebraic group and � < G is a subgroup, we write
CommG.�/ for the commensurator of � in G, ie the subgroup consisting of g 2G such that � \�g has
finite index in both � and �g. The commensurability criterion for arithmeticity due to Margulis [24] (see
also Witte Morris [36]) characterizes arithmetic subgroups of algebraic groups via their commensurators.
A convention we shall follow throughout in this article: whenever we refer to a semisimple Lie group, we
shall mean a connected semisimple real Lie group with no compact factors, unless noted otherwise.
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Theorem 1.1 (Margulis) Let G be a semisimple Lie group with no compact factors and let � be an
irreducible lattice in G. Then � is arithmetic if and only if CommG.�/ is dense in G.

Here, we are primarily concerned with the discreteness properties of commensurators of thin groups, a
class of groups which has received a large amount of attention in recent years; see Sarnak [28]. A subgroup
K < G is thin if K is discrete and Zariski dense in G, and if G=K has infinite volume with respect to
the Haar measure on G. Thus, K fails to be a lattice in G only by virtue of having infinite covolume
in G. Natural examples of thin groups arise from infinite-index Zariski-dense subgroups of lattices in G.

In the present manuscript, we continue our previous investigations from [21] of the following question
due to Shalom (see especially Shalom and Willis [33], wherein the problem has its genesis):

Question 1.2 [22] Let K be a thin subgroup of a semisimple Lie group G.

(i) Is the commensurator CommG.K/ of K in G discrete?

(ii) In particular , is the normalizer of K in G of finite index in CommG.K/?

For an infinite normal subgroup K of a lattice � , the two subquestions of Question 1.2 are equivalent.
Indeed, the commensurator of K contains its normalizer, which contains � . Since � is a lattice, we see that
if CommG.K/ is discrete then it is a finite-index superlattice of � . For the other implication, any such K

is discrete and Zariski dense, and thus has a discrete normalizer; cf Lemma 2.1. Since the normalizer of K

contains � and since � has finite covolume, we have that the normalizer of K is itself a lattice. Thus, if the
commensurator of K contains the normalizer of K with finite index then the commensurator is discrete.

Positive answers to Question 1.2 are known for all finitely generated thin subgroups K of PSL2.R/ and
PSL2.C/ (see Greenberg [16], Leininger, Long and Reid [22] and Mj [26]), and for thin subgroups of a
semisimple Lie groups with limit set a proper subset of the Furstenberg boundary [26]. Here, the limit set
is a generalization of the limit set occurring in the theory of Kleinian groups, and is a minimal nonempty
closed invariant subset of the Furstenberg boundary for a group acting on the corresponding symmetric
space; see Benoist [4].

We were thus prompted in [21] to address Question 1.2 when the ambient Lie group is the simplest
possible, viz PSL2.R/, for thin groups whose limit sets consist of the entire Furstenberg boundary,
ie S1 D @H2. More generally, natural examples of thin groups with limit set equal to the Furstenberg
boundary come from normal subgroups of rank-one lattices. This general problem provides the context
for this paper.

1.1 Main result

Since many rank-one arithmetic lattices surject onto nonabelian free groups, every finitely generated group
can be realized as a quotient of an arithmetic lattice. Observe, in particular, that all finitely generated
free groups arise as finite-index subgroups of �.2/, the level-two congruence subgroup of PSL2.Z/, and
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therefore all infinite, finitely generated groups arise as quotients of a rank-one arithmetic lattice by a
thin normal subgroup. This level of generality has led us to impose some natural algebraic conditions
on the quotient Q. We will establish the following result, which handles normal subgroups with “nice”
quotients.

Theorem 1.3 Let � < G be an arithmetic lattice in a rank-one simple Lie group G and let K < � be
an infinite normal subgroup. Write Q D �=K for the corresponding quotient group. Then the group
CommG.K/ is discrete , provided that the group Q admits a surjective homomorphism to Z. Under these
hypotheses , the commensurator of K in G contains the normalizer of K with finite index.

The reader is directed to Theorem 5.1 for the context and proof surrounding the main result. Note
that the hypotheses of Theorem 1.3 are never satisfied for irreducible lattices in higher rank nor for
lattices in the rank-one simple Lie groups Sp.n; 1/ for n� 2, nor in the exceptional group F�20

4
. This

is because lattices in these Lie groups have Kazhdan’s Property (T). Thus, Theorem 1.3 is vacuously
true in these cases. Therefore in the course of establishing Theorem 1.3, we pay exclusive attention to
G 2 fSO.n; 1/;SU.n; 1/gn�2, which give rise to real and complex hyperbolic spaces, respectively, as the
associated symmetric spaces of noncompact type.

In [21] we answered Question 1.2 in the special case that K is the commutator subgroup of � , where
� < PSL2.Z/ is a finite-index normal subgroup of PSL2.Z/ contained in a principal congruence sub-
group �.k/ for some k � 2. We vastly generalize this result, since if K D Œ�; �� has infinite index in � ,
then K falls under the purview of Theorem 1.3.

1.2 Tools and techniques

The main theorems and techniques of [21] are the starting point of this paper.

Preserving lines with holes An important technical tool introduced in [21] was that of a homology
pseudoaction. We adapt it here to the notion of preservation of lines with holes. Let � be a lattice in a
rank-one simple Lie group G, let K < � be a normal subgroup, and let QD �=K. Quite generally, for
g 2G we say that g preserves Q–lines with holes if for all  2 � , there exists N > 0 such that

 n
Š . n/g mod K for all n 2N Z:

The terminology arises from thinking of infinite cyclic groups as “lines” and a finite-index subgroup of
an infinite cyclic group as a “line with holes”. We direct the reader to Section 3 for a detailed discussion.

The usefulness of preserving lines with holes is illustrated by the following purely group-theoretic fact,
which provides a rather general criterion for deciding noncommensurability (see Theorem 3.4):

Theorem 1.4 Let � <G, let K < � be normal , and let QD �=K. If

g 2 CommG K\CommG �;

then Kg WD g�1Kg preserves Q–lines with holes.

Algebraic & Geometric Topology, Volume 24 (2024)
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Harmonic forms and maps The other principal tool used in this paper comes from harmonic forms
and harmonic maps via Hodge theory. These include classical Hodge theory and its L2 analogue for
noncompact manifolds. Preservation of Q–lines with holes, or equivalently, lines with holes in � modulo
the normal subgroup K, can be promoted to something stronger: the harmonic form allows us to convert
the “coarse” lines in �=K into actual maps to R, ie it allows us to “fill the holes” of coarse lines in a
canonical fashion, and thus find canonical G–invariant maps to R.

Discrete patterns Harmonic maps are coupled with the notion of discrete patterns, an idea going back
to Schwartz [30], and which was exploited in proving discreteness of commensurators in Leininger, Long
and Reid [22] and Mj [26]. Throughout the paper, many of our ideas and methods are inspired by the
basic example of arithmetic hyperbolic surfaces as well as the special case KD Œ�; ��, and in some places
we explicate the underlying geometric intuition. In the context of PSL2.R/ and hyperbolic surfaces,
Teichmüller-theoretic notions such as zeros and saddle connections of abelian differentials provide us the
necessary discrete patterns that are preserved by the commensurator when the underlying surface has
positive genus and lines with holes in the integral homology are preserved. Preservation of such discrete
patterns finally ensures that the commensurator is discrete. With the notion of preserving homological
lines with holes in place, the discussion for lattices in SO.n; 1/ and SU.n; 1/ splits into uniform and
nonuniform cases. For uniform lattices, we use Hodge theory coupled with a Lie-theoretic idea that we
learned from Venkataramana [34] and Agol [1]. For nonuniform lattices, we use L2–Hodge theory along
with the fact that preservation of homology lines with holes guarantees the preservation of a discrete
pattern given by horoballs. Discreteness of a pattern-preserving subgroup is an essential ingredient in the
nonvanishing cuspidal cases: see the proof of Theorem 5.1, especially Claim 5.2 therein.

Relationship with existing literature The previous works [22; 26] on discreteness of commensurators
derived discreteness by showing that the commensurator preserves a “discrete geometric subobject” or
“pattern” in the sense of Schwartz [29]. These may be regarded as a collection of geometrically defined
subspaces of the domain symmetric space X. We refer the reader to the appendix for the material on
patterns that will be used in this paper. There is a shift in focus in this paper, as we look at naturally
defined dual objects. The canonical nature of harmonic maps ensures that they are preserved by the
commensurator. We derive much of our inspiration from Shalom’s work [31; 32; 33].

1.3 Structure of the paper

Section 2 contains an account of the general tools from the theory of lattices in Lie groups which we
will need. Section 3 describes preservation of lines with holes in detail. Section 4 introduces the notion
of a discrete invariant set as it arises from classical and L2–Hodge theory. In the same section, the
commensurator of a form is introduced and the construction of an invariant harmonic form is carried out.
Section 5 proves Theorem 1.3.

Algebraic & Geometric Topology, Volume 24 (2024)
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Remarks on notation Throughout this paper, we will use the notation K to denote a subgroup a discrete
group. Usually, this will be a normal subgroup of an arithmetic lattice � . In particular, K will generally
not denote a maximal compact subgroup of the ambient Lie group G. We will use N to denote a positive
integer, as opposed to the more common notation of the unipotent subgroup in the Iwasawa decomposition
of a semisimple Lie group. The Iwasawa decomposition will be used briefly in the proof of Claim 5.2,
but no confusion will arise. We will use the exponentiation shorthand for conjugation in groups, so that
Kg D g�1Kg, where K and g are contained in an ambient group. The group G will denote an ambient
Lie group, which will typically be fSO.n; 1/;SU.n; 1/gn�2 unless otherwise explicitly noted.

2 Generalities on discrete subgroups of Lie groups

In this section, we gather some general facts about Zariski-dense discrete subgroups of semisimple Lie
groups which we will require in this article.

2.1 Zariski-dense subgroups and commensurators

We begin with the following general fact about normalizers of discrete groups. The statement and proof
are contained as Lemma 2.1 in [21], and so we omit the proof.

Lemma 2.1 Let G be a simple Lie group and let � <G be a discrete Zariski-dense subgroup. Then the
normalizer NG.�/ is again discrete.

The following well-known fact will be used throughout the paper.

Lemma 2.2 Let G be a simple real group and let H < G be a Zariski-dense subgroup. If H is not
discrete then H is dense.

Indeed, since H is not discrete, the topological closure H of H has the property that the component H 0

of H containing the identity is a Zariski-dense subgroup of G which has positive dimension, and therefore
must be all of G; indeed the tangent space to H 0 at the identity coincides with the tangent space to G,
and so H 0 contains a neighborhood of the identity in G, which generates the identity component of G.
We remark that if G is allowed to be a complex group then one must assume that H is not precompact,
as can be seen from the Zariski density of the unit complex numbers in C for instance.

The following lemma generalizes the corresponding statement in [21] for PSL2.R/.

Lemma 2.3 Let �0 be a lattice in a noncompact simple Lie group G. Let � be a subgroup of G

containing �0 such that there exists an N > 0 satisfying the property that for all g 2 � , we have gN 2 �0.
Then � is also discrete.

Algebraic & Geometric Topology, Volume 24 (2024)
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Proof We have that G acts by isometries on an associated symmetric space X of noncompact type.
Since �0 is a lattice, there exists � > 0 such that any semisimple element of �0 has translation length on X

at least �. Since G is simple and � is Zariski dense, it follows that � is either discrete or dense in G. We
argue by contradiction. If � is dense, then since the property of being semisimple is an open condition
and since translation lengths of semisimple elements of G coincide with R>0, there exists a semisimple
element g 2 � such that the translation length of g is less than �=2N . Hence gN is a semisimple element
with translation length at most �=2. In particular, gN 62 �0, which yields a contradiction.

We remark that Lemma 2.3 is false for merely discrete subsets of G, since even the square roots of a fixed
matrix can fail to be a discrete set. If G has rank one then one can allow �0 to be a more general subset of G.

Let G be a semisimple Lie group and let � < G be a subgroup. As usual, we write CommG.�/ to
denote its commensurator in G. We shall need the following special case of a general theorem of
Borel [8, Theorem 2]; see Zimmer [37, page 123]. This will be the only real use of arithmeticity of the
ambient lattice � in Theorem 1.3. Strictly speaking, the statement of Proposition 6.2.2 in [37] is for
the full group of integral points in an ambient group. The reader will note however that the only salient
feature of the group of integral points which is used is its Zariski density. Thus, we obtain the following
conclusion:

Proposition 2.4 Let � <G be an arithmetic lattice in a semisimple algebraic Q–group and let K <� be
a Zariski-dense subgroup. Then CommG.K/ < CommG.�/. Suppose furthermore that the center of G is
trivial. Then CommG.�/ coincides with the Q–points of G.

The hypothesis that G has trivial center in the second part of Proposition 2.4 is crucial. For instance,
the commensurator of SL2.Z/ properly contains SL2.Q/. The reader will observe that throughout this
paper, we will implicitly assume that K is a Zariski-dense subgroup of an arithmetic lattice, though in the
statement of Theorem 1.3, we only assume that K is infinite and normal. This latter assumption implies
that K is indeed Zariski dense:

Proposition 2.5 Let K < � be an infinite normal subgroup of an irreducible lattice in a semisimple
algebraic group G. Then K is Zariski dense in G.

Proof Let ƒ denote the limit set of K. Since K is infinite, ƒ¤¿, since the limit set consists of the
limit points of K in the Furstenberg boundary of G. Let p 2 ƒ. If  2 � then  .p/ 2 ƒ, since K is
normal in � . It follows that ƒ is a closed, nonempty �–invariant subset of the Furstenberg boundary. It
therefore contains all of the limit set of � by the lemma in Section 3.6 of [4]. It follows that ƒ is equal to
the limit set of � .

Since � is Zariski dense, so is K. Else, if K were contained in a proper Lie subgroup H < G, then
ƒ would be contained in the Furstenberg boundary of H , which in turn is not Zariski dense in the
Furstenberg boundary of G. However, the limit set of � is Zariski dense in the boundary: see the remarks
at the beginning of Section 3 of [4], especially the lemma in Section 3.6. This is a contradiction.

Algebraic & Geometric Topology, Volume 24 (2024)



Commensurators of thin normal subgroups and abelian quotients 2155

The following technical fact will be used several times in this paper, and we extract it for modularity.

Lemma 2.6 Let K <G be a Zariski-dense subgroup of a simple algebraic group G, and let

KG
D hfKg

j g 2 CommG.K/gi

be the subgroup of G generated by the conjugates of K by g 2CommG.K/. If KG is a discrete subgroup
of G, then CommG.K/ is discrete.

It is a trivial though useful observation that KG < CommG.K/.

Proof of Lemma 2.6 We have immediately that K < CommG.K/, since K normalizes itself. We
therefore conclude that CommG.K/ is Zariski dense and hence is either discrete or dense in G. If
CommG.K/ is dense then there is a sequence gi ! 1 of nontrivial group elements in CommG.K/

converging to the identity. We write Ki D Kgi , and we observe that Ki < KG for each i . Choosing
finitely many elements fk1; : : : ; kmg �K which generate a Zariski-dense subgroup K0<G, we have that
if gi is nontrivial then it cannot fix the entire collection fk1; : : : ; kmg, since then gi would centralize K0,
contradicting Zariski density of K0 and the simplicity of G. However, as i tends to infinity, the conjugation
action of gi on fk1; : : : ; kmg tends to the identity. Thus, viewing G as a matrix group, we have that
fk

gi

1
; : : : ; k

gi
m g converges to fk1; : : : ; kmg in any matrix norm. Since K

gi

0
<Ki <KG , the last of which is

discrete, we have that fkgi

1
; : : : ; k

gi
m gD fk1; : : : ; kmg elementwise for i� 0, and hence that gi commutes

with K0 for i � 0. Again using the fact that K0 is Zariski dense and G is simple and hence center-free,
we conclude that gi is the identity for i � 0. This is a contradiction, whence it follows that CommG.K/

is discrete.

The argument in Lemma 2.6 even shows that only the set[
g2CommG.K /

K
g
0

need be discrete in order to conclude the discreteness of CommG.K/, for an arbitrary Zariski-dense
subgroup K0 <K.

3 Preservation of lines with holes

In this section, we develop some ideas which originate in homological algebra and which play a central
role in this paper, with the goal of producing a criterion for showing that a particular group element does
not commensurate a given subgroup. The historical motivation comes from Chevalley–Weil theory — see
Chevalley, Weil and Hecke [12] and Gaschütz [15] — and which we developed in [21] under the name of
a pseudoaction.

Throughout this section, let � <G, let K < � be a normal subgroup, and let g 2 CommG.�/. We write
QD�=K for the quotient group. Conjugating by g 2G, we obtain groups Kg <�g and a corresponding
quotient Qg WD �g=Kg.
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For  2 � , we shall refer to the cyclic group h i as a –line in � . Further, any finite-index subgroup
hN i of h i— considered for arbitrary  2 � and a positive integer N — will be referred to as a �–line
with holes. For any  2 � and g 2 CommG.�/, there exists a positive integer N such that . g/N 2 � .
Hence, for any  2 � , and g 2 CommG.�/, (the conjugation action by) g sends some –line with holes
to a �–line with holes.

Definition 3.1 The element g 2 CommG.�/ preserves Q–lines with holes if for all  2 � there exists
an integer N > 0 such that

 n
� . n/g mod K

for all n 2N Z. That is, there exists N > 0 such that xm D Œ
mN;g� 2K for all m 2 Z.

Thus if N and .N /g should both be elements of � (which they are after passing to multiples of
a sufficiently large N, since g commensurates �), then one can compare their images in Q D �=K.
If g preserves Q–lines with holes then they must represent the same element of Q. A special case of
Definition 3.1 is given by the following:

Definition 3.2 In Definition 3.1, if we specialize to the case where K is the commutator subgroup Œ�; ��
(so that in particular QDH1.�;Z/), we say that g preserves homological lines with holes in � .

The usefulness of preservation of homological lines with holes will become apparent when one considers
its cohomological consequences in Section 4.1. For now, consider the set of all elements g 2 CommG.�/

that preserve Q–lines with holes. It is not difficult to see that this subset of G is actually a monoid. Clearly
the identity lies in this set. Moreover, if g and h preserve Q–lines with holes, then for all  2 � , there is
an N DN.g;  / such that ŒN ;g� 2K. Then, .N /g D N � k 2 � , so there is an M DM.h; N � k/

such that Œ.N � k/M ; h� 2K. This shows that

NM
� .NM /gh mod K;

which implies that the set of elements of CommG.�/ which preserve Q–lines with holes does in fact
form a monoid. It is not clear that inversion of elements is possible within this set, however. We will not
require this monoidal structure in the sequel, though we abstract out the following fact:

Observation 3.3 Consider the set C � CommG.�/ consisting of elements which preserve Q–lines with
holes. Then C is closed under multiplication of group elements and contains the identity , and is therefore
a monoid. In particular , if K1;K2 � C are subgroups , then the group

hK1;K2i< CommG.�/

is contained in C .

The following is the basic result about preservation of Q–lines with holes.
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Theorem 3.4 Let � <G, let K be a normal subgroup of � , and let QD �=K. Suppose that

g 2 CommG � \CommG K:

Then Kg preserves Q–lines with holes.

Proof Let z 2Kg and let  2 � be arbitrary fixed elements. For N � 0 we have that N 2 � \�g and
.N /z 2 � . Let aD .N /z and b D N . We have that am; bm 2 � for all m 2 Z.

Since z 2Kg and since Kg is normal in �g, we have that

a� b mod Kg:

Hence, for all m 2 Z,
am
� bm mod Kg:

Thus, the commutators
xm WD Œ

mN ; z�D amb�m

have the property that xm 2Kg for all m 2 Z. It is also clear that xm 2 � for all m 2 Z.

Since K and Kg are commensurable, the collection of elements

fxm D amb�m
gm2Z

has the property that for some s ¤ t , the elements xs D asb�s and xt D atb�t lie in the same right coset
of K\Kg in Kg, as follows immediately from the pigeonhole principle.

It follows that there exists an element k 2K such that

kasb�s
D atb�t :

Therefore, we see that
a�tkas

D bs�t ;

which furnishes an element k 0 2K such that k 0as�t D bs�t .

Thus, there exists M D s� t ¤ 0 such that aM � bM mod K. In particular, z preserves Q–lines with
holes, the desired conclusion.

In the sequel, we will be interested in specific cases in which Q–lines with holes are preserved, and
especially the case where Q is the integral homology of �=K.

We now discuss a mild generalization of the notion of preserving homological lines with holes in
Definition 3.2. Let QD �=K be a quotient group. Clearly, H1.Q;Z/ is a quotient of H1.�;Z/.

Let  2 � and let g 2 CommG.�/. There is an integer N > 0 such that f n; . g/ng � � for all n 2N Z.
We can then compare the homology classes of  n and . g/n in H1.�;Z/, and hence in H1.Q;Z/. As
before, we say that g preserves homological lines with holes in Q if for all  2 � , there exists an integer
N > 0 such that for all n 2N Z, the homology classes of  n and . g/n in H1.Q;Z/ are equal.

Let Qab denote the abelianization of Q. Then the condition that g preserves homological lines with holes
in Q is equivalent to saying that g preserves Qab–lines with holes in the sense of Definition 3.1.
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When b1.Q/ > 0 then Theorem 3.4 above furnishes the following commensurability criterion, whose
proof is straightforward now.

Theorem 3.5 Let QD �=K, let
g 2 CommG � \CommG K:

Then Kg preserves homological lines with holes in Q.

Proof Let Q0 be a quotient of Q, and let h2Kg. Since h preserves Q–lines with holes by Theorem 3.4,
it also preserves Q0–lines with holes. Specializing to Q0 DQab proves the result.

In particular, when the commensurator of � in G contains the commensurator of K, we have that

KG
D hKg

j g 2 CommG.K/i

preserves homological lines with holes in Q. We remark that in our applications, CommG K<CommG �

by Proposition 2.4.

4 Homological lines with holes and Hodge theory

The goal of this section is to translate between preservation of lines with holes and the existence of
commensuration-invariant harmonic 1–forms. We shall first deduce cohomological consequences of
preserving homological lines with holes.

4.1 Preserving homological lines with holes and cohomological consequences

For the purposes of this subsection, let G denote a semisimple Lie group with no compact factors, with
associated symmetric space of nonpositive curvature X. Let � be a lattice in G and let g 2 CommG.�/.
We write S D X=� and Sg D X=�g. Since g 2 CommG.�/, the group � \ �g is of finite index in
both � and �g. Let W DX=.� \�g/ denote the corresponding common cover of S and Sg. We shall
refer to S and Sg as conjugate manifolds and W as their minimal common cover. Here, W depends
on g. However, since g will be fixed throughout, we will suppress it from the notation. We will also fix a
differential 1–form ! on S . Let p W X ! S denote the universal covering map. Note that the 1–form
p�! is a 1–form on X. In applications in the sequel, ! will be a harmonic form.

The element g 2 G is an isometry of X and hence acts on differential forms on X via pullback. The
form g�p�! is a 1–form on X which is invariant under �g and hence descends to Sg. The resulting
1–form on the quotient manifold Sg is denoted by !g. Let q WW ! S and qg WW ! Sg denote the
natural covering maps. Denote q�! by !W and .qg/�!g by !g

W
.

We shall also need to set up notation for g–conjugates of cycles and loops, as basepoints will play an
important role in what follows. Let o2W be a basepoint. By choosing a lift zo2X and by joining zo to g:zo
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by a geodesic segment in X and projecting back to W, we obtain a natural geodesic segment Œo;g:o�
in W, where g:o denotes the image of g:zo under the covering projection. Thus, g:o may be regarded as a
new basepoint for integrating chains against a pulled back form.

Now suppose that ˛ is a loop in W representing an element h 2 �1.W / such that hg also belongs to
�1.W /, where here we have identified �1.W / with � \�g. Lifting ˛ to a path z̨ in X, translating by g

and quotienting X by � \ �g we obtain a new loop denoted g:˛ on W based at g:o. Here, we use
notation that is similar to the case of a genuine g–action on W, though the action is well-defined only on
the universal cover X.

The concatenation Œo;g:o� � g:˛ � Œo;g:o� gives a loop based at o, where Œo;g:o� denotes Œo;g:o�
parametrized in the opposite direction from g:o to o. We denote this loop as ˛g:

˛g
D Œo;g:o��g:˛ � Œo;g:o�:

Finally, for � any closed, oriented loop on W, based at o say, the nth power of the loop � will be the loop
which traverses the loop � a total of n times. The result will be denoted by �n.

Remark 4.1 A subtlety in the following lemma needs to be noted. On the one hand, the hypothesis
is about preserving homological lines with holes in � . The conclusion, on the other hand, is about
cohomology classes in the common minimal cover W. The reason for this is that the pullback of ! to X

and its pullback by g are both invariant under � \�g, though not necessarily by � nor �g. Thus, !g
W

is
well-defined as a form on W, but does not necessarily live in S .

Lemma 4.2 Let
f�;S;g;Sg;W; !W ; !

g
W
g

be as above , Suppose that g preserves homological lines with holes in � . Then we have Œ!W �D Œ!
g
W
� as

elements of H 1.W;R/.

The importance of Lemma 4.2 will become apparent in Section 4.2, particularly Corollary 4.7. It follows
from the Hodge theorem that if !W is a harmonic form representing Œ!W � 2H 1.W;R/, then !W D !

g
W

as forms, and not just as cohomology classes.

Proof We continue with the notation from the discussion before the statement of the lemma. Let � be
any closed loop on W based at o. Since g commensurates � , we may choose n > 0 such that �n and
.�n/g are both cycles, and so are viewed as loops based at o. Observe that if h denotes the element of
�1.W; o/ represented by �n then the loop .�n/g represents the group element hg 2 �1.W; o/.

Since g is assumed to preserve homological lines with holes in� , there exists an integer N >0 such that �N

and .�N /g represent the same element of H1.S;Z/. Indeed, for any differential 1–form ! on S , we have

(1)
Z

q.�N /

! D

Z
q..�N /g/

! D

Z
q.g:�N /

!;
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where q WW ! S is the covering projection, and where the second inequality holds because the integrals
of ! along Œo;g:o� and Œo;g:o� cancel each other. Note that the integrals in equation (1) are over S .

Next, by the definition of the pullback form !W D q�!, we have thatZ
�N

!W D

Z
q.�N /

! and
Z
.�N /g

!W D

Z
q..�N /g/

!:

Combining the equations above, we obtain

(2)
Z
�N

!W D

Z
.�N /g

!W D

Z
g:�N

!W ;

where all the integrals in equation (2) are over W.

Finally, we observe that by the definition of the pullback !g
W

, we have

(3)
Z

g:.�N /

!W D

Z
�N

!
g
W
;

again using the fact that the integrals of !W along Œo;g:o� and Œo;g:o� cancel each other.

Putting all these equalities together, we obtain

(4)
Z
�N

!W D

Z
�N

!
g
W
:

Since Z
�N

!W DN

Z
�

!W ;

we conclude that

(5)
Z
�

!W D

Z
�

!
g
W

for any closed loop � in W based at o. The forms !W and !g
W

represent well-defined elements of
H 1.W;R/, by their very definition. By equation (5) above they have the same periods, and since they
are both closed differential forms, they are cohomologous.

The cohomological consequence of preserving homological lines with holes in quotients is the following
(cf Remark 4.1):

Lemma 4.3 Let Q D �=K, let g 2 CommG.�/ preserve homological lines with holes in Q, and let
! 2H 1.Q;R/. Then the periods of Œ!W � and Œ!g

W
� agree , where W is the common minimal cover of

S DX=� and its conjugate manifold Sg DX=�g, and where !W is the pullback of ! to H 1.W;R/.

Proof Let ! 2H 1.Q;R/ be a nontrivial cohomology class. Then the quotient map q W �!Q induces
a pullback form q�! 2H 1.�;R/, which can be viewed as a differential form on S DX=� . The map q

also induces a map q� WH1.�;Z/!H1.Q;Z/. If � is any 1–cycle on X=� then by definitionZ
�

q�! D !.q��/;

where the right-hand side denotes the evaluation of ! on q�.�/ (recall ! is a cohomology class of Q).
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Writing !W for the form on W given by pullback of q�! along the covering map p WW ! S , we have
that !g

W
and !W have the same periods, provided that g preserves homological lines with holes in Q. A

justification of this claim is identical to that in the proof of Lemma 4.2.

We note the following easy observation (cf Observation 3.3 above).

Observation 4.4 Consider the set C � CommG.�/ consisting of elements which preserve homological
lines with holes in Q. Then C is closed under multiplication of group elements and contains the identity,
and is therefore a monoid. In particular , if K1;K2 � C are subgroups , then the group hK1;K2i is
contained in C .

4.2 Hodge theory

Hodge theory will allow us to leverage preservation of homological lines with holes in order to promote
equality of cohomology classes to equality of forms. We recall the necessary tools from Hodge theory
and L2–cohomology that we shall need. Let M be a (not necessarily compact) Riemannian manifold.
We fix notation: �k will denote the space of smooth k–forms, d will denote the differential on forms,
� will denote the Hodge star operator, d� will denote the adjoint of d , and �D dd�C d�d will denote
the Laplacian on forms. A form ! 2�k is a harmonic k–form for the given metric on M if �! D 0.
Harmonic forms are closed and coclosed.

Theorem 4.5 [35, Chapter 6] Let M be a compact Riemannian manifold. Then for all k and every real
cohomology class Œ!� 2H k.M;R/, there exists a unique harmonic form !harm representing Œ!�.

We shall need a version of Theorem 4.5 for noncompact complete manifolds M. The appropriate
cohomology theory used is L2–cohomology. Let �k

2
denote the space of smooth square-integrable

k–forms. The reduced L2–cohomology groups are given by

H k
.2/.M /D ker.d/=Im.d/;

where Im.d/ denotes the closure of the image of d . We refer the reader to [10] for more details. We shall
need only the following special case (see [10, Lemma 1.5] due to Gaffney, or [11] for instance):

Theorem 4.6 Let M be a complete negatively curved manifold of finite volume modeled on Hn or CHn.
Then for every real cohomology class Œ!� 2H 1

.2/
.M;R/, there exists a unique L2 harmonic form !harm

representing Œ!�.

Note that a compactly supported cohomology class is an L2 class. Thus in our context, if X=� has
nontrivial real cohomology with compact supports, then we can find nontrivial L2 harmonic forms
representing such cohomology classes. In our analysis of the case b1.Q/ > 0 for groups arising as
quotients of nonuniform lattices � , the absence of a nonzero L2 harmonic 1–form will (roughly) allow
us to assume that H 1

c .X=�;R/D 0. See the proof of Theorem 5.1 below.
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We recall the setup of Lemma 4.2 in a slightly restricted setting: we are given a lattice � in a group
G 2 fSO.n; 1/;SU.n; 1/gn�2 with associated symmetric space of noncompact type X, and an element
g 2 G commensurating � . We have an orbifold S D X=� , the conjugate manifold Sg D X=�g,
the common refinement W D X=.� \ �g/ and a cohomology class ! 2 H 1.S;R/. We assume the
existence of a (possibly L2) harmonic representative !harm of !, whose uniqueness is then guaranteed by
Theorems 4.5 and 4.6. Note that such a harmonic representative may not exist only in the case where S

is noncompact.

We will also call the resulting harmonic form ! as it will not cause confusion. Recall the notation

p WX ! S; W; !W ; !
g
W
;

from Section 4.1. For convenience, we will denote p�! by !X and g�!X by !g
X

, where g� is the action
on 1–forms induced by the isometry g of X.

Corollary 4.7 Assume the above setup , and suppose that g preserves homological lines with holes in � .
Then the harmonic representatives of !W and !g

W
are equal as differential 1–forms on W. In particular ,

the harmonic representatives of !X and !g
X

are equal.

Proof Since g acts on X by an isometry, the pullback of a harmonic form under g is also harmonic;
see Section 4 of [14], for example. Thus, !g

W
is a form on W which is cohomologous to the form !W ,

by Lemma 4.2. Since � \�g has finite index in � , we have that W still has finite volume and hence
the suitable Hodge theorem (Theorem 4.5 or 4.6) applies, whence the harmonic representatives of !W

and !g
W

are equal. The equality of forms on X is immediate.

A part of the remainder of the paper will deal with the case where there is no harmonic form representing
a nontrivial homology class, which is to say a complement to Corollary 4.7 adapted to cusped orbifolds.

4.3 The commensurator of a form

The notion of the commensurator of a form will now be introduced. It will be shown that under suitable
hypotheses, KG lies in the commensurator of a harmonic form, as is forced by preservation of homological
lines with forms. The rigid nature of the harmonic form will force it to be zero whenever KG fails to be
discrete, which only occurs if CommG.K/ is dense. As before, cohomology with compact supports will
be denoted by H�c . � /.

Definition 4.8 Let � <G be a lattice in a semisimple Lie group G with associated symmetric space X,
and let S D X=� . Let ! be a closed form such that Œ!� 2H p.S;Q/ or Œ!� 2H

p
c .S;Q/ is a nonzero

cohomology class. Let p W X ! S denote the universal cover. The commensurator Comm.!/ of the
form ! is defined as

Comm.!/D fh 2G j h�p�! D p�!g:

A subgroup H of G is said to commensurate ! if H < Comm.!/. It is immediate the Comm.!/ is itself
a group.
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We have the following general discreteness result that applies to the isometries of real and complex
hyperbolic spaces. We will not consider isometries of quaternionic hyperbolic spaces or the Cayley plane;
see the remarks following Theorem 1.3. We direct the reader to [34; 1], from which the main idea used in
the following proposition is taken.

Proposition 4.9 Let X be Hn or CHn. For � a torsion-free lattice , let S DX=� . Let ! be a nonzero
harmonic or L2–harmonic 1–form according to whether S is compact or noncompact. Then Comm.!/ is
discrete.

Proof Let p WX!S denote the universal cover. We now argue by contradiction. Suppose that Comm.!/
is not discrete. Since the associated Lie group G (ie SO.n; 1/ or SU.n; 1/) is simple, it follows that
Comm.!/ is dense in G, as Comm.!/ contains the Zariski-dense subgroup � . Also, since Comm.!/
preserves p�.!/, we have that G must preserve p�.!/, since G is identified with the group of isometries
of X. That is, p�.!/ is a G–invariant nonzero harmonic 1–form on X. (Note that here, compactness or
noncompactness of S is not relevant, as p�.!/ being defined on X is all that we are concerned with
at this stage.) Hence p�.!/ gives a nonzero harmonic differential 1–form !� on the compact dual of
Hn or CHn; see Venkataramana [34] and Agol [1], cf Sections 2 and 3 of Chapter II in [9]. Since the
compact duals Sn and CPn of Hn and CHn respectively have trivial first cohomology (at least when
n� 2), this is a contradiction.

From Lemma 4.3, we obtain the following consequence:

Corollary 4.10 Suppose � is torsion-free. Let QD �=K, and let C � CommG.�/ denote the set of
elements which preserve homological lines with holes in Q. If there exists a (possibly L2/ harmonic form
on S DX=� representing a pullback of a nonzero cohomology class of Q, then C is discrete.

Proof Let ! be the harmonic representative of a form on S arising by pullback from Q, and let g 2 C .
Then by Lemma 4.3 and Corollary 4.7, we have that !W D!

g
W

as forms, by either classical or L2–Hodge
theory, and where here W is the common refinement of S and its conjugate Sg. Pulling back these
forms to the universal cover X, we have that g 2 Comm.!/. By Proposition 4.9, we conclude that C is
discrete.

5 Abelian quotients and harmonic 1–forms

We are now in a position to assemble the pieces to prove Theorem 1.3. The ideas to establish the result
naturally bifurcate:

(i) The vanishing cuspidal case, amenable to L2–cohomology techniques. For PSL2.R/, this is the
case where the underlying hyperbolic surface has genus greater than zero. This part of the argument
uses Hodge theory.
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(ii) The nonvanishing cuspidal case, where discrete patterns of horoballs are used to obtain discreteness
of the commensurator; see the appendix. For PSL2.R/, this is the case where the underlying
hyperbolic surface has genus equal to zero, and compactly supported cohomology vanishes. This
part of the argument borrows heavily from the ideas in [21].

5.1 Proof of Theorem 1.3

We now establish part of the main result of this paper:

Theorem 5.1 Let � <G be a lattice in a rank-one simple Lie group. Let K < � be an infinite normal
subgroup , and let Q D �=K. If the first Betti number of Q satisfies b1.Q/ > 0 then CommG.K/ is
discrete.

Here, the lattice may or may not be torsion-free, and may or may not be uniform. As remarked in the
introduction, we only consider lattices in SO.n; 1/ and SU.n; 1/.

Proof We begin by passing to a torsion-free finite-index subgroup � 0 of � , and by replacing K with the
corresponding finite-index subgroup of K given by the corresponding intersection K\� 0. The resulting
subgroup of K is commensurable with K and hence has the same commensurator in G as K. Moreover,
by restricting the quotient map � !Q to � 0, we get a finite-index subgroup Q0 < Q which also has
positive first Betti number. Thus without loss of generality, we will assume that � D � 0.

Recall that we write
KG
D hKg

j g 2 CommG.K/i

for the subgroup generated by the collection fKgg, as g ranges over CommG.K/. By Proposition 2.4,
we have that CommG.K/ < CommG.�/. By Theorem 3.5 and Observation 4.4, we have that if y 2KG ,
then y preserves homological lines with holes in Q.

By hypothesis, we have H 1.Q;R/¤ 0. Writing S DX=� as usual, we have that H 1.S;R/¤ 0 since
Q is a quotient of � and since � D �1.S/. We have that S is metrically complete and is either compact
or noncompact, which yields two possible cases concerning cohomology:

(i) S is compact By Theorem 4.5, there is a harmonic form ! on S which represents the pullback of a
nontrivial cohomology class of Q.

(ii) S is not compact This case bifurcates into further possibilities:

(a) The composition
H 1.Q;R/!H 1.S;R/!H 1.@S;R/

has a nontrivial kernel, where the first map is the pullback along the quotient map � !Q and
the second map is the pullback along the inclusion map @S ! S . Note that the first arrow is an
injection. Furthermore,

H 1..S; @S/; R/DH 1
c .S; R/DH 1

.2/.S; R/:
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See [23, Lemma 1.93]. Hence, by Theorem 4.6, there is a nonzero cohomology class of S that
is represented by a nonzero L2 harmonic form ! such that Œ!� 2H 1

.2/
.S;R/ is the pullback of a

cohomology class of Q.

(b) The composition
H 1.Q;R/!H 1.S;R/!H 1.@S;R/

is injective.

In case (ii), we interpret @S in the usual way, ie by removing a small horoball around the cusps of S ,
whereby the boundary of S becomes the image of the horosphere bounding the horoball.

Suppose first that there exists a nontrivial (possibly L2) harmonic form on S D X=� representing a
pullback of a nontrivial class in H 1.Q;Q/, as in case (i) or (ii)(a) above. Then KG is discrete by
Corollary 4.10. That CommG.K/ is discrete now follows from Lemma 2.6.

If no such form exists, then we are in case (ii)(b). Writing q W �!Q for the quotient map, we have that

q� ı i� WH1.@S;Q/!H1.Q;Q/

is surjective, where i W @S ! S denotes inclusion. Because H1.Q;Q/¤ 0 by hypothesis, there exists a
finite collection of cusps fT1; : : : ;Tkg of S which contain homology classes zj 2H1.Tj ;Q/ for which

q� ı i�.zj /¤ 0:

For 1 � j � k, let tj 2 @X denote the basepoint (at infinity) of a horoball lift of Tj to X. Let Tj

denote the set of the �–translates of tj in @X. Also, let Hj (resp. @Hj ) denote the collection of horoballs
(resp. horospheres) in X that are lifts of Tj (resp. @Tj ). These are an instance of a discrete pattern in
the sense of Schwartz [29]; see Definition A.3 below, for instance. Let �j < G denote the subgroup
preserving the collection @Hj . By [27, Propositions 5.3 and 5.4] (see Lemma A.6 for instance), the
group �j is a lattice containing � as a subgroup of finite index.

We complete the proof assuming Claim 5.2 below. It follows from Claim 5.2 that each element of KG

has a uniformly bounded power contained in the discrete group
Tk

sD1 �s . Hence KG is discrete by
Lemma 2.3. Lemma 2.6 now implies that CommG.K/ itself is discrete.

Claim 5.2 There is an N > 0 such that for all y 2KG , we have

yN
2

k\
sD1

�s:

Proof By Theorem 3.5, we know that KG preserves homological lines with holes in Q. Choose parabolic
subgroups fG1; : : : ;Gkg of G, which we use to identify �1.Tj / as a subgroup of �1.S/ for 1� j � k,
and let fx1; : : : ;xkg � @X be their respective fixed points. Let  2� be a parabolic isometry representing
zj 2 H1.Tj ;Z/, and such that q� ı i�.zj / is nonzero. Replacing  by a conjugate in � if necessary,
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 fixes xj and hence lies in Gj . Let y 2KG . Since y preserves homological lines with holes in Q, there
exists a positive integer m such that

Œ.m/y �D Œm�Dm � q� ı i�.zj /;

where Œ � � denotes the corresponding homology class in H1.Q;Z/, and where elements of � acquire
homology classes in H1.Q;Z/ via q�. Since y 2 G, we have that .m/y is also parabolic. Since y

commensurates � (by Proposition 2.4) and preserves homological lines with holes in Q, we have that
there exists r 2 � such that .m/yr 2G` for some 1� `� k. Thus, y preserves homological lines with
holes in Q but may “change the cusp” which supports a given cuspidal homology class. Since there are
only k many cusps of S which contribute to the homology of Q via q� ı i�, for N D k! we may assume
that .m/y

N

is conjugate into Gj by an element r 2 � . We thus have that yN r 2Gj .

Now, any element of the parabolic subgroup Gj can be decomposed as A�N�, where A� acts on @X nfxg
by a conformal homothety and N� acts by an isometry. Here, the metric on @X n fxg is obtained by
identifying it with a reference horosphere in X based at x via projection along geodesics from x.

For X DHn, these are all Euclidean similarities and for X DCHn, these are all Heisenberg similarities
(see [29, Section 8.1]). In particular, for any j , and for any g 2Gj , g scales all distances on the reference
horosphere by a fixed rg > 0. We call rg the scale factor of g. Let

yg WH1.Tj /!H1.Tj /

denote the induced map on H1.Tj / thought of as a subset of @X n fxg. Here, we use the notation yg in
place of g� to avoid confusing with the action on homology of the cusp per se. Since g scales the length
of all elements by rg, it follows that yg.u/D rg �u for all u 2H1.Tj /. Let A�.y

N r/ > 0 denote the scale
factor of the homothety component of yN r . Write Hxj

2Hj for the horoball in X based at xj .

Since
Œ.m/y

N r �DA�.y
M r/Œm� 2H1.Q;Q/;

the scale factor A�.y
N r/ must equal one. But A�.y

N r/ D 1 if and only if yN r preserves the horo-
sphere @Hxj

. Since r 2� necessarily preserves @Hj , it follows that yN stabilizes @Hj , ie yN 2�j . Since
y 2KG and 1� j � k were arbitrary, and since �j contains

Tk
sD1 �s with finite index (as follows easily

from Lemma A.6) this completes the proof of the claim.

5.2 Applications

We conclude this section by giving three sets of examples to which Theorem 5.1 applies.

Irrational pencils in complex hyperbolic manifolds Many cocompact arithmetic lattices in SU.2; 1/
admit irrational pencils, ie S D X=� admits a holomorphic fibration (with singular fibers) onto a
Riemann surface of genus greater than zero. Let F denote the general fiber and i W F ! S denote
inclusion. Then K D i�.�1.F // is normal in � and QD �=K is a surface group. Theorem 5.1 applies

Algebraic & Geometric Topology, Volume 24 (2024)



Commensurators of thin normal subgroups and abelian quotients 2167

to show that CommG.K/ is discrete. We note that M Kapovich in unpublished work [19] (see Biswas,
Mj and Pancholi [6] for a small generalization) established that K is never finitely presented.

Real hyperbolic manifolds that algebraically fiber Agol [2] shows that hyperbolic 3–manifolds
virtually fiber over the circle with surface group fibers. The resulting normal surface subgroups were
dealt with in [22] without the arithmeticity hypothesis. However, a new family of examples of finitely
generated (but not necessarily finitely presented) normal subgroups of arithmetic hyperbolic n–manifolds
has recently been discovered. A classical result of Dodziuk [13] (see also Anghel [3]) shows that the first
L2–Betti number of a hyperbolic manifold of dimension greater than 2 vanishes. Kielak [20] shows that
a cubulated hyperbolic group � is virtually algebraically fibered (ie � admits a virtual surjection to Z

with a finitely generated kernel) if and only if ˇ1
.2/
.�/D 0. On the other hand, Bergeron, Haglund and

Wise [5] show that standard cocompact arithmetic congruence subgroups � of SO.n; 1/ are cubulated.
Thus standard cocompact arithmetic congruence subgroups � of SO.n; 1/ admit finitely generated normal
subgroups K with quotient Z. This furnishes a family of examples K to which Theorem 5.1 applies to
show that CommG.K/ is discrete (since b1.Q/D b1.Z/D 1 in this case).

Uncountably many pairwise nonisomorphic 2–generated groups P Hall produced uncountably many
pairwise nonisomorphic quotients of a free group F2 on two generators; see [17, III.C.40], for instance.
Evidently, the free group on two generators can be realized as a lattice in a rank-one simple Lie group.
Hall’s construction produces uncountable families of 2–generated torsion-free solvable groups, and each
of his groups surjects to Z. This furnishes a continuum’s worth of thin normal subgroups of lattices to
which Theorem 5.1 applies.

Appendix Discrete patterns of horoballs

In the course of the proof of Theorem 5.1, case (ii)(b), we have used the fact that a certain discrete pattern
of horoballs is preserved by Kg. Since the notion of a discrete pattern also makes its appearance in earlier
approaches to Question 1.2, we give a quick account here.

Let G be a rank-one semisimple Lie group and let X be the associated symmetric space. The space X is, in
a natural way, a Riemannian manifold endowed with a left-invariant metric [18]. Following [29; 30; 27; 7]
we define the following (see [27, Definition 1.6] in particular):

Definition A.3 Let � <G be a lattice and S DX=� . A �–discrete pattern of points on X is a nonempty
�–invariant set S�X such that S=� is finite.

Let � < G be a nonuniform lattice, and let S D X=� . A �–discrete pattern of horoballs in X is
a nonempty �–invariant collection S � X of closed horoballs such that S=� is a disjoint union of
neighborhoods of cusps.
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Definition A.4 Let � <G be a lattice. A subgroup H of G is said to preserve a �–discrete pattern S

points if h.S/� S for all h 2H .

Propositions 3.5 and 3.7 of [27] show that a subgroup H of G preserving a �–discrete pattern S is closed
and totally disconnected. Since any such subgroup of G is necessarily discrete, we have the following:

Lemma A.5 [27, Propositions 3.5 and 3.7] Let � <G be a lattice and S a �–discrete pattern (of points
or geodesics). Then the subgroup H of G preserving S is discrete , and ŒH W �� <1.

Propositions 5.3 and 5.4 of [27] (see also [25, Theorem 3.11]) prove that the subgroup H of G preserving
a �–discrete pattern of horoballs is closed and totally disconnected. It follows that:

Lemma A.6 [27, Propositions 5.3 and 5.4] Let � <G be a nonuniform lattice in a rank-one Lie group
and S DX=� , where X is the associated symmetric space. Let S be a �–discrete pattern of horoballs.
Then the subgroup H of G preserving S is discrete , and ŒH W �� <1.

As an aside, we mention that for lattices in PSL2.R/DSO.2; 1/, there are more direct ways of understand-
ing discrete patterns, and in particular Proposition 4.9 above, that are inspired by ideas from Teichmüller
theory. In this context, one can view the commensurator of a nontrivial harmonic form as explicitly
producing a �–discrete pattern. Specifically, one can use the fact that a harmonic form is the real part of
an abelian differential on the Riemann surface H2=� . In the case of a cocompact lattice, one can use the
fact that the set of zeros of the form is nonempty and discrete, and preserved by the commensurator of the
form. Then Lemma A.5 gives discreteness of the commensurator itself. In the case of a nonuniform lattice,
one uses saddle connections in the Baily–Borel–Satake compactification of H2=� , and the fact that these
are invariant under the commensurator. Again, Lemma A.5 gives discreteness of the commensurator.
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Pushouts of Dwyer maps are .1; 1/–categorical

PHILIP HACKNEY

VIKTORIYA OZORNOVA

EMILY RIEHL

MARTINA ROVELLI

The inclusion of 1–categories into .1; 1/–categories fails to preserve colimits in general, and pushouts in
particular. We observe that if one functor in a span of categories belongs to a certain previously identified
class of functors, then the 1–categorical pushout is preserved under this inclusion. Dwyer maps, a kind
of neighborhood deformation retract of categories, were used by Thomason in the construction of his
model structure on 1–categories. Thomason previously observed that the nerves of such pushouts have the
correct weak homotopy type. We refine this result and show that the weak homotopical equivalence is a
weak categorical equivalence. We also identify a more general class of functors along which 1–categorical
pushouts are .1; 1/–categorical.

18N60, 55U35

1 Introduction

Classical 1–categories define an important special case of .1; 1/–categories. The fact that .1; 1/–
category theory restricts to ordinary 1–categories can be understood, in part, by the observation that
the inclusion of 1–categories into .1; 1/–categories is full as an inclusion of .1; 2/–categories. This
full inclusion is reflective — with the left adjoint given by the functor that sends an .1; 1/–category
to its quotient “homotopy category” — but not coreflective and as a consequence colimits of ordinary
1–categories need not be preserved by the passage to .1; 1/–categories. Indeed there are known examples
of colimits of 1–categories that generate nontrivial higher-dimensional structure when the colimit is
formed in the category of .1; 1/–categories.

For example, consider the span of posets

.1.1/

�

� �

�

� � �
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�

� �

� � �
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The pushout in 1–categories is the arrow category �! �, while the pushout in .1; 1/–categories defines
an .1; 1/–category which has the homotopy type of the 2–sphere.

As a second example, let M be the monoid with five elements, e, x11, x12, x21 and x22, and multiplication
rule given by xij xk` D xi`. Inverting all elements of M yields the trivial group. That is, if one considers
M as a 1–category with a single object, then the pushout of the span M  

`
M 2!

`
M I (where 2

is the free-living arrow and I is the free-living isomorphism) in categories is the terminal category 1.
On the other hand, the pushout of this span in .1; 1/–categories is the1–groupoid S2 as follows from
[Fiedorowicz 2002, Lemma]. The results of [McDuff 1979] imply that this example is generalizable to a
vast class of monoids.

More generally, the Gabriel–Zisman category of fractions CŒW�1� is formed by freely inverting the
morphisms in a class of arrows W in a 1–category C. This can also be constructed as a pushout of
1–categories of the span

C 
a
w2W

2 ,!
a
w2W

I

where each arrow in W is replaced by a free-living isomorphism. By contrast, the .1; 1/–category
defined by this pushout is modeled by the Dwyer–Kan simplicial localization, which has nontrivial higher
dimensional structure in many instances [Dwyer and Kan 1980; Joyal 2008, page 168; Stevenson 2017,
Lemma 18]. Indeed, all .1; 1/–categories arise in this way [Barwick and Kan 2012].

As the examples above show, pushouts of 1–categories in particular are problematic. Our aim is to prove
that a certain class of pushout diagrams of 1–categories are guaranteed to be .1; 1/–categorical. The
requirement is that one of the two maps in the span that generates the pushout belong to a class of functors
between 1–categories first considered by Thomason [1980, Definition 4.1] under the name “Dwyer maps”
that feature in a central way in the construction of the Thomason model structure on categories.

Definition 1.2 (Thomason) A full sub-1–category inclusion I WA ,!B is a Dwyer map if the following
conditions hold.

(i) The category A is a sieve in B, meaning there is a necessarily unique functor � W B! 2 with
��1.0/DA. We write V WD ��1.1/ for the complementary cosieve of A in B.

(ii) The inclusion I WA ,!W into the minimal cosieve1 W�B containing A admits a right adjoint
left inverse R WW!A, a right adjoint for which the unit is an identity.

Schwede [2019] describes Dwyer maps as “categorical analogs of the inclusion of a neighborhood
deformation retract”. In fact, many examples of Dwyer maps are more like deformation retracts, in that
the cosieve W generated by A is the full codomain category B.

1Explicitly W is the full subcategory of B containing every object that arises as the codomain of an arrow with domain in A.
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Example 1.3 (i) The vertex inclusion 0 W 1! 2 is a Dwyer map, with ! W 2! 1 the right adjoint left
inverse. The other vertex inclusion 1 W 1! 2 is not a Dwyer map.

(ii) Generalizing the previous example, if A is a category with a terminal object and AF is the category
which formally adds a new terminal object, then the inclusion A ,!AF is a Dwyer map.2

Thomason observed that Dwyer maps are stable under pushouts, as we now recall:

Lemma 1.4 [Thomason 1980, Proposition 4.3] Any pushout of a Dwyer map I defines a Dwyer map J :

A C

B D

I

F

p
J

G

Note, for example, that Lemma 1.4 explains the Dwyer map of Example 1.3(ii): if A has a terminal
object t , then the pushout

1 A

2 AF
p

0

t

defines the category AF.

Our aim is to show that pushouts of categories involving at least one Dwyer map can also be regarded
as pushouts of .1; 1/–categories in the sense made precise by considering the nerve embedding from
categories into quasicategories:

Theorem 1.5 Let
A C

B D

I

F

p
J

G

be a pushout of categories , and assume that I is a Dwyer map. Then the induced map of simplicial sets

N BqN A N C!N D

is a weak categorical equivalence.

By a weak categorical equivalence, we mean a weak equivalence in Joyal’s model structure for quasi-
categories [Joyal and Tierney 2007, Section 1]. Theorem 1.5 is a refinement of a similar result of
Thomason [1980, Proposition 4.3], which proves that the same map is a weak homotopy equivalence.

2If A does not have a terminal object, then A!AF need not be a Dwyer map. Indeed, if AD 1q1, the only cosieve containing
A is AF itself, and there cannot be a right adjoint AF!A as A does not have a terminal object. But see Example 3.5(iii), which
explains that this example is discretely flat.
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While Theorem 1.5 is the natural generalization of Thomason’s result, we prove it by considering
instead the embedding of 1–categories as discrete simplicially enriched categories, using Bergner’s
model of .1; 1/–categories. This tactic was suggested by a referee; for our original argument using the
quasicategory model see [Hackney et al. 2022]. We show in Proposition 3.3 that a Dwyer map, when
considered as a map between discrete simplicial categories, satisfies a certain “flatness” property with
respect to the Bergner model structure. Since this discrete embedding of 1–categories into simplicial
categories preserves pushouts, unlike the nerve embedding of 1–categories into quasicategories, it is
straightforward to prove that:

Theorem 1.6 The inclusion Cat1 ,! Cat.1;1/ of the .1; 1/–category of 1–categories into the .1; 1/–
category of .1; 1/–categories preserves (homotopy) pushouts along Dwyer maps.

When then deduce Theorem 1.5 as a corollary of this result.

Though the two previous theorems refer to Dwyer maps, they also hold for the pseudo-Dwyer maps
introduced by Cisinski [1999], which are retracts of Dwyer maps. In fact, we prove both Theorems 1.5
and 1.6 for more general classes of functors introduced in Definition 3.4 that include the Dwyer maps.
The key property of a Dwyer map (or pseudo-Dwyer map) is that it is “discretely flat” as well as a faithful
inclusion. For a functor to be discretely flat means that pushouts along it, considered as a functor of
discrete simplicial categories, preserve Dwyer–Kan equivalences of simplicial categories.

In a companion paper, we give an application of Theorem 1.5 to the theory of .1; 2/–categories. There
we prove:

Theorem 1.7 [Hackney et al. 2023, 4.4.2] The space of composites of any pasting diagram in any
.1; 2/–category is contractible.

To prove this, we make use of Lurie’s [2009b] model structure of .1; 2/–categories as categories enriched
over quasicategories. In this model, a pasting diagram is a simplicially enriched functor out of the free
simplicially enriched category defined by gluing together the objects, atomic 1–cells, and atomic 2–cells
of a pasting scheme, while the composites of these cells belong to the homotopy coherent diagram indexed
by the nerve of the free 2–category generated by the pasting scheme.

This pair of .1; 2/–categories has a common set of objects so the difference lies in their hom-spaces. The
essential difference between the procedure of attaching an atomic 2–cell along the bottom of a pasting
diagram or along the bottom of the free 2–category it generates is the difference between forming a
pushout of hom-categories in the category of .1; 1/–categories or in the category of 1–categories. Since
one of the functors in the span that defines the pushout under consideration is a Dwyer map, Theorem 1.5
proves that the resulting .1; 2/–categories are equivalent.

In Section 2, we analyze 1–categorical pushouts of Dwyer maps. In Section 3, we extend these observations
to pushouts of simplicial categories involving a Dwyer map between 1–categories as one leg of the span,
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axiomatize the classes of functors that are well-behaved with respect to simplicial pushouts, and prove
Theorem 1.6. In Section 4, we deduce Theorem 1.5 as a corollary and consider a further special case
Corollary 4.1, which observes that the canonical comparison between the pushout of nerves of categories
and the nerve of the pushout is inner anodyne, provided that one of the functors in the span is a Dwyer
map and the other is an injective on objects faithful functor.

2 Dwyer pushouts

We now establish some notation that we will freely reference in the remainder of this paper. By
Definition 1.2, a Dwyer map I WA ,!B uniquely determines a functor � WB! 2 that classifies the sieve
A WD ��1.0/ and its complementary cosieve V WD ��1.1/

V B A

1 2 1

y
�

x

1 0

as well as a right adjoint left inverse adjunction .I aR; " W IR) idW/ associated to the inclusion of A

into the minimal cosieve A�W�B. This data may be summarized by the diagram

.2.1/

¿

U A

V W 1

1 B

2

p

p x

y

R

>

0

1

in which U WDW\VŠWnA. Consider the pushout of a Dwyer map along an arbitrary functor F WA!C:

A C

V B D

1 1

1 2 2

I

p

F

J

�

G

0

01

�

The induced functor � W D! 2 partitions the objects of D into the two fibers ob.��1.0// Š obC and
ob.��1.1//Š obV and prohibits any morphisms from the latter to the former.
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The right adjoint left inverse adjunction .I aR; " W IR) idW/ associated to the inclusion of A into the
minimal cosieve A�W�B pushes out to define a right adjoint left inverse .J a S; � W JS) idY/ to
the inclusion of C into the minimal cosieve C� Y� D:

A C A C A C

W Y W Y W Y C2

B D A C W2 Y2

F

I
a

p
J
a

F

I

p
J

F

I

p
J

�

G

p

R S

G

R

S
"

G
�

J 2

G F G2

These observations explain the closure of Dwyer maps under pushout and furthermore can be used to
explicitly describe the structure of the category D defined by the pushout of a Dwyer map, as proven
in [Bohmann et al. 2015, Proof of Lemma 2.5]; cf also [Schwede 2019, Construction 1.2; Ara and
Maltsiniotis 2014, Section 7.1].

Proposition 2.2 The objects in the pushout category D are given by

obCq obV Š
�! obD

while the hom sets are given by

C.c; c0/Š D.c; c0/; V.v; v0/ŠB.v; v0/Š D.v; v0/; C.c;Su/
�uı.�/

Š
���! D.c;u/; f 7! Of ;

for all c; c0 2 C, v; v0 2 V and u 2U, and are empty otherwise. Functoriality of the inclusions J and G

defines the composition on the image of C and V. For objects c; c0 2 C and u;u0 2U, the composition
map

D.u;u0/�D.c;u/�D.c0; c/ D.c0;u0/

D.u;u0/�C.c;Su/�C.c0; c/

C.Su;Su0/�C.c;Su/�C.c0; c/ C.c0;Su0/

ı

Š

S�id

ı

Š

is the unique map making the diagram commute.3

To summarize, J and G define fully faithful inclusions

V D C

1 2 1

y
�

x

1 0

that are jointly surjective on objects. In particular, we may identify V with the complementary cosieve
of C in D.
3Note if u 2U and v 2 VnU, then B.u; v/D¿.
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3 Pushouts in simplicial categories

By simplicial category we always mean simplicially enriched category as opposed to a simplicial object
in Cat. There is a fully faithful inclusion sCat ,! Cat�

op
, identifying a simplicial category with an

identity-on-objects simplicial object.

The following model structure on sCat is due to Bergner [2007], though Lurie [2009a, A.3.2.4, A.3.2.25]
observed that the Bergner model structure is left proper and combinatorial.

Definition 3.1 (Bergner model structure) The category sCat of simplicially enriched categories admits
a proper, combinatorial model structure in which:

� A map f W C! D is a weak equivalence just when

(W1) for each pair of objects x and y, the map C.x;y/! D.f x; fy/ is a weak homotopy equiva-
lence of simplicial sets, and

(W2) the functor �0f W �0C! �0D is essentially surjective.

� A map f W C! D is a fibration just when

(F1) for each pair of objects x and y, the map C.x;y/! D.f x; fy/ is a Kan fibration, and

(F2) the functor �0f W �0C! �0D is an isofibration.

If C is a simplicial category, then �0C is the ordinary category obtained by taking path components of
each hom-simplicial set. We call simplicial functors satisfying (W1) fully faithful (meaning of course in
the homotopical sense), and functors satisfying (W2) essentially surjective.

The constant diagram functor Cat! Cat�
op
, given by precomposition with �op

! 1, factors through the
full subcategory inclusion sCat ,! Cat�

op
. Write disc W Cat! sCat for the induced full inclusion, which

identifies categories as those simplicial categories with discrete hom-simplicial sets.

Lemma 3.2 The functor disc W Cat! sCat preserves limits and colimits.

Proof The precomposition functor Cat!Cat�
op

preserves all limits and colimits, while the full inclusion
sCat! Cat�

op
reflects them. The conclusion follows.

Our key technical result is the following proposition, which observes that when I is a Dwyer map, the
functor disc.I/ of simplicial categories is a flat map in the terminology of [Hill et al. 2016, B.9] or an
h–cofibration in the terminology of [Batanin and Berger 2017, 1.1] relative to the Bergner model structure.

Proposition 3.3 If I WA ,!B is a Dwyer map , then

disc Bqdisc A .�/ W
disc A=sCat! disc B=sCat

preserves weak equivalences.
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Proof Consider a composable pair of simplicial functors disc A F
�! C0 M

�! C and form the following
pushouts:

disc A C0 C

disc B D0 D
p

F M

pH

When M is a weak equivalence in the Bergner model structure, we wish to show that the induced map
H W D0! D between the pushouts is as well.

As in Proposition 2.2, we identify obD0 with obC0q obV and similarly obDD obCq obV. We regard
the simplicial categories D0 and D as simplicial objects D0

�
and D� via the inclusion sCat ,! Cat�

op
. For

each n, we have Dn DBqA Cn and similarly for D0n. We have already computed the hom sets of these
categories in Proposition 2.2, and the descriptions there are functorial in the C–variable. Thus,

C0.c; c0/ C.Mc;Mc0/ C0.c;FRu/ C.Mc;MFRu/

D0.c; c0/ D.Hc;Hc0/ D0.c;u/ D.Hc;Hu/

'

Š Š

'

Š Š

for c; c0 2C0 and u2U. Meanwhile, for v; v0 2V we have that both D.v; v0/ and D0.v; v0/ are isomorphic
to the discrete simplicial set V.v; v0/. Finally, the hom-simplicial sets D0.c; v0/, D.Hc; v0/, D.v; c/ and
D.v;Hc/ are all empty for c 2 C0, v 2 V and v0 2 VnU. Thus H is fully faithful.

For essential surjectivity of H , notice that we have a commutative square of functors

C0q disc V Cq disc V

D0 D

Mqid

H

where the vertical maps are bijective on objects and the top map is essentially surjective. It follows that
H is essentially surjective as well.

Our main results hold not just for Dwyer maps but for arbitrary functors between 1–categories that satisfy
the property established in Proposition 3.3 plus some injectivity conditions. The following terminology
highlights the required properties.

Definition 3.4 A functor I W A! B between 1–categories is discretely flat if the simplicial functor
disc.I/ is flat, ie if

disc Bqdisc A .�/ W
disc A=sCat! disc B=sCat

preserves Bergner weak equivalences. If, in addition, I is injective on objects, we call it a discretely flat
cofibration, and if it is both injective on objects and faithful, we call it a discretely flat inclusion.

Dwyer maps are discretely flat inclusions, but such functors aren’t the only examples.
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Example 3.5 (i) Since the passage to opposite categories commutes with all of the structures involved
in Definition 3.4, co-Dwyer maps, whose opposites are Dwyer maps, are also discretely flat
inclusions.

(ii) As flat maps are closed under retracts — see [Hill et al. 2016, B.11] or [Batanin and Berger 2017,
Lemma 1.3] — Cisinski’s [1999] pseudo-Dwyer maps are also discretely flat inclusions.

(iii) The inclusion of 1q 1 into the cospan category .1q 1/F is a discretely flat inclusion. Indeed, the
hom-simplicial sets of .1q 1/Fq.1q1/ C are readily computed by hand in terms of those for C,
and a variation of the proof of Proposition 3.3 gives the result.

Note not all functors of the form A! AF are discrete flat inclusions. In light of Theorem 1.6, the
left-hand map of (1.1) gives a counterexample. An interesting problem is to characterize the class of
discretely flat inclusions.

The fact that Dwyer pushouts are homotopy pushouts now follows from a general fact: in a left proper
model category, a pushout where one leg is a flat map is automatically a homotopy pushout; see [Batanin
and Berger 2017, Section 1.5].

Proposition 3.6 Suppose I WA!B is discretely flat. Then for any functor F W disc A! C of simplicial
categories , the pushout disc Bqdisc A C is a homotopy pushout.

Proof To form the homotopy pushout of a span in a model category, one replaces it by a cofibrant span
as below and then takes the ordinary pushout [Dwyer and Spaliński 1995, 10.4]:

¿

Y X Z

disc B disc A C

� � �

disc.I /

Thus, we must show that the induced map

YqX Z! disc Bqdisc A C

is a weak equivalence of simplicial categories. Since disc.I/ is flat by assumption and sCat is left proper,
the above map is a weak equivalence by [Hill et al. 2016, B.12].

Our model-independent statement, that Dwyer pushouts are .1; 1/–categorical, holds generally for
discretely flat cofibrations.

Theorem 1.6 The inclusion Cat1 ,! Cat.1;1/ of the .1; 1/–category of 1–categories into the .1; 1/–
category of .1; 1/–categories preserves (homotopy) pushouts along discretely flat cofibrations.

Proof The inclusion Cat1 ,! Cat.1;1/ can be modeled at the point-set level by the right Quillen functor
disc W Cat! sCat. By hypothesis, a discretely flat cofibration I W A! B is injective on objects, hence
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a cofibration in the canonical model structure on Cat. This model structure is left proper, so ordinary
pushouts along such maps are homotopy pushouts by [Hirschhorn 2003, 13.5.4]. Since the functor
disc W Cat! sCat preserves strict pushouts, Proposition 3.6 shows that disc preserves homotopy pushouts
along discretely flat cofibrations, so the conclusion follows.

4 Pushouts in simplicial sets

In this section, we describe the implications of Theorem 1.6 for the Joyal model structure on simplicial
sets, proving the results needed in [Hackney et al. 2023]. We utilize the commutative triangle of right
Quillen functors

Cat

sSet sCat

N disc

N

'

where N is the homotopy coherent nerve, a right Quillen equivalence between the Bergner and Joyal
model structures. This diagram commutes up to natural isomorphism since, for any 1–category A,

.N disc A/n WD hom.CŒn�; disc A/Š hom.Œn�;A/DW .N A/n;

which holds because the hom simplicial sets of disc A are discrete.

We first explain how to deduce Theorem 1.5 from Proposition 3.6. In fact, we use the terminology of
Definition 3.4 to prove a more general version:

Theorem 1.5 Let
A C

B D

I

F

p
J

G

be a pushout of categories , and assume I is a discretely flat inclusion. Then the induced map of simplicial
sets

N BqN A N C!N D

is a weak categorical equivalence.

Proof We organize the proof into the following commutative square of simplicial sets:

N disc BqN disc A N disc C N BqN A N C

N.disc Bqdisc A disc C/

N disc.BqA C/ N.BqA C/

Š

Š

Š
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The top and bottom isomorphisms are instances of the natural isomorphism N ŠN disc. The vertical
maps are the canonical comparison maps induced by the universal property of the pushouts. The bottom
left map is an isomorphism since disc preserves pushouts (Lemma 3.2). It remains to show that the upper
left map

N disc BqN disc A N disc C!N.disc Bqdisc A disc C/

is a weak categorical equivalence, at which point the right map will be a weak categorical equivalence by
two-of-three.

Notice that the objects in the top row are homotopy pushouts, since NI WN A!N B is a cofibration in
sSet by the hypothesis that I is faithful and injective on objects. Let RN be the right derived functor
of N. Since discrete simplicial categories are fibrant in the Bergner model structure, the map of simplicial
sets above represents the canonical map

.RN/ disc Bqh
.RN/ disc A .RN/ disc C! .RN/.disc Bqh

disc A disc C/:

This is an equivalence since RN is an equivalence of .1; 1/–categories, hence preserves homotopy
pushouts. We conclude that N BqN A N C!N.BqA C/ is a weak categorical equivalence.

In the case where F WA! C is also injective on objects and faithful, as occurs frequently in [Hackney
et al. 2023], we are able to strengthen our conclusion and prove that the canonical comparison map is
inner anodyne.

Corollary 4.1 Let

A C

B D

I

F

p
J

G

be a pushout of categories , in which I is a discretely flat inclusion and F is faithful and injective on
objects. Then the induced inclusion of simplicial sets

N BqN A N C ,!N D

is inner anodyne.

Proof Observe in this case that the canonical map j WN BqN A N C ,!N D is an inclusion and thus, by
Theorem 1.5, an acyclic cofibration in the Joyal model structure. This acyclic cofibration is also bijective
on 0–simplices and has codomain a quasicategory. By [Stevenson 2018a, 2.19] or [Stevenson 2018b, 5.7]
it follows that j is inner anodyne.4

4See [Campbell 2020] for related discussion and an example of an acyclic cofibration that is bijective on 0–simplices but whose
codomain is not a quasicategory that is not inner anodyne.
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A variant of a Dwyer–Kan theorem for model categories

BORIS CHORNY

DAVID WHITE

If all objects of a simplicial combinatorial model category A are cofibrant, we construct the homotopy
model structure on the category of small functors SA, where the fibrant objects are the levelwise fibrant
homotopy functors, ie functors preserving weak equivalences. When A fails to have all objects cofibrant,
we construct the bifibrant-projective model structure on SA and prove that it is an adequate substitute
for the homotopy model structure. Next, we generalize a theorem of Dwyer and Kan, characterizing
which functors f WA!B induce a Quillen equivalence SA � SB with the model structures above. We
include an application to Goodwillie calculus, and we prove that the category of small linear functors
from simplicial sets to simplicial sets is Quillen equivalent to the category of small linear functors from
topological spaces to simplicial sets.

18N40, 55P65

Introduction

Homotopy functors are functors taking weak equivalences to weak equivalences. They have been a
central object of interest in algebraic topology from the very beginning of the subject. W G Dwyer and
D Kan [18] began the systematic study of the categories of homotopy functors with the theory of (what
are nowadays called) relative categories (fully developed by C Barwick and D Kan [1]). In more detail,
Dwyer and Kan ask when a map f W .A; U /! .B; V / of relative categories induces a Quillen equivalence
f � WSB;V !SA;U between the categories of homotopy functors (called restricted diagrams in [18]) from
the relative categories to the category S of simplicial sets. Dwyer and Kan prove that f � is a Quillen
equivalence if and only if the induced map of simplicial localizations Lf W L.A; U /! L.B; V / is an
r–equivalence of simplicial categories [18, Theorem 2.2]. In the current paper we formulate a version of
this theorem for model categories.

Since the concept of r–equivalences is rarely used, especially in comparison to the concept of Dwyer–Kan
equivalences, introduced in the same article [18], we recall that a map f WA!B of simplicial categories
is an r–equivalence if

� for every two objects A1; A2 2A, the induced map

homA.A1; A2/! homB.fA1; fA2/

is a weak equivalence, and

� every object in the “category of components” �0B is a retract of an object in the image of �0f .

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
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A completely different approach to the study of the category of homotopy functors from spaces to spaces
is given by Goodwillie’s calculus of functors [20; 21; 22]. It was noticed by W G Dwyer [17] that
Goodwillie’s polynomial approximation may be interpreted as a homotopical localization. This approach
was reworked in terms of model categories by G Biedermann, the first author and O Röndigs [4]; in
particular constructing the model category of homotopy functors on the categories of small functors from
simplicial sets to simplicial sets and to spectra.

Later on, various generalizations of Goodwillie calculus to other contexts have appeared — see Basterra,
Bauer, Beaudry, Eldred, Johnson, Merling and Yeakel [2], Biedermann and Röndigs [5], and Pereira [28] —
and, hence, a natural question that arises here is the question of invariance of Goodwillie’s calculus under
Quillen equivalence. For example, topological spaces Top and simplicial sets S are Quillen equivalent
simplicial model categories. Are the model categories of small homotopy (or linear, or n–excisive)
functors STop and SS Quillen equivalent?

First we give an analog of the Dwyer–Kan theorem to model categories with all objects cofibrant: in
Theorem 3.1 we construct a model category of homotopy functors and in Theorem 5.2 we show that
a Quillen equivalence of two combinatorial model categories with all objects cofibrant gives rise to a
Quillen equivalence of the categories of small functors into simplicial sets. Unfortunately this approach
does not generalize further; we were not able to construct the homotopy model structure for arbitrary
model categories.

The purpose of this paper is to develop a context in which the Dwyer–Kan theorem may be formulated for
model categories, and then to prove that the categories of what replaces homotopy functors in our setup are
equivalent if and only if the domain categories are r–equivalent. We prove this result in Theorem 5.8. In
particular, Example 5.6 implies together with Theorem 5.8 that a Quillen equivalence A � B of simplicial
combinatorial model categories induces a Quillen equivalence SA � SB of the model categories of small
homotopy functors.

The absolute version of the Dwyer–Kan theorem states that a map of simplicial categories f WA!B

induces a Quillen equivalence Lanf WSA �SB Wf � if and only if f is an r–equivalence, [18, Theorem 2.1].
Lukáš Vokřínek [31] generalized this result to categories enriched in a closed symmetric monoidal model
category. The categories of homotopy functors are not discussed in his work. We give a version of
the relative Dwyer–Kan theorem [18, Theorem 2.2] (which generalizes [18, Theorem 2.1]) for model
categories in this paper.

As an application, we prove that the categories of small n–excisive functors defined on simplicial sets
and on topological spaces are Quillen equivalent. More generally, given a Quillen pair such that the right
adjoint preserves homotopy pushouts, we show that the model categories of n–excisive functors defined
on this Quillen pair and taking values in simplicial sets, are Quillen equivalent.

The paper is organized as follows. In the preliminary section we characterize which simplicial functors of
simplicial combinatorial model categories induce a Quillen adjunction between the categories of small
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functors into simplicial sets equipped with the projective and the fibrant-projective — see Biedermann and
the first author [3] — model structures. In Section 2 we introduce the bifibrant-projective model structure,
show its existence and extend the results from the preliminary section to this new setting.

Section 3 is devoted to the study of the homotopy model structures (such that the fibrant objects are the
fibrant homotopy functors) on the categories of small functors from a model category to simplicial sets. In
order to prove the existence of the homotopy model structure, we require that the domain model category
has all objects cofibrant. This is not a major restriction, since, as shown by Ching and Riehl [9] and
Dugger [15], every combinatorial model category is Quillen equivalent to one with all objects cofibrant
(and in [9] even to one whose objects are objects of the original category). Furthermore, we show that
whenever the homotopy model category exists, it is Quillen equivalent to the bifibrant-projective model
structure, which exists without the requirement that all objects be cofibrant, and is a suitable replacement.
Our comparison of the small functors from topological spaces to simplicial sets with the small functors
from simplicial sets to simplicial sets is carried out in Section 4. The homotopy model structure on SS

was constructed in [4] and it is Quillen equivalent to the fibrant-projective model structure. Because the
Quillen model structure on Top does not have all objects cofibrant, we do not know if the homotopy
model structure on STop exists, but the cofibrant-projective model structure on STop is Quillen equivalent
to the fibrant-projective model structure on SS. This means that the bifibrant-projective model structures
on both categories produce Quillen equivalent model categories, as we wanted to show.

In Section 5 we prove our main result generalizing the Dwyer–Kan theorem. We first treat the simpler
case of the homotopy model structures when all objects in the domain category are cofibrant, and then
prove the general case cited above. An application to Goodwillie calculus is given in Section 6. We prove
the Quillen equivalence of the categories of the n–excisive functors by localizing the Quillen equivalent
categories of small functors equipped with the bifibrant-projective model structure. A tool allowing for
such comparison is developed in the appendix and hopefully will be useful in other situations as well.
The question of the existence of the n–excisive model structure is not addressed in this work, since it
was considered in a number of papers [4; 5; 11], and the methods of localization developed there may be
easily applied to the current situation.

Acknowledgements We are grateful to Brooke Shipley and Karol Szumiło for valuable comments.
Chorny acknowledges the support of ISF grant 1138/16. White thanks the Center for Mathematics and
Scientific Computation for supporting a visit to the University of Haifa at Oranim in 2015, when this
work began.

1 Preliminaries

In this section we recall the homotopy theory of small functors and establish some basic properties of
various model categories of small functors. We assume the reader is familiar with the basics of model
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categories and left Bousfield localization, eg [23; 24]. Note that all our model categories and functors
between them are simplicial, and hom.X; Y / denotes the simplicial set of morphisms from X to Y . A
model category is combinatorial if it is locally presentable and cofibrantly generated.

Definition 1.1 Let A be a simplicial category. A functor F WA! S is small if it is a left Kan extension
from some small subcategory. In other words, there exists a small full subcategory i WA0 ,!A such that
F D Lani i�F . We denote the category of small functors from A to S by SA.

Remark 1.2 In the book by M Kelly [25], small functors are called accessible, which does not correspond
to modern terminology (accessible functors are functors of accessible categories preserving �–filtered
colimits for some cardinal �), though accessible functors are always small and small functors of accessible
categories are accessible. A functor is small if and only if it is a small (weighted) colimit of representable
functors [25, Proposition 4.83]. Since the category of small functors from A to S is cocomplete [25,
Proposition 5.34], in particular tensored over S, a colimit of the functor G W .A0/op!SA weighted by the
functor F WA0! S may be computed using the coend formula: F ?A0 G D

R A2A0
FA˝GA [25, 3.70].

Now we would like to analyze what kind of functors are induced on the categories of small functors by
an adjunction of domain categories.

Proposition 1.3 Let L WA!B be a simplicial accessible functor between locally presentable simplicial
categories. Then there exists a pair of adjoint functors between the categories of small functors

LanL W SA � SB
WL�:

If in addition L has a right adjoint R, then LanL DR� is given by the precomposition with R.

Proof Note that every small functor F 2 SA is a left Kan extension from a full small subcategory
i WA0 ,!A. Then

LanL.F /D LanL.Lani i�F /D LanLi i�F

by the transitivity property of the iterated left Kan extensions [25, Theorem 4.47]. Hence, LanL.F / 2SA

is a small functor.

Given a representable functor RB D homB.B;�/, the functor L�RB D hom.B;L�/ is no longer
representable, but it is �–accessible if B is �–presentable and L is �–accessible. Hence it is a small
functor as an accessible functor of accessible categories.

For any G 2 SB,

L�G D L�
�Z B

hom.B;�/˝GB
�
D

Z B

hom.B;L�/˝GB

is a weighted colimit of small functors, which is again small [25, 5.34].
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Suppose now that L has a right adjoint L aR. Then, using Yoneda’s lemma,

hom.R�F;G/D hom
�
R�
�Z A2A0

hom.A;�/˝FA
�
; G

�
D

Z
A

hom.hom.A;R.�//˝FA;G/

D

Z
A

hom.FA; hom.hom.LA;�/; G//

D

Z
A

hom.FA;G.LA//

D

Z
A

hom.FA;L�G.A//

D

Z
A

hom.FA; hom.hom.A;�/; L�G//

D

Z
A

hom.hom.A;�/˝FA;L�G/

D hom
�Z A

hom.A;�/˝FA;L�G
�
D hom.F;L�G/:

In other words R� a L�; hence R� D LanL.

We are interested in the homotopy theory of small functors. The projective model structure (where
weak equivalences and fibrations are levelwise) on the category of small functors was constructed in
[12, Theorem 3.1] for all cocomplete domain categories. The condition of cocompleteness is required to
ensure that the category of small functors is complete [14, Corollary 3.9].

Proposition 1.4 Given a simplicial accessible functor f W A! B of simplicial combinatorial model
categories , the adjunction Lanf a f � discussed in Proposition 1.3 is a Quillen pair for the projective
model structures on the categories of small functors from A and B to S.

Proof Consider the adjunction

SA

Lanf
**
SB

f �
jj

between the two model categories of small functors equipped with the projective model structure [12].
Let p W F ! G be a (trivial) fibration in SB. Consider the induced map f �p W f �F ! f �G in SA.
Let A 2 A be an arbitrary object. Then pfA W F.fA/! G.fA/ is a (trivial) fibration by assumption.
Furthermore, f �pA D pfA is also a (trivial) fibration:

.f �F /.A/
f �pA

// .f �G/.A/

F.fA/pfA
. /o /

// // G.fA/
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The fibrant-projective model structure on the category of small functors with domain in a combinatorial
model category (where weak equivalences and fibrations are levelwise in fibrant objects) was constructed
in [3, Definition 3.2]. This is a particular case of the relative model structure [10, Definition 2.2]. In the
next proposition we analyze its interaction with the adjunction of Proposition 1.3.

Proposition 1.5 Given a simplicial accessible functor f W A! B of simplicial combinatorial model
categories , the adjunction Lanf a f � discussed in Proposition 1.3 is a Quillen pair for the fibrant-
projective model structure on the categories of small functors from A and B to S if and only if f
preserves fibrant objects.

Proof The “if” direction follows in the same manner as Proposition 1.4 above.

For the “only if” direction, assume that f � is a right Quillen functor and we need to show that for every
fibrant A 2 A the map p W fA! � has the right lifting property with respect to any trivial cofibration
i W B1

�,�! B2 in B. By [23, Proposition 9.4.3], it suffices to show that .i; p/ is a homotopy lifting-
extension pair. In other words, it suffices to show that hom.B2; fA/! hom.B1; fA/ is a trivial fibration
of simplicial sets.

For any trivial cofibration i W B1 �,�! B2 in B the induced map of representable functors

i� W hom.B2;�/! hom.B1;�/

is a trivial fibration in the fibrant-projective model structure on SB, by the SM7 axiom [23, Definition 9.1.6].
Since f � is a right Quillen functor, the map

f �i� W hom.B2; f �/! hom.B1; f �/

is a trivial fibration in the fibrant-projective model structure on SA, ie

hom.B2; fA/ ��� hom.B1; fA/

is a trivial fibration of simplicial sets for all fibrant A 2A.

2 Bifibrant-projective model structure

Let A be a simplicial combinatorial model category. By analogy with the fibrant-projective [3, Definition
3.2] and cofibrant-projective [6, Definition 2.1] model structures on the categories of small functors SA,
we introduce the bifibrant-projective model structure on SA.

Definition 2.1 Let A be a simplicial combinatorial model category, and let F;G 2 SA be small functors.
A natural transformation f W F !G is a bifibrant weak equivalence (resp. bifibrant fibration) if for all
bifibrant objectsA2A (ie objects which are both fibrant and cofibrant), the induced map fA WF.A/!G.A/

is a weak equivalence (resp. a fibration) of simplicial sets. A natural transformation is a bifibrant cofibration
if it has the left lifting property with respect to bifibrant trivial fibrations.
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Next, we establish the existence of the bifibrant-projective model structure as a particular case of the
relative model structure [10, Definition 2.1].

Proposition 2.2 Let A be a simplicial combinatorial model category. Then the category of small functors
SA may be equipped with the bifibrant model structure.

Proof We will verify the conditions of [10, Proposition 2.8] in order to establish the bifibrant model
structure, which is also the bifibrant relative model structure in the terminology of [10].

The condition requiring verification is the local smallness [10, Definition 2.4] of the subcategory of
bifibrant objects in the category Aop, or, dually, the solution set condition in A, ie for every object A 2A

we need to find a set of bifibrant objects WA such that for every bifibrant object B and every map A!B

there exists a (nonunique) object W 2WA such that A!W ! B .

For every objectA2A, choose a cardinal � large enough thatA is �–presentable and A is �–combinatorial.
Next, look at the set W0A of �–presentable cofibrant objects in A, then put WA D f

�W jW 2W0Ag, where�W denotes fibrant replacement.

The fat small object argument [27, Corollary 5.1] shows that every cofibrant object is a �–filtered colimit of
�–presentable cofibrant objects in the �–combinatorial model category A. It follows that every morphism
A! B into a bifibrant object B factors first through some W1 2W0A. Finally, the morphism W1! B

factors through the fibrant replacement W D �W1 of W1, since B is fibrant: W1 �,�!W ! B .

Now we need to find the conditions on a functor f W A! B between simplicial combinatorial model
categories such that the induced adjunction Lanf a f � of Proposition 1.3 is a Quillen pair.

Proposition 2.3 Given a simplicial accessible functor f W A! B of simplicial combinatorial model
categories , the adjunction Lanf a f � discussed in Proposition 1.3 is a Quillen pair for the bifibrant-
projective model structure on the categories of small functors from A and B to S if f preserves both
fibrant and cofibrant objects.

Proof Similar to Proposition 1.4.

Example 2.4 The classical Quillen equivalence j�jW S � Top WSing induces the Quillen map of
bifibrant-projective model structures

Sing� W SS � STop
Wj�j
�;

which turn out to be the fibrant-projective and the cofibrant-projective model structures respectively. Of
course, this is a very special case when the left Quillen functor preserves fibrant objects. We will have to
find a way around this difficulty in order to generalize this example.
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3 Homotopy model structure

Let A be a simplicial combinatorial model category. Recall that homotopy functors are functors preserving
the weak equivalences. If it exists, the homotopy model structure on the category of small functors SA is
a localization of the projective model structure in such a way that the local objects are the projectively
fibrant homotopy functors. We will only construct the homotopy model structure on the category of small
presheaves SA under the additional assumption that all objects of A are cofibrant.

3.1 Localization construction

If we localize the projective model structure on the category of small functors SA with respect to the
class of maps

HA D fhom.A1;�/! hom.A2;�/ j A1 ��! A2 in Ag;

then the fibrant objects in the new model structure will be precisely the levelwise fibrant homotopy
functors. The resulting model structure is the homotopy model structure on SA. Since the projective
model structure is not cofibrantly generated (it has a proper class of generating cofibrations, instead of a
small set), and HA is a proper class of maps, the localization techniques of Smith and Hirschhorn may
not be applied.

In the case that all objects of A are cofibrant, we will use the Bousfield–Friedlander [8, Appendix A]
Q–model structure construction further improved by Bousfield [7, Theorem 9.3] in order to obtain the
left Bousfield localization of SA with respect to HA.

Theorem 3.1 Let A be a simplicial combinatorial model category with all objects cofibrant. Then there
exists a localization of the projective model structure on SA, such that the fibrant objects are precisely the
levelwise fibrant homotopy functors.

Proof Since A is a simplicial combinatorial model category, we can fix a continuous, accessible fibrant
replacement functor FibA WA!A together with a natural transformation " W IdA! FibA. These properties
are required to ensure that the precomposition of FibA with a small functor F WA! S produces a small
functor again.

We denote the fibrant replacement in S by b.�/. In this case the homotopy approximation functor may be
constructed very explicitly. Namely, for any small F WA! S, we can put H.F /D2Fib�A F D3F ıFibA.
It is equipped with the coaugmentation bF" W F !2Fib�A F . This is a homotopy idempotent construction
that takes values in homotopy functors, since weak equivalences of objects which are fibrant and cofibrant
are simplicial weak equivalences [29, II.2.5] and the latter are preserved by simplicial functors; see [4,
Proposition 3.3].

By [30, Proposition 4.3], in any model category M equipped with a homotopy idempotent functor
L WM!M, the class of L–equivalences (the maps rendered by L into weak equivalences) coincides with
the class of the local equivalences (the class of maps simplicially orthogonal to the L–local objects);
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therefore H–equivalences are precisely the local equivalences with respect to the fibrant homotopy functors.
Since our construction is very simple, we can see immediately that H–equivalences, ie maps rendered into
projective weak equivalences by the functor H, are precisely the fibrant-projective weak equivalences of
small functors [3, Definition 3.2], ie the natural transformations of functors inducing weak equivalences
of fibrant objects.

It remains to verify that our localization construction satisfies the conditions A1–A3 of [7, Theorem 9.3].
The projective model structure on the category SA of small functors is proper by [3, Theorem 3.6], since
S is a right proper model category and a strongly left proper monoidal model category [16, Definition 4.5].

Conditions A1 and A2 are satisfied by the construction of H and the discussion above. To verify A3,
consider the pullback of a fibrant-projective weak equivalence along a projective fibration. Since S is right
proper, the base change of a fibrant-projective weak equivalence is a fibrant-projective weak equivalence
again.

Hence the left Bousfield localization exists, and defines the H–local model structure on the category of
small functors from A to S. This is the homotopy model structure, since the H–local objects are precisely
the projectively fibrant homotopy functors. In other words, H–localization is the localization with respect
to HA.

If we drop the assumption that all objects are cofibrant, we are unable to construct the left Bousfield
localization of the projective model category SA with local objects being precisely the homotopy functors,
but we will show the existence of a homotopy idempotent (nonfunctorial) localization construction Q,
such that Q–equivalences are precisely the HA–equivalences.

Proposition 3.2 Let A be a simplicial combinatorial model category. Then for each functor F 2 SA

there exists an HA–equivalence F !QF such that QF is a homotopy functor.

Proof Let f W A! A be a bifibrant replacement functor. Notice that the adjunction Lanf a f � is a
Quillen pair for the projective model structure on SA, since the right adjoint f � preserves fibrations and
trivial fibrations.

For every functor F 2HA consider the construction

zF

�O

����

//� q

""

f � Lanf zF

Q0F

8x
88 88

�O

��

F // QF

We begin with F 2HA, take its cofibrant replacement zF in the projective model structure and factor the
unit of the adjunction Lanf a f � into a projective cofibration followed by a projective trivial fibration.
Denote the middle term of the factorization by Q0F and put QF DQ0F q zF F .
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Unfortunately this construction is not functorial, since the cofibrant replacement in the projective model
structure is not known to be functorial. On the other hand, it naturally extends to morphisms and can be
rendered functorial on any small subcategory of SA.

This construction preserves weak equivalences of functors, since all the stages of the construction do. In
particular, Lanf preserves weak equivalences between cofibrant objects and f � preserves all projective
weak equivalences.

Now, QF is projectively weakly equivalent to f � Lanf zF , so in order to show that QF is a homotopy
functor it suffices to show that f � Lanf zF is. We will show it by cellular induction, assuming that
zF D colimi<� Fi , so that F0 D∅ and Fi is obtained from Fi�1 by attaching a cell

RAi ˝ @�n� _

��

// Fi�1� _

��

RAi ˝�n // Fi

if i is a successor ordinal or Fi D colima<i Fa if i is a limit ordinal.

In order to compute Lanf zF , notice that Lanf commutes with colimits, and Lanf RAi DRf .Ai /. In other
words, Lanf zF is a cellular complex with cells of type Rf .Ai /, ie represented in cofibrant objects.

Next, we must show that QF is a homotopy functor, ie it preserves weak equivalences. The following
argument proves that a projectively equivalent functor f � Lanf zF is a homotopy functor by cellular
induction. First, note that f � preserves colimits, as a left adjoint to Ranf , which exists, in turn, by [14], or
just because the colimits in the diagrams of functors are computed levelwise. Therefore, f � Lanf zF is a
cellular construction, with cells of type f �Rf .Ai /D hom.f .Ai /; f .�//, so it is no longer a representable
functor, but is a homotopy functor. Hence, assuming for induction that f � Lanf Fa is a homotopy functor
for all a < i , we obtain that f � Lanf Fi is also a homotopy functor; hence f � Lanf zF is a homotopy
functor as a sequential colimit of homotopy functors into S.

The last claim that we need to show is that the map F !QF is an HA–equivalence. In other words, that
our construction is homotopy idempotent. We will show the equivalent statement that the map F !QF

is initial in a suitable sense, ie we will show that in the homotopy category Ho.SA/ the unit of the derived
pair of adjoint functors " W Œ zF � D ŒF �! ŒQF � D Rf �L Lanf Œ zF � is initial with respect to maps into
homotopy functors.

Let H 2 SA be a projectively fibrant homotopy functor, and let g W ŒF �! ŒH � be a map in the homotopy
category. Notice that since H preserves weak equivalences, ŒH � D Œf �H� D Rf �ŒH �. Then by the
universal property of the unit there exists a unique map h WRf �L Lanf zF !Rf �ŒH �D ŒH � such that
g D h".

Therefore, our initial construction F !QF is a homotopy localization turning every small functor into a
homotopy functor, ie localization with respect to SA.
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3.2 Comparison of the homotopy and the bifibrant-projective model structures

We next prove that the homotopy model structure on SA is Quillen equivalent to the bifibrant-projective
model structure (Definition 2.1), when both model structures exist. This means we can use the bifibrant-
projective model structure as a substitute for the homotopy model structure in contexts where the homotopy
model structure is not yet known to exist. We conjecture that the homotopy model structure on SA

exists even if not all objects of A are cofibrant. We expect that localization of class-combinatorial model
categories [13] can be used to prove this conjecture.

For the sake of comparison, we assume in this section that the homotopy model structure exists. We note
that the bifibrant-projective model structure exists whenever A is combinatorial. We show now that these
model structures are Quillen equivalent.

Theorem 3.3 Let A be a simplicial combinatorial model category. Then the pair of identity functors
induces a Quillen equivalence of the homotopy and the bifibrant-projective model structures.

Proof Consider the pair of adjoint functors

Id W SA
bifib-proj � SA

proj WId;

where the left adjoint is pointing from left to right.

This is a Quillen pair because the right adjoint obviously preserves fibrations and trivial fibrations. Now
we localize the projective model structure and obtain the homotopy model structure on the right-hand
side. The identity functors still form an adjoint pair

Id W SA
bifib-proj � SA

ho WId;

where SA
ho denotes the homotopy model structure (which we have assumed to exist). This adjoint pair is

still a Quillen pair, as a composition of the previous adjunction with the Quillen pair arising from the left
Bousfield localization of the projective model structure. To show that this is a Quillen equivalence we
will use [24, Corollary 1.3.16(b)]. The left adjoint reflects weak equivalences between cofibrant objects,
since the fibrant approximation in the homotopy model structure (approximation by the levelwise fibrant
homotopy functor constructed in Proposition 3.2) can only change the values of a bifibrant-projectively
cofibrant functor in fibrant objects up to a weak equivalence.

It remains to show that for every fibrant (homotopy) functor F 2 SA
ho, the cofibrant replacement map

i W zF!F in the bifibrant-projective model structure SA
bifib-proj is a weak equivalence in the homotopy model

structure. In other words, if we apply the homotopy approximation construction Q from Proposition 3.2
we obtain a projective weak equivalence. Indeed, there is a projective weak equivalence QF ' F , since
F is a homotopy functor. Furthermore, Q zF is homotopy functor bifibrant-projectively equivalent to zF ,
hence also to F 'QF . So, by the 2-out-of-3 property, Qi WQ zF !QF is a bifibrant-projective weak
equivalence of homotopy functors and hence is a levelwise weak equivalence, as required.
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4 Motivating example

Before we turn to the proof of the main result, let us consider the example of (�–generated [19])
topological spaces Top and simplicial sets S, two Quillen equivalent simplicial model categories with
very different categories of small functors STop and SS. For the category of functors from simplicial sets
to simplicial sets, we have both the bifibrant-projective model structure and the homotopy model structure
constructed in the previous sections. For the case of functors from topological spaces to simplicial sets,
we have several model structures to choose from. The fibrant-projective model structure is not different
from the projective model structure, since all objects in Top are fibrant. The observation that simplicial
functors preserve weak equivalences between cofibrant topological spaces (since every object is fibrant)
suggests that for our comparison to SS we should establish the cofibrant-projective model structure
on STop. We do so below. Such a model structure has been previously established on the category of
contravariant functors [6], but for the category of covariant functors it is new.

Proposition 4.1 The cofibrant-projective model structure on the category of small functors STop exists ,
ie weak equivalences (resp. fibrations) are the natural transformations inducing weak equivalences
(resp. fibrations) on the values of functors in cofibrant objects.

Proof The cofibrant-projective model structure is a particular case of the relative model structure [10].
The latter exists if the solution set condition (dual to the local smallness in the case of contravariant
functors) for the inclusion functor of cofibrant objects into Top is satisfied [10, Proposition 2.8]. For
every uncountable regular cardinal � there exists a set P� of �–presentable cofibrant spaces, such that
every cofibrant space is a filtered colimit of the elements of this set [27, Corollary 5.1], since the domains
and the codomains of the generating trivial cofibrations are finitely presentable, hence �–presentable.

The solution set condition readily follows. Given an object X 2 Top, there exists an uncountable regular
cardinal � such that X is �–presentable. Therefore, every map X !A with a cofibrant A factors through
the set of all possible maps fX ! B j B 2 P�g.

We now analyze the connection between the newly established cofibrant-projective model structure and
the homotopy model structure.

Proposition 4.2 The Quillen equivalence .LDj�j; RDSing.�// between simplicial sets and topological
spaces induces a Quillen equivalence .R�; L�/ between the categories of small functors SS and STop

with the fibrant-projective and the cofibrant-projective model structures , respectively.

Proof Since L preserves fibrant objects, .R�; L�/ is a Quillen pair by Proposition 1.5 between the
fibrant-projective and the projective model structure, ie R� takes fibrations (resp. trivial fibrations) in
fibrant objects into levelwise (resp. trivial) fibrations, which are also cofibrant-projective (resp. trivial)
fibrations.

We will show now that .R�; L�/ is a Quillen equivalence by verifying [24, Definition 1.3.12].
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Given a fibrant-projectively cofibrant F 2 SS and cofibrant-projectively fibrant G 2 STop, consider a
cofibrant-projective weak equivalence f WR�F !G in STop. The corresponding map g W F ! L�G in
SS is constructed as a composition of the unit of the adjunction � W F ! L�R�F D F.Sing.j�j/ with
L�f W L�R�F ! L�G DG.j�j/. For every Kan complex K 2 S, the natural map K! Sing.jKj/ is a
simplicial homotopy equivalence (as a weak equivalence between cofibrant-fibrant objects). Since F is a
simplicial functor, it preserves simplicial homotopy equivalences; therefore � is a fibrant-projective weak
equivalence. The second map L�f is a projective (levelwise) weak equivalence, since f is a cofibrant-
projective weak equivalence and LD j�j takes values in cofibrant objects. Therefore g D L�f ı � is a
fibrant-projective weak equivalence.

Conversely, if we start from a fibrant-projective weak equivalence g WF !L�G, then the adjoint map is a
composition of R�g with the counit � WR�L�G DG.jSing.�/j/!G. The first map R�g is a levelwise
weak equivalence since RD Sing takes values in Kan complexes and the counit � is a cofibrant-projective
weak equivalence, since for every (retract of) a CW–complex X the map jSing.X/j !X is a simplicial
homotopy equivalence preserved by the simplicial functor G.

Corollary 4.3 The homotopy model structure on SS is zigzag Quillen equivalent to the cofibrant-
projective model structure on STop.

5 Dwyer–Kan theorem for model categories

In this section, we prove our main result, an extension of [18, Theorem 2.2] to the context of the model
structures discussed above. We first prove the case where all objects are cofibrant, and then the general
case. Recall that the homotopy model structure is a localization of the projective model structure.

5.1 All objects cofibrant

First we need to show that the adjunction .R�; L�/ is still a Quillen adjunction after the localization
performed in Section 3.

Proposition 5.1 Consider a Quillen pair of two combinatorial model categories L WA � B WR. Then the
adjunction .R�; L�/ constructed in Proposition 1.3 between the categories of small functors equipped
with the projective model structure is also a Quillen pair by Proposition 1.4. Assume in addition that all
objects of A and B are cofibrant. Then the adjunction .R�; L�/ remains a Quillen pair for the homotopy
model structure.

Proof By Dugger’s lemma [23, 8.5.4], it is sufficient to verify that the right adjoint L� preserves
fibrations of fibrant homotopy functors and all trivial fibrations.

Trivial fibrations are preserved since L� is a right Quillen functor in the nonlocalized model structure and
trivial fibrations do not change (since cofibrations do not) under left Bousfield localization.
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Given a fibration of two fibrant homotopy functors f W F �G in SB, the induced map

L�f W F.L�/D L�F � L�G DG.L�/

is again a levelwise fibration.

Notice that L preserves trivial cofibrations as a left Quillen functor. By Ken Brown’s lemma, L preserves
weak equivalences between cofibrant objects [23, Corollary 7.7.2]. Since all objects of A are cofibrant, L
preserves weak equivalences.

Then L�f is a fibration of homotopy functors, since L, G and, hence, G ıL are homotopy functors, ie
L�f is a fibration in the localized model structure.

We are ready now to prove the first main result of this section stating that if the Quillen pair .L;R/ is
a Quillen equivalence of simplicial combinatorial model categories with all objects cofibrant, then the
induced Quillen pair .R�; L�/ between the categories of small functors to simplicial sets, equipped with
the homotopy model structure, is also a Quillen equivalence.

Theorem 5.2 Given a Quillen equivalence L W A � B WR of two model categories with all objects
cofibrant , the induced Quillen pair .R�; L�/ on the categories of small functors equipped with the
homotopy model structure (obtained as a localization of the projective model structure) is also a Quillen
equivalence.

Proof We will use the criterion for a Quillen pair to be a Quillen equivalence [24, Corollary 1.3.16(c)].

First we show that the right adjoint L� reflects weak equivalences of fibrant objects. Given a map of
homotopy functors f W F !G, assume that the induced map L�f W L�F ! L�G is a weak equivalence
(of homotopy functors, since L preserves weak equivalences).

For every B 2B consider its fibrant replacement B �,�! yB and put ADR yB 2A. Then LA ��! yB is a
weak equivalence, since .L;R/ is a Quillen equivalence. We obtain the commutative diagram

F.B/
fB

//

�O

��

G.B/

�O

��

F. yB/
f yB

// G. yB/

F.LA/

O�

OO

// G.LA/

O�

OO

L�F.A/
/o
// L�G.A/

Therefore, f yB is a weak equivalence and hence fB is a weak equivalence for all B 2B by the 2-out-of-3
property; hence f is a weak equivalence.
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For every cofibrant F 2SA, the derived unit of the adjunctionR� aL� from Proposition 1.3 is constructed
as an adjoint map to the fibrant approximation in the homotopy model category R�F !HR�F ,

(1) F ! L�HR�F :

It remains to show that it is a weak equivalence in the homotopy model structure.

Note that L�H.R�F.�// D L�HF.R.�// D L� yF .R FibB.�// D yF .R FibBL.�//. Since the pair
.L;R/ is a Quillen equivalence, for all (cofibrant) X 2A there is a weak equivalence X ��!R FibBL.X/.
Hence, the initial map (1) is a weak equivalence in the homotopy model structure because we can apply
H also to F turning it into a homotopy functor.

Corollary 5.3 Assume A and B satisfy the conditions of Theorem 5.2, and suppose that the homotopy
model structures on SA and SB, from Theorem 3.1, exist. Then the fibrant-projective model structures on
SA and SB are Quillen equivalent.

Proof By Theorem 3.3, the fibrant-projective model structure on SA is Quillen equivalent to the homotopy
model structure, and the same for SB. By Theorem 5.2, the homotopy model structures are Quillen
equivalent. Hence, the fibrant-projective model structures are Quillen equivalent, via a chain of Quillen
equivalences (where the left adjoints are depicted): SA

fib-proj! SA
ho! SB

ho SB
fib-proj.

5.2 General case

We adapt the definition of r–equivalences [18] for simplicial model categories.

Definition 5.4 A continuous functor f WA!B of simplicial model categories is an r–equivalence if

(1) for every two bifibrant objects A1; A2 2A, the induced map hom.A1; A2/! hom.fA1; fA2/ is
a weak equivalence, and

(2) every object in the category of components �bifib
0 B is a retract of an object in the image of �bifib

0 f ,
ie for every bifibrant object B 2 B there exists a bifibrant object A 2 A such that B is a retract
of f .A/, up to homotopy.

Remark 5.5 Note that B is a retract of f .A/, up to homotopy, if there are maps A i
�!B r

�!A such that
ri � IdA. We do not specify the kind of homotopy relation in Definition 5.4(2), since for maps between
bifibrant objects in a simplicial model category left, right, simplicial and strict simplicial homotopy
relations coincide and are equivalence relations [23, 9.5.24(2)].

Example 5.6 Let

A
L

?
))
B

R

ii
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be a Quillen equivalence between simplicial combinatorial model categories. Put f D yL the composition
of the left adjoint with the fibrant replacement functor in B, and let zR be the composition of R with
cofibrant replacement in A. Then f is an r–equivalence:

(1) For all bifibrant A1; A2 2A,

homB.fA1; fA2/D homB.yLA1; fA2/' homB.LA1; fA2/D homA.A1; R yLA2/

' homA.A1; A2/:

(2) For all bifibrant B 2B, factor the weak equivalence L zRB ��! B as a trivial cofibration followed
by a fibration (also trivial by the 2-out-of-3 property): L zRB �,�! yL zRB ��� B . Therefore, B is a
retract of yL zRB:

∅� _

��

// yL zRB

�O

����

B

<<

B

On the other hand, yL zRB ' f . zRB/, ie B is a retract of f . zRB/, up to homotopy.

Lemma 5.7 Let A;B 2 A be two bifibrant objects in a simplicial model category A such that A is a
retract of B , up to homotopy. Then there exists a bifibrant object B 0 2 A such that B 0 ' B and A is a
strict retract of B 0.

Proof Suppose that the composition A i
�! B r

�! A is simplicially homotopic to the identity map on
A: ri � IdA. Then A˝ I is a very good cylinder object, ie factors the codiagonal AqA! A into a
cofibration followed by a trivial fibration. Consider the commutative diagram

A
i

//
� _

i0 �O

��

B
r

//
� _

�O

��

A

A
� �

i1

/o
// A˝ I

H

FF

{
// B1
� � /o

i 0
// B 0

r 0
?? ??

where Hi0 D ri and Hi1 D IdA. Put B1 D A˝ I qA B , and, in order to ensure the fibrancy of the
intermediate object, we factor the natural map B1!A as a trivial cofibration i 0 followed by a fibration r 0.

Hence, A is a (strict) retract of the bifibrant object B 0,

A
i 0{i1
//

Hi1DIdA

55B 0
r 0
// A

and B 0 ' B .
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Theorem 5.8 Let f WA!B be an accessible functor between simplicial combinatorial model categories.
Suppose f preserves fibrant and cofibrant objects. Then the Quillen pair

Lanf W S
A � SB

Wf �

between functor categories equipped with the fibrant-projective model structure is a Quillen equivalence if
and only if f is an r–equivalence of simplicial model categories.

Proof Since f preserves both fibrant and cofibrant objects, the induced adjunction Lanf a f � is a
Quillen map by Proposition 2.3.

Suppose that f is an r–equivalence. We will use [24, 1.3.16(c)] to show that Lanf a f � is a Quillen
equivalence. In other words, we will prove that f � reflects weak equivalences of bifibrant-projectively
fibrant objects and for every cofibrant F 2 SA, the map

(2) F ! f �2Lanf F

is a bifibrant-projective weak equivalence.

Consider a natural transformation p WG!H of bifibrant-projectively fibrant functors in SB. Assume
that f �p is a weak equivalence. Then for any bifibrant object A 2 A there is a weak equivalence of
simplicial sets

.f �p/.A/ WG.f .A//D .f �G/.A/ ��! .f �H/.A/DH.f .A//:

Since f is an r–equivalence of model categories, Definition 5.4(2) implies that for any bifibrant object
B 2 B there exists a bifibrant object A 2 A such that B is a retract of f .A/, up to homotopy. By
Lemma 5.7 there exists B 0 2 B weakly equivalent to f .A/ such that B is a retract of B 0. Since f .A/
and B 0 are bifibrant objects, the weak equivalence between them is a simplicial weak equivalence. Since
G and H are simplicial functors, they preserve simplicial weak equivalences. Therefore, p.B 0/ is a
weak equivalence by the 2-out-of-3 property, because .f �p/.A/D p.f .A// WG.f .A// ��!H.f .A// is
a weak equivalence by assumption. Hence, p.B/ WG.B/ ��!H.B/ is a weak equivalence as a retract of
the weak equivalence p.B 0/ WG.B 0/ ��!H.B 0/. Therefore p is a bifibrant-projective weak equivalence.

The retract argument implies that it is sufficient to prove (2) is a weak equivalence for any cellular F 2SA

with respect to the bifibrant-projective model structure.

For every bifibrant A 2A,
f �2Lanf F .A/D

�
Lanf F.f .A//

�fib

since f .A/ 2B is also a bifibrant object and the fibrant replacement in the bifibrant-projective model
structure on SB applies levelwise to the values of the functor in bifibrant objects. Hence there is a
bifibrant-projective weak equivalence

f �2Lanf F ' f
�Lanf F :
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In other words, it suffices to show that the unit of adjunction

F ! f �Lanf F

is a bifibrant-projective weak equivalence.

We proceed by cellular induction.

Suppose F D colimi<� Fi , so that F0 D∅ and FiC1 is obtained from Fi by attaching a cell

RAi ˝ @�n� _

��

// Fi� _

��

RAi ˝�n // FiC1

if i C 1 is a successor ordinal or Fi D colima<i Fa if i is a limit ordinal. Note that Ai 2A is bifibrant
for every i < �.

Since both Lanf and f � preserve colimits, so does f � Lanf . Since bifibrant-projective weak equivalences
are preserved under sequential colimits, it suffices to show for each i < � that if Fi ! f �Lanf Fi is
a fibrant-projective weak equivalence, then so is FiC1 ! f �Lanf FiC1. Let us consider the unit of
adjunction of the homotopy pushout square above:

f �Rf .Ai /˝ @�n //

��

f � Lanf Fi

��

RAi ˝ @�n

i)
ii

� _

��

// Fi

7w
77

� _

��

RAi ˝�n

u5

uu

// FiC1

''

f �Rf .Ai /˝�n // f � Lanf FiC1

Then the outer square is also a pushout; moreover, this is a levelwise homotopy pushout.

The slanted map on the right is a weak equivalence by the induction assumption. The slanted maps on the
left are bifibrant-projective weak equivalences by Definition 5.4(1), since for every bifibrant A 2A,

f �Rf .Ai /.A/D hom.f .Ai /; f .A//:

Hence the dashed map is also a bifibrant-projective weak equivalence as an induced map of homotopy
pushouts. This completes the cellular induction proving that (2) is a bifibrant-projective weak equivalence,
as required.

Conversely, if f W A! B preserves bifibrant objects and induces a Quillen equivalence Lanf a f �

between the categories of small functors into simplicial sets, then for any bifibrant object A1 2A, the
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induced map RA1! f � Lanf RA1 D f �Rf .A1/ is a bifibrant equivalence, ie evaluating at any bifibrant
object A2 2A we obtain a weak equivalence of simplicial sets

homA.A1; A2/
��! homB.f .A1/; f .A2//:

In other words, f satisfies the first part of Definition 5.4.

It remains to verify Definition 5.4(2), ie that every bifibrant object B 2B is a retract, up to homotopy, of
f .A/ for some bifibrant A 2A.

For all (bifibrant projectively) fibrant G 2 SB, let � be the maximum of the accessibility ranks of G
and f . Then

G ' Lanf Af �G D Lanf

Z A2A� CG.f .A//˝RA.�/D
Z A2A� CG.f .A//˝Rf .A/.�/:

Take G D hom.B;�/DRB.�/. ThenZ A2A� Fhom.B; f .A//˝ hom.f .A/;�/' hom.B;�/:

After evaluating at B and passing to connected components, we obtain a bijection (see [31, Theorem 10])Z A2A�

�0 hom.B; f .A//��0 hom.f .A/; B/Š �0 hom.B;B/:

Let A 2 A� correspond to the identity on the right-hand side. Then B is a retract, up to homotopy,
of f .A/.

6 Invariance of Goodwillie calculus under Quillen equivalence

Given a Quillen equivalence f of simplicial combinatorial model categories, consider the model categories
of homotopy functors (bifibrant-projective model structure on the categories of small functors) from this
Quillen pair to simplicial sets. This is a starting point for Goodwillie’s calculus of homotopy functors
[22; 26]. Consider the localization of these categories such that the fibrant objects are the fibrant n–excisive
functors. Does f induce a Quillen equivalence of these model structures? In other words, is Goodwillie
calculus invariant under Quillen equivalence? Under a few additional conditions the answer is “yes”.

Theorem 6.1 Let

A
L

?
))
B

R

ii

be a Quillen equivalence between simplicial combinatorial model categories. Put f D yL. Then the Quillen
pair of functor categories

Lanf W S
A � SB

Wf �

is a Quillen equivalence. Moreover , if we left Bousfield localize the functor categories so that the local
objects are the n–excisive functors in the bifibrant-projective model structures on both sides , then the
adjunction Lanf a f � is a Quillen equivalence of the model categories of n–excisive functors.
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Proof That the first Quillen pair is a Quillen equivalence follows from Theorem 5.8 and Example 5.6.
In order to conclude that the categories of n–excisive functors are Quillen equivalent we will apply
Theorem A.1.

First, f � preserves n–excisive functors. This is because f D yL preserves homotopy pushouts of cofibrant
objects; hence f preserves strongly cocartesian cubes.

It remains to show that Lanf commutes with the nth polynomial approximation functor. Let us denote by
PA
n and PB

n the n–excisive approximations of functors with domain in A and B respectively. Then we
need to prove that for all cofibrant F 2 SA there is a bifibrant-projective weak equivalence of functors
Lanf PA

n F ' P
B
n Lanf F .

We next prove that Lanf takes n–excisive functors to n–excisive functors. We will need the right adjoint
R to preserve homotopy pushout squares of bifibrant objects to verify this property. This is true, in turn,
since R is a part of a Quillen equivalence; hence its total derived functor is an equivalence of homotopy
categories. It follows that there is an equivalence of homotopy categories of diagrams indexed by the
category � �! �. Since the homotopy pushout is a left adjoint to the constant functor, it is preserved
by any equivalence of categories, so R preserves homotopy pushout squares.

Let F be a cofibrant functor. Suppose that PA
n F is a �–accessible functor. Let A��A be the subcategory

of �–presentable objects. Then

Lanf P
A
n F D Lanf

Z A2A�

hom.A;�/˝PA
n F.A/D

Z A2A�

Lanf hom.A;�/˝PA
n F.A/

D

Z A2A�

hom.f .A/;�/˝PA
n F.A/

D

Z A2A�

hom.yL.A/;�/˝PA
n F.A/

'

Z A2A�

hom.L.A/;�/˝PA
n F.A/

D

Z A2A�

hom.A;R.�//˝PA
n F.A/DR

�PA
n F:

Since R preserves homotopy pushouts, it preserves strongly cocartesian cubes; hence R�PA
n F 2 SB is

an n–excisive functor.

Consider the diagram
Lanf F

��

// PB
n Lanf F

vv

Lanf PA
n F

66

The dotted arrow exists by the initial, up to homotopy, property of n–excisive approximation in SB, since
Lanf PA

n F is n–excisive.
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The dashed arrow exists by the same reason in the adjoint diagram

F

��

// f �PB
n Lanf F

PA
n F

66

Both maps are unique, up to homotopy, hence mutually homotopy inverse. Therefore, Lanf commutes
with polynomial approximation, up to homotopy.

We have verified the conditions of Theorem A.1, so the Quillen pair Lanf ` f � is a Quillen equivalence
between the categories of small functors equipped with the n–excisive model structures.

Example 6.2 For the Quillen equivalence j�jW S � Top WSing the categories of n–excisive functors SS

and STop are Quillen equivalent. In other words, simplicial sets and topological spaces have the same
calculus of homotopy functors.

Appendix Localization of a Quillen equivalence

Given two Quillen equivalent model categories, consider a left Bousfield localizations of both sides.
Under what conditions are the resulting localized categories Quillen equivalent again? We provide a new
answer, needed for our Theorem 6.1, in the following theorem. We fix the following notation: for a model
category A equipped with the homotopy localization functor F�1A WA!A the left Bousfield localization
of A with respect to F�1A –equivalences is denoted by F�1A A. For all A 2 A we write F�1A .A/ for the
fibrant replacement of A in F�1A A in order to distinguish it from the fibrant replacement in A.

Theorem A.1 Let

A
L

?
))
B

R

ii

be a Quillen equivalence between simplicial model categories. Suppose there exist left Bousfield localiza-
tions F�1A A of A and F�1B B of B such that :

(1) R takes FB–local objects to FA–local objects.

(2) L commutes with the localization , ie for all cofibrant A 2A the map LF�1A .A/! F�1B .LA/ is a
weak equivalence. The latter map is adjoint to the lift in the commutative square in F�1A A:

A //
� _

�O
��

RLA // RF�1B .LA/

����

F�1A .A/ //

44

�

Then there exists a Quillen equivalence of the localized model categories

F�1A A
L

?

--
F�1B B:

R

ll
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Proof L is a left Quillen functor between A and B; hence it preserves the cofibrations in the localized
model structures as well. In order to show that L remains a left Quillen functor after the localization we
need to verify that for every cofibration A1 ,!A2, which is also an FA–local equivalence, the cofibration
LA1 ,!LA2 is an FB–local equivalence. In other words, we need to prove that F�1B LA1!F�1B LA2 is a
weak equivalence. SinceL commutes with the localization, it suffices to show thatLF�1A A1!LF�1A A2 is
a weak equivalence, which readily follows from the assumption that A1 ,!A2 is an FA–local equivalence
and the fact that L preserves weak equivalences of cofibrant objects.

We will use [24, 1.3.16(c)] to show that L aR is a Quillen equivalence.

(1) R reflects local equivalences of local objects, since these are just weak equivalences in A and B,
and R reflects weak equivalences.

(2) For every cofibrantA2A we need to show that the mapA!RF�1B LA is an F�1A –local equivalence.
We need to rely on the assumption thatL commutes with the localization, ie thatLF�1A A!F�1B LA

is a weak equivalence in B.
Consider the commutative square in the model category F�1B B:

LF�1A A
� _

�O

��

/o
// F�1B LA

����
yLF�1A A //

h

::

�

The lift h is a weak equivalence of fibrant objects in F�1B B. Hence Rh below is a weak equivalence:

A� _

loc. equiv.
��

// RF�1B LA

F�1A A
/o
// R yLF�1A A

RhO�

OO

In the diagram above the lower horizontal map is a weak equivalence since L a R is a Quillen
equivalence between A and B. Thus, the map A!RF�1B LA is a local equivalence in F�1B A.

Example A.2 Consider the Quillen equivalence j�jW S � Top WSing, and consider the localization of
both sides with respect to integral homology. Then the conditions of Theorem A.1 are readily verified;
hence the category of HZ–local topological spaces is Quillen equivalent to the category of HZ–local
simplicial sets.
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Integral generalized equivariant cohomologies
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We introduce a new definition of weighted Grassmann orbifolds. We study their several invariant q–CW
complex structures and the orbifold singularities on the q–cells of these q–CW complexes. We discuss
when the integral cohomology of a weighted Grassmann orbifold has no p–torsion. We compute the
equivariant K–theory ring of weighted Grassmann orbifolds with rational coefficients. We introduce
divisive weighted Grassmann orbifolds and show that they have invariant CW complex structures. We
calculate the equivariant cohomology ring, equivariant K–theory ring and equivariant cobordism ring of a
divisive weighted Grassmann orbifold with integer coefficients. We discuss how to compute the weighted
structure constants for the integral equivariant cohomology ring of a divisive weighted Grassmann orbifold.
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1 Introduction

We consider the n–dimensional complex vector space Cn and a positive integer d satisfying 1� d < n.
Then the set of all d–dimensional vector subspaces of Cn is called a (complex) Grassmann manifold and
denoted by Gr.d; n/. In particular, the space Gr.1; n/ is called the .n�1/–dimensional complex projective
space. The space Gr.d; n/ has a manifold structure of dimension d.n� d/; see Mukherjee [24, Chapter 1].
This is a projective variety via the Plücker embedding. The natural .C�/n–action on Cn induces a
.C�/n–action on Gr.d; n/. Grassmann manifolds are central objects of study in algebraic geometry,
algebraic topology and differential geometry. Several interesting topological and geometrical properties
of Grassmann manifolds can be found in Laksov [21], Knutson and Tao [20] and Jiao and Peng [18].
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2210 Koushik Brahma and Soumen Sarkar

The orbifold version of a complex projective space was introduced in Kawasaki [19] and was called a
twisted projective space. Orbifolds, a generalization of manifolds, were introduced by Satake [27; 28]
with the name V –manifolds. Later, Thurston [31] used the terminology orbifolds instead. In the past two
decades, several developments have appeared to study orbifolds arising in algebraic geometry, differential
geometry and string topology. Some cohomology theories, such as de Rham cohomology (see Adem,
Leida and Ruan [2, Chapter 2]), singular cohomology (see Hatcher [16]), Dolbeault cohomology (see
Baily [5]), the Chen–Ruan cohomology ring [6] and orbifold K–theory [2, Chapter 3] for a class of
orbifolds were studied either with rational, real or complex coefficients. One can construct a CW complex
structure on an effective orbifold following Goresky [11]. However, in general, the computation of the
singular integral cohomology of an orbifold is considerably difficult.

Let G be a topological group and X a G–space. Then the equivariant map X ! fptg induces a graded
E�G.fptg/–algebra structure on E�G.X/. The readers are referred to May [22] for the definitions and several
results on the G–equivariant generalized cohomology theory E�G . If E�G DH

�
G , then it is known as the

equivariant cohomology theory defined by

H�G.X/ WDH
�.EG �G X/:

The ring H�G.X/ is called the Borel equivariant cohomology of X . If E�G D K
�
G , then it is known as

the equivariant K–theory. If X is compact, then K0G.X/ is the equivalence classes of G–equivariant
complex vector bundles on X ; see Segal [29]. If X is a point with trivial action, then K�G.fptg/ is
isomorphic to R.G/Œz; z�1�, where R.G/ is complex representation ring of G and z is the Bott element
of cohomological dimension �2. The G–equivariant ring MU�G.X/ is known as the equivariant complex
cobordism ring; see tom Dieck [9]. Sinha [30] and Hanke [13] have shown several developments on MU�G .
However, many interesting questions on MU�G.X/ remain undetermined. For example, MU�G.fptg/ is not
completely known for nontrivial groups G.

Corti and Reid [7] introduced the weighted projective analogs of a class of Grassmann manifolds and called
them weighted Grassmannians. Then Abe and Matsumura [1] defined weighted Grassmannians explicitly
and studied their equivariant cohomology ring of weighted Grassmannians with rational coefficients.
The weighted Grassmannians are projective varieties with orbifold singularities. The simplest weighted
Grassmannians are the weighted projective spaces. Kawasaki [19] proved that the integral cohomology of
weighted projective spaces has no torsion and is concentrated in even degrees. The equivariant cohomology
ring of a weighted projective space has been studied in Bahri, Franz and Ray [3] in terms of piecewise
polynomials. The equivariant K–theory and equivariant cobordism rings of divisive weighted projective
spaces have been discussed in Harada, Holm, Ray and Williams [15] in terms of piecewise Laurent
polynomials and piecewise cobordism forms, respectively.

Inspired by the above works, we introduce a different definition of weighted Grassmann orbifolds and study
their several topological properties such as torsion in the integral cohomology, equivariant cohomology
ring, equivariant K–theory ring and equivariant cobordism ring with integer coefficients. We note that

Algebraic & Geometric Topology, Volume 24 (2024)
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Abe and Matsumura [1] and Corti and Reid [7] used the name “weighted Grassmannians”. However,
keeping other names in mind like Milnor manifolds and Seifert manifolds, we prefer to use Grassmann
manifolds and weighted Grassmann orbifolds.

The paper is organized as follows. In Section 2, analogously to the definition of Grassmann manifold
discussed in Mukherjee [24], we introduce another definition of a weighted Grassmann orbifold WGr.d; n/
for d < n, a 2 Z�1 and a “weight vector” W WD .w1; : : : ; wn/ 2 .Z�0/n. Interestingly, this definition
is equivalent to the previous one that appeared in Abe and Matsumura [1]. We recall the definition of
Schubert symbols for d < n and discuss how to get a total ordering on the Schubert symbols. Using
this total order we show that there is an equivariant embedding from a weighted Grassmann orbifold to
a weighted projective space; see Lemma 2.5. We describe a q–CW complex structure of WGr.d; n/ in
Proposition 2.7. Then we discuss a .C�/n–invariant filtration

fptg DX0 �X1 �X2 � � � � �Xm DWGr.d; n/

of WGr.d; n/ using the q–CW complex structure, where m WD
�
n
d

�
�1. Here, we consider q–CW complex

structure in the sense of Poddar and Sarkar [25, Section 4]. We note that one may get different q–CW
complex structures depending on the choice of the total orderings on the set of all Schubert symbols for
d < n. Accordingly, one may obtain different .C�/n–invariant filtrations of WGr.d; n/.

In Section 3, first we recall that there is an equivariant homeomorphism from WP.rc0; rc1; : : : ; rcm/ to
WP.c0; c1; : : : ; cm/ for any 1� r 2N. Using this technique, we show how the orbifold singularity on a
q–cell of some subcomplexes of WGr.d; n/ can be reduced; see Lemma 3.3. Consequently, we get a new
q–CW complex structure of these subcomplexes, including WGr.d; n/, possibly with less singularity
on each q–cell; see Theorem 3.4. We show in Theorem 3.5 that two weighted Grassmann orbifolds are
weakly equivariantly homeomorphic if their weight vectors differ by a permutation � 2 Sn. We define
“admissible permutation” � 2 Sn for a prime p and WGr.d; n/; see Definition 3.8. The following result
says when H�.WGr.d; n/IZ/ has no p–torsion.

Theorem A (Theorem 3.10) If there exists an admissible permutation � 2 Sn for a prime p and
WGr.d; n/, then H odd.WGr.d; n/IZp/ is trivial and H�.WGr.d; n/IZ/ has no p–torsion.

We introduce “divisive” weighted Grassmann orbifolds. We note that this definition coincides with the
concept of divisive weighted projective space of Harada, Holm, Ray and Williams [15] when 1D d < n.
We prove the following.

Theorem B (Theorem 3.19) If WGr.d; n/ is a divisive weighted Grassmann orbifold , then it has a
.C�/n–invariant CW complex structure. Moreover , the .C�/n–action on each cell of this CW complex
can be described explicitly.

This result implies that the integral cohomology of a divisive weighted Grassmann orbifold has no torsion
and is concentrated in even degrees. We discuss a class of nontrivial examples of divisive weighted

Algebraic & Geometric Topology, Volume 24 (2024)



2212 Koushik Brahma and Soumen Sarkar

Grassmann orbifolds. We remark that the weighted Grassmann orbifold in Example 3.12 is not divisive.
However, its integral cohomology has no torsion.

In Section 4, we show that the .C�/n–invariant stratification

fptg DX0 �X1 � � � � �Xm DWGr.d; n/

has the following property. The quotient Xi=Xi�1 is homeomorphic to the Thom space of an orbifold
.C�/n–bundle

� i WC`.�i /=Gi ! fptg

for some `.�i / 2 Z�1 and finite groups Gi for i D 1; : : : ; m; see Proposition 4.1. Then considering
T n WD .S1/n � .C�/n, we compute the equivariant K–theory ring of any weighted Grassmann orbifolds
with rational coefficients; see Theorem 4.4. If WGr.d; n/ is divisive then Gi is trivial for i D 1; : : : ; m.
The following result describes the integral equivariant cohomology of certain weighted Grassmann
orbifolds.

Theorem C (Theorem 4.7) Let WGr.d; n/ be a divisive weighted Grassmann orbifold for d < n. Then
the generalized T n–equivariant cohomology with integer coefficients E�T n.WGr.d; n/IZ/ can be given by�

.fi / 2

mM
iD0

E�T n.fptgIZ/
ˇ̌̌
eT n.�

ij / divides fi �fj for j < i and j�j \�i j D d � 1
�

for E�T n DH
�
T n , K�T n and MU�T n .

The computation of eT n.� ij / is discussed in (4-4). We compute the equivariant cohomology ring of some
weighted Grassmann orbifold with integer coefficients which are not divisive; see Theorem 4.10. For
m� 2, corresponding to each pair of positive integers .n; d/ such that d < n and mC 1D

�
n
d

�
, we have

a T n–action on WP.c0; c1; : : : ; cm/. For each pair .n; d/, we discuss the generalized T n–equivariant
cohomology of a divisive WP.c0; c1; : : : ; cm/ with integer coefficients; see Theorem 4.11.

In Section 5, we show that there exist equivariant Schubert classes fw zS�i g
m
iD0 which form a basis for

the integral T n–equivariant cohomology of a divisive weighted Grassmann orbifold; see Proposition 5.3.
We study some properties of weighted structure constants; see Lemma 5.5. Then we show the following
multiplication rule.

Proposition D (weighted Pieri rule, Proposition 5.7)

w zS�1w zS�j D .w
zS�1 j�j /w

zS�j C
X

�i!�j

c0

cj
w zS�i :

Moreover, we deduce a recurrence relation which helps to compute the weighted structure constants
fwckij g corresponding to this Schubert basis fw zS�i g

m
iD0 with integral coefficients.
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Proposition E (Proposition 5.8) For any three Schubert symbols �i , �j and �k , we have the recurrence
relation

.w zS�1 j�k �w
zS�1 j�i /wc

k
ij D

� X
�s!�i

c0

ci
wcksj �

X
�k!�t

c0

ct
wctij

�
:

2 Weighted Grassmann orbifolds and their invariant q–CW complexes

In this section, we introduce another definition of weighted Grassmann orbifold WGr.d; n/, where d < n.
We recall the definition of a Schubert symbol for d < n and discuss some (total) ordering on the set of
Schubert symbols. We show that there is an equivariant embedding from a weighted Grassmann orbifold
to a weighted projective space. We show that our definition of weighted Grassmann orbifold is equivalent
to the previous one, which appeared in [1]. We study the orbifold and q–CW complex structures of
weighted Grassmann orbifolds generalizing the Grassmann manifolds counterpart discussed in [23].

Let Md .n; d/ be the set of all complex n�d matrices of rank d , and GL.d;C/ the set of all nonsingular
complex matrices of order d . We denote a matrix A 2Md .n; d/ by

AD

0BB@
a11 a12 � � � a1d
a21 a22 � � � a2d
:::

:::
:::

:::
an1 an2 � � � and

1CCAD
0BB@

a1
a2
:::

an

1CCA; where ai 2Cd for i D 1; : : : ; n:

Definition 2.1 Let W WD .w1; w2; : : : ; wn/ 2 .Z�0/n and a 2 Z�1. Define an equivalence relation �w
on Md .n; d/ by 0BB@

a1
a2
:::

an

1CCA�w
0BB@
tw1a1
tw2a2
:::

twnan

1CCAT
for T 2 GL.d;C/ and t 2C� such that ta D det.T / 2C�. We denote the identification space by

WGr.d; n/ WDMd .n; d/=�w :

The quotient map

(2-1) �w WMd .n; d/!WGr.d; n/

is defined by �w.A/ D ŒA��w . The topology on WGr.d; n/ is given by the quotient topology via the
map �w .

Remark 2.2 If W D .0; 0; : : : ; 0/ and aD 1, then WGr.d; n/ is the Grassmann manifold Gr.d; n/. We
denote the corresponding quotient map by

(2-2) � WMd .n; d/! Gr.d; n/:

Algebraic & Geometric Topology, Volume 24 (2024)
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The space Gr.d; n/ is a d.n�d/–dimensional smooth manifold and represents the set of all d–dimensional
vector subspaces in Cn. Several basic properties, such as the manifold and CW complex structure of
Gr.d; n/, can be found in [23]. In this paper, by dimension we mean complex dimension unless specified
explicitly.

Remark 2.3 If d D 1, then Md .n; d/DM1.n; 1/DCn n f0g and GL.1;C/DC�. The corresponding
�w is given by

.z1; z2; : : : ; zn/�w .t
aCw1z1; t

aCw2z2; : : : ; t
aCwnzn/:

The quotient space M1.n; 1/=�w is called the weighted projective space with weights

.aCw1; aCw2; : : : ; aCwn/;

and is denoted by WP.c0; c1; : : : ; cn�1/, where ci D aCwiC1 for i 2 f0; 1; : : : ; n�1g. For the weighted
projective space, we denote �w by �c when c D .c0; c1; : : : ; cn�1/. This identification �c is called a
weighted C�–action on Cn n f0g with weights .c0; c1; : : : ; cn�1/. In addition, if W D .0; 0; : : : ; 0/ and
aD 1, then c0 D 1D c1 D � � � D cn�1 and WP.c0; c1; : : : ; cn�1/ is CP n�1 D Gr.1; n/.

A Schubert symbol � for d < n is a sequence of d integers .�1; �2; : : : ; �d / such that 1 � �1 < �2 <
� � �< �d � n. The length `.�/ of a Schubert symbol � WD .�1; �2; : : : ; �d / is defined by

`.�/ WD .�1� 1/C .�2� 2/C � � �C .�d � d/:

There are
�
n
d

�
many Schubert symbols for d < n. One can define a partial order � on the Schubert

symbols for d < n by

(2-3) �� � if �i � �i for all i D 1; 2; : : : ; d:

Then the set of all Schubert symbols for d < n form a poset with respect to this partial order �.

Definition 2.4 Let �D .�1; �2; : : : ; �d / and �D .�1; �2; : : : ; �d / be two Schubert symbols for d < n.
We say that � < � if `.�/ < `.�/, otherwise we use the dictionary order if `.�/D `.�/.

This gives a total order on the set of all Schubert symbols. Note that the total order < in Definition 2.4
preserves the partial order � in (2-3). That is, for two Schubert symbols � and �, if �� � then �� �,
but the converse may not be true in general. Observe that there may exist several other total orders on the
set of all Schubert symbols which preserve the partial order �. For example, the dictionary order also
gives a total order on the Schubert symbols. By a total order on the set of all Schubert symbols for d < n,
we mean one of these total orders on it. For mD

�
n
d

�
� 1, let

(2-4) �0 < �1 < �2 < � � �< �m

be a total order on the Schubert symbols for d < n.
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For W D .w1; w2; : : : ; wn/ 2 .Z�0/n, a 2 Z�1 and i 2 f0; 1; : : : ; mg, let

(2-5) ci WD aC

dX
jD1

w�i
j
;

where �i D .�i1; �
i
2; : : : ; �

i
d
/ is the i th Schubert symbol given in (2-4). Then ci � 1 for any i 2 f0; : : : ; mg.

Therefore, one can define the weighted projective space WP.c0; c1; : : : ; cm/ from Remark 2.3. We denote
the associated orbit map CmC1 n f0g !WP.c0; c1; : : : ; cm/ by � 0c , which can be written as

(2-6) � 0c.z0; z1; : : : ; zm/D Œz0 W z1 W � � � W zm��c :

Note that when c0 D c1 D � � � D cm D 1, the corresponding orbit map is denoted by

� 0 WCmC1
n f0g !CPm:

Let .t1; t2; : : : ; tn/ 2 .C�/n and AD .a1; a2; : : : ; an/tr 2Md .n; d/. Then .C�/n acts on Md .n; d/ by

(2-7) .t1; : : : ; tn/.a1; a2; : : : ; an/
tr
WD .t1a1; t2a2; : : : ; tnan/

tr:

This induces a natural .C�/n–action on WGr.d; n/ such that the orbit map �w of (2-1) is .C�/n–
equivariant.

The standard ordered basis fe1; e2; : : : ; eng of Cn induces an ordered basis fe�0 ; e�1 ; : : : ; e�mg of
ƒd .Cn/, where e�D e�1 ^� � �^e�d for the Schubert symbol �D .�1; �2; : : : ; �d / for d < n. Therefore,
we can identify ƒd .Cn/ with CmC1.D Cfe�0 ; e�1 ; : : : ; e�mg/. The standard action of .C�/n on Cn

induces an action of .C�/n on CmC1 n f0g, which is defined by

(2-8) .t1; t2; : : : ; tn/

� mX
iD0

aie�i

�
D

mX
iD0

ai t�i e�i ;

where t�D t�1 � � � t�d for the Schubert symbol �D .�1; �2; : : : ; �d /. This induces a .C�/n–action on the
weighted projective space WP.c0; c1; : : : ; cm/ such that the orbit map � 0c in (2-6) is .C�/n–equivariant.

For each Schubert symbol �D .�1; �2; : : : ; �d /, let A� be the matrix with row vectors a�1 ; a�2 ; : : : ; a�d .
Define a map P WMd .n; d/!CmC1 n f0g by

(2-9) P.A/D v1 ^ v2 ^ � � � ^ vd D

mX
iD0

det.A�i /e�i ;

where v1; v2; : : : ; vd 2Cn are the columns of A. Observe that P.A/¤ 0 as A 2Md .n; d/ has rank d .

From (2-9) we have

P.DAT /D

mX
iD0

det..DAT /�i /e�i D
mX
iD0

tci det.A�i /e�i ;

Algebraic & Geometric Topology, Volume 24 (2024)



2216 Koushik Brahma and Soumen Sarkar

where T 2GL.d;C/,DDdiag.tw1 ; tw2 ; : : : ; twn/ is the diagonal matrix for t 2C� such that taDdet.T /,
and ci is defined in (2-5) for i D 0; 1; 2; : : : ; m. Therefore, the map P in (2-9) induces a map

(2-10) Plw WWGr.d; n/!WP.c0; c1; c2; : : : ; cm/

defined by Plw.ŒA��w /D Œdet.A�0/ W det.A�1/ W � � � W det.A�m/��c .

The map Plw satisfies the following commutative diagram:

Md .n; d/ CmC1 n f0g

WGr.d; n/ WP.c0; c1; : : : ; cm/

P

�w � 0c

Plw

Thus the map Plw is continuous, since �w and � 0c are quotient maps.

Lemma 2.5 The map Plw WWGr.d; n/!WP.c0; c1; c2; : : : ; cm/ is an embedding.

Proof Consider ŒA��w 2WGr.d; n/ for some A 2Md .n; d/. There exists a Schubert symbol �i such
that det.A�i /¤ 0. Without loss of generality, we can assume that A�i D Id , where Id is the identity matrix
of order d . If A�i ¤ Id then one can calculate s 2 C� such that sci D 1=det.A�i /. Now we consider
the matrices DD diag.sw1 ; sw2 ; : : : ; swn/ and T D .D�iA�i /

�1. Then det.T /D sa and .DAT /�i D Id .
Note that ŒDAT ��w D ŒA��w 2WGr.d; n/.

We prove that Plw is injective. Let ŒA��w ; ŒB��w 2WGr.d; n/ be such that Plw.ŒA��w /D Plw.ŒB��w /
for some A;B 2Md .n; d/. Now

(2-11) Plw.ŒA��w /D Plw.ŒB��w / D) det.A�j /D t
cj det.B�j /

for some t 2C� and for all j 2 f0; 1; : : : ; mg. Since A 2Md .n; d/ there exists a Schubert symbol �i D
.�i1; : : : ; �

i
d
/ such that det.A�i /¤0. Then using (2-11), det.B�i /¤0. So we can assumeA�i DB�i D Id .

Then tci D 1. Consider the matrices D D diag.tw1 ; tw2 ; : : : ; twn/ and T D diag.t�w�i1 ; : : : ; t�w�id /.
Thus, we have B�i D .DAT /�i .

For k … .�i1; : : : ; �
i
d
/ and 1 � l � d , let akl and bkl be the .k; l/ entries of the matrices A and B ,

respectively. For a fixed l , let �j be the Schubert symbol obtained by replacing �i
l

by k in �i and then
ordering the latter set. Then det.A�j /D akl and det.B�j /D bkl . Thus using (2-11), we get

bkl D t
cj akl D) bkl D t

cj�ciakl D) bkl D t
wk�w�i

l akl :

The above condition holds for all 1 � k � n and 1 � l � d . This gives B D DAT . Then we have
ŒA��w D ŒB��w . Hence, Plw is an injective map.

Observe that, if W D .0; 0; : : : ; 0/ and aD 1, then the map Plw is the usual Plücker map

Pl W Gr.d; n/!CPm:
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It is well known that Pl is an embedding. Moreover, we have the following commutative diagrams:

(2-12)

WGr.d; n/ WP.c0; c1; : : : ; cm/

Md .n; d/ CmC1 n f0g

Gr.d; n/ CPm

Plw

P

�w

�

� 0c

� 0

Pl

Let U be an open subset of WGr.d; n/. Then ��1w .U / is an open subset of Md .n; d/. Since the map � in
(2-2) is an orbit map, �.��1w .U // is an open subset of Gr.d; n/. Thus Pl.�.��1w .U ///D� 0.P.��1w .U ///

is an open subset of Pl.Gr.d; n//. Then P.��1w .U // is an open subset of P.Md .n; d//. Therefore,
Plw.U /D � 0c.P.�

�1
w .U /// is an open subset of Plw.WGr.d; n//. Thus Plw is an embedding.

We call the embedding Plw the weighted Plücker embedding. Note that the actions of .C�/n on WGr.d; n/
and WP.c0; c1; : : : ; cm/ imply that the weighted Plücker embedding Plw is .C�/n–equivariant, and
Plw.WGr.d; n// is a .C�/n–invariant subset of WP.c0; c1; : : : ; cm/. Thus all the maps in the diagram
(2-12) are .C�/n–equivariant.

Now we show that Definition 2.1 is equivalent to the definition of a weighted Grassmannian studied in [1].
The algebraic torus .C�/nC1 acts on ƒd .Cn/ by

.t1; t2; : : : ; tn; t /

mX
iD0

a�i e�i D

mX
iD0

t � t�ia�i e�i ;

where t� D t�1 � � � t�d for �D .�1; : : : ; �d /. Consider the subgroup WD of .C�/nC1 defined by

WD WD f.tw1 ; tw2 ; : : : ; twn ; ta/ j t 2C�g:

Then the restricted action of WD on ƒd .Cn/ n f0g is given by

.tw1 ; tw2 ; : : : ; twn ; ta/

mX
iD0

a�i e�i D

mX
iD0

tcia�i e�i :

Observe that this action of WD is same as the weighted C�–action in Remark 2.3. Then we have
ƒd .Cn/ n f0g=WDDWP.c0; : : : ; cm/ and by the commutativity of the diagram (2-12) we have

Plw.WGr.d; n//D
P.Md .n; d//

WD
:

Therefore the topologies on WGr.d; n/ and P.Md .n; d//=WD are equivalent. Abe and Matsumura [1]
called the quotient P.Md .n; d//=WD a weighted Grassmannian and showed that it has an orbifold
structure. We call WGr.d; n/ a weighted Grassmann orbifold associated to the pair .W; a/.
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Next, we recall the Schubert cell decomposition of Gr.d; n/ following [23]. For k � n, we identify

Ck
D f.z1; z2; : : : ; zk; 0; : : : ; 0/ 2Cn

g:

For the Schubert symbol �D .�1; �2; : : : ; �d /, the Schubert cell E.�/ is defined by

E.�/ WD fX 2 Gr.d; n/ j dim.X \C�j /D j; dim.X \C�j�1/D j � 1 for allj 2 Œd �g;

where Œd � WD f1; 2; : : : ; dg. We have the following homeomorphism from [23, Chapter 6]:

(2-13) E.�/Š

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

266666666666666666666666664

� � � � � �
:::
:::

:::
� � � � � �

1 0 � � � 0

0 � � � � �
:::
:::

:::
0 � � � � �

0 1 � � � 0

0 0 � � � �
:::
:::

:::
0 0 � � � �

0 0 � � � 1

0 0 � � � 0
:::
:::

:::
0 0 � � � 0

377777777777777777777777775

ˇ̌̌̌
ˇ � 2C and ej is the �th

j row for j 2 Œd �

9>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>;

:

Note that the j th column in the matrices in (2-13) has �th
j entry 1 and all subsequent entries of this column

are zero for j 2 Œd �. Then E.�/ is an open cell of dimension `.�/D .�1�1/C .�2�2/C� � �C .�d �d/.

We recall some basic properties of q–cell and finite q–CW complex from [25; 4]. Let Dn be the open unit
disc in Rn and G a finite group acting on xDn such that @ xDn is invariant. Then Dn=G is called a q–cell
of real dimension n. Let Y be a space and � W @ xDn=G! Y a continuous map. Then the mapping cone

X WD

�
Y t

xDn

G

�.�
x � �.x/ for x 2

@ xDn

G

�
is obtained from Y by attaching the q–cell Dn=G. As a set, we can write X D Y t .Dn=G/ whenever
the attaching map is clear. If a space X is obtained from a finite set by attaching finitely many q–cells,
then X is called a finite q–CW complex.

Let k be a positive integer and G.k/ the group of kth roots of unity defined by

G.k/ WD ft 2C� j tk D 1g:

Then we have the following.
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Lemma 2.6 Let S be a C�–space , and suppose that C� acts on S �C� by t � .x; ˛/D .t � x; tk˛/. Then

S �C�

C�
Š

S

G.k/
;

where G.k/ acts on S by restriction of the C�–action.

Proof The inclusion map S ! S �C� defined by x! .x; 1/ induces a map

xf W S !
S �C�

C�
:

Note that every element in the codomain of xf can be written as Œ.u; 1/�, where u 2 S . To verify this,
consider an element Œ.x; t/� in the codomain of xf , where x 2 S and t 2C�. Consider s 2C� such that
sk D 1=t . Then s� .x; t/D .s� x; 1/. Hence Œ.x; t/�D Œ.u; 1/�, where uD s� x. Thus u2 S is the preimage
of Œu; 1� 2 codomain.f / and the map xf becomes onto.

Now G.k/ is a finite subgroup of C� acts on S as a restriction of the C�- action. For any t 2G.k/,

xf .t �u/D Œ.t �u; 1/�D Œ.t �u; tk/�D Œ.u; 1/�D xf .u/:

Thus xf induces an onto map f W S=G.k/! S �C�=C� such that the following diagram commutes:

(2-14)

S
xf

//

�G.k/ ##

S �C�

C�

S

G.k/

f

99

To check that f is one-to-one, if Œ.x; 1/� D Œ.y; 1/� then .y; 1/ D t � .x; 1/ D .t � x; tk/. This implies
y D t � x for some t 2G.k/. Thus Œx�D Œy� in S=G.k/. Therefore,

S �C�

C�
Š

S

G.k/
:

The next result gives a q–CW complex structure on WGr.d; n/.

Proposition 2.7 WGr.d; n/ is a finite q–CW complex for 0 < d < n.

Proof Consider a total order on the Schubert symbols for d < n as in (2-4), which satisfies the partial
order in (2-3). For each i 2 f0; 1; : : : ; mg, define zE.�i / WD ��1.E.�i //, where the map � is defined
in (2-2). The Schubert cell decomposition of Gr.d; n/ gives that Gr.d; n/D

Fm
iD0E.�

i /. This implies

(2-15) Md .n; d/D

mG
iD0

zE.�i /;

since the map � is surjective. Note that

zE.�i /D fA 2Md .n; d/ j det.A�i /¤ 0; det.A�j /D 0 for j > ig:

Let A 2 zE.�i / and A�w B for a matrix B 2Md .n; d/. Then B 2 zE.�i /.
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Therefore, we have the decomposition of WGr.d; n/

WGr.d; n/D �w. zE.�0//t�w. zE.�1//t � � � t�w. zE.�m//:

By the commutativity of the diagram (2-12), we get

Plw.�w. zE.�i ///D � 0c.P. zE.�
i /// and P. zE.�i //D .� 0/�1.Pl.E.�i ///:

The map � 0 is a principal C�–bundle, and E.�i / is contractible. So there is a bundle isomorphism

�i W P. zE.�
i //!E.�i /�C�:

Indeed, this map can be defined by �i .P.A// D .�.A/; det.A�i //. The inverse map is defined by
.�.A/; s/ 7! .s.det.A�i //

�1P.A//.

Let �.A/ 2 Gr.d; n/ for some AD .a1; a2; : : : ; an/tr 2Md .n; d/ and t 2C�. There is an action of C�

on Gr.d; n/ defined by

(2-16) t ��.A/D t ��..a1; a2; : : : ; an/
tr/ WD �..tw1a1; t

w2a2; : : : ; t
wnan/

tr/:

If �.A/D �.B/, then AD BT if and only if DADDBT for a diagonal matrix D and T 2 GL.d;C/.
Thus t ��.A/D t ��.B/. Then �i becomes C�–equivariant with the following weighted C�–action on
E.�i /�C� given by

t � .�.A/; s/D .t ��.A/; tci s/;

where t ��.A/ is defined in (2-16) and ci is defined in (2-5). Thus

� 0c.P.
zE.�i ///D

P. zE.�i //

weighted C�–action
Š

E.�i /�C�

weighted C�–action
Š
E.�i /

G.ci /
;

where the last identification follows from Lemma 2.6.

Now E.�i /=G.ci / is a q–cell of dimension `.�i / as E.�i / is an open cell of dimension `.�i / and
jG.ci /j<1.

Let C.i/ WD fŒz0 W z1 W � � � W zi�1 W 1 W 0 W � � � W 0� 2WP.c0; c1; : : : ; cm/g.

Consider

S2i�1 D

�
.z0; z1; : : : ; zi�1; 0; : : : ; 0/ 2CmC1

ˇ̌̌ i�1X
jD0

jzj j
2
D 1

�
and the G.ci /–action on S2i�1 by g.z0; : : : ; zi�1; 0; : : : ; 0/ 7! .gc0z0; : : : ; g

ci�1zi�1; 0; : : : ; 0/. The
orbit space is called an orbifold Lens space and denoted by L.ci I c0/, where c0 D .c0; : : : ; ci�1/. Then
C.i/DCi=G.ci / is homeomorphic to the cone C.L.ci I c0// on L.ci I c0/. The space WP.c0; : : : ; ci�1/

can be obtained by the weighted S1–action on S2i�1 with the weight vector c0. Thus there is a map

�i W
S2i�1

G.ci /
D L.ci I c

0/!
S2i�1

weighted S1–action
;

which plays the role of the attaching map for the q–cell C.i/; see [19].
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Note that the set E.�i /Š fŒz0 W � � � W zi�1 W 1 W 0 W � � � W 0� 2 Pl.Gr.d; n//g �CPm. Then E.�i /ŠC`.�i /

can be considered as a G.ci /–invariant subset of Ci as `.�i / < i . So S2i�1\E.�i / is a G.ci /–invariant
sphere of real dimension 2`.�i /� 1. Thus, we have

S

�
E.�i /

G.ci /

�
WD

S2i�1\E.�i /

G.ci /
,!

E.�i /

G.ci /
,!

Ci

G.ci /
D C.i/:

Therefore, the attaching map for the q–cell E.�i /=G.ci / is the restriction on S.E.�i /=G.ci // and the
following diagram commutes:

S

�
E.�i /

G.ci /

�
fŒ.z0 W � � � W zi�1 W 0 W � � � W 0/� 2 Plw.WGr.d; n//g

L.ci ; c
0/ WP.c0; c1; : : : ; ci�1/

 i

Plw

�i

Therefore, a q–CW complex structure on WGr.d; n/ is given by

Plw.WGr.d; n//D
E.�0/

G.c0/
t
E.�1/

G.c1/
t
E.�2/

G.c2/
t � � � t

E.�m/

G.cm/
:

For each k 2 f0; 1; 2; : : : ; mg, let

Xk WD

kG
iD0

E.�i /

G.ci /
�WGr.d; n/:

HereXk is built inductively by attaching the q–cells E.�0/=G.c0/; : : : ; E.�k/=G.ck/ so thatXk remains
a subset of WGr.d; n/. Then each Xk is a .C�/n–invariant and we have the following filtration of
WGr.d; n/:

(2-17) fptg DX0 �X1 �X2 � � � � �Xm DWGr.d; n/:

We note that the paper [1] discussed a q–CW complex structure of WGr.d; n/. However, our approach is
different and helps to study torsions in the integral cohomology of WGr.d; n/.

3 Integral cohomology of certain weighted Grassmann orbifolds

In this section, we study several q–CW complex structures on a weighted Grassmann orbifold. We show
how a permutation on the weight vector affects the weighted Grassmann orbifold. We define admissible
permutation � 2 Sn for a prime p and WGr.d; n/. Then we discuss when H�.WGr.d; n/IZ/ has no
p–torsion. We introduce the concept of divisive weighted Grassmann orbifolds, which incorporates the
divisive weighted projective spaces of [15]. We show that a divisive weighted Grassmann orbifold has a
.C�/n–invariant CW complex structure. We describe this action on each cell explicitly. As a consequence,
we get that the integral cohomology of a divisive weighted Grassmann orbifold has no torsion and is
concentrated in even degrees.
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The following lemma is well known, but for our purpose we may need its proof.

Lemma 3.1 The map � 0c WC
mC1�f0g !WP.c0; c1; : : : ; cm/ induces an equivariant homeomorphism

WP.rc0; rc1; : : : ; rcm/!WP.c0; c1; : : : ; cm/ for any positive integer r .

Proof The weighted C�–action on CmC1 n f0g for WP.rc0; rc1; : : : ; rcm/ is given by

t .z0; z1; : : : ; zm/D .t
rc0z0; t

rc1z1; : : : ; t
rcmzm/:

We denote the equivalence class by Œz0 W z1 W � � � W zm��rc .

One can define a map f WWP.rc0; rc1; : : : ; rcm/!WP.c0; : : : ; cm/ by

f .Œz0 W z1 W � � � W zm��rc /D Œz0 W z1 W � � � W zm��c

and a map g WWP.c0; c1; : : : ; cm/!WP.rc0; rc1; : : : ; rcm/ by

g.Œz0 W z1 W � � � W zm��c /D Œz0 W z1 W � � � W zm��rc :

Thus the following diagram commutes:

CmC1 n f0g
Id

//

� 0rc
��

CmC1 n f0g

� 0c
��

WP.rc0; : : : ; rcm/
f

// WP.c0; : : : ; cm/
g
oo

Observe that, we have f ıg D IdWP.c0;:::;cm/ and g ı f D IdWP.rc0;:::;rcm/. Thus f is a bijective map
with the inverse map g.

Let U be an open subset of WP.c0; : : : ; cm/ Then .� 0c/
�1.U / D .� 0rc/

�1 ı f �1.U /. Since � 0c is a
quotient map then .� 0c/

�1.U / is an open subset of CmC1 n f0g. Thus f �1.U / is an open subset of
WP.rc0; : : : ; rcm/ as � 0rc is a quotient map. Thus f is continuous. By similar arguments, we can
show that g is continuous. Hence f is a homeomorphism and also it is equivariant with respect to the
.C�/n–action on WP.c0; : : : ; cm/ and WP.rc0; : : : ; rcm/ defined after (2-8).

Lemma 3.2 Let B be a subset of CmC1 n f0g. Let B 0c WD �
0
c.B/ and B 0rc WD �

0
rc.B/. Then the map

f jB 0rc W B
0
rc! B 0c is a homeomorphism.

Proof Consider the commutative diagram

B B

B 0rc B 0c

Id

� 0rc � 0c
f j
B0rc

The map f is well defined and one-to-one. It follows that f jB 0rc is also well defined and one-to-one.
Note that f jB 0rc is defined by f jB 0rc .�

0
rc.b// D �

0
c.b/. Therefore, � 0rc.b/ 2 B

0
rc is the inverse image

of an element � 0c.b/ 2 B
0
c . So f jB 0rc is bijective. Also .f jB 0rc /

�1 D gjB 0c . To conclude that f jB 0rc is a
homomorphism, recall that the restriction of a continuous map is also continuous.
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We apply the previous result onto some subsets of P.Md .n; d//�CmC1 n f0g for mC 1D
�
n
d

�
, where

P is defined in (2-9). For all k 2 f0; 1; : : : ; mg, consider zXk �Md .n; d/ defined by

zXk WD fA 2Md .n; d/ j det.A�j /D 0 for j > kg:

Then zXk D
Fk
iD0
zE.�i /�Md .n; d/, where zE.�i /D ��1.E.�i / and

P. zXk/D

kG
iD0

P. zE.�i //� P.Md .n; d//:

Note that P. zXk/�CkC1 n f0g �CmC1 n f0g for k 2 f0; 1; : : : ; mg.

One can calculate ci for all i 2 f0; 1; : : : ; mg from (2-5) for a weighted Grassmann orbifold WGr.d; n/.
Let rk WD gcdfc0; c1; : : : ; ckg for all k 2 f1; 2; : : : mg and G.rk/ be the group of r th

k
roots of unity. Since

G.ci / is cyclic, letG.ci=rk/ be the unique cyclic subgroup ofG.ci / of order ci=rk for i 2 f0; 1; 2; : : : ; kg.
Also G.rk/ is a subgroup of G.ci / and G.ci /=G.rk/ is isomorphic to G.ci=rk/ for i 2 f0; 1; 2; : : : ; kg.
Now G.ck/ acts on E.�k/ as a restriction of the weighted C�–action. Then we have a restricted
G.ck=rk/–action on E.�k/.

Lemma 3.3 The space � 0c.P. zXk// is homeomorphic to � 0
c=rk

.P. zXk//. Moreover , E.�k/=G.ck/ is
homeomorphic to E.�k/=G.ck=rk/.

Proof The diagram

P. zXk/ P. zXk/

� 0c.P.
zXk// � 0

c=rk
.P. zXk//

Id

� 0c � 0
c=rk

f j
�0c.P.

zXk//

is commutative. By Lemma 3.2, the lower horizontal map is a homeomorphism. The second statement of
the lemma follows by similar arguments with P. zXk/ is replaced by P. zE.�k//.

Theorem 3.4 The collection fE.�i /=G.ci=rk/gkiD0 gives a q–CW complex structure of � 0
c=rk

.P. zXk//

for k D 1; 2; : : : ; m. Moreover , fE.�i /=G.ci=ri /gmiD0 gives a q–CW complex structure of WGr.d; n/,
where r0 D c0.

Proof Note that the setsP. zE.�i // andP.Md .n; d//D
Fm
iD0 P.

zE.�i // are invariant under the weighted
C�–action defined in Remark 2.3 for all i D 0; 1; : : : ; m. Then we have the commutative diagram

P. zXk/ � CkC1 n f0g

� 0
c=rk

.P. zXk// � WP

�
c0

rk
;
c1

rk
; : : : ;

ck

rk

�� 0
c=rk

� 0
c=rk
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Thus the first part follows from

� 0c=rk .P.
zXk//D �

0
c=rk

� kG
iD0

P. zE.�i //

�
D

kG
iD0

� 0c=rk .P.
zE.�i ///D

kG
iD0

P. zE.�i //

�c=rk

Š

kG
iD0

E.�i /

G.ci=rk/
:

The second part follows from WGr.d; n/Š � 0c.P. zXm// and by applying Lemma 3.3 successively for
every k 2 f1; 2; : : : ; mg.

We show that two weighted Grassmann orbifolds are weakly equivariantly homeomorphic if the associated
weight vectors differ by a permutation � 2 Sn. Let X and Y be two G–spaces. A map f W X ! Y is
called a weakly equivariant homeomorphism if f is a homeomorphism and f .gx/D �.g/f .x/ for some
�2Aut.G/ and for all .g; x/2G�X . If � is the identity, then f is called an equivariant homeomorphism.

Let W D .w1; w2; : : : ; wn/ 2 .Z�0/n, 0 < a 2 Z and �W WD .w�1 ; w�2 ; : : : ; w�n/ for some � 2 Sn.
Consider two weighted Grassmann orbifolds WGr.d; n/ and WGr0.d; n/ associated to .W; a/ and .�W; a/,
respectively. The group .C�/n acts on WGr.d; n/ described in (2-7). Also, there exists a .C�/n–action
on WGr0.d; n/ defined by

(3-1) .t1; : : : ; tn/Œ.a1; a2; : : : ; an/
tr� WD Œ.t�1a1; t�2a2; : : : ; t�nan/

tr�:

Theorem 3.5 There exists a weakly equivariantly homeomorphism between WGr.d; n/ and WGr0.d; n/.
Moreover , this may induce different q–CW complex structures on WGr.d; n/ for different � .

Proof The matrix A D .aij / 2 Md .n; d/ if and only if �A D .a�ij / 2 Md .n; d/. Thus the natural
weakly equivariant homeomorphism xf� WMd .n; d/!Md .n; d/ defined by xf� .A/ D �A induces the
commutative diagram

(3-2)

Md .n; d/ Md .n; d/

WGr.d; n/ WGr0.d; n/

xf�

�w ��w

f�

Here �w is the quotient map defined in Definition 2.1. Thus, (3-2) induces a weakly equivariant
homeomorphism f� WWGr.d; n/!WGr0.d; n/, where .C�/n–action on WGr.d; n/ is defined in (2-7)
and the .C�/n–action on WGr0.d; n/ is defined in (3-1). Note that f� .ŒA��w/D Œ�A���w .

We discuss the effects of the permutation � on the q–CW complex structure on WGr.d; n/. Consider
Ci D f.x1; x2; : : : ; xn/ 2Cn j xj D 0 for j > ig. For � 2 Sn, define

�Cn
WD f.x�1 ; x�2 ; : : : ; x�n/g and �Ci

WD f.x�1 ; x�2 ; : : : ; x�n/ 2 �Cn
j x�j D 0 for �j > ig:

Let �D .�1; : : : ; �d / be a Schubert symbol for d < n. Then

�E.�/D f�Y j Y 2E.�/g

D fX 2 Gr.d; n/ j dim.X \ �C�i /D i and dim.X \ �C�i�1/D i � 1 for i 2 Œd �g;

where Œd �D f1; 2; : : : ; dg. Then E.�/Š �E.�/ and dim.�E.�//D `.�/.
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So the permutation of the coordinates in Cn determines another CW complex structure for Gr.d; n/
given by Gr.d; n/D � Gr.d; n/D

Fm
iD0 �E.�

i /. This induces the following decomposition ofMd .n; d/,
similar to (2-15):

Md .n; d/D

mG
iD0

� zE.�i / and P.Md .n; d//D

mG
iD0

P.� zE.�i //:

Recall that �i D .�i1; : : : ; �
i
d
/ is a Schubert symbol and ci is defined in (2-5) for i D 0; : : : ; m. Then

��i WD .�.�ii1/; : : : ; �.�
i
id
//, where i1; : : : ; id 2 f1; : : : ; dg and �.�ii1/ < �.�

i
i2
/ < � � �< �.�iid /. Let

(3-3) �ci WD aC

dX
jD1

w�.�i
ij
/:

Now from the commutativity of the diagram (2-12), we have

�w.�. zE.�
i ///Š Plw.�w.� zE.�i ///D

P.� zE.�i //

weighted C�–action
:

There exists a homeomorphism
P.� zE.�i /Š �E.�i /�C�

defined by P.�A/! .�.�A/; det.A��i //. This is a C�–equivariant homomorphism, where the weighted
C�–action on the left side is same as the weighted C�–action on CmC1nf0g, and the weighted C�–action
on the right side is defined by

t � .�.�A/; s/D .t ��.�A/; t�ci s/;

where t ��.�A/ is defined in (2-16). Then using Lemma 2.6, we have

P.� zE.�i //

weighted C�–action
Š
�E.�i /

G.�ci /
:

Then we get a q–CW complex structure of the weighted Grassmann orbifold WGr.d; n/ given by

WGr.d; n/Š
�E.�0/

G.�c0/
t
�E.�1/

G.�c1/
t � � � t

�E.�m/

G.�cm/
:

Remark 3.6 Applying the permutation � on the rows of the matrices in E.�/, we get the matrices of
�E.�/. That is, 0BB@

v1
v2
:::
vn

1CCA 2E.�/ ()
0BB@
v�1
v�2:::
v�n

1CCA 2 �E.�/:
Proposition 3.7 [4, Theorem 1.1] Let X be a q–CW complex with no odd-dimensional q–cells , and
p a prime number. Let fptg DX0 �X1 � � � � �Xs DX be a filtration of X such that Xi is obtained by
attaching the q–cell R2ki=Gi toXi�1 for all i 2f1; 2; : : : ; sg. If gcdfp; jGi jgD 1 for all i 2f1; 2; : : : ; sg,
then H�.X IZ/ has no p–torsion and H odd.X IZp/ is trivial.
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Recall �ci as defined in (3-3) for WGr.d; n/ associated to weight vector W D .w1; : : : ; wn/ 2 .Z�0/n

and 1� a 2 Z.

Definition 3.8 A permutation � 2 Sn is called admissible for a prime p and WGr.d; n/ if

gcd
�
p;
�ci

di

�
D 1;

where �ci is defined in (3-3) and di D gcdf�c0; �c1; : : : ; �cig for i 2 f1; 2; : : : ; mg.

Some examples of admissible permutations are discussed in Example 3.12.

Remark 3.9 There may not always exist an admissible permutation � 2Sn for a prime p and WGr.d; n/.
However if d D 1, then mD n� 1 and there always exists an admissible permutation � 2 Sn for every
prime p. The admissible permutation � 2 Sn may not be unique.

The following result says when the integral cohomology of WGr.d; n/ has no p–torsion.

Theorem 3.10 If there exists an admissible permutation � 2 Sn for a prime p and WGr.d; n/, then
H�.WGr.d; n/IZ/ has no p–torsion and H odd.WGr.d; n/IZp/ is trivial.

Proof Suppose � 2 Sn be an admissible permutation for p and WGr.d; n/. Then

gcd
�
p;
�ci

di

�
D 1

by Definition 3.8, where di D gcdf�c0; �c1; : : : ; �cig for all i 2 f1; 2; : : : ; mg. By Theorem 3.5, we have
the q–CW complex structure

WGr.d; n/Š
�E.�0/

G.�c0/
t
�E.�1/

G.�c1/
t � � � t

�E.�m/

G.�cm/
;

where �E.�i /ŠE.�i /ŠC`.�i /. Let

�Xk D

kG
iD0

�E.�i /

G.�ci /
�WGr.d; n/ for k D 0; 1; : : : ; m:

Then �Xk is a subcomplex of WGr.d; n/ for k D 0; 1; : : : ; m and �Xm D WGr.d; n/. This gives a
filtration

fptg D �X0 � �X1 � � � � � �Xm DWGr.d; n/

such that �Xi n �Xi�1 is homeomorphic to �E.�i /=G.�ci /.

Using Lemma 3.3,
�E.�i /

G.�ci /
Š

�E.�i /

G.�ci=di /
:

That is, �Xi n �Xi�1 is homeomorphic to C`.�i /=G.�ci=di / for all i D 1; 2; : : : ; m. Therefore, by
Proposition 3.7, H�.WGr.d; n/IZ/ has no p–torsion and the groupH odd.WGr.d; n/IZp/ is trivial. This
completes the proof.
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Corollary 3.11 [19] H�.WP.c0; c1; : : : ; cm/IZ/ has no torsion.

Proof This follows from Theorem 3.10 and Remarks 2.3 and 3.9.

Example 3.12 Consider the weighted Grassmann orbifold WGr.2; 4/ for weight vector W D .1; 1; 3; 4/
and aD 2. Here

nD 4; d D 2;
�n
d

�
D 6; mD

�n
d

�
� 1D 5:

So, in this case, we have six Schubert symbols, which are

�0 D .1; 2/ < �1 D .1; 3/ < �2 D .1; 4/ < �3 D .2; 3/ < �4 D .2; 4/ < �5 D .3; 4/;

ordered as in Definition 2.4. For the prime p D 3, consider the permutation � 2 S4 defined by

�1 D 3; �2 D 4; �3 D 1; �4 D 2:

Then
�c0 D 9; �c1 D 6; �c2 D 6; �c3 D 7; �c4 D 7; �c5 D 4;

using (3-3). This � is admissible for pD 3 and WGr.2; 4/. Thus H�.WGr.2; 4/IZ/ has no 3–torsion by
Theorem 3.10.

For the prime p D 7, consider the permutation � 2 S4 defined by

�1 D 4; �2 D 2; �3 D 1; �4 D 3:

Then
�c0 D 7; �c1 D 7; �c2 D 9; �c3 D 4; �c4 D 6; �c5 D 6;

using (3-3). This � is admissible for pD 7 and WGr.2; 4/. Thus H�.WGr.2; 4/IZ/ has no 7–torsion by
Theorem 3.10.

To compute that it has no 2–torsion, we need to consider a different total order on the Schubert symbols,
given by

�0 D .1; 2/ < �1 D .1; 3/ < �2 D .2; 3/ < �3 D .1; 4/ < �4 D .2; 4/ < �5 D .3; 4/;

which preserves the partial order in (2-3). In this case, using (2-5),

c0 D 4; c1 D 6; c2 D 6; c3 D 7; c4 D 7; c5 D 9:

The identity permutation in S4 is admissible for p D 2 and this WGr.2; 4/. Then H�.WGr.2; 4/IZ/ has
no 2–torsion by Theorem 3.10.

The only primes which divide the orders of the orbifold singularities of this WGr.2; 4/ are 2; 3 and 7.
Hence the integral cohomology of WGr.2; 4/ of this example has no torsion.

Remark 3.13 Considering the total order given in Definition 2.4 on the Schubert symbols, there may not
exist an admissible permutation � for a prime. However, one can take another total order on the Schubert
symbols for which one can find � satisfying the hypothesis in Theorem 3.10 for this prime.
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The q–CW complex structure in Theorem 3.4 leads us to introduce the following definition, which
generalizes the concept of divisive weighted projective spaces of [15].

Definition 3.14 A weighted Grassmann orbifold WGr.d; n/ is called divisive if there exists � 2 Sn such
that �ci divides �ci�1 for i D 1; 2; : : : ; m, where �ci is defined in (3-3).

Example 3.15 Consider the weighted Grassmann orbifold WGr.2; 4/ for weight vector W D .1; 6; 1; 1/
and aD 3. We have the ordering on the six Schubert symbols given by

�0 D .1; 2/ < �1 D .1; 3/ < �2 D .1; 4/ < �3 D .2; 3/ < �4 D .2; 4/ < �5 D .3; 4/:

Consider the permutation � 2 S4 defined by

�1 D 2; �2 D 1; �3 D 3; �4 D 4:

Then
�c0 D 10; �c1 D 10; �c2 D 10; �c3 D 5; �c4 D 5; �c5 D 5;

using (3-3). Thus �ci divides �ci�1 for i D 1; 2; : : : ; 5. So WGr.2; 4/ of this example is divisive.

Example 3.16 Let ˛ and  be any two nonnegative integers and ˇ be any positive integer such that ˇ>d˛.
Let WGr.d; n/ be the corresponding weighted Grassmann orbifold for W D .˛Cˇ; ˛; : : : ; ˛/2 .Z�0/n

and aD ˇ� d˛ > 0. Consider the total order f�0; �1; : : : ; �mg on the Schubert symbols induced by the
dictionary order. Then

ci D

�
. C 1/ˇ if i D 0; 1; : : : ;

�
n�1
d�1

�
� 1;

ˇ if i D
�
n�1
d�1

�
; : : : ; m:

Then ci divides ci�1 for all i D 1; 2; : : : ; m. Therefore this WGr.d; n/ is a divisive weighted Grassmann
orbifold.

Definition 3.17 Let � be a Schubert symbol for d < n. Then a reversal of � is a pair .k; k0/ such that
k 2 �, k0 … � and k0 < k. We denote the set of all reversals of � by rev.�/. If .k; k0/ 2 rev.�/ then
.k; k0/� is the Schubert symbol obtained by replacing k by k0 in � and ordering the later set.

Remark 3.18 If .k; k0/ 2 rev.�/ then .k; k0/� � � and `.�/ is the cardinality of the set rev.�/ where
`.�/ is the length of �. Knutson and Tao [20] and Abe and Matsumura [1] defined an inversion of a
Schubert symbol � as a pair .k; k0/ such that k 2 �, k0 … � and k < k0. In some sense, our definition of
reversal is dual to the definition of inversion. If inv.�/ is the set of all inversions of � and `0.�/ is the
cardinality of the set inv.�/, then `.�/C `0.�/D d.n� d/. Also, if .k; k0/ 2 rev.�/ and .k; k0/�D �,
then .k0; k/ 2 inv.�/ and .k0; k/�D �.

Next, we discuss .C�/n–action on some CW complex structure of a divisive weighted Grassmann orbifold.
Recall the .C�/n–action on WGr.d; n/ which is induced from (2-7). We retain the notation from Section 2.
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Theorem 3.19 If WGr.d; n/ is a divisive weighted Grassmann orbifold , then it has a .C�/n–invariant
CW complex structure with cells fC`.�i / j i D 0; 1; : : : ; mg.

Proof Let WGr.d; n/ be a divisive weighted Grassmann orbifold corresponding to weight vector
W D .w1; : : : ; wn/ 2 .Z�0/n and 1� a 2 Z. Then there exists � 2 Sn such that �ci divides �ci�1 for
all i D 1; 2; : : : ; m. Let us assume that � D Id (the identity permutation in Sn). Then ci divides ci�1 for
all i D 1; 2; : : : ; m. Then gcdfc0; c1; : : : ; cig D ci for all i 2 f1; 2; : : : ; mg. Thus,

�w. zE.�
i //Š

E.�i /

G.ci /
Š

E.�i /

G.ci=ci /
ŠE.�i / for all i D 1; 2; : : : ; m;

by Lemma 3.3. Thus, each element of �w. zE.�i // can be represented uniquely by the equivalence class
of an n� d matrix defined in (2-13).

Let �i D .�1; : : : ; �d / be a Schubert symbol for d < n and let z 2C`.�i /. Since

`.�i /D .�1� 1/C .�2� 2/C � � �C .�d � d/;

we can write zD .z1; z2; : : : ; zd /, where

zl D .z
l
1; z

l
2; : : : ;

c
zl�1 ; : : : ;

c
zl�2 ; : : : ;

c
zl�l�1 ; : : : ; z

l
�l�1

/ for l D 1; : : : ; d:

For .t1; : : : ; tn/ 2 .C�/n, we define s 2C� such that sci D t�1 � � � t�d . Define T 2 GL.d;C/ by

T D diag
��

t�1
sw�1

�
;

�
t�2
sw�2

�
; : : : ;

�
t�d
sw�d

��
:

Then det.T /D sa.

Define g�i WC
`.�i /! �w. zE.�

i // by

g�i .z/ WD

2666666666666666666666666666664

z11 z21 � � � zd1
:::

:::
:::

z1
�1�1

z2
�1�1

� � � zd
�1�1

1 0 � � � 0

0 z2
�1C1

� � � zd
�1C1

:::
:::

:::

0 z2
�2�1

� � � zd
�2�1

0 1 � � � 0

0 0 � � � zd
�2C1

:::
:::

:::

0 0 � � � zd
�d�1

0 0 � � � 1

0 0 � � � 0
:::

:::
:::

0 0 � � � 0

3777777777777777777777777777775

:
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Then g�i is a homeomorphism. Now we have

.t1; t2; : : : ; tn/g�i .z/D

266666666666666666666666666664

t1z
1
1 t1z

2
1 : : : t1z

d
1

:::
:::

:::

t�1�1z
1
�1�1

t�1�1z
2
�1�1

: : : t�1�1z
d
�1�1

t�1 0 : : : 0

0 t�1C1z
2
�1C1

: : : t�1C1z
d
�1C1:::

:::
:::

0 t�2�1z
2
�2�1

: : : t�2�1z
d
�2�1

0 t�2 : : : 0

0 0 : : : t�2C1z
d
�2C1:::

:::
:::

0 0 : : : t�d�1z
d
�d�1

0 0 : : : t�d
0 0 : : : 0
:::

:::
:::

0 0 : : : 0

377777777777777777777777777775

:

Then

.t1; t2; : : : ; tn/g�i .z/D

266666666666666666666666666666666666666666664

sw�1

t�1
t1z

1
1

sw�2

t�2
t1z

2
1 : : :

sw�d

t�d
t1z

d
1

:::
:::

:::

sw�1

t�1
t�1�1z

1
�1�1

sw�2

t�2
t�1�1z

2
�1�1

: : :
sw�d

t�d
t�1�1z

d
�1�1

sw�1

t�1
t�1 0 : : : 0

0
sw�2

t�2
t�1C1z

2
�1C1

: : :
sw�d

t�d
t�1C1z

d
�1C1

:::
:::

:::

0
sw�2

t�2
t�2�1z

2
�2�1

: : :
sw�d

t�d
t�2�1z

d
�2�1

0
sw�2

t�2
t�2 : : : 0

0 0 : : :
sw�d

t�d
t�2C1z

d
�2C1

:::
:::

:::

0 0 : : :
sw�d

t�d
t�d�1z

d
�d�1

0 0 : : :
sw�d

t�d
t�d

0 0 : : : 0
:::

:::
:::

0 0 : : : 0

377777777777777777777777777777777777777777775

�T:
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Thus, .t1; t2; : : : ; tn/g�i .z/ is equal to

D �

2666666666666666666666666666666666666664

sw�1

t�1s
w1
t1z

1
1

sw�2

t�2s
w1
t1z

2
1 : : :

sw�d

t�d s
w1
t1z

d
1

:::
:::

:::

sw�1

sw�1�1 t�1
t�1�1z

1
�1�1

sw�2

sw�1�1 t�2
t�1�1z

2
�1�1

: : :
sw�d

sw�1�1 t�d
t�1�1z

d
�1�1

1 0 : : : 0

0
sw�2

sw�1C1 t�2
t�1C1z

2
�1C1

: : :
sw�d

sw�1C1 t�d
t�1C1z

d
�1C1

:::
:::

:::

0
sw�2

sw�2�1 t�2
t�2�1z

2
�2�1

: : :
sw�d

sw�2�1 t�d
t�2�1z

d
�2�1

0 1 : : : 0

0 0 : : :
sw�d

sw�2C1 t�d
t�2C1z

d
�2C1

:::
:::

:::

0 0 : : :
sw�d

sw�d�1 t�d
t�d�1z

d
�d�1

0 0 : : : 1

0 0 : : : 0
:::

:::
:::

0 0 : : : 0

3777777777777777777777777777777777777775

�T DDMT;

whereDDdiag.sw1 ; : : : ; swn/ is a diagonal matrix. So by the equivalence relation�w as in Definition 2.1,

.t1; t2; : : : ; tn/g�i .z/DM 2 �w.
zE.�i //�WGr.d; n/:

Let akl be the coefficient of zl
k

in the matrix M for 1 � l � d , 1 � k � �l � 1, k ¤ �1; �2; : : : ; �l�1.
Then

akl D
sw�l tk

swk t�l
:

Now for 1� k � �l � 1 with k ¤ �1; �2; : : : ; �l�1 we have .�l ; k/ 2 rev.�i /. Let �j D .�l ; k/�i . Note
that �j < �i . Recall ci from (2-5). So

tks
w�l

swk t�l
D
t�j

t�i
sw�l�wk D

t�j

t�i
sci�cj D

t�j

t�i
t
.ci�cj /=ci

�i
D t�j .t�i /

�cj =ci ;

since sci D t�1 � � � t�d D t�i and t�j D t�1 � � � t�l�1 tkt�lC1 � � � t�d . Since WGr.d; n/ is divisive and
�j < �i , we have that ci divides cj .

Define a .C�/n–action on C`.�i / by

.t1; t2; : : : ; tn/.z
l
k/D .t�j .t�i /

�cj =ci zlk/

for 1� l � d; 1� k � �l � 1; k ¤ �1; �2; : : : ; �l�1. With this action of .C�/n on C`.�i /, the map g�i
becomes .C�/n–equivariant.
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If � ¤ Id, consider the cell

�w.� zE.�
i //Š

�E.�i /

G.�ci /
Š

�E.�i /

G.�ci=�ci /
Š �E.�i / for all i D 1; 2; : : : ; m;

by Lemma 3.3. Hence, we get the map �g�i WC
`.�i /! �w.� zE.�

i // defined by z! �g�i .z/. Then by
similar arguments, we get the .C�/n–action on C`.�i / defined by

(3-4) .t1; t2; : : : ; tn/.z
l
k/D .t��j .t��i /

��cj =�ci zlk/:

Corollary 3.20 If WGr.d; n/ is divisive , then H�.WGr.d; n/IZ/ has no torsion and is concentrated in
even degrees.

We remark that Corollary 3.20 also follows from the proof of Theorem 3.10 and Definition 3.14. However,
Theorem 3.19 describes the representation of the .C�/n–action on each invariant cell explicitly. We also
get that a divisive weighted Grassmann orbifold is integrally equivariantly formal.

4 Equivariant cohomology, cobordism and K–theory of weighted
Grassmann orbifolds

In this section, first we compute the equivariant K–theory ring of any weighted Grassmann orbifold
with rational coefficients. Then we compute the equivariant cohomology ring, equivariant K–theory
ring and equivariant cobordism ring of a divisive weighted Grassmann orbifold with integer coefficients.
We discuss the computation of the equivariant Euler classes for some line bundles on a point. We also
compute the integral equivariant cohomology ring of some nondivisive weighted Grassmann orbifolds.
We retain the notation of previous sections.

We recall the .C�/n–action on WGr.d; n/ which is induced by (2-7). Consider the standard torus
T n D .S1/n � .C�/n. So we have the restricted T n–action on WGr.d; n/. For each Schubert symbol
�D .�1; �2; : : : ; �d /, consider C.�/ 2Md .n; d/ with column vectors given by e�1 ; e�2 ; : : : ; e�d , where
fe1; e2; : : : ; eng is the standard basis for Cn. Therefore ŒC.�/� 2WGr.d; n/, and it is a fixed point of the
T n–action on WGr.d; n/.

Proposition 4.1 Let WGr.d; n/ be a weighted Grassmann orbifold corresponding to weight vector
W D .w1; w2; : : : ; wn/ 2 .Z�0/n and a � 1. Then there is a .C�/n–invariant stratification

fptg DX0 �X1 �X2 � � � � �Xm DWGr.d; n/

such that for i D 1; : : : ; m, the quotient Xi=Xi�1 is homeomorphic to the Thom space Th.� i / of an
orbifold .C�/n–vector bundle

(4-1) � i WC`.�i /=G.ci /! ŒC.�i /�;

where G.ci / is the cyclic group of the cth
i roots of unity.
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Proof Recall the .C�/n–invariant stratification

fptg DX0 �X1 �X2 � � � � �Xm DWGr.d; n/

from (2-17), which is obtained from the q–CW complex structure of WGr.d; n/ as in Proposition 2.7.
Note that Xi=Xi�1 is the one-point compactification of E.�i /=G.ci /, which is the Thom space of the
orbifold .C�/n–vector bundle

E.�i /

G.ci /
! ŒC.�i /�;

where ŒC.�i /� is the .C�/n–fixed point corresponding to the Schubert symbol �i for i D 1; : : : ; m. It
remains to note that E.�i / is .C�/n–equivariantly homeomorphic to C`.�i /; see (2-13).

Now corresponding to rev.�i /, one can define a subset of Schubert symbols

(4-2) R.�i / WD f�j j �j D .k; k0/�i for .k; k0/ 2 rev.�i /g:

Then the cardinality of the set R.�i / is `.�i / for every i 2 f0; 1; : : : ; mg. Note that the bundle in (4-1) is
also an orbifold T n–bundle.

Proposition 4.2 The orbifold T n–bundle in (4-1) has a decomposition

� i W
C`.�i /

G.ci /
! ŒC.�i /�Š

M
j W�j2R.�i /

�
� ij W

Cij
G.cij /

! ŒC.�i /�

�
:

Proof Observe that

Xi nXi�1 D
E.�i /

G.ci /
Š

C`.�i /

G.ci /
:

Since T n is abelian, the T n action on E.�i /ŠC`.�i / determines the decomposition

E.�i /Š
M

j W�j2R.�i /

Cij

for some irreducible representation Cij of T n. By [10, Proposition 2.8] there exists a finite covering
map q W T n! T n such that the projection map � WE.�i /!E.�i /=G.ci / is equivariant via the map q,
ie �.tx/D q.t/�.x/. Therefore,

E.�i /

G.ci /
Š

M
j W�j2R.�i /

Cij
G.cij /

for some positive integers cij which divide ci . Hence the proof follows.

Remark 4.3 (1) The attaching map �i W S.� i /! Xi�1 for the q–CW complex structure in (2-17)
satisfies �i jS.�ij / D fij ı �

ij , where fij W ŒC.�i /�! ŒC.�j /� is the constant map.

(2) The equivariant Euler classes feT n.� ij / j j < ig are nonzero divisors. They are pairwise prime by
[14, Lemma 5.2] and the T n–action on E.�i / discussed in the proof of Theorem 3.19.
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Theorem 4.4 Let WGr.d; n/ be a weighted Grassmann orbifold for d < n, corresponding to weight
vector W D .w1; w2; : : : ; wn/ 2 .Z�0/n and a � 1. Then the generalized T n–equivariant cohomology
E�T n.WGr.d; n/IQ/ can be given by�

.fi / 2

mM
iD0

E�T n.fptgIQ/
ˇ̌̌
eT n.�

ij / divides fi �fj for j < i and j�j \�i j D d � 1
�

for E�T n DK
�
T n , H�T n , where eT n.� ij / represents the equivariant Euler class of � ij .

Proof This follows from [26, Proposition 2.3] using Propositions 4.1 and 4.2, and Remark 4.3.

We note that equivariant cohomology ring of WGr.d; n/ with rational coefficients is discussed in [1].
In the rest, we give a description of the equivariant cohomology ring, equivariant K–theory ring and
equivariant cobordism ring of a divisive weighted Grassmann orbifold with integer coefficients.

Proposition 4.5 Let WGr.d; n/ be a divisive weighted Grassmann orbifold for d < n corresponding to
W D .w1; w2; : : : ; wn/ 2 .Z�0/n and a � 1. Then there is a T n–invariant stratification

fptg DX0 �X1 � � � � �Xm DWGr.d; n/

such that for i D 1; : : : ; m, the quotient Xi=Xi�1 is homeomorphic to the Thom space Th.� i / of the
T n–vector bundle

� i WC`.�i /
! ŒC.�i /�:

Proof Since WGr.d; n/ is divisive, there exists � 2 Sn such that �ci divides �ci�1 for i D 1; 2; : : : ; m.
Then gcdf�c0; �c1; : : : ; �cig D �ci for all i . By Theorem 3.5, one can write

WGr.d; n/D
mG
iD0

�E.�i /

G.�ci /
:

By Lemma 3.3, the q–cell �E.�i /=G.�ci / is homeomorphic to �E.�i /=G.�ci=�ci / Š C`.�i / for
i D 1; : : : ; m. Let Xk D

Fk
iD0 �E.�

i /=G.�ci / for i D 0; 1; : : : ; m. The rest follows from the proof of
Proposition 4.1.

Remark 4.6 For a divisive weighted Grassmann orbifold, Proposition 4.2 and Remark 4.3 hold with
cij D 1 for every j < i .

Theorem 4.7 Let WGr.d; n/ be a divisive weighted Grassmann orbifold for d <n. Then the generalized
T n–equivariant cohomology E�T n.WGr.d; n/IZ/ can be given by�

.fi / 2

mM
iD0

E�T n.fptgIZ/
ˇ̌̌
eT n.�

ij / divides fi �fj for j < i and j�j \�i j D d � 1
�

for E�T n DH
�
T n ; K

�
T n and MU�T n .

Proof This follows from Proposition 4.5, Remark 4.6 and [14, Theorem 2.3].
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Remark 4.8 Let �i and �j be two Schubert symbols with j < i . If WGr.d; n/ is a divisive weighted
Grassmann orbifold then there exists a permutation � 2 Sn such that �ci divides �cj . We write

�dij WD
�cj

�ci
2 Z:

Next we discuss how to compute eT n.� ij /. We recall that

H�T n.fptgIZ/DH�.BT nIZ/Š ZŒy1; y2; : : : ; yn�;

where y1; y2; : : : ; yn be the standard basis of H 2.BT nIZ/. Using (3-4) the character of the one-
dimensional representation for the bundle � ij is given by

(4-3) .t1; t2; : : : ; tn/! t��j .t��i /
��cj =�ci :

Also,
K�T n.fptg/ŠR.T n/Œz; z�1�;

where R.T n/ is the complex representation ring of T n and z is the Bott element in K�2.fptg/. Note
that the ring R.T n/ is isomorphic to the ring of Laurent polynomials with n variables, ie R.T n/ Š
ZŒ˛1; : : : ; ˛n�.˛1���˛n/, where ˛i is the irreducible representation corresponding to the projection on the
i th factor; see [17]. Therefore, using (4-3), one has, for j < i and j�j \�i j D d � 1,

(4-4) eT n.�
ij /D

8̂̂<̂
:̂
1�˛��j ˛

��dij

��i
in K0T n.fptgIZ/;

eT n.˛��j ˛
��dij

��i
/ in MU2T n.fptgIZ/;

Y��j � �dijY��i in H 2
T n.fptgIZ/;

where Y� WD
Pd
iD1 y�i and ˛� D ˛�1 � � �˛�d for a Schubert symbol �D .�1; : : : ; �d /.

We remark that the structure of MU�T n.fptg/ is unknown; however, it is referred to in [15] as the ring of
T n–cobordism forms.

Example 4.9 Consider the weighted Grassmann orbifold WGr.2; 4/ for W D .12; 2; 2; 2/ and a D 6.
We have the ordering on the six Schubert symbols given by

�0 D .1; 2/ < �1 D .1; 3/ < �2 D .1; 4/ < �3 D .2; 3/ < �4 D .2; 4/ < �5 D .3; 4/:

Then c0 D 20; c1 D 20; c2 D 20; c3 D 10; c4 D 10; c5 D 10 from (2-5). Here ci divides ci�1 for all
i D 1; 2; 3; 4; 5. Thus, WGr.2; 4/ is divisive for the identity permutation in S4. Then dij D cj =ci in
Remark 4.8 gives

dij D

�
1 if j < i and both i; j 2 f0; 1; 2g or f3; 4; 5g;
2 if j 2 f0; 1; 2g and i 2 f3; 4; 5g:

Then one can calculate the equivariant Euler class eT n.� ij / from (4-4). The generalized integral equivariant
cohomology ring E�T n.WGr.2; 4/IZ/ of this divisive weighted Grassmann orbifold WGr.2; 4/ can be
described by Theorem 4.7.
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The fixed points of the T n–action on WGr.d; n/ are V WD fŒC.�i /�gmiD0. Two fixed points ŒC.�i /� and
ŒC.�j /� are connected by a T n–invariant WP.ci ; cj /�WGr.d; n/ if and only if �j D .k; k0/�i for some
.k; k0/, where .k; k0/�i is described in Definition 3.17. In that case it is said that there is an edge eij
between ŒC.�i /� and ŒC.�j /�. Let E WD feij j �j D .k; k0/�i for some .k; k0/g. Then � D .V;E/ is
a d.n� d/ valent graph with .mC 1/–vertices. Consider the connection � on � defined similarly as
the GKM–graph of the Grassmann manifold in [12, Theorem 1.11.4, equation (1.34)]. Note that the
T n–action on WP.ci ; cj / is given by .t1; : : : ; tn/Œzi W zj �D Œt�i zi W t�j zj �. This action induces a map

˛ WE!H�.BT nIQ/DQŒy1; : : : ; yn�

defined by ˛.e/ WD .ciY�j �cjY�i /=ci if e is the oriented edge from ŒC.�i /� to ŒC.�j /� with j�j \�i j D
d � 1. Note that if xe is the edge with the opposite orientation on e then ˛.xe/D .cjY�i � ciY�j /=cj . Let
re D ci and rxe D cj . Then

(4-5) re˛.e/D�rxe˛.xe/ 2H
2.BT nIZ/:

Let e and e0 be two edges with the same initial vertex. Let e0 be the oriented edge from ŒC.�i /� to ŒC.�l/�.
Then we have

cj cl
�
˛.�e.e

0//�˛.e0/
�
D 0 mod re˛.e/:

The map ˛ is called the axial function on � . Therefore, .�; ˛; �/ satisfies the definition of orbifold
GKM–graph [8, Definition 2.2]. Hence, .�; ˛; �/ is the orbifold GKM–graph for the weighted Grassmann
orbifold.

The following result gives equivariant cohomology ring of some nondivisive weighted Grassmann orbifolds
with integer coefficients.

Theorem 4.10 Suppose that WGr.d; n/ is a weighted Grassmann orbifold corresponding to the order
�0 < � � �< �m such that r D gcdfc0; c1g and ci jck for k � i with i � 2. Then the integral equivariant
cohomology ring of WGr.d; n/ is given by

H�T n.WGr.d; n/IZ/

D

�
.fi / 2

mM
iD0

ZŒy1; y2; : : : ; yn�
ˇ̌̌
.Y�j � dijY�i / divides .fi �fj / if j < i; j�j \�i j D d � 1;

.i; j /¤ .0; 1/ and c1Y�0 � c0Y�1 divides r.f1�f0/
�
:

Proof By the given condition gcdfc0; c1; : : : ; cig D ci for i � 2. So, by Lemma 3.3, E.�i /=G.ci /
is homeomorphic to E.�i /=G.ci=ci / Š C`.�i / for i D 1; : : : ; m. When i D 1, we have that X1 is
equivariantly homeomorphic to WP.c0; c1/. Therefore, WGr.d; n/ has a T n–invariant CW complex
structure. For the edge e D e01, the minimum of re that satisfies (4-5) is r . Thus, by [8, Definition 2.3
and Theorem 2.9], we get the result.
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Next, we discuss the equivariant cohomology ring of the weighted projective space WP.b0; b1 : : : ; bm/,
where .b0; b1 : : : ; bm/ 2 .Z�1/mC1, for several torus actions. By Remark 2.3, WP.b0; b1 : : : ; bm/ D

WGr.1;mC 1/, where the latter is associated to the weight vector W D .b0� 1; : : : ; bm� 1/ and aD 1.
The Schubert symbols for 1 < mC 1 are f1g; : : : ; fmg and fmC 1g. Assume that WGr.1;mC 1/ is
divisive corresponding to this order, ie bi divides bi�1 for i D 1; 2; : : : ; m. Then

E.i C 1/Š fŒ.u0; u1; : : : ; ui�1; 1; 0; : : : ; 0/� 2WP.b0; b1 : : : ; bm/g ŠCi for i D 0; 1; : : : ; m:

Let .n; d/ be such that d < n and
�
n
d

�
DmC 1. Then (2-8) gives a T n–action on WP.b0; b1 : : : ; bm/.

Recall t�i from (2-8) for the Schubert symbols �0; �1; : : : ; �m corresponding to d < n. We have

.t1; t2; : : : ; tn/Œ.u0; u1; : : : ; ui�1; 1; 0; : : : ; 0/�

D Œ.t�0u0; t�1u1; : : : ; t�i�1ui�1; t�i ; 0; : : : ; 0/�

D Œ..t�i /
�b0=bi t�0u0; .t�i /

�b1=bi t�1u1; : : : ; .t�i /
�bi�1=bi t�i�1ui�1; 1; 0; : : : ; 0/�:

Then E.i C 1/ is T n–invariant as well as TmC1–invariant. Let

Xi WD Œ.u0; u1; : : : ; ui ; 0; : : : ; 0/� 2WP.b0; b1 : : : ; bm/g:

Then Xi gives a filtration

(4-6) fptg DX0 �X1 � � � � �Xm DWP.b0; b1; : : : ; bm/:

Note that the filtration in (4-6) satisfies Proposition 4.5 and Remark 4.6. Thus in this case

� i WE.i C 1/! ŒeiC1�Š

iM
jD0

.� ij WCij ! ŒeiC1�/

for some irreducible representation Cij . Using the proof of [15, Theorem 2.3] one can get the following
result.

Theorem 4.11 If WP.b0; : : : ; bm/ is divisive , then the generalized T n–equivariant cohomology

E�T n.WP.b0; : : : ; bm/IZ/

for E�T n DH
�
T n ; K

�
T n and MU�T n can be given by�
.fi / 2

mM
iD0

E�T n.fptgIZ/
ˇ̌̌
eT n.�

ij / divides fi �fj for all j < i
�
:

We note that there are several pairs .n; d/ such that d < n and
�
n
d

�
DmC 1 > 2. Now we discuss how

to calculate the equivariant Euler class eT n.� ij / in Theorem 4.11. The corresponding one-dimensional
representation on the bundle � ij for j < i is determined by the character

.t1; : : : ; tn/! .t�i /
�bj =bi t�j :

Thus, similar to (4-4), one can calculate the equivariant Euler class eT n.� ij / of the bundle � ij for j < i .
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Example 4.12 For m D 2, we have
�
3
1

�
D
�
3
2

�
D 3. Thus, corresponding to two different pairs .3; 1/

and .3; 2/, we have two different T 3 actions on WP.b0; b1; b2/. The map f W T 3 ! T 3 defined by
.t1; t2; t3/! .t1t2; t1t3; t2t3/ is not an automorphism. So these actions are not equivalent. However, using
Theorem 4.11, one can calculate the equivariant cohomology of WP.b0; b1; b2/ for both the actions if bi
divides bi�1 for i D 1; 2.

5 Equivariant Schubert calculus for divisive weighted Grassmann orbifolds

In this section, we show that there exist equivariant Schubert classes which form a basis for the equivariant
cohomology ring of a divisive weighted Grassmann orbifold with integer coefficients. We show some
properties of the weighted structure constants. Moreover, we discuss some relations that help to compute
the weighted structure constants corresponding to this equivariant Schubert basis with integer coefficients.

For x 2H�T n.WGr.d; n/IZ/, the support of x, denoted by supp.x/, is the set of all Schubert symbols �i

such that xj�i ¤ 0. Recall the partial order � on the Schubert symbols defined in (2-3). We follow this
partial order � and we say that an element x 2H�T n.WGr.d; n/IZ/ is supported above by �i if �i � �k

for all �k 2 supp.x/.

Let WGr.d; n/ be a divisive weighted Grassmann orbifold. Then there exists � 2 Sn such that

(5-1) �ci divides �ci�1 for i D 1; 2; : : : ; m:

Using Theorem 3.5, it is sufficient to consider � D Id, the identity permutation on Sn. For � D Id,
(5-1) transforms to

ci divides ci�1 for i D 1; 2; : : : ; m:

Recall the definition of R.�i / from (4-2). We introduce the following definition.

Definition 5.1 An element x 2H�T n.WGr.d; n/IZ/ is said to be an equivariant Schubert class corre-
sponding to a Schubert symbol �i if the following conditions are satisfied:

(1) xj�k ¤ 0 implies �i � �k . (We say that x is supported above �i .)

(2) xj�i D
Q
�j2R.�i /.Y�j � .cj =ci /Y�i /.

(3) xj�k is a homogeneous polynomial in y1; y2; : : : ; yn of degree `.�i /.

Proposition 5.2 (uniqueness) For each Schubert symbol �i , there is at most one equivariant Schubert
class x corresponding to �i .

Proof Suppose that there were two distinct equivariant Schubert classes x and x0 corresponding to �i .
Let �j be the minimal Schubert symbol such that .x� x0/j�j ¤ 0. By Definition 5.1(1)–(2), we get
�i � �j . Then from the condition in the expression of the equivariant cohomology ring in Theorem 4.7,
we get that .x� x0/j�j is a multiple of

Q
�k2R.�j /.Y�k � .ck=cj /Y�j /, which is of degree `.�j /. This

contradicts the fact that x� x0 is homogeneous of degree `.�i / < `.�j /.
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Let us denote the equivariant Schubert class corresponding to the Schubert symbol �i by w zS�i for
iD0; 1; : : : ; m. We remark that the existence ofw zS�i follows from [14, Proposition 4.3] and Theorem 4.7.
Geometrically, w zS�i is the equivariant cohomology class corresponding to the closure of the cell
�rE.�r�

i /, where �r 2 Sn is the permutation defined by

�r WD

�
1 2 3 � � � n� 1 n

n n� 1 n� 2 � � � 2 1

�
:

Using the arguments in the proof of [20, Proposition 1], one gets the following.

Proposition 5.3 The equivariant Schubert classes fw zS�i g
m
iD0 form a basis for H�T n.WGr.d; n/IZ/ as

a module over H�T n.fptgIZ/. Moreover , any x 2 H�T n.WGr.d; n/IZ/ can be written uniquely as an
H�T n.fptgIZ/–linear combination of w zS�i using only those �i such that �j � �i for some �j 2 supp.x/.

Proof To check that the set fw zS�i g
m
iD0 is linearly independent, let

Pm
iD0 aiw

zS�i D 0 for coefficients
ai 2H

�
T n.fptgIZ/ that are not identically zero. Let

k Dminfi 2 f0; 1; : : : ; mg j ai ¤ 0g:

We also have that w zS�i j�k D 0 for i > k. Thus the restriction
�Pm

iD0 aiw
zS�i
�
j�k D akw

zS�k j�k ¤ 0,
which is a contradiction.

Now, to prove that fw zS�i g spans, consider an element x 2H�T n.WGr.d; n/IZ/. Let

j WDminfi 2 f0; 1; : : : ; mg j �i 2 supp.x/g:

Then xj�j D ǰw zS�j j�j using Theorem 4.7 and (4-4) for some ǰ 2ZŒy1; : : : ; yn�. Subtracting ǰw zS�j ,
we can inductively reduce support of x upwards until it is empty. This uses only those �i such that
�j � �i for some �j 2 supp.x/.

Example 5.4 In Figure 1, we compute the equivariant Schubert class w zS.2;3/ 2H�T 4.WGr.2; 4/IZ/,
where WGr.2; 4/ is a divisive weighted Grassmann orbifold for some W D .˛C ˇ; ˛; ˛; ˛/ 2 .Z�0/4

and aD ˇ� 2˛ 2 Z>0. Figure 1, left, is the lattice of the Schubert symbols for 2 < 4. Figure 1, right,
gives the equivariant Schubert class corresponding to the Schubert symbol .2; 3/.

In the rest of this section, we compute the weighted structure constants for the equivariant cohomology
of a divisive weighted Grassmann orbifold. Since the set fw zS�i g

m
iD0 form a H�T n.fptgIZ/–basis for

H�T n.WGr.d; n/IZ/, for any two �i and �j , one has that

(5-2) w zS�i w
zS�j D

X
�k

wckij w
zS�k ;

where �k 2 f�0; �1; : : : ; �mg. The constant wckij 2 H
�
T n.fptgIZ/ in the formula is called a weighted

structure constant.
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.1; 3/

.1; 2/

.1; 4/ .2; 3/

.2; 4/

.3; 4/

0

0

0 .Y.1;3/� . C 1/Y.2;3//.Y.1;2/� . C 1/Y.2;3//

.Y.1;4/� . C 1/Y.2;4//.Y.1;2/� . C 1/Y.2;4//

.Y.1;4/� . C 1/Y.3;4//.Y.1;3/� . C 1/Y.3;4//

Figure 1

Lemma 5.5 The weighted structure constants wckij have the following properties.

(1) The weighted structure constant wckij has degree `.�i /C `.�j /� `.�k/.

(2) The constant wckij is 0 unless `.�k/� `.�i /C `.�j / and �k � �i ; �j .

(3) When i D k, we have wciij D w zS�j j�i .

Proof (1) The degree of w zS�i is `.�i /. So the degree of the weighted structure constant wckij is
given by

deg.wckij /D deg.w zS�i /C deg.w zS�j /� deg.w zS�k /D `.�
i /C `.�j /� `.�k/:

(2) The weighted structure constant wckij D 0 if `.�i /C `.�j /� `.�k/ < 0. Also,

.w zS�i w
zS�j /j�s ¤ 0 D) �s � �i ; �j :

Thus, by Proposition 5.3, wckij ¤ 0 implies �k � �i ; �j .

(3) Comparing the .�i /th component of the both sides in (5-2), we get

w zS�i j�i w
zS�j j�i D wc

i
ij w
zS�i j�i C

X
k¤i

wckij w
zS�k j�i :

We have that wckij D 0 unless �k � �i , but w zS�k j�i D 0 for �k � �i , and �k ¤ �i . Thus all the terms in
the summation vanish. So the claim follows, since w zS�i j�i ¤ 0.

Now we introduce the equivariant Schubert divisor class. Note that `.�i /D 0 if and only if i D 0, and
`.�i /D 1 if and only if i D 1. The equivariant Schubert class corresponding to the Schubert symbol �1

is called the equivariant Schubert divisor class.

Lemma 5.6 The equivariant Schubert divisor class w zS�1 2H
�
T n.WGr.d; n/IZ/ is given by

w zS�1 j�i D Y�0 �
c0

ci
Y�i :
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Proof Consider an element x 2
Lm
iD0H

�
T n.fptgIZ/ defined by xj�i D Y�0 � .c0=ci /Y�i . Let �i and �j

be two Schubert symbols such that �j � �i . Then

xj�i � xj�j D
c0

cj

�
Y�j �

cj

ci
Y�i

�
:

Thus x 2H�T n.WGr.d; n/IZ/ from Theorem 4.7 and (4-4). Note that xj�0 D 0. If xj�k ¤ 0 then �1 � �k .
Now R.�1/D f�0g and

xj�1 D Y�0 �
c0

c1
Y�1 D

Y
�j2R.�1/

�
Y�j �

cj

c1
Y�1

�
:

Also, xj�k is a homogeneous polynomial of degree 1 D `.�1/. Thus x satisfies all the conditions of
Definition 5.1 for i D 1. Therefore, by the uniqueness of the equivariant Schubert classes, we have
xD w zS�1 .

For any two Schubert symbols �i and �j , we write �i ! �j if `.�i /D `.�j /C 1 and �j � �i .

Proposition 5.7 (weighted Pieri rule) w zS�1 w zS�j D .w
zS�1 j�j / w

zS�j C
X

�i!�j

c0

cj
w zS�i .

Proof Using the fact that deg.w zS�1/D 1, we have

w zS�1 w zS�j D .wc
j
1j / w

zS�j C
X

�i!�j

.wci1j / w
zS�i :

From Lemma 5.5, we get wcj1j Dw zS�1 j�j . Fix �i such that �i ! �j and compare the .�i /th component
of both sides; we get

w zS�1 j�iw
zS�j j�i D .wc

j
1j /w

zS�j j�i C .wc
i
1j /w

zS�i j�i

D) .wci1j /w
zS�i j�i D .w

zS�1 j�i �w
zS�1 j�j /w

zS�j j�i

D) .wci1j /w
zS�i j�i D

c0

cj

�
Y�j �

cj

ci
Y�i

�
w zS�j j�i :

Thus wci1j D c0=cj if �i ! �j .

By applying Proposition 5.7 repeatedly, we can compute the following product, as well as the higher
products:

.w zS�1/
2w zS�j D w

zS�1..w zS�1 j�j /w
zS�j C

X
�i!�j

c0

cj
w zS�i /

D .w zS�1 j�j /
2w zS�j C

X
�i!�j

.w zS�1 j�j /
c0

cj
w zS�i C

X
�i!�j

c0

cj
.w zS�1 j�i /w

zS�i

C

X
�k!�i!�j

c0

cj

c0

ci
w zS�k :
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Proposition 5.8 For any three Schubert symbols �i ; �j and �k , we have the recurrence relation

.w zS�1 j�k �w
zS�1 j�i /wc

k
ij D

X
�s!�i

c0

ci
wcksj �

X
�k!�t

c0

ct
wctij :

Proof We use the associativity of the multiplication in H�T n.WGr.d; n/IZ/ and weighted Pieri rule to
expand w zS�1w zS�iw zS�j in two different ways:

.w zS�1w zS�i /w
zS�j D ..w

zS�1 j�i /w
zS�i C

X
�s!�i

c0

ci
w zS�s /w zS�j ;(5-3)

D .w zS�1 j�i /
X
�l

wclijw
zS�l C

X
�s!�i

c0

ci

X
�l

wclsjw
zS�l ;

w zS�1.w zS�iw
zS�j /D w

zS�1
X
�l

wclijw
zS�l D

X
�l

wclij

�
.w zS�1 j�l /w

zS�l C
X
�r!�l

c0

cl
w zS�r

�
:(5-4)

Comparing the coefficient of w zS�k in (5-3) and (5-4) we get

.w zS�1 j�i /wc
k
ij C

X
�s!�i

c0

ci
wcksj D wc

k
ij .w
zS�1 j�k /C

X
�k!�t

c0

ct
wctij :
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Projective modules and the homotopy classification of .G; n/–complexes

JOHN NICHOLSON

A .G; n/–complex is an n–dimensional CW–complex with fundamental group G and whose universal
cover is .n�1/–connected. If G has periodic cohomology then, for appropriate n, we show that there is a
one-to-one correspondence between the homotopy types of finite .G; n/–complexes and the orbits of the
stable class of a certain projective ZG–module under the action of Aut.G/. We develop techniques to
compute this action explicitly and use this to give an example where the action is nontrivial.

55P15; 20C05, 55U15, 57K20

1 Introduction

For a group G and n � 2, a .G; n/–complex is a connected n–dimensional CW–complex X for which
�1.X /Š G and zX is .n�1/–connected. Equivalently, it is the n–skeleton of a K.G; 1/. For example,
a finite .G; 2/–complex is equivalently a finite 2–complex X with �1.X /ŠG. An example of a finite
.G; 3/–complex is a closed 3–manifold M with �1.M /ŠG finite. Given a group G and n� 2, a finite
.G; n/–complex exists if and only if G has type Fn in the sense of Wall [1965].

Let HT.G; n/ be the set of homotopy types of finite .G; n/–complexes, which can be viewed as a graph
with edges between each X and X _ Sn. It is well known that HT.G; n/ is a tree [Whitehead 1939],
i.e. a connected acyclic graph, and has a grading coming from .�1/n�.X / which takes a minimum value
�min.G; n/. The problem of determining the structure of HT.G; n/ as a tree has a long history which
dates back to Cockcroft and Swan [1961] and Dyer and Sieradski [1973; 1975].

In the case of finite abelian groups, the structure of HT.G; n/ has been classified through a series of articles
by Metzler [1976], Sieradski and Dyer [1979], Browning [1979] and Linnell [1993]. However, much
less is known for nonabelian groups and an important class of examples are the groups with k–periodic
cohomology, i.e. finite groups for which the Tate cohomology groups satisfy yH i.GIZ/Š yH iCk.GIZ/

for all i 2 Z. For example, if G is finite and n is even, then it was shown by Browning [1978] that
�.X /D �.Y / implies X _Sn ' Y _Sn (see also [Hambleton and Kreck 1993]). However, when n is
odd, this is known only when G does not have k–periodic cohomology for k j nC 1 (see Question 7.4).

The aim of this article is to make new progress towards the classification over groups with periodic
cohomology, building upon work of Dyer [1976] and Johnson [2003].

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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1.1 Main results

Let PHT.G; n/ be the tree of polarised homotopy types of finite .G; n/–complexes, i.e. the homotopy
types of pairs .X; �/ where � W �1.X /ŠG.

Let G be a finite group and let C.ZG/ denote the projective class group, i.e. the equivalence classes
of finitely generated projective ZG–modules where P � Q if P ˚ZGi Š Q˚ZGj for some i and
j . Note that a class ŒP � 2 C.ZG/ can be viewed as the set of (nonzero) projective ZG–modules P0 for
which P0 �P , and this has the structure of a graded tree with edges between each P0 and P0˚ZG. Let
TG � C.ZG/ denote the Swan subgroup (see Section 3.2). If G has k–periodic cohomology, then the
Swan finiteness obstruction is an element �k.G/ 2 C.ZG/=TG which vanishes if and only if there exists
a finite CW–complex X with �1.X /ŠG and zX ' Sk�1.

Recall that a finitely presented group G has the D2 property if every cohomologically 2–dimensional
finite complex X with �1.X /ŠG is homotopy equivalent to a finite 2–complex.

Theorem A Let G have k–periodic cohomology and let nD ik or ik � 2 for some i � 1. Then there is
an injective map of graded trees

‰ W PHT.G; n/! ŒP.G;n/�

for any projective ZG–module P.G;n/ with �ik.G/D ŒP.G;n/�2C.ZG/=TG . Furthermore ,‰ is bijective
if and only if n� 3 or if nD 2 and G has the D2 property.

Remark 1.1 (a) If G satisfies the Eichler condition, then ŒP.G;n/� has cancellation in the sense that
P1˚ZG Š P2˚ZG implies P1 Š P2 for all P1, P2 2 ŒP.G;n/� (see [Jacobinski 1968]). This
implies that PHT.G; n/ and HT.G; n/ have cancellation in the sense that X _Sn' Y _Sn implies
X ' Y , and recovers the main result of Dyer [1976].

(b) An equivalent statement appeared in [Johnson 2003] in the case nD 2, though the proof contained
a small gap which was patched up in [Nicholson 2021b] using a theorem of Browning [1978].

Our proof is based on the work of Hambleton and Kreck [1993] and is independent of [Browning 1978;
Johnson 2003]. After establishing preliminaries in Sections 2 and 3, we will prove general cancellation
theorems for chain complexes of projective modules in Section 4. This suffices to prove Theorem A due
to the correspondence between PHT.G; n/ and the tree of algebraic n–complexes (see Proposition 5.1).
In Theorem 5.3, we give a detailed version of Theorem A which contains an explicit description of the
map ‰.

We then use of this description of‰ to determine the induced action of Aut.G/ on ŒP.G;n/� via the bijection
HT.G; n/Š PHT.G; n/=Aut.G/. To state the induced action, consider the following two operations for
M a (left) projective ZG–module:

(1) If � 2 Aut.G/, then let M� be the ZG–module whose abelian group is that of M but with action
g �x D �.g/x for g 2G and x 2M (see Lemma 6.1).
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(2) If r represents a class in .Z=jGj/� and I �ZG is the augmentation ideal, then .I; r/ is a projective
ZG–module. The tensor product .I; r/˝M is a projective ZG–module since .I; r/ is a two-sided
ideal (see Lemma 4.15).

In Section 6, we will prove the following which is the main result of this article. Note that every projective
ZG–module has the form P ˚ZGr where P has rank one and r � 0 (see Section 3.1).

Theorem B Let G have k–periodic cohomology and let n D ik or ik � 2 for some i � 1. Then ‰
induces an injective map of graded trees

‰ W HT.G; n/! ŒP.G;n/�=Aut.G/;

where the action by � 2 Aut.G/ is given by

� W P ˚ZGr
7! ..I;  k.�/

i/˝P� /˚ZGr ;

where P has rank one , for some map  k W Aut.G/ ! .Z=jGj/� which depends only on G and k.
Furthermore , ‰ is bijective if and only if n� 3 or if nD 2 and G has the D2 property.

This reduces the problem of determining when cancellation occurs in the homotopy trees to the purely
algebraic problem of determining cancellation for ŒP � and ŒP �=Aut.G/ which will be dealt with in
[Nicholson 2020].

1.2 Computing the action of Aut.G /

After proving Theorems A and B, the remainder of this article will be devoted to exploring the action of
Aut.G/ on ŒP.G;n/�. This includes establishing some general theory in preparation for the more detailed
computations in [Nicholson 2020].

First, and perhaps somewhat surprisingly, we could find no example where the Aut.G/–action described
in Theorem B does not take the form of the simpler action P 7! P� . In all examples computed, we had
.I;  k.�//Š ZG which implies that .I;  k.�/

i/Š ZG. If P ˚ZGr 2 ŒP.G;n/� where P has rank one,
then this implies that �.P /Š P� ˚ZGr Š .P ˚ZGr /� . In particular, �.P /Š P� for all P 2 ŒP.G;n/�.
We therefore ask the following:

Question 7.3 Does there exist G with k–periodic cohomology and � 2 Aut.G/ for which .I;  k.�// is
not free?

There are two approaches to finding examples where .I;  k.�// is not free. The first is to find an example
where .I;  k.�// is not even stably free. It was shown by Dyer [1976, page 276] and Davis [1983] that
.I;  k.�// is stably free when �k.G/D 0. Davis [1983, page 488] asked whether this also holds when
�k.G/¤ 0. The second approach is to find an example where .I;  k.�// is stably free but not free. This
is likely to be difficult since the general question of whether .I; r/ can be stably free but not free is still
open and dates back to Wall’s problems list [1979b, Problem A4].
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In Section 8, we develop a general method to compute the action P 7!P� . We will then use this to give the
following example where the action is nontrivial. Let Q4n denote the quaternion group of order 4n, which
has 4–periodic cohomology. Since �4.Q4n/D 0, we can take ŒP.Q4n;2/�D ŒZQ4n�D

S
r�1 SFr .ZQ4n/

where SFr .ZQ4n/ is the set of stably free ZQ4n–modules of rank r � 1. As above, let � 2 Aut.Q4n/

act on ŒZQ4n� by � W P 7! .I;  4.�/
i/˝P� for some i � 1. We show:

Theorem C Aut.Q24/ acts nontrivially on ŒZQ24�. More specifically, we have jSF1.ZQ24/j D 3 and
jSF1.ZQ24/=Aut.Q24/j D 2.

This is in contrast to the case Q4n for 2 � n � 5, where jSF1.ZQ4n/j D 1, and the case Q28, where
jSF1.ZQ28/j D jSF1.ZQ28/=Aut.Q28/j D 2 (see Table 1).

1.3 Overview of the wider project

This article is the first of a two-part series (followed by [Nicholson 2020]) in which we explore the
classification of finite .G; n/–complexes over groups with periodic cohomology. These results are
motivated by the following.

Wall’s D2 problem for groups with 4–periodic cohomology In the language above, the D2 problem
asks whether every finitely presented group G has the D2 property. This dates back to Wall’s paper
on finiteness conditions [1965] and is currently open. The case where G has 4–periodic cohomology
was proposed to contain a counterexample to the D2 problem [Cohen 1977], and has since been studied
extensively. In this case, Johnson [2003] proved Theorem A when n D 2 and, using results of Swan
[1983], he established the D2 property for many new groups. In [Nicholson 2021a; 2021b], we extended
these results and determined when PHT.G; 2/ has cancellation.

In the case where PHT.G; 2/ has noncancellation, the D2 property has only been proven for Q28 (see
[Mannan and Popiel 2021; Nicholson 2021b]). This motivated Theorem B in the case nD 2 since one
imagines it might be easier to prove that ‰ is bijective rather than ‰. The question of when HT.G; 2/
has cancellation is answered in [Nicholson 2020, Theorem A].

Stable and unstable classification of manifolds If X is a finite .G; n/–complex, then there exists an
embedding i W X ,! R2nC1. The boundary of a smooth regular neighbourhood of i gives a smooth
closed 2n–manifold M.X /. If X is determined up to simple homotopy, then M.X / is well defined up to
s–cobordism which coincides with homeomorphism in the case where G is finite by work of Freedman.
Furthermore, M.X _Sn/ŠM.X / # .Sn �Sn/. This can be found in [Bokor et al. 2021, Section 5].

Kreck and Schafer [1984] used this to construct smooth closed 4n–manifolds M1 and M2 for every n� 1

such that M1 # .S2n � S2n/ ŠM2 # .S2n � S2n/ are diffeomorphic but M1 6'M2. Their examples
have the form M.Xi/ where the Xi 2 HT.G; n/ are the noncancellation examples for G abelian found
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by Metzler, Sieradski and Dyer [Metzler 1976; Sieradski 1977; Sieradski and Dyer 1979]. Recently,
Conway, Crowley, Powell and Sixt constructed examples of both simply connected Mi [Conway et al.
2023] and infinitely many Mi [Conway et al. 2021] for all n � 2. However, the examples of Kreck
and Schafer remain the only known examples in dimension 4. In classifying HT.G; n/ when G has
periodic cohomology, we hope to create a second family of examples both in dimension 4 and in higher
dimensions.

Conventions

All rings R will be assumed to have a multiplicative identity and all R–modules will be assumed to be
finitely generated left R–modules.

Recall that groups with periodic cohomology are necessarily finite. For most of this article, we will
therefore restrict to the case where G is a finite group. However, we will briefly consider finitely presented
groups more generally at the start of Sections 5 and 6.
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2 Extensions of modules

Let R be a ring. Recall our convention that all R–modules are assumed to be finitely generated left
R–modules. For R–modules A and B, define ExtnR.A;B/ to be the set of exact sequences

E D .0! B i
�!En�1

@n�1
��!En�2

@n�2
��! � � �

@2
�!E1

@1
�!E0

"
�!A! 0/

for R–modules Ei considered up to congruence, i.e. the equivalence relation generated by elementary
congruences which are chain maps of the form

E

E0

' D

0B@ 0 B En�1 � � � E0 A 0

0 B E0
n�1

� � � E0
0

A 0

id 'n�1 '0 id

1CA
That is, two extensions E and E0 are congruent if there exists extensions E.i/ for 0 � i � n such
that E D E.0/, E0 D E.n/ and, for i � n � 1, there exists an elementary congruence of the form
' WE.i/!E.iC1/ or ' WE.iC1/!E.i/.
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We write extensions in ExtnR.A;B/ as E D .E�; @�/ where the maps i W B!En�1 and " WE0!A are
understood. We will often write @i D @

E
i , i D iE and "D "E when the need arises to distinguish different

extensions.

This is an abelian group under Baer sum, and coincides with the usual definition of ExtnR.A;B/ [Weibel
1994, Section 3.4]. We will assume familiarity with the basic operations on extensions such as pullback,
pushout and the Yoneda product [Johnson 2003, Section 24].

Worth emphasising however is the operation of stabilisation. If E D .E�; @�/ 2 ExtnR.A;B/, then define
the stabilised complex E˚R 2 ExtnR.A;B˚R/ by

E˚RD .0! B˚R
�

�
i
0

0
1

�
���!En�1˚R

�

�
@n�1

0

�
����!En�2! � � � !E0!A! 0/:

This gives a well-defined map of abelian groups

�˚R W ExtnR.A;B/! ExtnR.A;B˚R/:

Let ProjnR.A;B/ denote the subset of ExtnR.A;B/ consisting of extensions .P�; @�/ with the Pi projective.
This is closed under Baer sum, and so is a subgroup, and is also preserved by pullbacks, pushouts, the
Yoneda product and stabilisation. The following is a consequence of the cocycle description of Ext [Wall
1979a, Lemma 1.1].

Lemma 2.1 (shifting) If A, B, C and D are R–modules , E 2 ProjkR.B;C / and k; n;m� 1, then the
Yoneda product induces bijections

�ıE W ExtnR.C;D/! ExtnCk
R

.B;D/; E ı�W ExtmR.A;B/! ExtmCk
R

.A;C /:

This can be viewed as a sort of cancellation theorem for extensions up to congruence in the sense that
F ıE Š F 0 ıE or E ıF ŠE ıF 0 implies that F Š F 0.

A simple consequence of this is the following lemma. This can be interpreted as a kind of duality theorem
for projective extensions.

Lemma 2.2 (duality) If A, B and C are R–modules , F 2 ProjkR.A;C / and k > n� 1, then there are
bijections

‰F W ProjnR.A;B/! Projk�n
R .B;C /; E 7! .�ıE/�1.F /;

‰�1
F W Projk�n

R .B;C /! ProjnR.A;B/; E0 7! .E0 ı�/�1.F /:

We now turn our attention to an equivalence relation on ExtnR.A;B/ which is weaker than congruence. For
R–modules A and B, and E;E0 2 ExtnR.A;B/, a chain map ' WE!E0 is said to be a chain homotopy
equivalence if the restriction to the unaugmented chain complexes ' W .E�; @�/0��<n! .E0�; @

0
�/0��<n

is a chain homotopy equivalence.
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If E;E0 2 ProjnR.A;B/ then, since a chain map between projective chain complexes is a chain homotopy
equivalence if and only if it is a homology equivalence [Johnson 2003, Theorem 46.6], a chain homotopy
equivalence ' WE!E0 can equivalently be defined as a chain map of the form

E

E0

' D

0B@ 0 B Pn�1 � � � P0 A 0

0 B P 0
n�1

� � � P 0
0

A 0

'B 'n�1 '0 'A

1CA
where 'A and 'B are R–module isomorphisms. When convenient, we will often abbreviate this to
' D .'B; 'n�1; : : : ; '0; 'A/. It follows easily that a congruence is a chain homotopy equivalence. We
define hProjnR.A;B/ to be set of equivalence classes in ProjnR.A;B/ up to chain homotopy equivalences,
which is an abelian group under Baer sum.

For special choices of modules, the shifting lemma and the duality lemma also hold for chain homotopy
equivalences. We define Z to be the R–module with underlying abelian group Z and trivial R–action,
i.e. r � nD n for all r 2R and n 2 Z.

Lemma 2.3 (shifting) If A and B are R–modules , F 2 ProjkR.Z;Z/ and n;m; k � 1, then the Yoneda
product induces bijections

�ıF W hProjnR.Z;A/! hProjnCk
R

.Z;A/; F ı�W hProjmR.B;Z/! hProjmCk
R

.B;Z/:

Proof First note that �ıF induces maps on the chain homotopy classes by extending the map to ˙ id
on F . This is necessarily surjective. To see that it is injective, suppose that there is a chain homotopy
equivalence ' WE1 ıF !E2 ıF . By considering �' if necessary, we can assume that 'Z D id, so

E2 ıF Š .'A/�.E1 ıF /D .'A/�.E1/ ıF:

By Lemma 2.1, this implies that E2 Š .'A/�.E1/ and so E1 'E2 as required.

The proof of the duality lemma in this setting is similar and so will be omitted.

Lemma 2.4 (duality) If A is an R–module , F 2 ProjkR.Z;Z/ and k > n� 1, then there are bijections

‰F W hProjnR.Z;A/! hProjk�n
R .A;Z/; E 7! .�ıE/�1.F /;

‰�1
F W hProjk�n

R .A;Z/! hProjnR.Z;A/; E0 7! .E0 ı�/�1.F /:

We now specialise to the case where the underlying abelian group of R is finitely generated and torsion-
free, and where R is a ring with involution, i.e. a ring with an antiautomorphism r 7! Nr such that NNr D r

for all r 2R. For example, for a finite group G, the group ring ZG has underlying abelian group ZjGj

and involution
Pn

iD1 nigi 7!
Pn

iD1 nig
�1
i where ni 2 Z and gi 2 G. Using this involution, any right

R–module A can be viewed as a left R–module under the action r �x D x � Nr for r 2R and x 2A. If A

is a left R–module, then A� D HomR.A;R/ is a right R–module under the action .' � r/.x/D '.x/r
for ' 2A� and r 2R. We will view A� as a left R–module using the involution on R.
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Note that . � /� can be viewed as a functor of R–modules: if f WA1!A2 is a map of R–modules, we
can define f � WA�

2
!A�

1
by ' 7! ' ıf . For E D .P�; @�/ 2 ProjnR.A;B/, define the dual extension by

E� D .0!A� "�
�! P�0

@�
1
�! P�1

@�
2
�! � � �

@�
n�2
��! P�n�2

@�
n�1
��! P�n�1

i�
�! B�! 0/:

The dual of a projective module is projective since P ˚QŠRn implies that P�˚Q� Š .Rn/� ŠRn.
In particular, the P�i are projective R–modules.

Whilst E� is not exact in general, it is true under mild assumptions on the modules involved. We say that
an R–module A is an R–lattice if its underlying abelian group is finitely generated and torsion-free. For
example, if P is a (finitely generated) projective R–module, then P is an R–lattice. This follows from
the fact that P �Rn is an R–submodule for some n and so its underlying abelian group is a subgroup of
Zm where mD n � rankZ.R/.

Recall that the evaluation map is the map eA W A! A��, defined by x 7! .f 7! f .x//. We say an
R–module is reflexive if eA is an R–module isomorphism.

Lemma 2.5 If A is an R–lattice , then A is reflexive.

Remark 2.6 Since projective R–modules are R–lattices, this implies that they are reflexive. We note
that this is true for arbitrary rings R, not just rings with involution whose underlying abelian group is
finitely generated and torsion free.

This follows by noting that, if A ŠAb Zk , then the R–module structure is determined by a map
�A WR!Mk.Z/. It can be shown that �A�.r/D �A. Nr/

T using the induced identification A� ŠAb Zk ,
from which the claim follows.

It follows easily from this that the reflexivity property of R–lattices also holds on the level of extensions.

Lemma 2.7 (reflexivity) If A and B are R–lattices and n� 1, then dualising gives an isomorphism of
abelian groups

�W hProjnR.A;B/! hProjnR.B
�;A�/:

If E 2 ProjnR.A;B/, then there is a chain homotopy equivalence e WE!E�� induced by the evaluation
maps.

This has the following useful consequence which, in the language of [Johnson 2003, Theorem 28.5], says
that projective R–modules are injective relative to the class of R–lattices.

Lemma 2.8 Suppose A, B and E are R–lattices such that .E;�/ 2 Ext1R.A;B/ and P is a projective
R–module. Then , for any map f W B! P , there exists Qf WE! P such that Qf ı i D f , i.e.

0 B E A 0

P

f

i "

Qf
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We conclude this section by discussing an important invariant of projective extensions. Let P .R/ denote
the R–module isomorphism classes of (finitely generated) projective R–modules and define the projective
class group C.R/ as the quotient of P .R/ by the stable isomorphisms, where P;Q 2 P .R/ are stably
isomorphic, written ŒP �D ŒQ�, if P ˚Ri ŠQ˚Rj for some i; j � 0. This forms a group under direct
sum and coincides with the Grothendieck group of the monoid P .R/.

For a projective extension

E D .0! B i
�! Pn�1

@n�1
��! Pn�2

@n�2
��! � � �

@2
�! P1

@1
�! P0

"
�!A! 0/;

we define the Euler class e.E/D
Pn�1

iD0.�1/i ŒPi � 2 C.R/. This is known to be a congruence invariant
[Wall 1979a, Lemma 1.3]. In fact, more is true:

Lemma 2.9 If A and B are R–modules , the Euler class defines a map

e W hProjnR.A;B/! C.R/;

i.e. e is a chain homotopy invariant.

Proof Suppose E1;E2 2 ProjnR.A;B/ and that ' W E1! E2 is a chain homotopy equivalence. Then
E2 Š .'A/

�..'B/�.E1// and, since e is a congruence invariant, e.E2/D e..'A/
�..'B/�.E1///. Since

pushout and pullback by automorphisms can be made to not affect the isomorphism classes of the
modules in the extension, this implies that e..'A/

�..'B/�.E1///D e.E1/ and so e is a chain homotopy
invariant.

The following tells us how the Euler class interacts with the Yoneda product.

Lemma 2.10 Let A, B and C be R–modules. If E 2 hProjnR.A;B/ and F 2 hProjmR.B;C /, then

e.F ıE/D e.E/C .�1/ne.F /:

Proof Let E D .P�; @�/
n�1
�D0

and let F D .P�Cn; @�Cn/
m�1
�D0

. Then F ıE D .P�; @�/
nCm�1
�D0

and

e.F ıE/D

nCm�1X
iD0

.�1/i ŒPi �D

n�1X
iD0

.�1/i ŒPi �C

m�1X
iD0

.�1/iCnŒPiCn�D e.E/C .�1/ne.F /:

For a class � 2 C.R/, we define ProjnR.A;BI�/ to be the subset of ProjnR.A;B/ consisting of those
extensions with e.E/D �, and we can define hProjnR.A;BI�/ similarly as a subset of hProjnR.A;B/.

We have the following nice interpretations for the extensions E 2 ProjnR.A;B/ with e.E/ D 0. This
follows easily by repeatedly forming the direct sum with length two extensions P Š

�! P for various
P 2 P .R/.

Lemma 2.11 If A and B are R–modules and n� 2, then every congruence class in ProjnR.A;BI 0/ has
a representative E of the form E D .F�; @�/ with the Fi free.

Algebraic & Geometric Topology, Volume 24 (2024)



2254 John Nicholson

This fails in the case nD 1, where it is not possible to form the direct sum with length two extensions
R Š
�!R without altering the chain homotopy type. In fact, for a projective extension

E D .0! B! P !A! 0/;

we can define the unstable Euler class Oe.E/D P 2 P .R/.

Lemma 2.12 If A and B are R–modules , the unstable Euler class defines a map

Oe W hProj1R.A;B/! P .R/:

Proof For E1 D .P1;�/;E2 D .P2;�/ 2 Proj1R.A;B/, recall that a chain map ' WE1!E2 is a chain
homotopy equivalence if it induces a chain homotopy equivalence between the length one chain complexes
P1 and P2, i.e. if the restriction 'jP1

W P1! P2 is an isomorphism.

3 Projective ZG –modules and the Swan finiteness obstruction

Throughout this section, we will let G be a finite group. The results of the previous section apply in the
case RDZG since ZG is a ring with involution which is finitely generated and torsion-free as an abelian
group. The aim of this section will be to recall some of the special features of projective modules over
ZG and to introduce the Swan finiteness obstruction.

3.1 Preliminaries on projective ZG –modules

We will now summarise the main special properties of (finitely generated) projective ZG–modules in the
case where G is finite.

The first was shown by Swan [1960a, Theorem A].

Proposition 3.1 Let P be a projective ZG–module. Then there is a projective ideal I � ZG such that
P Š I ˚ZGr for some r � 0.

For a prime p, let Zp denote the p–adic integers and let Z.p/ D fa=b j a; b 2 Z; p−bg �Q denote the
localisation at p. The next property that projective modules over ZG have is that they are locally free in
the following sense (see [Swan 1980, Section 2] for further discussion).

Proposition 3.2 Let P be a projective ZG–module. There exists n� 0 such that

(i) P ˝Z.p/ Š Z.p/G
n are isomorphic as Z.p/G–modules ,

(ii) P ˝QŠQGn are isomorphic as QG–modules ,

(iii) P ˝Zp Š ZpGn are isomorphic as ZpG–modules ,

(iv) P ˝Qp ŠQpGn are isomorphic as QpG–modules.
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Proof Items (ii) and (iv) each follow from [Swan 1970, Theorem 4.2]. Given this, (i) and (iii) now
follow from [Swan 1970, Theorem 2.21].

We define the rank of P , denoted by rank.P /, to be the n� 0 in the proposition above. For example, if
I �ZG is a nonzero projective ideal, then it can be shown that rank.I/D 1; see [Swan 1960a, Section 7].

Let P .ZG/ denote the set of ZG–module isomorphism classes of nonzero projective ZG–modules. This
is a monoid under direct sum. Since rank.P ˚Q/D rank.P /C rank.Q/ for all P;Q 2 P .ZG/, there is
a surjective homomorphism of monoids

rank W P .ZG/! Z; P 7! rank.P /:

Note that rank.P / D 0 if and only if P D 0. That is, if P is a nonzero projective ZG–module, then
rank.P /� 1. This has the following consequence.

Corollary 3.3 Let P be a nonzero projective ZG–module. Then there exists a surjection ' W P ! Z.

Proof Let nD rank.P /� 1 and consider the composition

P x 7!x˝1,�����! P ˝Q Š
�!QGn �1

��QG "
��Q

where �1 is projection onto the first coordinate and " is the augmentation map. Since P is finitely
generated, the image of the composition is a finitely generated subgroup of Q and so is isomorphic to Z.
This gives the required surjection.

3.2 Swan modules

We will now define Swan modules which are a special type of projective module first introduced in [Swan
1960b, Section 6]. Let " W ZG! Z denote the augmentation map and let I D Ker."/� ZG denote the
augmentation ideal. For any r 2 Z coprime to jGj, the ideal .I; r/� ZG is projective and depends only
on r mod jGj up to ZG–isomorphism [Swan 1960b]. Since .I; r/ is a nonzero ideal, it has rank one as a
projective ZG–module by the remarks in Section 3.1.

The modules .I; r/ are known as Swan modules and the map

S W .Z=jGj/�! C.ZG/

given by r 7! Œ.I; r/� is known as the Swan map. This is a well-defined group homomorphism [Swan
1960b], and we define the Swan subgroup to be TG D Im.S/� C.ZG/.

Whilst we will not make explicit use of it in this article, we will briefly mention the closely related ideal
.N; r/ � ZG where N D

P
g2G g denotes the group norm. Many authors take the .N; r/ to be Swan

modules instead of the ideals .I; r/. In fact, the two notions are equivalent, as the following proposition
shows.

Proposition 3.4 If G is a finite group and r 2 .Z=jGj/�, then .I; r/Š .N; r�1/.
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This is presumably well known, but we will include a detailed proof here since we are not aware that one
is currently available in the literature.

Proof By the uniqueness of pullbacks, it will suffice to prove that both .I; r/ and .N; r�1/ arise as
pullbacks of the map r WZ!Z=jGj which sends 1 7! r , and the map " WZG=.N /!Z=jGj which sends
xC .N / 7! ".x/CjGj.

First let i W I ,! .I; r/ denote inclusion, let ' W .I; r/! ZG=.N / and let q W ZG� ZG=.N / denote the
quotient map. Then there is a diagram

0 I .I; r/ Z 0

0 I ZG=.N / Z=jGj 0

i

id

.1=r/"

q r

j "

where q and .1=r/" denote the restrictions of these maps to .I; r/�ZG and j D q ı i . It can be checked
that the diagram commutes and that the rows are exact, and so the right hand square is a pullback.

Now let s 2Z be such that sD r�1 2 .Z=jGj/�, so that .N; r�1/Š .N; s/. Define f W .N; s/!ZG=.N /

by sending N xC sy 7! y. Then consider the diagram

0 I .N; s/ Z 0

0 I ZG=.N / Z=jGj 0

s

id

"

f r

j "

Similarly, it can be checked that this commutes and that the rows are exact.

3.3 Projective extensions

We will now consider the classification of extensions ProjnZG.Z;A/ for a fixed ZG–module A. The follow-
ing can be found in [Johnson 2003, Proposition 34.2] and shows that any two elements of ProjnZG.Z;A/

are related by pullbacks. Note that this isomorphism depends on the choice of E and so only exists when
ProjnZG.Z;A/ is nonempty.

Proposition 3.5 Let A be a ZG–module and n� 1. Then , for any E 2 ProjnZG.Z;A/, there is a bijection

.m�/
�
W .Z=jGj/�! ProjnZG.Z;A/

given by r 7! .mr /
�.E/, where mr W Z! Z denotes multiplication by r .

Remark 3.6 This corresponds to the fact that extensions with fixed ends are determined by their
k–invariants; see, for example, [Johnson 2003, Chapter 6].

Let e denote the stable Euler class as defined in Section 2. The next result computes the image of
projective extensions under the stable Euler class.
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Proposition 3.7 Let e denote the stable Euler class. Let n � 1 and let A be a ZG–module such that
there exists E 2 ProjnZG.Z;A/. If e.E/D ŒP �, then

e.ProjnZG.Z;A//D ŒP �CTG � C.ZG/:

Proof This was proven in [Swan 1960b, Lemmas 7.3 and 7.4] in the case A D Z, and the proof for
arbitrary A is analogous. We will outline the steps here for the convenience of the reader.

The first step is to show that, for any E;E0 2 ProjnZG.Z;A/, we have e.E0/� e.E/ 2 TG . By applying
Schanuel’s lemma (see [Swan 1960b, Proposition 1.1]) to the duals E�; .E0/� 2 ProjnZG.A

�;Z/, we get
an isomorphism Z˚e.E�/ŠZ˚e..E0/�/ and so e..E0/�/�e.E�/2TG by [Swan 1960b, Lemma 6.2].
Since e.E�/D e.E/� and projective ZG–modules are reflexive, dualising gives that e.E0/� e.E/ 2 TG .

The second step is to show that, given E 2 ProjnZG.Z;A/, there exists E0 2 ProjnZG.Z;A/ such that
e.E0/� e.E/D Œ.I; r/�. This can be constructed in the same way as in [Swan 1960b, Lemma 7.4]. That
is, using [Swan 1960b, Remark 2.1].

3.4 The Swan finiteness obstruction

We will now specialise further to the case AD Z. Recall that a finite group G is said to have k–periodic
cohomology if there is an isomorphism of abelian groups yH i.GIZ/Š yH iCk.GIZ/ for all i 2 Z.

Remark 3.8 Many authors define finite groups with periodic cohomology by the a priori stronger
condition that there exists a class u 2 yH k.GIZ/ such that cup product induces an isomorphism

u[�W yH i.GIZ/! yH iCk.GIZ/

for all i 2 Z. These definitions are equivalent since, if yH i.GIZ/ Š yH iCk.GIZ/ for all i 2 Z, then
yH k.GIZ/Š yH 0.GIZ/ŠZ=jGj which implies that the condition above holds by [Brown 1982, VI.9.1].

The following can be extracted from [Cartan and Eilenberg 1956, Chapter XII].

Proposition 3.9 Let G be a finite group. Then G has k–periodic cohomology if and only if ProjkZG.Z;Z/

is nonempty.

If G has k–periodic cohomology then, since ProjkZG.Z;Z/ is nonempty, Proposition 3.7 implies that
there exists P 2 P .ZG/ for which

e.ProjkZG.Z;Z//D ŒP �CTG � C.ZG/

where P .ZG/ denotes the set of nonzero projective ZG–modules. We can then quotient by TG to get a
unique class in C.ZG/=TG which depends only on G and k. The Swan finiteness obstruction is defined
as

�k.G/D ŒP � 2 C.ZG/=TG :
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Recall that a group G has free period k if there exists E D .F�; @�/ 2 ProjkZG.Z;Z/ with the Fi free.
The following is [Swan 1960b, Proposition 5.1].

Proposition 3.10 Let G have k–periodic cohomology. Then �k.G/ D 0 if and only if G has free
period k.

Remark 3.11 By a construction of Milnor, this is equivalent to the existence of a finite CW–complex X

with �1.X /ŠG and zX ' Sk�1 [Swan 1960b, Proposition 3.1]. Examples of groups with �k.G/¤ 0

were found by Milgram [1985].

We will conclude this section by giving a constraint on the projective ZG–modules P which can arise as
a representative of the Swan finiteness obstruction.

We would like to compare ŒP � and ŒP�� when �k.G/D ŒP �CTG . This is difficult for general projectives
since there exists finite groups G and projectives P for which ŒP��¤˙ŒP �, even in C.ZG/=TG . For
example, we can take G D Z=372 [Curtis and Reiner 1987, Theorem 50.56]. However, in our situation,
we have the following.

Proposition 3.12 If G has k–periodic cohomology, and �k.G/D ŒP �CTG , then

ŒP �D�ŒP�� 2 C.ZG/=TG :

Proof By Proposition 3.7, there exists E 2 ProjkZG.Z;Z/ with e.E/D ŒP � and, by forming the direct
sum with length two extensions ZG Š

�! ZG, we can assume that

E Š .0! Z i
�! P

@k�1
��! Fk�2

@k�2
��! � � �

@1
�! F0

"
�! Z! 0/

for some Fi free. Dualising then gives that

E� Š .0! Z "�
�! F0

@�
1
�! � � �

@�
k�2
��! Fk�2

@�
k�1
��! P� i�

�! Z! 0/

and, since k is necessarily even [Cartan and Eilenberg 1956, page 261], Schanuel’s lemma implies that

Z˚P ˚P�˚F Š Z˚F 0

for some F and F 0 free. By [Swan 1960b, Lemma 6.2], we then get that ŒP ˚P�� 2 TG .

Remark 3.13 For a finite group G, the standard involution on C.ZG/ is given by ŒP � 7! �ŒP��; see
[Curtis and Reiner 1987, Section 50E]. This turns C.ZG/ into a ZC2–module where the C2–action is
given by the involution. This additional structure has proven to be a useful for computing class groups
[Curtis and Reiner 1987, page 284]. Note that TG is fixed by this involution. This follows from the
fact that .I; r/� Š .N; r/ Š .I; r�1/ by [Swan 1983, Lemma 17.1] and Proposition 3.4 respectively.
Hence the involution induces an involution on C.ZG/=TG and so endows it with a natural ZC2–module
structure. With respect to this action, Proposition 3.12 says that �k.G/ 2 .C.ZG/=TG/

C2 .
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4 Classification of projective chain complexes

We would now like to consider more generally the classification of projective extensions over ZG with
only one fixed end. Throughout this section, G will denote a finite group. For n � 0, a projective
n–complex E D .P�; @�/ over ZG is a chain complex consisting of an exact sequence

E D .Pn
@n
�! Pn�1

@n�1
��! � � �

@1
�! P0/

where H0.P�/ŠZ and the Pi are (finitely generated) projective ZG–modules. An algebraic n–complex
is a projective n–complex such that the Pi are free.

Let Proj.G; n/ denote the set of chain homotopy types of projective n–complexes over ZG, which is a
graded graph with edges between each E D .P�; @�/ and

E˚ZG D .Pn˚ZG
.@n;0/
���! Pn�1

@n�1
��! � � �

@1
�! P0/:

Similarly, let Alg.G; n/ denote the set of chain homotopy types of algebraic n–complexes over ZG,
which is also a graded graph under stabilisation. By extending the projective n–complex by Ker.@n/, it is
easy to see that there is a bijection

Proj.G; n/Š
a

A2Mod.ZG/

hProjnC1
ZG

.Z;A/:

By abuse of notation, we will assume they are the same, i.e. that an extension E 2 Proj.G; n/ lies in
hProjnC1

ZG
.Z;A/ for some A. For a class � 2 C.ZG/, let Proj.G; nI�/ denote the subset of projective

extensions E with e.E/D �. Note that Alg.G; n/Š Proj.G; nI 0/ for n� 2.

4.1 General classification of projective n–complexes

The following is well known; see [Mannan 2007, Theorem 1.1; Hambleton et al. 2013, Proof of
Lemma 8.12].

Theorem 4.1 If n � 0 and � 2 C.ZG/, then Proj.G; nI�/ is a graded tree , i.e. if E;E0 2 Proj.G; n/
have e.E/D e.E0/, then E˚ZGi 'E0˚ZGj for some i; j � 0.

We will now prove a cancellation theorem for projective n–complexes. Our proof will be modelled on
Hambleton and Kreck’s proof [1993, Theorem B] that, if X and Y are finite 2–complexes with finite
fundamental group such that X 'X0 _S2 and X _S2 ' Y _S2, then X ' Y . This idea was applied
to algebraic 2–complexes in [Hambleton 2019].

If A is a ZG–module, then x 2A is unimodular if there exists a map f WA! ZG such that f .x/D 1.
Let Um.A/�A denote the set of unimodular elements in A.

Lemma 4.2 Let A and B be ZG–modules. Then:

(i) If ' WA! B is an isomorphism , then '.Um.A//D Um.B/.

(ii) .0; 1/ 2 Um.A˚ZG/, i.e. if ' WA˚ZG! B is an isomorphism , then '.0; 1/ 2 Um.B/.

Algebraic & Geometric Topology, Volume 24 (2024)



2260 John Nicholson

Suppose a ZG–module A has a splitting A D A1˚A2˚ � � � ˚An. Then a map f W Ai ! Aj can be
viewed as an endomorphism of A by extending it to vanish everywhere else. Write GL.A/ for the group
of automorphisms of A and define

E.Ai ;Aj /D h1Cf; 1Cg j f WAi!Aj ;g WAj !Aii � GL.A/

to be the subgroup of elementary automorphisms for i ¤ j , where 1 WA!A denotes the identity map.

The main result we will use is the following, which can be proven by combining [Hambleton and Kreck
1993, Corollary 1.12 and Lemma 1.16]. Let Z.p/ D fa=b j a; b 2Z; p−bg �Q denote the localisation at
a prime p and A.p/ DA˝Z.p/.

Theorem 4.3 Suppose A is a ZG–module for which Z.p/˚A.p/ is a free Z.p/G–module for all but
finitely many primes p. If F1;F2 Š ZG, then

GD hE.F1;A˚F2/;E.F2;A˚F1/i � GL.A˚F1˚F2/

acts transitively on Um.A˚F1˚F2/.

We will now establish criteria for which the above conditions hold for a ZG–module A. First recall that,
by an extension of Maschke’s theorem of representations, the group ring RG is semisimple whenever R

is a commutative ring such that jGj 2R�. This is the case when RDZ.p/ for p a prime not dividing jGj.
This has the following consequence.

Lemma 4.4 Let n� 1 be odd , let p be a prime not dividing jGj and let A be a ZG–module for which
ProjnZG.Z;A/ is nonempty. Then Z.p/˚A.p/ is a free Z.p/G–module.

Proof Let ED .P�; @�/ 2 ProjnZG.Z;A/. Recall that localisation is an exact functor (since, for example,
Z.p/ is a flat module). Hence we obtain E.p/D ..P�/.p//; @�/ 2 ProjnZ.p/G.Z.p/;A.p// where the @� are
the induced maps. By the extension of Maschke’s theorem mentioned above, Z.p/G is semisimple and so
the exact sequence E.p/ splits completely. This implies that there is an isomorphism of Z.p/G–modules

Z.p/˚A.p/˚
M
i odd

.Pi/.p/ Š
M
i even

.Pi/.p/:

By Proposition 3.2, the .Pi/.p/ are all free Z.p/G–modules. It follows that Z.p/˚A.p/ is a stably free
Z.p/G–module. Since Z.p/G is semisimple, this implies that Z.p/˚A.p/ is a free Z.p/G–module.

Note that the fact that GL.A˚ZG2/ acts transitively on Um.A˚ZG2/ already implies the following
cancellation theorem for modules.

Corollary 4.5 Suppose A is a ZG–module , AŠA0˚ZG and Z.p/˚.A0/.p/ is a free Z.p/G–module
for all but finitely many primes p. Then A˚ZG ŠA0˚ZG implies AŠA0.

Proof Let  WA˚ZG!A0˚ZG be an isomorphism and let x D  �1.0; 1/ 2 Um.A˚ZG/. Since
ADA0˚ZG, Theorem 4.3 implies that GL.A˚ZG/ acts transitively on Um.A˚ZG/ and so there is
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an isomorphism ' WA˚ZG!A˚ZG such that '.0; 1/D x. Hence  ı' WA˚ZG!A0˚ZG has
. ı'/.0; 1/D .0; 1/ and so induces an isomorphism . ı'/jA WA!A0˚ZG= Im.0˚ZG/ŠA0.

We will upgrade the above argument from modules to projective n–complexes. The existence of a
well-understood subgroup G � GL.A˚ZG2/ which acts transitively on Um.A˚ZG2/ is important
since we need only show that elements in G can be extended to chain homotopy equivalences on the short
exact sequences.

Theorem 4.6 Let n� 0 be even and let E;E0 2 Proj.G; n/. If E'E0˚ZG and E˚ZG 'E0˚ZG,
then E 'E0.

Proof Let E02hProjnC1
ZG

.Z;A0/, ED .P�; @�/2hProjnC1
ZG

.Z;A/ and E0D .P 0�; @
0
�/2hProjnC1

ZG
.Z;A0/.

If  WE˚ZG!E0˚ZG denotes the given chain homotopy equivalence in hProjnC1
ZG

.Z;A0˚ZG2/ and
 A WA0˚ZG2!A0˚ZG is the induced map on the left, consider x D  �1

A
.0; 1/ 2 Um.A0˚ZG2/.

We now claim that there exists a self chain homotopy equivalence ' WE˚ZG!E˚ZG such that the
induced map 'A WA˚ZG!A˚ZG has 'A.0; 1/D x.

Let F1;F2 Š ZG be such that A D A0 ˚ F1 and A˚ZG D A0 ˚ F1 ˚ F2. Since ProjnC1
ZG

.Z;A0/

is nonempty and nC 1 is odd, we can combine Theorem 4.3 and Lemma 4.4 to get that there exists
'A 2GD hE.F1;A0˚F2/;E.F2;A0˚F1/i �GL.A0˚F1˚F2/ such that 'A.0; 0; 1/D x. We claim
that 'A can be extended to a chain homotopy equivalence ' WE˚ZG!E˚ZG.

First recall that E.F2;A0˚F1/DE.F2;A/�GL.A˚F2/ is generated by elements of the form
�

1
f

0
1

�
for f WA! F2 and

�
1
0

g
1

�
for g W F2!A.

If i WA ,! P , then there exists Qf W P ! ZG such that Qf ı i D f by Lemma 2.8. It is straightforward to
verify that the following diagrams commute, and so are chain homotopy equivalences:

E˚ZG

E˚ZG

'1 D

0BB@ 0 A˚ZG Pn˚ZG Pn�1 � � � P0 0

0 A˚ZG Pn˚ZG Pn�1 � � � P0 0

�
i 0
0 1

�
�

1 0
f 1

�
.@n;0/

� 1 0
Qf 1

�
@n�1

idPn�1

@1

idP0�
i 0
0 1

�
.@n;0/ @n�1 @1

1CCA
E˚ZG

E˚ZG

'2 D

0BB@ 0 A˚ZG Pn˚ZG Pn�1 � � � P0 0

0 A˚ZG Pn˚ZG Pn�1 � � � P0 0

�
i 0
0 1

�
�

1 g
0 1

�
.@n;0/

�
1 iıg
0 1

�
@n�1

idPn�1

@1

idP0�
i 0
0 1

�
.@n;0/ @n�1 @1

1CCA
Similarly, we can show that the generators of E.F1;A0˚F2/ extend to chain homotopy equivalences.
Hence, by writing 'A 2 G as the composition of maps of this form, we can get a chain homotopy
equivalence ' WE˚ZG!E˚ZG by taking the composition of equivalences on each of the generators.

Now consider the map

 ı' D . A ı'A;  P ı'P ; id; : : : ; id/ WE˚ZG!E0˚ZG:
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:::

Figure 1: A graded tree which is a fork.

Since . A ı'A/.0; 1/D .0; 1/, it must have the form  A ı'A D
�
�A 0
0 1

�
since it is an isomorphism. By

commutativity, . P ı 'P /.0; 1/ D .0; 1/ and so similarly  P ı 'P D
�
�P 0
0 1

�
for some �P W P ! P 0.

We are now done by noting that the triple .�A; �P ; id; : : : ; id/ defines a chain homotopy equivalence
E 'E0.

We say that a graded tree is a fork if it has a single vertex at each nonminimal grade and a finite set of
vertices at the minimal grade.

Corollary 4.7 If n � 0 is even , G is a finite group and � 2 C.ZG/, then Proj.G; nI�/ is a fork. In
particular , Alg.G; n/ is a fork for n� 2 even.

This recovers the even-dimensional case of a result of Browning [1978, Theorem 5.4]. This fails in odd
dimensions, i.e. there are examples of finite groups G for which Alg.G; n/ is not a fork for some n odd
[Dyer 1979].

4.2 Projective 0–complexes and the unstable Euler class

We now consider the case nD 0. Recall that P .ZG/ denotes the set of ZG–module isomorphism classes
of (finitely generated) nonzero projective ZG–modules. This is a graded graph with edges between each
P and P ˚ZG.

Note that a projective 0–complex has the form

E D .0!A i
�! P "

�! Z! 0/;

and so consists of a nonzero projective module P 2P .ZG/ as well as the additional data .A; i; "/. If Oe is
the unstable Euler class, then Oe W Proj.G; 0/! P .ZG/ is a map of graded graphs since

Oe.E˚ZG/Š Oe.E/˚ZG:

We will now show the following:
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Theorem 4.8 If G is a finite group , then the unstable Euler class gives an isomorphism of graded graphs

Oe W Proj.G; 0/! P .ZG/:

Remark 4.9 Such a statement is implicit in the proof of [Johnson 2003, Theorem IV, Theorem 57.4],
though the argument there contains an error and can only be used to recover the statement above in
the case of projective modules of rank one. This, however, suffices since one can instead rely on the
cancellation theorems of Hambleton and Kreck [1993, Theorem B] or Browning [1978, Theorem 5.4] at
that stage in the proof.

Proof To see that Oe is surjective, let P 2 P .ZG/. By Corollary 3.3, there is a surjection ' W P ! Z and
this defines an extension E D .P;�/ 2 hProj1ZG.Z;Ker.'// which has Oe.E/D P .

We will now show injectivity. First let ED .P;�/2hProj1ZG.Z;A/ and let E0D .P;�/2hProj1ZG.Z;A
0/.

We will begin by considering the case where P has rank one. To show that E 'E0, it suffices to find
isomorphisms 'A WA!A0 and 'Z W Z! Z such that the following diagram commutes:

E

E0

' D

0B@ 0 A P Z 0

0 A0 P Z 0

i

'A

"

id 'Z

i0 "0

1CA
Consider the maps N"D "˝Q; N"0 D "0˝Q W P ˝QŠQG!Q. Since Q has trivial G–action, each map
is determined by the fact that N".g/D N"0.g/D 0 for all g 2 G and N".1/D N"0.1/D xi for some xi 2Q�.
Hence Ker.N"/D Ker.N"0/ and so ."0 ı i/˝QD 0. Since A is a ZG lattice, this implies that "0 ı i D 0 and
so we can define maps 'A and 'Z as above. Now 'Z is necessarily surjective and so an isomorphism.
Hence 'A is an isomorphism by the five lemma, and so E 'E0.

Now suppose E and E0 are as above but with rank.P / � 2. By Proposition 3.1, this implies that
there exists P0 of rank one such that P Š P0 ˚ ZGi for some i � 1. Since Oe is surjective, there
exists E0 D .P0;�/ 2 hProj1ZG.Z;A0/ for some A0. By Theorem 4.1, there exists j � 0 for which
E0˚ZGiCj 'E˚ZGj 'E0˚ZGj . Since i � 1, Theorem 4.6 then implies E0˚ZGi 'E'E0.

For use in later sections, it will be necessary to further refine the isomorphism given by Oe. Consider
following two decompositions (where Š denotes bijection):

Proj.G; 0/Š
a

�2C.ZG/

Proj.G; 0I�/Š
a

A2Mod.ZG/

hProj1ZG.Z;A/:

We will begin by determining the image of Proj.G; 0I�/ under Oe. This is immediate from Theorem 4.8
and the definition of hProj1ZG.Z;AI�/. For convenience, we will write �D ŒP � for some P 2 P .ZG/.

Proposition 4.10 Let P 2 P .ZG/. Then there is an isomorphism of graded trees

Oe W Proj.G; 0I ŒP �/! ŒP �:
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We will next determine the image of Proj1ZG.Z;A/ under Oe for A a fixed ZG–module such that
Proj1ZG.Z;A/ is nonempty. Recall that, if E 2 Proj1ZG.Z;A/, then Proposition 3.5 implies that there is a
bijection

.m�/
�
W .Z=jGj/�! Proj1ZG.Z;A/

given by r 7! .mr /
�.E/, where mr W Z! Z denotes multiplication by r .

If M is a (left) ZG–module and r 2 .Z=jGj/�, then the tensor product .I; r/˝M can be considered as
a (left) ZG–module since .I; r/ is a two-sided ideal. This allows us to find an explicit form for pullbacks
of extensions. We will begin with the following special case.

Lemma 4.11 Let A be a ZG–module and suppose E D .P;�/ 2 Proj1ZG.Z;A/ where rank.P / D 1.
Then , for any r 2 .Z=jGj/�, there are maps Ni and N" such that

.mr /
�.E/Š .0!A

Ni
�! .I; r/˝P N"

�! Z! 0/:

Proof Let E D .P;�/ 2 Proj1ZG.Z;A/ and note that we have the diagrams

.I; r/ Z

ZG Z

.1=r/"

i r

"

.I; r/˝P Z˝P

ZG˝P Z˝P

.1=r/"˝1

i˝1 r˝1

"˝1

where i W .I; r/ ,! ZG is inclusion. It can be checked directly that the first diagram is a pullback, and
this implies that the second diagram is a pullback since P is projective and so flat. Since rank.P /D 1,
we can choose identifications ZG˝P Š P and Z˝P ŠZ for which "˝ 1 corresponds to "E . We now
have a map .idA; ';mr / WE

0!E where E0 D ..I; r/˝P;�/. Hence E0 Š .mr /
�.E/ by uniqueness of

pullbacks.

We can now upgrade this to the general case using Theorem 4.8.

Lemma 4.12 Let A be a ZG–module and suppose E D .P;�/ 2 Proj1ZG.Z;A/.

(i) There exists a projective ZG–module P0 with rank.P0/D 1 and k � 0 such that P Š P0˚ZGk

and
E Š .0!A

i0
�! P0˚ZGk ."0;0/

���! Z! 0/

for some maps i0 and "0 W P0! Z.

(ii) With P0, i0 and "0 as above ,

.mr /
�.E/Š .0!A

Ni0
�! ..I; r/˝P0/˚ZGk .N"0;0/

���! Z! 0/

for some maps Ni0 and N"0 W .I; r/˝P0! Z.

Proof (i) Since P � Z, we know that P is nonzero. Hence, by Proposition 3.1, there exists a
projective ZG–module P0 with rank.P0/D 1 and k � 0 such that P Š P0˚ZGk . Since Oe is an
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isomorphism of graded trees, there exists E0 2 Proj1ZG.Z;A0/ for some ZG–module A0 such that
E ŠE0˚ZGk . Write

E0 D .0!A0
i0
0
�! P0

"0
�! Z! 0/

for some i 0
0

and "0. The result follows by forming E0˚ZGk .

(ii) The result follows by noting that .mr /
�.E0 ˚ ZGk/ Š .mr /

�.E0/ ˚ ZGk and evaluating
.mr /

�.E0/ using Lemma 4.11.

Remark 4.13 The proof of (i) also implies that AŠA0˚ZGk .

This implies the following. This is the analogue of Proposition 3.7 which established the corresponding
result for the stable Euler class e.

Proposition 4.14 Let A be a ZG–module and suppose E D .P;�/ 2 Proj1ZG.Z;A/. Then

Oe.Proj1ZG.Z;A//D f..I; r/˝P0/˚ZGk
j r 2 .Z=jGj/�g � P .ZG/

where P0 is any rank one projective ZG–module such that P Š P0˚ZGk for k � 0.

For completeness, as well as for later use, we will note the following which is a consequence of [Fröhlich
et al. 1974, Remark 1.30]. This shows that Propositions 3.7 and 4.14 agree in the case nD 1.

Lemma 4.15 Let P be a projective ZG–module with rank.P /D 1 and let r 2 .Z=jGj/�. Then

Œ.I; r/˝P �D Œ.I; r/�C ŒP � 2 C.ZG/:

5 Polarised homotopy classification of .G; n/–complexes

Recall that, for a group G, a G–polarised space is a pair .X; �X / where X is a topological space
and �X W �1.X;�/ ! G is a given isomorphism. We say that two G–polarised spaces .X; �X / and
.Y; �Y / are polarised homotopy equivalent if there exists a homotopy equivalence h WX ! Y such that
�X D �Y ı�1.h/.

Let PHT.G; n/ denote the set of polarised homotopy types of finite .G; n/–complexes over G. This is a
graded graph with edges between each .X; �X / and .X _S2; .�X /

C/ where .�X /
C is induced by �X

and the collapse map X _S2!X .

If X is a finite CW–complex, then the cellular chain complex C�. zX / can be viewed as a chain complex
of ZŒ�1.X /�–modules under the monodromy action. We can use a G–polarisation � W �1.X /!G to get
a chain complex of ZG–modules C�. zX ; �/ which is the same as C�. zX / as a chain complex of abelian
groups but with action g �x D ��1.g/x for all g 2G and x 2 Ci. zX / for some i � 0.
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The following is a mild generalisation of [Nicholson 2021b, Theorem 1.1]:

Proposition 5.1 Let G be a finitely presented group and let n � 2. Then there is an injective map of
graded trees

zC� W PHT.G; n/! Alg.G; n/

induced by the map .X; �/ 7! C�. zX ; �/. Furthermore:

(i) If n� 3, then zC� is bijective.

(ii) If nD 2, then zC� is bijective if and only if G has the D2 property.

Remark 5.2 (a) Even if G does not satisfy the D2 property, Proposition 5.1 can be replaced with
an isomorphism zC� W D2.G/! Alg.G; 2/ where D2.G/ denotes the polarised homotopy tree of
D2–complexes over G [Nicholson 2021b, Theorems 1.1].

(b) This is often vacuous in the case n � 3 since PHT.G; n/ and Alg.G; n/ are often empty. More
specifically, PHT.G; n/ is nonempty if and only if G is of type Fn. Alg.G; n/ is nonempty if
and only if G has type FPn (see [Bieri 1976]), and it is well known that Fn() FPn for finitely
presented groups. This situation arises since there exist finitely presented groups which are not of
type Fn for n� 3 [Stallings 1963].

(c) This fails in general for nonfinitely presented groups. In particular, for each n� 2, Bestvina and
Brady [1997] constructed a nonfinitely presented group G of type FPn. Here PHT.G; n/ is empty
and Alg.G; n/ is nonempty and so zC� is not bijective.

We will now use the results from the previous section to study projective n–complexes over groups with
periodic cohomology. By Proposition 5.1, this will lead to a proof of the following more detailed version
of Theorem A. Note that, if X is a finite .G; n/–complex, then

�n.X /ŠHn. zX /Š Ker.@n W Cn. zX /! Cn�1. zX //

are isomorphisms of ZG–modules.

Theorem 5.3 Let G have k–periodic cohomology , let nD ik or ik � 2 for some i � 1 and let P.G;n/

be a projective ZG–module with �ik.G/D ŒP.G;n/� 2 C.ZG/=TG . Let F 2 ProjikZG.Z;Z/ be such that
e.F /D ŒP.G;n/�. Then there is an injective map of graded trees

‰ W PHT.G; n/! ŒP.G;n/�;

defined as follows:

(i) If nD ik � 2, then ‰ WX 7! P , where P is the unique projective ZG–module for which

.0! Z ˛
�! P�

ˇ
�! �n.X /! 0/ ıC�. zX /' F

for some ˛ and ˇ.
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(ii) If nD ik, then ‰ WX 7! P , where P is the unique projective ZG–module for which

C�. zX /' .0! �n.X /
˛
�! P

ˇ
�! Z! 0/ ıF

for some ˛ and ˇ.

Furthermore , ‰ is bijective if and only if n� 3 or nD 2 and G has the D2 property.

Remark 5.4 The definition of P.G;n/ depends on G, n and k. Note that n and k determine i except
when k D 2 where nD ik D .i C 1/k � 2. However, in this case there is no ambiguity since G is cyclic
[Swan 1965, Lemma 5.2] and so �2i.G/D 0 for all i .

First note that, when G has periodic cohomology, we get the following two relations between projective
complexes of different dimensions.

Lemma 5.5 Suppose G has k–periodic cohomology and let F 2 ProjkZG.Z;Z/. If n� 0, then we have
isomorphisms of graded graphs

�ıF W Proj.G; n/! Proj.G; nC k/; � ı‰F W Proj.G; n/! Proj.G; k � .nC 2//;

where nC 2� k in the second case.

Proof The first isomorphism is immediate from the shifting lemma. The second isomorphism consists
of the compositions

hProjnC1
ZG

.Z;A/
‰F
�! hProjk�n�1

ZG .A;Z/ ��! hProjk�n�1
ZG .Z;A�/

for all ZG–modules A. These are bijections by the duality and reflexivity lemmas.

To see that the image of the full map is Proj.G; k� .nC2// note that, if B is such that hProjk�n�2
ZG .Z;B/

is nonzero, then B is a ZG–lattice since it is a submodule of a free module. By Lemma 2.5, B�� Š B

and so there is an isomorphism � ı‰F W hProjnC1
ZG

.Z;B�/! hProjk�n�1
ZG .Z;B/.

Remark 5.6 Furthermore, if E 2Proj.G; n/ has �D e.E/, then it is easy to see that e.EıF /D e.F /C�

since k is even and e.. F .E//
�/D e.F /����.

The proof of Theorem 5.3 will now consist of applying Lemma 5.5 in the case k j n or nC 2 and then
composing with the isomorphism from Theorem 4.8.

We will need the following result of Wall [1979a, Corollary 12.6].

Proposition 5.7 If G has k–periodic cohomology, then

2�k.G/D 0 2 C.ZG/=TG :

By iterating extensions using the Yoneda product, it can be shown that n�k.G/D �nk.G/ and so this
theorem is equivalent to showing that �2k.G/D 0, i.e. that the obstruction vanishes whenever k is not
the minimal period.
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Theorem 5.8 If G has k–periodic cohomology and �k.G/D ŒP.G;n/�CTG for some P.G;n/ 2 P .ZG/,
then there exists F 2 ProjkZG.Z;Z/ such that there are isomorphisms of graded trees

Alg.G; k/ .�ıF /
�1

����! Proj.G; 0I ŒP.G;n/�/
Oe
�! ŒP.G;n/�:

Proof By Proposition 5.7, �k.G/D ŒP.G;n/�CTGD�ŒP.G;n/�CTG and so there exists F 2ProjkZG.Z;Z/

with e.F /D�ŒP.G;n/� by Proposition 3.7.

If E 2 Alg.G; k/, then e.E/D 0 and so e..�ıF /�1/D�.�1/ke.F / by Lemma 2.10. Since k is even,
this is equal to ŒP.G;n/�. Hence the map .�ıF /�1 is as described. By Lemma 5.5, we get that .�ıF /�1

is an isomorphism.

That Oe is an isomorphism follows from Proposition 4.10.

Theorem 5.9 If G has k–periodic cohomology and �k.G/D ŒP.G;n/�CTG for some P.G;n/ 2 P .ZG/,
then there exists F 2 ProjkZG.Z;Z/ such that there are isomorphisms of graded trees

Alg.G; k � 2/
�ı‰F
���! Proj.G; 0I ŒP.G;n/�/

Oe
�! ŒP.G;n/�:

Proof By Proposition 3.12, we have that �k.G/D ŒP.G;n/�CTG D�ŒP
�
.G;n/

�CTG and so there exists
F 2 ProjkZG.Z;Z/ with e.F /D�ŒP�

.G;n/
� by Proposition 3.7.

If E 2 Alg.G; k � 2/, then e.‰F .E//D�e.F / by Lemma 2.10. This implies that

e..� ı‰F /.E//D�e.F /� D ŒP.G;n/�

and so the map � ı‰F is as described. By Lemma 5.5, � ı‰F is an isomorphism.

That Oe is an isomorphism follows from Proposition 4.10, as in the previous theorem.

Proof of Theorem 5.3 If G has k–periodic cohomology, then it also has ik–periodic cohomology for
any i � 1. Hence, by swapping k for ik, we can assume i D 1. By combining Theorems 5.8 and 5.9 with
Proposition 5.1, we obtain injective maps of graded trees ‰ W PHT.G; n/! ŒP.G;n/� for nD k or k � 2,
which are bijective as required. It remains to show that, in each case, ‰ has the form given in (i) and (ii).

If nD k � 2, then .� ı‰F /.C�. zX //' .0!A! P ! Z! 0/ for some A and some P 2 ŒP.G;n/�. By
Lemma 2.7, ‰F .C�. zX //' .0!Z!P�!A�! 0/. Hence .0!Z!P�!A�! 0/ıC�. zX /'F

and A� Š �n.X /.

If nD k, then .�ıF /�1.C�. zX //' .0!A! P !Z! 0/ for some A and some P 2 ŒP.G;n/�. Hence
C�. zX /' .0!A! P ! Z! 0/ ıF and AŠ �n.X /.

This completes the proof of Theorem A.
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6 Homotopy classification of .G; n/–complexes

For a finitely presented group G, an automorphism � 2Aut.G/ acts on PHT.G; n/ by .X; �/ 7! .X; � ı�/.
It is straightforward to see that

HT.G; n/Š PHT.G; n/=Aut.G/

and the goal of this chapter will be to determine the induced action of Aut.G/ on ŒP.G;n/� under the
isomorphism PHT.G; n/Š ŒP.G;n/� obtained in Theorem 5.3.

6.1 Preliminaries on the action of Aut.G /

We begin by defining natural actions of Aut.G/ on ZG–modules and chain complexes of ZG–modules.
First, for a ZG–module A and � 2 Aut.G/, let A� denote the ZG–module whose underlying abelian
group is that of A and whose action is g �x D �.g/x where g 2G, x 2A. This action has the following
basic properties:

Lemma 6.1 Let � 2 Aut.G/.

(i) There is a ZG–module isomorphism

i� W ZG! ZG� ;
X
g2G

aigi 7!

X
g2G

ai�.gi/:

(ii) If A;B 2Mod.ZG/, then .A˚B/� ŠA� ˚B� .

(iii) If P 2 P .ZG/, then P� 2 P .ZG/.

We can extend the action to chain complexes as follows. If A and B are ZG–modules and

E D .E�; @�/ 2 ExtnZG.A;B/;

then we define E� 2 ExtnZG.A� ;B� / by

E� D .0! B�
@n
�! .En�1/�

@n�1
��! .En�2/� ! � � � ! .E1/�

@1
�! .E0/�

@0
�!A� ! 0/:

It is easy to see that this is well defined up to chain homotopy and, by the lemma above, it preserves
projective extensions and so also induces a map on hProjnZG.A;B/. The following is immediate from the
definition of zC�.X; �/.

Lemma 6.2 If E 2Alg.G; n/, then the induced action of � 2Aut.G/ on E is given by � �EDE� , i.e. if
E D zC�.X; �/, then E� D zC�.X; � ı �/.

We now establish a few basic properties of this action which we will use later in this section. From now
on, we will specialise to the case where G is a finite group. First, we note that the action commutes with
dualising.
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Lemma 6.3 If A and B are ZG–lattices , E 2 ProjnZG.A;B/ for n� 1 and � 2 Aut.G/, then

.E� /
�
Š .E�/� :

Proof We begin by proving the corresponding statement for modules, i.e. that, if A is a ZG–lattice,
then .A� /� Š .A�/� . Let A ŠAb Zk , so that the ZG–module structure is determined by an integral
representation �A W G! GLk.Z/. As remarked earlier, �A�.g/ D �A.g

�1/T and it is easy to see that
�A� D �A ı � . Therefore .A� /� Š .A�/� follows by noting that

�.A� /�.g/D �A� .g
�1/T D �A.�.g

�1//T D �A.�.g/
�1/T

and
�.A�/� .g/D �A�.�.g//D �A.�.g/

�1/T :

The result for extensions now follows immediately since � only affects the underlying modules and not
the maps between them.

In light of this, for ZG–lattices A and B and E 2 ProjnZG.A;B/, it now makes sense to write A�
�

and E�
�

.
Note that the action also commutes with pushouts.

Lemma 6.4 If � 2Aut.G/, f WB1!B2 is a ZG–module homomorphism and E 2 ExtnZG.A;B1/, then

f�.E� /Š .f�.E//� :

6.2 Proof of Theorem B

In the case where ADBDZ, we can consider this as an action on ProjnZG.Z;Z/ by using the identification
Z� Š Z.

Lemma 6.5 If G has k–periodic cohomology, then there exists a unique map  k WAut.G/! .Z=jGj/�

such that , for every F 2 ProjkZG.Z;Z/ and � 2 Aut.G/,

F� Š .m k.�//�.F /:

Proof Fix an extension F0 2 ProjkZG.Z;Z/. By dualising and then applying Proposition 3.5, it follows
that every extension in ProjkZG.Z;Z/ is of the form .mr /�.F0/ for some r 2 .Z=jGj/�. For � 2Aut.G/,
define  k.�/D r 2 .Z=jGj/� for any r 2 .Z=jGj/� such that .F0/� Š .mr /�.F0/.

If F 2 ProjkZG.Z;Z/, then F Š .mr /�.F0/ for a unique r 2 .Z=jGj/�. By Lemma 6.4, we now have that

F� Š ..mr /�.F0//� Š .mr /�..F0/� /Š .mr /�..m n.�//�.F0//

Š .m n.�//�..mr /�.F0//Š .m n.�//�.F /:

Lemma 6.6 If E;E0 2 ProjkZG.Z;Z/ and r 2 Z is coprime to jGj, then

E ı .mr /�.E
0/Š .mr /�.E/ ıE0:
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Proof Consider the pushout map � WE0! .mr /�.E
0/. Since this induces mr on the left copy of Z, we

can extend it to a map Q� W E ıE0! E ı .mr /�.E
0/ which induces multiplication by r 2 Z � ZG on

every module in E, i.e.

E ıE0

E ı .mr /�.E
0/

Q� D

0BBB@
0 Z Pk�1 � � � P0 P 0

k�1
� � � P 0

0
Z 0

0 Z Pk�1 � � � P0 P 0
k�1

� � � P 0
0

Z 0

i

r

@k�1

r

@1 i0ı"

r

@0
k�1

�k�1

@0
1 "0

�0 1

i @k�1 @1 i0ı" @0
k�1

@0
1 "0

1CCCA
By the uniqueness of pushouts, this implies that E ı .mr /�.E

0/Š .mr /�.E ıE0/D .mr /�.E/ ıE0 as
required.

Note that, if G has k–periodic cohomology and k j n, then it also has n–periodic cohomology and so  n

can still be defined using Lemma 6.5. The above lemma now allows us to give the following relation
between  k and  n for k j n.

Lemma 6.7 If G has k–periodic cohomology, i � 1 and � 2 Aut.G/, then

 ik.�/D  k.�/
i :

Proof For F 2 ProjkZG.Z;Z/ and F i 2 ProjikZG.Z;Z/, Lemma 6.5 implies that F� Š .m k.�//�.F / and
.F i/� Š .m ik.�//�.F

i/. Since .F i/� Š .F� /
i , this implies that .m ik.�//�.F

i/Š ..m k.�//�.F //
i .

By repeated application of Lemma 6.6,

.m ik.�//�.F
i/Š ..m k.�//�.F //

i
Š .m k.�//

i
�.F

i/Š .m k.�/i
/�.F

i/

and so  ik.�/ Š  k.�/
i mod jGj by the extension of Proposition 3.5 to arbitrary extensions via the

shifting lemma.

In order to prove Theorem B, it suffices to check what the action of Aut.G/ corresponds to under the
isomorphisms described in Section 5. Similarly to Section 5, it will suffice to consider the cases where
k D n or nC 2.

Theorem 6.8 Suppose that G has k–periodic cohomology and �k.G/ D ŒP.G;n/� C TG for some
P.G;n/ 2 P .ZG/. If F 2 ProjkZG.Z;Z/ is such that e.F /D�ŒP.G;n/�, then

hProjkC1
ZG

.Z;AI 0/
.�ıF /�1

����! hProj1ZG.Z;AI ŒP.G;n/�/
Oe
�! ŒP.G;n/�;

E 7!E0 7! P ˚ZGr ;

E� 7! .m k.�//
�..E0/� / 7! ..I;  k.�//˝P� /˚ZGr ;

where P is a rank one projective ZG–module and r � 0.
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Proof For the first map, it suffices to check that . k.�//
�..E0/� / ıF ' E� . Since E0 ıF D E, we

have .E0/� ıF� 'E� . By Lemma 6.5, F� Š .m n.�//�.F / and so

E� ' .E
0/� ı .m n.�//�.F /D .m n.�//

�..E0/� / ıF:

The form for the second map follows directly from Lemma 4.12.

Theorem 6.9 Suppose that G has k–periodic cohomology and �k.G/ D ŒP.G;n/� C TG for some
P.G;n/ 2 P .ZG/. If F 2 ProjkZG.Z;Z/ is such that e.F /D�ŒP�

.G;n/
�, then

hProjk�1
ZG .Z;AI 0/

‰F
�! hProj1ZG.A;ZI ŒP

�
.G;n/�/

�
�! hProj1ZG.Z;A

�
I ŒP.G;n/�/

Oe
�! ŒP.G;n/�;

E 7!E0 7! .E0/� 7! P ˚ZGr ;

E� 7! .m k.�/-1
/�..E

0/� / 7! .m k.�//
�..E0/�� / 7! ..I;  k.�//˝P� /˚ZGr ;

where P is a rank one projective ZG–module and r � 0.

Proof For this first map, it suffices to check that .m k.�/�1/�..E
0/� / ıE� ' F . Since E0 ıE ' F , we

have .E0/� ıE� ' F� . By Lemma 6.5, F� Š .m n.�//�.F / and so

F ' .m k.�/�1/�..E
0/� ıE� /' .m k.�/�1/�..E

0/� / ıE� :

For the second map, it is easy to see that pushouts dualise to pullbacks in the other direction, i.e. if
E0D .m k.�/�1/�..E

0/� //, then .m k.�/�1/�.E
�
0
/' .E0/�

�
and so E�

0
' .m k.�//

�..E0/�
�
//. The form

for the third map follows directly from Lemma 4.12.

If G has k–periodic cohomology and nD ik or ik � 2 for some i � 1, then the above shows that the
induced action of � 2 Aut.G/ on ŒP.G;n/� is given by P ˚ZGr 7! ..I;  ik.�//˝P� /˚ZGr where P

has rank one and r � 0. Furthermore,  ik.�/D  k.�/
i by Lemma 6.7.

This completes the proof of Theorem B except for a possible discrepancy in the case where k D 2 and i

is not determined by the fact that nD ik or ik � 2 (see Remark 5.4). However, in this case, G is cyclic
and so .I; r/Š ZG for all r 2 .Z=jGj/� by [Swan 1960b, Corollary 6.1]. Hence .I;  k.�/

i/Š ZG is
independent of i .

7 Stably free Swan modules and .G; n/–complexes

Before computing the action of Aut.G/ on ŒP.G;n/�, we will pause to consider the role of Swan modules
in the classification of .G; n/–complexes. We begin by considering the map

 k W Aut.G/! .Z=jGj/�

where G has k–periodic cohomology.

If � 2Aut.G/, then the action E 7!E� induces an action of Aut.G/ on H k.GIZ/D ExtkZG.Z;Z/. This
agrees with the usual action coming from the alternate definition of H k.�IZ/ as a functor on groups

Algebraic & Geometric Topology, Volume 24 (2024)



Projective modules and the homotopy classification of .G; n/–complexes 2273

[Cartan and Eilenberg 1956, Chapter XII]. This implies that Im. k/ D Autk.G/ which is defined in
[Dyer 1976, Section 8]. We will now give several examples of maps  k W Aut.G/! .Z=jGj/�.

Cyclic If Cn D hx j x
n D 1i is the cyclic group of order n, then

Aut.Cn/D f�i W x 7! xi
j i 2 .Z=n/�g

and  2 W Aut.Cn/! .Z=n/� sends �i 7! i by [Swan 1960b, Proposition 8.1]. This is surjective and so
recovers the classical results TCn

D 1.

Dihedral If D4nC2 D hx;y j x
2nC1 D y2 D 1;yxy�1 D x�1i is the dihedral group of order 4nC 2,

then
Aut.D4nC2/D f�i;j W x 7! xi ; y 7! xj y j i 2 .Z=.2nC 1//�; j 2 Z=.2nC 1/g

and  4 W Aut.D4nC2/! .Z=.4nC 2//� sends �i;j 7! i2 by the discussion in [Johnson 2002, Section 5].
Since .Z=.4nC 2//� D˙..Z=.4nC 2//�/2, this recovers the result TD4nC2

D 1.

Quaternionic Let Q4n D hx;y j x
n D y2;yxy�1 D x�1i is the quaternion group of order 4n. For

nD 2, it is shown in [Swan 1960b, Proposition 8.3] that  4 W Aut.Q8/! .Z=8/� sends � 7! 1 for all
� 2 Aut.G/. For n� 3,

Aut.Q4n/D f�i;j W x 7! xi ; y 7! xj y j i 2 .Z=2n/�; j 2 Z=2ng

and  4 W Aut.Q4n/ ! .Z=4n/� sends �i;j 7! i2 by, for example, [Golasiński and Gonçalves 2004,
Proposition 1.1].

The following was noted by Davis [1983] and Dyer [1976, Note (b)]. It would be interesting to know, as
was asked by Davis, whether this holds in the case �k.G/¤ 0.

Proposition 7.1 If G has free period k, then S ı k D 0, i.e. .I;  k.�// is stably free for all � 2Aut.G/.

Proof Note that Theorems 6.8 and 6.9 each show that ŒP �D Œ.I;  k.�//˝P� � for all P 2 P .ZG/ of
rank one such that �k.G/D ŒP �CTG . By Lemma 4.15, the composition

Aut.G/  k
�! .Z=jGj/� S

�! TG � C.ZG/

is given by S ı k W � 7! ŒP �� ŒP� � which is well defined since � gives a well-defined action on C.ZG/.
By Lemma 6.1, .ZG/� Š ZG and so the composition is trivial in the case where �k.G/D 0.

We say that a finite group G has weak cancellation if every stably free Swan module is free. The following
was asked by Dyer [1976, page 266] and later appeared in Wall’s problems list [1979b, Problem A4].

Question 7.2 Does there exist G with periodic cohomology and r 2 .Z=jGj/� such that .I; r/ is stably
free but not free?

Algebraic & Geometric Topology, Volume 24 (2024)



2274 John Nicholson

This is equivalent to asking whether every group with periodic cohomology has weak cancellation and is
still open, even for arbitrary finite groups. There are two important consequences that a negative answer
to Question 7.2 would have.

First, recall the following question from the introduction. Note that, if .I;  k.�// is free, then the action
described in Theorem B has the simpler form P 7! P� .

Question 7.3 Does there exist G with k–periodic cohomology and � 2 Aut.G/ for which .I;  k.�// is
not free?

It follows from Proposition 7.1 that, if G has free period k and has weak cancellation, then .I;  k.�//ŠZG

for all � 2 Aut.G/. In particular, if Question 7.2 has a negative answer, then the only groups for which
the action in Theorem B might not have the form P 7! P� are the groups with �k.G/¤ 0.

Second, consider the following:

Question 7.4 Let n� 2, let G be finite and let X and Y be finite .G; n/–complexes with �.X /D �.Y /.
Then X _ rSn ' Y _ rSn for some r . Does r D 1 always work?

This is equivalent to asking whether HT.G; n/ is a fork when G is finite. The case where n is even was
proven by Browning [1978], and also follows by combining Corollary 4.7 and Proposition 5.1. When n is
odd, this is known to hold provided G does not have k–periodic cohomology for any k j nC 1. If G has
k–periodic cohomology for k j nC 1, then this holds provided G has weak cancellation (see [Dyer 1976,
pages 276–277]). In particular, if Question 7.2 has a negative answer, then Question 7.4 has an affirmative
answer. Note that the corresponding question for infinite groups is also still open (see [Nicholson 2021c,
Problem B2]).

8 Milnor squares and the classification of projective modules

Given the observations in the previous section, the primary obstacle to computing sufficiently interesting
examples of HT.G; n/ and PHT.G; n/ for our groups is the classification of projective ZG–modules.

One method to classify projective R–modules over a ring R is to relate this to the classification of
projective modules over simpler rings using Milnor squares. In this section, we will present a refinement
of the basic theory of Milnor squares which will also allow us to determine how a ring automorphism
˛ 2 Aut.R/ acts on the class of projective R–modules. We will then apply these methods in Section 9.

Suppose R and S are rings and f WR! S is a ring homomorphism. We can use this to turn S into an
.S;R/–bimodule, with right-multiplication by r 2R given by x � r D xf .r/ for any x 2 S . If M is an
R–module, we can define the extension of scalars of M by f as the tensor product

f#.M /D S ˝R M
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since S as a right R–module and M as a left R–module, and we consider this as a left S–module where
left multiplication by s 2 S is given by s � .x˝m/D .sx/˝m for any x 2 S and m 2M . This comes
equipped with maps of abelian groups

f� WM ! f#.M /

sending m 7! 1˝m, and defines a covariant functor from R–modules to S–modules [Curtis and Reiner
1981, page 227]. It has the following basic properties which follow from the standard properties of tensor
products such as associativity [Mac Lane 1963, page 145].

Lemma 8.1 Let f WR! S and g W S ! T be ring homomorphisms and let M and N be R–modules.
Then

(i) f#.M ˚N /Š f#.M /˚f#.N /,

(ii) f#.R/Š S ,

(iii) .g ıf /#.M /Š .g# ıf#/.M /.

If P .R/ denotes the set of isomorphism classes of projective R–modules, then the first two properties
show that f# induces a map f# W P .R/! P .S/ which restricts to each stable class.

Recall that, if R, R1, R2 and R0 are rings, then a pullback diagram

RD

R R2

R1 R0

i2

i1 j2

j1

is a Milnor square if either j1 or j2 are surjective. If P1 2 P .R1/ and P2 2 P .R2/ are such that there is
an R0–module isomorphism h W .j1/#.P1/! .j2/#.P2/, then define

M.P1;P2; h/D f.x;y/ 2 P1 �P2 j h..j1/�.x//D .j2/�.y/g � P1 �P2;

which is an R–module where multiplication by r 2R is given by r � .x;y/D ..i1/�.r/x; .i2/�.r/y/. It
was shown by Milnor that M.P1;P2; h/ is projective [Milnor 1971, Theorem 2.1]. Let AutR.P / denote
the set of R–module automorphisms of an R–module P . The main result on Milnor squares is as follows.
This is a consequence of the results in [Milnor 1971, Section 2] and the precise statement can be found in
[Swan 1980, Proposition 4.1].

Theorem 8.2 Suppose R is a Milnor square and Pi 2 P .Ri/ for i D 0; 1; 2 are such that

P0 Š .j1/#.P1/Š .j2/#.P2/

as R0–modules. Then there is a one-to-one correspondence

AutR1
.P1/nAutR0

.P0/=AutR2
.P2/$ fP 2 P .R/ j .i1/#.P /Š P1; .i2/#.P /Š P2g

given by sending a coset Œh� to M.P1;P2; h/ for any representative h.
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Now suppose ˛ 2 Aut.R/. If M is an R–module, define M˛ as the R–module whose abelian group is
that of M but whose R–action is given by r �mD ˛.r/m for r 2R and m2M . For example, if RDZG,
then � 2 Aut.G/ induces a map � 2 Aut.ZG/ and M� coincides with the definition given earlier.

This is a special case of restriction of scalars, but can also be viewed as a part of extension of scalars as
follows.

Lemma 8.3 Let R be a ring and let ˛ 2 Aut.R/. If M is an R–module , then there is an isomorphism of
R–modules

 WM˛! .˛�1/#.M /

given by m 7! 1˝m.

From this, it is clear that this action has basic properties which are analogous to Lemma 6.1. The following
is then immediate by combining Lemmas 8.1 and 8.3.

Corollary 8.4 Suppose f WR! S is a ring homomorphism and ˛ 2 Aut.R/ and ˇ 2 Aut.S/ are such
that f ı˛ D ˇ ıf . If M is an R–module , then

f#.M˛/Š f#.M /ˇ:

We can turn the set of Milnor squares into a category with morphisms defined as follows. If R and R0 are
Milnor squares, then a morphism is a quadruple

Ǫ D .˛; ˛1; ˛2; ˛0/ WR!R0

where ˛ WR!R0 and ˛i WRi!R0i such that there is a commutative diagram

R R2

R R2

R1 R0

R1 R0

˛ ˛2

˛1 ˛0

Let Aut.R/ denote the set of automorphisms of a Milnor square R, i.e. the set of isomorphisms Ǫ WR!R.

Lemma 8.5 Let R be a Milnor square and let P1 2 P .R1/ and P2 2 P .R2/ be such that there is an
R0–module isomorphism h W .j1/#.P1/! .j2/#.P2/. If Ǫ D .˛; ˛1; ˛2; ˛0/ 2 Aut.R/, then

M.P1;P2; h/˛ ŠM..P1/˛1
; .P2/˛2

; h/

where , on the right , we view h as a map h W .j1/#.P1/˛0
! .j2/#.P2/˛0

.

Algebraic & Geometric Topology, Volume 24 (2024)



Projective modules and the homotopy classification of .G; n/–complexes 2277

Proof Let P DM.P1;P2; h/ so that, by Theorem 8.2, .i1/#.P /Š P1 and .i2/#.P /Š P2. It is easy to
see directly that the natural map

M..i1/#.P /; .i2/#.P /; h/!M..i1/#.P˛/; .i2/#.P˛/; h/

is an isomorphism. We are then done by applying Corollary 8.4.

This has the following simplification when P1 and P2 are free of rank one. Here we will use the
identification AutR0

.R0/ŠR�
0

which sends h WR0!R0 to h.1/ 2R�
0

.

Lemma 8.6 Let R be a Milnor square and let u 2R�
0

. If Ǫ D .˛; ˛1; ˛2; ˛0/ 2 Aut.R/, then

M.R1;R2;u/˛ ŠM.R1;R2; ˛
�1
0 .u//:

Proof Fix identifications  i W .ji/#.Ri/!R0 and let h W .j1/#.R1/! .j1/#.R1/ be such that

. 2 ı h ı �1
1 /.1/D u 2R�0 :

By Lemma 8.5,
M.R1;R2; h/˛ ŠM..R1/˛1

; .R2/˛2
; h/

where h W ..j1/#.R1//˛0
! ..j1/#.R1//˛0

coincides with h as a map of abelian groups. For i D 0; 1; 2,
let ci WRi! .Ri/˛i

be the isomorphism which sends 1 7! 1. Then it is easy to see that

.ji/#.Ri/ ..ji/#..Ri/˛i
/ ..ji/#.Ri//˛0

R0 .R0/˛0

1˝ci

 i

f

 i

c0

commutes for i D 1; 2, where f W .ji/#..Ri/˛i
/ ! ..ji/#.Ri//˛0

is the isomorphism coming from
Corollary 8.4. Using the isomorphisms ci for i D 1; 2, we get that

M..R1/˛1
; .R2/˛2

; h/ŠM.R1;R2; h0/

where h0 W .j1/#.R1/! .j2/#.R2/ induces h W ..j1/#.R1//˛0
! ..j1/#.R1//˛0

via f ı .1˝ ci/. Let
u0 D . 2 ı h0 ı  

�1
1
/.1/ 2 R�

0
. Then, since the above diagram commutes, we get the commutative

diagram

R0 R0

.R0/˛0
.R0/˛0

 2ıhı 
�1
1

c0 c0

 2ıh0ı 
�1
1

1 u0

1 ˛0.u0/

which implies that uD ˛0.u0/ and so u0 D ˛
�1
0
.u/, as required.

If R is a Milnor square, we say that ˛2Aut.R/ extends across R if there exists Ǫ D.˛;˛1;˛2;˛0/2Aut.R/.
The following gives conditions under which this induced map is unique.
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Lemma 8.7 Let R be a pullback square with all maps surjective. If ˛ 2Aut.R/ extends across R, then it
does so uniquely. That is , there exist unique maps ˛1, ˛2 and ˛0 for which Ǫ D .˛; ˛1; ˛2; ˛0/ 2Aut.R/.

Proof This follows from the simple observation that, if f WR� S is a surjective ring homomorphism
and ˛ WR!R and ˇ1; ˇ2 W S ! S are ring homomorphisms such that f ı˛ D ˇi ıf for i D 1; 2, then
ˇ1 D ˇ2. To see this, note that the conditions imply that .ˇ1�ˇ2/ ı f D 0 and so ˇ1 D ˇ2 on Im.f /.
Since f is surjective, Im.f /D S and so ˇ1 D ˇ2.

We conclude this section with the following result which is a consequence of Theorem 8.2 and Lemmas 8.6
and 8.7.

Proposition 8.8 Let R be a pullback square with all maps surjective and such that every ˛ 2 Aut.R/
extends across R. Then there is a one-to-one correspondence

R�1 n.R
�
0 =Aut.R//=R�2 $ fP 2 P .R/ W .i1/#.P /ŠR1; .i2/#.P /ŠR2g=Aut.R/

where ˛ 2Aut.R/ acts on R�
0

by sending r 7! ˛�1
0
.r/ for r 2R�

0
and where ˛0 2Aut.R0/ is the unique

automorphism such that Ǫ D .˛; ˛1; ˛2; ˛0/ 2 Aut.R/.

9 Example: quaternion groups

The aim of this section is to illustrate how Theorems A and B can be combined with the known techniques
to classify projective ZG–modules to obtain a detailed classification of finite .G; n/–complexes up to
homotopy equivalence.

For k � 2, recall that the quaternion group of order 4k has presentation

Q4k D hx;y j x
k
D y2; yxy�1

D x�1
i:

It is a finite 3–manifold group and so has free period 4. For n� 2 even, Theorem A and Proposition 5.1
imply that PHT.Q4k ; n/ Š ŒZQ4k � D

S
r�1 SFr .ZQ4k/ where SFr .ZQ4k/ is the set of stably free

ZQ4k–modules of rank r � 1.

Since stably free ZG–modules of rank � 2 are free for G finite [Swan 1960a] (or since PHT.G; n/
is a fork by Corollary 4.7), it remains to compute SF1.ZQ4k/. This was completed by Swan [1983,
Theorem III] for k � 9. For k � 7, he showed that jSF1.ZQ4k/j D 1 for 2� k � 5, jSF1.ZQ24/j D 3

and jSF1.ZQ28/j D 2. It also follows from his classification that ZQ4k has weak cancellation in all
these cases and so the action of � 2 Aut.Q4k/ on ŒZQ4k � sends P 7! P� (see Section 7).

In the case Q28, the action of Aut.Q28/ on ŒZQ28� is trivial since .ZQ28/� ŠZQ28 for all � 2Aut.Q28/

and so this must also hold for the nonfree stably free module also. The main result of this section will be
to compute the action in the case Q24.

Theorem 9.1 Aut.Q24/ acts nontrivially on ŒZQ24�. More specifically, we have jSF1.ZQ24/j D 3 and
jSF1.ZQ24/=Aut.Q24/j D 2.
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G Q8 Q12 Q16 Q20 Q24 Q28

PHT.G; n/ � � � � � � � � �

HT.G; n/ � � � � � � � �

Table 1: Minimal complexes for any n even with n¤ 2.

All of this is summarised in Table 1, which gives the structure of PHT.G; n/ and HT.G; n/ when n¤ 2 is
even. These graded trees are both forks by Corollary 4.7 and each dot represents a finite .G; n/–complex
at the minimal level.

Remark 9.2 This also holds in the case nD 2 provided G has the D2 property. This holds trivially in
the cases Q8, Q12, Q16 and Q20, and is otherwise only known to be true in the case Q28 by [Nicholson
2021b, Theorem 7.7] using the presentation of Mannan and Popiel [2021].

We will now proceed to the proof of Theorem 9.1. First let x and y be generators for Q24 in the
presentation given above. Let ƒ D ZQ24=.x

6 C 1/ and note that the quotient map f W ZQ24 � ƒ

induces a map
f# W SF1.ZQ24/! SF1.ƒ/

by Lemma 8.1. This is a bijection by the proof of [Swan 1983, Theorem 11.14].

Now note that the factorisation x6C1D .x2C1/.x4�x2C1/ implies that the ideals I D .x2C1/ and
J D .x4�x2C 1/ have I \J D .x6C 1/ and I CJ D .3;x2C 1/. It follows from [Curtis and Reiner
1987, Example 42.3] that we have a pullback diagram

ƒ ZQ24=.x
4�x2C 1/

ZQ24=.x
2C 1/ F3Q24=.x

2C 1/

which is a Milnor square since all maps are surjective.

For a field F , let HF D F Œi; j � denote the quaternions over F and we define HZ D ZŒi; j � and ZŒ�12; j �

to be subrings of HR, where �12D e2�i=12 is the 12th root of unity in the i direction. It is straightforward
to check that there are isomorphisms of rings

�1 WHZ! ZQ24=.x
2
C 1/; i 7! x; j 7! y

�2 W ZŒ�12; j �! ZQ24=.x
4
�x2

C 1/; �12 7! x; j 7! y:

Using this, we can rewrite the Milnor square above as

RD

ƒ ZŒ�12; j �

HZ HF3

i2

i1 j2

j1

x;y �12; j

i; j i; j
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By [Swan 1983, Lemma 8.14], the induced map .i2/� W C.ƒ/! C.ZŒ�12; j �/ is an isomorphism. It also
follows from [Swan 1983, page 84] that the rings HZ and ZŒ�12; j � both have stably free cancellation,
i.e. that every stably free module is free. It follows easily that

SF1.ƒ/D fP 2 P .ƒ/ W .i1/#.P /ŠHZ; .i2/#.P /Š ZŒ�12; j �g:

In particular, by combining with Theorem 8.2, we get that there is a bijection

SF1.ƒ/$H�ZnH
�
F3
=ZŒ�12; j �

�:

Lemma 9.3 H�ZnH
�
F3
=ZŒ�12; j �

� D fŒ1�; Œ1C j �; Œ1C k�g.

Proof If N WHF3
! F3 is the norm, then H�F3

DN�1.˙1/. Now note that H�Z D f˙1;˙i;˙j ;˙kg,
and it is easy to check that

H�ZnH
�
F3
D
˚
Œ1�; Œ1C i �; Œ1C j �; Œ1C k�; Œ1C i C j C k�; Œ1� i � j � k�

	
:

By [Magurn et al. 1983, Lemma 7.5(b)], ZŒ�12; j �
� D ZŒ�12�

� � hj i and so it remains to determine

Im.ZŒ�12; j �
�
!H�ZnH

�
F3
/D Im.ZŒ�12�

�
!H�ZnH

�
F3
/� fŒ1�; Œ1C i �g;

where the last inclusion follows since �12 7! i and H�Znh1; ii D fŒ1�; Œ1C i �g.

Consider the nth cyclotomic polynomial

ˆn.x/D
Y

k2Z�n

.x� �k
n /:

It is well known, and can be shown using Möbius inversion, that ˆn.1/D 1 if n is not a prime power. In
particular, ˆ12.1/D 1 and this implies that 1� �12 2 ZŒ�12�

�. Hence

Œ1C i �D Œ1� i � 2 Im.ZŒ�12�
�
!H�ZnH

�
F3
/:

The result then follows since

j .1C i C j C k/.1C i/D 1C k; �j .1� i � j � k/.1C i/D 1C j

implies that Œ1C j �D Œ1� i � j � k� and Œ1C k�D Œ1C i C j C k� in H�ZnH
�
F3
=ZŒ�12; j �

�.

This implies that jSF1.ZQ24/j D 3, which recovers the result of Swan. In order to determine the action
of Aut.Q24/ on SF1.ZQ24/, first recall from Section 7 that

Aut.Q24/D f�a;b W x 7! xa; y 7! xby j a 2 .Z=12/�; b 2 Z=12g:

If R denotes the Milnor square defined above, then the following is easy to check.
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Lemma 9.4 If a 2 .Z=12/� and b 2 Z=12, then �a;b 2 Aut.Q24/ extends to a Milnor square automor-
phism

O�a;b D .�
0
a;b; �

1
a;b; �

2
a;b;
N�a;b/ 2 Aut.R/

where , for aD 2a0C 1, the maps are defined as follows:

(i) � 0
a;b
2 Aut.ZQ24=.x

6C 1// is given by x 7! xa and y 7! xby.

(ii) �1
a;b
2 Aut.HZ/ and N�a;b 2 Aut.HF3

/ are each given by

i 7! ia
D .�1/a0i; j 7! j b

D

�
(� 1/b0j if b D 2b0C 1;

(� 1/b0k if b D 2b0:

(iii) �2
a;b
2 Aut.ZŒ�12; j �/ is given by �12 7! �a

12
and j 7! �b

12
j .

Since R is a pullback square with all maps surjective, we can now apply Proposition 8.8. By combining
with Lemma 9.3, this implies that there is a bijection

SF1.ZQ24/=Aut.Q24/$ fŒ1�; Œ1C j �; Œ1C k�g=Aut.Q24/

where �a;b 2 Aut.Q24/ acts on the double cosets via the action described in Lemma 9.4. In particular,

N�a;b.Œ1C j �/D

�
Œ1C .�1/b0j �D Œ1C j � if b D 2b0C 1;

Œ1C .�1/b0k�D Œ1C k� if b D 2b0;

and so N�a;b acts nontrivially when b is even. Hence jSF1.ZQ24/=Aut.Q24/j D 2. This completes the
proof of Theorem 9.1.
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We construct Lie algebras of derivations (and identify their geometric realizations) whose Maurer–Cartan
sets provide moduli spaces describing the classes of homotopy types of rational spaces having the same
homotopy Lie algebra, homology or cohomology.
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Introduction

Derivations of a Lie algebra are ubiquitous objects in topology. A particular instance is the following
classical result (see M Schlessinger and J Stasheff [16] and D Tanré [17]): when L is a differential
graded Lie algebra (dgl henceforth) characterizing the rational homotopy type of a finite simply connected
CW–complex X , the dgl of positive derivations of L characterizes in the same fashion the rational
homotopy type of the universal covering of Baut�.X/, the classifying space of pointed self-homotopy
equivalences of X . With the recent extension of the Quillen approach to rational homotopy theory (see
U Buijs, Y Félix, A Murillo and Tanré [6]) we were able to extend this result to connected dgls of derivations
as long as the degree-zero derivations characterize a Q–complete (in the sense of Maltsev) subgroup of
aut�.X/; see Félix, M Fuentes and Murillo [8] and also the recent approach of A Berglund and T Zeman [2]
to the description of the rational homotopy type of the classifying spaces of self-homotopy equivalences.

At this stage is convenient to remark that, under the mentioned extension of Quillen theory, which is the
one we consider, only dgls that are complete are susceptible to being topologically realized (see Section 1
for a brief compendium on this theory). Nevertheless, the reader may find other classes of dgls whose
topological realizations have been considered. See for instance the integration procedure of the class of
absolute dgls recently developed by V Roca i Lucio in [12].

Complete dgls contain much more geometric data than their connected covers. For instance, the Maurer–
Cartan set of a dgl modulo the gauge relation (eMC set from now on) corresponds to the set of path-connected
components in which the realization of the given dgl decomposes. We try to collect this extra data for
some sub-Lie algebras of derivations of a given dgl, which are complete and still provide important

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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geometric information. In all these cases, their eMC sets, or the space of orbit of a certain action on them,
turn out to be a moduli space governing classes of rational homotopy types sharing certain structures.

To begin with, we consider in Section 3 an extended dual “Lie version” of the deep result of Schlessinger
and Stasheff [16, Main Theorem 4.1] which will also be considered later. Let � be a complete connected
graded Lie algebra and let Ho sset� be the class of homotopy types of rational simplicial sets whose
homotopy Lie algebra is isomorphic to � . If L denotes the bigraded minimal Lie model of � , which
is properly introduced in Theorem 3.1, we prove the following (see Theorem 3.5 and Corollary 3.6 for
precise and detailed statements):

Theorem There exists a complete sub-dgl DerL of DerL such that

Ho sset� ŠeMC.DerL/:

Via this bijection, the quotient stack eMC.DerL/DMC.DerL/=exp.Der0L/ can be seen as the moduli
space of Ho sset� .

It is important to remark that, in the simply connected case, this result was already sketched by D Blanc
[3, Section 3] and explicitly developed by M Zawodniak in his thesis [18].

Then in Section 4 we construct a complete dgl of derivations, which provides a moduli space governing the
class Ho sset1H of homotopy types of rational finite-dimensional simply connected complexes sharing the
same reduced homology with no additional structure. For it, let L.V / be the free Lie algebra generated by
V D s�1H and consider the dgl LD .L.V /; 0/ with trivial differential. With this notation, Corollary 4.4
can be summarized as follows:

Theorem There exists a complete sub-dgl DerL of DerL and a natural action of aut.V / on eMC.DerL/
for which

(1) Ho sset1H ŠeMC.DerL/=aut.V /:

Moreover ,
hDerLi D

a
X2Ho sset1H

a
OX

Baut�H.X/:

Here h � i denotes the realization functor on complete dgls (see Section 1), OX denotes the (cardinality of
the) orbit by the action of aut.V / of any element in eMC.DerL/ representing X by the bijection (1), and
finally aut�H.X/ is the subgroup of pointed homotopy equivalences of X which induces the identity on
homology.

In other words, the realization of DerL is the disjoint union of simplicial sets, one for each X 2Ho sset1H .
Moreover, each of these pieces also decomposes in as many path components as points in the orbit OX ,
each of which is of the homotopy type of the classifying space Baut�H.X/.

Thus in this case eMC.DerL/ is too big to describe Ho sset1H . Nevertheless, there is an action of aut.L/
on MC.DerL/ which provides the quotient stack MC.DerL/=aut.L/ responsible for Ho sset1H .

Algebraic & Geometric Topology, Volume 24 (2024)
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We remark that this result is a particular instance of the extended version in Theorem 4.2.

Finally, in Section 5 we consider the augmentation ideal A of a given simply connected finite-dimensional
commutative graded algebra and denote by Ho sset1A the class of homotopy types of rational simply
connected spaces sharing A as rational (reduced) cohomology algebra. We then present a different
description of Ho sset1A than the one given by Schlessinger and Stasheff in [16, Main Theorem 4.1]. For
it (see Section 5 for details), denote by LDL .A]/ the classical Quillen functor on the coalgebra given
by the dual of A. This is a dgl with a purely quadratic differential for which we prove (see Theorem 5.3
for a precise statement):

Theorem There exists a complete sub-dgl DerL of DerL and a natural action of aut.A/ on eMC.DerL/
such that

Ho sset1A ŠeMC.DerL/=aut.A/:
Moreover ,

hDerLi '
a

X2Ho sset1A

a
OX

Baut�H.X/:

Here OX again denotes the orbit by the action of aut.A/ of any element in eMC.DerL/ representing
X by the bijection in (i). On the other hand, as before, aut�H.X/ stands for the subgroup of pointed
self-homotopy equivalences of X which induce the identity on homology. As X is rational, this trivially
coincides with the group of self-homotopy equivalences inducing the identity on cohomology.

As a consequence we can also exhibit a particular quotient stack over MC.DerL/ as a moduli space
of Ho sset1A.

To prove the above results we need some technical statements, which are contained in Section 2. This
section extends and reformulates some results of Félix, Fuentes and Murillo [8, Section 6] to obtain
certain complete sub-Lie algebras of a general DerL containing the whole connected cover.

Acknowledgments We thank the referee for helpful suggestions and corrections which have considerably
improved the content and presentation of this paper. The authors have been partially supported by the
MICINN grant PID2020-118753GB-I00 of the Spanish government and the EXCEL-00827 grant of the
Junta de Andalucía. Murillo also thanks the Instituto de Matemáticas de la UNAM en Oaxaca for its
hospitality during a short stay in which part of this work was developed.

1 Preliminaries

This section is devoted to recalling the basic facts that we use from the homotopy theory of complete
differential graded Lie algebras. We refer to the monograph [6], or the original references [5; 7], for details.

All considered differential graded vector spaces, possibly endowed with additional structures, are rational
and graded over Z. The suspension and desuspension of such a graded vector space V are denoted by sV
and s�1V , respectively. That is .sV /n D Vn�1 and .s�1V /n D VnC1 for any n 2 Z.

Algebraic & Geometric Topology, Volume 24 (2024)
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We often do not distinguish objects of the category sset of simplicial sets from the topological spaces
given by their realization, which are therefore of the homotopy type of CW–complexes.

We denote by dgl the category of differential graded Lie algebras (dgls henceforth). A dgl L, or .L; d/ if
we want to specify the differential, is connected if LD L�0.

A Maurer–Cartan element, or simply MC element, of a given dgl L is an element a 2 L�1 satisfying
the Maurer–Cartan equation daD�1

2
Œa; a�. We denote by MC.L/ the set of MC elements in L. Given

a 2MC.L/, we denote by da D d C ada the perturbed differential on L where d is the original one and
ad is the usual adjoint operator. The component of L at a is the connected sub-dgl La of .L; da/ given by

Lap D

�
ker da if p D 0;
Lp if p > 0:

The derivations DerL of a given dgl L is a dgl with the usual Lie bracket and differential D D Œd;��:

Œ�; ��D � ı �� .�1/j� jj�j� ı �; D� D d ı � � .�1/j� j� ı d:

A filtration of a dgl L is a decreasing sequence of differential Lie ideals

LD F 1 � � � � � F n � F nC1 � � � �

such that ŒF p; F q�� F pCq for p; q � 1. In particular, the lower central series of L,

L1 � � � � � Ln � LnC1 � � � � ;

where L1 D L and Ln D ŒL;Ln�1� for n > 1, is a filtration for any dgl which satisfies Ln � F n for any
n� 1 and any other filtration fF ngn�1 of L.

A complete differential graded Lie algebra, cdgl henceforth, is a dgl L equipped with a filtration fF ngn�1
for which the natural map

L Š�! lim
 ��
n

L=F n

is a dgl isomorphism. A cdgl morphism between cdgls is a dgl morphism which preserves the filtrations.
We denote by cdgl the corresponding category. By a complete graded Lie algebra, cgl hereafter, we mean
a cdgl endowed with the trivial differential.

If L is a dgl filtered by fF ngn�1, its completion is the dgl

yLD lim
 ��
n

L=F n;

which is always complete with respect to the filtration

yF n D ker.yL! L=F n/:

If no specific filtration is given, the completion of a generic dgl is always taken over the lower central
series. In particular, if L.V / denotes the free Lie algebra generated by the graded vector space V , the
completion of a dgl of the form .L.V /; d/ is the cdgl

yL.V /D lim
 ��
n

L.V /=L.V /n:
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This is an important object in this theory, whose main properties are detailed in [6, Section 3.2]. Note
that if V D V>0 then yL.V /D L.V /.

Given a cdgl L, the group L0, endowed with the Baker–Campbell–Hausdorff product (BCH product
henceforth), acts on the set MC.L/ by

xGaD eadx .a/�
eadx�1

adx
.dx/D

X
i�0

adix.a/
i Š
�

X
i�0

adix.dx/
.i C 1/Š

for x 2 L0 and a 2MC.L/:

This is the gauge action and we denote by eMC.L/DMC.L/=G the corresponding orbit set. A homotopical
description of the gauge action is given in [6, Section 5.3].

The homotopy theory of cdgls lies in the existence of a pair of adjoint functors [6, Chapter 7]: (global)
model and realization,

(2) sset L��!
h � i
 �� cdgl

The set of 0–simplices of hLi coincides with MC.L/. Moreover, if hLia denotes the path component of
hLi containing the MC element a, then

(3) hLia ' hLai and hLi 'qa2fMC.L/hL
a
i:

If L is connected, for any n� 1 we have group isomorphisms

�nhLi ŠHn�1.L/;

where the group structure inH0.L/ is considered with the BCH product. Under the homotopy equivalence
hLi ' MC�.L/ between the realization of L and the Deligne–Getzler–Hinich groupoid of L (see
[6, Section 11.4]), this is the original explicit isomorphism of Berglund �n MC�.L/ Š Hn�1.L/ in
[1, Theorem 1.1].

We will also use the fact that the realization of a cdgl is invariant under perturbations. That is, for any
cdgl L and any a 2MC.L/,

(4) hLi Š h.L; da/i:

Finally, the realization functor coincides with any other known geometric realization of cdgls. In particular,
if L is a 1–connected dgl of finite type, then (see [6, Corollary 11.17]) hLi has the homotopy type of the
classical Quillen realization of L [15].

On the other hand (see again [6, Chapter 7] for details), the global model LX of a simplicial set X
completely reflects its simplicial structure. In particular, the 0–simplices of X are the Maurer–Cartan
elements of LX .

If X is a simply connected simplicial set of finite type and a is any of its vertices, then [6, Theorem 10.2]
LaX is quasi-isomorphic to �.X/ where � is the classical Quillen dgl model functor [15]. Moreover
(see [6, Theorem 11.14]), for any connected simplicial set X of finite type, hLaX i is weakly homotopy
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equivalent to Q1X , the Bousfield–Kan Q–completion of X [4]. Recall that, whenever X is nilpotent,
Q1X and has the homotopy type of XQ, the rationalization of X .

The category cdgl has a cofibrantly generated model structure (see [6, Chapter 8]), for which the functors
in (2) become a Quillen pair. With this structure the induced functors in the respective homotopy categories
extend the classical Quillen equivalence between rational homotopy types of simply connected simplicial
sets and homotopy types of simply connected dgls.

A model of a connected cdgl L is a connected cdgl of the form .yL.V /; d/ together with a quasi-
isomorphism (and hence a weak equivalence)

.yL.V /; d/ '�! L:

If d is decomposable we say .yL.V /; d/ is the minimal model of L and is unique up to cdgl isomorphism.

Definition 1.1 Let X be a connected simplicial set and a any of its vertices. The minimal model of X is
the minimal model of LaX .

If .yL.V /; d/ is the minimal model of X , then (see [6, Proposition 8.35]) sV Š zH�.X IQ/ and, provided
X is of finite type, sH�.yL.V /; d/Š ��.Q1X/. Again, the group H0.yL.V /; d/ is considered with the
BCH product. If X is simply connected, the minimal model of X is isomorphic to its classical Quillen
minimal model, for which we refer to [13] or [15].

2 Complete Lie algebras of derivations

Derivations of a cdgl are essential objects in this paper. However, even if L is 1–connected, DerL may
fail to be complete, and thus their MC set are not defined and they are unable to be topologically realized
as described in the previous section. For instance, let LD .L.x; y/; 0/ with jxj D jyj D 2, and consider
�1; �2; �3 2 Der0L defined by

�1.x/D x; �1.y/D�y; �2.x/D y; �2.y/D 0 �3.x/D 0 and �3.y/D x:

Note that Œ�1; �2�D �2�2, Œ�1; �3�D 2�3 and Œ�2; �3�D ��1. Hence for any given filtration fF ngn�1
of DerL, �i 2 F n for any n and any i . That is, these derivations live in the kernel of the natural map
DerL! lim

 ��n�1
DerL=F n and thus DerL is not complete.

Nevertheless, for any complete sub-dgl M of .DerL;D/ we shall use the following general fact:

(5) MC.M/D fı 2M�1 such that d C ı is a differential in Lg:

Moreover, the gauge relation is characterized by the following result:

Proposition 2.1 Two Maurer–Cartan elements ı; � 2MC.M/ are gauge related if and only if there exists
an isomorphism of the form

e� W .L; d C ı/ Š�! .L; d C �/

with � 2M0. Moreover , the gauge action is given by �G ı D �.
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The proof is an obvious extension of [6, Theorem 4.31] to any complete sub-dgl of derivations.

Proof Suppose first that ı and � are gauge related. Thus, there exists � 2M0 such that

�D ead� .ı/�
ead��1

ad�
.D�/:

As D� D Œd; ��,
ead��1

ad�
.D�/D

X
i�0

adi�
.i C 1/Š

Œd; ��D�
X
i�1

adi�
i Š
d:

Therefore,

d C �D d C ead� .ı/C
X
i�1

adi�
i Š
.d/D ead� .d C ı/:

We then use the general formula ead� .d C ı/D e� .d C ı/e�� (see for instance [6, Proposition 4.13]) to
conclude that

d C �D e� .d C ı/e�� ; that is, .d C �/e� D e� .d C ı/;

and e� is the required isomorphism.

For the other implication simply reverse the above argument.

Due to this fact, we often identify M0 with

exp.M0/D fe
� ; � 2M0g;

and write eMC.M/DMC.M/=exp.M0/.

If M is of finite type, choose bases f@igsiD1 and f�`gr`D1 of M�1 and M�2, respectively, and write

Œ@i ; @j �D
X
`

�`ij�` for �`ij 2Q:

Then, given ı 2M�1, the derivation d C ı D
P
i ˛i@i is a differential if and only ifX

i;j

�`ij˛i j̨ D 0 for `D 1; : : : ; r:

In other words, if we denote by VL � Cs the affine algebraic variety defined by the polynomialsP
i;j �

`
ij˛i j̨ , with `D 1; : : : ; r , we conclude that

(6) MC.M/D frational points of VLg:

So eMC.M/DMC.M/=exp.M0/ can be considered as a quotient stack.

Next, consider LD .yL.V /; d/ a connected minimal cdgl in which V is bounded above, that is V>m D 0
for some m. We then identify some complete sub-dgls of DerL which conserve its “connected cover”.
For it, choose an arbitrary finite filtration of V by graded vector subspaces:

(7) V D V 0 � V 1 � � � � � V q�1 � V q D 0:
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As in [8, Section 6], for n� 1 and p � 0, write

yL
n;p
.V /D Span

��
v1;

�
v2; Œ: : : ; Œvn�1; vn� : : :

�
2 yL

n
.V /

ˇ̌̌
vi 2 V

˛i and
nX
iD1

˛i D p

�
;

and define
F n;p DyL

n;p
.V /˚yL

�nC1
.V /;

so that

yL.V /D F 1;0 � � � � � F 1;q�1 � F 2;0 � � � � � F 2;2q�1 � � � � � F n;0 � � � � � F n;nq�1 � � � � :

In the order given by this sequence, F n;p takes the position

t D qC � � �C .n� 1/qCpC 1D 1
2
.n� 1/nqCpC 1

and we define F t D F n;p for n, p and t as above. In [8, Proposition 6.3] it is proved that fF tgt�1 is a
filtration of L for which it is complete.

This filtration of L naturally determines a decreasing sequence of sub-dgls of DerL

(8) F1 � � � � � Fn � FnC1 � � � � ;

where, for any n� 1,
Fn D f� 2 DerL j �.F r/� F nCr for all r � 0g:

Note that fFngn�1 is a filtration of the dgl F1. Moreover, a simple inspection shows that

(9) F1 D f� 2 DerL j ��.V i /� V iC1 for all ig;

where �� W V ! V denotes the linear part of � . Then:

Proposition 2.2 F1 is a complete dgl.

Proof As
T
n FnD 0, the map F1! lim

 ��n
F1=Fn is injective. On the other hand, write a given element

of lim
 ��n

F1=Fn as a series
P
n �n with �n 2 Fn. Note that, for each v 2 V and any integer m � 1, the

series
P
n �n.v/ contains a finite sum of elements in Lm.V /, and thus

P
n �n.v/ is a well-defined element

in yL.V /. Hence
P
n �n 2 F1, and the above map is also surjective.

We now “enlarge” the cdgl F1 as much as possible in positive degrees: starting from the original
filtration (7) we define a new filtration of V as follows:

V �V 11 ˚V�2�V
2
1 ˚V�2�� � ��V

q�1
1 ˚V�2�V�2�V

1
2 ˚V�3�V

2
2 ˚V�3�� � ��V

q�1
2 ˚V�3�V�3

� � � � � V 1m � V
2
m � � � � � V

q�1
m � 0;

where m is such that V>m D 0. If we rename this filtration of subspaces of V by

V D V0 � V1 � V2 � � � � � Vm.q�1/ � 0;

it clearly satisfies the following property:

(10) V i` ¤ 0 implies V>` � V iC1:
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Definition 2.3 For this new filtration of V , the procedure above determines again a decreasing sequence
of sub-dgls of DerL as in (8), whose first term we denote by DerL.

By Proposition 2.2, DerL is complete and, in view of (9), it can be written as

DerLD f� 2 DerL j ��.V i /� V iC1 for all ig:

Furthermore, from the characterization of F1 in (9) one easily observes that

(11) F1>0 � Der>0L; F10 D Der0L and F1<0 � Der<0L:

Moreover:

Proposition 2.4 Derk LD

8̂<̂
:

Derk L if k > 0;

� 2 Der0L such that �.V i /� V iC1˚yL
�2
.V / if k D 0;

� 2 Derk L such that �.V /�yL
�2
.V / if k < 0:

That is, DerL is a cdgl consisting of all derivations in positive degrees, those derivations of degree 0
which increase the original filtration degree on V modulo decomposables, and all derivations of negative
degrees which increase the word length.

Proof Let k > 0 and � 2 Derk L. Then, for any i and any nonzero element of degree v 2 V i
`
, it follows

by (10) that ��.v/ 2 VkC` � V iC1. By (9), � 2 Derk L.

Let k<0 and � 2Derk L such that �.V /�yL
�2
.V /. By definition � 2Derk L. Conversely, let � 2Derk L

and let v 2 V be a nonzero element. Assume v 2 V` and let i be the maximal filtration index such that
v 2 V i but v … V iC1. Then ��.v/ D 0. Otherwise ��.v/ 2 V iC1

<`
. Hence by (10) V` � V iC2, which

contradicts the fact that v … V iC1.

Finally, for k D 0, the obvious fact F10 D Der0L in (11) amounts to the required equality.

Remark 2.5 Of special interest in what follows is the particular instance of choosing the trivial filtration
V D V 0 � V 1 D 0 on V . In this case,

Derk LD
�

Derk L if k > 0;

� 2 Derk L such that �.V /�yL
�2
.V / if k � 0:

3 Rational homotopy types with prescribed homotopy Lie algebras and
their moduli space

In this section we check that the method for building the moduli space of rational simply connected
homotopy types with prescribed homotopy Lie algebra, already sketched in [3, Section 3] and explicitly
developed in [18], also works in the nonsimply connected case by means of the homotopy theory of cdgls.

First, a simple inspection shows that the procedure to obtain the bigraded model of a simply connected
graded Lie algebra (see [11, théorème 1] or [14, Chapter I]), dual of the classical commutative context
[10, Section 3], extends mutatis mutandis to any connected complete cdgl:
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Theorem 3.1 (complete bigraded Lie model) Let � be a connected cgl. Then the cdgl .�; 0/ admits a
Lie minimal model

� W .yL.V /; d/ '�! .�; 0/

satisfying:

� V D
L
p;q�0 V

q
p is bigraded , being the lower grading the usual homological one. This bigradation

extends bracketwise to yL.V /.

� dV 0 D 0 and d.V nC1/�yL.V �n/n for n� 0. In particular d decreases by one the upper degree
so that H.yL.V /; d/D

L
p;q�0H

q
p .yL.V; d/ is also bigraded.

� � W yL.V 0/� � is surjective , �.V n/D 0 for n� 1, H 0.�/ WH 0.yL.V /; d/ Š�! � is an isomorphism
and HC.yL.V /; d/D 0.

For completeness we include here a sketch of the proof:

Proof Let � be filtered by fF ngn�1 so that �Š lim
 ��n

�=F n, and consider the projection q W�!�=Œ�; ��

onto the indecomposables of � . Define V 0 to be a space of generators of � by V 0D�=Œ�; �� and choose
� W V 0! � a section of q. Set dV 0 D 0 and extend � first to L.V 0/! � and then, by completion, to

� W yL.V 0/D lim
 ��
n

L.V 0/=Ln.V 0/! lim
 ��
n

�=�n! lim
 ��
n

�=F n D �:

Next, define V 1 to be a space of relations of � by V 1 D ker �=ŒyL.V 0/; ker ��, set �.V 1/D 0 and extend
d to V 1 as a section of the projection ker �� V 1.

For n � 1 define V nC1 D Hn.yL.V �n/=ŒHn.yL.V �n/;H 0.yL.V �n/�, set �.V nC1/ D 0 and define
d W V nC1!yL.V �n/n\ ker d to be a section of yL.V �n/n\ ker d � V nC1.

Definition 3.2 The cdgl .yL.V /; d/ is the (complete) bigraded model of � . We say that the elements of
yL.V /np have weight p�n. Note that the differential d preserves weight as dV np �yL.V /

n�1
p�1

We now show that any cdgl whose homology is isomorphic to the cgl � has a Lie model (not minimal in
general) obtained by perturbing in a particular way the bigraded Lie model of � . The following is again
a straightforward extension to the complete connected setting of [11, théorème 2] or [14, Chapter II],
which is in turn the dual of [10, Theorem 4.4] in the commutative context.

Theorem 3.3 (complete filtered Lie model) Let � W .yL.V /; d/ '�! � be the bigraded model for the cgl
� and let L be a cdgl whose homology is isomorphic to � . Then there is a Lie model of L of the form

� W .yL.V /; d C'/ '�! L

such that ' increases the weight and Œ�.v/�D �.v/ for each v 2 V 0.

Moreover , if  W .yL.V /; d C / '�! L is another Lie model under the same conditions , there exists an
isomorphism

f W .yL.V /; d C'/ Š�! .yL.V /; d C /

such that f � idyL.V / increases the weight and f is homotopic to �. �

Algebraic & Geometric Topology, Volume 24 (2024)



Realization of Lie algebras of derivations and moduli spaces of some rational homotopy types 2295

Definition 3.4 Let � be a connected cgl and .yL.V /; d/ be its bigraded model. Define the sub-Lie algebra

DeryL.V /� DeryL.V /

of derivations which raise the weight. That is, if W m � yL.V / denotes the subspace of elements of
weight m, then � 2DeryL.V / if �.W m/�W �mC1 for all m 2 Z.

We can now easily prove the dual of [16, Theorem 4.1]:

Theorem 3.5 We have that .DeryL.V /;D/ is a cdgl whose eMC set is in bijective correspondence with
the set Ho cdgl� of homotopy types of cdgls whose homology is isomorphic to � .

Proof Filter DeryL.V / by fF ngn�1, where

F n D f� 2DeryL.V / j �.W m/�W mCn for all mg:

A simple inspection shows that fF ngn�1 is indeed a filtration of the dgl .DeryL.V /;D/. Moreover,T
n�1 F

n D 0 so the natural map � WDeryL.V /! lim
 ��n

DeryL.V /=F n is injective.

On the other hand, write any � 2 lim
 ��n

DeryL.V /=F n of degree q as

� D
X
n�1

�n for �n 2 F n;

and observe that, for any p;m� 0, �n.V mp /D 0 as long as n> qCm. Hence, for any v 2 V ,
P
n�1 �n.v/

is always a finite sum. That is, � is a well-defined element in DeryL.V / and thus � is also surjective. This
shows that .DeryL.V /;D/ is a complete dgl. Note that d …DeryL.V / as it does not raise the weight.

We next see that

exp.Der0yL.V //D ff 2 autyL.V / such that f � idyL.V / raises the weightg:

Indeed, given � 2 Der0 yL.V / we have e� � idyL.V / D
P
n�1 �

n=nŠ, which clearly raises the weight.
Conversely, given f 2 autyL.V / such that f � idyL.V / raises the weight, the linear map

� W V !yL.V / given by �.v/D
X
n�1

.�1/nC1
.f � id/n

n

is well defined and clearly raises the degree. In fact, the same argument used above shows that for any
p;m � 0 and any v 2 V mp we have .f � id/n.v/ D 0 for n big enough. To conclude, extend � as a
derivation in Der0yL.V / so that � D logf , or equivalently, f D e� .

Finally, regard the MC set as in (5) and consider the map

MC.DeryL.V /;D/!Ho cdgl� given by x' 7! homotopy type of .yL.V /; d C'/:

It clearly factors through the orbit set

eMC.DeryL.V /;D/DMC.DeryL.V /;D/=exp.Der0 yL.V //! Ho cdgl� ;

and, by a direct application of Theorem 3.3, this is a bijection.
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Corollary 3.6 Let � be a finite type connected cgl and let .yL.V /; d/ be its bigraded model. Then the
set Ho sset� of homotopy types of rational simplicial sets whose homotopy Lie algebra is isomorphic to
� is in bijective correspondence with eMC.DeryL.V /;D/.

Proof We first note that any rational simplicial set whose homotopy Lie algebra is isomorphic to �
is a nilpotent finite type simplicial set. Indeed, every complete finite type Lie algebra � is degreewise
nilpotent [1, Proposition 5.2]. That is, for each degree n there is an integer k � 1 such that any bracket of
length k and degree n vanishes. Moreover, if � is connected, being degreewise nilpotent is equivalent
to �0 being nilpotent and acting nilpotently on �n for all n� 1. Hence, any simplicial set having � as
homotopy Lie algebra is necessarily rational nilpotent and of finite type.

On the other hand, the pair of adjoint functors in (2) restrict to equivalences between the homotopy
categories of rational nilpotent finite type simplicial sets and that of connected cdgls whose homology is
complete and of finite type, ie degreewise nilpotent [6, Chapter 10]. To finish, apply Theorem 3.5

Remark 3.7 Identifying, as in (6), MC.DeryL.V /;D/ with the rational points of the variety VL with
LD .yL.V /; d/, the above corollary exhibits the quotient stack VL=exp.Der0 yL.V // as a moduli space
of Ho sset� .

We are aware that, as we work over the rationals, this topological space is not a quotient of a variety.
Nevertheless, following [16, Section 7], where the authors study the commutative dual context, one could
properly define and study DerL as a scheme and exp.Der0 yL.V // as an algebraic group acting on DerL.
In this way Ho sset� would become a quotient stack. This remark applies to the subsequent sections

4 Rational homotopy types with prescribed homology and their moduli
space

We describe the geometric realization of the cdgls of derivations provided in the previous section and
interpret their eMC sets from the topological point of view.

Definition 4.1 LetH be a simply connected graded vector space bounded above. Denote by Ho sset1H the
class of homotopy types of rational simply connected simplicial sets with reduced homology isomorphic
to H . To avoid excessive notation, we will not distinguish a simplicial set from the homotopy type it
represents.

We fix such a graded vector space H and a finite filtration of it,

H DH 0
�H 1

� � � � �H q�1
�H q

D 0:

This induces a filtration on V D s�1H as in (7). Let LD .L.V /; 0/ and consider the cdgl DerL given in
Proposition 2.4 corresponding to this filtration.
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For each X 2 sset1H , denote by G the subgroup of homotopy classes of self-homotopy equivalences of X
which raise the degree of the homology filtration:

G D fŒf � 2 E.X/ jH.f /.H i /�H iC1 for all ig:

Consider also the subgroup aut�G.X/� aut�.X/ of pointed homotopy automorphisms whose homotopy
classes (free or pointed, as X is simply connected) live in G:

aut�G.X/D ff 2 aut�.X/ j Œf � 2Gg:

In sset1H there is a particular element that we denote by X0, whose minimal model is L. This is the
(co)formal space with free rational homotopy Lie algebra generated by H consisting of a wedge of
rational spheres, one for each generator of H .

Theorem 4.2 (i) There are actions of aut.L/ on MC.DerL/ and aut.L/=exp.Der0L/ on eMC.DerL/
which induce bijections

eMC.DerL/=.aut.L/=exp.Der0L//ŠMC.DerL/=aut.L/Š Ho sset1H :

(ii) Moreover ,
hDerLi D

a
X2Ho sset1H

a
OX

Baut�G.X/:

Here OX denotes the (cardinality of the) orbit by the action of aut.L/=exp.Der0L/ of any element in
eMC.DerL/ providing X via the bijection in (i). In other words, when H is finite dimensional, the
realization of DerL is the disjoint union of simplicial sets, one for each X 2Ho sset1H , and each of which
with as many path components as points in the orbit OX . Finally, each of these path components has the
homotopy type of the classifying space Baut�G.X/, which is nilpotent but clearly not simply connected.

Remark 4.3 In (ii) we may replace the zero differential on L by any other decomposable differential d .
Indeed, in view of (5), any such differential is an MC element in DerL, and by (4),

hDerLi D h.DerL; 0/i ' h.DerL; 0d /i D h.DerL;D/i;

where D D Œd;��, the differential induced by d .

Proof (i) In view of Proposition 2.4, the MC elements of DerL are simply decomposable differentials
on L.V /. Therefore, the group aut.L/ acts on MC.DerL/ by

(12) ' � ı D 'ı'�1 for ' 2 aut.L/ and ı 2MC.DerL/:

That is, ' � ı D ı0 if
' W .L.V /; ı/ Š�! .L.V /; ı0/

is a dgl isomorphism. Note also that the map

MC.DerL/! Ho sset1H given by ı 7! h.L.V /; ı/i
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induces a map on the orbit set,

(13) MC.DerL/=aut.L/ Š�! Ho sset1H ;

which is clearly a bijection.

On the other hand, and although exp.Der0L/ is not in general a normal subgroup of aut.L/, we still can
consider the short exact sequence of pointed sets

(14) exp.Der0L/! aut.L/! aut.L/=exp.Der0L/;

and observe that the action of aut.L/ on MC.DerL/ restricts to the gauge action of Der0L on MC.DerL/:
�G ı D ı0 if, again,

.L.V /; ı/ e
�

�! .L.V /; ı0/

is a dgl isomorphism.

Hence, aut.L/=exp.Der0L/ acts on the orbit set MC.DerL/=exp.Der0L/DeMC.DerL/ and

eMC.DerL/=.aut.L/=exp.Der0L//ŠMC.DerL/=aut.L/:

This and (13) proves (i).

(ii) By (3), the number of connected components of �0hDerLi is in bijective correspondence with
eMC.DerL/. But, in view of (i), each homotopy type of Ho sset1H contains as many eMC elements of
DerL as points in OX . Hence, the number of connected components of hDerLi is as asserted.

Next choose d 2eMC.DerL/, which again corresponds to a decomposable differential d in LDyL.V /.
Then the (algebraic) component .DerL/d is the connected cdgl

.DerL/dk D
�

Derk L if k > 0;
Der0L\ kerD if k D 0;

whose differential is D D Œd;��, induced by d . By [8, Theorem 7.13], if we denote by X 2 sset1H the
(rational homotopy type of the) simplicial set whose minimal model is .L.V /; d/, we deduce that

h.DerL/d i ' Baut�G.X/;
and (ii) follows.

The following instance is of special interest. If we choose in H the trivial filtration H DH 0 �H 1 D 0,
Theorem 4.2 reads:

Corollary 4.4 (i) There are actions of aut.L/ on MC.DerL/ and aut.V / on eMC.DerL/ which
induce bijections

eMC.DerL/=aut.V /ŠMC.DerL/=aut.L/Š Ho sset1H :

(ii) Moreover ,
hDerLi D

a
X2Ho sset1H

a
OX

Baut�H.X/:
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Here, for each X 2Ho sset1H , H denotes the subgroup of homotopy classes of self-homotopy equivalences
that induce the identity on homology. Again, OX denotes the (cardinality of the) orbit by the action of
aut.V / of any element in eMC.DerL/ representing X by the bijection in (i).

Proof Recall from Remark 2.5 that in this case

Der0LD f� 2 Der0L such that �.V /�yL
�2
.V /g:

Then
exp.Der0L/D f' 2 aut.L/ j '� D idV g;

where '� W V ! V denotes the induced map on the indecomposables. Hence (14) becomes

(15) exp.Der0L/! aut.L/! aut.V /;

and Theorem 4.2(i) translates to (i). With this, and the fact that G DH in this case, (ii) is obvious.

In view of the isomorphism in (13),

Ho sset1H ŠMC.DerL/=aut.L/;

we can identify the quotient stack MC.DerL/=aut.L/ as a moduli space of the set of simply connected
rational homotopy types with prescribed reduced homology H . Moreover, two proportional (nontrivial)
differentials in MC.DerL/ are in the same orbit. Hence, as the polynomials defining VL are homogeneous,
we can think of Ho sset1H �fX0g as a quotient stack of a subvariety of a projective space.

Example 4.5 Let H be the vector space with two generators of degrees 2 and 4 and another two
generators of degree 6. We compute the moduli space of Ho sset1H .

Let LD .L.V /; 0/ where V is the vector space with generators x, y, z and w of degrees 1, 3, 5 and 5,
respectively. We endow V with the trivial filtration. Then Der�1L is a 3–dimensional vector space,
generated by the derivations ıy , ız and ıw defined by

ıy.y/D Œx; x�; ız.z/D Œx; y� and ıw.w/D Œx; y�;

and are zero otherwise. In this particular case, MC.DerL/D Der�1L. Moreover, one easily checks that
the gauge action is trivial and thus, in view of Corollary 4.4(i),

MC.DerL/=aut.L/ŠMC.DerL/=aut.V /Š Ho sset1H :

Hence if we use fıy ; ız; ıwg as basis, we identify four different orbits in MC.DerL/=aut.V / represented
by the derivations .0; 0; 0/, .˛; 0; 0/ with ˛ ¤ 0, .0; ˇ; / with either ˇ or  not zero, and .˛; ˇ; / with
˛¤ 0 and either ˇ or  not zero. By considering which spaces correspond to these differentials, we obtain

Ho sset1H D fS
2
_S4 _S6 _S6 j .S2 �S4/_S6;CP2 _S6 _S6;CP3 _S6g:
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CP3 _S6

.S2 �S4/_S6 CP2 _S6 _S6

S2 _S4 _S6 _S6

CP3 _S6

S2 _S4 _S6 _S6

.S2 �S4/_S6

CP2 _S6 _S6

ız

ıw

ıy

Figure 1

In other words, the moduli space of Ho sset1H consists of four points, where S2 _ S4 _ S6 _ S6 is a
closed point, CP2 _S6 is an open point, and any neighborhood of .S2 �S4/_S6 or CP2 _S6 _S6

contains the point CP3 _S6. As a finite topological space, it is characterized by its corresponding poset
in which x � y if and only if x belongs to the closure of y.

In Figure 1 we depict this poset and the algebraic variety VL, which in this case is all C3, or CP2 if we
consider the corresponding projective variety by removing the origin. There, we identify the rational
points belonging to each orbit of the moduli space: the origin is the only point in its orbit and corresponds
to S2_S4_S6_S6, all rational points of the ıy axis are in the orbit of CP2_S6_S6, rational points
of the plane generated by fız; ıwg comprise the orbit of .S2�S4/_S6, and the rest of the rational points
are in the orbit of CP3 _S6.

Note that in general, for any L, the zero differential is always alone in its orbit space MC.DerL/=aut.L/;
it is a closed set and it corresponds to X0, a wedge of spheres determined by a set of generators of H .

Also, Ho sset1H Š MC.DerL/=aut.L/ is not always a finite space as one can check by, for instance,
computing the example in which H D Spanfx; y; zg with jxj D 5, jyj D 6 and jzj D 22.

An interesting property of the set of elliptic homotopy types sharing the same homology is:

Proposition 4.6 The set EllH � Ho sset1H of homotopy types of elliptic spaces is always an open subset
of the moduli space.

Proof Fix ı 2MC.Der�1L/ such that .L; ı/ is elliptic. Since L is of finite type, the function

dimk WMC.DerL/! Z given by dimk.ı
0/D dimHk.L; ı

0/

is well defined for each k � 1. Note that if V D V�N then dimk.ı/ D 0 for k � 2N ; see for
instance [9, Corollary 1, Section 32]. Moreover, by elementary linear algebra, regarding dimk.ı0/ as
dim ker ı0jLk � dim Im ı0jLkC1

, the map dimk is semicontinuous for all k. In particular, for each k � 1
there is a neighborhood �k of ı such that dimk.ı0/� dim.Hk.L; ı// for any ı0 2 �k .
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Consider the open set � D
T3N
iD2N �i in which dimk D 0 for all k D 2N; : : : ; 3N . This implies that for

any ı0 2 � , .L; ı0/ is elliptic. Otherwise, by [9, Theorem 33.3], if .L; ı0/ is hyperbolic, there must be an
integer k0 with 2N � k0 � 3N such that dimk0.ı

0/¤ 0.

Finally, if we denote by p WMC.DerL/!MC.DerL/=aut.L/ the projection, then p.�/�EllH is clearly
an open set of the moduli space MC.DerL/=aut.L/ containing the orbit of ı.

5 Rational homotopy types with prescribed cohomology algebra and their
moduli space

Let LD .yL.V /; d/ be a connected free cdgl and consider in V , which is supposed to be bounded above,
the trivial filtration, so that Remark 2.5 applies.

Definition 5.1 Define Der.L/ as the complete sub-dgl of DerL given by

Derk LD
�Derk L if k � 0;

f� 2 Derk L such that �.V /�yL
�3
.V /g if k < 0:

This cdgl will be essential in what follows.

Definition 5.2 Consider a simply connected commutative graded algebra of finite dimension whose
augmentation ideal we denote by A. Define Ho sset1A as the class of homotopy types of rational simply
connected simplicial sets with reduced cohomology algebra isomorphic to A. Again, we will not
distinguish a simplicial set from the homotopy type that it represents.

Recall that given X 2 Ho sset1A, a classical fact (see for instance [17, III.3.(9)]) states that the differential
d in L .A]/, necessarily quadratic, is naturally identified with the cup product of X . Here L denotes the
classical Quillen functor from coalgebras to Lie algebras. We then fix A, rename LDL .A]/ and prove:

Theorem 5.3 (i) There is an action of aut.A/ on eMC.DerL/ which induces a bijection

eMC.DerL/=aut.A/Š Ho sset1A:

(ii) Moreover ,
hDerLi '

a
X2Ho sset1A

a
OX

Baut�H.X/:

Once again, OX denotes the (cardinality of the) orbit by the action of aut.A/ of any element in eMC.DerL/
representing X by the bijection in (i).

Proof Write LD .L.V /; d/ where V D s�1A] and d is quadratic. Recall that the differential in DerL
is Œd;��. Hence, an MC element of DerL is, by definition, a derivation ı of L such that ı.V /�L�3.V /

and d C ı is a differential on L. In what follows we use the trivial identification

MC.DerL/Š fdifferentials d C ı on L such that ı.V /� L�3.V /g;
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so that

MC.DerL/�MC.DerL; 0/D fdecomposable differentials on Lg:

We then consider the stabilizer autd .L/ of MC.DerL/ of the action (12) of the (nondifferential automor-
phisms) aut.L/ on MC.DerL; 0/. That is,

autd .L/D f' 2 aut.L/ such that the quadratic part of '�1 ı d ı' is dg:

On the other hand, the surjective map

MC.DerL/! Ho sset1A given by d C ı 7! h.L; d C ı/i

clearly induces a map on the set of orbits

MC.DerL/=autd .L/! Ho sset1A:

Now, h.L; d C ı/i ' h.L; d C ı0/i if and only if there is dgl isomorphism

' W .L; d C ı/ Š�! .L; d C ı0/:

Thus ' 2 autd .L/ and ' � .d C ı/D d C ı0. So the above map is also injective, and we have a bijection

MC.DerL/=autd .L/Š Ho sset1A:

Next, observe that exp.Der0L/� autd .L/ and the quotient autd .L/=exp.Der0L/ is trivially identified
to the group of automorphisms of V which respect the quadratic differential d . That is,

autd .L/=exp.Der0L/Š f� W V Š�! V such that ��1 ı d ı� D dg:

But this group is in bijective correspondence with the algebra automorphisms aut.A/ and we have the
following short exact sequence, analogous to (15),

exp.Der0L/! autd .L/! aut.A/:

Next observe that the action of autd .L/ on MC.DerL/ restricts to the gauge action of Der0L on
MC.DerL/. Hence, as in the proof of Theorem 4.2(i), we deduce that aut.A/ acts on eMC.DerL/ and

(16) eMC.DerL/=aut.A/ŠMC.DerL/=autd .L/Š Ho sset1A:

On the other hand, via this bijection, each homotopy type X of Ho sset1H contains as many eMC elements
of DerL as points in the orbit OX , and thus the number of path components of hDerLi is as asserted
in (ii) for a general A.

Finally, since A is finite dimensional and Der�0LD Der�0L, every connected component of hDerLi
is necessarily of the homotopy type of Baut�H.X/ for the corresponding X 2 Ho sset1A, just as in
Corollary 4.4(ii).
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Remark 5.4 We can also exhibit the set of simply connected homotopy types sharing the same coho-
mology algebra A as a quotient stack. Indeed, in view of (16),

Ho sset1A ŠMC.DerL/=autd .L/;

which by (6) is a quotient of rational points in a variety. Moreover, observe that

Der�1LD Der2�1L˚Der�1L;

where Der2
�1LD f� 2 Der�1L such that �.V /� L2.V /g is the set of quadratic derivations. Therefore

we can identify MC.DerL/ with the intersection of the algebraic variety MC.DerL; 0/ and the affine
linear subspace d CDer�1L:

MC.DerL/DMC.DerL; 0/\ .d CDer�1L/:

Example 5.5 Consider the commutative graded algebra A generated by the elements a, b, c, p and q of
degrees 4, 6, 13, 15 and 19, respectively, and whose only nontrivial products are

ap D q D bc:

We determine the moduli space of Ho sset1A. Note that LDL .A/D .L.V /; d/, where V is generated by
elements x, y, z, u and v of degrees 3, 5, 12, 14 and 18, respectively. The differential is given by

dv D Œx; u�C Œy; z�

and zero on any other generator.

We now compute eMC.DerL/=aut.A/. First, we check that Der�1L is generated by three derivations ız ,
ıu and ıv defined by

ız.z/D ad2x.y/; ıu.u/D ad2y.x/ and ıv.v/D ad4x.y/;

and zero otherwise. Direct computation shows that a general element ˛ızCˇıuCıv is in MC.DerL;D/
if and only if ˛ D ˇ.

To compute the gauge action, we first check that Der0L is generated by three derivations defined by

�.u/D ad3x.y/; � 0.v/D ad2x.y/ and � 00.v/D�ad3y.x/;

and zero otherwise. Another straightforward computation shows that

D� D�ıv; D� 0 D 0; D� 00 D 0 and ŒDer0L;Der�1L�D 0:

Therefore the only nontrivial gauge action is

.t�/G .˛ızC˛ıuC ıv/D ˛ızC˛ıuC . C t /ıv

for any t 2Q. Hence in eMC.DerL/, we can take representatives with  D 0, so that

eMC.DerL/D f˛.ızC ıu/ with ˛ 2Qg:
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Finally, any automorphism � 2 aut.A/ is given by

�.a/D �aa; �.b/D �bb; �.c/D �cc; �.p/D �pp and �.q/D �qq;

where the scalars are nonzero and satisfy

�a�p D �q D �b�c :

For ˛ ¤ 0 choose � with �a D �c D �q D 1=˛ and �b D �p D 1. Then one checks that the action of �
on the MC element ızC ıu gives ˛.ızC ıu/.

Therefore in eMC.DerL/=aut.A/ there are only two orbits corresponding to ˛ ¤ 0 and ˛ D 0. By
Theorem 5.3(i) we conclude that

Ho sset1A D fX0; X1g;

where X0 D h.L; d/i is the formal space of cohomology algebra A and X1 D h.L; d C ızC ıu/i is the
rationalization of SU.6/=SU.3/�SU.3/.

Moreover, as a moduli space Ho sset1A has the Sierpinski topology, in which X1 is open.
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On the positivity of twisted L2–torsion for 3–manifolds

JIANRU DUAN

For any compact orientable irreducible 3–manifold N with empty or incompressible toral boundary, the
twisted L2–torsion is a nonnegative function defined on the representation variety Hom.�1.N /;SL.n;C//.
We show that if N has infinite fundamental group, then the L2–torsion function is strictly positive.
Moreover, this torsion function is continuous when restricted to the subvariety of upper triangular
representations.

57K31

1 Introduction

Let N be a compact orientable irreducible 3–manifold with empty or incompressible toral boundary. The
L2–torsion of N is a numerical topological invariant of N that equals exp.Vol.N /=6�/, where Vol.N /

is the simplicial volume of N ; see [Lück 2002, Theorem 4.3]. The idea of twisting is to use a linear
representation of �1.N / to define more L2–torsion invariants. The first attempt was made by Li and
Zhang [2006a; 2006b] in which they defined the L2–Alexander invariants for knot complements, making
use of the one-dimensional representations of the knot group. Later Dubois, Friedl and Lück [Dubois
et al. 2015a] introduced the L2–Alexander torsion for 3–manifolds which recovers the L2–Alexander
invariants. A recent breakthrough was made independently by Liu [2017] and Lück [2018] who proved
that the L2–Alexander torsion is always positive. More interesting properties of the L2–Alexander torsion
are revealed in [Liu 2017; Friedl and Lück 2019]; for example, we now know that the L2–Alexander
torsion is continuous and its limiting behavior recovers the Thurston norm of N .

Generally, let Rn.�1.N // WDHom.�1.N /;SL.n;C// be the representation variety. One wishes to define
L2–torsion twisted by any representation � 2Rn.�1.N //, and we have this twisted L2–torsion function
abstractly defined on the representation variety of �1.N /:

� 7! � .2/.N; �/ 2 Œ0;C1/; � 2Rn.�1.N //:

A technical obstruction to defining a reasonable L2–torsion is that the corresponding L2–chain complex
must be weakly L2–acyclic and of determinant class (see Definition 2.3). If either condition is not
satisfied, we define the L2–torsion to be 0 by convention.

It is natural to question the positivity and continuity of this function. The first result of this paper is the
following:
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Theorem 1.1 Let N be a compact orientable irreducible 3–manifold with empty or incompressible toral
boundary. Suppose N has infinite fundamental group; then the twisted L2–torsion � .2/.N; �/ is positive
for any group homomorphism � W �1.N /! SL.n;C/.

When N is a graph manifold, the twisted L2–torsion function is explicitly computed in Theorem 4.1.
Other cases are dealt with in Theorem 4.5 where we only need to consider fibered 3–manifolds thanks to
the virtual fibering arguments. We carefully construct a CW structure for N as in [Dubois et al. 2015a] and
observe that the matrices in the corresponding twisted L2–chain complex are in a special form so that we
can apply Liu’s result [2017, Theorem 5.1] to guarantee the positivity of the Fuglede–Kadison determinant.

We have the following partial result regarding continuity of the twisted L2–torsion function, We say
� 2 Rn.�1.N // is an upper triangular representation if �.g/ is an upper triangular matrix for every
g 2 �1.N /.

Theorem 1.2 Let N be a compact orientable irreducible 3–manifold with empty or incompressible
toral boundary. Suppose N has infinite fundamental group. Define Rt

n.�1.N // to be the subvariety of
Rn.�1.N // consisting of upper triangular representations. Then the twisted L2–torsion function

� 7! � .2/.N; �/

is continuous with respect to � 2Rt
n.�1.N //.

The continuity of the twisted L2–torsion function in general is open. It is mainly because the Fuglede–
Kadison determinant of an arbitrary matrix over CŒ�1.N /� is very difficult to compute. However, the
L2–torsion twisted by upper triangular representations is simpler because we can reduce many problems
to the one-dimensional case, which is well studied under the name of the L2–Alexander torsion (see
Section 5). We remark that the work of Bénard and Raimbault [2022] based on the strong acyclicity
property by Bergeron and Venkatesh [2013] shows that the twisted L2–torsion function is positive and
real analytic near any holonomy representation �0 W �1.N /! SL.2;C/ of a hyperbolic 3–manifold N .

The proof relies on the continuity of L2–Alexander torsion with respect to the cohomology classes,
which is conjectured by [Lück 2018, Chapter 10]. This is done by introducing the concept of Alexander
multitwists (see Section 5). One can similarly define the “multivariable L2–Alexander torsion” and
our argument essentially shows that the multivariable function is multiplicatively convex (compare
Theorem 5.7), generalizing [Liu 2017, Theorem 5.1]. This then applies to show the continuity as desired.

The organization of this paper is as follows. In Section 2, we introduce the terminology of this paper and
some algebraic facts. In Section 3, we define the twisted L2–torsion for CW complexes and state some
basic properties. In Section 4, we prove Theorem 1.1 in two steps: first for graph manifolds, then for
hyperbolic or mixed manifolds. In Section 5, we begin with the L2–Alexander torsion and then prove
Theorem 1.2.

Acknowledgement The author wishes to thank his advisor Yi Liu for guidance and many conversations.
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2 Notation and some algebraic facts

In this section we define the twisting functor and introduce L2–torsion theory. The reader can refer to
[Lück 2018] where discussions are taken on in a more general setting.

2.1 Twisting CG –modules via SL.n; C/ representations

Let G be a finitely generated group and let CG be its group ring. In this paper our main objects are
finitely generated free left CG–modules with a preferred ordered basis. We will abbreviate it as based
CG–modules unless otherwise stated. A natural example of a based CG–module is CGm as a free left
CG–module of rank m, with the natural ordered basis f�1; : : : ; �mg where �i is the unit element of the
i th direct summand. Any based CG–module is canonically isomorphic to CGm for some nonnegative
integer m and this identification is used throughout.

We fix V to be an n–dimensional complex vector space with a fixed choice of basis feig
n
iD1

. Let
� WG! SL.n;C/ be a group homomorphism. Then V can be viewed as a left CG–module via �,

 � ei D

nX
jD1

�.�1/i;j � ej ;  2G;

where �.�1/ 2 SL.n;C/ is a square matrix. We extend this action C–linearly so that V is a left
CG–module. In other words, left action of  corresponds to right multiplication to the row coordinate
vector of the matrix �.�1/.

We are interested in twisting a based CG–module via �. In literature, there are two different ways to
twist a based CG–module, namely the “diagonal twisting” and the “partial twisting” (compare [Lück
2018]). They are naturally isomorphic. We only consider the diagonal twisting.

Definition 2.1 Recall that CGm is a based CG–module with a natural basis f�ig for i D 1; : : : ;m. We
define .CGm˝C V /d to be the CG–module with diagonal CG–action, ie

.CGm
˝C V /d WDCGm

˝C V; g � .u˝ v/D gu˝gv

for any g 2G, u 2CGm and v 2 V , and then extend C–linearly to define a CG–module structure.

With the definition above, we can see that

.CGm
˝C V /d D

mM
iD1

.CG˝C V /d

is a based CG–module with a basis

f�1˝ e1; �1˝ e2; : : : ; �1˝ en; �2˝ e1; : : : ; �m˝ eng:

Let A be the category whose objects are finitely generated free left CG–modules with a preferred ordered
basis and whose morphisms are CG–linear homomorphisms. We consider the following “diagonal
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twisting” functor
D.�/ WA!A

which sends any object M to the based CG–module .M ˝C V /d and sends any morphism f to

D.�/f WD f ˝C idV :

The following proposition describes how matrices behave under the twisting functor.

Proposition 2.2 Let � W G! SL.n;C/ be any group homomorphism. Suppose that a homomorphism
between based CG–modules

f WCGr
!CGs

is presented by a matrix .ƒi;j / over CG of size r � s; ie if

f�1; : : : ; �r g; f�1; : : : ; �sg

are the natural bases of CGr and CGs , respectively, then

f .�i/D

sX
jD1

ƒi;j�j ; i D 1; : : : ; r:

We form a new matrix � of size nr � ns by replacing each entry ƒi;j with an n � n square matrix
ƒi;j � �.ƒi;j /. Then � is a matrix presenting the diagonal twisting morphism D.�/f , under the natural
bases

f�1˝ e1; : : : ; �1˝ en; �2˝ e1; : : : ; �r ˝ eng;

f�1˝ e1; : : : ; �1˝ en; �2˝ e1; : : : ; �s˝ eng

of the diagonal twisting based CG–modules D.�/.CGr / and D.�/.CGs/, respectively.

Proof Let ˆD .ˆi;j / for i D 1; : : : ; r and j D 1; : : : ; s be a block matrix of size nr � ns, with each
entry ˆi;j an n � n matrix, such that ˆ is the matrix presenting D.�/f under the natural basis. We
only need to verify that ˆi;j D ƒi;j � �.ƒi;j /. The submatrix ˆi;j can be characterized as follows.
Let �j W D.�/.CGr /! D.�/.CG/ be the projection to the j th direct component which is spanned by
f.�j ˝ e1/d; : : : ; .�j ˝ en/dg. Then

�j ıD.�/f

0@.�i ˝ e1/d
:::

.�i ˝ en/d

1ADˆi;j

0@.�j ˝ e1/d
:::

.�j ˝ en/d

1A :
On the other hand, for any k D 1; : : : ; n,

�j ıD.�/f ..�i ˝ ek/d/D �j

� sX
lD1

.ƒi;l�l ˝ ek/d

�
D �j

� sX
lD1

ƒi;l � .�l ˝ƒ
�1
i;l ek/d

�

Dƒi;j � .�j ˝ƒ
�1
i;j ek/d Dƒi;j �

nX
lD1

�.ƒi;j /k;l.�j ˝ el/d:

This shows that ˆi;j Dƒi;j � �.ƒi;j /, and hence ˆD�.
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We now mention that the twisting functor can be naturally generalized to the category of based CG–chain
complexes. More explicitly, let C� be a based CG–chain complex, ie

C� D . � � � ! CpC1
@pC1
��! Cp

@p
�! Cp�1! � � � /

is a chain of based CG–modules with CG–linear connecting morphisms f@pg such that @p�1 ı @p D 0.
We can apply the functor D.�/ to obtain a new CG–chain complex

D.�/C� D . � � � ! D.�/CpC1
D.�/@pC1
�����! D.�/Cp

D.�/@p
���! D.�/Cp�1! � � � /

with connecting homomorphisms fD.�/@pg. If f� is a chain map between based CG–chain complexes,
the twisting chain map D.�/f� is a CG–chain map between the corresponding twisted chain complexes.
So D.�/ generalizes to be a functor of the category of based CG–chain complexes.

2.2 L2–torsion theory

Let

l2.G/D

�X
g2G

cg �g
ˇ̌̌
cg 2C;

X
g2G

jcgj
2 <1

�
be the Hilbert space orthonormally spanned by all elements in G. Since G is finitely generated, l2.G/ is
a separable Hilbert space with isometric left and right CG–module structure. We denote by N.G/ the
group von Neumann algebra of G which consists of all bounded Hilbert operators of l2.G/ that commute
with the right CG–action. We will treat l2.G/ as a left N.G/–module and a right CG–module. The
l2–completion of a based CG–chain complex C� is then a Hilbert N.G/–chain complex defined as

l2.G/˝CG C�;

and the l2–completions of the connecting homomorphism @ and chain map f are id˝CG @ and id˝CG f ,
respectively. Note that each chain module of l2.G/˝CG C� is simply a direct sum of l2.G/,

l2.G/˝CG Cp D l2.G/˝CG CGrp D l2.G/rp ;

where rp is the rank of Cp.

The l2–completion process converts a based CG–chain complex into a finitely generated, free Hilbert
N.G/–chain complex.

Definition 2.3 A finitely generated, free Hilbert N.G/–chain complex is called weakly acyclic if the
l2–Betti numbers are all trivial. A finitely generated, free Hilbert N.G/–chain complex is of determinant
class if all the Fuglede–Kadison determinants of the connecting homomorphisms are positive real numbers.

Definition 2.4 Let C� be a finitely generated, free Hilbert N.G/–chain complex. Suppose C� is of finite
length, ie there exists an integer N > 0 such that Cp D 0 for jpj > N . Furthermore, if C� is weakly
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acyclic and of determinant class, we define the L2–torsion of C� to be the alternating product of the
Fuglede–Kadison determinants of the connecting homomorphisms:

� .2/.C�/D
Y

p2Z

.detN.G/ @p/
.�1/p :

Otherwise, we artificially set � .2/.C�/D 0.

We recommend [Lück 2002] for the definition of the L2–Betti number and the Fuglede–Kadison determi-
nant. We remark that our notational convention follows [Dubois et al. 2015a; 2015b; Liu 2017], and the
exponential of the torsion in [Lück 2002; 2018] is the multiplicative inverse of our torsion.

Let A be a p�p matrix over N.G/. The regular Fuglede–Kadison determinant of A is defined to be

detrN.G/.A/D
�

detN.G/.A/ if A is full rank of determinant class;
0 otherwise:

We will need the following two lemmas in order to do explicit calculations; the proof can be found in
[Dubois et al. 2015b, Lemmas 2.6 and 3.2] combining with the basic properties of the Fuglede–Kadison
determinant (see [Lück 2002, Theorem 3.14]).

Lemma 2.5 Let Zk be a free abelian subgroup of G generated by z1; : : : ; zk . Let A be a p�p matrix
over CZk . Identify CZk with the k–variable Laurent polynomial ring CŒz˙

1
; : : : ; z˙

k
�, and denote by

p.z1; : : : ; zk/ the ordinary determinant of A. Then

detrN.G/.A/DMah.p.z1; : : : ; zk//;

where Mah.p.z1; : : : ; zk// is the Mahler measure of the polynomial p.z1; : : : ; zk/.

Lemma 2.6 Let
D� D .0!CGj C

�!CGk B
�!CGkCl�j A

�!CGl
! 0/

be a complex, L� f1; : : : ; kC l � j g be a subset of size l and J � f1; : : : ; kg a subset of size j . Define

� A.J / to be the rows in A corresponding to J ;

� B.J;L/ to be the result of deleting the columns of B corresponding to J and deleting the rows
corresponding to L;

� C.L/ to be the columns of C corresponding to L.

View A, B and C as matrices over N.G/. If detrN.G/.A.J //¤ 0 and detrN.G/.C.L//¤ 0, then

� .2/.l2.G/˝CG D�/D detrN.G/.B.J;L// � detrN.G/.A.J //
�1
� detrN.G/.C.L//

�1:

3 Twisted L2–torsion for CW complexes

Let X be a finite CW complex with fundamental group G. Denote by yX the universal cover of jX j
with the natural CW complex structure coming from X . Choose a lifting O�i for each cell �i in the CW
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structure of X . The deck group G acts freely on the cellular chain complex of yX on the left, which makes
the C–coefficient cellular chain complex C�. yX / a based CG–chain complex with basis f O�ig. Recall that
� WG! SL.n;C/ is any group homomorphism.

For future convenience, we introduce the concept of admissible triple for higher-dimensional linear
representations, generalizing the admissibility condition in [Dubois et al. 2015b].

Definition 3.1 (admissible triple) Let  WG!H be a homomorphism to a countable group H . We say
that .G; �I  / forms an admissible triple if � WG!SL.n;C/ factors through  , ie for some homomorphism
 WH ! SL.n;C/, the following diagram commutes:

G


//

�
$$

H

 
��

SL.n;C/

Definition 3.2 Let .G; �I  / be an admissible triple. Consider l2.H / as a left Hilbert N.H /–module,
and a right CG–module induced by  . Define the L2–chain complex of X twisted by .G; �I  / to be the
Hilbert N.H /–chain complex

C
.2/
� .X; �I  / WD l2.H /˝CG D.�/C�. yX /:

We define the L2–torsion of X twisted by .G; �I  / as

� .2/.X; �I  / WD � .2/.C
.2/
� .X; �I  //:

Proposition 3.3 The definition of � .2/.X; �I  / with respect to any admissible triple .G; �I  / does
not depend on the order or orientation of the basis f�ig, nor the choice of lifting f O�ig. Moreover , let
�0 W G! SL.n;C/ be conjugate to �, ie there exists a matrix T 2 SL.n;C/, such that �0 D T � � �T �1.
Then .G; �0I  / is also an admissible triple and � .2/.X; �I  /D � .2/.X; �0I  /.

Proof The property of being weakly L2–acyclic does not depend on the choices in the statement. We
only need to analyze how these choices change the Fuglede–Kadison determinant of the connecting
morphisms.

Abbreviate by C�. yX ; �/ WD D.�/C�. yX IC/ the diagonal twisting chain complex. Suppose the based
cellular chain complex of yX has the form

C�. yX /D . � � � !CGriC1
@iC1
��!CGri

@i
�!CGri�1 ! � � � /;

where @i is an ri � ri�1 matrix over CG for all i . Then the diagonal twisting chain complex C�. yX ; �/

has the form
C�. yX ; �/D . � � � !CGnriC1

@
�

iC1
��!CGnri

@
�

i
�!CGnri�1 ! � � � /;
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where @�i DD.�/@i is an nri �nri�1 matrix over CG for all i . An explicit formula for @�i is presented in
Proposition 2.2. Then the L2–chain complex of X twisted by .G; �I  / has the form

C
.2/
� .X; �I  /D . � � � ! l2.H /nriC1

.@
�

iC1
/

����! l2.H /nri
.@

�

i
/

���! l2.H /nri�1 ! � � � /;

where  .@�i / means applying the group homomorphism  to each monomial of any entry of the matrix @�i ,
resulting in a matrix over CH � N.H /.

We now analyze how the choices affect the value of � .2/.X; �I  /. If the basis of Ci.X / is permuted, and
the orientations are changed, then  .@�i / and  .@�

iC1
/ change by multiplying a permutation matrix, with

entries ˙1.

If one choose another lifting g O� instead of O� for some g 2 G, then  .@�i / and  .@�
iC1

/ change by
multiplying a block matrix of the form0BBBB@

In�n

: : :

�.g/˙1 � In�n

: : :

In�n

1CCCCA :

If one replaces � by �0 D T �� �T �1 for a matrix T 2 SL.n;C/, the corresponding connecting homomor-
phism is of the form

 .@
�0

i /D

0@T
: : :

T

1A  .@�i /
0@T �1

: : :

T �1

1A :
In all cases, the regular Fuglede–Kadison determinant of  .@�i / and  .@�

iC1
/ are unchanged by basic

properties of Fuglede–Kadison determinant; see [Lück 2002, Theorem 3.14].

Note that the “moreover” part of the previous lemma tells us that we don’t need to worry about the
different choices of the base point when identifying the fundamental group �1.X / with G.

Lemma 3.4 Let T be a two-dimensional torus. For any admissible triple

.T; � W �1.T /! SL.n;C/I  W �1.T /!H /;

if im  is infinite , then
� .2/.T; �I  /D 1:

Proof We consider the standard CW structure for T constructed by identifying pairs of sides of a square.
Let P be the 0–cell, let E1 and E2 be the 1–cells, and let

e1 D ŒE1� 2 �1.T /; e2 D ŒE2� 2 �1.T /:
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Then �1.T / is the free abelian group generated by e1 and e2. There is a 2–cell � whose boundary is the
loop E1E2E�1

1
E�1

2
. Let yT be the universal covering of T with the induced CW structure. It is easy to

see that the L2–chain complex of T twisted by .�1.T /; �I  / is

C
.2/
� .T; �I  /D .0! l2.H /h�i˝C V

.@
�

2
/

���! l2.H /hE1;E2i˝C V
.@

�

1
/

���! l2.H /hP i˝C V ! 0/

in which

 .@
�
2
/D

�
In�n�  .e2/�.e2/ �In�nC  .e1/�.e1/

�
;  .@

�
1
/D

�
 .e1/�.e1/� In�n

 .e2/�.e2/� In�n

�
:

We assume without loss of generality that  .e1/ has infinite order. Set p.z/ WD det.z�.e1/� In�n/ as a
polynomial of indeterminant z. Then by Lemma 2.5,

detrN.H /. .e1/�.e1/� In�n/DMah.p.z//¤ 0:

The conclusion follows from [Dubois et al. 2015b, Lemma 3.1] which is a formula analogous to Lemma 2.6
but applies to shorter chain complexes.

There is another way to define twisted L2–torsion, following Lück [2018]. Let H be a finitely generated
group. Recall that zX is called a finite free H–CW complex if zX is a regular covering space of a finite CW
complex X , with deck transformation group H acting on zX on the left. Choose an H–equivariant CW
structure for zX , and choose one representative cell for each H–orbit. Then the cellular chain complex
C�. zX / becomes a based CH–chain complex. For any group homomorphism � W H ! SL.n;C/, we
form the diagonal twisting chain complex D.�/C�. zX / (recall the definition of the twisting functor D in
Section 2). The �–twisted L2–torsion of the H–CW complex zX is defined to be

�
.2/
H
. zX ; �/ WD log � .2/.l2.H /˝CH D.�/C�. zX //:

Note that � is a unimodular representation in our setting; this torsion does not depend on a specific
CH–basis for C�. zX / (compare Proposition 3.3). We point out in the following proposition that both
definitions of twisted L2–torsion are essentially the same.

Proposition 3.5 Following the notation above , let G be the fundamental group of X DHn zX . There
is a natural quotient map  WG!H by covering space theory , and it is obvious that .G; � ı  I  / is an
admissible triple. Then

� .2/.X; � ı  I  /D exp �.2/
H
. zX ; �/:

Proof Let yX be the universal covering space of X , with the natural CW structure coming from X .
Choose a lifting for each cell in X and then C�. yX / becomes a based CG–chain complex. It is a pure
algebraic fact that the two based CH–chain complexes are CH–isomorphic:

(�) D.�/C�. zX /ŠCH ˝CG D.� ı  /C�. yX /:

Algebraic & Geometric Topology, Volume 24 (2024)



2316 Jianru Duan

Indeed, the CH–chain complex CH ˝CG D.� ı  /C�. yX / is obtained from

C�. yX /D . � � � !CGriC1
@iC1
��!CGri

@i
�!CGri�1 ! � � � /

by the following two operations:

(1) The diagonal twist First, replace every direct summand CG by its nth power CGn, and replace
any entry ƒi;j of the matrix @� by a block matrix ƒi;j� ı  .ƒi;j /, as in Proposition 2.2, resulting
in a new matrix @�ı� .

(2) Tensoring with CH Then replace every direct summand CG of the chain module by CH , and ap-
ply  to every entry of @�ı� , resulting in a block matrix whose i; j –submatrix is  .ƒi;j /�ı .ƒi;j /.

The resulting chain complex is exactly the chain complex D.�/.CH ˝CG C�. yX // (this can be seen by
doing the above operations in the reversed order, thanks to the admissible condition). Combined with the
well-known CH–isomorphism C�. zX /ŠCH ˝CG C�. yX /, the isomorphism (�) follows.

Finally, we tensor l2.H / on the left of both CH–chain complexes and the conclusion follows from taking
L2–torsion of each.

The following useful properties are obtained by translating the statements of [Lück 2018, Theorem 6.7]
into our terminology.

Lemma 3.6 Some basic properties of twisted L2–torsions:

(1) G –homotopy equivalence Let X and Y be two finite CW complexes with fundamental group G.
For any admissible triple .G; �I  /, suppose there is a simple homotopy equivalence f W X ! Y

such that the induced homomorphism f� WG!G preserves ker  . Then

� .2/.X; �I  /D � .2/.Y; �I  /:

(2) Restriction Let X be a finite CW complex with fundamental group G. Let zX be a finite regular
cover of X with the induced CW structure. Suppose �1. zX / D zG C G is a normal subgroup of
index d . Let Q� W zG! SL.n;C/ be the restriction of � WG! SL.n;C/. Then

� .2/. zX ; Q�/D � .2/.X; �/d :

(3) Sum formula Let X be a finite CW complex with fundamental group G and � WG! SL.n;C/ be
a homomorphism. Let

i1 WX1 ,!X; i2 WX2 ,!X; i0 WX1\X2 ,!X

be subcomplex of X with X1[X2 DX . Let

�1 D �j�1.X1/; �2 D �j�1.X2/; �0 D �j�1.X1\X2/

be the restriction of �. If � .2/.X1\X2; �0I i0�/¤ 0, then

� .2/.X; �/D � .2/.X1; �1I i1�/ � �
.2/.X2; �2I i2�/=�

.2/.X1\X2; �0I i0�/:
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4 Twisted L2–torsion for 3–manifolds

For the remainder of this paper, we will assume that N is a compact orientable irreducible 3–manifold
with empty or incompressible toral boundary. We denote by G the fundamental group of N and assume
G is infinite. It is well known that G is finitely generated and residually finite [Hempel 1987]. For any
group homomorphism � W G ! SL.n;C/ and  W G ! H , we say .N; �I  / is an admissible triple if
.G; �I  / is. In this case, we define the twisted L2–torsion of .N; �I  / by

� .2/.N; �I  / WD � .2/.X; �I  /;

where X is any CW structure for N . This definition does not depend on the choice of X , thanks to
Lemma 3.6. Indeed, if X and Y are two CW structures for N , and f W X ! Y is the corresponding
homeomorphism, then f is a simple homotopy equivalence by Chapman [1974, Theorem 1] and certainly
preserves ker  . So � .2/.X; �I  /D � .2/.Y; �I  /.

The remaining part of this section is devoted to the proof of Theorem 1.1.

4.1 Twisted L2–torsion for graph manifolds

We prove Theorem 1.1 for a graph manifold N with infinite fundamental group G.

Theorem 4.1 Suppose M is a Seifert-fibered piece of the graph manifold N . Let h 2 �1.M / be
represented by the regular fiber of M . Consider the product of all eigenvalues (with multiplicity) of �.h/
whose modulus is not greater than 1, and denote by ƒ the modulus of this product. Suppose the orbit
space M=S1 has orbifold Euler characteristic �orb. Then

� .2/.N; �/D
Y

M�N is a Seifert piece

ƒ�orb :

The proof is a direct generalization of [Bénard and Raimbault 2022, Proposition 4.3], though the technique
in both proofs essentially goes back to T Kitano [1994], where he computed the SL.2;C/–twisted
Reidemeister torsion of graph manifolds.

Proof Fix any Seifert-fibered piece M of the JSJ decomposition of N . Then �1.M / is infinite as well.
Suppose that M is isomorphic to a model

M.g; bI q1=p1; : : : ; qk=pk/; k > 1; p1; : : : ;pk > 0;

following Hatcher [2007]. More explicitly, take a surface of genus g with b boundary components,
namely E1; : : : ;Eb , then drill out k–disjoint disks from it to form a new surface † with k additional
boundary circles F1; : : : ;Fk . These k boundary circles correspond to k boundary tori of †�S1, namely
T1; : : : ;Tk . Then M is obtained by a Dehn filling of slope .q1=p1; : : : ; qk=pk/ along .T1; : : : ;Tk/,
respectively. So

M D .†�S1/[T1
D1[T2

� � � [Tk
Dk ;
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in which Di is a solid torus whose meridian .0; 1/–curve is attached to the .qi ;pi/–curve of Ti . The
orbit space can be viewed as a 2–dimensional orbifold, whose underlying topological space is a surface
†g;b with k singularities of indices p1; : : : ;pk , respectively. The orbifold Euler characteristic is

�orb D 2� 2g� b�

kX
iD1

�
1�

1

pi

�
:

More details can be found in [Scott 1983].

Retract † along the boundary circle Fk to an 1–dimensional complex X ; it is a bunch of circles with one
common vertex P , and edges

A1;B1; : : : ;Ag;Bg;E1; : : : ;Eb;F1; : : : ;Fk�1

where A1;B1; : : : ;Ag;Bg come from the standard polygon representation of a closed surface †g.
Suppose that Ai , Bi , Ei and Fi represent ai , bi , ei and fi , respectively, in �1.M /. Let H be the 1–cell
of S1 representing h 2 �1.M /. Then †�S1 is given the product CW structure, with the cells in each
dimension being

fA1 �H;B1 �H; : : : ;Ag �H;Bg �H;E1 �H; : : : ;Eb �H;F1 �H; : : : ;Fk�1 �H g;

fA1;B1; : : : ;Ag;Bg;E1; : : : ;Eb;F1; : : : ;Fk�1;H g; fPg:

We have f pi

i hqi D 1 for i D 1; : : : ; k � 1 by the Dehn filling.

Denote by
� W†�S1 ,!N; �i W Ti ,!N; �i WDi ,!N; i D 1; : : : ; k;

the inclusion maps to the ambient manifold N . Our strategy is as follows: cut N along all JSJ tori
and all tori fT1; : : : ;Tkg that appear in each Seifert piece of the JSJ decomposition of N as above. By
Lemma 3.4, the JSJ tori do not contribute to the L2–torsion. Then, by the sum formula of Lemma 3.6,

(1) � .2/.N; �/D
Y

M�N is a Seifert piece

� .2/.†�S1; � ı ��I ��/
Qk

iD1 �
.2/.Di ; � ı �i�I �i�/Qk

iD1 �
.2/.Ti ; � ı �i�I �i�/

:

It remains to calculate the terms appearing in (1).

First, the easiest part. Since �i�.�1.Ti// has infinite order in G, the twisted L2–torsion of the admissible
triple .Ti ; � ı �i�I �i�/ is trivially 1 by Lemma 3.4.

We now compute � .2/.†�S1; �ı��I ��/. Set � WD �1.†�S1/. The CW chain complex of the universal
cover 2†�S1 is

C�.
2†�S1/D .0!C�2gCbCk�1 @2

�!C�2gCbCk @1
�!C�

@0
�! 0/

in which

@2 D

0BB@
1� h 0 � � � 0 �

0 1� h
:::

:::
:::

: : : 0 �

0 � � � 0 1� h �

1CCA ; @1 D

0BB@
�
:::
�

1� h

1CCA :
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Then the L2–chain complex of †�S1 twisted by .�; � ı ��I ��/ is

C
.2/
� .†�S1; � ı ��I ��/D .0! l2.G/2gCbCk�1 @

�

2
�! l2.G/2gCbCk @

�

1
�! l2.G/! 0/

in which

@
�
2
D

0BB@
In�n� h�.h/ 0 � � � 0 �

0 In�n� h�.h/
:::

:::
:::

: : : 0 �

0 � � � 0 In�n� h�.h/ �

1CCA ; @
�
1
D

0BB@
�
:::
�

In�n� h�.h/

1CCA :
We have identified h with its image under �� in �1.N /DG for notational convenience. If the modulus
of all eigenvalues of �.h/ are �1; : : : ; �n, by properties of the regular Fuglede–Kadison determinant and
Lemmas 2.5 and 2.6, we know that

� .2/.†�S1; � ı ��I ��/D detrN.G/.I
n�n
� h�.h//2gCbCk�2

DMah
� nY

rD1

.1� z�r /

�2gCbCk�2

Dƒ�.2gCbCk�2/:

Then we compute � .2/.Di ; � ı �i�I �i�/. It is easy to see that the generator of �1.Di/ is represented by
hmif

ni

i , where .mi ; ni/ is a pair of integers such that mipi � niqi D 1. Then

� .2/.Di ; � ı �i�I �i�/D detrN.G/.I
n�n
� hmif

ni

i � �.h
mif

ni

i //�1;

where h and fi are again viewed as elements in G. Since h and fi commute and are simultaneously upper
triangularizable, the modulus of all eigenvalues of �.hmif

ni

i / are �1=pi

1
; : : : ; �

1=pi
n . Note that hmif

ni

i is
an infinite order element. By Lemma 2.5,

detrN.G/.I
n�n
� hmif

ni

i � �.h
mif

ni

i //DMah
� nY

rD1

.1� z�1=pi
r /

�
Dƒ�1=pi ;

and then � .2/.Di ; � ı �i�I �i�/Dƒ
1=pi .

Finally, combining the calculations above,

� .2/.†�S1; � ı ��I ��/
Qk

iD1 �
.2/.Di ; � ı �i�I �i�/Qk

iD1 �
.2/.Ti ; � ı �i�I �i�/

Dƒ�.2gCbCk�2/C
Pk

iD1 1=pi

Dƒ2�2g�b�
Pk

iD1.1�1=pi / Dƒ�orb ;

and the conclusion follows from (1).

4.2 Twisted L2–torsion for hyperbolic or mixed manifolds

In this part, we assume that N is not a graph manifold, or equivalently, N contains at least one hyperbolic
piece in its geometrization decomposition. Then N is either hyperbolic or so-called mixed. By Agol’s
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RFRS criterion [2008] for virtual fibering and the virtual specialness of 3–manifolds having at least one
hyperbolic piece [Agol 2013; Przytycki and Wise 2018], we can assume that N has a regular finite cover
that fibers over the circle.

For future convenience, we introduce the following notions.

Definition 4.2 Let G be a finitely generated, residually finite group. For any cohomology class
 2H 1.GIR/, and any real number t > 0, there is an 1–dimensional representation

 t WG!C�; g 7! t .g/:

This representation can be used to twist CG, determining a CG–homomorphism

�. ; t/ WCG!CG; g 7! t .g/g; g 2G;

and extend C–linearly. The CG–homomorphism �. ; t/ is called the Alexander twist of CG associated
to . ; t/.

Definition 4.3 A positive function f WRC!RC is multiplicatively convex if the function

F WR!R; t 7! logf .et /;

is a convex function. In particular, a multiplicatively convex function is continuous and everywhere
positive.

Our main technical tool is the following theorem due to Liu [2017, Theorem 5.1].

Theorem 4.4 Let G be a finitely generated , residually finite group. For any square matrix A over CG

and any 1–cohomology class  2H 1.GIR/, the function

t 7! detrN.G/.�. ; t/A/; t > 0;

is either constantly zero or multiplicatively convex (and in particular everywhere positive).

With the above preparations, we are now ready to prove Theorem 1.1 for hyperbolic or mixed 3–manifolds.

Theorem 4.5 Suppose N is a compact orientable irreducible 3–manifold with empty or incompressible
toral boundary. Assume that N is hyperbolic or mixed. Then � .2/.N; �/ > 0.

Proof Since twisted L2–torsion behaves multiplicatively with respect to finite covers by Lemma 3.6, we
may assume without loss of generality that N itself fibers over the circle.

The following procedure is analogous to [Dubois et al. 2015b, Theorem 8.5]. Denote by † a fiber of N ,
and f W†!† the monodromy such that N is homeomorphic to the mapping torus

Tf .N /D†� Œ�1; 1�=.x;�1/� .f .x/; 1/:
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We can assume by isotopy that f has a fixed point P . Construct a CW structure X modeled on †
with a single 0–cell P , k 1–cells E1; : : : ;En, and a 2–cell � . By CW approximation, there is a cellular
map g W†!† homotopic to f . Then the mapping torus Tg.†/ is homotopy equivalent to N , which
is a simple homotopy equivalence since the Whitehead group of a fibered 3–manifold is trivial; see
[Waldhausen 1978, Theorems 19.4 and 19.5]. Hence, by Lemma 3.6,

� .2/.N; �/D � .2/.Tg.†/; �/:

We proceed to describe a CW complex for the mapping torus Tg.†/. Suppose �1.N /D�1.Tg.†//DWG.
The cells in each dimensions are

f� � Ig; f�;E1 � I; : : : ;Ek � Ig; fE1; : : : ;Ek ;P � Ig; fPg;

where I D Œ�1; 1�. Let ei WD ŒEi �2G and h WD ŒP�I �2G be the fundamental group elements represented
by the corresponding loops. Denote by  2H 1.GIR/ the 1–cohomology class dual to the fiber †. Then

 .h/D 1;  .e1/D � � � D  .ek/D 0:

The CW chain complex of 1Tg.†/ has the form

C�.1Tg.†//D .0!CG
@3
�!CGkC1 @2

�!CGkC1 @1
�!CG

@0
�! 0/

in which
@3 D .1� h;�; : : : ;�/; @2 D

�
� �

Ik�k � h �A �

�
; @1 D

�
�

1� h

�
where “�” stands for matrices of appropriate size, and A is a matrix over CŒker � of size k � k. Denote
by A� the matrix A twisted by �, as in Proposition 2.2. Then the L2–chain complex of Tg.†/ twisted by
.G; �I idG/ is

C
.2/
� .Tg.†/; �/D .0! l2.G/n

@
�

3
�! l2.G/n.kC1/ @

�

2
�! l2.G/n.kC1/ @

�

1
�! l2.G/n! 0/

in which

@
�
3
D .In�n

� h�.h/;�; : : : ;�/; @
�
2
D

�
� �

Ink�nk � h � �.h/A� �

�
; @

�
1
D

�
�

In�n� h�.h/

�
:

Consider the matrices
S WD In�n

� h�.h/; T WD Ink�nk
� h�.h/A�;

and the matrices under the Alexander twist associated to . ; t/,

S.t/ WD �. ; t/S D In�n
� t � h�.h/; T .t/ WD �. ; t/T D Ink�nk

� t � h�.h/A�:

For any real number t > 0 sufficiently small, the two matrices S.t/ and T .t/ are both invertible with
regular Fuglede–Kadison determinant equal to 1; see [Dubois et al. 2015b, Proposition 8.8]. Then Liu’s
Theorem 4.4 applies to show that these two Fuglede–Kadison determinants are positive when t D 1. It
follows from Lemma 2.6 that � .2/.N; �/D detrN.G/ T .1/ � detrN.G/ S.1/�2 is positive.

Theorem 1.1 then follows from Theorems 4.1 and 4.5.
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5 Continuity of twisted L2–torsion on representation varieties

Let N be any compact orientable irreducible 3–manifold with empty or incompressible toral boundary,
and set G WD �1.N /. Suppose that G is infinite, and denote by Rn.G/ WD Hom.G;SL.n;C// the
representation variety. Then Theorem 1.1 implies that the twisted L2–torsion can be viewed as a positive
function

� 7! � .2/.N; �/; � 2Rn.G/:

The continuity of this torsion function is an interesting but rather hard question. Work of Liu [2017,
Theorem 1.2] has shown that the torsion function is continuous in Hom.G;R/ along the Alexander twists.
We remark that in his article the twist is not unimodular, and an equivalence class for torsion functions
is introduced to guarantee well-definedness. If N is hyperbolic, �0 W G ! PSL.2;C/ is a holonomy
representation associated to the hyperbolic structure, and � 2R2.G/ is a lifting of �0 (such lifting always
exists, see [Culler 1986, Corollary 2.2]), then Bénard and Raimbault [2022] proved that the torsion
function is analytic near �. The continuity of the torsion function in general is wide open. In this section
we present a partial result on the continuity of the twisted L2–torsion function, namely Theorem 1.2.
We start with a brief discussion of the L2–Alexander torsions since it is closely related to the proof of
Theorem 1.2.

5.1 L2–Alexander torsion

The L2–torsion twisted by 1–dimensional representations is called L2–Alexander torsion. To be precise,
for any 1–cohomology class  2H 1.GIR/ and any real number t > 0, the L2–Alexander torsion of N

associated to . ; t/ is defined to be

A.2/.N;  ; t/ WD � .2/.C
.2/
� .N;  t //:

Recall  t WG!C� that maps g 2G to t .g/ is the representation associated to . ; t/. Since  t is not a
unimodular representation, the L2–Alexander torsion depends on the based CG–chain complex C�. yN /.
Indeed, altering the CG–basis of C�. yN /, the base change matrix for C

.2/
� .N;  t / will be a permutation

matrix with entries ˙t˙ .gi /gi (compare Proposition 3.3), whose regular Fuglede–Kadison determinant
is t

P
i ˙ .gi /. Since gi 2G are independent of  and t , the continuity of A.2/.N;  ; t/ as a function of

. ; t/ 2H 1.GIR/�RC is independent of the choice of cellular basis; here H 1.N IR/ is given the usual
real vector space topology.

In [Dubois et al. 2015a; 2015b], one considers A.2/.N;  ; t/ as a function of t , and introduces an
equivalence relation between functions. Namely, two functions f1; f2 WRC! Œ0;C1/ are equivalent if
and only if there exists a real number r such that

f1.t/D tr
�f2.t/

holds for all t > 0. In this case we denote by f1 PDf2. So the equivalence class of A.2/.N;  ; t/ as a
function of t does not depend on the choice of cellular basis.
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Another way to cure the ambiguity is to modify  t to be a unimodular 2–dimensional representation. Set

 t ˚ t�1 WG! SL.2;C/; g 7!

�
t .g/ 0

0 t� .g/

�
:

Then it is easy to observe that C
.2/
� .N;  t ˚ t�1/D C

.2/
� .N;  t /˚C

.2/
� .N;  t�1/, and hence by Lück

[2002, Theorem 3.35],

A.2/.N;  ; t/ �A.2/.N;  ; t�1/D � .2/.N;  t ˚ t�1/;

which does not depend on the choice of cellular basis. This fact motivates the following definition.

Definition 5.1 For any  2H 1.GIR/ and t > 0, we define the symmetric L2–Alexander torsion of N

associated to . ; t/ to be
A.2/sym.N;  ; t/ WD �

.2/.N;  t ˚ t�1/1=2:

It is shown in [Dubois et al. 2015a, Chapter 6] that the L2–Alexander torsion satisfies

A.2/.N;  ; t/D t� .c1.e// �A.2/.N;  ; t�1/

where c1.e/ 2H1.N IZ/ is independent of . ; t/. This shows that

A.2/sym.N;  ; t/D tr
�A.2/.N;  ; t/

for some real number r . We remark that, as a function of . ; t/, the continuity of A.2/.N;  ; t/ defined
by any CW structure is equivalent to the continuity of A

.2/
sym.N;  ; t/.

As an illustration of the various definitions, we rediscover the L2–Alexander torsion A.2/.N;  ; t/ for a
graph manifold N using Theorem 4.1. The calculation is first carried out by Herrmann [2017] for Seifert
fibering space and by [Dubois et al. 2015a] for graph manifolds.

Theorem 5.2 Let N be a graph manifold with infinite fundamental group. Suppose that N ¤ S1 �D2

and N ¤ S1 �S2. Then a representative of the L2–torsion twisted by . ; t/ is

A.2/.N;  ; t/Dmaxf1; txN . /g;

where xN is the Thurston norm for H 1.N IR/.

Proof For t > 1, set � WD  t ˚ t�1 . Then, by Theorem 4.1,

A.2/sym.N;  ; t/
2
D � .2/.N;  t ˚ t�1/D

Y
M�N is a Seifert piece

t�j .h/j��orb ;

where h2H 1.M IR/ is represented by the regular fiber of M and �orb is the orbifold Euler characteristic
of M=S1. By our assumption on N , we know that �orb 6 0, so �j .h/j ��orb D xM . / by [Herrmann
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2017, Lemma A], where xM is the Thurston norm for H 1.M IR/. Then by [Eisenbud and Neumann
1985, Proposition 3.5], X

M�N is a Seifert piece

xM . /D xN . /

and so
A.2/sym.N;  ; t/

2
D txN . /; t > 1:

Since the symmetric L2–Alexander torsion is by definition symmetric,

A.2/sym.N;  ; t/Dmaxft
1
2

xN . /; t�
1
2

xN . /g PDmaxf1; txN . /g:

It follows that the L2–Alexander torsion of graph manifolds is continuous in . ; t/2H 1.GIR/�RC. For
a general 3–manifold N , the continuity of the L2–Alexander torsion is a hard question. Liu [2017] and
Lück [2018] independently proved that the L2–Alexander torsion function is always positive. Moreover
Liu proved in the same article that A.2/.N;  ; t/ is continuous with respect to t . Lück [2018, Chapter 10]
conjectured that this function is continuous with respect to . ; t/ 2H 1.N IR/�RC. We will see that
this statement is true.

Theorem 5.3 Let N be a compact orientable irreducible 3–manifold with empty or incompressible toral
boundary. Suppose �1.N /DG is infinite. Then any representative of the L2–Alexander torsion function
A.2/.N;  ; t/ is continuous with respect to . ; t/ 2H 1.N IR/�RC.

Theorem 1.2 is now a corollary of Theorem 5.3, as we restate here.

Theorem 5.4 Let N be a compact orientable irreducible 3–manifold with empty or incompressible toral
boundary. Suppose �1.N /D G is infinite. Define Rt

n.G/ to be the subvariety of Rn.G/ consisting of
upper triangular representations. Then the twisted L2–torsion function

� 7! � .2/.N; �/

is continuous with respect to � 2Rt
n.G/.

Proof Fix a CW structure for N and fix a choice of cell-lifting to yN , so we can talk about the L2–
Alexander torsion unambiguously. For any � 2Rt

n.G/, we can assume that

�.g/D

0@�1.g/ � � � �
: : :

:::
�n.g/

1A ;
where �k WG!C� are characters. The modulus of those characters can be written as

j�k j D e�k ; g 7! e�k.g/;

for some real 1–cohomology classes �k 2H 1.GIR/. The classes �1; : : : ; �n are continuous with respect
to � 2Rt

n.G/.

Algebraic & Geometric Topology, Volume 24 (2024)



On the positivity of twisted L2–torsion for 3–manifolds 2325

Let Vn be the G–invariant subspace of V corresponding to �n, and let V 0 WD V =Vn, then there is an exact
sequence of G–representations

0! Vn! V ! V 0! 0;

where the G–actions are given by

�n.g/D �n.g/; �.g/D

0@�1.g/ � � � �
: : :

:::
�n.g/

1A ; �0.g/D

0@�1.g/ � � � �
: : :

:::
�n�1.g/

1A ;
respectively. Then, by Lück [2018, Lemma 3.3],

� .2/.N; �/D � .2/.N; �n/�
.2/.N; �0/:

Since unitary twists have no effect on L2–torsions by Lück [2018, Theorem 4.1], we have

� .2/.N; �n/D �
.2/.N; e�n/DA.2/.N; �n; e/:

The above process can then be applied to �0 and finally we have the formula

� .2/.N; �/DA.2/.N; �1; e/ � � �A
.2/.N; �n; e/:

Since the cohomology classes �1; : : : ; �n vary continuously with respect to � 2Rt
n.G/, the conclusion

follows from Theorem 5.3.

The remaining part of this section is devoted to the proof of Theorem 5.3. We will need the notion of
Alexander multitwists.

5.2 Alexander multitwists of matrices

Recall that G is any finitely generated, residually finite group. For any collection of 1–cohomology classes
ˆD .�1; : : : ; �n/ 2

Qn
iD1 H 1.GIR/ and any collection of positive real numbers T D .t1; : : : ; tn/ 2Rn

C,
we define a CG–homomorphism

�.ˆ;T / WCG!CG; g! t
�1.g/
1

� � � t�n.g/
n �g; g 2G:

This is called the Alexander multitwist of CG associated to .ˆ;T /.

Proposition 5.5 Basic properties of the Alexander multitwist :

(1) Associativity Suppose ˆD .�1; : : : ; �n/ and T D .t1; : : : ; tn/. Then

�.ˆ;T /D �.�1; t1/ ı � � � ı �.�n; tn/:

(2) Commutativity �.�1; t1/ ı �.�2; t2/D �.�2; t2/ ı �.�1; t1/.

(3) Change of coordinate Let r1; r2 2R; then

�.r1�1C r2�2; t/D �.�1; t
r1/ ı �.�2; t

r2/;

�.�; t
r1

1
t
r2

2
/D �.r1�; t1/ ı �.r2�; t2/:

The Alexander multitwist extends to an endomorphism of the matrix algebra with entries in CG.
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In the following part of this section, we shall fix a square matrix� over CG, and suppose that detrN.G/.�/
is not zero. For any collection of 1–cohomology classes ˆ D .�1; : : : ; �n/ and positive real numbers
T D .t1; : : : ; tn/, we introduce the notation

Vˆ.T / WD detrN.G/.�.ˆ;T /�/:

Proposition 5.6 For any fixed choice of ˆ, the multivariable function Vˆ.T / is everywhere positive and
is multiplicatively convex in each coordinate with respect to T D .t1; : : : ; tn/ 2Rn

C.

Proof By associativity and commutativity of the Alexander multitwist,

�.ˆ;T /�D �.�i ; ti/ ı �.ˆ
0;T 0/�

where .ˆ0;T 0/ are variables other than .�i ; ti/. The conclusion then follows from applying Theorem 4.4
to each i .

Theorem 5.7 For any fixed choice of ˆ, the multivariable real function Vˆ.T / is multiplicatively convex
with respect to T D .t1; : : : ; tn/ 2Rn

C.

Proof We will prove that for any fixed choice of ˆ and every positive integer k 6 n, the function Vˆ.T /

is multiplicatively convex with respect to the first k coordinates.

The case k D 1 is proved by Proposition 5.6. Assume the claim holds for .k � 1/ and consider

V�1;:::;�k
.t1; : : : ; tk/D Vˆ.T /

as a function of the first k variables of ˆ and T . It suffices to prove that for any � 2 .0; 1/ and any
collection of positive numbers r1; : : : ; rk > 0 and s1; : : : ; sk > 0,�

V�1;:::;�k
.r1; : : : ; rk/

��
�
�
V�1;:::;�k

.s1; : : : ; sk/
�1�� > V�1;:::;�k

.r�1 s1��
1 ; : : : ; r�k s1��

k /:

We can assume that r1 ¤ s1, otherwise this inequality degenerates to the .k � 1/ case after permuting the
coordinates. Consider  1 D �1C��k for a real number � which will be determined later. We have the
identity that for all t1; : : : ; tk > 0,

V 1;�2;:::;�k
.t1; : : : ; tk�1; tk/D V�1;�2;:::;�k

.t1; : : : ; tk�1; t
�
1 tk/:

By the induction hypothesis, for all r > 0,�
V 1;�2;:::;�k

.r1; : : : ; rk�1; r/
��
�
�
V 1;�2;:::;�k

.s1; : : : ; sk�1; r/
�1��

> V 1;�2;:::;�k
.r�1 s1��

1 ; : : : ; r�k�1s1��
k�1; r/;

which is equivalent to�
V�1;:::;�k

.r1; : : : ; rk�1; r
�
1 r/

��
�
�
V�1;:::;�k

.s1; : : : ; sk�1; s
�
1 r/

�1��
> V�1;:::;�k

�
r�1 s1��

1 ; : : : ; r�k�1s1��
k�1; .r

�
1 r/� � .s�1 r/1��

�
:
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Since r1 ¤ s1, we can prescribe � 2R and r > 0 by solving the equations

r�1 r D rk ; s�2 r D sk :

This finishes the induction.

Corollary 5.8 For any fixed .ˆ;T / 2
Qn

iD1 H 1.GIR/�Rn
C, the function Wˆ;T WR

n!R,

Wˆ;T .s1; : : : ; sn/ WD log.Vs1�1;:::;sn�s
.T //;

is convex. In particular , it is continuous.

Proof This follows from the identity

Wˆ;T .s1; : : : ; sn/ WD log.Vs1�1;:::;sn�s
.T //D log.Vˆ.t

s1

1
; : : : ; t sn

n //

and the multiplicative convexity of Vˆ.T /.

Theorem 5.9 The regular Fuglede–Kadison determinant map detrN.G/.�.�; t/�/ is continuous with
respect to .�; t/ 2H 1.GIR/�RC.

Proof Let ‰ D . 1; : : : ;  k/ be a basis for the real vector space H 1.GIR/. Suppose

� D

kX
iD1

cj j ; 1 6 i 6 n;

where the coefficients cj are continuous with respect to � 2H 1.GIR/. Then

�.�; t/�D �.c1 1; t/ ı � � � ı �.ck k ; t/�

D �.c1 log t � 1; e/ ı � � � ı �.ck log t � k ; e/�

D �
�
.c1 log t � 1; : : : ; ck log t � k/; .e; : : : ; e/

�
�:

By definition,
detrN.G/.�.�; t/�/D exp W‰;.e;:::;e/.c1 log t; : : : ; ck log t/:

The continuity follows from Corollary 5.8.

5.3 Applications to 3–manifolds

Proof of Theorem 5.3 If N is a graph manifold, then Theorem 5.2 offers an explicit formula for the
L2–Alexander torsion; the theorem holds since the Thurston norm is continuous in H 1.N IR/.

If N is a compact connected orientable irreducible 3–manifold which is hyperbolic or mixed, then as
in the proof of Theorem 4.5, we can find a regular finite covering p W zN !N of degree d such that zN
fibers over the circle. Since by Lemma 3.6 we have

� .2/.N;  t ˚ t�1/d D � .2/. zN ;p� t ˚p� t�1/;
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it follows that A
.2/
sym.N; ; t/

dDA
.2/
sym. zN;p

� ; t/. Note that the pullback map p� WH 1.N IR/!H 1. zN IR/

is a continuous embedding, so we only need to prove the theorem for zN . We can assume without loss of
generality that our manifold N fibers over circle. From the proof of Theorem 4.5, we see that

A.2/.N;  ; t/D detrN.G/.�. ; t/T / � detrN.G/.�. ; t/S/
�2;

where T D Ik�k�hA� and SD1�h are square matrices over CG with positive regular Fuglede–Kadison
determinant. The conclusion follows immediately from Theorem 5.9.

The continuity result can be used to improve previous calculations of the L2–Alexander torsion associated
to fibered classes. In [Dubois et al. 2015b, Theorem 8.2], the calculation is carried out for rational
homology classes only. Liu’s result [2017, Theorem 1.2] shows that the asymptotic degree of the
L2–Alexander torsion associated to any class equals its Thurston norm, but does not offer an explicit
formula.

Theorem 5.10 Let N be any compact , connected , irreducible , orientable 3–manifold with empty or
incompressible toral boundary. Suppose �1.N / is infinite , N ¤ S1 �D2 and N ¤ S1 � S2. Let
� 2H 1.N IR/ be in the interior of a fibered cone. Then there exists a representative of the L2–Alexander
torsion associated to .�; t/ such that

A.2/.N; �; t/D

�
1 if t < 1=h.�/;

txN .�/ if t > h.�/;

where h.�/ is the entropy function defined on the fibered cone of H 1.N IR/ (compare [Dubois et al.
2015b, Section 8]).

Proof Let �n 2H 1.N IQ/ be a sequence in the fibered cone that converge to �. By [Dubois et al. 2015b,
Theorem 8.5], for any n,

A.2/.N; �n; t/D

�
1 if t < 1=h.�n/;

txN .�n/ if t > h.�n/:

By Theorem 5.3,
A.2/.N; �n; t/!A.2/.N; �; t/; n!1;

for any t 2R. Since the entropy and the Thurston norm are continuous functions of H 1.N IR/,

h.�n/! h.�/; xN .�n/! xN .�/; n!1:
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An algebraic C2–equivariant Bézout theorem
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One interpretation of Bézout’s theorem, nonequivariantly, is as a calculation of the Euler class of a sum of
line bundles over complex projective space, expressing it in terms of the rank of the bundle and its degree.
We generalize this calculation to the C2–equivariant context, using the calculation of the cohomology of
C2–complex projective spaces from an earlier paper, which used ordinary C2–cohomology with Burnside
ring coefficients and an extended grading necessary to define the Euler class. We express the Euler class
in terms of the equivariant rank of the bundle and the degrees of the bundle and its fixed subbundles. We
do similar calculations using constant Z coefficients and Borel cohomology and compare the results.

55N91; 14N10, 14N15, 55R40, 55R91

Introduction

Suppose that we have n nonzero homogeneous polynomials fi for 1� i � n in N variables where n<N ,
let di be the degree of fi , and let � D d1d2 � � � dn. If PN�1 is the complex projective space, we can
consider each fi as giving a section of the complex line bundle O.di /, the di–fold tensor power of the
dual of the tautological line bundle over PN�1. Each fi determines a hypersurface Hi � PN�1, its zero
locus. In this context, the (nonequivariant) Bézout theorem, as given by Fulton [5], for example, can be
stated in several ways. Geometrically, it says that the intersection of the hypersurfaces Hi , counted with
multiplicities, is generically rationally equivalent to � copies of PN�n�1. In the classical case, when
nDN � 1, the hypersurfaces intersect in � points.

We can restate Bézout’s theorem as a purely algebraic statement: in the cohomology ring

H�.PN�1IZ/Š ZŒ Oc�=h OcN i;

the Euler class of F DO.d1/˚O.d2/˚ � � �˚O.dn/ is

e.F /D� Ocn;

where OcD e.O.1//. As a consequence, e.F / determines and is completely determined by the rank n of F
(that is, the complex dimension of each of its fibers) and its degree �. (The connection to the geometric
statement is via the Chow ring, isomorphic to cohomology in this case, in which Ocn is represented by
PN�n�1.) Here we want to generalize the algebraic calculation, including giving a generalization of the
notions of rank and degree, and discussing how they determine and are determined by the Euler class; in
a followup paper we will pursue a geometric interpretation.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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In [3] we began to examine how this generalizes in the presence of an action of the two-element group C2.
Let C denote the trivial complex representation of C2 and let C� denote the nontrivial representation.
If p � 0 and q � 0 are integers, let CpCq� be the sum of p copies of C and q copies of C� , and let
P .CpCq� / be its (complex) projective space, a C2–space. Using the equivariant ordinary cohomology
with extended grading defined in [4], we computed the cohomology of P .CpCq� / in [3] with Burnside ring
coefficients. We also gave the zero-dimensional version of an equivariant Bézout theorem, showing that
the equivariant Euler class in equivariant ordinary cohomology with Burnside ring coefficients allows us to
determine the finite C2–set in P .CpCq� / given by the intersection of pCq�1 equivariant hypersurfaces.

Let us set up the context for a generalization to higher dimensions. As mentioned above, if F is a
nonequivariant vector bundle over PN�1, its Euler class has the form e.F /D� Ocn, where n is the rank
of F , � is its degree, and we set �D 0 if n�N .

Now suppose that we have .n<pCq/–many C2–line bundles over P .CpCq� / with direct sum F . We let
� be the nonequivariant degree of F . We can also consider the fixed-set bundle F C2 over P .CpCq� /C2D

P .Cp/tP .Cq� /. Let n0 denote the rank of the restriction of F C2 to P .Cp/ and let �0 be its degree.
We know that n0 � n, and, to keep the situation geometrically meaningful, we would like the generic
intersection of the corresponding hypersurfaces in P .Cp/ to have dimension no more than the dimension
of the intersection of all the hypersurfaces in P .CpCq� /. For that, we require that p�n0�1�pCq�n�1,
that is, n0 � n� q. Similarly, let n1 denote the rank of F C2 over P .Cq� / and let �1 be its degree; we
require that n1 � n�p. We record these notations and conditions for later reference.

Bézout context 0.1 F is the sum of n–many C2–line bundles over P .CpCq� / and� is its nonequivariant
degree. The restriction of F C2 to P .Cp/ has rank n0 and degree �0, while its restriction to P .Cq� / has
rank n1 and degree �1. We assume that

n < pC q; n� q � n0 � n and n�p � n1 � n:

We call the triple .n; n0; n1/ the C2–ranks of F and the triple .�;�0; �1/ the C2–degrees of F .

In this context we will calculate the Euler class e.F / as an element of the equivariant cohomology of
P .CpCq� /, as computed in [3].

Bézout theorem, part I In the context above , the Euler class e.F / is completely determined by the ranks
.n; n0; n1/ and the degrees .�;�0; �1/. Moreover , these ranks and degrees can be recovered from e.F /.
The ranks are additive and the degrees are multiplicative.

This will be proved as Theorem 2.11. When we say that the degrees are multiplicative, we really mean
the following: Suppose that we have two such bundles F and F 0 with ranks .n; n0; n1/ and .n0; n00; n

0
1/,

respectively, and corresponding degrees. We assume that F ˚ F 0 still satisfies the conditions of the
Bézout context above. This allows the possibility that n0C n00 � p, in which case the corresponding
degree is not �0�00 but 0, and similarly if n1Cn01 � q.

Algebraic & Geometric Topology, Volume 24 (2024)
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Nonequivariantly, the cohomology of PN�1 is a free Z–module with a basis given by the powers of Oc .
Explicitly,

.0.2/ H�.PN�1/Š
N�1M
iD0

OciZ:

The nonequivariant Bézout theorem can be viewed as expressing e.F / in terms of this basis. In any given
grading, there is at most one basis element, so there is only one coefficient to specify, which turns out to
be the degree �. Equivariantly, the result is more complicated. In [3] we showed that the cohomology
of P .CpCq� / is free over the RO.C2/–graded equivariant cohomology of a point and gave an explicit
basis that maps to the nonequivariant one. That is, we have a decomposition similar to (0.2), with Z

replaced by the RO.C2/–graded cohomology of a point and the powers of Oc replaced by our preferred
basis. Because the cohomology of a point is not concentrated in grading 0 outside of the Z–graded part,
in any given grading of the cohomology of P .CpCq� / there are up to pC q basis elements that can
contribute, so an element potentially requires a .pCq/–tuple of coefficients (from the cohomology of a
point) to specify. Our second main result is summarized as follows:

Bézout theorem, part II In the context above , the Euler class e.F / is the linear combination of at most
three basis elements.

This is proved as Theorem 2.12, which also gives the details as to which three basis elements are involved
and what their coefficients are. The three basis elements are determined by (p and q and) the ranks
.n; n0; n1/. The coefficients are determined by the degrees .�;�0; �1/, but are not simply equal to them.

This paper is structured as follows. In Section 1 we review the cohomology of P .CpCq� / as computed
in [3], including our preferred basis. In Section 2 we give the main results, proving the two theorems
above. There are two other equivariant ordinary cohomology theories in common use: cohomology with
constant Z coefficients and Borel cohomology. In Section 3 we discuss how the computation changes
if we use constant Z coefficients rather than Burnside ring coefficients, and in Section 4 we discuss
the similar computation in Borel cohomology. There are maps from cohomology with Burnside ring
coefficients to cohomology with constant Z coefficients, and from that theory to Borel cohomology,
both respecting Euler classes, and we will see that the Euler classes in the last two theories carry less
information than the Euler class in cohomology with Burnside ring coefficients. In particular, we cannot
recover the degrees �0 and �1 from the Euler class in cohomology with constant Z coefficients or the
class in Borel cohomology.

Acknowledgements Hudson and Tilson were partially supported by the DFG through the SPP 1786:
Homotopy theory and algebraic geometry, project number 405468058: C2–equivariant Schubert calculus
of homogeneous spaces. While Hudson and Tilson were affiliated to the Bergische Universität Wuppertal,
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methods in algebra, arithmetic and topology, which is funded by the DFG,
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1 The cohomology of P .CpCq� /

1.1 Ordinary cohomology

We will use C2–equivariant ordinary cohomology with the extended grading developed in [4]. This is an
extension of Bredon’s ordinary cohomology to be graded on representations of the fundamental groupoids
of C2–spaces. We review here some of the notation and computations we will be using. A more detailed
description of this theory can be found in [3].

For an ex-C2–space Y over X , we write HRO.…X/
C2

.Y IT / for the ordinary cohomology of Y with
coefficients in a Mackey functor T , graded on RO.…X/, the representation ring of the fundamental
groupoid of X . Through most of this paper we will use the Burnside ring Mackey functor A as the
coefficients, and write simply HRO.…X/

C2
.Y /.

In [4; 3] we considered cohomology to be Mackey functor-valued, which is useful for many computations,
and wrote HRO.…X/

C2
.Y / for the resulting theory. Here we concentrate on the values at level C2=C2,

and write
H

RO.…X/
C2

.Y /DH
RO.…X/
C2

.Y /.C2=C2/:

However, we will still refer to the restriction functor � from equivariant cohomology to nonequivariant
cohomology, and the transfer map � going in the other direction.

For all X and Y , HRO.…X/
C2

.Y / is a graded module over

HDHRO.C2/ DH
RO.C2/
C2

.S0/;

the cohomology of a point. The grading on the latter is just RO.C2/, the real representation ring
of C2, which is free abelian on 1, the class of the trivial representation R, and � , the class of the sign
representation R� . The cohomology of a point was calculated by Stong in an unpublished manuscript,
and first published by Lewis in [6]. We can picture the calculation as in Figure 1, in which a group
in grading aC b� is plotted at the point .a; b/, and the spacing of the grid lines is 2 (which is more
convenient for other graphs we will give). The box at the origin is a copy of A.C2/, the Burnside ring
of C2, closed circles are copies of Z, and open circles are copies of Z=2.

Recall that A.C2/ is the Grothendieck group of finite C2–sets, with multiplication given by products of
sets. Additively, it is free abelian on the classes of the orbits of C2, for which we will write 1D ŒC2=C2�
and g D ŒC2=e�. The multiplication is given by g2 D 2g. We will also write � D 2�g. Other important
elements are shown in the figure: The group in degree � is generated by an element e, while the group in
degree �2C 2� is generated by an element �. The groups in the second quadrant are generated by the
products em�n, with 2e� D 0. We have g� D 2� and ge D 0. The groups in gradings �m� , for m� 1,
are generated by elements e�m�, so named because em � e�m� D �. We also have ge�m� D 0.

To explain �.��2/, we think for a moment about the nonequivariant cohomology of a point. If we grade it
on RO.C2/, we get HRO.C2/.S0IZ/ŠZŒ�˙1�, where deg �D�1C� . (Nonequivariantly, we cannot tell
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a

b�

e�

�.��2/e�1�

Figure 1: HRO.C2/.

the difference between R and R� .) We have �.�/D �2 and �.�2/D g� D 2�. Note also that �.1/D g.
In the fourth quadrant the group in grading n.1� �/ for n � 2 is generated by �.��n/. The remaining
groups in the fourth quadrant will not concern us here. For more details, see [2; 3].

1.2 The cohomology of projective space

As described in the introduction, the form of Bézout’s theorem we shall give expresses the Euler class
of a bundle over P .CpCq� / in terms of a basis of its cohomology. We now review the structure of that
cohomology as calculated in [3].

Write B D P .C1C1� /. Its fixed set is

BC2 D P .C1/tP .C1� /D B0 tB1;

where we use the indices 0 and 1 to evoke the trivial and nontrivial representations of C2, respectively.
(We will use this convention, that a subscript 0 refers to something related to B0 and subscript 1 refers to
something related to B1, throughout.) Representations of …B are determined by their restrictions to B0

and B1, which are elements of RO.C2/ that must have the same nonequivariant rank and the same parity
for the ranks of their fixed-point representations. As shown in [3, Section 2.2, page 13] this leads to the
calculation

RO.…B/D Zf1; �;�0; �1g=h�0C�1 D 2� � 2i;

where�0 is the representation whose value on B0 is 2��2 and on B1 is 0, while�1 is the representation
whose value on B0 is 0 and on B1 is 2� � 2. For any ˛ 2 RO.…B/, write j˛j 2 Z for its underlying
nonequivariant rank, and ˛0 and ˛1 2 RO.C2/ for its restrictions to B0 and B1, respectively. What we
said above can be phrased as: ˛ is completely determined by the triple of ranks .j˛j; j˛C2

0 j; j˛
C2

1 j/, where
the last two ranks have the same parity.
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We think of the finite projective spaces as spaces over B by the evident inclusions P .CpCq� / !

P .C1C1� /, and so will grade their cohomologies on RO.…B/. Let ! denote the tautological line
bundle over B , let !_ be its dual bundle, let �!D!˝C C� , and let �!_ be the dual of �!. We will also
use the notation from algebraic geometry in which ! DO.�1/ and !_DO.1/; we write �O.�1/D �!
and �O.1/D �!_.

Associated to any bundle over B is a representation in RO.…B/ that we think of as the equivariant rank
of the bundle; this representation is given by the fiber representations over B0 and B1. In the case of !
and �!, we have

! D 2C�1 and �! D 2C�0;

where we write ! and �! again for the associated elements of RO.…B/.

Let Oc! and Oc�! denote the Euler classes of !_ and �!_, respectively. The cohomology of P .C1C1� /

was calculated in [2] as follows:

Theorem 1.1 H
RO.…B/
C2

.BC/ is an algebra over H generated by the Euler classes Oc! and Oc�! together
with classes �0 and �1. These elements live in gradings

grad Oc! D !; grad Oc�! D �!; grad �1 D ! � 2 and grad �0 D �! � 2:

They satisfy the relations

�0�1 D � and �1 Oc�! D .1� �/�0 Oc! C e
2;

which completely determine the algebra. Moreover , HRO.…B/
C2

.BC/ is free as a module over H.

There are two restriction maps we will use,

� WH˛
C2
.BC/!H j˛j.BC/;

restriction to nonequivariant cohomology, and

.�/C2 WH˛
C2
.BC/!H˛

C2
0 .B0C/˚H

˛
C2
1 .B1C/;

the fixed-point map. These are ring maps and their values on the multiplicative generators are given by
the following:

�.�0/D 1; �.�1/D 1; �. Oc!/D Oc; �. Oc�!/D Oc;

�
C2

0 D .0; 1/; �
C2

1 D .1; 0/; OcC2
! D . Oc; 1/; OcC2

�! D .1; Oc/:

Here Oc denotes the first nonequivariant Chern class of O.1/. We also need the values of the similar
restriction maps

� WH˛
!H j˛j.S0/ and .�/C2 WH˛

!H˛C2
.S0/:

The particular values we will need are

�.�.�2k//D 1; �.e�k�/D 0; �.ek/D 0; �.�2k/C2 D 0; .e�k�/C2 D 2 and .ek/C2 D 1:
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Moving now to finite projective spaces, on pulling back along the inclusion P .CpCq� / ,! P .C1C1� /,
the cohomology of P .CpCq� / contains elements we will also call Oc! , Oc�! , �0, and �1.

Theorem 1.2 [3, Theorem A] Let 0� p; q <1 with pC q > 0. Then HRO.…B/
C2

.P .CpCq� /C/ is a
free module over H, and as a (graded ) commutative algebra over H the ring HRO.…B/

C2
.P .CpCq� /C/

is generated by Oc! , Oc�! , �0, and �1, together with the following classes: Ocp! is infinitely divisible by �0,
meaning that , for k � 1, there are unique elements ��k0 Oc

p
! such that

�k0 � �
�k
0 Oc

p
! D Oc

p
! :

Similarly, Ocq�! is infinitely divisible by �1, so for k � 1 there are unique elements ��k1 Oc
q
�! such that

�k1 � �
�k
1 Oc

q
�! D Oc

q
�! :

The generators satisfy the following further relations:

�0�1 D �; �1 Oc�! D .1� �/�0 Oc! C e
2 and Ocp! Oc

q
�! D 0:

We also gave an explicit basis for HRO.…B/
C2

.P .CpCq� /C/ over H, which we can describe as follows.
We define sets Fp;q.m/, recursively on p and q, that give bases for Hm!CRO.C2/

C2
.P .CpCq� /C/. For

m 2 Z, let
Fp;0.m/ WD

˚
�m1 ; �

m�1
1 Oc! ; �

m�2
1 Oc2! ; : : : ; �

m�pC1
1 Ocp�1!

	
and

F0;q.m/ WD
˚
�m0 ; �

m�1
0 Oc�! ; �

m�2
0 Oc2�! ; : : : ; �

m�qC1
0 Ocq�1�!

	
:

(Note that �1 is invertible in the first case and �0 is invertible in the second.) For p; q > 0 we then define

Fp;q.m/ WD

�
f�m1 g[ iŠFp�1;q.m� 1/ if m� 0;

f�
jmj
0 g[ jŠFp;q�1.mC 1/ if m< 0;

where i W P .Cp�1Cq� / ! P .CpCq� / and j W P .CpC.q�1/� / ! P .CpCq� / are the inclusions. The
pushforward iŠ is given algebraically by multiplication by Oc! , and jŠ is multiplication by Oc�! .

It is possible from this description to write down the bases explicitly, but the results are messy, having to be
broken down by cases depending on wherem falls in relation to p and q; this is done in [3, Proposition 4.7].
However, we can make the following general statements.

(1) For fixed p, q, and m, there are exactly pCq basis elements lying in Hm!CRO.C2/
C2

.P .CpCq� /C/.

(2) Those basis elements have gradings of the form m.! � 2/C 2ai C 2bi� for 0 � i � pC q � 1,
where ai C bi D i .

(3) The basis element with grading m.! � 2/C 2aC 2b� restricts to the nonequivariant class OcaCb ,
where again Oc is the first nonequivariant Chern class of O.1/.

(4) For a given integer k, there are at most two indices i such that ai D k.

Figure 2 illustrates, in the case of P .C4C5� /, how the basis elements can be arranged for various values
of m. In each case, the basis element with grading m.! � 2/C 2aC 2b� is marked by a dot at .a; b/.
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mD�6 mD�3

mD 0 mD 2 mD 6

Figure 2: Bases for Hm!CRO.C2/

C2
.P .C4C5� /C/.

For ease of reference, we will write the bases as

Fp;q.m/D fP
.m/
0 ; P

.m/
1 ; : : : ; P

.m/
pCq�1g;

where P .m/i is the basis element in Hm!CRO.C2/
C2

.P .CpCq� /C/ restricting to the element Oci nonequiv-
ariantly. When m is understood, we will simply write Pi for P .m/i . We can also say that Pi is the basis
element in grading m.! � 2/C 2aC 2b� with aC b D i , as illustrated for mD 0 in Figure 3.

Definition 1.3 Given any element x 2Hm!CRO.C2/
C2

.P .CpCq� /C/, we can write x uniquely as

x D

pCq�1X
iD0

˛iP
.m/
i

with each coefficient ˛i 2H. We call the .pCq/–tuple .˛i / the coefficient vector of x.

Because elements of H lie in a restricted set of gradings, the number of nonzero coefficients possible
for a given x may be limited, depending on the grading of x, though there are elements x for which all
coefficients are nonzero.

P0

P2

P4

P6

P1

P3

P5

P7

P8

Figure 3: Basis for HRO.C2/

C2
.P .C4C5� /C/.
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2 The algebraic equivariant Bézout theorem

It is possible to take the calculation of Euler classes in [3] and, by brute force, work out their expression
in terms of the basis for the cohomology of P .CpCq� / discussed in the preceding section. Instead, we
will take advantage of some features of the cohomology of a point to give a more conceptual approach
that shows better why the calculation works the way it does.

Definition 2.1 � Let T � H consist of the elements a�.�2`/ for a 2 Z and ` 2 Z, the elements
ae�m� for a 2 Z and m� 1, the elements aem for a 2 Z and m� 1, and all of A.C2/DH0.

� Let Ie � T consist of the elements a�.�2`/ for a 2 Z and ` 2 Z, aem� for a 2 Z and m 2 Z, and
aC bg 2 A.C2/ such that a is even.

Note that em� D 2em if m> 0.

Proposition 2.2 Ie is an ideal of H.

Proof This is a straightforward check from the known structure of H, as given in [3].

On the other hand, T is not an ideal, because e� … T while e 2 T . But T is an additive subgroup.

An important fact about T is that, as shown in Figure 4, all of its elements lie in gradings of the form
n� or 2n.1� �/, that is, on the vertical line through the origin or the diagonal through the origin with
slope �1. Closed circles indicate copies of Z, while the box at the origin is A.C2/. T is a free Z–module.

Another fact that follows from the known structure of H is that the quotient ring H=Ie is all 2–torsion.

a

b�

e�.�2/

�.��2/e�1�

Figure 4: The subset T of H.
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Remark 2.3 The ideal Ie is almost, but not quite, the kernel of the restriction map

HDHRO.C2/
C2

.S0IA/!H
RO.C2/
C2

.S0IZ=2/:

That kernel would not contain all the elements a�.��2m/ for m� 1, but only those of the form 2a�.��2m/.
Either ideal would serve our purpose here, but we chose to use the one that is slightly simpler to describe.

Definition 2.4 � Denote the set of linear combinations of elements of our preferred basis of
H

RO.…B/
C2

.P .CpCq� /C/ with coefficients in T by zT �HRO.…B/
C2

.P .CpCq� /C/.

� Let Je be the ideal defined by

Je D IeH
RO.…B/
C2

.P .CpCq� /C/�H
RO.…B/
C2

.P .CpCq� /C/:

Every element of Je is a linear combination of elements from our preferred basis with coefficients in Ie (and
this would be true for any basis we used). Because Je � zT , the following facts about zT apply to Je as well.

Lemma 2.5 Every element x 2 zT is a linear combination of at most three basis elements: if x lies in
grading m.! � 2/C aC b� , the only basis elements that can contribute to x are the one (if any) lying on
the same diagonal as x, that is , in a grading m.! � 2/C a0C b0� with a0C b0 D aC b, and the two (at
most) lying in the same vertical line as x, that is , in gradings m.! � 2/C aC b0� .

Proof This follows from the description of the locations of the basis elements given in the preceding
section together with the locations of the elements of T .

See the example in Remark 2.15 below for an illustration of this lemma.

Proposition 2.6 If x 2 zT , then x is determined by its restrictions �.x/ and xC2 .

Proof By the preceding lemma, x can be written as a linear combination of at most three elements from
our standard basis. There are various cases that should be considered. Suppose, for example, that x lies
on the same diagonal as a basis element Pn and lies above two basis elements Pk and Pk�1. Then we
can write

x D ˛�.�2`/PnCˇe
mPkC e

mC2Pk�1

for some integers ˛, ˇ,  , `, and m. We now appeal to [3, Proposition 4.6], where we showed that
our standard basis restricts to a nonequivariant basis for P .CpCq� / and a nonequivariant basis for
P .CpCq� /C2 . We have �.x/ D 2˛�.Pn/, so ˛ is determined by �.x/. On the other hand, xC2 D

ˇP
C2

k
C P

C2

k�1
, so ˇ and  are determined by xC2 .

There are other cases, for example, where x lies below two basis elements rather than above, or where
it lies in the same grading as a basis element. Each of these can be handled in the same way as the
case above.

Note that this is not true for general elements of HRO.…B/
C2

.P .CpCq� /C/ because there are elements of
H that vanish under both � and .�/C2 .
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For any x 2HRO.…B/
C2

.P .CpCq� /C/ we have

�.x/ 2HZ.P .CpCq/C/;

so �.x/D� Ock for some integers � and k, or it is 0, in which case we set �D 0. We also have

xC2 2HZ.P .Cp/C/˚H
Z.P .Cq/C/;

so xC2 D .�0 Oc
i ; �1 Oc

j / for some integers �0, �1, i , and j . (Again, we set �0 D 0 if �0 Oci D 0 and
�1 D 0 if �1 Ocj D 0.)

Definition 2.7 We call the triple of integers .�;�0; �1/ determined as above the C2–degrees of x.

Corollary 2.8 If x 2 zT , then x is determined by its grading and its C2–degrees.

Proof Suppose that x lies in grading m.! � 2/C aC b� and that the degrees of x are .�;�0; �1/. By
the structure of zT and the locations of the basis elements, we can assume that a is even. Then

�.x/D

�
� Oc.aCb/=2 if b is even,
0 otherwise,

and xC2 D .�0 Oc
a=2; �1 Oc

a=2�m/:

Thus the grading of x and its degrees determine �.x/ and xC2 , so the result follows from the preceding
proposition.

In order to apply these results to derive the two parts of our Bézout theorem, we need to know a little
more about the line bundles that are the summands of F as in Bézout context 0.1. In [3] we showed that
the line bundles over P .CpCq� / all have the form O.d/ or �O.d/. It is useful to further break these
down into four types:

type I bundles of the form O.2d C 1/,

type II bundles of the form O.2d/,

type III bundles of the form �O.2d C 1/,

type IV bundles of the form �O.2d/.

The fixed points O.2d C 1/C2 of a bundle of type I have fiber C over P .Cp/ and 0 over P .Cq� /, while
the reverse is true for a bundle of type III. The fixed points O.2d/C2 of a bundle of type II have fiber C

over both components of P .CpCq� /C2 , while the fixed points of a bundle of type IV have fiber 0 over
both components.

In [3], for � 2 fI,II,III,IVg we wrote n� for the number of summands of type � and d� for the products of
their degrees. These are related to the ranks and C2–degrees of F by

nD nICnIICnIIICnIV; n0 D nICnII; n1 D nIICnIII; �D dIdIIdIIIdIV;

�0 D

�
dIdII if n0 < p;
0 if n0 � p;

.2.9/

�1 D

�
dIIdIII if n1 < q;
0 if n1 � q:

.2.10/
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Now, dI and dIII are always odd, and dII and dIV are even if and only if there is a summand of type II
or IV, respectively. Notice that, when nII > 0, the quantities �, �0, and �1 will all be even. If nII D 0,
then n0Cn1 � n, which implies that

n0 � n�n1 � n� .n�p/D p

and n1 � q, similarly, with equality possible only if nIV D 0. So, if nII D 0 but nIV > 0, we will have �
even and both �0 and �1 odd. When nII D 0 and nIV D 0, we will have � odd while �0 and �1 will be
odd if nonzero.

Theorem 2.11 (Bézout theorem, part I) Let F be as in Bézout context 0.1. Then e.F / lies in zT , and
hence is determined by its grading , which is

.n0�n1/.! � 2/C 2n0C 2.n�n0/�;

and its C2–degrees , which are .�;�0; �1/. Moreover , the grading and degrees can be recovered
from e.F /. The ranks .n; n0; n1/ are additive while the degrees are multiplicative.

Proof The additivity of the grading and the multiplicativity of the degrees are clear (but see the caveat
about multiplicativity given in the introduction).

Given that n is the nonequivariant (complex) rank of F and n0 and n1 are the ranks of the restriction
of F C2 to P .Cp/ and P .Cq� /, respectively, e.F / must lie in the grading given, which is the grading ˛
with j˛j D n, ˛0 D 2n0C 2.n�n0/� , and ˛1 D n1C 2.n�n1/� .

Conversely, if e.F / lies in grading m.! � 2/C 2aC 2b� , then we can recover nD aC b, n0 D a, and
n1 D a�m.

The degrees .�;�0; �1/ are, by the nonequivariant Bézout theorem, given by

�.e.F //D� Ocn and e.F /C2 D .�0 Oc
n0 ; �1 Oc

n1/;

using the fact that � and .�/C2 preserve Euler classes. Thus, we can recover the degrees from e.F /.

It remains to show that e.F / is determined by its grading and C2–degrees.

Recall the discussion above of the four types of line bundles over P .CpCq� /. In [3, Proposition 6.5] we
computed their Euler classes, which are

e.O.2d C 1//D Oc! C d.�.1/ Oc! C e
�2��1 Oc! Oc�!/� Oc! .mod Je/;

e.O.2d//D d.�.��2/�0 Oc! C e
�2� Oc! Oc�!/� 0 .mod Je/;

e.�O.2d C 1//D Oc�! C d.�.1/ Oc�! C e
�2��0 Oc! Oc�!/� Oc�! .mod Je/;

e.�O.2d//D e2C d�.1/�0 Oc! � e
2 .mod Je/:

From (2.9) and (2.10), we see that�0 and�1 are both even if and only if F contains at least one summand
of the form O.2d/ (type II). If F does not contain such a summand, then n0 is the number of summands
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of the form O.2d C 1/ and n1 is the number of summands of the form �O.2d C 1/, and we will have
n0Cn1 � n. From the congruences above, we have, modulo Je, that

e.F /�

�
0 if �0 and �1 are even,

e2.n�n0�n1/ Oc
n0
! Oc

n1
�! if �0 or �1 is odd.

When �0 or �1 is odd, n0 � p and n1 � q, with at least one of the inequalities being strict, so Ocn0
! Oc

n1
�!

is a basis element and e2.n�n0�n1/ Oc
n0
! Oc

n1
�! 2

zT . It follows that e.F / 2 zT , and then the fact that e.F / is
determined by its grading and C2–degrees follows from Corollary 2.8.

By Lemma 2.5, the Euler class e.F / can be written as a linear combination of just three basis elements.
We next work out the explicit expression, which, by Theorem 2.11, is determined by the grading of e.F /
and its C2–degrees.

Theorem 2.12 (Bézout theorem, part II) Let F be as in Bézout context 0.1. Then we can write

e.F /D ˛P .m/n CˇP
.m/

k
C P

.m/

k�1

for some 1� k < pC q and some coefficients ˛, ˇ, and  in H, so the coefficient vector of e.F / has at
most three nonzero components. Allowing for the possibility that nD k or nD k�1, we can arrange that
the coefficient ˛ is always an integer multiple of �.�2i / for some i 2 Z, and the coefficients ˇ and  are
always integer multiples of e2i or e�2i� for some i � 0.

Use the briefer notation Pn and write � D 0 or 1 for the remainder on dividing nCn0Cn1 by 2. We have

Pn D

8̂<̂
:
�
�.nCn0�n1�2p/
0 Oc

p
! Oc
n�p
�! if nCn0�n1 > 2p;

�
�.n�n0Cn1�2q/
1 Oc

n�q
! Oc

q
�! if n�n0Cn1 > 2q;

��0 Oc
.nCn0�n1C�/=2
! Oc

.n�n0Cn1��/=2
�! otherwise ,

Pk D

�
�0 Oc

n0C1
! Oc

n1
�! if n0 < p;

�
�.n0�p/
0 Oc

p
! Oc
n1
�! if n0 � p;

and Pk�1 D

�
Oc
n0
! Oc

n1
�! if n1 < q;

�
�.n1�q/
1 Oc

n0
! Oc

q
�! if n1 � q:

The coefficient ˛ will be an integer multiple of

�n D

8<:
�.�2.n�n1�p// if nCn0�n1 > 2p;
�.�2.n�n0�q// if n�n0Cn1 > 2q;
�.�n�n0�n1��/ otherwise.

Finally, write Nn0Dminfn0; p�1g and Nn1Dminfn1; qg. Then we break the result into the following cases:

(1) If � is even , then

˛D 1
2
��n; ˇD 1

2
.�1��0/e

�2. Nn0CNn1�nC1/�; D 1
2
.�0/e

�2. Nn0CNn1�n/�; kD Nn0CNn1C1:

(2) If � is odd and �0 ¤ 0, then

˛ D 1
2
.���0/�.1/; ˇ D 1

2
.�1��0/e

�2�;  D�0; k D nC 1:

(3) If � is odd and �0 D 0, then

˛ D 1
2
.���1/�.1/; ˇ D 0;  D�1; k D nC 1:
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Remark 2.13 We should point out some abuses of notation we are indulging in. The formulas for Pk and
Pk�1 evaluate to 0, not basis elements, when both n0 � p and n1 � q. In the case n0 <p�1 and n1 � q,
the formula for Pk is not a basis element, but we know that its coefficient will be a multiple of em� for
some integer m, and the product em�Pk D 0 in that case because of the relations in the cohomology
of P .CpCq� /. A similar vanishing happens in the case of Pk�1 when n0 > p and n1 < q. Finally, the
formulas for Pk and Pk�1 coincide when n0 D p and n1 < q, but in that case �0 D 0 so only one copy
of this basis element appears in the formula for e.F /.

Proof Theorem 2.11 and Lemma 2.5 imply the first claim, that we can write e.F / in terms of just three
basis elements.

To determine Pn, Pk , and Pk�1, we recall from [3, Proposition 4.7] that the basis elements take one of
the six possible forms

�m1 Oc
a
! for m>1; a<p; �m0 Oc

b
�! for m>1; b<q; Oca! Oc

b
�! for a�p; b�q;

�0 Oc
a
! Oc
b
�! for a�p; b<q; ��m0 Ocp! Oc

b
�! for m>0; b<q; ��m1 Oca! Oc

q
�! for m>0; a<p;

where we recall that Ocp! Oc
q
�! D 0, so we do not have aD p and b D q above.

We noted earlier that e.F / lies in grading

grad e.F /D .n0�n1/.! � 2/C 2n0C 2.n�n0/�:

Pn is the unique basis element having grading in .n0�n1/.! � 2/CRO.C2/ restricting to Ocn, and we
can check that the formula given in the statement of the theorem has those properties. Similarly, Pk and
Pk�1 are the (at most) two basis elements having gradings of the form .n0�n1/.! � 2/C 2n0C 2b� ,
and we can check that the formulas given have that property. The coefficient �n is the element of the
form �.�2i / such that �nPn lies in the same grading as e.F /. The terms of the form em� multiplying Pk
and Pk�1 in the formulas for e.F / are determined similarly.

To verify the coefficients of Pn, Pk , and Pk�1, we use the fact that e.F / is determined by the nonequiv-
ariant elements

�.e.F //D� Ocn and e.F /C2 D .�0 Oc
n0 ; �1 Oc

n1/;

so we simply need to check that the formulas of the theorem have the correct values on applying these
restriction maps.

First note that, regardless of which case we fall in, we will always have

�.�nPn/D 2 Oc
n and .�nPn/

C2 D .0; 0/:

For Pk and Pk�1 we have

�.Pk/D Oc
k; �.Pk�1/D Oc

k�1; P
C2

k
D .0; Ocn1/ and P

C2

k�1
D . Ocn0 ; Ocn1/;

which includes the possibility that PC2

k�1
D . Ocn0 ; 0/ if n1 � q.
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Now, when � is even, in the formulas given, ˇ and  each have a factor of the form em�, and �.em�/D 0
and .em�/C2 D 2. Combined with the formulas above, this verifies case (1) of the theorem, except that we
should say something about the parities of�0 and�1. From the discussion before Theorem 2.11, because
� is even, �0 and �1 have the same parity. There is a possibility that �0 is odd, but this can happen only
when nIID 0 and nIV>0, in which case n0<p, n1<q, and n0Cn1<n. The coefficient  in that case is

 D 1
2
�0e

�2.n0Cn1�n/� D 1
2
.�0/2e

2.n�n0�n1/;

which we interpret as �0e2.n�n0�n1/ by another abuse of notation. (The abuse is that division by 2 is
not well defined in H.) We then use that �.em/D 0 and .em/C2 D 1 for m> 0.

If � is odd, then nD n0C n1, n0 � p, and n1 � q. If �0 and �1 are both nonzero, then n0 < p and
n1 < q, Pn D Pk�1, and the formula in case (2) of the theorem is easily verified.

If �0 ¤ 0 but �1 D 0, then n0 < p and n1 D q. In this case,

e�2�Pk D e
�2��0 Oc

n0C1
! Ocq�! D 0;

so we allow the abuse of notation that �1 ��0 is odd in the formula for ˇ. With that caveat, the
verification of case (2) can be completed.

In case (3), since �0 D 0 we must have �1 ¤ 0 and odd. The verification is then just as for the
previous cases.

The asymmetry in these formulas comes from an asymmetry in our preferred basis regarding Oc! vs Oc�! .

Remark 2.14 Theorems 2.11 and 2.12 give us two related ways of determining e.F /: by the ranks
.n; n0; n1/ and the C2–degrees .�;�0; �1/, and also by its triple of nonzero coefficients. The advantage
of using the degrees is that they are multiplicative. This is simpler to calculate with, and also parallels
the result of the nonequivariant Bézout theorem that degrees are multiplicative under intersection of
projective varieties.

Remark 2.15 The summary of Theorem 2.12 is that e.F / can be expressed in terms of at most three basis
elements. This is not a restriction imposed by the locations of the basis elements. As an example, consider
P .C5C5� / and the bundle F D 4�O.2/, the sum of four copies of �O.2/, so nD 4 and n0 D n1 D 0.
This Euler class lives in grading

.n0�n1/.! � 2/C 2n0C 2.n�n0/� D 8�:

Figure 5 shows the location of e.F /, the “�” at 8� , and the locations of the basis elements in the
RO.C2/–grading. The five basis elements within the shaded area have nonzero multiples in degree 8� , so
could conceivably contribute to e.F /, but the theorem says that it can be written in terms of just three of
them: P4, the one on the same diagonal as e.F /, and the two below it, P0 and P1.
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P0

P4P1

Figure 5: Location of e.4�O.2//.

In fact, we are in Theorem 2.12(1), with �D 8 and �0 D�1 D 1, so

e.4�O.2//D 8�.�4/P4C 0P1C e
8P0 D 8�.�

4/ Oc2! Oc
2
�! C e

8:

As it happens, P1 does not actually contribute in this example.

Remark 2.16 In [3], we looked in detail at the case nD pC q� 1, where the hypersurfaces associated
with the line bundle summands of F intersect generically in a C2–set of points in P .CpCq� /. In that
case, we showed that the explicit formula for e.F / can be read as telling us how that collection of points
breaks down as free orbits versus fixed points in each of the components of P .CpCq� /C2 . In a followup
to this paper, we will show how the Euler class more generally gives us geometric information about the
intersection of hypersurfaces.

3 Comparison with constant Z coefficients

Another equivariant cohomology theory commonly used is ordinary cohomology with coefficients in Z,
the constant-Z Mackey functor. We calculate the Euler class e.F / with Z coefficients and compare it to
the class obtained with Burnside ring coefficients.

As shown in [2], HRO.C2/
C2

.S0IZ/ is obtained from H by setting � D 0. This has the effect of removing
the elements e�n� and making 2e D 0. Since � D 2� g, it also has the effect of setting g D 2. Put
another way, this theory cannot distinguish between a free orbit and two fixed points.

Because the cohomology of P .CpCq� / with A coefficients is free over the cohomology of a point, we
obtain the cohomology with Z coefficients by setting � D 0. The result is the following:

Theorem 3.1 [3, Corollary 5.4] Let 0�p; q <1 with pCq > 0. ThenHRO.…B/
C2

.P .CpCq� /CIZ/ is
a free module over HRO.C2/

C2
.S0IZ/. Its structure as a graded commutative algebra over HRO.C2/

C2
.S0IZ/

is described as in Theorem 1.2, except that the relation �1 Oc�!D .1��/�0 Oc!Ce2 is replaced by the relation

�1 Oc�! D �0 Oc! C e
2:

Setting � D 0 in Theorem 2.12, remembering that em is 2–torsion, and paying attention to the abuses of
notation mentioned in the proof of that theorem, we get the following:
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Theorem 3.2 (Bézout’s theorem for constant Z coefficients) Let F be as in Bézout context 0.1. Then
the Euler class eZ.F / 2H

RO.…B/
C2

.P .CpCq� /CIZ/ is given by

eZ.F /D

8̂<̂
:
1
2
��nP

.m/
n if �, �0 and �1 are even ,

1
2
��nP

.m/
n C e2.n�n0�n1/P

.m/

k�1
if � is even and �0 or �1 is odd ,

�P
.m/
n if � is odd ,

where , writing � D 0 or 1 for the remainder on dividing nCn0Cn1 by 2, we set

P .m/n D

8̂<̂
:
�
�.nCn0�n1�2p/
0 Oc

p
! Oc
n�p
�! if nCn0�n1 > 2p;

�
�.n�n0Cn1�2q/
1 Oc

n�q
! Oc

q
�! if n�n0Cn1 > 2q;

��0 Oc
.nCn0�n1C�/=2
! Oc

.n�n0Cn1��/=2
�! otherwise ,

�n D

8<:
�.�2.n�n1�p// if nCn0�n1 > 2p;
�.�2.n�n0�q// if n�n0Cn1 > 2q;
�.�n�n0�n1��/ otherwise ,

and , when � is even and �0 or �1 is odd ,

P
.m/

k�1
D Ocn0

! Oc
n1
�! :

While this result has the benefit of relative simplicity, it carries significantly less information than
Theorem 2.12. In particular, we cannot reconstruct�0 and�1 from eZ.F /. This follows from the formula
in the theorem, but we can also look again at the fixed-point map .�/C2 to see why this must happen.
As defined in [4], the fixed-point map takes G–equivariant cohomology with coefficients in a Mackey
functor T to nonequivariant cohomology with coefficients in TG . In the case of the group C2, we have

T C2 D T .C2=C2/=�.T .C2=e//:

This gives AC2 D Z, but ZC2 D Z=2. We then get the following:

Corollary 3.3 With F as in Bézout context 0.1, we have

eZ.F /
C2 D .�0 Oc

n0 ; �1 Oc
n1/ 2H 2a.P .Cp/CIZ=2/˚H

2.a�m/.P .Cq� /CIZ=2/;

so
eZ.F /

C2 D

�
(0; 0/ if �0 and �1 are even ,
( Ocn0 ; Ocn1/ if �0 or �1 is odd.

Proof From the commutativity of the diagram

H
RO.…B/
C2

.P .CpCq� /CIA/

.�/C2

��

// H
RO.…B/
C2

.P .CpCq� /CIZ/

.�/C2

��

HZ.P .CpCq� /
C2

C
IZ/ // HZ.P .CpCq� /

C2

C
IZ=2/

where the horizontal arrows are given by change of coefficients, eZ.F /
C2 is just the reduction of e.F /C2

modulo 2.
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Thus, from this Euler class we cannot recover �0 and �1, only their parities. This goes back to the fact
that, because g D 2, cohomology with Z coefficients cannot distinguish between a free orbit and two
fixed points, and hence retains only parity information about fixed points.

For example, in the case nD pCq� 1 discussed in detail in [3], we can think of the Euler class in terms
of the finite C2–set given by the zero locus of a section of F , or the intersection of the hypersurfaces
given by the zero loci of sections of the line bundles making up F . The Euler class with Burnside ring
coefficients completely determines this C2–set, including how many fixed points lie in each component
of P .CpCq� /C2 . The Euler class with constant Z coefficients can tell us only the parity of the number of
fixed points in each component.

4 Comparison with Borel cohomology

Borel cohomology was the first theory thought of as equivariant ordinary cohomology, but is a considerably
weaker theory than Bredon cohomology. (See, for example, May’s discussion in [7].) There is a map
from ordinary cohomology with Z coefficients to Borel cohomology, so the latter is also weaker than
cohomology with Z coefficients. To see how much weaker, let us look at the calculation of e.F / in
Borel cohomology.

We take Borel cohomology to be the RO.C2/–graded theory defined on based C2–spaces by

BHRO.C2/
C2

.X/DH
RO.C2/
C2

..EC2/C ^X/;

where, as usual, we use Burnside ring coefficients on the right, but suppress them from the notation.
(BecauseEC2 is free, and A!Z is an isomorphism at the C2=e level, we could instead use Z coefficients
and get naturally isomorphic results.) This is the usual Borel cohomology with Z coefficients, but we
have expanded the grading from the common Z to RO.C2/. As shown in [2], the Borel cohomology of a
point is H with � inverted:

BHRO.C2/
C2

.S0/Š ZŒe; �; ��1�=h2ei:

Here deg e D � and deg � D 2� � 2, as before. In the map H! BHRO.C2/
C2

.S0/, � goes to 0. As with
cohomology with Z coefficients, Borel cohomology cannot tell the difference between g and 2.

Note that, if we restrict to the Z grading, as is usually done, we get a polynomial algebra in e2��1 modulo
2e2��1 D 0, a copy of the group cohomology of C2 with Z coefficients. If we restrict the grading to
� CZ, we see the group cohomology of C2 with twisted Z coefficients. That the twisted and untwisted
cohomologies can be combined in a single algebra like this seems to have been first observed by Čadek [1].

Because the ordinary C2–cohomology of P .CpCq� / is free over the cohomology of a point, we obtain
its Borel cohomology also by inverting �. On doing so, the elements �0 and �1 become invertible, with
the result that, if we continued to grade on RO.…B/, the groups outside the RO.C2/ grading would all
be isomorphic to groups in the RO.C2/ grading via multiplication by an appropriate power of, say, �0.
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So we lose nothing by considering the RO.C2/–graded part only. To give the explicit result, let Oc be the
image of �0 Oc! in BH2�C2

.P .CpCq� /C/. The following is then a corollary of Theorem 1.2:

Corollary 4.1 Let 0� p; q <1 with pC q > 0. Then BHRO.C2

C2
.P .CpCq� /C/ is a free module over

BHRO.C2/
C2

.S0/, and as a (graded ) commutative algebra over BHRO.C2/
C2

.S0/, BHRO.…B/
C2

.P .CpCq� /C/

is generated by Oc in degree 2� , which satisfies the single relation

Ocp. Oc C e2/q D 0:

Of course, we could also use as a generator the element c0 D ��1 Oc in degree 2, but the relation is then

.c0/p.c0C e2��1/q D 0:

For the simplicity of the relation, and to keep the generator more closely related to an element from
ordinary cohomology, we prefer to use Oc .

We view Oc as the Euler class of !_. The Euler class of �!_ is then OcC e2, the image of �1 Oc�! . In doing
this, we are choosing to say that ! is a rank-2� bundle over EC2 �P .CpCq� /. Because EC2 is free,
we are as free to say ! has rank 2� as to say it has rank 2.

Another way of seeing that e.�!/D OcC e2 is to recall that �! D !˝C C� , then use the additive formal
group law of nonequivariant ordinary cohomology and the fact that e.C� /D e2.

Now consider the Euler classes of the bundles O.d/ and �O.d/, all of which we will think of as
having rank 2� . As a corollary of [3, Proposition 6.5], or as a consequence of the formal group law for
nonequivariant cohomology, we have the following:

Proposition 4.2 In the Borel cohomology of P .CpCq� / we have

e.O.d//D d Oc and e.�O.d//D d Oc C e2

for every d 2 Z.

Theorem 4.3 (Bézout’s theorem for Borel cohomology) Let F be as in Bézout context 0.1. The Euler
class of F in the Borel cohomology of P .CpCq� / is

eBH .F /D

8<:
� Ocn if �, �0 and �1 are even ,
� OcnC e2.n�n0�n1/ Ocn0. Oc C e2/n1 if � is even and �0 or �1 is odd ,
� Ocn0. Oc C e2/n�n0 if � is odd.

Proof These formulas can be derived from the preceding proposition or from Theorem 3.2, using the
fact that �.1/D 2 in Borel cohomology.

As we saw with ordinary cohomology with Z coefficients, the Euler class in Borel cohomology contains
significantly less information than the one in ordinary cohomology with Burnside ring coefficients. The
fixed-point map would be

.�/C2 WH
RO.C2/
C2

..EC2/C ^P .CpCq� /C/!HZ...EC2/C ^P .CpCq� /C/
C2 IZ/DHZ.�IZ/D 0:

Thus, Borel cohomology contains no information at all about fixed points.
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[1] M Čadek, The cohomology of BO.n/ with twisted integer coefficients, J. Math. Kyoto Univ. 39 (1999)

277–286 MR Zbl

[2] S R Costenoble, The RO.…B/–graded C2–equivariant ordinary cohomology of BC2
U.1/, Topology Appl.

338 (2023) art. id. 108660 MR Zbl

[3] S R Costenoble, T Hudson, S Tilson, The C2–equivariant cohomology of complex projective spaces, Adv.
Math. 398 (2022) art. id. 108245 MR Zbl

[4] S R Costenoble, S Waner, Equivariant ordinary homology and cohomology, Lecture Notes in Math. 2178,
Springer (2016) MR Zbl

[5] W Fulton, Intersection theory, Ergebnisse der Math. 2, Springer (1984) MR Zbl

[6] L G Lewis, Jr, The RO.G/–graded equivariant ordinary cohomology of complex projective spaces with
linear Z=p actions, from “Algebraic topology and transformation groups” (T tom Dieck, editor), Lecture
Notes in Math. 1361, Springer (1988) 53–122 MR Zbl

[7] J P May, Characteristic classes in Borel cohomology, J. Pure Appl. Algebra 44 (1987) 287–289 MR Zbl

Department of Mathematics, Hofstra University
Hempstead, NY, United States

College of Transdisciplinary Studies, DGIST
Daegu, South Korea

Hörstel, Germany

steven.r.costenoble@hofstra.edu, hudson@dgist.ac.kr, sean.tilson@gmail.com

Received: 9 November 2022 Revised: 21 March 2023

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

https://doi.org/10.1215/kjm/1250517912
http://msp.org/idx/mr/1709293
http://msp.org/idx/zbl/0946.55009
https://doi.org/10.1016/j.topol.2023.108660
http://msp.org/idx/mr/4629789
http://msp.org/idx/zbl/07739145
https://doi.org/10.1016/j.aim.2022.108245
http://msp.org/idx/mr/4388953
http://msp.org/idx/zbl/1492.55007
https://doi.org/10.1007/978-3-319-50448-3
http://msp.org/idx/mr/3585352
http://msp.org/idx/zbl/1362.55001
https://doi.org/10.1007/978-3-662-02421-8
http://msp.org/idx/mr/732620
http://msp.org/idx/zbl/0541.14005
https://doi.org/10.1007/BFb0083034
https://doi.org/10.1007/BFb0083034
http://msp.org/idx/mr/979507
http://msp.org/idx/zbl/0669.57024
https://doi.org/10.1016/0022-4049(87)90032-6
http://msp.org/idx/mr/885112
http://msp.org/idx/zbl/0626.55012
mailto:steven.r.costenoble@hofstra.edu
mailto:hudson@dgist.ac.kr
mailto:sean.tilson@gmail.com
http://msp.org
http://msp.org


msp

Algebraic & Geometric Topology 24:4 (2024) 2351–2365
DOI: 10.2140/agt.2024.24.2351

Published: 16 July 2024

Topologically isotopic and smoothly inequivalent 2–spheres
in simply connected 4–manifolds whose complement has

a prescribed fundamental group

RAFAEL TORRES

We describe a procedure to construct infinite sets of pairwise smoothly inequivalent 2–spheres in sim-
ply connected 4–manifolds, which are topologically isotopic and whose complement has a prescribed
fundamental group that satisfies some conditions. This class of groups include cyclic groups and the
binary icosahedral group. These are the first known examples of such exotic embeddings of 2–spheres
in 4–manifolds. Examples of locally flat embedded 2–spheres in a nonsmoothable 4–manifold whose
complements are homotopy equivalent to smoothly embedded ones are also given.

57K45, 57R55; 57R40, 57R52

1 Main results

The first main result of this note is the following theorem.

Theorem A Fix p � 2. There is an infinite set

fSn;p W n 2 Zg

of smoothly embedded 2–spheres in 2CP2 # 4CP2 that satisfies the following properties:

� Any two elements are topologically isotopic.

� There is a diffeomorphism of pairs

.2CP2 # 4CP2;Sn1;p/! .2CP2 # 4CP2;Sn2;p/

if and only if n1 D n2.

� The fundamental group of the complement is

�1.2CP2 # 4CP2
n �.Sn;p//D Z=p

for every n 2 Z.

� ŒSn;p �¤ 0 2H2.2CP2 # 4CP2IZ/ for every n 2 Z.

� Surgery along each of these 2–spheres yields an infinite set of pairwise homeomorphic and pairwise
nondiffeomorphic closed smooth 4–manifolds with fundamental group Z=p.
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Theorem A provides the first known example of an infinite set of 2–spheres smoothly embedded in a
simply connected 4–manifold that are pairwise topologically isotopic, pairwise smoothly inequivalent and
having a complement with finite cyclic fundamental group. Schwartz [2019, Theorem 2] pointed out the
existence of closed simply connected 4–manifolds containing pairs of smoothly embedded 2–spheres that
are both smoothly equivalent and topologically isotopic, but not smoothly isotopic. Examples of these
exotic embeddings of 2–spheres in closed 4–manifolds with simply connected complement have been
constructed by Akbulut [2015] and Auckly, Kim, Melvin and Ruberman [Auckly et al. 2015]. Exotic
embeddings of surfaces with positive genus in simply connected 4–manifolds and complement having
nontrivial fundamental group were found by Kim [2006] and Kim and Ruberman [2008]. An ingredient
in the proof of Theorem A is of independent interest: we point out in Theorem 1 that constructions of
inequivalent smooth structures on simply connected 4–manifolds of Fintushel and Stern [2011; 2012] can
be extended to produce such structures on 4–manifolds with nontrivial fundamental group too.

The second main result provides a construction procedure for topologically equivalent yet smoothly
inequivalent homologically essential 2–spheres whose complement can be chosen to have the same
fundamental group as a wide range of Q–homology 4–spheres. We work with the modified Seiberg–
Witten SW0X invariant of a closed 4–manifold X as defined, for example, in [Fintushel et al. 2007,
Section 2], and denote by BX the set of basic classes.

Theorem B Let fZn W n 2 Zg be an infinite set of closed smooth simply connected 4–manifolds with
pairwise different integer invariants

(1-1) Sn DmaxfjSW0Zn
.kZn

/j W kZn
2BZn

g;

which are pairwise homeomorphic to a given closed 4–manifold Z and such that the connected sum
Zn # S2 �S2 is diffeomorphic to Z # S2 �S2 for every n 2 Z. Let M be a closed smooth 4–manifold
with H�.M IQ/ŠH�.S

4IQ/ and set � WD �1M . Suppose that there is a loop ˛ �M and a choice of
framing such that

(1-2) S2
�S2

DM n �.˛/[D2
�S2:

There is an infinite set
fSn;� W n 2 Zg

of smoothly embedded 2–spheres in Z # S2 �S2 that satisfies the following properties.

� There is a homeomorphism of pairs

.Z # S2
�S2;Sn1;�/! .Z # S2

�S2;Sn2;�/

for every ni 2 Z.

� There is a diffeomorphism of pairs

.Z # S2
�S2;Sn1;�/! .Z # S2

�S2;Sn2;�/

if and only if n1 D n2.
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� The fundamental group of the complement is

�1.Z # S2
�S2

n �.Sn;�//D �

and its homology class satisfies

ŒSn;� �¤ 0 2H2.Z # S2
�S2
IZ/

for every n 2 Z.

� Surgery along each of these 2–spheres yields an infinite set fZn #M W n 2Zg of pairwise nondiffeo-
morphic closed smooth 4–manifolds with fundamental group � that are pairwise homeomorphic to
the connected sum Z # M .

See [Fintushel et al. 2007, Proof of Theorem 1] for details on the definition of the invariant (1-1). Fintushel
and Stern [2011; 2012] constructed infinite sets as in the hypothesis of Theorem B for Z DCP2 # kCP2

for 2 � k � 7. Baykur and Sunukian [2013] showed that Fintushel and Stern’s examples become
diffeomorphic after a connected sum with a single copy of S2�S2. Examples of Q–homology 4–spheres
M that satisfy the hypothesis are spun 4–manifolds with the fundamental group of any lens space and
the Poincaré homology 3–sphere. A similar result holds if (1-2) is substituted for the nontrivial bundle
S2 z�S2. It is possible to strengthen the conclusion of Theorem B to topologically isotopic 2–spheres,
although we do not pursue this endeavor here; see Sunukjian [2015].

A contribution of this note is to point out the simplicity of the proofs of Theorems A and B. The reader
will notice that the 4–manifolds in the last clause of Theorem B are smoothly reducible (see [Gompf and
Stipsicz 1999, Definition 10.1.17]), while those in the last clause of Theorem A are not. We explain in
Remark 10 how an instance of Theorem B implies the claims on the existence of the homeomorphism
of pairs and the nonexistence of the diffeomorphism of pairs of Theorem A. An independent proof
of Theorem A is given in Section 2.7 as well. The following consequence of Theorem B is another
contribution.

Corollary C Let G be a finite cyclic group or the icosahedral group

G D hg1;g2 W g1
5
D .g1g2/

2
D g2

3
i:

There is an infinite set of smoothly embedded 2–spheres in 2CP2 # 4CP2 that are pairwise topologically
equivalent , yet pairwise smoothly inequivalent , and the fundamental group of the complement is G.

These are the first examples of exotic embeddings of 2–spheres in simply connected 4–manifolds whose
complement has a fundamental group isomorphic to the binary icosahedral group among several other
choices of groups. We exhibit interesting smooth embeddings of nullhomotopic 2–spheres in the fourth
main result of this note.
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Theorem D There is an infinite set

(1-3) fSn W n 2 Zg

of 2–spheres smoothly embedded in 2CP2 # 4CP2 that satisfies the following properties.

� The fundamental group of the complement of an element in (1-3) is

�1.2CP2 # 4CP2
n �.Sn//D Z

and ŒSn�D 0 2 �2.2CP2 # 4CP2/ for every n 2 Z.

� There is a diffeomorphism of pairs

.2CP2 # 4CP2;Sn1
/! .2CP2 # 4CP2;Sn2

/

if and only if n1 D n2.

Notice that elements in (1-3) do not bound a smoothly embedded 3–ball in 2CP2 # 4CP2. The smoothly
inequivalent embeddings of homotopically trivial 2–spheres of Theorem D are related to a construction
of an infinite set of closed smooth 4–manifolds with infinite cyclic fundamental group and the homology
of the connected sum 2CP2 # 4CP2 # S1 �S3, which is given in Theorem 2.

While any 2–sphere in a closed simply connected 4–manifold can be assumed to be regularly immersed,
Hambleton and Kreck [1993b] and Lee and Wilczyński [1990; 1997] completely characterized when
a homology class of nonzero divisibility can be represented by a locally flat embedded 2–sphere. The
fifth and last result to be mentioned in this introduction records the existence of a myriad of explicit
examples of locally flat embedded 2–spheres in closed simply connected 4–manifolds whose exteriors
are homotopy equivalent but not homeomorphic.

Theorem E For every p � 2, there is a locally flat embedded 2–sphere

(1-4) Sp � �CP2 # CP2

whose complement has finite cyclic group Z=p, and it is homotopy equivalent to the complement of a
smoothly embedded 2–sphere

(1-5) S 0p �CP2 # CP2:

Theorem E is essentially derived from an existence result of nonsmoothable Q–homology 4–spheres due
to Hambleton and Kreck [1993a]. Other interesting examples were found by Kasprowski, Lambert-Cole,
Land and Lecuona [Kasprowski et al. 2021].
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2 Proofs

2.1 Infinitely many inequivalent smooth structures

Fintushel and Stern [2012, Theorem 1] showed that there is a nullhomologous 2–torus T smoothly
embedded in CP2 # 3CP2 such that performing surgeries on T results in infinitely many inequivalent
smooth structures on CP2 # 3CP2. We point out that changing the coefficients of the torus surgery on T

introduces homotopically nontrivial loops to the resulting 4–manifold, and their procedure also yields
infinitely many smooth structures on 4–manifolds with prescribed cyclic fundamental group. The latter
will serve as raw material to construct the knotted 2–spheres.

We introduce terminology to state the result and follow the notation in [Fintushel and Stern 2012, Section 3].
Let T � X be a smoothly embedded 2–torus with trivial tubular neighborhood �.T / D T 2 � D2.
Let fa; bg be loops in T that form a symplectic basis of �1T D Z2, and let fS1

a ;S
1
b
g be loops in

@�.T / D T 2 � @D2 D T 2 � S1 that are homologous to a and b, respectively. The meridian of T is
denoted by �T and it is any curve in the same isotopy class of the curve fxg�@D2 � @�.T /. The smooth
4–manifold

(2-1) XT;S1
b
.p=n/ WD .X n �.T //[' .T

2
�D2/;

where the gluing diffeomorphism satisfies '�.Œ@D2�/DnŒS1
b
�CpŒ�T �, is said to be obtained by performing

a p=n–torus surgery to X on T along the curve b.

We first consider the case of finite cyclic fundamental group and postpone the infinite cyclic case to the
end of the section.

Theorem 1 Fix p � 2. There is a smoothly embedded nullhomologous 2–torus T �CP2 # 3CP2 and a
nullhomologous curve in its complement S1

b
�CP2 # 3CP2 n �.T / such that performing a p=n–torus

surgery to CP2 # 3CP2 on T along S1
b

yields an infinite set

(2-2) fXT;S1
b
.p=n/ W n 2 Zg

of pairwise nondiffeomorphic 4–manifolds such that every element is homeomorphic to the connected
sum

(2-3) CP2 # 3CP2 #†p;

where †p is a Q–homology 4–sphere with fundamental group �1†p D Z=p.

Proof The only contribution in this note to the work of Fintushel and Stern [2011; 2012] that provides a
proof of Theorem 1 is the change in a coefficient of the torus surgery. We then employ a homeomorphism
criteria of Hambleton and Kreck to pin down the homeomorphism class of the closed 4–manifolds that
are constructed this way. Set X WD CP2 # 3CP2 so to not overload the notation. Fintushel and Stern
[2012, Theorem 1.1] showed the existence of a nullhomologous torus T � X and the curve b � T
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with framing S1
b
� X n �.T / as in the statement of Theorem 1. Build XT;S1.p=n/ as in (2-1). Since

ŒT �D 0 2H2.X IZ/, we have that H1.XT;S1
b
.p=n/IZ/D Z=p for every n 2 Z; in this notation, p D 0

corresponds to Z. We now fix p � 2.

To see that the fundamental group of XT;S1
b
.p=n/ is Z=p, we take a closer look at the construc-

tions of Fintushel and Stern [2011; 2012], where six torus surgeries along six nullhomologous 2–tori
fT1;i ;T2;i W i D 1; 2; 3g are performed to X to produce a symplectic 4–manifold Q with fundamental
group �1.Q/DZ6 and that contains six Lagrangian 2–tori fL1;i ;L2;i W i D 1; 2; 3g [Fintushel and Stern
2011, Proposition 7; 2012, page 77]. The complements of these 2–tori are the same, ie

(2-4) X n

3[
iD1

.�.T1;i/t �.T2;i//DQ n

3[
iD1

.�.L1;i/t �.L2;i//:

By applying six surgeries to the symplectic 4–manifold Q along the Lagrangian 2–tori with a given choice
of surgery curves [Fintushel and Stern 2011, Theorem 2], one obtains an infinite set of inequivalent smooth
structures on X . The first five surgeries are j1=1j–torus surgeries, while the last one is a 1=n–torus surgery
[Fintushel and Stern 2011, page 1685]. In particular, this infinite set can be obtained by performing
torus surgeries to X on six nullhomologous 2–tori. For our purposes, we perform the first five surgeries
verbatim as in the proof of [Fintushel and Stern 2011, Theorem 2], but change the surgery coefficients of
the sixth surgery to perform a p=n–torus surgery in order to obtain an infinite set

(2-5) fXT;S1
b
.p=n/ W n 2 Zg

for a fixed p � 2. It follows from the Seifert–van Kampen theorem that the fundamental group is
�1.XT;S1

b
.p=n// D Z=p [Baldridge and Kirk 2009, page 321] for every n 2 Z; a detailed account

on the computation of the fundamental group of the 4–manifolds obtained with such a change in the
surgery coefficient can be found in several places in the literature, for example [Akhmedov and Park
2010, page 595; Baldridge and Kirk 2009, Section 5]. We have explained so far that six surgeries on six
nullhomologous 2–tori in X as in [Fintushel and Stern 2011, Theorem 2] produce an infinite set (2-5) of
4–manifolds with fundamental group Z=p.

We now appeal to the main result of Fintushel and Stern [2012, Section 8], which is that the first five
surgeries on X do not change the diffeomorphism type of X and, thus, there is a single nullhomologous
2–torus T � X along with a nullhomologous curve S1

b
� X n �.T / such that a 1=n–torus surgery

produces an infinite set of smooth structures on X , as we had mentioned before [Fintushel and Stern
2012, Theorem 1.1]. Thus, we conclude that each element in the set (2-5) is obtained by performing a
p=n–torus surgery on T �X along S1

b
.

We now argue that these 4–manifolds are homeomorphic to (2-3). An inclusion-exclusion argument
indicates that the Euler characteristic is unchanged under torus surgeries, ie

(2-6) �.XT;S1
b
.p=n//D �.X /D 6:

Algebraic & Geometric Topology, Volume 24 (2024)



Topologically isotopic and smoothly inequivalent 2–spheres in simply connected 4–manifolds 2357

Novikov additivity [Gompf and Stipsicz 1999, Remark 9.1.7] implies

(2-7) �.XT;S1
b
.p=n//D �.X /D�2;

and we conclude that the second Stiefel–Whitney class of XT;S1
b
.p=n/ does not vanish employing a result

of Rohklin; see [Gompf and Stipsicz 1999, Theorem 1.2.29]. A classification result of Hambleton and
Kreck [1993a, Theorem C] allows us to conclude that the 4–manifold XT;S1

b
.p=n/ is homeomorphic to

CP2 # 3CP2 #†p , where †p is a closed smooth 4–manifold with Euler characteristic two and signature
zero for every n 2 Z and p � 2.

To argue that we have constructed infinitely many 4–manifolds that are pairwise nondiffeomorphic, we com-
pute their Seiberg–Witten invariants using an argument well documented in the literature [Akhmedov et al.
2008; Baldridge and Kirk 2009; Fintushel et al. 2007; Fintushel and Stern 2011; 2012]. We reproduce the
argument here for the sake of completeness, which requires us to describe the relation between the Seiberg–
Witten invariants of the 4–manifolds XT;S1

b
.p=n/, X and XT;S1

b
.0=1/. Given a characteristic element

k0 2H2.XT;S1
b
.0=1/IZ/, there are unique characteristic elements kX 2H2.XT;S1

b
.1=0/IZ/DH2.X IZ/

and kp=n 2H2.XT;S1
b
.p=n/IZ/ [Akhmedov et al. 2008, Remark 4; Fintushel and Stern 2011, page 64].

The 4–manifolds XT;S1
b
.1=0/DX and XT;S1

b
.0=1/ will have at most one basic class up to sign in our

setting; cf [Akhmedov et al. 2008; Fintushel and Stern 2011; 2012]. As described in [Fintushel and
Stern 2012, Section 3], the 4–manifold XT;S1

b
.0=1/ has infinite cyclic fundamental group and it admits a

symplectic structure [Fintushel and Stern 2012, Section 4]; cf [Fintushel et al. 2007, Section 3]. A result
of Taubes [1994] says that the canonical class k0 D �c1.XT;S1

b
.0=1// is a basic class of XT;S1

b
.0=1/

and SWXT;S1
b
.0=1/.˙k0/ D ˙1. Moreover, the adjunction inequality — see [Akhmedov et al. 2008,

Section 2.1] — implies that k0 2B is the only basic class up to sign.

It follows that there is a unique kp=n 2BXT;S1
b
.p=n/ up to sign for every n� 1, and the product formula

of Morgan, Mrowka and Szabó [Morgan et al. 1997, Theorem 1.1] yields

(2-8) SWX
T;S1

b

.p=n/.kp=n/D p �SWX .kX /C n �
X

i

SWX
T;S1

b

.0=1/.k0C i ŒT0�/:

There is a 2–torus Td �XT;S1
b
.0=1/ that is geometrically dual to the core 2–torus T0 �XT;S1

b
.0=1/ of

the surgery. Along with this fact, an adjunction inequality argument implies that the sum on the right-hand
side of (2-8) contains at most one nonvanishing term; see [Akhmedov et al. 2008, Section 4.1] for the
argument. We have the equality

(2-9) SWX
T;S1

b

.p=n/.kp=n/D p �SWX .kX /C n �SWX
T;S1

b

.0=1/.k0/

and we conclude that there is an infinite set of pairwise nondiffeomorphic closed 4–manifolds (2-2).

What is obtained when we set p D 0 in the statement of Theorem 1 and the previous proof, is an infinite
set fXT;S1

b
.0=n/ W n 2 Z� f0gg of pairwise nondiffeomorphic closed 4–manifolds with infinite cyclic

fundamental group and the same homology of the connected sum 2CP2 # 4CP2 # S1�S3; see Fintushel
and Stern [2012, Theorem 1.1].
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Theorem 2 There is a smoothly embedded nullhomologous 2–torus T �CP2 # 3CP2 and a nullhomol-
ogous curve in its complement S1

b
�CP2 # 3CP2 n �.T / such that performing a 0=n–torus surgery to

CP2 # 3CP2 on T along S1
b

yields an infinite set

(2-10) fXT;S1
b
.0=n/ W n 2 Z�f0gg

of pairwise nondiffeomorphic 4–manifolds with infinite cyclic fundamental group and such that every
element has the homology of the connected sum

(2-11) 2CP2 # 4CP2 # S1
�S3:

Similar statements to Theorems 1 and 2 for further choices of homeomorphism types of 4–manifolds
with cyclic fundamental group are produced by employing other results of Fintushel and Stern [2012].

2.2 2–spheres whose complement has a prescribed fundamental group

Let X be a closed smooth 4–manifold whose fundamental group has a presentation

(2-12) �1X D hg1; : : : ;gj W r1; : : : ; rki

such that adding the relation g1 D 1 to it for a given generator g1, one obtains the trivial group. Cyclic
groups and the group hg1;g2 W g1

5 D .g1g2/
2 D g2

3i are examples of such groups.

Let ˛1 �X be a based loop whose homotopy class is Œ˛1�D g1 2 �1X . Build the closed smooth simply
connected 4–manifold

(2-13) Z WDX n �.˛1/[ .D
2
�S2/

and consider the belt 2–sphere

(2-14) S WD f0g �S2
�D2

�S2
�Z:

Further information is needed on the framing of the loop ˛1 � X to pin down the diffeomorphism or
homeomorphism type of Z. Once this is taken care of, this process provides a 2–sphere (2-14) smoothly
embedded in Z and whose complement has fundamental group G. A topological construction of locally
flat 2–surfaces in topological 4–manifolds is obtained by using locally flat embedded submanifolds in
the surgery (2-13); see [Freedman and Quinn 1990, Section 9.3] for existence and uniqueness results on
tubular neighborhoods of locally flat embedded submanifolds.

We set some notation and construct the 2–spheres of Theorem A using this procedure in the following
example. It includes the choice of framing on the loop whose homotopy class generates the fundamental
group.

Example 3 Fix p � 2 and an integer n 2 Z. Consider the 4–manifold XT;S1
b
.p=n/ in the set (2-2) and

let yT � XT;S1
b
.p=n/ be the core 2–torus of the surgery. Let ˛ � XT;S1

b
.p=n/ be a loop such that the

4–manifold

(2-15) Zn;p WD .XT;S1
b
.p=n/ n �.˛//[ .D2

�S2/
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is simply connected and consider the belt 2–sphere

(2-16) Sn;p WD f0g �S2
�D2

�S2
�Zn;p:

Notice that the loop ˛ lies on the boundary of @�. yT /. The framing on the loop ˛ is induced by the product
framing of core torus of the p=n–torus surgery. The complement of the 2–sphere (2-16) has fundamental
group

(2-17) �1.Zn;p n �.Sn//D Z=p;

and the homology class of (2-16) satisfies ŒSn;p �¤ 0 2H2.Zn;pIZ/. Moreover, the 4–manifold Xn;p is
recovered by applying surgery to Zn;p along Sn;p.

2.3 The ambient 4–manifold of Theorems A and D

We prove in this section that the 2–spheres (2-16) of Example 3 are all smoothly embedded in 2CP2#4CP2,
and postpone to Section 2.7 the proof that they are pairwise smoothly inequivalent.

Proposition 4 The 4–manifold Zn;p from (2-15) is diffeomorphic to the connected sum 2CP2 # 4CP2

for every n 2 Z and a fixed p � 2. In particular , there is an infinite set

(2-18) fSn;p W n 2 Zg

of 2–spheres smoothly embedded in Z D 2CP2 # 4CP2 such that the complement Z n �.Sn;p/ has
fundamental group Z=p for every n 2 Z.

Proof We use an argument due to Moishezon [1977, Lemma 13] (see also Gompf [1991, Lemma 3])
and work of Baykur and Sunukjian [2013] to establish the diffeomorphism type of our 4–manifolds. We
follow the notation in [Gompf 1991, Lemma 3], fix an n 2 Z and a p � 2, and consider the 4–manifold
XT;S1

b
.p=n/ in (2-2) that is constructed from CP2 # 3CP2 using torus surgeries and the 4–manifold

Zn;p built in (2-15). Perform a torus surgery to XT;b.p=n/ which identifies the loop that generates its
fundamental group with the normal disk to the 2–torus to obtain a simply connected 4–manifold yN ; this
gluing map is described on [Gompf 1991, page 101]. The latter 4–manifold can also be obtained by
applying a torus surgery to CP2 #3CP2. Moishezon’s argument implies that Zn;p is obtained from yN by
doing surgery along a loop [Gompf and Stipsicz 1999, Section 5.2], ie Zn;pDN �D yN #S2�S2 [Gompf
and Stipsicz 1999, Propositions 5.2.3 and 5.2.4]. Results of Baykur and Sunukjian [2013, Section 3]
imply that yN # S2 �S2 is diffeomorphic to CP2 # 3CP2 # S2 �S2 D 2CP2 # 4CP2. Since the choice
of n and p was arbitrary, we conclude that Zn;p is diffeomorphic to 2CP2 # 4CP2 for every n 2 Z and
p � 2.

A tweak to the proof of Proposition 4 pins down the diffeomorphism type of the 4–manifolds constructed
in the proof of Theorem D.
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2.4 Topological isotopy

Locally flat embeddings of 2–spheres in 4–manifolds whose complement has finite cyclic fundamental
group have been studied by Lee and Wilczynśki [1990] and Hambleton and Kreck [1993b, Theorem 4.5].
The next result from their work is of particular importance for our purposes.

Theorem 5 (Lee–Wilczyński, Hambleton–Kreck) Let X be a closed simply connected topological 4–
manifold such that b2.X / > j�.X /jC2 and let h2H2.X IZ/ be a homology class of nonzero divisibility
p ¤ 0. Let S1;S2 �X be locally flat embedded 2–spheres with homology classes

ŒS1�D ŒS2�D h 2H2.X IZ/;

and whose complement has fundamental group �1.X n �.S1//D Z=p D �1.X n �.S2// for p � 2. If

(2-19) b2.X / > max
0�j<p

j�.X /� 2j .p� j /.1=p2/h � hj;

then there is a topological isotopy between S1 and S2.

Notice that our ambient 4–manifold 2CP2 # 4CP2 is within the range of the hypothesis of Theorem 5.
Moreover, the homology class of the belt 2–sphere (2-16) of Example 3 has nonzero divisibility and
self-intersection zero by construction. We conclude that the 2–spheres that were constructed in the
previous sections are all topologically isotopic to each other by Theorem 5.

Corollary 6 The infinite set fSn;p W n 2 Zg of Proposition 4 is made of smoothly embedded 2–spheres
in 2CP2 # 4CP2 that are pairwise topologically isotopic.

2.5 Some examples of F–homology 4–spheres

Constructions of 4–manifolds that have the same F–homology as S4 are not scarce in the literature.
For example, a surgery theory construction of Q–homology 4–spheres with finite cyclic fundamental
group is given by Hambleton and Kreck [1993a, Proposition 4.1]. Their examples include 4–manifolds
with nonvanishing Kirby–Siebermann invariant and they admit no smooth structure. We describe two
constructions of such objects in this section.

The first involves doing surgery on the product of a 3–manifold with a circle. Spun closed smooth
4–manifolds form a classical set of examples of 4–manifolds that share the homology of S4 with F–
coefficients and whose fundamental group is a 3–manifold group. We briefly recall their construction and
suppose that N is a closed orientable 3–manifold. A homology 4–sphere †N with fundamental group
�1†N D �1N is constructed as

(2-20) †N WD .N �S1/ n �.fptg �S1/[id .D
2
�S2/;

where we use the identity map to identify the common boundary. There is another choice of framing, yet
results of Plotnick [1986] state that there is a unique diffeomorphism class of (2-20) for the 3–manifolds
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employed in this paper. If N is an F–homology 3–sphere, then †N is an F–homology 4–sphere. There
are two principal choices of 3–manifold used in the proofs of our results:

� For N DL.p; 1/, we obtain a Q–homology 4–sphere †L.p;1/ with fundamental group

�1†L.p;1/ D Z=p:

� For N D†.2; 3; 5/, we obtain a Z–homology 4–sphere ††.2;3;5/ with fundamental group

�1††.2;3;5/ D ha; b W a
5
D .ab/2 D b3

i:

A second construction of smooth Q–homology 4–spheres with finite cyclic fundamental group is through
handlebodies. Gompf and Stipsicz’s [1999, Figure 5.46] depiction of a pair of orientable S2–bundles
over RP2 describes a handlebody of a pair of Q–homology 4–spheres with fundamental group of order
two whose second Stiefel–Whitney class can be chosen to vanish or not depending on the n–framing
of one of the two 2–handles. Handlebodies of pairs of Q–homology 4–spheres f†p;n W n 2 f0; 1gg with
fundamental group

�1†p;n D Z=p

for every p � 2 and second Stiefel–Whitney class

w2†p;n D n

consisting of one 0–handle, one 1–handle, one 0–framed 2–handle, one n–framed 2–handle, one 3–handle,
and one 4–handle are drawn as a straight-forward extension of the p D 2 case [Gompf and Stipsicz 1999,
Figure 5.46].

2.6 2–spheres in simply connected 4–manifolds via F–homology 4–spheres

The 4–manifolds of the previous section and the procedure of Section 2.2 yields knotted 2–spheres
smoothly embedded in the total space of an S2–bundle over S2. The case of most interest for us is
summarized in the following lemma.

Lemma 7 [Sato 1991, Section 3] There is a smoothly embedded 2–sphere Sp ,! S2 � S2 whose
complement has fundamental group Z=p for every p � 2.

There is a smoothly embedded 2–sphere SG ,! S2 � S2 whose complement has fundamental group
G D ha; b W a5 D .ab/2 D b3i or Z=p.

A variation of the proof of Proposition 4 yields a proof of Lemma 7 by using Moishezon’s argument [1977],
a lemma of Gompf [1991, Lemma 1.6] and a result of Akbulut [1999, Theorem]; cf [Tange 2014]. Another
proof of Lemma 7 is obtained by using handlebodies [Akbulut 1999; 2016; Gompf and Stipsicz 1999].

2.7 Proof of Theorem A

We collect the results of previous sections into a proof of the following theorem, which is equivalent to
Theorem A.
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Theorem 8 Fix p � 2. There is an infinite set

(2-21) fSn;p � 2CP2 # 4CP2
W n 2 Zg

made of topologically isotopic 2–spheres whose complement has fundamental group Z=p, and for
which doing surgery on each element yields the infinite set (2-2) of pairwise nondiffeomorphic smooth
4–manifolds in the homeomorphism class of CP2 # 3CP2 #†p.

In particular , there is a diffeomorphism of pairs

(2-22) .2CP2 # 4CP2;Sn1;p/! .2CP2 # 4CP2;Sn2;p/

if and only if n1 D n2, and the infinite set (2-21) consists of pairwise smoothly inequivalent 2–spheres.

Proof The infinite set (2-21) was constructed in Section 2.2. The fundamental group of the complement
of any 2–sphere is a prescribed finite cyclic group; see Example 3. Corollary 6 says that elements in
(2-21) are pairwise topologically isotopic. As indicated in Example 3, the 4–manifold XT;S1

b
.p=n/ in the

infinite set (2-2) is obtained by carving out a tubular neighborhood �.Sn;p/ of a 2–sphere in (2-21) from
2CP2 # 4CP2, and capping off the boundary with S1 �D3. Given that the infinite set (2-2) is made
of pairwise nondiffeomorphic 4–manifolds, we conclude that the infinite set (2-21) is made of pairwise
smoothly inequivalent 2–spheres.

Remark 9 A minor modification to the previous argument yields a proof of Theorem D.

2.8 Proof of Theorem B

Let fZn W n 2 Zg be an infinite set of pairwise nondiffeomorphic 4–manifolds in the homeomorphism
class of Z. Taking a connected sum with any Q–homology 4–sphere M yields an infinite set

(2-23) fZn # M W n 2 Zg

of reducible pairwise nondiffeomorphic 4–manifolds that are pairwise homeomorphic to Z # M . The
smooth structures are distinguished with the Seiberg–Witten invariant of the connected sums using the
fact that b1.M /D 0D bC

2
.M / and results of Kotschick, Morgan and Taubes [Kotschick et al. 1995]. By

hypothesis, there is a SpinC–structure on Zn for which the Seiberg–Witten invariant SWZn
is nonzero.

As explained in [Kotschick et al. 1995, Proof of Proposition 2], the SpinC–structure can be extended to
the connected sum Zn # M and conclude that there is a SpinC–structure for which SWZn#M D SWZn

.
This implies that the infinite set fZn # M W n 2 Zg consists of pairwise nondiffeomorphic 4–manifolds
that are pairwise homeomorphic to Z # M .

We do surgery along the loop ˛ �Zn # M as in the hypothesis of Theorem B verbatim to the procedure
described in Example 3 to construct an infinite set

(2-24) fSn;� W n 2 Z; � D �1M g
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of smoothly embedded 2–spheres in Z#S2�S2 whose complement has fundamental group �D�1M . By
construction we obtain a homeomorphism of pairs between .Z#S2�S2;Sn1;�/ and .Z#S2�S2;Sn2;�/

for every ni 2 Z. Surgery on the belt 2–sphere Sn;� �Z # S2 �S2 gives us Zn # M back. Since the
infinite set (2-23) is made of pairwise nondiffeomorphic 4–manifolds, we conclude that there is no
diffeomorphism of pairs

(2-25) .Z # S2
�S2;Sn1;�/! .Z # S2

�S2;Sn2;�/

if n1 ¤ n2.

Remark 10 We elaborate on an argument to prove Theorem A by using the construction procedure of
Theorem B. The ingredients that satisfy the hypothesis of the latter are the following. Take the infinite set
fZn W n 2Zg of pairwise nondiffeomorphic 4–manifolds that are homeomorphic to CP2 # 3CP2 that was
constructed by Fintushel and Stern [2012]. These 4–manifolds have different Seiberg–Witten invariant. A
result of Baykur and Sunukjian [2013] implies that Zn # S2 �S2 is diffeomorphic to 2CP2 # 4CP2 for
every n 2 Z. As the 4–manifold M in the statement of Theorem B, use the Q–homology 4–sphere †p;0

that was discussed in Section 2.6 with �1†p;0 D Z=p. Build the infinite set

(2-26) fZn #†p;0 W n 2 Zg

of closed reducible 4–manifolds that are homeomorphic to CP2 # 3CP2 #†p;0. The set (2-26) consists
of pairwise nondiffeomorphic 4–manifolds, where the diffeomorphism classes are distinguished by their
Seiberg–Witten invariants [Kotschick et al. 1995, Proposition 2]. Proceed as in the proof of Theorem B
and build an infinite set (2-24) of pairwise smoothly inequivalent 2–spheres. These submanifolds have
the required properties by construction and they are pairwise topologically isotopic by Theorem 5.

2.9 Proof of Corollary C

We check that the hypothesis of Theorem B are met in these cases. As the infinite set fZn W n 2 Zg we
can take the infinite inequivalent smooth structures on CP2 # 3CP2 constructed by Fintushel and Stern
[2012]. Work of Baykur and Sunukjian [2013, Theorem] implies that Zn # S2�S2 D 2CP2 # 4CP2 for
every n 2 Z; this connected sum is the simply connected 4–manifold in the statement of Corollary C.
The Q–homology 4–spheres with the desired fundamental group were constructed in Section 2.5; see
Lemma 7.

2.10 Proof of Theorem E

Hambleton and Kreck [1993a, Proposition 4.1] used surgery to prove the existence of a Q–homology
4–sphere Mp with nonzero second Stiefel–Whitney class w2.Mp/¤ 0, nonvanishing Kirby–Siebenmann
invariant KS.Mp/ ¤ 0, and fundamental group �1Mp D Z=p for every p � 2. Carve out the loop in
Mp whose homotopy class generates the group �1Mp D Z=p, and glue back a locally flat copy of

Algebraic & Geometric Topology, Volume 24 (2024)
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D2�S2 to obtain a simply connected 4–manifold yM with Euler characteristic �. yM /D �.Mp/C 2D 4,
signature �. yM /D �.Mp/, second Stiefel–Whitney class w2. yM /¤ 0 and Kirby–Siebenmann invariant
KS. yM /¤ 0. A result of Freedman and Quinn [1990, Section 10.1] states that yM is homeomorphic to the
connected sum �CP2 # CP2 of the Chern manifold and the complex projective space with the opposite
orientation for every p � 2; cf [Gompf and Stipsicz 1999, Theorem 1.2.27]. The fundamental group of
the complement of the belt 2–sphere Sp of the surgery is isomorphic to �1Mp D Z=p.

To produce the smoothly embedded 2–sphere S 0p �CP2 # CP2 as in (1-5) and prove the last clause of
Theorem E, perform surgery to the smooth Q–homology 4–sphere †p;1 described in Section 2.6.
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[Lee and Wilczyński 1990] R Lee, D M Wilczyński, Locally flat 2–spheres in simply connected 4–manifolds,
Comment. Math. Helv. 65 (1990) 388–412 MR Zbl Correction in 67 (1992) 334–335
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Remarks on symplectic circle actions, torsion and loops

MARCELO S ATALLAH

We study loops of symplectic diffeomorphisms of closed symplectic manifolds. Our main result, which is
valid for a large class of symplectic manifolds, shows that the flux of a symplectic loop vanishes whenever
its orbits are contractible. As a consequence, we obtain a new vanishing result for the flux group and new
instances where the presence of a fixed point of a symplectic circle action is a sufficient condition for it to
be Hamiltonian. We also obtain applications to symplectic torsion; more precisely, nontrivial elements of
Symp0.M; !/ that have finite order.

53D22, 53D40, 57R17; 57S15, 57S17

1 Introduction

1.1 The flux group and the e–homomorphism

Let .M; !/ be a closed symplectic manifold and denote by ASymp0.M; !/ the universal cover of the
identity component Symp0.M; !/ of the group of symplectic diffeomorphisms. The flux homomorphism

eFlux WASymp0.M; !/! H1.M IR/

is defined by assigning to each class z 2ASymp0.M; !/ a cohomology class

eFlux.z /D
Z 1

0

Œ�X t!� dt;

where X t is the time-dependent vector field induced by a symplectic path f tg representing z . In
particular, if  is a 1–cycle in M, we have that

(1) heFlux.f tg/; Œ �i D

Z
Œ0;1��R=Z

˛�!;

where ˛ W Œ0; 1� � R=Z ! M is given by setting ˛.t; s/ D  t . .s//. We shall often denote the flux
of z by eFlux.f tg/. The flux group � is the image of the restriction of the flux homomorphism to
�1.Symp0.M; !//�ASymp0.M; !/. The eFlux map descends to a homomorphism

Flux W Symp0.M; !/! H1.M IR/=�;

whose kernel was shown by Banyaga [2] to be equal to Ham.M; !/. In particular, we have the exact
sequence

1! Ham.M; !/! Symp0.M; !/! H1.M IR/=�! 1;

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
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which implies that Ham.M; !/ coincides with Symp0.M; !/ if and only if H1.M IR/ vanishes. For a
basepoint x0 2M, denote by

ev W �1.Symp0.M; !/; id/! �1.M;x0/

the evaluation homomorphism given by setting ev.Œf tg�/D Œf t .x0/g�. The image of ev lies in the center
of �1.M /; see Polterovich [25]. Therefore, since M is connected, the evaluation maps for different
choices of basepoints x0 2M are identified. Hence, we write ev without making specific reference to x0.
Observe that the evaluation map factors through the flux group � yielding the following commutative
diagram:1

(2)

�1.Symp0.M; !//

fFlux
��

ev

((

�
e

// �1.M /

To see that the e–homomorphism is well-defined note that if

eFlux.f�tg/D eFlux.f tg/;

then the loop f�t ı 
�1
t g of symplectic diffeomorphisms can be homotoped to a Hamiltonian loop, which

is known to have contractible orbits; see McDuff [16]. An important consequence of diagram (2) is that
whenever e is injective, a symplectic loop with contractible orbits can be homotoped to a Hamiltonian
loop. It is not hard to see that this is the case for .M; !/ symplectically aspherical: Œ!� vanishes on the
image HS

2 .M IZ/ of the Hurewicz map �2.M /! H2.M IZ/. Indeed, if a symplectic loop f tg has
trivial evaluation and  is any 1–cycle in M, then the torus ˛.T2/, where ˛.t; s/D  t . .s//, will have
the symplectic area of a sphere. Equation (1) then implies that the flux of the loop f tg vanishes.

The injectivity of the e–homomorphism has important consequences in the theory of symplectic circle
actions discussed in Section 1.2. Furthermore, it allows one to deduce the vanishing of the Flux group in
cases where the evaluation map is trivial. In particular, we have the following:

Proposition 1.1 Let .M; !/ be a closed symplectic manifold with injective e–homomorphism , and
suppose further that either �.M /¤ 0 or that �1.M / has finite center. Then the flux group � is trivial.

Proof When �.M /¤ 0 we have that ev is trivial, a fact that is true even in the more general setting
of loops of diffeomorphisms on a closed manifold; see Lê and Ono [12]. Therefore, � is trivial by the
injectivity of e. Now, suppose that �1.M / has finite center and let f tg be a symplectic loop. Then,
there exists some positive integer k such that ev.f tg/

k D 1. Thus, we have

e.eFlux.f k
t g//D ev.f k

t g/D ev.f tg/
k
D 1:

We conclude, by the injectivity of e and the fact that eFlux is a homomorphism to a torsion-free group,
that the loop f tg has no flux.

1The fact that ev factors through the flux group was pointed out to me by Egor Shelukhin.
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Remark In the case where .M; !/ is symplectically aspherical and the Euler characteristic is nonzero,
Proposition 1.1 can be obtained from [12, Proposition 1.7, Corollary 4.2]. Furthermore, the fact that the
flux group vanishes was established in Lalonde, McDuff and Polterovich [11] and Polterovich [24]. We
also note that in Kędra, Kotschick and Morita [9], the implication of Proposition 1.1 is proven under the
weak Lefschetz assumption.

Our main result provides more sufficient conditions for the injectivity of the e–homomorphism.

Definition 1.2 Let .M; !/ be a closed symplectic manifold of dimension 2n. We say that it satisfies
condition .F/ if at least one of the following is true:

� Symplectically aspherical The cohomology class Œ!� vanishes on the image HS
2 .M IZ/ of the

Hurewicz map �2.M /! H2.M IZ/.

� Spherically monotone There exists a constant � 2R n f0g such that

Œ!�j�2.M / D � � c1.M /j�2.M /;

where c1.M / denotes the first Chern class associated with .M; !/. We say positive (resp. negative)
spherically monotone when � > 0 (resp. � < 0).

� Weak Lefschetz property The multiplication map

Œ!�n�1
W H1.M IR/! H2n�1.M IR/

is injective (hence an isomorphism).

Remark (examples satisfying .F/) The standard symplectic torus .T 2n; dp ^ dq/ and any closed
oriented surface †g of genus g � 1 with the standard area form are symplectically aspherical. Symplectic
products of the form .M �N; !M ˚!N /, where .M; !M / is positive (resp. negative) homologically
monotone and .N; !N / is aspherical, are positive (resp. negative) spherically monotone but not homolog-
ically monotone. In particular, CPn �T2m with symplectic form !FS˚ dp^ dq is positive spherically
monotone. Hypersurfaces of CPn defined by setting zm

0
C � � �C zm

n D 0, with m> nC 1, are negative
homologically monotone; see McDuff and Salamon [18]. Finally, all closed Kähler manifolds satisfy the
weak Lefschetz property.

Theorem 1.3 Let .M; !/ be a closed symplectic manifold satisfying .F/. Then the e–homomorphism is
injective.

When the weak Lefschetz property is satisfied the injectivity of the e–homomorphism follows from
classical arguments that were known at least as early as the work of Ono in [20]; see also McDuff and
Salamon [19] and Lalonde, McDuff and Polterovich [11]. Indeed, if f tg is a symplectic loop inducing a
symplectic vector field Xt , then the homology classes of its orbits are Poincaré dual to the class

1

Vol.M /

�
eFlux.f tg/^

!n�1

.n� 1/!

�
2 H2n�1.M IR/:

Algebraic & Geometric Topology, Volume 24 (2024)
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Therefore, by the injectivity of Œ!�n�1, we have that eFlux.f tg/D 0 whenever ev.f tg/D 1, since every
orbit of f tg is homologically trivial.

1.1.1 Outline of the proof of Theorem 1.3 When .M; !/ is spherically monotone we provide two
proofs of the injectivity of the e–homomorphism, which are detailed in Section 3. The first proof
relies on looking at this problem from the perspective of Floer–Novikov theory developed by Lê and
Ono [30]; see also Ono [22; 23]. Floer–Novikov cohomology is a natural generalization of Hamiltonian
Floer cohomology in the sense that to a symplectic path f tg based at identity with nondegenerate
endpoint  D  1, we can associate a Floer-type cohomology group HFN�.f tgIJ / that, up to a natural
isomorphism, depends only on the flux of f tg. The proof has two key steps. First, using ideas in [23]
we obtain an isomorphism

HFN.f tgIJ /Š H�.M IQ/˝ƒ!

for a symplectic path f tg with eFlux.f tg/D Œ� � 2 ker e. Next, we show that when .M; !/ is spherically
monotone, the Floer–Novikov cohomology of a symplectic path f tg is isomorphic to the Morse–Novikov
cohomology HN�.M; �/ of its flux. A simple rank comparison then shows that this is only possible when
eFlux.f tg/D 0, which concludes the argument.

The second proof follows from a result of McDuff [14, Theorem 1], from which the triviality of �
in the homologically monotone setting follows. Let f tg be a symplectic loop. For a loop  , set
˛.t; s/D t . .s// as before. McDuff’s result implies that the 2–cycle A represented by the torus im.˛/
satisfies

(3) hc1.M /;A i D 0:

If f tg has trivial evaluation, then im.˛/ can be represented by a sphere. Thus, we obtain

heFlux.f tg/; Œ �i D hŒ!�;A i D � � hc1.M /;A i D 0;

where � ¤ 0 is the monotonicity constant. Since  is arbitrary, we conclude that eFlux.f tg/ D 0.
While this proof is easier, it heavily relies on McDuff’s result, which was proven using highly nontrivial
topological arguments. The first proof, on the other hand, is symplectic in nature.

1.2 Symplectic circle actions

Let S1 D R=Z be the standard circle group. Let .M; !/ be a symplectic manifold equipped with a
smooth S1–action generated by a vector field X . The contraction of the symplectic form with the vector
field X defines a 1–form �X! on M. The circle action is called symplectic whenever �X! is closed,
and Hamiltonian if it is also exact. Knowing that the action is Hamiltonian has several advantages.
For example, one can use a primitive H of �X!, referred to as a moment map, to obtain a symplectic
quotient of M at a regular value of H. This procedure is used, in particular, to reduce the dimension
of the phase-space associated to problems arising in classical mechanics that have a circular symmetry.

Algebraic & Geometric Topology, Volume 24 (2024)
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If H1.M IR/D 0, it is clear that every symplectic circle action is Hamiltonian. Otherwise, it becomes
substantially more difficult to determine whether �X! is an exact 1–form. Finding sufficient and necessary
conditions assuring that a symplectic circle action is Hamiltonian has been a subject of interest at least as
early as the work of T Frankel in the late 1950s showing the following:

Theorem 1.4 (Frankel [6]) A symplectic circle action on a closed Kähler manifold is Hamiltonian if
and only if it has fixed points.

This result was later generalized by Ono [20] to closed Lefschetz manifolds. The condition of having fixed
points was shown to be sufficient to guarantee the exactness of the circle action in a few other instances.
McDuff [15] proved it when M has dimension four, while Ono [21] and Ginzburg [7] showed it in the
symplectically aspherical case. Tolman and Weitsman [29] proved that it remains true for semifree circle
actions with isolated fixed points. Finally, Lupton and Oprea [13] and McDuff [14] showed that every
symplectic circle action is Hamiltonian when .M; !/ is homologically monotone, ie the cohomology
class Œ!� is a nonzero multiple of the first Chern class c1.M /— a fact which is not true in the more
general spherically monotone setting. Indeed, one can consider the symplectic circle action on T2 �S2

(with the product symplectic form of the standard symplectic structures) given by rotation in the first
factor and identity on the second.

On the other hand, McDuff constructed in [15] a non-Hamiltonian circle action with fixed tori on a
closed 6–dimensional Calabi–Yau symplectic manifold (see Cho and Kim [3]), showing that the condition
M S1

¤∅ alone is not sufficient to guarantee the exactness of �X! for general closed symplectic manifolds.
McDuff and Salamon then asked if every symplectic circle action with isolated fixed points on a closed
symplectic manifold is Hamiltonian. This question was answered in the negative by Tolman in [28]; see
also Jang and Tolman [8]. It remains unclear when such examples can exist, or from another viewpoint,
how large the class is of closed symplectic manifolds for which the presence of fixed points is equivalent
to the exactness of the circle action. Nonetheless, the e–homomorphism gives a partial characterization
of this class. In particular, we have the following:

Proposition 1.5 Let .M; !/ be a closed symplectic manifold such that the e–homomorphism is injective.
Then a symplectic circle action is Hamiltonian if and only if it has fixed points.

Proof If a symplectic circle action has a fixed point, then the symplectic loop f tg induced by it has
trivial evaluation. The injectivity of the e–homomorphism implies that Œ�X!�D eFlux.f tg/D 0. Here,
X is the time-independent vector field generating the action.

In view of Theorem 1.3, we obtain the following.

Theorem 1.6 Let .M; !/ be a closed spherically monotone symplectic manifold. Then , a symplectic
circle action is Hamiltonian if and only if it has a fixed point.
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A result of McDuff [17] showed that every closed symplectic manifold that admits a Hamiltonian
circle action is uniruled in the Gromov–Witten sense. In particular, they are geometrically uniruled:
for each !–compatible almost complex structure J and each point x 2M, there is a nonconstant J–
holomorphic sphere u such that x 2 im.u/. Symplectic manifolds that are symplectically Calabi–Yau are
not geometrically uniruled, neither are (spherically) negative monotone ones. By considering this fact in
addition to Theorem 1.6 we obtain the following corollary.

Corollary 1.7 Let the circle act symplectically and nontrivially on a closed symplectic manifold .M; !/

such that
c1.M /j�2.M / D � � Œ!�j�2.M /

for � 2R. Then:

(i) If � > 0, the action is Hamiltonian if and only if it has fixed points.

(ii) If � < 0, the action is non-Hamiltonian , and has no fixed points.

(iii) If �D 0 the action is non-Hamiltonian.

Remark When �¤ 0 there are examples of non-Hamiltonian symplectic circle actions. In particular,
consider the symplectic product T2 �M of the standard symplectic torus with any closed spherically
monotone symplectic manifold, and the symplectic circle action given by t � .x;y;p/D .xC t;y;p/ for
.x;y/ 2 T 2 and p 2M.

Another closely related question was raised by McDuff and Salamon [19]. They asked if there exists a
symplectic free circle action whose orbits are contractible. Kotschick [10] proved this to be the case for
all symplectic manifolds of dimension four, even if the action is only assumed to be smooth. Furthermore,
Kotschick produced examples of symplectic free circle actions with contractible orbits in every even
dimension greater than or equal to six. As a corollary of Theorem 1.3 and the argument in the proof of
Proposition 1.5, we obtain the following.

Theorem 1.8 Let .M; !/ be a closed symplectic manifold satisfying .F/. Then every free symplectic
circle action must have noncontractible orbits.

1.3 Applications to symplectic torsion

The injectivity of the e–homomorphism, when combined with results in Atallah and Shelukhin [1],
provides applications to questions about the existence of finite subgroups of Symp0.M; !/. In [1], it was
shown that if .M; !/ is positive spherically monotone, then the existence of a nontrivial finite subgroup
of Ham.M; !/ implies that .M; !/ is geometrically uniruled. Furthermore, it was shown that if .M; !/

is negative spherically monotone, then there are no nontrivial finite subgroups of Ham.M; !/. Therefore,
as a corollary of Proposition 1.1 and Theorem 1.3 we obtain the following.
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Theorem 1.9 Let .M; !/ be a closed symplectic manifold such that

c1.M /j�2.M / D � � Œ!�j�2.M /

for � 2R n f0g. Further , suppose that either �.M /¤ 0 or �1.M / has finite center. Then:

(i) If � > 0, then the existence of a nontrivial finite subgroup of Symp0.M; !/ implies that .M; !/ is
geometrically uniruled.

(ii) If � < 0, then all finite subgroups of Symp0.M; !/ are trivial.

Remark The symplectic product of .CPn; !FS/ with any closed oriented surface †g of genus g � 2

with the standard area form satisfies condition (i) of Theorem 1.9. More generally, any symplectic product
of the form .M �N; !M ˚ !N /, where .M; !M / is positive spherically monotone with �.M / ¤ 0

and .N; !N / is symplectically aspherical with �.N /¤ 0. Furthermore, following Dimca [4], the Euler
characteristic of the degree m hypersurface Xm �CPn defined by setting zm

0
C� � �C zm

n D 0 is given by

�.Xm/D
1

m
..1�m/nC1

� 1/C nC 1:

Therefore, �.Xm/¤ 0 when m> nC 1. Hence, Xm, which is negative monotone, satisfies condition (ii)
of Theorem 1.9.

The injectivity of the e–homomorphism also gives information about the presence of fixed points of a
nontrivial symplectic diffeomorphism  2 Symp0.M; !/ of finite order. The following definition given
by Polterovich in [24] naturally fits into this context.

Definition 1.10 A fixed point x of a symplectic diffeomorphism  2 Symp0.M; !/ is of contractible
type if there exists a symplectic path f tg based at the identity with  1 D  such that the loop f t .x/g

is contractible in M.

The presence of a fixed point of contractible type of a nontrivial  2 Symp0.M; !/ of finite order implies
that it must be Hamiltonian. Indeed, we have the following:

Proposition 1.11 Let .M; !/ be a closed symplectic manifold such that the e–homomorphism is injective.
Further suppose that  2 Symp0.M; !/ is nontrivial of finite order , ie  d D id for some integer d > 1.
Then  is Hamiltonian if and only if it admits a fixed point of contractible type.

Proof Suppose x 2 Fix.x/ is of contractible type. Let f tg be a symplectic path with  1 D  such that
f t .x/g is contractible in M. Note that f d

t g is a symplectic loop. Then,

e.eFlux.f d
t g//D Œf 

d
t .x/g�D Œf t .x/g�

d
D 1:

Hence, by the injectivity of e and the fact that eFlux is a homomorphism to a torsion-free group, we have
that eFlux.f tg/D 0. In particular,  is Hamiltonian.
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Corollary 1.12 Let .M; !/ be a closed symplectic manifold satisfying .F/ such that �.M /¤ 0. Then
all nontrivial symplectic diffeomorphisms  2 Symp0.M; !/ of finite order are Hamiltonian.

We note that any orientation-preserving diffeomorphism of a closed manifold, which is of finite order and
has finitely many fixed points, must have the number of fixed points equal to the Lefschetz number of the
diffeomorphism. Therefore, when the Euler characteristic of .M; !/ is zero and  2 Symp0.M; !/ is
torsion, it either has no fixed points or nonisolated ones. In the latter case, there is no a priori reason for
the existence of a fixed point of contractible type. However, in the case of the standard symplectic torus,
Polterovich [24] showed that any fixed point of a symplectic diffeomorphism  2 Symp0.T

2n; dp^ dq/

is of contractible type. We can adapt that argument to prove the following:

Corollary 1.13 Let .M; !/ be a simply connected closed symplectic manifold satisfying .F/. Then
every non-Hamiltonian  2 Symp0.T

2n �M; dp^ dq˚!/ of finite order has no fixed points.

Proof Let .x;p/ 2 T2n �M be a fixed point of  , and f tg a symplectic path such that  0 D id and
 1 D  . Consider the lift

z t WR
2n
�M !R2n

�M

of  t to the universal cover of T2n �M and pick .zx;p/ 2 ��1.f.x;p/g/. Then, z .zx;p/D .zxC a;p/

for some a 2 Z2n. We can then define a symplectic flow ft � idM on T2n �M by setting

ft .y/D y � t � a mod 1:

Note that its lift to the universal cover is given by

. zft � idM /.y; q/D .y � t � a; q/:

Therefore, by setting 't D ft ı t , we obtain a symplectic path based at the identity with '1 D  , and
whose lift z't satisfies z'.zx;p/D .zx;p/. Consequently, the loop f't .x;p/g is contractible in T2n �M.
The corollary then follows by noting that T 2n �M satisfies condition .F/ and by Proposition 1.11.

2 Preliminaries

2.1 Floer–Novikov cohomology

In Section 2.1.2 we review the construction of Floer–Novikov cohomology after Ono [23]. This is a
cohomological version of the construction introduced by Lê and Ono [30] with a slightly smaller coefficient
ring. In Section 2.1.3 we review a variant of Floer–Novikov cohomology introduced in Ono [22] which
enables the comparison between symplectic paths with different flux. We refer to Lê and Ono [12] for an
in-depth discussion of the variants of Floer–Novikov cohomology and the relations among them. We
also briefly recall the definition of classical Morse–Novikov cohomology and outline a few important
properties it satisfies. For further details on Morse–Novikov cohomology, see [30; 26; 5].
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2.1.1 Morse–Novikov cohomology Let M be a closed smooth manifold and let � be a closed 1–form
on M. Fix a ground field K. For our purposes it will be sufficient to consider the case KDQ. Denote by
I� W �1.M /!R the homomorphism given by integrating � over a representative loop; that is,

I� .Œ �/D

Z


�:

In particular, I� depends only on the cohomology class Œ� �. Denote by � WM � !M the covering space
of M corresponding to ker I� � �1.M /. It is the minimal abelian covering on which ��� is exact. The
covering transformation group is given by G� D �1.M /=ker I� . We denote by ƒ� the completion of the
group ring of G� with respect to the filtration induced by I� ; that is,

ƒ� D

�X
i

aigi

ˇ̌̌
ai 2K and gi 2G� satisfy condition (A)

�
;

where condition (A) is:

(A) For each c 2R, the set fi j ai ¤ 0; I� .gi/ < cg is finite.

The fact that K is a field implies that so is ƒ� . Let xf be a choice of primitive for ��� . Then, to each
zx 2 Crit. xf / there corresponds a zero x D �.zx/ of � . A 1–form � is said to be Morse if all the critical
points of xf are nondegenerate. The Morse–Novikov cochain complex in degree k with coefficients in K

is defined as

CNk.M; �/D

�X
i

ai zxi

ˇ̌̌
ai 2K and zxi 2 Crit. xf /; where index.zxi/D k; satisfy condition (B)

�
;

where condition (B) is:

(B) For each c 2R the set fi j ai ¤ 0; xf .zxi/ < cg is finite.

Note that CN�.M; �/ is finitely generated over ƒ� . For a choice of Riemannian metric g on M, the
coboundary operator ı is defined by counting bounded gradient trajectories of xf with respect to the
pullback metric ��g that are emerging from a critical point zx 2 Crit. xf / and converging to critical points
zy 2Crit. xf / such that index.zy/� index.zx/D 1. We may assume that the gradient flow is of Morse–Smale
type. The Morse–Novikov cohomology of � is defined as HN�.M; �/DH�..CN.M; �/; ı//, and is a
finitely generated ƒ�–module. The resulting cohomology is independent of the choice of Riemannian
metric for which the flow is of Morse–Smale type. Furthermore, cohomologous 1–forms have canonically
isomorphic Morse–Novikov cohomologies. That is, if Œ�1� D Œ�2�, then HN�.M; �1/ is isomorphic to
HN�.M; �2/ as graded vector spaces over ƒ�1

Dƒ�2
. More generally, we have the following.

Proposition 2.1 (Lê and Ono [30, Theorem C.2]) Suppose that �1 and �2 are closed 1–forms such that
ker I�1

� ker I�2
. Then , for each degree k,

dimƒ�1
HNk.M; �1/� dimƒ�2

HNk.M; �2/:
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In addition, we have the following useful proposition, which distinguishes Morse–Novikov cohomology
from usual Morse cohomology.

Proposition 2.2 (Ono [23, Proposition 4.12]) Let � be a closed 1–form such that Œ� �¤ 0. Then

dimƒ� HNk.M; �/D 0 for k D 0 or k D dim.M /:

In particular, when � is not exact, we have that

(4) dimƒ� HN.M; �/ < dimQ H.M /:

2.1.2 Floer–Novikov cohomology Let .M; !/ be a closed symplectic manifold, and f tg a symplectic
path based at the identity with endpoint  1 D  . The deformation lemma in [30] implies that we can
suppose, without loss of generality, that there exists a 1–periodic smooth family of smooth functions
Ft 2 C1.M /, with FtC1 D Ft , such that

(5) �X t! D � C dFt ;

where X t is the time-dependent vector field induced by the symplectic isotopy f tg and � is a closed
1–form representing eFlux.f tg/. When � is exact, equation (5) becomes the usual Hamiltonian equation
for Ht DFtCf , where df D � . Similarly, we have a formal closed 1–form on the contractible component
LM of the loop space of M. Indeed, for a loop x 2 LM and v 2 TxLM D �.x�TM /, we define

af t g.v/D

Z 1

0

!.v.t/;x0.t/�X t .x.t/// dt D

Z 1

0

!.v.t/;x0.t// dt C

Z 1

0

.� C dFt /.v.t// dt:

The idea is to find a suitable cover on which af t g is exact, and then to define Floer–Novikov cohomology as
an analog of Morse theory for a primitive A t

. Consider the homomorphisms I� ;I! ;Ic1
W�1.LM /!R

defined as

I� D I� ıEv�; I!.fxsg/D

Z
C.fxsg/

!; Ic1
.fxsg/D hc1.M /; ŒC.fxsg/�i;

for a loop fxsgs2Œ0;1� in LM. Here, Ev W LM !M is given by evaluation at t D 0, and C.fxsg/ is the
2–cycle represented by

S1
�S1

3 .s; t/ 7! xs.t/ 2M:

We denote by zLM ! LM the covering space of LM corresponding to

ker.I! CI� /\ ker Ic1
� �1.LM /:

A description of zLM can be given in the following manner. Choose a primitive xf of ��� on M � , and
consider pairs .zx;u/ composed of a loop zx 2 LM � and a capping u WD!M such that uj@D D � ı zx.
Define the equivalence relation � given by .zx;u/� .zy; w/ if and only if

� ı zx D � ı zy;

Z
u

!C xf .zx.0//D

Z
w

!C xf .zy.0//; hc1.M /;u # .�w/i D 0:
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Here, u#.�w/ corresponds to the sphere obtained by gluing the two disks along their common boundaries
with the orientation of w reversed. Each element in zLM corresponds to an equivalence class Œzx;u� of
such a pair. With this description, the covering map … W zLM ! LM is given by Œzx;u� 7! � ı zx D x.
A choice of primitive for …�af t g is given by

Af t g.Œzx;u�/D

Z 1

0

. xf CFt ı�/.zx.t// dt C

Z
u

!;

where Ft is as in equation (5). The critical points P.f tg/ of Af t g are the lifts to zLM of the fixed
points x 2 Fix. / of  such that Œf t .x/g�D 1 in �1.M /. To a critical point Œzx;u� we assign an index
CZ.Œzx;u�/ given by the Conley–Zehnder index of x D � ı zx with respect to the trivialization x�TM,
which extends to u�TM. Note that the covering transformation group of LM is given by

G�;! D
�1.LM /

ker.I! CI� /\ ker Ic1

:

Let ƒ�;! be Novikov ring given by the completion of the group ring of G�;! with respect to the filtration
induced by I! CI� ; that is,

ƒ�;! D

�X
i

aigi

ˇ̌̌
ai 2Q and gi 2G�;! satisfy condition (A0)

�
;

where condition (A0) is:

(A0) For each c 2R the set fi j ai ¤ 0; .I! CI� /.gi/ < cg is finite.

Suppose that  is nondegenerate and let J DfJtg be a family of !–compatible almost complex structures.
The Floer–Novikov cochain complex is defined as

CFNk.f tgIJ /D

�X
i

ai Œzxi ;ui �
ˇ̌̌
ai 2Q and Œzxi ;ui � 2 P.f tg/ satisfy condition (B0)

�
;

where condition (B0) is:

(B0) For each c 2R the set fi j ai ¤ 0;Af t g.Œzx;u�/ < cg is finite and CZ.Œzxi ;ui �/D k for all i .

The graded Q–vector space CFN�.f tgIJ / is endowed with the Floer–Novikov coboundary operator ıFN,
which is defined as the signed count of isolated solutions (modulo the R–action) of the asymptotic
boundary value problem on maps u WR�S1!M defined by the gradient of Af t g; see [30; 23]. In other
words, the coboundary operator counts the finite-energy solutions to the Floer equation

@u

@s
CJt .u/

�
@u

@t
�Xt .u/

�
D 0; lim

s!˙1
zu.s; t/D zx˙.t/;

for some lift zu WR�S1!M such that CZ.ŒzxC;uC�/�CZ.Œzx�;u��/D 1 and ŒzxC;u� # u�D ŒzxC;uC�.
The Floer–Novikov cohomology is defined as

HFN�.f tgIJ /DH�.CFN.f tgIJ /; ıFN/:
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It can be shown to be independent of the choice of J . In addition, it only depends on the flux of the
symplectic path.

Theorem 2.3 (Lê and Ono [30, Theorem 4.3]) Suppose that f .1/t g and f .2/t g are symplectic paths
with nondegenerate endpoints. Suppose that f .1/t ı . 

.2/
t /�1g has zero flux. Then ,

HFN�.f .1/t gIJ
.1//Š HFN�.f .2/t gIJ

.2//

as ƒ�;!–modules. Here , Œ� � is the flux of both paths.

Remark When f't
H
g is a Hamiltonian isotopy, M � DM and .CFN�.f gIJ /; ı/ reduces to the usual

Floer cochain complex .CF.H IJ /; ı/ associated with the Hamiltonian function H. Therefore, the PSS
isomorphism yields

(6) HFN�.f't
H gIJ /D HF�.H IJ /Š H�Cn.M IQ/˝Qƒ! :

The main reason for the choice of Novikov ring in this construction is so that we have the following two
statements.

Theorem 2.4 (Ono [23, Theorem 4.10]) Let f .1/t g and f .2/t g be symplectic paths with nondegenerate
endpoints  .1/

1
D  

.2/
1
D  . Suppose that the symplectic loop f .1/t ı . 

.2/
t /�1g has trivial evaluation ,

ie ev.f .1/t ı . 
.2/
t /�1g/D 1. Then , we have a ring isomorphism ‰ Wƒ�1;!

Š�!ƒ�2;! , and

HFN�.f .1/t gIJ
.1//Š HFN�.f .2/t gIJ

.2//

as ƒ�1;!–modules , where Œ�i � corresponds to the flux of f .i/t g for i D 1; 2. The module action of ƒ�1;!

on HFN�.f .2/t g;J
.2// is the one induced by ‰.

Proof Let �t D  
.1/
t ı . 

.2/
t /�1. In [23, Theorem 4.10] the conclusion of Theorem 2.4 was proven

under the assumption that the map ‰ W f .t/g 7! f�t . .t//g preserves the component LM of the free
loop space consisting of contractible loops. Therefore, Theorem 2.4 follows from the observation that ‰
preserves LM whenever ev.f�tg/D 1. As detailed in [23, Section 4], it is the map ‰ W LM ! LM that
induces the isomorphism HFN�.f .1/t gIJ

.1//Š HFN�.f .2/t gIJ
.2//.

Theorem 2.5 (Ono [23, Theorem 3.12]) Let f tg be a symplectic path based at identity with sufficiently
small flux Œ� �. Then ,

HFN�.f tgIJ /Š HN�Cn.M; �/˝ƒ� ƒ�;! :

Remark The Floer–Novikov cohomology HFN�.f tgIJ / of a symplectic path f tg is not always
isomorphic to the Morse–Novikov cohomology HN.M; �/ of its flux Œ� �; this has also been observed
in Seidel [27]. This can be seen by studying the examples in Jang and Tolman [8], Tolman [28] and
McDuff [15] of non-Hamiltonian symplectic circle actions with fixed points. Indeed, in these cases we
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have symplectic paths with nontrivial flux and trivial evaluation. In particular, if we suppose that such
an isomorphism exists, Theorem 2.4 together with Theorem 2.5 would imply that dimƒ� HN.M; �/D

dimQ H.M IQ/, which is in contradiction to Proposition 2.2. This also shows that the e–homomorphism
is not injective in general.

2.1.3 A variant of Floer–Novikov cohomology for changing flux In this section we recall a variant,
introduced in [22], of the Floer–Novikov cohomology construction presented in Section 2.1.2, which
allows the comparison between symplectic paths that have different flux.

Let .M; !/ be a closed symplectic manifold. Suppose f tg is a symplectic path with endpoint  1 D  

and flux Œ� �. Let p W zM !M be an abelian covering space of M such that p�� is exact; M � is the
smallest choice of such a covering space. Let f zFtg be a smooth family of smooth functions on zM such
that d zFt D p�� . Just as before, we would like to make a choice of covering space of LM on which the
pullback of af t g is exact. We denote by P W zL zM ! LM the covering space of LM associated with

ker I! \ ker Ic1
\Ev�1

� .p�.�1. zM ///� �1.LM /:

This covering can be seen as the space of pairs .zx;u/, uj@D D � ı zx, under the equivalence relation
defined by .zx;u/� .zy; w/ if and only if

zx D zy;

Z
u

! D

Z
w

!; hc1.M /;u # .�w/i D 0:

On zLM, the pullback P�a t
is exact and a choice of primitive is given by

zAf t g.Œzx;u�/D

Z 1

0

zFt .zx.t// dt C

Z
u

!:

Similarly, the critical points zP.f tg/ of zAf t g are lifts to zL zM of the fixed points x 2 Fix. / of  
that satisfy Œf t .x/g� D 1 2 �1.M /. Just as in Section 2.1.2, to each critical point Œzx;u� we assign a
Conley–Zehnder type index. The covering transformation group of zL zM is given by

zG�;! D
�1.LM /

ker I! \ ker Ic1
\Ev�1

� .p�.�1. zM ///
;

and we denote by zƒ�;! the Novikov ring given by the completion of its group ring with respect to the
filtration induced by I! CI� ; that is,

zƒ�;! D

�X
i

aigi

ˇ̌̌
ai 2Q and gi 2

zG�;! satisfy condition (A0)
�
:

Suppose that  is nondegenerate and let J DfJtg be a family of !–compatible almost complex structures.
The Floer–Novikov cochain complex is defined as

CFNk.f tg; zM IJ /D

�X
i

ai Œzxi ;ui �
ˇ̌̌
ai 2Q and Œzxi ;ui � 2 zP.f tg/ satisfy condition (B0)

�
:
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The coboundary operator zıFN is defined by the same formula as in Section 2.1.2. The Floer–Novikov
homology HFN�.f tg; zM IJ / associated with the covering space zM is defined as the homology of
.CFN.f tg; zM IJ /; zıFN /. It is independent of the choice of almost complex structure J and depends
only on the flux of the symplectic path. The following theorem allows the comparison between the ranks
of the Floer–Novikov cohomology of symplectic paths with flux lying in the kernel of p�.

Proposition 2.6 (Ono [22, Proposition 4.8]) Let f .1/t g and f .2/t g be symplectic paths such that
eFlux.f .i/t g/ 2 kerfp� W H1.M IR/! H1. zM IR/g for i D 1; 2. Then ,

rank zƒ�1;!
HFN�.f .1/t g;

zM IJ .1//D rank zƒ�2;!
HFN�.f .2/t g;

zM IJ .2//;

where Œ�i � corresponds to the flux of f .i/t g for i D 1; 2.

3 Proof of Theorem 1.3

3.1 Proof using Floer–Novikov theory

When .M; !/ is either symplectically aspherical or satisfies the weak Lefschetz property, we have
presented proofs based on classical arguments in Section 1.1. We shall, therefore, consider the spherically
monotone case. Let f tg be a symplectic loop with

eFlux.f tg/D Œ� � 2 �:

Observe that spherical monotonicity implies that

(7) ker.I! CI� /\ ker Ic1
D ker I! \ ker I� \ ker Ic1

:

Set zM DM � in the construction of the variant of Floer–Novikov homology defined in Section 2.1.3. In
this case, note that Ev�1

�

�
p�.�1.M

� //
�
D ker I� . Indeed, this is a consequence of �1.M

� /D ker I� ,
which follows from the defining property of M � , and of the equality I� D I� ıEv�. These observations
allow one to deduce that for any symplectic path f�tg with flux Œ� �, we have zƒ�;! Dƒ�;! , and

(8) .CFN�.f�tg;M
�
IJ /; zıFN /D .CFN�.f�tgIJ /; ıFN /

by definition (we reiterate that monotonicity is used in an important way; see the remark below).

Remark In general, HFN�.f tg; zM IJ / is different from HFN�.f tgIJ / even in the case zM DM �.
Nonetheless, whenever ker Ic1

� ker I! we have that equation (8) holds and, arguing as in the preceding
paragraph, that

HFN�.f tg;M
�
IJ /D HFN�.f tgIJ /:

This holds for .M; !/ spherically (positive or negative) monotone or symplectically aspherical. We refer
to [12] for more details on the relationship between these cohomology theories.
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Now, further suppose that Œf tg� 2 ker ev. Let f'tg be a Hamiltonian path with endpoint ', which
is generated by a nondegenerate Hamiltonian H, and set  0t D  t ı 't . Then f 0tg and f'tg are two
symplectic paths with nondegenerate endpoints  0 D '. Since ev.f tg/D 1, Theorem 2.4 implies that
ƒ�;! Šƒ! and that

(9) HFN�.f 0tg;J
0/Š HFN�.f'tgIJ /

as ƒ�;!–modules. Since 't is Hamiltonian, we have that

(10) HFN�.f'tgIJ /Š HF�.H IJ /Š H�.M IQ/˝Qƒ! :

For " > 0, let f "�t gt2Œ0;1� be the symplectic path induced by the symplectic vector field X"� defined by
�X"�! D "� . Then, for all " > 0, we have that

eFlux.f "�t g/D "Œ� � 2 kerf�� W H1.M IR/! H1.M �
IR/g:

Therefore, Proposition 2.6 implies that

(11) rank zƒ�;! HFN�.f 0tg;M
�
IJ /D rank zƒ"�;! HFN�.f "�t g;M

�
IJ /:

Finally, equations (8)–(11), Theorem 2.5 and Proposition 2.1 imply that for " > 0 sufficiently small,

rankƒ! H�.M IQ/˝Qƒ! D rankƒ! HFN�.f'tgIJ /D rankƒ�;! HFN�.f 0tg;J
0/

D rank zƒ�;! HFN�.f 0tg;M
�
IJ /D rank zƒ"�;! HFN�.f "�t g;M

�
IJ /

D rankƒ"�;! HFN�.f "�t gIJ /D rankƒ"�;! HN�.M; "�/˝ƒ"� ƒ"�;!

D rankƒ�;! HN�.M; �/˝ƒ� ƒ�;! :

Hence, � must be exact. Indeed, if Œ� �¤ 0, then by Proposition 2.2

rankƒ! H�.M IQ/˝Qƒ! D dimQ H�.M IQ/

> dimƒ� HN�Cn.M; �/D rankƒ�;! HN�Cn.M; �/˝ƒ� ƒ�;! ;

in contradiction with the above equalities. This concludes the proof of Theorem 1.3.

3.2 A proof using a result of McDuff

It follows from McDuff [14, Theorem 1] that if f tg is a symplectic loop, then Ic1
vanishes on the

elements of �1.LM / that are represented by f t . .s//gs;t2Œ0;1� for a loop  2 LM. If f tg has trivial
evaluation, then f t . .s//gs;t2Œ0;1� determines a homotopy class A 2 �2.M / with hc1.M /;A i D 0.
If .M; !/ is spherically monotone, for every 1–cycle in M given by a loop  we have that

heFlux.f tg/; Œ �i D hŒ!�;A i D �hc1.M /;A i D 0:

Therefore, eFlux.f tg/D 0, which yields once again the conclusion of Theorem 1.3. In addition, note that
if f tg has trivial evaluation and flux Œ� �¤ 0 we can produce a homotopy class ˛ 2 �1.LM / such that
˛ 2 ker.I!CI� /\ker Ic1

while I� .˛/D�I!.˛/¤ 0. Indeed the class represented by the loop-of-loops
˛.s; t/D  t . .s// satisfies these properties. We are then able to conclude the following.
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Corollary 3.1 If the e–homomorphism is not injective , then

ker I! \ ker I� \ ker Ic1
¨ ker.I! CI� /\ ker Ic1

for all Œ� � 2 ker e.

This shows, in hindsight, why the equality of Novikov rings in the spherically monotone setting yielded a
proof of injectivity of the e–homomorphism.
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Correction to the article
Hopf ring structure on the mod p cohomology of symmetric groups

LORENZO GUERRA

We correct Propositions 5.4, 5.5 and 5.6 of the author’s previous article (Algebr. Geom. Topol. 17 (2017)
957–982).

20J06

In our previous paper [1], the formulas describing the action of the mod p Steenrod algebra on Hopf ring
generators are incorrect. This is not caused by a flaw in the general argument, but by our misstatement of
Hung and Minh’s theorem on mod p modular invariants. In this note, we refer to our original article for
notation and conventions.

We begin by providing the accurate statement of Hung and Minh’s theorem. Although these two authors
decided to compute coefficients explicitly, we believe that, for our purpose, their result is best restated
using the total Steenrod class P� D

P
r�0 Pr .

Hung and Minh’s theorem [2, Theorem 4.1, page 42] In ŒZp Œy1; : : : ;yn�˝ƒ.x1; : : : ;xn/�
Gln.Zp/,

the algebra of modular invariants for Gln.Zp/, for all 0� s < n and 0� s1 < � � �< sk < n,

P�.ds;n�s/D.d0;nC���Cds;n�s/.d0;nC���Cdn�1;1C1/p�1
�.d0;nC���Cds�1;n�sC1/

p;

P�.Rn;s1;:::;sk
/D

X
0�t1<t2<���<tkC1�n

si�1<ti�si

kC1X
iD1

Œ.�1/kC1�iRn;t1;:::;Oti ;:::;tkC1
dti ;n�ti

�.d0;nC���Cdn�1;1C1/p�2:

In the expression above , we let , by convention , s�1 D�1, skC1 D n, Rn;t1;:::;tk ;n D 0, and dn;0 D 1.

We now provide the corrected formulas for the Steenrod powers of generators.

Corrected version of Proposition 5.4 Let 0� k < n. Let Outgrowth.n�k;pk / be the set of full-width
Hopf monomials x 2 H�.†pn IZp/ of type C with effsc.x/ � n � k and ht.x/ � p. Then , for all
0� r � pn�pk ,

Pr .n�k;pk /D
X

x2Outgrowth.
n�k;pk /

deg.x/D2.pn�pkCr.p�1//

cn;k;xx;

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
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where cn;k;x is a scalar coefficient calculated as follows.

If x D
Qn

iD1 
ei

i;pn�i (ei � 0) is a gathered block , then

cn;k;x D .�1/n�kC
Pn

iD1 iei
1

p

p!Qn
iD0 ei !

� nX
iDn�k

ei

�
;

where we let by convention e0D p�
Pn

iD1 ei and we reduce cn;k;x mod p after calculating its expression
in Z first. If x is not a gathered block , we can write x as a nonzero scalar multiple of a transfer
product b1 ˇ � � � ˇ br , where each bj is a column of width equal to a power plj of p. Then , we put
cn;k;x D

Qr
jD1 clj ;lj�nCk;bj

.

Corrected version of Proposition 5.5 � Let 1 � j � k. Let Outgrowth. j̨ ;k/ be the set of full-
width Hopf monomials x 2 H�.†pk IZp/ of type A with effsc.x/ � k and ht.x/ � p. Then , for all
0� r < pk �pk�j ,

Pr . j̨ ;k/D
X

x2Outgrowth. j̨ ;k/

deg.x/D2pk�2pk�j�1C2r.p�1/

c0k;j ;xx;

where c0
k;j ;x

is a scalar coefficient calculated as follows.

If x D ˛t;k

Qk
iD1 

ei

i;pk�i with ei � 0 and 1� t � k is a gathered block , then

c0k;j ;x D

(
(� 1/jCtC

Pk
iD1 iei

�
.p� 1/!=

Qk
iD0 ei !

��Pk
lDj el

�
if 1� t < j ;

�.�1/jCtC
Pk

iD1 iei
�
.p� 1/!=

Qk
iD0 ei !

��Pj�1

lD0
el

�
if j � t � k;

where we let by convention e0 D p� 1�
Pn

iD1 ei . All Hopf monomials x 2 Outgrowth. j̨ ;k/ have this
form.

� Let 1 � i < j � k. Let Outgrowth.ˇi;j ;pk�j / be the set of full-width Hopf monomials x 2

H�.†pk IZp/ of type B with effsc.x/� j and ht.x/� p. Then , for all 0� r � pk �pk�j �pk�i ,

Pr .ˇi;j ;pk�j /D
X

x2Outgrowth.ˇ
i;j ;pk�j /

deg.x/D2.pk�pk�j�pk�iCr.p�1//

c00k;i;j ;xx;

where c00
k;i;j ;x

is a scalar coefficient calculated as follows.

If x D ˇt;u;pk�u

Qk
iD1 

ei

i;pk�i with ei � 0 and 1� t < u� k is a gathered block , then

c00k;i;j ;x D

8̂̂̂<̂
ˆ̂:
�.�1/iCjCtCuC

Pk
mD1 mem

�
.p� 1/!=

Qk
mD0 em!

��Pk
lDj el

�
if 1� t < i � u< j � k;

(� 1/iCjCtCuC
Pk

mD1 mem
�
.p� 1/!=

Qk
mD0 em!

��Pj�1

lDi
el

�
if 1� t < i < j � u� k;

�.�1/iCjCtCuC
Pk

mD1 mem
�
.p� 1/!=

Qk
mD0 em!

��Pi�1
lD0 el

�
if i � t < j � u� k;

0 otherwise;
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where we let by convention e0 D p � 1�
Pk

mD1 em. If x is not a gathered block , we can write x as a
nonzero scalar multiple of a transfer product b1ˇ� � �ˇbr , where each bm is a column of width equal to a
power plm of p. Then , we put c00

k;i;j ;x
D
Qr

mD1 c00
lm;i;j ;bm

.

Corrected version of Proposition 5.6 The following formulas hold :

� ˇ. j̨ ;k/D k;1 if j D k and is equal to 0 otherwise.

� ˇ.ˇi;j ;pk /D ˛i;j ˇˇi;j ;pk�1.

� ˇ.j ;pk /D 0.

The proof of these propositions is essentially unchanged from the author’s original article, except that we
use the correct statement of Hung and Mihn’s theorem to compute coefficients.
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