Algebraic ¢ Geometric

Topology

Volume 24 (2024)

7. —stratifolds

:'msp



Algebraic & Geometric Topology 24:4 (2024) 1863-1901
:'msp DOI: 10.2140/agt.2024.24.1863
Published: 16 July 2024

Z.j—-stratifolds

ANDRES ANGEL
CARLOS SEGOVIA
ARLEY FERNANDO TORRES

Generalizing the ideas of Z—manifolds from Sullivan and stratifolds from Kreck, we define Z ;—stratifolds.
We show that the bordism theory of Zj—stratifolds is sufficient to represent all homology classes of a
CW-complex with coefficients in Z. We present a geometric interpretation of the Bockstein long exact
sequences and the Atiyah—Hirzebruch spectral sequence for Zg—bordism for k an odd number. Finally,
for p an odd prime, we give geometric representatives of all classes in Hx(BZp; Zp) using Z ,—stratifolds.

57R90, 58A35, 58A40; 55N20

1 Introduction

Various geometric models of homology classes use the notion of bordism. For instance, Baas [3] constructs
a generalized homology theory using the bordism of manifolds with singularities. Buoncristiano, Rourke
and Sanderson [5] give a geometric treatment of generalized homology. Certain singular spaces called Z ;—
manifolds were introduced initially by Sullivan [18; 19; 20], although Morgan and Sullivan [15] gave the
first formal study of this subject. The theory of Z;—manifolds gives a geometric model for Z;—homology
classes, but Sullivan pointed out that Z;—manifolds are not general enough to represent Z;—homology.
For example, the generator of Hg(K(Z, 3); Z3) is not represented by a Zz—manifold; see Sullivan [21].
Moreover, Brumfiel [4] shows that the nonzero classes in H; ,(K(Zp, 1); Z) cannot be represented by
Z p—manifolds whenever p is prime. In this work, we show that for an odd prime number p, there exists
aclass ay; € Hyi(BZp; Zp), with i > p, that cannot be represented by Z,—manifolds. Thus a geometric
model is needed to represent every homology class with Zj—coefficients. For this purpose, we focus on
the theory of stratifolds developed by Kreck [12], where the homology groups with Z—coefficients and
Z,—coefficients are represented by the bordism theories of stratifold homology SH (X)) and stratifold
homology with Z,—coefficients (this only works for Z,—coefficients).

We consider the generalized homology theory of bordism of Zj;—manifolds with continuous maps to X,
denoted by Q.(X; Z). There is a long exact sequence satisfying the commutative diagram

o 2 (X) 5 2,(X) — Qu(X3 Ze) —— Ry (X) —— -
(1) lh lh lhzk lh
o Hy(X) =55 Hy(X) — Hy(X:1Ze) — Hy_y (X) — -
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where §: Qu(X;Z;) = Q,—1(X) is the Bockstein homomorphism, r: Q,(X) — 2,(X; Zy) is the
reduction homomorphism obtained by considering a closed manifold as a Zj;—manifold with empty
Bockstein, and /17, : Q4 (X Zy) — Hx(X; Zy) is the Hurewicz homomorphism provided by the existence
of fundamental Z;—homology classes.

Generalizing the ideas of Sullivan and Kreck, we define the bordism theory of Zj —stratifolds, and we
can consider the generalized homology theory of bordism of Zj—stratifolds with continuous maps to X,
denoted by SH«(X;Zj;). We call this theory Zj—stratifold homology. Again, we have a long exact
sequence satisfying the commutative diagram

s SHu(X) 25 SHY(X) — T SHu(X 3 Z1) —— SHy— (X)) —— -

) lh lh lhzk lh
e Hy(X) =5 Hy(X) — Hy(X; Zg) —— Hye (X) —— -

In this case, the Hurewicz homomorphism /g, : SHx(X;Zy) — H«(X; Zy) is constructed in the same
vein as in the theory of Zj;—manifolds. We show that Z—stratifold homology satisfies the Eilenberg—
Steenrod axioms on CW—complexes, in particular, we show that the Mayer—Vietoris sequence axiom
holds by using a regularity argument for Zj—stratifolds; see Kreck [12]. The main result of this paper is
the following.

Theorem 1.1 An isomorphism exists between Zj —stratifold homology theory and singular homology
with Zj —coefficients. This isomorphism is valid for all CW—complexes and is compatible with the
Bockstein homomorphisms.

Fiihring [9] develops a smooth version of the Baas—Sullivan theory of manifolds with singularities that is
applied to the positive scalar curvature problem. In a way, stratifolds and Zj—stratifolds are another kind
of smooth version of the Baas—Sullivan theory of manifolds with singularities. One of the advantages of
stratifolds and Zj—stratifolds is a very concrete description of the filtration of the Atiyah—Hirzebruch
spectral sequence (AHSS) for oriented bordism and Z;—bordism. This geometric description of the AHSS
for Z—coefficients was given by Tene [23], and for Zj—coefficients has the following form.

Theorem 1.2 For k an odd number, the filtration for the AHSS of Z;—bordism
(3) Epy S CEN P S C Ep o= Ho(X: Zi) = SHa(X: Zg)
coincides with the set of classes generated by singular Zj—stratifolds in X, where the singular part is of

dimension at most n —r — 2.

A fascinating application is the existence of homology classes ay; € Hy,(BZp: Zp), for an odd prime
number p and i > p, that cannot be represented by a Z ,—manifold. This is similar to the counterexample
of Thom for the Steenrod problem [24, Chapter III], which we explain geometrically in [2].
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We organize the article as follows: Section 2 outlines some basic facts about Z;—manifolds studied
by Morgan and Sullivan [15]. In Section 3, we briefly introduce the language of stratifolds from
Kreck [12; 13]. Section 4 introduces the main theorems of this work, where we combine the theory of
Z—manifolds from Sullivan and the theory of stratifolds from Kreck. Then we define Z —stratifolds and
develop the basic theory of these objects. We show that the usual properties of stratifolds still remain
valid. We show that Z—stratifold homology satisfies the Eilenberg—Steenrod axioms on CW—complexes.
Section 6 develops the existence of the fundamental class, and we postpone the proof of the existence
of the Mayer—Vietoris sequence until the appendix. In Section 7, we apply the results of Tene [23] to
give a geometric description of the Atiyah—Hirzebruch spectral sequence for Zj;—bordism, for k an odd
number. In Section 8, we use this description to find homology classes with Zj—coefficients that cannot
be represented by Z;—manifolds. Finally, in Section 9, the two possible ways to represent homology with
Z.,—coefficients using stratifolds are related, providing an explicit isomorphism between the two theories.
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for the help provided after his PhD, and especially the Universidad Externado de Colombia, where he has
been a professor in the mathematics department since 2020. Finally, we thank the reviewer for the careful
reading of our manuscript. We sincerely appreciate all the valuable comments and suggestions which
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2 Zji-manifolds

Suppose that k > 2 is a positive integer. In what follows, we outline some basic facts about Zj—manifolds
introduced by Morgan and Sullivan [15].

Note 2.1 Unless otherwise indicated, let us set the convention that the manifolds are oriented and

compact. Also, all the diffeomorphisms and embeddings are orientation-preserving.

Definition 2.2 A closed n—dimensional Z;—manifold is given by the triple M = (M, M, 6;), where

(1) M is a compact n—manifold, with boundary dM,

(2) 8M is a compact (n—1)—-manifold without boundary, called the Bockstein, and
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Figure 1: Left: a representation of the Klein bottle as the quotient space of a Z,—manifold. Right:
a closed Z3;—manifold.

(3) 6;: M — M, with i € Zj, are k disjoint embeddings such that we have a diffeomorphism
M =| iz, 6:(6M).

Definition 2.3 There is an associated quotient space M given by the identification on M of the k copies
of §M together using the embeddings 6;.

Example 2.4 A closed oriented manifold is a Zy—manifold (or equivalently a Z—manifold) where the
Bockstein §M is empty.

Example 2.5 The typical example of a Z,—manifold is the cylinder M = S!x[0, 1], §M = S and embed-
dings 1, 6,: 8! ST x{0}uST x {1}, with §;(S') = S! x{0} and 6,(S!) = S x {1} (with the reverse
orientation on S x {1}). The quotient space K := M is the well-known Klein bottle; see Figure 1, left.

Here we observe that even though the second integral homology group is zero for the Klein bottle, we
can obtain a fundamental class after we change to Z, coefficients, ie H,(K; Z,) = Z,. In Section 6, we
show this fundamental class always exists for a Zj—stratifold.

Example 2.6 Consider the pair of pants P with boundary dP = S!' S!S and Bockstein §P = S!;
see Figure 1, right.

Definition 2.7 An (n+1)-dimensional Z;—manifold with boundary is given by the triple B = (B, § B, ¥;),
where

(1) B is a compact (n+1)-dimensional manifold, with boundary 9B,

(2) 8B is a compact n—dimensional manifold, called the Bockstein, with boundary 96 B, and

(3) ¥;:6B — 0B, with i € Zy, are k disjoint embeddings such that the triple

(33 - int( || vi (53)), 98B, %Iaw)
i€Zy
defines a closed n—dimensional Zj—manifold (M, §M, 6;).

This closed n—dimensional Zj;—manifold is called the Zj;—boundary of the Zj—manifold with boundary %
and is denoted by 0% = (M, M, 6;).

Algebraic € Geometric Topology, Volume 24 (2024)
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Figure 2: A Zj;—manifold with boundary.

Definition 2.8 As before, there is the quotient space B which results from the identification on B of the
k embedded copies of § B together using the embeddings ;.

Example 2.9 Consider the three-dimensional Z3;—manifold with boundary % = (B, éB, ¥;), where
B = D?3 is the three-dimensional closed ball (hence B = S?), §B = D? is the two-dimensional closed
disc and the v;: D?> — S? for i € Z3 are given by three disjoint embedded discs inside the sphere. The
Z3-boundary 0B = (M, 6M, 6;) is the two-dimensional Z3;—manifold from Example 2.6, where M is
the pair of pants and § M is the circle. See Figure 2 for an illustration.

Example 2.10 Consider the two-dimensional Z3;—manifold with boundary & = (B, § B, ¥;), where B
is a connected surface of genus one with only one boundary circle, the Bockstein §B is the interval
[0, 1], and the ;:[0,1] = 0B = S for i € Z5 are given by three disjoint embedded intervals inside the
circle. The Zs—boundary of the Z;—manifold & is a one-dimensional Z3;—manifold 0% = (M, §M, 6;),
where M is the disjoint union of three copies of the interval, §M is the disjoint union of two points
and the embeddings 6; are given by the restrictions ¥;|sas. In Figure 3, we illustrate the Z;—stratifold
(B, 8B, ¥;), where on the right-hand side we depict the boundary dB after the quotient.

Definition 2.11 Let X be a topological space and #n a natural number. An n—dimensional singular Zj—
manifold in X is a closed n—dimensional Z—manifold M = (M, M, 6;) together with a continuous map
J:M — X suchthat fo0; = fo0jfori,jeZi. A singular Zj—bordism between two n—dimensional

JaB

[ 8B
Figure 3: A Z3;-manifold with boundary, left, and the boundary dB after quotient, right.
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singular Zj—manifolds (M, /) and (M, f7) is a Z;—manifold with boundary & = (B, 8B, ¥;), with
Zj—-boundary 0B = (M + M',6M +3SM', f + f”) together with a continuous map F: B — X such
that Foy; = Foy; fori, j € Zg, extending f and f’. Recall that the Z;—manifolds are oriented. In
this definition, the sum of Z—manifolds is given by

(M+M' 6M+8M', f+ fY=Mu—-M"§MuU—-5M', fuf).

The Z—bordism group group Q,(X; Zy) is given by the equivalence classes of n—dimensional singular
Z—manifolds (M, f) under this Zj—bordism relation. The elements of this group are denoted by [M, f7].

The Zj—bordism groups Q,(X; Zy;) are a generalized homology theory (this follows by Section 4 or see
[5, Chapter III]). The existence of the fundamental class [M]z, € Hy, (]\7 1 Zy), see Section 6, induces
the Hurewicz homomorphism /7, : Q,(X; Zy) — Hy(X; Zi). In addition, we have the reduction map
r:Qu(X) —> Qu(X; Zg). This map considers an n—dimensional closed manifold as a Zj-manifold with
dM = &. Moreover, we have the Bockstein sequence, which fits into the commutative diagram

e (X)) 2K 2, () — L QX Zg) — Qe (X)) —— -

N S

s Hy(X) =55 Hy(X) — D Hy(X1Zg) —— Hyog (X) —— -

forn > 1.

3 Stratifolds

We briefly introduce the language of stratifolds from Kreck [12; 13]. For this purpose, we need the notion
of differential space [17; 12; 13].

Definition 3.1 A differential space is a pair (X, %) where X is a topological Hausdorftf space with a
countable basis and € C C°(X) is a sheaf of real-valued continuous functions such that for fi,..., fk
in ¢ and / a smooth function on R¥, the composition f(fi,..., f) is in €.

For a differential space, each point x € X has associated a tangent space, denoted by 7T X, which is the
space of all derivations of the germ I'y () of smooth functions at x. A smooth manifold is a natural
example of a differential space, which is locally diffeomorphic to R” equipped with the sheaf of all
smooth functions.

Definition 3.2 [13, Definition 1] An n—dimensional stratifold is a differential space (S, 6) where
the sheaf % induces a suitable stratification S¥ := {x € S : dim Ty S = k}. The union of all strata of
dimension < k is called the k—skeleton S}. In addition, we assume:

(i) For each k, the stratum S¥, together with the restriction sheaf %| sk, 1s a smooth k—dimensional
manifold as a differential space.
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(ii) All skeleta are closed subsets of S.

(iii) All strata of dimension > n are empty.

(iv) Foreach x € S and open neighborhood U with x € U, there is a so-called bump function p: S — R>g
in € such that supp p C U and p(x) > 0.

(v) For each x € SX, the restriction gives an isomorphism Iy (€¢) — 'y (6| Ssk).

Definition 3.3 A continuous map f: (S, €) — (S’,€’) is smooth if the precomposition by f sends every
element of 6’ to an element of 6. If f and the inverse f ! are smooth, then f is called a diffeomorphism
of stratifolds. Similarly, we can define the notion of a (smooth) embedding of stratifolds by requiring that
the restriction to the image is a diffeomorphism of stratifolds.

Example 3.4 [12, Example 1, page 19] The open cone of an n—dimensional manifold,
CM =M x [0, 1)/MX{0}7

is an example of an (n+1)-dimensional stratifold, where % consists of all continuous functions on C?W
which are constant on some open neighborhood of the point produced by collapsing M x {0}, and whose
restriction to M x (0, 1) is smooth.

Definition 3.5 Let W be a smooth manifold. A collar is a homeomorphism ¢: dW x [0, €) — U with
€ > 0, where U is an open neighborhood of W in W such that ¢|ypx(0y = idgw and ¢|ymx(0,¢) is @
diffeomorphism onto U — dW.

Definition 3.6 Let (7, 07) be a pair of topological spaces. Assume T =T —3T and 8T are stratifolds
of dimensions # and n — 1, with 07 C T a closed subspace. A collar of dT into T is a homeomorphism
c: 9T x[0,€) — U with € > 0, where U is an open neighborhood of 7" in T such that ¢|yr oy = idyT
and ¢|3Tx(0,¢) 18 a diffeomorphism of stratifolds onto U — 97 .

Definition 3.7 An (n+1)-dimensional stratifold with boundary is a pair of topological spaces (T, 9T),
together with a collar ¢ of d7T into T, where T — 0T is an (n+1)—dimensional stratifold and 97 is an
n—dimensional stratifold, which is a closed subspace of T'. We call dT the boundary of T'.

The following example is crucial in the theory of stratifolds.

Example 3.8 [12, page 36] The closed cone C(S) of a stratifold S has underlying topological space
T = S x[0, 1]/sx{03» whose interior is S x [0, 1)/gx {0y and whose boundary is S x {1}. The collar is
given by the map S x [0, %) — C(S) mapping (x,?) to (x,1—1).

Now, we define some important classes of stratifolds [12].

Definition 3.9 [12, page 79] An n—dimensional stratifold S is oriented if the top stratum S” is an
oriented manifold and the stratum S”~! is empty.
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Definition 3.10 [12, page 43] An n—dimensional stratifold S is regular if for each x € S, where
0 <i <un, there is an open neighborhood U of x in S, a stratifold F with F a single point, an open subset
V of S?, and a diffeomorphism of stratifolds ¢: V x F — U, whose restriction to V x F? is the identity.

Remark 3.11 [12, page 24] In this paper, we restrict to a special class of stratifolds called p—stratifolds.
The construction of a p—stratifold is as follows: we start with a zero-dimensional p-stratifold, which is a
zero-dimensional manifold. Assume we construct by induction a (k—1)—dimensional p-stratifold (S, 6)
and let W be a k—dimensional manifold with a smooth and proper map f: dW — S. Then we define
the k—dimensional p—stratifold (W Ly S,%’), where ¢’ is constructed using a collar ¢: dW x[0,€) — U.
More precisely, the function g belongs to 6’ if and only if g|s and g|p _sw are smooth and for some
8 <€ we have gc(x,t) = gf(x) forall x € dW and t < §.

Note 3.12 A stratifold with boundary 7 is an oriented/regular stratifold if both T'— 07 and 07 are
oriented/regular stratifolds (the collar preserves the product orientation for oriented stratifolds). Similarly,
T is a p-stratifold if both T — dT and 9T are p-stratifolds.

From Section 4, until the end of this paper, all statements about stratifolds are meant as statements about
p—stratifolds; see Note 4.1.

As Kreck mentions in [13, page 303]: “The following observation is central for our construction of the
zoo of bordism groups.” For two stratifolds 7" and 7’ with the same boundary 07 = 97", there is a
stratifold structure for the gluing of stratifolds 7" Uyr T’, where the two collars are combined to produce
a bicollar; see the details in [12, pages 36-37].

Definition 3.13 Let X be a topological space and n a natural number. An n—dimensional singular
stratifold in X is a closed (compact without boundary) n—dimensional stratifold S together with a
continuous map f: S — X. A singular bordism between two n—dimensional singular stratifolds (S, f)
and (S’, f’) is a compact stratifold with boundary 7', with boundary (S + S/, f + f’) together with a
continuous map F: 7T — X extending f and f’. The sum of oriented stratifolds is given by

(S+S8.f+/fH)=Eu=s"fuf).

Since one can glue n—dimensional singular stratifolds over a common boundary component, singular
bordism is an equivalence relation. The oriented stratifold homology group SHy,(X') consists of the
equivalence classes of n—dimensional oriented singular stratifolds (.S, /') under this bordism relation.
The elements of these groups are denoted by [S, f].

The significance of the previous bordism groups lies in the positive solution for the Steenrod problem [7]
of showing that a geometric object represents integral homology classes. The precise statement is:

Theorem 3.14 (Kreck [12, Theorem 20.1, page 186]) The functor SHy defines a homology theory.
Moreover, there exists a natural transformation h from SH(-) to singular homology Hx (- ; Z) such that
h is an isomorphism for all CW-complexes.
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=
Figure 4: A closed Z;—stratifold.

4 Z,-stratifolds

Now we combine the theory of Z;—manifolds from Sullivan and the theory of stratifolds from Kreck.

Note 4.1 Unless otherwise indicated, let us set the convention that the stratifolds are oriented, regular
p—stratifolds. Also, all the diffeomorphisms and embeddings of stratifolds are orientation-preserving.

Definition 4.2 A closed n—dimensional Zj—stratifold is given by the triple ¥ = (S, §S, 6;), where

(1) S is a compact, n—dimensional stratifold, with boundary 9.5,
(2) 4S is a compact (n—1)—dimensional stratifold without boundary, called the Bockstein, and

(3) the 8;:8S — 08 for i € Zj are k disjoint embeddings of stratifolds such that we have a diffeo-
morphism of stratifolds 98 =| |;cz, 0i(8S).

Definition 4.3 There is an associated quotient space S given by the identification on S of the k& copies
of 45 together using the embeddings 6;.

Example 4.4 The class of closed stratifolds and the class of Zj;—manifolds are the first examples of
Zy—stratifolds.

Example 4.5 Consider the two-dimensional Z 3—stratifold given by the closed cone of the disjoint union
of three circles S = C(S!' U S! U ST), where the boundary is 3S = S!S LIS, and the Bockstein is
§S = S!; see Figure 4.

Definition 4.6 An (n+1)—dimensional Z—stratifold with boundary is given by the triple T = (T, § T, V),
where

(1) T is acompact (n+1)—dimensional stratifold, with boundary 97,

(2) 8T is a compact n—dimensional stratifold with boundary, called the Bockstein, with boundary a6 T,
and
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(3) the ;:8T — dT fori € Zj, are k disjoint embeddings of stratifolds such that the triple

(3T—int( |_| Wi(5T)),35T, WilaST)

i€l

defines a closed n—dimensional Zj—stratifold (S, §S, 6;).

This closed n—dimensional Z j—stratifold is called the Zj—boundary of the Z . —stratifold J and is denoted
by a7 = (S,4S, 6;).

Definition 4.7 There is a quotient space T resulting from the identification on 7" of the k copies of 6T
together using the embeddings ;.

Example 4.8 A Zj;—manifold with boundary is an example of a Z—stratifold with boundary.

Example 4.9 Consider the three-dimensional Z;—stratifold with boundary & = (7, 8T, ¥;), where T
is the wedge of three closed balls D* v D3 v D3 by the north pole of the boundary spheres, hence the
boundary is 7 = S? v S2 v §2. The stratifold structure over the wedge point is given by the open cone
of the disjoint union of three discs. The Bockstein is the two-dimensional closed disc §7 = D?, and the
Vi: D*> — S?v S?v S? for i € Zj are given by the embeddings of D? on each of the three southern
hemispheres. The Zs;—boundary 0T = (S, §S, 6;) is the two-dimensional Z ;—stratifold from Example 4.5,
where S = C(S'US! US!) and the Bockstein is §S = S!. See Figure 5 for an illustration.

Definition 4.10 The cone of a Zj—stratifold (S, §S, 6;) is defined as follows: take the closed cone
C(8S) (see [12, page 36] or Example 3.8) and use k copies kC(6S) := I_lieZk (C(8S) x {i}) to get
the closed stratifold S’ := kC(8S) LUys S. Now take the cone C(S’), which is an (n+1)—dimensional
stratifold. The cone of the Z—stratifold (S, 35S, 6;) is given by the (n+1)—dimensional Zj—stratifold
with boundary T := (C(S’), C(8S), Vi), where ; is the canonical inclusion in the i—component. The
Z—boundary of J is the original Z—stratifold (S, 45, 6;).

Note 4.11 For an n—dimensional Zj—stratifold (S, 4S, 6;), we need n > 2 in order to for C(S’) and
C(8S) to be oriented stratifolds.

= \_/

Figure 5: A Zj—stratifold with boundary.

Algebraic € Geometric Topology, Volume 24 (2024)



Zy—stratifolds 1873

The technique to show that the cartesian product of two differentiable manifolds has a differentiable
structure is called straightening the angle. We follow the exposition given by Conner and Floyd in
[6, Section 1.3]. Let R4 C R consist of all nonnegative real numbers. We have the homeomorphism
7: Ry x R4t — R x R4, defined using polar coordinates by 7(p,6) = (p,260) with 0 < 6 < 7/2,
such that the restriction t is a diffeomorphism of Ry x R4 \ (0,0) onto R x R \ (0, 0). Consider the
product of two differentiable manifolds By and B, with collars U; and U, of the boundaries dB; and 0B,
respectively. There are diffeomorphisms ®;:U; — dB; xR and ®,: Uy — 0B, xR 4. Let U = Uy x U,.
Then ® = O x &, is a homeomorphism of U onto dB; X dB, x R4+ x R4 and the composition with
7/ = id xt produces a homeomorphism t’ o ®: U — 0B x dB; x R x R. The differentiable structure
of 0B x B x R x R induces a differentiable structure on U such that t’ o @ is a diffeomorphism.
Then U and By x B; \ dB; x dB; have differentiable structures, and they induce the same differentiable
structure on their intersection. This structure is referred to as obtained by straightening the angle.

Proposition4.12 If ¥ = (S, 4S, 0;) is a closed n—dimensional Zj—stratifold, then after straightening the
angle we obtain an (n+1)—dimensional Zj—stratifold with boundary ¥x[0, 1]:= (S %[0, 1], 8S %[0, 1], ¥;),
where the Zy—boundary (S’,8S’, 0}) is given by

. S'=Sx{0}u—Sx{l},
o 55’ =85S x {0} L —8S x {1},
. 9;=9iX{O}UQiX{1}.

Proof The technique of straightening the angle works similarly for the product of two stratifolds with
boundary. In fact, from Kreck [12, Sections A.1-A.2], we can use local retractions to show that the
product of stratifolds has a stratifold structure.

Consequently, the product space S x [0, 1] has the structure of compact (n+1)—dimensional stratifold
with boundary, where 9 (S x [0, 1]) = (S5 x [0, 1]) U (S x {0, 1}) is also a stratifold with a collar into
S x [0, 1]. Similarly, the product §S x [0, 1] is a compact n—dimensional stratifold with boundary, and
we have embeddings 0; x id[g,17: 65 X [0, 1] = 0S8 x [0, 1] for i € Zy. Denote by ¥; the embedding
obtained as the composition of ¢; x id[g, ;j with the inclusion S x [0, 1] < 9 (S x [0, 1]). We associate
the Zj—stratifold with boundary (7, 8T, ¥;), where T := S x [0, 1] and the Bockstein 67 := S x [0, 1].

From Definition 4.6, it remains to show that the triple (S’,8S’, 6) := (0T —int(3S x [0, 1]), 6T, ¥ |p57)
is a closed n—dimensional Zj—stratifold. We have S" = S x {0, 1}, §S’ = §S x {0, 1} and the embeddings
are 0] = V;|sss = 0; x{0, 1}. The orientation of S x [0, 1] induces opposite orientations for the two copies
of S associated to {0, 1}, and similarly for §S. The embedding 6; x {0} preserves the orientation, while
the embedding 6; x {1} reverses the orientation. This shows that (S’,8S", 0]) is a Zy—stratifold which is
the Z;—boundary of & x [0, 1]. |

Now we state a gluing lemma for Zj—stratifolds. This result is a direct application of Proposition A.1 in
Kreck’s book [12, page 194].
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Lemma 4.13 Let T := (T,8T, ;) and T’ := (T',8T", y]) be Zy—stratifolds with Z—boundaries
0T =FUY and 0T =S US", where ¥ = (S,6S,6;), ¥ = (S',8S",0]) and " = (8", 65", 6]") are
closed Zj —stratifolds. Then there is a Zj —stratifold with boundary

TJUgT :=(TusT' 8T ugg 8T, Vi Uss wl/),

where the Zj—~boundary is &' U S".

Proof We consider the stratifolds Y := S" Ugs/ | |;ez, ¥i(6T) and Yy := 8" Ussr | |icz, ¥i(6T").
Thus the boundary of the stratifold 7 and T’ are T = S Uyg Y1 and 07" = S Uyg Y>, respectively.
The work of Kreck [12, Proposotion A.1, page 194] implies that the gluing T Lig 7" is a stratifold with
boundary, where d(T Ug T') = Y; Uyg Y>. Similarly, the gluing 8T Ligg 8T is a stratifold with boundary,
which is the Bockstein. Thus the Z;—boundary is precisely (S’ U S"”,8S’L8S”, 6] L6]), and the lemma
follows. |

Definition 4.14 Let X be a topological space and #n a natural number. An n—dimensional singular Z.j.—
stratifold in X is a closed n—dimensional Zj—stratifold ¥ = (S, §S, 6;) together with a continuous map
f:S — X suchthat fo0; = fo0jfori,je€Zi. A singular Zy—bordism between two n—dimensional
singular Zj—stratifolds (¥, /) and (¥, f”) is a Zj—stratifold with boundary I = (T, 5T, v¥;), with
Zy—-boundary 0T = (S + S’,8S +8S’, f + f') together with a continuous map F: T — X such that
Foy; = Foyjfori, j € Zi, extending f and f’. Recall that the Zy—stratifolds consist of oriented,
regular p—stratifolds. In this definition, the sum of Zj—stratifolds is given by

(S+S.65+8S". [+ f)=(SU—S".85U—8S", £ U f7).

Again, one can glue n—dimensional singular Zj —stratifolds over a common boundary component. We
state in Proposition 4.15 that singular Z ;—bordism is an equivalence relation. The Z—stratifold homology
group SH,(X;Zy) is given by the equivalence classes of n—dimensional singular Z ;—stratifolds (¥, f)
under the Zj—stratifold bordism relation. We denote by [¥, f] the elements of this group.

As a consequence of Proposition 4.12 and the gluing result of Lemma 4.13, we obtain the following.
Proposition 4.15 The Zj —stratifold bordism relation is an equivalence relation.

To any closed n—dimensional stratifold S, there is an associated closed n—dimensional stratifold given by
the disjoint union kS :=| |,z . S x{i}. This assignment produces the homomorphism

(5) xk: SHy(X) — SH,(X).

To any closed n—dimensional Zj—stratifold ¥ = (S, 8S, 6;), there is an associated closed n—dimensional
Zy~stratifold given by the disjoint union kS := | |;cz, S x {i}, where the Bockstein is the whole
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boundary 05 and the embeddings y;: dS — | |;cz, 9S x {i} are the canonical inclusions. More-
over, the boundary 05 = | |;cz . 0i(8S) can be considered as a k—disjoint union and we can denote
(kS,k8S,v;) := (kS, S, ;). This assignment produces the homomorphism

(6) X k*: SHy(X; Zy) — SHu(X; Zy),

which we show below is trivial.

Proposition 4.16 For every integer n > 0, the homomorphism x k*: SH,(X; Zi) — SHu(X: Zy,) is
zero.

Proof Take (¥, f) = ((S,4S), f) a closed singular Z—stratifold. Consider the stratifold with boundary
given by the cylinder 7" := kS x [0, 1] and the Bockstein 67" := (35 x [0, 1]) Uysx¢1y (=S x {1}) with
embeddings

Yi: 8T — 0T = [(S x {0}) Uysxgoy (3S x [0, 1]) U1y (=S x {1})] x {i},

which are the canonical inclusions. The Z;—boundary of the Zj—stratifold (T, 8T, ¥;) is the k—disjoint
union of (S, 45S). |

Similar to the work of Morgan and Sullivan [15], we have the Bockstein sequence, which fits into the

commutative diagram

s SHu(X) =5 SHy(X) — s SHu (X Z1) —— SHy— (X) —— -+ SHo(X: Z4)

N T T
—— Hy(X) — % Hy(X) —" Hy (X3 Zg) —— Hy—y (X) — -+ Ho(X: Z)
The description of the maps is as follows:
¢ The reduction r: SH,(X) — SH,(X; Zy) is obtained by considering an n—dimensional closed
stratifold as a Zj—stratifold, ie (S, 45, 6;) with §S = @.

e Multiplication x k: SH,(X) — SH,(X) takes a singular stratifold (S, /) in X and assigns the
class of the k—disjoint union of .S, denoted by [k S, k f].

e The Bockstein §: SH,(X; Z;) — SH,—1(X) assigns to a singular Zj—stratifold (¥, /), where
¥ = (85,68, 0;), the class [8S, flss]-

¢ The Hurewicz homomorphism for stratifolds, /2: SH,(X) — H,(X) for n > 0, was constructed by
Kreck [12, pages 186—-187].

* The Hurewicz homomorphism for Z—stratifolds, hz, : SHy (X Zy) — Hy(X; Zy) forn >0, is
constructed in Section 6, where we show the existence of the fundamental class for Zj—stratifolds.

We leave the proof of the exactness of (7) for Section 5, where the commutativity follows after we
construct the fundamental class in Section 6.

Algebraic € Geometric Topology, Volume 24 (2024)



1876 Andrés Angel, Carlos Segovia and Arley Fernando Torres

Finally, we spend the rest of the section discussing the properties of SHy(-; Zy) as a functor. Kreck [12]
proves the Eilenberg—Steenrod axioms for the bordism groups SH(-) in the category of CW—complexes.
We have a functor, ie id« =id and (go f)« = g« f«, which is homotopy invariant, has the Mayer—Vietoris
sequence, SHy(x) = 0 for n # 0 and SHy(x) = Z. Similarly, the Zj—stratifold homology satisfies the
Eilenberg—Steenrod axioms, that we show in detail below. The proof of the Mayer—Vietoris sequence is
in Section A.2.

Definition 4.17 A continuous map g: X — Y defines a morphism between the Z—stratifold bordism
groups by
v SHy(X; Zy) = SHu(Y: Z),  [9. [l 9. g0 f],

for ¥ = (5,48, 6;) a closed n—dimensional Z—stratifold.
This defines a functor which is homotopy invariant, as in the following proposition.
Proposition 4.18 If g and g’ are homotopic maps from X to Y, then

gx =g i SHy(X:Zy) — SHy(Y : Zy).

Proof There is a homotopy G : X x[0, 1] - Y between g and g’. Take [¢, /] € SH,(X; Zy), and hence
[¥ %[0, 1], G o (f xid)]is a singular Zj—stratifold bordism (see Proposition 4.12) between g ([¥, f])

and g, (%, f]). m
Proposition 4.19 For the 7 —stratifold bordism group, we have
Zy for n=0,
SH,(x;Zy) =
n(*: Zg) { 0 forn#0.

Proof An important assumption here is that every n—dimensional Z j—stratifold (S, §5) is formed by
oriented stratifolds S and §S. For n > 2, we use the first horizontal long exact sequence of (7), with
SHy, (%) =0and SH,_1(*) =0, and we conclude SHy(*; Zj) = 0. For n = 1, the sequence (7) becomes

0— SH,(+:Z) — 27K 7.7 SHy(%: Z) — 0,
then SHy(x;Zy) =0 and SHy(x; Zy) = Zy. O

A geometric approach for the previous proposition is as follows: for any closed n—dimensional Zj—
stratifold ¥ = (S, 65, 6;), with n > 1, we take the cone as in Definition 4.10. Thus we consider the usual
cone C(8S) and use k copies kC(8.S) to get the closed stratifold S’ := kC(§S) Uys S. Then we form
the (n+1)—dimensional Z—stratifold with boundary J := (C(S’), C(8S), ¥;) where ¥; is the canonical
inclusion on the i component. The Z;—boundary of 7 is the original Z—stratifold (S,8S, 6;). For
n = 1, we have a disjoint union of circles and intervals with orientation. Since each interval has the
boundary {+, —}, then the number of intervals must be divided by k. Thus, after capping the circles
with discs by Proposition 4.16, this element is trivial in SH; (x; Zy ). Finally, for n = 0, the generator of
SHy(*; Zy) is the closed zero-dimensional Z—stratifold (*, &, idg), where we use Proposition 4.16.
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5 The Bockstein sequence

Previously, we have defined the k—disjoint union homomorphisms for stratifolds and Zj—stratifolds.
These homomorphisms are as follows xk : SHy, (X) — SHy,(X) and xk*: SH,(X; Z;) — SHu(X: Zy),
defined in (5) and (6), respectively. The second is the trivial homomorphism by Proposition 4.16. There
is a third k—disjoint union homomorphism of the form

(8) k¥ SHy(X: Zg) — SHy(X: Zy2).

which assigns to an n—dimensional Z—stratifold (S, §S) the n—dimensional Z 2—stratifold (k.S,65).
There is a projection homomorphism

P SHy(X; Zy2) — SHu(X; Zy)
which assigns to an n—dimensional Z2—stratifold (S, §5) the n—dimensional Zy—stratifold (S, k4.5).
We skip the embeddings and singular maps in defining these homomorphisms to simplify the notation.
These homomorphisms satisfy a compatibility condition with the reduction and the Bockstein homomor-

phisms from the last section.

Proposition 5.1 Letr: SH,(X) - SHy(X:Zy) and r: SH,(X) — SHy(X;Zy2) be the reduction
homomorphisms and let §: SH,(X;Z}2) — SH,—1(X) be the Bockstein homomorphism for Z;2—
stratifolds. We have the following commutative diagrams:

SHu(X:Zp2) —— SHy(X: Zy) SHy(X) —* s SH,(X)
| | | |
k
SHy1(X) —E 5 SH,_((X) SHu(X:Zg) =55 SHu(X:Zy)
SHu(X) —* s SH,(X)
><k"'2

SHy(X: Zy) 255 SHy(X:Z,2)

SH,(X) SHy(X; Zy2)
.
k
SHy(X; Zg2) —2— SHy(X:Zp)  SHu(X:Zg), 2 5 SHa(X: Z)

Proof We show the commutativity of the first three squares. Take (S,4S) an n—dimensional Z;2—
stratifold. We have k6S := x k(8S) = xk 08(S,8S) and k6S = 8(S,k6S) =60 p(S,48S). Now, for
S a closed n—dimensional stratifold, we obtain r o x k(S) = (k.S, @) and x kK or(S) = xkk(S,2) =
(kS, @) in SH,(X; Z;). Similarly, we can show the commutativity of the third diagram with (kS, @)
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\ T 4 \
) —() I 9—,
“ I 5

Figure 6: The bordism T from 85 and §S’ and the two Zj—bordant Zj—stratifolds.

in SH,(X; Zj2). Finally, we show the commutativity of the last two diagrams. We have r (S) = (S, @) =
p(S,2)=p(r(S))and po xkk* (S,88)=p(kS.,8S)=(kS,k8S)= xkk(S,8S). The commutativity
of the second and fifth diagrams means that the composition is trivial by Proposition 4.16. |

The following result shows how a stratifold bordism gives rise to a Zj—stratifold bordism.

Proposition 5.2 Assume that §S and §S’ are two n—dimensional closed stratifolds such that there is a
bordism of stratifolds T with boundary dT = §S U —§S’. In addition, suppose the pair (S, 8S) is an
n—dimensional 7 —stratifold. Then (S, §S) is Zj—bordant to (S Uyg —k T, 5S’).

Proof This is similar to Proposition 4.12. Consider the product space T’ := (S Uys —kT') x [0, 1] and
the Bockstein 67" := (65" x [0, 1]) Uss/»(1y —7 with embeddings y;: 67" < 97", where

OT' = ((S Uys —k T) x {0}) Ugssxcqoy k(8S' x [0, 1]) Ugssrxqry ((S Ups =k T) x {13).
The Z—stratifold (7,87, ¥;) is a Zg-bordism between (S, §S) and (S Uys —k T, 8S”). O

Remark 5.3 Because of the relevance of the previous result for our work, in Figure 6 we illustrate two
Z—stratifolds that are Zj—bordant by the previous proposition. Notice that, whenever it is possible
to connect §S to the empty set by a bordism 7', then the Zj—stratifold (S, §S) is Zz—bordant to
(SUys —kT, 2).

Similar to the work of Morgan and Sullivan [15], the Z—stratifolds bordisms groups have a Bockstein
exact sequence associated with 0 — Z xk, 7. — Zj, — 0. There is also the other Bockstein exact sequence
associated with 0 — Zy, Xk, 7, 2 — Zj — 0. These two sequences are part of the commutative diagram

L SHy(X) —* L SH(X) — s SH(X: 7)) —— SHy_ (X)) ——

O
L SHW(X:Zg) =5 SH (X Zy) 2 SHY(X: Zx) —2s SHy_ 1 (X Zg) ——

The primary purpose of the present section is to show the exactness of the two Bockstein exact sequences.
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Proposition 5.4 The sequence

oo SHy(X) X5 SHu(X) L5 SHy(X: Zy) 25 SH,_y (X) 25 -
is exact.

Proof We have r o (xk) = (xk*) or = 0 by Proposition 5.1. In addition, we obtain § o r = 0 since the
Bockstein of a (closed) stratifold is empty. Moreover, x k o§ = 0 since we start with a Z—stratifold
(S,8S, 6;), where the boundary 9 is diffeomorphic to | ;<5 . 0i(8S).

Now, we show exactness.

e kerr Ccim(xk) Consider an n—dimensional singular stratifold (S, /) with r([S, f]) = 0. Then there
is an (n+1)—dimensional Z;-bordism (7, F) = ((T,8T), F) such that the Z;—boundary o(T,5T) =
(S,2) and F extends f. Consequently, we obtain 367 = §S = @ and hence 0T = S U k8T,
and we can take the singular stratifolds given by (87, F|y7) with the reverse orientation. We have
k[=8T,—Flyr] =[S, f1.

e kerd Cc imr Consider an n—dimensional singular Z—stratifold (¢, /) = ((S,§S), f) such that
5(¢, f1) =0. Then (6S, f|ss) is the boundary of an n—dimensional singular stratifold (7, F),ie 0T =4S
and F extends f|yg. Proposition 5.2 and Remark 5.3 imply that the Zj—stratifold (S Uyg —k T, @) is
7Zj—-bordant to Zj—stratifold (S, 8.S). There is amap f’: S Uys —kT — X which extends the singular
map /. Therefore, the singular Z j—stratifold ((S Uys —k T, &), f”) is Zj—bordant to the original singular
Zj—stratifold ((S,6S), f).

e ker(xk) cimé Consider an (n—1)—dimensional singular stratifold (S, f) with x k([S, f]) = 0.
Then there exists an n—dimensional singular stratifold (7', F') with 0T = kS and F extends k f. Thus we
can take the n—dimensional singular Zg—stratifold ((7, S), F) and we obtain §([(T, S), F]) =[S, f]. O

Denote by § the composition SHy(X; Zy) N SHy_1(X) 1> SH,_(X: Zy).
Proposition 5.5 The sequence
xkk? p 5 xkhk?
coo > SHy (X Zy) —> SHy (X Zy2) =— SHy(X; Zy) — SHy— (X5 Zg) —> -+
is exact.

Proof We have po (xkkz) =xkk =0 by Proposition 5.1. Again we use Proposition 5.1, and we get
gop:roéop:(ro(xk))08=0.

Similarly, we obtain . - )

(xk*7) o8 = (xkk ) or o8 = (ro(xk))os =0.
Now we show exactness.
e kerpC im(xkkz) Consider an n—dimensional singular Zj»—stratifold (¢, f) = ((S.4S), f) with
p(¥, f]) = 0. Then there exists an (n+1)—dimensional singular Zj—stratifold with boundary (7, F) =
((T,8T), F) such that the Zz—boundary is 0T = (S, k£6S). Thus we can consider k copies of 7 with
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the reverse orientation, which are glued with S to form a closed stratifold S Lijg —kST, which is the
boundary of T'. There are k disjoint embeddings ¢;: 6S x [0, €) < 6T induced by the collar of 9.5 into
the k copies of §T. Write 6T := 8T —|_];c7 . Ci(8S x[0,€/2]). We consider the Z—stratifold with
boundary (7', 6S x [0, €/2], ¥;), where ¥; = ¢ilssx[0,e/2]- This is a Zy2—bordism between (S, §S) and
(k8T ,8S). This means that (xk*°)([§T, 8S]) = [k8T,8S] =[S, 8S].

 kerd C im p Consider an n—dimensional singular Zg—stratifold (¥, f) = ((S,4S), f) such that
g([&/’, f1) = 0. Since § = r 0§, this means that there exists an n—dimensional singular Zj—bordism
(9,F) = ((T,8T), F) such that the Zj—boundary is ((§S, @), f|ss). Therefore, T = 6S U kST,
F extends f|ss and 6T = &. Consequently, we consider k copies of 7 with the reverse orientation,
glued with S to form the n—dimensional stratifold with boundary S” = —k T Ujyg S. There is a map
f': S’ — X also constructed by the gluing. Thus we have an n—dimensional singular Z2—stratifold
((S7,8T), /). We have p([(S",8T), f')) =[(S’,k8T), f'], which is equal to (¥, /) by Proposition 5.2.

o ker(xk* 2) C im(g ) Consider an (n—1)—dimensional singular Z—stratifold (¢, f) = ((S, S, 6;), f)
with x kK> ([¢, f1) =0. Then there is an n—dimensional singular Z >—stratifold (7, F) = ((T, 6T, ¥;). F)
with Z2>-boundary ((kS,8S),kf). Therefore, 3T = kS Uyrs —k>8T is a closed n—dimensional
stratifold. By the definition of the Z;>—boundary of a Z>—stratifold with boundary (Definition 4.6), hence
88 = 08T and the embeddings are 6; = ¥;|ys7. Therefore, the gluing Sysk$T is a closed n—dimensional
stratifold and, in addition, we obtain 07 is the disjoint union of k copies of S Liys k8T . Consequently, we
take the (n+1)—dimensional singular Zg—stratifold (7, S Ugs k6T), F) and g([(T, S Uys k8T), F]) =
[(SUys k8T, D), F|su,gksT], which is Zg—bordant to ((S,8S, 6;), f) by Proposition 5.2. ad

6 Fundamental classes

Recall from Section 2 that a closed Zj;—manifold (M, M, 6;) has an associated quotient space M.
Similarly, we write 9M to mean the quotient space given by the identification on dM of the k copies
of §M. Notice that in this case, we have IM = M. Similarly, for a Zj—manifold with boundary
(B, 8B, Vi), we denote by B and 3B the quotient spaces obtained by the identification of the k copies
of 6B on B and 0B, respectively.

In this section, we will construct a natural transformation from Zj—bordism stratifold homology to
homology with Zj—coefficients

(10) O: SH(X;Zy) — Ho (X Zy).

We can define this natural transformation for Zj—manifolds [15]. There is no formal proof of this fact in
the literature, so we provide a detailed argument below. The case of Z—stratifolds uses some results of
Tene [22]. We give the details of these statements at the end of this section.

Assume that M = (M, M, 6;) is a closed n—dimensional Zj;—manifold and that there is a continuous
map f: M — X to the topological space X. There exists the fundamental class [M]z, € Hy (2\7 3 L),
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and for an element [, f] € 2,(X; Z}), there is a natural transformation defined by
(1 S(M. /D = fx((llz,).
where f : M — X is the induced map from the quotient space M.
We can find the fundamental class [Ml]z, using the commutative diagram
—— Hy(OM ; Zy) —— Hp(M; Zy) l—*> Hy(M,0M;Zy) LN H,_(0M;Zy) —
(12) o | |- |
s Hy (O3 Z)) —— (V3 Z0) = Hy (W00 Z)) " Hyy (O3 7)) —

In the previous diagram, the rows are the long exact sequences associated with the pairs (M, M) and
(Z\? ,dM). The quotient map induces the vertical morphisms. We start with the well-known fundamental
class [M,dM] € H,(M, M ;Z;) which satisfies d([M, dM]) = [0M ]| and

(13) Hy 1 (OM ; Zy) => H,_ (M : Zy).  qx([0M]) > k[5M].

Thus g« ([0M ]) = 0 by the coefficients. We have the isomorphism ¢ : H, (M, 0M ; Z;. ) — Hy, (ﬂ, W; Zy)
and H,(0M ; Zy) = Hy (M ; Zj) = 0. Therefore, there exists a unique class [l]z, € Hy (]\7; Zj.) with
the property

(14) ix(Mlz,) = g« (M. OM]).

The following lemma is needed to show the existence of relative fundamental classes for Zj—manifolds.
Lemma 6.1 Let M be a closed compact oriented manifold of dimension n. Assume M is the gluing of
two compact oriented manifolds with boundary of dimension n, ie

(15) M = My Uypr,=om, Ma.

Then the composition .
Hy(M) 2> Hy(M, My) => Hy(M, M)

sends the fundamental class [M'| € H,(M) to the relative fundamental class [M,, dM>,] € H,(M>, 0M>),
where the isomorphism H, (M, M) => H,(M,, 0M) is provided by excision.

Proof We have the commutative diagram

Hy (M3, 0M>) —— Hy(M>, M5 —{x})

(16) lexc l%

H,(M) —— H,(M, M) — H,(M, M —{x})

where x € 1\042 = M, — dM,. By classic algebraic topology [11, Lemma 3.27], the two rows send the
fundamental classes to the generators associated with the point x, which shows the lemma. O
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Now we show the existence of a relative fundamental class of an (n+1)—dimensional Zj;—manifold with
boundary & = (B, 0B, v;), where the Z;—boundary is 0B = (M, M, 0;). We find the fundamental class
[B, 0B]z, using the commutative diagram

Hyy (0B, M Zg) —— Hyir (B, M3 7)) —— Hys1 (B, 0B: Z1) —— Hu(3B, M Zy)
(17) lCI* lCI* JCI* lQ*
Hy1 (3B, M Zg) —— Hpir (B, M:Z1) — Hyy1(B,3B: 7)) —— H,(3B, M:Zy)

In the previous diagram, the rows are the long exact sequences associated with the triples (B, 9B, M) and
(E , 5?, M ), respectively, and the quotient map induces the vertical morphisms. We start with the relative
fundamental class [B, dB] € H,(B, dB; Z;) and using Lemma 6.1 we have d[B, 0B] = [kéB, 0M |, where
k8B :=| |;ez, Vi(8B), and

(18) H, (3B, M:Zy) => Hy(SB,8M:Zy), qx[kSB,dM] > k[§B,5M].
Thus g«[k6B, dM ] = 0 by the coefficients. We have isomorphisms of the form
Gu: Hys1(B.9B: Zg) => Hyy1(B.9B:Zy) and  Hyy1(9B. M:Zy) = Hyy 1 (3B.6M: Zy) = 0.
Therefore, there exists a unique class [B, 0B8]z, € Hy41 (B, M:Z &) with the property
(19) ix([B. 0Bz, ) = q+((B. 9B]).
Proposition 6.2 Let 3B = (B, dB, ;) be an (n+1)—dimensional 7 j;-manifold with boundary, where

the Zy—boundary is 0B = (M, M, 6;). Then the class [0z, is the image of [B, IB]z, under the map
0: Hyq1 (B, M Zg) — Hn(M: Zg).

Proof We apply the differential maps to the middle square in (17), and we obtain the commutative cube

I

Hy1(B, M Zg) Hy11(B,0B; Zy)
9
g Hy (M Zy) Hy(0B: Zy)
Hy1(B, M;Zy) b H,.1(B,0B: Z) ax
\3 > ; X s
Hy(M: Zy) - H,(0B: Zy)

We continue with the long exact sequence of the pairs (0B, k6B) and (é\é, ké\é) for the front square
of (20), and we obtain the middle square in the commutative diagram

Ho(M: 7)) —— Hy(3B: Zy) —2— Hu (0B, k8B: Zy) = H,(M, M Zy)

@ l"* lq* | lq* o

Ho(M:Zy) —" Hy(3B: Zy) —" Hy(9B.k3B: Zy) —— Hy(M,0M: Zy)
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In the previous commutative diagram, we use excision for the third square on the right. Notice that
the composition of the horizontal maps in (21) are the maps ix: H,(M;Zy) — H,(M,0M ;Z}) and
ix: Hy(M;Zy) — Hy(M,0M ;7).

We chase the class [B, 0Bz, € Hy+1 (E M Zy) in the diagrams (20) and (21), where we obtain, as

consequences,

k

ix0([B, 0Bz, ) = 0ix([B, 0Bz, ) = g+ ([B, 0B]) = ¢x9([B, 0B]) = ¢«([9B]).
By Lemma 6.1, we have the equation j«([0B]) = [M, dM]. Thus, we obtain the property (14) and the
result follows. O

Proposition 6.3 The natural transformation ®: Q. (X; Zy) — H«(X; Zy) is well defined.

Proof For an n—dimensional singular Zj;—manifold (., /) which is null Z;—bordant, there exists an
(n+1)—dimensional Zj—bordism (%, F) with 0% = M, where F extends f. We have the commutative
diagram
(9, 0Bz, € Hu(B. M:Zy) —— Hu(X. X:Zg) =0
(22) la la
M)z, € Ha(M:Zg) —— Hu(X:Zg)

This ends the proposition. |
In the case of stratifolds, the fundamental classes are defined by Tene [22]. More precisely, let S be a

compact oriented regular p—stratifold of dimension # and denote by (M, dM') the smooth manifold we
attach as top stratum. We have isomorphisms

(23) Hy (M. OM) —— Hy(S. Sy_2) < Hn(S),

where S,_, is the (n—2)—skeleton of S. The fundamental class [S] € H,(S) is defined as the image of
[M,0M] e Hy,(M,oM).

Let (T, 0T) be a compact oriented regular p—stratifold of dimension n + 1 with boundary and denote by
(B, 0B) the smooth manifold with boundary and collar attached as the top stratum. Then

(24) Hy1(B.0B) —— Hyy 1 (T. Tyy UIT) +=— Hyy 1 (T.0T),

where T, is the (n—1)—skeleton of T'. The relative fundamental class [T, 0T € Hyy (T, 0T) is defined
as the image of [B, dB] € H,4 (B, dB).

Proposition 6.4 [22, Lemma 3.9] Let T be a compact oriented regular stratifold of dimension n + 1,
where the boundary is dT. Then the image of [T, dT] under the map 9: Hy,(T,0T) — H,(3T) is the
class [0T).
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Assume & = (S, 68, 6;) is a closed n—dimensional Zj—stratifold, where both S and §S are compact
oriented regular p—stratifolds. Similarly as in diagram (12), we can find the fundamental class [¥]z, in
H, (§ ; Z}) using the commutative diagram

Hy(0S: Z1) —— Hy(S: 7)) ——s Hy(S,3S: Zy) —— Hy,_(3S: Zy)

(25) lq* Jq* l"* lq*
Hy(3S: 7)) —— Hy(S: 7)) —— Hy(5,38: Z1) —— H,_(3S: Zy)

In the previous diagram, the rows are the long exact sequences associated with the pairs (S, d.5)
and (§ , 39S ). The quotient map induces the vertical morphisms. Again, we have the isomorphism
g« Hy(S,0S;7Z;) — Hy (§, 3S; Zy) and H, (5\5; Zi) = H,(8S; Z}) = 0. The same arguments as those
for Z—manifolds, show that there exists a unique fundamental class [f]z, € Hy (§ ; Z) with the property

The local orientations at each point define the fundamental class of a manifold. This property also follows
for stratifolds considering points inside the interior of the top stratum. Therefore, we use this fact to
generalize Lemma 6.1 for stratifolds. More precisely, let S be a compact oriented regular p—stratifold
of dimension 7, which is the gluing S = S’ Ligg/—ys~ S”, then in the next diagram, we have that the
fundamental classes are mapped to the generators associated with the point x:

[S”.8S"] € Hy(S",8S") —=— Hy(S" . (S")u—2 UDS") —— Hy(S".S" —{x})

= /‘\exc

(27) Hy(S,S")

T

[S]€ Hy(S) ———=—— Hy(S, Sy—2) ————— Hu(S, S — {x})

IR

Here (S”),—, and S,,_, are the (n—2)-skeletons of S” and S.

Similarly, we show the existence of a relative fundamental class of an (n41)—dimensional Zj—stratifold
with boundary & = (T, T, ¥;). The Z;—boundary is 0T = (S, §S, 6;) and all stratifolds are compact
oriented regular p—stratifolds. We can find the fundamental class [J, 07]z, using the commutative
diagram

H, 11T, S;Zy) —— Hy1(T,S; Zy) LN H, (T, 0T;Zy) AN H,T,S;Zy)
(28) l"* lq* lq* l"*
Hyr (0T §:24) —— Hyiy (T, §:2) —2 Hyor (T 9T Z4) —— Hu(3T. S: )

where the rows are the long exact sequences associated with the triples (7,97, S) and (T, aT , §),
respectively, and the vertical morphisms are induced by considering the quotient spaces. The same
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arguments show the existence of the fundamental class [T, 0Tz, € Hy4q (T, S:7Z &) with the property

The same arguments as those for Zj—manifolds, show that the image of [T, dJ]z, under the map
3: Hyy (T, S; Zi) — Hu(S; Zy) is the class [0z, .

As a consequence, the following result is straightforward.

Proposition 6.5 There is a well-defined natural transformation ® : SH, (X ; Zy) — H«(X; Zy), which
fits into the commutative diagram

Qu(X:Zy) —2 Hi(X:Zy)
(30) J /
¢/
SH*(X; Zk)

In addition, ®' is an isomorphism for all CW-complexes.

7 A geometric description of the Atiyah—Hirzebruch spectral sequence for
Z.—coefficients

We assume all spaces are CW—complexes, and for a CW—complex X we denote by X K its k' skeleton.
For a generalized homology theory /, a Postnikov tower is a sequence of homology theories 2 and
natural transformations

h

[~
) L@ JA%Y; 4 ©)

NG

such that
o Ny(x) — h,(f)(*) is an isomorphism for n < r, and
o 1 (%) is trivial for n > r.
These properties determine h() completely, see [16, Chapter II, 4.13-4.18].

Every generalized homology theory /, has an associated Atiyah-Hirzebruch spectral sequence (E¢,, dy ;).

For r = 2, Tene [23] constructs a natural isomorphism of spectral sequences Eg, — ET . where

s,
ro_ Im (/540 (X5, X577) = hypt (X5, X571))

s,t Im(/’ls+t+1(Xs+r_ls Xs) — hs+t(Xs, Xs—l))’

The argument of Tene [23, Section 4] that gives the isomorphisms

I /

g~

© Im(f)
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we now explain with diagram (32):

hh(vt—:;r_Z)(Xs) /3 hgt.?_t(Xs-H_l)

i

§t++tr 2)(Xs X577

(32) / \

hs-l—t(Xs,Xs r) hs+t(Xs+r I’Xs r) h(f)t(Xs—f-r 1 Xs r)

N A N

hs+t+1(Xs+r—1’Xs) f_) hgte (X5, Xs—l) . hs+t(Xs+r_1,Xs_1) = hgt_i)_t(Xs—H_l,Xs_l)

(¢

The differential c?s’,t: E s> E s—rt+r—1 is the homomorphism induced by the diagram

W00 ——— b et

l* l°

(33) st (X7 —— by (X7

l» L+

hfvl:i-tzrl 3)(Xs—r) hgiz_rl—3)(Xs—r+l) hfqt.g_tr_:l)(Xs_l)

where the natural transformation @ is defined by the composition
R (X) = RO (X, XYY Zs by (X, XY o by (XY,

and W is the natural transformation given by the composition of the natural transformations in the
Postnikov tower.

For oriented bordism 2., Tene [23] has a geometric description of the Atiyah—Hirzebruch spectral
sequence, coming from a geometric description of Postnikov tower SH (") This description of the
spectral sequence is similar in spirit to the Conner—Floyd spectral sequence appearing in equivariant
bordism [6] and the spectral sequence for orbifold cobordism of [1]. The bordism theory SH ) s
defined using oriented p-—stratifolds, with all strata of codimension 0 < k < r 4+ 2 empty. Thus, a singular
stratifold S in X, of the form f: S — X, gives an element of SH,Y)(X ) if S is an n—dimensional
stratifold with singular part of dimension at most n —r — 2. We put a similar restriction to the stratifold
bordisms, which are (n+ 1)—dimensional stratifolds with boundary, and the singular part is of dimension
atmostn —r — 1.

Therefore, we have natural transformations §2,, — SH,gr) such that €, (x) — SH,Y)(*) are isomorphisms
forn <r, and SH,Er)(*) is trivial for n > r. Among other properties, we obtain that SH,Er)(X k ) is trivial
fork +r <n.
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For r > 2, write

(34) El, =Im(SHEE 72 (x*) — SHY), (xsT771y),
and the differential JS’, E st E s—r.i+r—1 1S the homomorphism induced by the diagram
SHEE™P(X%) ——— sHE, (s
g d
(35) Q=1 (X7 ——— Qo (X7

‘| ‘|

SHYLZTP 07— SHEZTI 0emr ) — sHET Do

where @ is a natural transformation defined by
(36) SH}gr)(X) — SH,E’)(X, Xn—r—l) =5 Qu(X, Xn—r—l) N Qn—l(Xn_r_l)-

The isomorphism SH,Er)(X, X1y = Q, (X, X" "~1) is the restriction to the top stratum and the
map Q,(X, X" 1) - Q,_; (X" ~1) is the boundary homomorphism. The natural transformation W
is the composition of the natural transformations in the Postnikov tower. Therefore, for a stratifold .S of
dimension s + ¢, withamap f: S — X?, the image of the differential dg , is induced by

(37) [f:S_)XS]'_)[f|sing(S)og:aW_)Xs_l]y
where W is the top stratum of S and g: dW — sing(S) is the attaching map used to glue W to the
singular part sing(.S).
The Zj;—bordism groups 2, (X ; Zj) form a generalized homology theory (this follows by Section 6 or
see [5, Chapter III]). The authors define bordism theory for resolutions with abelian groups in that book.
The standard resolution for Z; and the theory of this section coincide with that given by the definition
of Z;—manifolds. We construct a Postnikov tower SH)(-; Z) defined with oriented Z—stratifolds,
with all strata of codimension 0 < k < r 4+ 2 empty. Thus a singular Zj—stratifold in X, of the form
f:(S,8S) > X, represents an element of SH,gr)(X; Zy) if

e S is an n—dimensional Zj—stratifold with singular part of dimension at most n —r — 2, and

e 65 is an (n—1)—dimensional Zj—stratifold with singular part of dimension at most n —r — 3.
Similarly, the stratifold bordism (7, §T') should be such that

e T isan (n+1)-dimensional Zj—stratifold with boundary, the singular part is of dimension at most
n—r—1,and
e T is an n—dimensional Zj—stratifold with boundary, and the singular part is of dimension at most
n—r—2.
Notice that we obtain SH® (-:Z;) = SH(-:Zy). In what follows, we use the important property that
Q4 (*) has no odd torsion and just 2—torsion; see [14].
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Theorem 7.1 For k an odd number, the homology theories SHy)(- ; Zj) give the Postnikov tower of
the generalized homology theory Q2 (-; Zy).

Proof We have natural transformations
Q * ( 5 Zk)

(38) l

—— SHO (3 Zp) —— - —— SHP (-1 23) — SHO (-3 Z)

0
SH (-1 Zy)
The conditions of the Postnikov tower are proven as follows:

e Assumen <r,hencen —r —2 <-2andn—r —1 < —1. Thus the Zj—stratifolds are Zj;—
manifolds and the Zj—stratifolds bordism are Zj;—manifolds with boundary. Therefore, the maps
Qu(x, Zg) — SH" (%, Z1,) are isomorphisms for n < r.

e Assumen >r + 1, hencen—r—1>1and n—r —2 > 0. Thus for an n—dimensional Zj—
stratifold (S, 8.S) in SH,gr)(*; Zy ), we construct the cone as in Definition 4.10. As a consequence,
SH,Y)(*; Zi)=0forn>r+1.

e Assumen=r+1,hencen—r—2=—1and n—r —3 = —2. Thus an n—dimensional Z—stratifold
in SH,gr)(*; Zy) is a Zj—manifold (M, M ). Because n —r —1 =0and n —r —2 = —1, we allow
Z y—stratifold bordisms with singular points of dimension at most 0 and the Bockstein has to be an
n—dimensional manifold with boundary. In €,_; (%) we have k[§M ] = 0, but since Q4 has no odd
torsion, then there exists an n—dimensional manifold with boundary N where 0N = § M. Consider
the Zj—stratifold bordism (C(kN Ugps M), N) where C(kN Uyps M) is the closed cone. The
Zy-boundary is precisely the Zz—manifold (M, M) which shows that SH,gr)(*; Zy) = 0 for
n=r+1.

For k = 2, this argument fails, and we cannot work around it using the cone of § M because we obtain
singular points of dimension > 1. |
The same arguments of Tene [23] give a geometric description of the Atiyah—Hirzebruch spectral sequence

for Zj-bordism. For r > 2 and X" a CW-complex, define

(39) Er, =im(SHYS ™2 (X% 24) - SHY

s+t o (XN L)),

and the differential d st E st E s—rt4+r—1 is the homomorphism induced by the diagram

SHUAY ™2 (X5, 7)) ——— SHO (X511, 7y)
al al

(40) Qs+z‘—1(Xs_r_H§Zk) B Qs+t—1(/Ys_l§Zk)
| |

SHUS2 T (00 2y) —— SHEF T (071 24) —— SHETTTV (0071 2y
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Therefore, for a singular Zj—stratifold ((S,4S), f: S — X*¥), we consider the top stratum, which is
a Zj—manifold with boundary (W,38W). Denote the Z;—boundary by (M,éM) := d(W,8W) and
g: M — sing(S) the attaching map used to glue W to the singular part which is of dimension at most
s —r. The image of the differential d¢ , is induced by

(41) [(5.8S), [:S = X°]+—[(M, M), flsng(s)0g: M — X°7"].
We have finally proved:

Theorem 7.2 For k an odd number, the filtration of the Atiyah—Hirzebruch spectral sequence of Zj—
bordism

(42) Epo S S EL ST S C By g = Ha(X5 Zy),

n

coincides with
(43) El o =Im(SH 2 (X: Zx) — SHO (X: Zi) = Hao(X: Zy)).

ie the set of classes generated by singular Z.j —stratifolds in X with singular part of dimension at most
n—r—2.

Notice that the Atiyah—Hirzebruch spectral sequence is trivial for & = 2; hence, the last theorem does not
apply.

8 Geometric representatives of nonrepresentable classes

The present section is motivated by the authors’ counterexamples of the Steenrod problem in [2].

The Steenrod problem [7] states the following: if z € H,(X) is an integral homology class, does there
exist an oriented manifold M and amap f: M — X such that z is the image of the generator of H, (M )?

Conner and Floyd [6] rephrased the Steenrod realization problem in terms of the Atiyah—Hirzebruch

spectral sequence (Ey,, dg,). More precisely, the homomorphism from oriented bordism to integral

r

homology Q4(X) — H,(X) is an epimorphism if and only if the differentials d¢,: E¢, — E__ ., .,

are trivial for all » > 2.
Using the previous section, the Steenrod realization problem for Z;—coefficients has the following form.
Theorem 8.1 If X is a CW-complex and k an odd number, then for the Atiyah—Hirzebruch spectral

sequence (Eg ,, dg ), the differentials dg ,: Es,t — Es—y ¢4,—1 are trivial for all r > 2 if and only if the
map u: Qy(X; Zy) — Hy(X; Zy) is an epimorphism for alln > 0.

For the rest of this section, we assume that k is an odd prime number p. Following Conner and Floyd [6],
we identify stratifolds with maps to BZ, with stratifolds with free actions of Z .

The Bockstein exact sequence of BZ, implies the isomorphisms

mod p B
(44) Hypn—1(BZp) = Hyy—1(BZp;Zp) and Hpp(BZp;Lp) = Hyp—1(BZp)
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<{

T T
pS-1 v v
C(M*H)x SH™> c(p8) x §29 ...
Figure 7: The class oy;.
for n > 0 (the map B was formerly denoted by §). Take generators «; € H;(BZp;Zp) such that
B(aj) = aj—y for i even, and B(e;) = 0 for i odd. The odd generators are represented by spheres. The

generator o/; is determined by the identity B(c3;) = «3;—;. From Conner and Floyd [6, page 144], we
know that the following equation holds in bordism of BZ:

(45) pazi—y +[M*azi_s +[M%logig+-+-=0 fori>1.

The manifolds M *k for k = 1,2, ... are constructed inductively in [6]. Therefore, there is a compact

oriented manifold V2, with a free action of Z p» such that
(46) V2 = pSPTlU M x SHHYU M SPO) U .
There are two representations of the generator ay; by Z ,—stratifolds, which we will show are Z ,—bordant:
(i) Denote by C(M*!) the cone of M4/ for/ =1,2,..., and take the gluing of V3! with
(C(M*x SEHYU(CM?¥) x SH2)U-.. .

The boundary of this construction is pS 2i—1 and therefore the Bockstein is 03;—1. We obtain a 2i—
dimensional Z ,—stratifold (S, 8S), where S = V U (C(M*) x S?75)U(C(M8) x S? =) U ...
is a 2i—dimensional Zj,—stratifold with singular part S 2i=5y §2=% ..., and the Bockstein
8S = S?~1is a (2i—1)-dimensional Z ,—stratifold with empty singular part. We illustrate this

construction in Figure 7.

(ii) The manifolds M*!, with 4/ < 2p — 2, belong to pQ2«; see the paper by Floyd [8, page 336].
Therefore, there exist manifolds M; € €24; such that M 4l — pM;. For p =2k + 1, consider the
cone C(M*™) form =k,k +1,..., and take the gluing of V?* with

(C(M4k) % S2i—4k—l) U (C(M4(k+l)) % S2i—4(k+l)—l) U--- .
We obtain a 2i—dimensional Z p—stratifold (S, 8.5), where
S=VUuU (C(M4k) % SZi—4k—l) U (C(M4(k+l)) % S2i—4(k+1)—1) U..-
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is a 2i—dimensional Z ,—stratifold with singular part §>~4k—1 y §2i=4k+D=1 ... ‘and the
Bockstein §S = S21 U (M x S2=5)U-+- U (Mj_; x S2—4*k=1=1) i 3 (2i—1)—dimensional
Z p—stratifold with empty singular part.

Notice that for a generic Zp—stratifold (S, 6S) € Hy;(BZ, < BZy; Z)) the singular parts of S and §S
are allowed up to dimensions 2i —2 and 2i — 3, respectively. The two previous Z ,—stratifolds satisfy these
dimension conditions for the singular parts. The bordism of Z ,—stratifolds is of the form (7', §T"), where
the singular parts of T and §7 are allowed up to dimensions 2i — 1 and 2i — 2, respectively. If we show
the two Z p—stratifolds in (i) and (ii) are Z ,—bordant, we will have two representations of the generator o5;.
Apply Proposition 5.2 using the bordism in stratifolds between M x S2* 3 U---U My _; x S% —4k=D—1
and the empty stratifold produced by the cone C(M;) x S2=5U...UC(Mj_;) x S2i=4k=D=1 which
has singular part S>3 U... §% —4(k=D=1 Tpe proof of Proposition 5.2 uses a product with the interval
producing a Z ,—stratifold (7, §T") with the singular parts of 7/ and §7" of dimensions 2i —4 and 2i — 5.
This shows that the two Z ,—stratifolds in (i) and (ii) are Z,—bordant, consequently both Z ,—stratifolds
represent the generator o/;.

Theorem 8.2 For X = BZ,, the differentials dsr’t are trivial forr < 2p —2. In particular, the differential
d2p—1

2i0 I8 of the form

3o Hyi(BLp: Qo(%: Zp)) = Hap i 1(BLp: Qap—a(x:Zp)).

and the image of the class ay; € Hp;(BZp; Zp) withi > p under the differential d*?~! is nontrivial.

Proof We can restrict to the differentials dJ; , since those starting on coordinates (2i + 1,0) are
always trivial since the classes ay;4; are represented by spheres. From Section 7, the differential

5, o E} o — E}

2i,0° 210 2i—r,r—1 Das the form

Im(SH ™2 (X% 2,) — SHO (X247-1,7,,))

|

Im(SHZ D (X7 7,) - SHY D (X271, 7,,))

For p = 2k + 1, recall the representation of the generator a3; by a 2i—dimensional Z ,—stratifold (S, 4.5,
where
o S =V U(CM*¥)x §2-4k=1yy (C(M4*+D) x §2i—4(k+D=1y ... i3 a 2i—dimensional
7 p—stratifold with singular part §2i—4k—1y g2i—4(k+)=1 ... and
o 88 =SHTTUMxSH3)U---U(Mj_q xS?~4k=D=1y js a (2i —1)-dimensional Z ,—stratifold
with empty singular part.
Since r <2p—2 =4k, we obtain 2i —4k —1 < 2i —(r —2) —2; hence o; belongs to SHZ(;_Z)(XZi; Lp).
From Section 7, the representation of the differential d” («»;) is calculated with the top stratum, which is the
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7 ,—manifold (V UM *¥ x[0, 1]x S2=#,=1y...  §H=1U (M x SZT5) U+ (Mj_q x S2—4k=D=1yy
which has Z,-boundary (M4, x §2i—4k=1y y (M ak+D)  g2i—4(k+1)=1y ... &) Therefore,
d" (oa;) = (M** x §2i—4k=1y y (p4k+1) o §2i-4(k+D=1) ... and we can cone all the M *™
since the singular parts of the bordisms in SHZ(:.:I1 ) (X 2i-1. 7, k) are allowed up to dimension 2i —r —1
and 2i —4k — 1 <2i —r — 1 precisely when r < 4k. Therefore, the differential d” (c«5;) is zero for
r <4k =2p—2. In fact, we have E? 2 ... >~ E?P~! because we have a commutative diagram

El o ®Q(*:Zp) — EJ,

(47) d’®idl d'l

E_s':—r,r—l & Qt(*’ ZP) B E;—r,t+r—1

as in Conner and Floyd [6, pages 17 and 41], and we have by induction that the rows are isomorphisms
for r <2p —2. Finally, for r = 2p — 1, the element dzzl{’o_l (ap;) = M?P=2 x §2i=2P+1 js not zero in
Hyi 5p11(BZp: 2 p—2(*:Zp)), since M ?P=2 is a Milnor generator of /pQ. For p =3, M* can be
taken to be CIP? and we find the obstruction to realizability with d°. |

9 Z,-stratifold homology is stratifold homology with Z,—coefficients

Kreck [12, Chapter 4] introduces the theory of Z ,—oriented stratifolds in order to represent homology with
Z,—coefficients. He calls this theory stratifold homology with Z.,—coefficients, denoted by SH«(X'; Z5).
The elements are bordism classes of singular stratifolds where the stratum of codimension 1 is empty, but
there is no requirement of an orientation of the top stratum. There is a natural isomorphism

(48) SH«(X:Z2) > Hy(X;Zs)

that, for a singular stratifold (S, /: S — X), takes the pushforward of the fundamental class [S] in
H, (S ; ZZ)-

This article introduces the theory of Z,—stratifolds, which also represent homology with Z,—coefficients.
This is called Z,—stratifold homology, denoted by SHy(X; Z,). The elements are Z,—-bordism classes
of singular Z ,—stratifolds where the stratum of codimension 1 is empty, but we require an orientation of
the top stratum. There is a natural isomorphism

(49) SH«(X:Z2) — Hx(X: Z)

that, for a singular Z,—stratifold ((S,§S), f: S — X), takes the pushforward of the fundamental class
[S1z, € Hn(S: Z>).

Therefore, we have the commutative diagram

SH*(X; ZZ)

S (X; ZZ)-
(50)

1R
1R

H, (X; Z2)
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To define the map ¢, note that for an n—dimensional Z,—stratifold (S, S, 6;), the quotient space S
is an n—dimensional Z,—oriented stratifold. This is true because the two disjoint collars associated
with the two embedded copies of the Bockstein 65 are combined to produce a bicollar on the quotient
space S. For (¥, /) an n—dimensional singular Z,—stratifold with ¥ = (S, 4S, 6;), we have the map
q: SHy(X;7Zy) — S#,(X; Z,) defined by q([¥, f]) = [§, ]7], where f~is the quotient map.

The description of the inverse for the isomorphism ¢: SHy(X;Z,) — S#H«(X; Z,) is an open question.
Wall [26] shows a description for an n—dimensional manifold whose first Stiefel-Whitney class w;
in H'(M;Z,) is the restriction mod2 of a class with integer coefficients. Thus there is a map
f:M — K(Z,1) = S', which can be approximated by a smooth map. Take a regular value ¢ and
consider the cutting f~1(¢). The manifold with boundary M — f~1(¢) is orientable, and in that case
f~1(t) is also orientable; this describes ¢! for this particular case.

Appendix
A.1 Regular values for Z;—stratifolds

In [12, page 27], Kreck defines a regular value for a smooth map f: S — N from a closed stratifold .S
to a boundaryless manifold N as a point x € N such that for all y € f~1(x) the differential df; is
surjective, or, equivalently, x is a regular value of f|g: for all i. Kreck [12, Propositions 2.6 and 2.7,
pages 27-29] shows that the set of regular values of f is dense in N, and f~!(x) is a stratifold of
dimension dim §' —dim N.

In [12, page 35], Kreck defines a smooth map f: T — N from a stratifold with boundary 7 to a
boundaryless manifold N as a continuous function whose restriction to T =T — 3T and to 3T is
smooth and which commutes with the collar ¢: 9T x [0, €) — U, ie there is a § > 0 with § < € such that
fe(x,t) = f(x) forall x € dT and t < 6. Kreck [12, page 38] says x € N is a regular value if x is a
regular value for f|r_s7 and f|yr. In this case, the preimage f~!(x) is a stratifold with boundary of
dimension dim 7" — dim N. This fact is a generalization of a result of [12, Proposition 2.7] using local
retractions for 7 — d7T and a7, together with Theorem A.1. Also, by Theorem A.1, the set of regular
values is dense in V.

Theorem A.1 [10, pages 60-62] Let f: M — N be a smooth map of a manifold M with boundary
onto a boundaryless manifold N and let x € N a regular value of both f and df. Then the preimage
f~Y(x) is a submanifold of M with boundary f~!(x) N dM of dimension dim M —dim N. Moreover,
the set of critical values of both f and 0f has measure zero.

In what follows, we obtain the version for stratifolds with boundary of Propositions 4.2 and 4.3 of
Kreck [12].
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Proposition A.2 Let T be an oriented, regular stratifold with boundary, f: T — R a smooth function
and t a regular value. Then f~'(t) is an oriented, regular stratifold with boundary.

Proof We use the work of Kreck [12, Proposition 4.2, page 44] in order to show that f|7_s7 ' (¢) and
f |8T_1 (¢) are regular stratifolds. We induce the collar by restriction. We notice f~1(¢) is an oriented
stratifold, since 7"~! = @ and the intersection with the top stratum is an oriented manifold. a

Remark A.3 In the case T is a p-stratifold with boundary, see Remark 3.11; hence the preimage
f71(t) is also a p-stratifold with boundary, for ¢ a regular value. The construction of this p—stratifold
is as follows: for ¢ a regular value, on each stratum 7; the preimage f |}l_l (¢) is a submanifold of T;
with boundary f|}i1 N d7; by Theorem A.1. Similarly, the preimage d f|5}i (¢) is a submanifold of d7;.
Moreover, these submanifolds come with collars and attaching maps that construct this p—stratifold with

boundary inductively.

Proposition A.4 Let T be a regular stratifold with boundary. Then the set of regular points of a smooth
map f: T — R is an open subset of T. If, in addition, T is compact, the regular values form an open set.

Proof We know the regular points of f|7_gr and f|s7 are open in T — 37 and 97, respectively. By
definition fc(x,t) = f(x) for some collar ¢ in 7. So, the regular points of f|y7 extend to the collar by
an open set. Thus, we obtain the first statement. Now, in the case T is compact, the singular points that
are the complement of the regular points, form a closed set which is compact. Thus, the image under f
is closed, implying that the regular values are an open set. O

A crucial fact for the Mayer—Vietoris sequence for stratifolds is the following:

Proposition A.5 [12, Proposition 2.8] Let S be a closed n—dimensional, connected stratifold and
A and B disjoint closed nonempty subsets of S. Then there is a nonempty (n—1)—dimensional stratifold P
with P C S — (AU B). That is, P separates A and B.

Remark A.6 More precisely, Kreck [12, Proposition 2.4, page 26] constructs a smooth function f: S —R
which maps 4 to 1 and B to —1. The stratifold P is the preimage f~!(¢) of a regular value t € (=1, 1)
such that f~1(t) C S —(AUB)and A C f~!(t,00) and B C f~!(—o0,1). After composition with an
appropriate translation, we can assume ¢ = 0.

We extend Proposition A.5 to the theory of Zj—stratifolds. However, it is not enough to consider stratifolds
with boundary. The reason is that the smooth function must be Zj—invariant on the boundary. One needs

a smooth function that factors as
S / R
é

N 7

S

We need a Z—stratifold version of the following result.
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Proposition A.7 [12, Proposition 2.4] Let A C S be a closed subset of a stratifold S, let U be an open
neighborhood of A, and f: U — R a smooth function. Then there is a smooth function g: S — R such

that g4 = fla.

Proposition A.8 Let ¥ = (S,6S, 6;) be an n—dimensional compact closed Zj—stratifold, A C S a
closed subset of the quotient space, U an open neighborhood of A and f: U — R a smooth function. Then
there exists a smooth function G : S — R that factors through the quotient space S such that G 4= fla
in the quotient space.

Proof We construct a smooth function on S, which is the gluing of the following two functions:

 For the first function, consider 6S inside the quotient space S. By normality of S, there exists a
closed subset A1 C 8S such that A NS Cint A; and A; C §S N U. By compactness and using
the collar, pr: §S x [0, ¢) — S, we find 0 < ¢ < € such that

pr 1 (A4) N (DS x[0,21)) C prt(4;) x[0,2¢) C pr ' (U).

Proposition A.7 implies that it is possible to construct a smooth function f7:48S — R such that
Aj; mapsto 1 and f1(x) =0 for x € S — U N4JS. Lift f; to a smooth function on the whole
boundary 9S and take the smooth function g1:dS x [0, 2¢) — R by writing g (x, s) = f1(x).

¢ For the second function, take the stratifold S; := S — (3.5 x [0, ¢]) and again by Proposition A.7
we can construct a smooth function g;: S; — R such that A N S; maps to 1 and g, (x) = 0 for
xeS—-UNS;.

A partition of unity glues these two functions together into a smooth function G: S — R, which is
Z—invariant. Thus it descends to the quotient and sends A4 to 1 and S—Uto0. Using Proposition 2.4 of
Kreck [12] (Proposition A.7), we apply the previous process to construct the function G: S — R, which
is Zj—invariant and is such that G|4 = f|4 in the quotient space. |

In conclusion, we obtain the Z—stratifold version of Kreck [12, Proposition 2.8] (Proposition A.5).

Proposition A.9 Let (S, §S) be an n—dimensional, compact, connected Zj —stratitold and A and B
disjoint closed nonempty subsets of the quotient space S. Then there is a nonempty (n—1)—dimensional
Zy—stratifold (P,8P) with P C S — (AU B) and P C 85 — (AU B) N §S).

We construct a smooth function G: S — R that factors through the quotient space S, and maps A to 1
and B to —1. The Z—stratifold (P, 6P) is provided by a regular value ¢ € (—1, 1) of both S and 95,
and we have P = G~ !(¢) and 6P = G|8_51 (t). The pair (P, §P) is a Zj—stratifold because we choose
a regular value by Proposition A.4 and the preimage P = G~!(¢) is a stratifold with boundary, where
WP =G (1)N3S = ez, 0i (G (1)NES) =|;cz, 0i(Gl5g (1)) and the Bockstein is §P = G|5¢ (7).
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A.2 Mayer-Vietoris sequence
Let U and V be open subsets of a space X. In this section we show that the long exact sequence

o SHA(UNV:Z4) — s SHy(U: 7)) ® SHy(V: Zi) —2— SHy(U U V; zk)>

(&2)) d
<—> SH,_ «(UNV;Z) l*—>

is exact for n > 1. Denote by iy and 7 the inclusions U NV < U and U NV — V. Denote by jy
and jy the inclusions U < U UV and V < U U V. We describe the homomorphisms as follows:
e i« SH,(UNV;Zy)— SHy(U;Zy) D SHy(V; Zy) is given by (iy«, iy «)-
o Jx: SHy(U;Zg) ® SHa(V; Zg) - SHo(U UV Zy) is given by juy — jv «-
¢ The connecting homomorphism d: SH,(U UV; Z;) — SH,—1(U NV ; Z}) considers an element
[(S,8S),g]€ SH,(UUV;Z;). For the projection pr: S — S, we obtain disjoint closed subsets
of S given by A :=pr(g~ (X —V)) and B :=pr(g~! (X —U)). By Proposition A.9, we obtain an
(n—1)—dimensional Zj—stratifold (P, § P) such that PcC §—(AUB) and P C8S—((AU B)N4S).
We define

(52) d([(S.8S). g]) =[(P.5P). g|p].
In the case that A or B is empty, the Z—stratifold (P, §P) is empty, and the differential is zero.

Proof that d is well defined It was pointed out by Kreck [13, page 304] that in the case of bordism
of smooth manifolds, the connecting homomorphism for the Mayer—Vietoris sequence is well defined
because of the existence of a bicollar for P := G~1(0), ie an isomorphism with P x (—¢, €), where 0 is
a regular value by the composition of a translation. For a stratifold .S, this is only possible up to bordism
where we naively change S by S— PU(P x(—e, €)). The formal statement is [12, Lemma B.1, page 197],
and the proof is as follows. Kreck’s Proposition 4.3 in [12] (our Proposition A.4) allows us to choose
§ > 0 such that (-6, §) consists only of regular values of G. Consider a monotone smooth map p: R — R
which is the identity for |¢| > §/2 and O for |¢| < §/4. Take n: S x R — R mapping (x, ) — G(x) — u(t),
which has 0 as regular value. Kreck’s Proposition 4.2 in [12] implies that S’ = 71(0) is a regular
stratifold containing P x (—&/4, 6/4), which is the required bicollar. It remains to construct a bordism
between S and S’. Now take the function y: S x R x [0, 1] — R defined by

(x.1.8) = G(x) = (§(s) () + (1 = &(5)0),

where ¢: [0, 1] — R is 0 near 0, and 1 near 1. This map has O as a regular value, and the preimage
0 := y~1(0) is the bordism between S and S’.

For the case of Zj—stratifolds, we start with a closed Zj—stratifold (S, 6S, 8;) and we need to separate
this Zj—stratifold by a bicollar over the regular Zj—stratifold

(P.8P.6i|sp) = (G™1(0). G55 (0). bil g1 o)-
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In such a case, the bicollar consists of a pair of embedded cylinders (G~ (0) x (—¢, €), G |8_5! (0)x(—¢,¢€))
which are consistent with respect to the embeddings 6;. In order to reproduce Kreck’s [12, Lemma B.1]
in the context of Zj—stratifolds, we observe that the map 1: S x R — R is Zj—invariant for our case
and we take (S’,8S’) := (n~1(0), 77|5_55X]R(0)), which is a regular Z—stratifold by Proposition A.2. We
construct the bicollar taking € = §/4 with § as in the previous paragraph. The Z;—bordism between
((S,4S),id) and ((S’,8S’), 1), where 7y is the projection on the first variable, is constructed similarly,
as in the case of stratifolds.

The remaining steps to show d is well defined are analogous to the case of stratifolds [12, pages 199-200].
The idea is to assume that [(S, 85, g] is trivial, then [(S’,8S”), g o 1] is also trivial. For the modified
Zj—stratifold (S’, §S’), we can take the separating function given by the projection on the second variable.
This means that there exists a Zj—bordism (7', §T) that has as Zj—boundary (S’,5S"). Moreover, the
separating function extends to 7". This function has a regular value ¢ very close to 0, then (P x{¢}, P x{t})
is null Z;—bordant taking the preimage of . However, this last Zj—stratifold is Zj—bordant to (P,§P). O

The following results are required to show that (51) is exact.

Proposition A.10 Suppose M is a manifold with boundary of dimensionn and g: M — R a smooth
map with regular value 0. Then the preimage g ' (—oo0, 0] is a manifold with boundary, and the boundary
has the form

g71(0) Uge—10ynann) (&' (—00,0]N OM).

In addition, if M is oriented, then g~ ! (—o0, 0] is oriented.

Proof Here we will dismiss the orientation of the manifolds, which is understood depending on the
case. From [10, page 62], we have that for a manifold N without boundary and f: N — R a smooth
map, the preimage f~!(—o0, 0] is a manifold with boundary given by f~1(0). Thus the restriction to
the boundary g|gas is such that gla_]\l,l (—00,0] = g~ (—00,0] N dM is a manifold whose boundary is
g|3_A1/[ (0) = g~ 1(0) N dM. Furthermore, we use Theorem A.1 (or [10, pages 60-62]) which shows that
g~ 1(0) is also a manifold with boundary g~!(0) N dM. Then we glue these two manifolds obtaining a
boundaryless smooth manifold of dimension # — 1. In Figure 8 we illustrate the boundary of g~!(—o0, 0].

g (—00,0] N OM
g71(0)

2=1(0) N aM
Figure 8: The boundary of g~ (—o0, 0].

Algebraic € Geometric Topology, Volume 24 (2024)



1898 Andrés Angel, Carlos Segovia and Arley Fernando Torres

Now we consider the restriction g|as_gas and we obtain a smooth structure for
glar—anr (00,01 = g7 (=00, 0] = (g ™" (=00, 0] N IM)

with boundary g~1(0) — (g~'(0) N dM). We can establish a collar around g~'(0). As g commutes
with the collar of dM, there is a collar around (g~ !(—o00, 0] N dM). Finally, similar to the proof of
Proposition 4.15, we combine the two collars of g~1(0) and (g~ (—o0, 0] N M ), where we smooth the
corners by straightening the angle [6, pages 9—10] (or see Section 4). |

Proposition A.10 follows for stratifolds with boundary (all p—stratifolds). Notice that
g 1 (=00,0]N T = (g (—00,0]N S)U (g~ (=00, 0] N kST
and hence g~ !(—o0, 0] is a stratifold with boundary where
3g 1 (—00,0] =g 1 (0) U (g7 (—00,0]N S)U (g7 (—o0, 0] N EST).

Thus we obtain the following application for Zj—stratifolds.

Corollary A.11 Suppose (T,8T) is a Z;—stratifold with boundary of dimension n, where the Zj—
boundary is denoted by (S, 8S). Let g: T — R be a smooth map which factors to the quotient space T
with 0 as a regular value for g. Then the preimage

(g_l(—oo, 0], g1 (—o0, 0] ﬂ(ST)
is a Zj —stratifold whose Zj—boundary is the Z j —stratifold
(27 (0) U (g7 (=00, 01N S), (27" (0)N8T) U (g~ (o0, 0]) N8S)).

Now we use these tools to show the exactness of the Mayer—Vietoris sequence.

Proof of exactness of (51) We follow the arguments used for the case of stratifolds [12, pages 200-208],
where we will specify the additional details used for the case of Zj—stratifolds.

To show that we have a complex, we notice that both jir oiyy and jj- o iy are the canonical inclusion
UNV < UUYV, therefore ji oix = 0. We show the other cases ix od = 0 and d o j, = 0 in what
follows: for the first identity, we choose a representative for the homology class (with Zj—coefficients)
in U NV such that we can cut along the separating Zj—stratifold defining the boundary operator. The
two pieces separated by this Z—stratifold induce the null Zj—bordisms on the homology groups (with
Z—coefficients) associated with U and V. For the second identity, if [(S,5S), g] € SH(U; Zy), we can
choose a smooth function and the regular value such that the separating regular Z—stratifold is empty,
therefore, d(ji7,) = 0. By the same argument d(jy ) = 0.

Now we show exactness.
e ker j, Cimi, Consider [(S,5S), f]1€ SH,(U;Zy) and [(S’,8S”), '] € SH,(V; Z}) which are
such that jy,([(S,6S), /1) = jy«((S’.8S’), f’]). There exists a Zy—bordism ((7,8T), F) between

Algebraic € Geometric Topology, Volume 24 (2024)



Zy—stratifolds 1899

(S-up Z) x{2}

S+|_|PS_ [172]

[0, 1]

(S4+ Up Z) x {0}
Figure 9: The Zy—bordism 7.

[(S.8S), ju f]and [(S’.8S"), jy /'], where F = F o pr for the quotient F: T — U U V. For the closed
disjoint subsets A7 = SUF! (X—=V)and Br = S'UF! (X —U), we construct a separating function
G : T — R which is Z—invariant with G(A7) = 1 and G(B7) = —1 and with a regular value —1 <s < 1
(we can assume that s = 0) such that (G~1(0), G=1(0) N §T) is a separating Zy—stratifold. We can find
a bicollar around G~!(0) similarly to when we show that d is well defined. Therefore, Corollary A.11
implies that ((S,8S), f) and ((G~'(0), G=1(0)N&T), F|G-1(0)) are Zp-bordant in U by the Zj—
bordism ((G™1[0,00), G71[0,00) N 8T), FlG-110,00))> and (G1(0), G71(0) N §T), Flg-1(0)) and
((S',8S"), f") are Zg—bordantin V by the Zz—bordism ((G~!(—00,0], G~ (=00, 0|N8T), F|g-1 (—00,0])-

Thus, ) —1 —1
iv«([(GT1(0),GT1(0) NET), Flg-1()]) = [(S.85), 1,

iv«([(GT10),GTH0)NST), Flg-19))) = [(S',85"), /'].

e keri, Cimd Suppose we have [(P,dP),r]€ SH,_wnv.z,) Which satisfies iy, ([(P,6P), r]) = 0
and iy, ([(P,6P), r]) = 0. Then there exist null Zz—bordisms ((71,87T;), Ry) and ((T>,8T3), R,) of
iv«([(P,8P),r]) and iy« ([(P, 8P), r]), respectively. We construct ((T1Up 75,87 UspdT3), R1 Uy Ry)
with image under d equal to [(P, §P), r].

e kerd Cim j,. Consider [(S,6S), f]1e SH,(UUV;Z;) with d([(S,8S), f]) = 0. For a separating
function G with regular value s as in the definition of d, write (P, 8P) = (G~ (s), G|5_61 (s)), which has
a bicollar. We put

(S+.85+) = (G7'[s,00), Glzg[s.00)) and (S—-,85-) = (G (=00, 0], Gl5g (—00, 0].

Then S =S4+ UpS_and §S =851 UspSS—. By the assumptions, there is ((Z,8Z),r) withr: Z—->UNV,
which has the Zj—boundary (P, 5P) and f|p = r|p. Consider the continuous maps f4: S+ Up Z - U
and f_:S_Up Z — V. The gluing T := ((S+ Up Z) x [0, 1) Uz ((S= Up Z) x[1,2]) (similarly for
the Bockstein 6 T) gives a Zj—bordism between

jU*(((S+ Up Z,88S+ UspdZ), f+)) —jV*(((S_ Up Z,8S_UspdZ), f_))

and ((S, 8S), /). We show an illustrative picture of the Zj—bordism (7, d7T) in Figure 9. O
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