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Zk–stratifolds

ANDRÉS ÁNGEL
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ARLEY FERNANDO TORRES

Generalizing the ideas of Zk–manifolds from Sullivan and stratifolds from Kreck, we define Zk–stratifolds.
We show that the bordism theory of Zk–stratifolds is sufficient to represent all homology classes of a
CW–complex with coefficients in Zk . We present a geometric interpretation of the Bockstein long exact
sequences and the Atiyah–Hirzebruch spectral sequence for Zk–bordism for k an odd number. Finally,
for p an odd prime, we give geometric representatives of all classes in H�.BZpIZp/ using Zp–stratifolds.

57R90, 58A35, 58A40; 55N20

1 Introduction

Various geometric models of homology classes use the notion of bordism. For instance, Baas [3] constructs
a generalized homology theory using the bordism of manifolds with singularities. Buoncristiano, Rourke
and Sanderson [5] give a geometric treatment of generalized homology. Certain singular spaces called Zk–
manifolds were introduced initially by Sullivan [18; 19; 20], although Morgan and Sullivan [15] gave the
first formal study of this subject. The theory of Zk–manifolds gives a geometric model for Zk–homology
classes, but Sullivan pointed out that Zk–manifolds are not general enough to represent Zk–homology.
For example, the generator of H8.K.Z; 3/IZ3/ is not represented by a Z3–manifold; see Sullivan [21].
Moreover, Brumfiel [4] shows that the nonzero classes in H2p.K.Zp; 1/IZp/ cannot be represented by
Zp–manifolds whenever p is prime. In this work, we show that for an odd prime number p, there exists
a class ˛2i 2H2i.BZpIZp/, with i � p, that cannot be represented by Zp–manifolds. Thus a geometric
model is needed to represent every homology class with Zk–coefficients. For this purpose, we focus on
the theory of stratifolds developed by Kreck [12], where the homology groups with Z–coefficients and
Z2–coefficients are represented by the bordism theories of stratifold homology SH�.X / and stratifold
homology with Z2–coefficients (this only works for Z2–coefficients).

We consider the generalized homology theory of bordism of Zk–manifolds with continuous maps to X,
denoted by ��.X IZk/. There is a long exact sequence satisfying the commutative diagram

(1)

� � � // �n.X /
�k
//

h
��

�n.X /
r
//

h
��

�n.X IZk/
ı
//

hZk

��

�n�1.X / //

h
��

� � �

� � � // Hn.X /
�k
// Hn.X /

r
// Hn.X IZk/ // Hn�1.X / // � � �
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where ı W ��.X IZk/! �n�1.X / is the Bockstein homomorphism, r W �n.X /! �n.X IZk/ is the
reduction homomorphism obtained by considering a closed manifold as a Zk–manifold with empty
Bockstein, and hZk

W��.X IZk/!H�.X IZk/ is the Hurewicz homomorphism provided by the existence
of fundamental Zk–homology classes.

Generalizing the ideas of Sullivan and Kreck, we define the bordism theory of Zk–stratifolds, and we
can consider the generalized homology theory of bordism of Zk–stratifolds with continuous maps to X,
denoted by SH�.X IZk/. We call this theory Zk–stratifold homology. Again, we have a long exact
sequence satisfying the commutative diagram

(2)

� � � // SHn.X /
�k
//

h
��

SHn.X /
r
//

h
��

SHn.X IZk/
ı
//

hZk

��

SHn�1.X / //

h
��

� � �

� � � // Hn.X /
�k

// Hn.X /
r
// Hn.X IZk/ // Hn�1.X / // � � �

In this case, the Hurewicz homomorphism hZk
W SH�.X IZk/!H�.X IZk/ is constructed in the same

vein as in the theory of Zk–manifolds. We show that Zk–stratifold homology satisfies the Eilenberg–
Steenrod axioms on CW–complexes, in particular, we show that the Mayer–Vietoris sequence axiom
holds by using a regularity argument for Zk–stratifolds; see Kreck [12]. The main result of this paper is
the following.

Theorem 1.1 An isomorphism exists between Zk–stratifold homology theory and singular homology
with Zk–coefficients. This isomorphism is valid for all CW–complexes and is compatible with the
Bockstein homomorphisms.

Führing [9] develops a smooth version of the Baas–Sullivan theory of manifolds with singularities that is
applied to the positive scalar curvature problem. In a way, stratifolds and Zk–stratifolds are another kind
of smooth version of the Baas–Sullivan theory of manifolds with singularities. One of the advantages of
stratifolds and Zk–stratifolds is a very concrete description of the filtration of the Atiyah–Hirzebruch
spectral sequence (AHSS) for oriented bordism and Zk–bordism. This geometric description of the AHSS
for Z–coefficients was given by Tene [23], and for Zk–coefficients has the following form.

Theorem 1.2 For k an odd number , the filtration for the AHSS of Zk–bordism

(3) E1n;0 � � � � �ErC2
n;0
� � � � �E2

n;0 ŠHn.X IZk/D SHn.X IZk/

coincides with the set of classes generated by singular Zk–stratifolds in X, where the singular part is of
dimension at most n� r � 2.

A fascinating application is the existence of homology classes ˛2i 2H2p.BZpIZp/, for an odd prime
number p and i � p, that cannot be represented by a Zp–manifold. This is similar to the counterexample
of Thom for the Steenrod problem [24, Chapter III], which we explain geometrically in [2].
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We organize the article as follows: Section 2 outlines some basic facts about Zk–manifolds studied
by Morgan and Sullivan [15]. In Section 3, we briefly introduce the language of stratifolds from
Kreck [12; 13]. Section 4 introduces the main theorems of this work, where we combine the theory of
Zk–manifolds from Sullivan and the theory of stratifolds from Kreck. Then we define Zk–stratifolds and
develop the basic theory of these objects. We show that the usual properties of stratifolds still remain
valid. We show that Zk–stratifold homology satisfies the Eilenberg–Steenrod axioms on CW–complexes.
Section 6 develops the existence of the fundamental class, and we postpone the proof of the existence
of the Mayer–Vietoris sequence until the appendix. In Section 7, we apply the results of Tene [23] to
give a geometric description of the Atiyah–Hirzebruch spectral sequence for Zk–bordism, for k an odd
number. In Section 8, we use this description to find homology classes with Zk–coefficients that cannot
be represented by Zk–manifolds. Finally, in Section 9, the two possible ways to represent homology with
Z2–coefficients using stratifolds are related, providing an explicit isomorphism between the two theories.

Acknowledgements We thank the Math Institute UNAM-Oaxaca and Universidad de los Andes for the
hospitality and financial support that made this collaboration possible. Ángel acknowledges and thanks
the hospitality and financial support provided by the Max Planck Institute for Mathematics in Bonn. This
work was partially supported by the grant #INV-2019-84-1860 from the Fondo de Investigaciones de la
Facultad de Ciencias de la Universidad de los Andes. Segovia is supported by cátedras CONACYT and
Proyecto CONACYT Ciencias básicas 2016, #284621. Torres’ PhD thesis [25] contains part of these
results under the supervision of Ángel. The maturity of the present paper is due to the guidance of Segovia
during two visits by Torres to the Math Institute UNAM-Oaxaca; without this invaluable contribution,
this work would not have been possible. Torres would like to thank the Universidad Pontificia Javeriana
for the help provided after his PhD, and especially the Universidad Externado de Colombia, where he has
been a professor in the mathematics department since 2020. Finally, we thank the reviewer for the careful
reading of our manuscript. We sincerely appreciate all the valuable comments and suggestions which
helped us improve its quality.

2 Zk–manifolds

Suppose that k � 2 is a positive integer. In what follows, we outline some basic facts about Zk–manifolds
introduced by Morgan and Sullivan [15].

Note 2.1 Unless otherwise indicated, let us set the convention that the manifolds are oriented and
compact. Also, all the diffeomorphisms and embeddings are orientation-preserving.

Definition 2.2 A closed n–dimensional Zk–manifold is given by the triple MD .M; ıM; �i/, where

(1) M is a compact n–manifold, with boundary @M,

(2) ıM is a compact .n�1/–manifold without boundary, called the Bockstein, and

Algebraic & Geometric Topology, Volume 24 (2024)
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Figure 1: Left: a representation of the Klein bottle as the quotient space of a Z2–manifold. Right:
a closed Z3–manifold.

(3) �i W ıM ,! @M, with i 2 Zk , are k disjoint embeddings such that we have a diffeomorphism
@M D

F
i2Zk

�i.ıM /.

Definition 2.3 There is an associated quotient space �M given by the identification on M of the k copies
of ıM together using the embeddings �i .

Example 2.4 A closed oriented manifold is a Z0–manifold (or equivalently a Z–manifold) where the
Bockstein ıM is empty.

Example 2.5 The typical example of a Z2–manifold is the cylinder M DS1�Œ0; 1�, ıM DS1 and embed-
dings �1; �2 WS

1 ,!S1�f0gtS1�f1g, with �1.S
1/DS1�f0g and �2.S

1/DS1�f1g (with the reverse
orientation on S1 � f1g). The quotient space K WD �M is the well-known Klein bottle; see Figure 1, left.

Here we observe that even though the second integral homology group is zero for the Klein bottle, we
can obtain a fundamental class after we change to Z2 coefficients, ie H2.KIZ2/Š Z2. In Section 6, we
show this fundamental class always exists for a Zk–stratifold.

Example 2.6 Consider the pair of pants P with boundary @P D S1 tS1 tS1 and Bockstein ıP D S1;
see Figure 1, right.

Definition 2.7 An .nC1/–dimensional Zk–manifold with boundary is given by the triple BD .B; ıB;  i/,
where

(1) B is a compact .nC1/–dimensional manifold, with boundary @B,

(2) ıB is a compact n–dimensional manifold, called the Bockstein, with boundary @ıB, and

(3)  i W ıB ,! @B, with i 2 Zk , are k disjoint embeddings such that the triple�
@B � int

� G
i2Zk

 i.ıB/

�
; @ıB;  i j@ıB

�
defines a closed n–dimensional Zk–manifold .M; ıM; �i/.

This closed n–dimensional Zk–manifold is called the Zk–boundary of the Zk–manifold with boundary B

and is denoted by @BD .M; ıM; �i/.

Algebraic & Geometric Topology, Volume 24 (2024)
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D

Figure 2: A Z3–manifold with boundary.

Definition 2.8 As before, there is the quotient space zB which results from the identification on B of the
k embedded copies of ıB together using the embeddings  i .

Example 2.9 Consider the three-dimensional Z3–manifold with boundary B D .B; ıB;  i/, where
B DD3 is the three-dimensional closed ball (hence @B D S2), ıB DD2 is the two-dimensional closed
disc and the  i WD

2! S2 for i 2 Z3 are given by three disjoint embedded discs inside the sphere. The
Z3–boundary @BD .M; ıM; �i/ is the two-dimensional Z3–manifold from Example 2.6, where M is
the pair of pants and ıM is the circle. See Figure 2 for an illustration.

Example 2.10 Consider the two-dimensional Z3–manifold with boundary BD .B; ıB;  i/, where B

is a connected surface of genus one with only one boundary circle, the Bockstein ıB is the interval
Œ0; 1�, and the  i W Œ0; 1�! @B D S1 for i 2 Z3 are given by three disjoint embedded intervals inside the
circle. The Z3–boundary of the Z3–manifold B is a one-dimensional Z3–manifold @BD .M; ıM; �i/,
where M is the disjoint union of three copies of the interval, ıM is the disjoint union of two points
and the embeddings �i are given by the restrictions  i jıM . In Figure 3, we illustrate the Z3–stratifold
.B; ıB;  i/, where on the right-hand side we depict the boundary @B after the quotient.

Definition 2.11 Let X be a topological space and n a natural number. An n–dimensional singular Zk–
manifold in X is a closed n–dimensional Zk–manifold MD .M; ıM; �i/ together with a continuous map
f WM !X such that f ı�i D f ı�j for i; j 2Zk . A singular Zk–bordism between two n–dimensional

ıB

@B
B

Figure 3: A Z3–manifold with boundary, left, and the boundary @B after quotient, right.
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singular Zk–manifolds .M; f / and .M0; f 0/ is a Zk–manifold with boundary B D .B; ıB;  i/, with
Zk–boundary @BD .M CM 0; ıM C ıM 0; f C f 0/ together with a continuous map F W B! X such
that F ı i D F ı j for i; j 2 Zk , extending f and f 0. Recall that the Zk–manifolds are oriented. In
this definition, the sum of Zk–manifolds is given by

.M CM 0; ıM C ıM 0; f Cf 0/D .M t�M 0; ıM t�ıM 0; f tf 0/:

The Zk–bordism group group �n.X IZk/ is given by the equivalence classes of n–dimensional singular
Zk–manifolds .M; f / under this Zk–bordism relation. The elements of this group are denoted by ŒM; f �.

The Zk–bordism groups �n.X IZk/ are a generalized homology theory (this follows by Section 4 or see
[5, Chapter III]). The existence of the fundamental class ŒM�Zk

2Hn. �M IZk/, see Section 6, induces
the Hurewicz homomorphism hZk

W�n.X IZk/!Hn.X IZk/. In addition, we have the reduction map
r W�n.X /!�n.X IZk/. This map considers an n–dimensional closed manifold as a Zk–manifold with
ıM D∅. Moreover, we have the Bockstein sequence, which fits into the commutative diagram

(4)

� � � // �n.X /
�k
//

h

��

�n.X /
r
//

h

��

�n.X IZk/
ı
//

hZk

��

�n�1.X / //

h

��

� � �

� � � // Hn.X /
�k
// Hn.X /

r
// Hn.X IZk/ // Hn�1.X / // � � �

for n� 1.

3 Stratifolds

We briefly introduce the language of stratifolds from Kreck [12; 13]. For this purpose, we need the notion
of differential space [17; 12; 13].

Definition 3.1 A differential space is a pair .X;C/ where X is a topological Hausdorff space with a
countable basis and C� C 0.X / is a sheaf of real-valued continuous functions such that for f1; : : : ; fk

in C and f a smooth function on Rk , the composition f .f1; : : : ; fk/ is in C.

For a differential space, each point x 2X has associated a tangent space, denoted by TxX , which is the
space of all derivations of the germ �x.C/ of smooth functions at x. A smooth manifold is a natural
example of a differential space, which is locally diffeomorphic to Rn equipped with the sheaf of all
smooth functions.

Definition 3.2 [13, Definition 1] An n–dimensional stratifold is a differential space .S;C/ where
the sheaf C induces a suitable stratification Sk WD fx 2 S W dim TxS D kg. The union of all strata of
dimension � k is called the k–skeleton Sk . In addition, we assume:

(i) For each k, the stratum Sk , together with the restriction sheaf CjSk , is a smooth k–dimensional
manifold as a differential space.

Algebraic & Geometric Topology, Volume 24 (2024)
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(ii) All skeleta are closed subsets of S .

(iii) All strata of dimension > n are empty.

(iv) For each x2S and open neighborhood U with x2U, there is a so-called bump function � WS!R�0

in C such that supp � � U and �.x/ > 0.

(v) For each x 2 Sk , the restriction gives an isomorphism �x.C/! �x.CjSk /.

Definition 3.3 A continuous map f W .S;C/! .S 0;C0/ is smooth if the precomposition by f sends every
element of C0 to an element of C. If f and the inverse f �1 are smooth, then f is called a diffeomorphism
of stratifolds. Similarly, we can define the notion of a (smooth) embedding of stratifolds by requiring that
the restriction to the image is a diffeomorphism of stratifolds.

Example 3.4 [12, Example 1, page 19] The open cone of an n–dimensional manifold,

VCM WDM � Œ0; 1/=M�f0g;

is an example of an .nC1/–dimensional stratifold, where C consists of all continuous functions on VCM

which are constant on some open neighborhood of the point produced by collapsing M � f0g, and whose
restriction to M � .0; 1/ is smooth.

Definition 3.5 Let W be a smooth manifold. A collar is a homeomorphism c W @W � Œ0; �/! U with
� > 0, where U is an open neighborhood of @W in W such that cj@W �f0g D id@W and cj@W �.0;�/ is a
diffeomorphism onto U � @W .

Definition 3.6 Let .T; @T / be a pair of topological spaces. Assume VT D T � @T and @T are stratifolds
of dimensions n and n� 1, with @T � T a closed subspace. A collar of @T into T is a homeomorphism
c W @T � Œ0; �/! U with � > 0, where U is an open neighborhood of @T in T such that cj@T�f0g D id@T

and cj@T�.0;�/ is a diffeomorphism of stratifolds onto U � @T .

Definition 3.7 An .nC1/–dimensional stratifold with boundary is a pair of topological spaces .T; @T /,
together with a collar c of @T into T , where T � @T is an .nC1/–dimensional stratifold and @T is an
n–dimensional stratifold, which is a closed subspace of T . We call @T the boundary of T .

The following example is crucial in the theory of stratifolds.

Example 3.8 [12, page 36] The closed cone C.S/ of a stratifold S has underlying topological space
T D S � Œ0; 1�=S�f0g, whose interior is S � Œ0; 1/=S�f0g and whose boundary is S � f1g. The collar is
given by the map S �

�
0; 1

2

�
! C.S/ mapping .x; t/ to .x; 1� t/.

Now, we define some important classes of stratifolds [12].

Definition 3.9 [12, page 79] An n–dimensional stratifold S is oriented if the top stratum Sn is an
oriented manifold and the stratum Sn�1 is empty.

Algebraic & Geometric Topology, Volume 24 (2024)
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Definition 3.10 [12, page 43] An n–dimensional stratifold S is regular if for each x 2 S i , where
0� i � n, there is an open neighborhood U of x in S , a stratifold F with F0 a single point, an open subset
V of S i , and a diffeomorphism of stratifolds � W V �F ! U, whose restriction to V �F0 is the identity.

Remark 3.11 [12, page 24] In this paper, we restrict to a special class of stratifolds called p–stratifolds.
The construction of a p–stratifold is as follows: we start with a zero-dimensional p–stratifold, which is a
zero-dimensional manifold. Assume we construct by induction a .k�1/–dimensional p–stratifold .S;C/
and let W be a k–dimensional manifold with a smooth and proper map f W @W ! S . Then we define
the k–dimensional p–stratifold .W tf S;C0/, where C0 is constructed using a collar c W @W � Œ0; �/! U.
More precisely, the function g belongs to C0 if and only if gjS and gjW �@W are smooth and for some
ı < � we have gc.x; t/D gf .x/ for all x 2 @W and t < ı.

Note 3.12 A stratifold with boundary T is an oriented/regular stratifold if both T � @T and @T are
oriented/regular stratifolds (the collar preserves the product orientation for oriented stratifolds). Similarly,
T is a p–stratifold if both T � @T and @T are p–stratifolds.

From Section 4, until the end of this paper, all statements about stratifolds are meant as statements about
p–stratifolds; see Note 4.1.

As Kreck mentions in [13, page 303]: “The following observation is central for our construction of the
zoo of bordism groups.” For two stratifolds T and T 0 with the same boundary @T D @T 0, there is a
stratifold structure for the gluing of stratifolds T [@T T 0, where the two collars are combined to produce
a bicollar; see the details in [12, pages 36–37].

Definition 3.13 Let X be a topological space and n a natural number. An n–dimensional singular
stratifold in X is a closed (compact without boundary) n–dimensional stratifold S together with a
continuous map f W S !X . A singular bordism between two n–dimensional singular stratifolds .S; f /
and .S 0; f 0/ is a compact stratifold with boundary T , with boundary .S CS 0; f Cf 0/ together with a
continuous map F W T !X extending f and f 0. The sum of oriented stratifolds is given by

.S CS 0; f Cf 0/D .S t�S 0; f tf /:

Since one can glue n–dimensional singular stratifolds over a common boundary component, singular
bordism is an equivalence relation. The oriented stratifold homology group SHn.X / consists of the
equivalence classes of n–dimensional oriented singular stratifolds .S; f / under this bordism relation.
The elements of these groups are denoted by ŒS; f �.

The significance of the previous bordism groups lies in the positive solution for the Steenrod problem [7]
of showing that a geometric object represents integral homology classes. The precise statement is:

Theorem 3.14 (Kreck [12, Theorem 20.1, page 186]) The functor SH� defines a homology theory.
Moreover , there exists a natural transformation h from SH�. � / to singular homology H�. � IZ/ such that
h is an isomorphism for all CW–complexes.
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Figure 4: A closed Z3–stratifold.

4 Zk–stratifolds

Now we combine the theory of Zk–manifolds from Sullivan and the theory of stratifolds from Kreck.

Note 4.1 Unless otherwise indicated, let us set the convention that the stratifolds are oriented, regular
p–stratifolds. Also, all the diffeomorphisms and embeddings of stratifolds are orientation-preserving.

Definition 4.2 A closed n–dimensional Zk–stratifold is given by the triple SD .S; ıS; �i/, where

(1) S is a compact, n–dimensional stratifold, with boundary @S ,

(2) ıS is a compact .n�1/–dimensional stratifold without boundary, called the Bockstein, and

(3) the �i W ıS ! @S for i 2 Zk are k disjoint embeddings of stratifolds such that we have a diffeo-
morphism of stratifolds @S D

F
i2Zk

�i.ıS/.

Definition 4.3 There is an associated quotient space zS given by the identification on S of the k copies
of ıS together using the embeddings �i .

Example 4.4 The class of closed stratifolds and the class of Zk–manifolds are the first examples of
Zk–stratifolds.

Example 4.5 Consider the two-dimensional Z3–stratifold given by the closed cone of the disjoint union
of three circles S D C.S1 tS1 tS1/, where the boundary is @S D S1 tS1 tS1, and the Bockstein is
ıS D S1; see Figure 4.

Definition 4.6 An .nC1/–dimensional Zk–stratifold with boundary is given by the triple TD .T; ıT;  i/,
where

(1) T is a compact .nC1/–dimensional stratifold, with boundary @T ,

(2) ıT is a compact n–dimensional stratifold with boundary, called the Bockstein, with boundary @ıT ,
and
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(3) the  i W ıT ,! @T for i 2 Zk are k disjoint embeddings of stratifolds such that the triple�
@T � int

� G
i2Zk

 i.ıT /

�
; @ıT;  i j@ıT

�
defines a closed n–dimensional Zk–stratifold .S; ıS; �i/.

This closed n–dimensional Zk–stratifold is called the Zk–boundary of the Zk–stratifold T and is denoted
by @TD .S; ıS; �i/.

Definition 4.7 There is a quotient space zT resulting from the identification on T of the k copies of ıT
together using the embeddings  i .

Example 4.8 A Zk–manifold with boundary is an example of a Zk–stratifold with boundary.

Example 4.9 Consider the three-dimensional Z3–stratifold with boundary TD .T; ıT;  i/, where T

is the wedge of three closed balls D3 _D3 _D3 by the north pole of the boundary spheres, hence the
boundary is @T D S2_S2_S2. The stratifold structure over the wedge point is given by the open cone
of the disjoint union of three discs. The Bockstein is the two-dimensional closed disc ıT DD2, and the
 i WD

2! S2 _S2 _S2 for i 2 Z3 are given by the embeddings of D2 on each of the three southern
hemispheres. The Z3–boundary @TD .S; ıS; �i/ is the two-dimensional Z3–stratifold from Example 4.5,
where S D C.S1 tS1 tS1/ and the Bockstein is ıS D S1. See Figure 5 for an illustration.

Definition 4.10 The cone of a Zk–stratifold .S; ıS; �i/ is defined as follows: take the closed cone
C.ıS/ (see [12, page 36] or Example 3.8) and use k copies kC.ıS/ WD

F
i2Zk

.C.ıS/ � fig/ to get
the closed stratifold S 0 WD kC.ıS/t@S S . Now take the cone C.S 0/, which is an .nC1/–dimensional
stratifold. The cone of the Zk–stratifold .S; ıS; �i/ is given by the .nC1/–dimensional Zk–stratifold
with boundary T WD .C.S 0/;C.ıS/;  i/, where  i is the canonical inclusion in the i–component. The
Zk–boundary of T is the original Zk–stratifold .S; ıS; �i/.

Note 4.11 For an n–dimensional Zk–stratifold .S; ıS; �i/, we need n � 2 in order to for C.S 0/ and
C.ıS/ to be oriented stratifolds.

D

Figure 5: A Z3–stratifold with boundary.
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The technique to show that the cartesian product of two differentiable manifolds has a differentiable
structure is called straightening the angle. We follow the exposition given by Conner and Floyd in
[6, Section I.3]. Let RC � R consist of all nonnegative real numbers. We have the homeomorphism
� W RC � RC ! R � RC, defined using polar coordinates by �.�; �/ D .�; 2�/ with 0 � � � �=2,
such that the restriction � is a diffeomorphism of RC �RC n .0; 0/ onto R�RC n .0; 0/. Consider the
product of two differentiable manifolds B1 and B2 with collars U1 and U2 of the boundaries @B1 and @B2,
respectively. There are diffeomorphismsˆ1 WU1! @B1�RC andˆ2 WU2! @B2�RC. Let U DU1�U2.
Then ˆD ˆ1 �ˆ2 is a homeomorphism of U onto @B1 � @B2 �RC �RC and the composition with
� 0 D id�� produces a homeomorphism � 0 ıˆ W U ! @B1 � @B2 �R�RC. The differentiable structure
of @B1 � @B2 �R�RC induces a differentiable structure on U such that � 0 ıˆ is a diffeomorphism.
Then U and B1 �B2 n @B1 � @B2 have differentiable structures, and they induce the same differentiable
structure on their intersection. This structure is referred to as obtained by straightening the angle.

Proposition 4.12 If SD .S; ıS; �i/ is a closed n–dimensional Zk–stratifold , then after straightening the
angle we obtain an .nC1/–dimensional Zk–stratifold with boundary S�Œ0; 1� WD .S�Œ0; 1�; ıS�Œ0; 1�;  i/,
where the Zk–boundary .S 0; ıS 0; � 0i/ is given by

� S 0 D S � f0g t�S � f1g,

� ıS 0 D ıS � f0g t�ıS � f1g,

� � 0i D �i � f0g t �i � f1g.

Proof The technique of straightening the angle works similarly for the product of two stratifolds with
boundary. In fact, from Kreck [12, Sections A.1–A.2], we can use local retractions to show that the
product of stratifolds has a stratifold structure.

Consequently, the product space S � Œ0; 1� has the structure of compact .nC1/–dimensional stratifold
with boundary, where @ .S � Œ0; 1�/ D .@S � Œ0; 1�/[ .S � f0; 1g/ is also a stratifold with a collar into
S � Œ0; 1�. Similarly, the product ıS � Œ0; 1� is a compact n–dimensional stratifold with boundary, and
we have embeddings �i � idŒ0;1� W ıS � Œ0; 1� ,! @S � Œ0; 1� for i 2 Zk . Denote by  i the embedding
obtained as the composition of �i � idŒ0;1� with the inclusion @S � Œ0; 1� ,! @ .S � Œ0; 1�/. We associate
the Zk–stratifold with boundary .T; ıT;  i/, where T WD S � Œ0; 1� and the Bockstein ıT WD ıS � Œ0; 1�.

From Definition 4.6, it remains to show that the triple .S 0; ıS 0; � 0i/ WD .@T � int.@S� Œ0; 1�/; @ıT;  i j@ıT /

is a closed n–dimensional Zk–stratifold. We have S 0D S �f0; 1g, ıS 0D ıS �f0; 1g and the embeddings
are � 0i D i jıS 0 D �i�f0; 1g. The orientation of S � Œ0; 1� induces opposite orientations for the two copies
of S associated to f0; 1g, and similarly for ıS . The embedding �i � f0g preserves the orientation, while
the embedding �i � f1g reverses the orientation. This shows that .S 0; ıS 0; � 0i/ is a Zk–stratifold which is
the Zk–boundary of S� Œ0; 1�.

Now we state a gluing lemma for Zk–stratifolds. This result is a direct application of Proposition A.1 in
Kreck’s book [12, page 194].
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Lemma 4.13 Let T WD .T; ıT;  i/ and T0 WD .T 0; ıT 0;  0i/ be Zk–stratifolds with Zk–boundaries
@TD StS0 and @T0 D StS00, where SD .S; ıS; �i/, S0 D .S 0; ıS 0; � 0i/ and S00 D .S 00; ıS 00; � 00i / are
closed Zk–stratifolds. Then there is a Zk–stratifold with boundary

TtS T0 WD .T tS T 0; ıT tıS ıT
0;  i tıS  

0
i/;

where the Zk–boundary is S0 tS00.

Proof We consider the stratifolds Y1 WD S 0 t@S 0
F

i2Zk
 i.ıT / and Y2 WD S 00 t@S 00

F
i2Zk

 0i.ıT
0/.

Thus the boundary of the stratifold T and T 0 are @T D S t@S Y1 and @T 0 D S t@S Y2, respectively.
The work of Kreck [12, Proposotion A.1, page 194] implies that the gluing T tS T 0 is a stratifold with
boundary, where @.T tS T 0/D Y1t@S Y2. Similarly, the gluing ıT tıS ıT 0 is a stratifold with boundary,
which is the Bockstein. Thus the Zk–boundary is precisely .S 0tS 00; ıS 0t ıS 00; � 0i t �

00
i /, and the lemma

follows.

Definition 4.14 Let X be a topological space and n a natural number. An n–dimensional singular Zk–
stratifold in X is a closed n–dimensional Zk–stratifold SD .S; ıS; �i/ together with a continuous map
f W S !X such that f ı �i D f ı �j for i; j 2 Zk . A singular Zk–bordism between two n–dimensional
singular Zk–stratifolds .S; f / and .S0; f 0/ is a Zk–stratifold with boundary T D .T; ıT;  i/, with
Zk–boundary @TD .S CS 0; ıS C ıS 0; f Cf 0/ together with a continuous map F W T !X such that
F ı i D F ı j for i; j 2 Zk , extending f and f 0. Recall that the Zk–stratifolds consist of oriented,
regular p–stratifolds. In this definition, the sum of Zk–stratifolds is given by

.S CS 0; ıS C ıS 0; f Cf 0/D .S t�S 0; ıS t�ıS 0; f tf 0/:

Again, one can glue n–dimensional singular Zk–stratifolds over a common boundary component. We
state in Proposition 4.15 that singular Zk–bordism is an equivalence relation. The Zk–stratifold homology
group SHn.X IZk/ is given by the equivalence classes of n–dimensional singular Zk–stratifolds .S; f /
under the Zk–stratifold bordism relation. We denote by ŒS; f � the elements of this group.

As a consequence of Proposition 4.12 and the gluing result of Lemma 4.13, we obtain the following.

Proposition 4.15 The Zk–stratifold bordism relation is an equivalence relation.

To any closed n–dimensional stratifold S , there is an associated closed n–dimensional stratifold given by
the disjoint union kS WD

F
i2Zk

S � fig. This assignment produces the homomorphism

(5) �k W SHn.X /! SHn.X /:

To any closed n–dimensional Zk–stratifold SD .S; ıS; �i/, there is an associated closed n–dimensional
Zk–stratifold given by the disjoint union kS WD

F
i2Zk

S � fig, where the Bockstein is the whole
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boundary @S and the embeddings  i W @S !
F

i2Zk
@S � fig are the canonical inclusions. More-

over, the boundary @S D
F

i2Zk
�i.ıS/ can be considered as a k–disjoint union and we can denote

.kS; kıS;  i/ WD .kS; @S;  i/. This assignment produces the homomorphism

(6) � kk
W SHn.X IZk/! SHn.X IZk/;

which we show below is trivial.

Proposition 4.16 For every integer n� 0, the homomorphism � kk W SHn.X IZk/! SHn.X IZk/ is
zero.

Proof Take .S; f /D ..S; ıS/; f / a closed singular Zk–stratifold. Consider the stratifold with boundary
given by the cylinder T WD kS � Œ0; 1� and the Bockstein ıT WD .@S � Œ0; 1�/t@S�f1g .�S � f1g/ with
embeddings

 i W ıT ,! @T D
�
.S � f0g/t@S�f0g .@S � Œ0; 1�/t@S�f1g .�S � f1g/

�
� fig;

which are the canonical inclusions. The Zk–boundary of the Zk–stratifold .T; ıT;  i/ is the k–disjoint
union of .S; ıS/.

Similar to the work of Morgan and Sullivan [15], we have the Bockstein sequence, which fits into the
commutative diagram

(7)

// SHn.X /
�k
//

h
��

SHn.X /
r
//

h
��

SHn.X IZk/
ı
//

hZk

��

SHn�1.X / //

h
��

� � �SH0.X IZk/

��

// Hn.X /
�k

// Hn.X /
r
// Hn.X IZk/ // Hn�1.X / // � � �H0.X IZk/

The description of the maps is as follows:

� The reduction r W SHn.X /! SHn.X IZk/ is obtained by considering an n–dimensional closed
stratifold as a Zk–stratifold, ie .S; ıS; �i/ with ıS D∅.

� Multiplication � k W SHn.X /! SHn.X / takes a singular stratifold .S; f / in X and assigns the
class of the k–disjoint union of S , denoted by ŒkS; kf �.

� The Bockstein ı W SHn.X IZk/! SHn�1.X / assigns to a singular Zk–stratifold .S; f /, where
SD .S; ıS; �i/, the class ŒıS; f jıS �.

� The Hurewicz homomorphism for stratifolds, h W SHn.X /!Hn.X / for n� 0, was constructed by
Kreck [12, pages 186–187].

� The Hurewicz homomorphism for Zk–stratifolds, hZk
W SHn.X IZk/!Hn.X IZk/ for n� 0, is

constructed in Section 6, where we show the existence of the fundamental class for Zk–stratifolds.

We leave the proof of the exactness of (7) for Section 5, where the commutativity follows after we
construct the fundamental class in Section 6.
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Finally, we spend the rest of the section discussing the properties of SH�. � IZk/ as a functor. Kreck [12]
proves the Eilenberg–Steenrod axioms for the bordism groups SH�. � / in the category of CW–complexes.
We have a functor, ie id�D id and .gıf /�Dg�ıf�, which is homotopy invariant, has the Mayer–Vietoris
sequence, SHn.�/D 0 for n¤ 0 and SH0.�/D Z. Similarly, the Zk–stratifold homology satisfies the
Eilenberg–Steenrod axioms, that we show in detail below. The proof of the Mayer–Vietoris sequence is
in Section A.2.

Definition 4.17 A continuous map g WX ! Y defines a morphism between the Zk–stratifold bordism
groups by

g� W SHn.X IZk/! SHn.Y IZk/; ŒS; f � 7! ŒS;g ıf �;

for SD .S; ıS; �i/ a closed n–dimensional Zk–stratifold.

This defines a functor which is homotopy invariant, as in the following proposition.

Proposition 4.18 If g and g0 are homotopic maps from X to Y , then

g� D g0� W SHn.X IZk/! SHn.Y IZk/:

Proof There is a homotopy G WX � Œ0; 1�! Y between g and g0. Take ŒS; f � 2 SHn.X IZk/, and hence
ŒS� Œ0; 1�;G ı .f � id/� is a singular Zk–stratifold bordism (see Proposition 4.12) between g�.ŒS; f �/

and g0�.ŒS; f �/.

Proposition 4.19 For the Zk–stratifold bordism group , we have

SHn.�IZk/D

�
Zk for nD 0;

0 for n¤ 0:

Proof An important assumption here is that every n–dimensional Zk–stratifold .S; ıS/ is formed by
oriented stratifolds S and ıS . For n � 2, we use the first horizontal long exact sequence of (7), with
SHn.�/D 0 and SHn�1.�/D 0, and we conclude SHn.�IZk/D 0. For nD 1, the sequence (7) becomes

0! SH1.�IZk/! Z
�k
! Z

r
! SH0.�IZk/! 0;

then SH1.�IZk/D 0 and SH0.�IZk/D Zk .

A geometric approach for the previous proposition is as follows: for any closed n–dimensional Zk–
stratifold SD .S; ıS; �i/, with n> 1, we take the cone as in Definition 4.10. Thus we consider the usual
cone C.ıS/ and use k copies kC.ıS/ to get the closed stratifold S 0 WD kC.ıS/t@S S . Then we form
the .nC1/–dimensional Zk–stratifold with boundary T WD .C.S 0/;C.ıS/;  i/ where  i is the canonical
inclusion on the i th component. The Zk–boundary of T is the original Zk–stratifold .S; ıS; �i/. For
n D 1, we have a disjoint union of circles and intervals with orientation. Since each interval has the
boundary fC;�g, then the number of intervals must be divided by k. Thus, after capping the circles
with discs by Proposition 4.16, this element is trivial in SH1.�IZk/. Finally, for nD 0, the generator of
SH0.�IZk/ is the closed zero-dimensional Zk–stratifold .�;∅; id∅/, where we use Proposition 4.16.
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5 The Bockstein sequence

Previously, we have defined the k–disjoint union homomorphisms for stratifolds and Zk–stratifolds.
These homomorphisms are as follows �k WSHn.X /!SHn.X / and �kk WSHn.X IZk/!SHn.X IZk/,
defined in (5) and (6), respectively. The second is the trivial homomorphism by Proposition 4.16. There
is a third k–disjoint union homomorphism of the form

(8) �kk2

W SHn.X IZk/! SHn.X IZk2/;

which assigns to an n–dimensional Zk–stratifold .S; ıS/ the n–dimensional Zk2–stratifold .kS; ıS/.
There is a projection homomorphism

p W SHn.X IZk2/! SHn.X IZk/

which assigns to an n–dimensional Zk2–stratifold .S; ıS/ the n–dimensional Zk–stratifold .S; kıS/.

We skip the embeddings and singular maps in defining these homomorphisms to simplify the notation.

These homomorphisms satisfy a compatibility condition with the reduction and the Bockstein homomor-
phisms from the last section.

Proposition 5.1 Let r W SHn.X /! SHn.X IZk/ and r W SHn.X /! SHn.X IZk2/ be the reduction
homomorphisms and let ı W SHn.X IZk2/ ! SHn�1.X / be the Bockstein homomorphism for Zk2–
stratifolds. We have the following commutative diagrams:

SHn.X IZk2/
p
//

ı
��

SHn.X IZk/

ı
��

SHn�1.X /
�k

// SHn�1.X /

SHn.X /
�k

//

r

��

SHn.X /

r

��

SHn.X IZk/
�kk

// SHn.X IZk/

SHn.X /
�k

//

r

��

SHn.X /

r

��

SHn.X IZk/
�kk2

// SHn.X IZk2/

SHn.X /

r

((

r

��

SHn.X IZk2/
p
// SHn.X IZk/

SHn.X IZk2/

p

((

SHn.X IZk/�kk2

OO

�kk
// SHn.X IZk/

Proof We show the commutativity of the first three squares. Take .S; ıS/ an n–dimensional Zk2–
stratifold. We have kıS WD � k.ıS/D � k ı ı.S; ıS/ and kıS D ı.S; kıS/D ı ıp.S; ıS/. Now, for
S a closed n–dimensional stratifold, we obtain r ı �k.S/D .kS;∅/ and �kk ı r.S/D �kk.S;∅/D
.kS;∅/ in SHn.X IZk/. Similarly, we can show the commutativity of the third diagram with .kS;∅/

Algebraic & Geometric Topology, Volume 24 (2024)



1878 Andrés Ángel, Carlos Segovia and Arley Fernando Torres

ıS T ıS 0

S

Figure 6: The bordism T from ıS and ıS 0 and the two Zk–bordant Zk–stratifolds.

in SHn.X IZk2/. Finally, we show the commutativity of the last two diagrams. We have r.S/D .S;∅/D
p.S;∅/Dp.r.S// and pı�kk2

.S; ıS/Dp.kS; ıS/D .kS; kıS/D �kk.S; ıS/. The commutativity
of the second and fifth diagrams means that the composition is trivial by Proposition 4.16.

The following result shows how a stratifold bordism gives rise to a Zk–stratifold bordism.

Proposition 5.2 Assume that ıS and ıS 0 are two n–dimensional closed stratifolds such that there is a
bordism of stratifolds T with boundary @T D ıS t�ıS 0. In addition , suppose the pair .S; ıS/ is an
n–dimensional Zk–stratifold. Then .S; ıS/ is Zk–bordant to .S t@S �kT; ıS 0/.

Proof This is similar to Proposition 4.12. Consider the product space T 0 WD .S t@S �kT /� Œ0; 1� and
the Bockstein ıT 0 WD .ıS 0 � Œ0; 1�/tıS 0�f1g�T with embeddings  i W ıT

0 ,! @T 0, where

@T 0 D
�
.S t@S �kT /� f0g

�
tkıS 0�f0g k.ıS

0
� Œ0; 1�/tkıS 0�f1g

�
.S t@S �kT /� f1g

�
:

The Zk–stratifold .T 0; ıT 0;  i/ is a Zk–bordism between .S; ıS/ and .S t@S �kT; ıS 0/.

Remark 5.3 Because of the relevance of the previous result for our work, in Figure 6 we illustrate two
Zk–stratifolds that are Zk–bordant by the previous proposition. Notice that, whenever it is possible
to connect ıS to the empty set by a bordism T , then the Zk–stratifold .S; ıS/ is Zk–bordant to
.S t@S �kT;∅/.

Similar to the work of Morgan and Sullivan [15], the Zk–stratifolds bordisms groups have a Bockstein
exact sequence associated with 0!Z

�k
�!Z!Zk! 0. There is also the other Bockstein exact sequence

associated with 0!Zk
�k
�!Zk2 !Zk! 0. These two sequences are part of the commutative diagram

(9)

// SHn.X /
�k

//

r

��

SHn.X /
r
//

r

��

SHn.X IZk/
ı

//

D

��

SHn�1.X / //

r

��

// SHn.X IZk/
�k
// SHn.X IZk2/

p
// SHn.X IZk/

zı
// SHn�1.X IZk/ //

The primary purpose of the present section is to show the exactness of the two Bockstein exact sequences.
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Proposition 5.4 The sequence

� � � ! SHn.X /
�k
�! SHn.X /

r
�! SHn.X IZk/

ı
�! SHn�1.X /

�k
�! � � �

is exact.

Proof We have r ı .�k/D .�kk/ ı r D 0 by Proposition 5.1. In addition, we obtain ı ı r D 0 since the
Bockstein of a (closed) stratifold is empty. Moreover, � k ı ı D 0 since we start with a Zk–stratifold
.S; ıS; �i/, where the boundary @S is diffeomorphic to

F
i2Zk

�i.ıS/.

Now, we show exactness.

� ker r � im.�k/ Consider an n–dimensional singular stratifold .S; f / with r.ŒS; f �/D 0. Then there
is an .nC1/–dimensional Zk–bordism .T;F /D ..T; ıT /;F / such that the Zk–boundary @.T; ıT /D
.S;∅/ and F extends f . Consequently, we obtain @ıT D ıS D ∅ and hence @T D S t kıT ,
and we can take the singular stratifolds given by .ıT;F j@T / with the reverse orientation. We have
kŒ�ıT;�F j@T �D ŒS; f �.

� ker ı � im r Consider an n–dimensional singular Zk–stratifold .S; f / D ..S; ıS/; f / such that
ı.ŒS; f �/D0. Then .ıS; f jıS / is the boundary of an n–dimensional singular stratifold .T;F /, ie @T D ıS
and F extends f j@S . Proposition 5.2 and Remark 5.3 imply that the Zk–stratifold .S t@S �kT;∅/ is
Zk–bordant to Zk–stratifold .S; ıS/. There is a map f 0 W S t@S �kT !X which extends the singular
map f . Therefore, the singular Zk–stratifold ..St@S�kT;∅/; f 0/ is Zk–bordant to the original singular
Zk–stratifold ..S; ıS/; f /.

� ker.�k/ � im ı Consider an .n�1/–dimensional singular stratifold .S; f / with � k.ŒS; f �/ D 0.
Then there exists an n–dimensional singular stratifold .T;F / with @T D kS and F extends kf . Thus we
can take the n–dimensional singular Zk–stratifold ..T;S/;F / and we obtain ı.Œ.T;S/;F �/D ŒS; f �.

Denote by zı the composition SHn.X IZk/
ı
�! SHn�1.X /

r
�! SHn�1.X IZk/.

Proposition 5.5 The sequence

� � � ! SHn.X IZk/
�kk2

��! SHn.X IZk2/
p
�! SHn.X IZk/

zı
�! SHn�1.X IZk/

�kk2

��! � � �

is exact.

Proof We have p ı .�kk2

/D�kk D 0 by Proposition 5.1. Again we use Proposition 5.1, and we get

zı ıp D r ı ı ıp D .r ı .�k// ı ı D 0:

Similarly, we obtain
.�kk2

/ ı zı D .�kk2

/ ı r ı ı D .r ı .�k// ı ı D 0:

Now we show exactness.

� ker p � im.�kk2
/ Consider an n–dimensional singular Zk2–stratifold .S; f /D ..S; ıS/; f / with

p.ŒS; f �/D 0. Then there exists an .nC1/–dimensional singular Zk–stratifold with boundary .T;F /D
..T; ıT /;F / such that the Zk–boundary is @TD .S; kıS/. Thus we can consider k copies of ıT with
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the reverse orientation, which are glued with S to form a closed stratifold S t@S �kıT , which is the
boundary of T . There are k disjoint embeddings ci W ıS � Œ0; �/ ,! ıT induced by the collar of @S into
the k copies of ıT . Write ıT WD ıT �

F
i2Zk

ci.ıS � Œ0; �=2�/. We consider the Zk2–stratifold with
boundary .T; ıS � Œ0; �=2�;  i/, where  i D ci jıS�Œ0;�=2�. This is a Zk2–bordism between .S; ıS/ and
.kıT ; ıS/. This means that .�kk2

/.ŒıT ; ıS �/D ŒkıT ; ıS �D ŒS; ıS �.

� ker zı � im p Consider an n–dimensional singular Zk–stratifold .S; f / D ..S; ıS/; f / such that
zı.ŒS; f �/ D 0. Since zı D r ı ı, this means that there exists an n–dimensional singular Zk–bordism
.T;F / D ..T; ıT /;F / such that the Zk–boundary is ..ıS;∅/; f jıS /. Therefore, @T D ıS t kıT ,
F extends f jıS and @ıT D∅. Consequently, we consider k copies of T with the reverse orientation,
glued with S to form the n–dimensional stratifold with boundary S 0 D �kT t@S S . There is a map
f 0 W S 0! X also constructed by the gluing. Thus we have an n–dimensional singular Zk2–stratifold
..S 0; ıT /; f 0/. We have p.Œ.S 0; ıT /; f 0�/D Œ.S 0; kıT /; f 0�, which is equal to .S; f / by Proposition 5.2.

� ker.�kk2
/� im.zı/ Consider an .n�1/–dimensional singular Zk–stratifold .S; f /D ..S; ıS; �i/; f /

with �kk2

.ŒS; f �/D0. Then there is an n–dimensional singular Zk2–stratifold .T;F /D ..T; ıT;  i/;F /

with Zk2–boundary ..kS; ıS/; kf /. Therefore, @T D kS t@kS �k2ıT is a closed n–dimensional
stratifold. By the definition of the Zk2–boundary of a Zk2–stratifold with boundary (Definition 4.6), hence
ıSD@ıT and the embeddings are �iD i j@ıT . Therefore, the gluing St@S kıT is a closed n–dimensional
stratifold and, in addition, we obtain @T is the disjoint union of k copies of St@S kıT . Consequently, we
take the .nC1/–dimensional singular Zk–stratifold ..T;S t@S kıT /;F / and zı.Œ.T;S t@S kıT /;F �/D

Œ.S t@S kıT;∅/;F jSt@S kıT �, which is Zk–bordant to ..S; ıS; �i/; f / by Proposition 5.2.

6 Fundamental classes

Recall from Section 2 that a closed Zk–manifold .M; ıM; �i/ has an associated quotient space �M .
Similarly, we write e@M to mean the quotient space given by the identification on @M of the k copies
of ıM. Notice that in this case, we have e@M Š ıM. Similarly, for a Zk–manifold with boundary
.B; ıB;  i/, we denote by zB and f@B the quotient spaces obtained by the identification of the k copies
of ıB on B and @B, respectively.

In this section, we will construct a natural transformation from Zk–bordism stratifold homology to
homology with Zk–coefficients

(10) ˆ W SH�.X IZk/!H�.X IZk/:

We can define this natural transformation for Zk–manifolds [15]. There is no formal proof of this fact in
the literature, so we provide a detailed argument below. The case of Zk–stratifolds uses some results of
Tene [22]. We give the details of these statements at the end of this section.

Assume that M D .M; @M; �i/ is a closed n–dimensional Zk–manifold and that there is a continuous
map f WM ! X to the topological space X. There exists the fundamental class ŒM�Zk

2Hn. �M IZk/,
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and for an element ŒM; f � 2�n.X IZk/, there is a natural transformation defined by

(11) ˆ.ŒM; f �/D zf�.ŒM�Zk
/;

where zf W �M !X is the induced map from the quotient space �M .

We can find the fundamental class ŒM�Zk
using the commutative diagram

(12)

// Hn.@M IZk/ //

q�
��

Hn.M IZk/

q�
��

i�
// Hn.M; @M IZk/

q�
��

@
// Hn�1.@M IZk/

q�
��

//

// Hn.e@M IZk/ // Hn. �M IZk/
i�
// Hn. �M ;e@M IZk/

@
// Hn�1.e@M IZk/ //

In the previous diagram, the rows are the long exact sequences associated with the pairs .M; @M / and
. �M ;e@M /. The quotient map induces the vertical morphisms. We start with the well-known fundamental
class ŒM; @M � 2Hn.M; @M IZk/ which satisfies @.ŒM; @M �/D Œ@M � and

(13) Hn�1.e@M IZk/
Š�!Hn�1.ıM IZk/; q�.Œ@M �/ 7! kŒıM �:

Thus q�.Œ@M �/D0 by the coefficients. We have the isomorphism q� WHn.M;@M IZk/!Hn. �M;e@M IZk/

and Hn.e@M IZk/ŠHn .ıM IZk/D 0. Therefore, there exists a unique class ŒM�Zk
2Hn. �M IZk/ with

the property

(14) i�.ŒM�Zk
/D q�.ŒM; @M �/:

The following lemma is needed to show the existence of relative fundamental classes for Zk–manifolds.

Lemma 6.1 Let M be a closed compact oriented manifold of dimension n. Assume M is the gluing of
two compact oriented manifolds with boundary of dimension n, ie

(15) M DM1 t@M1D@M2
M2:

Then the composition
Hn.M /

i�
�!Hn.M;M1/

Š�!Hn.M2; @M2/

sends the fundamental class ŒM � 2Hn.M / to the relative fundamental class ŒM2; @M2� 2Hn.M2; @M2/,
where the isomorphism Hn.M;M1/

Š�!Hn.M2; @M2/ is provided by excision.

Proof We have the commutative diagram

(16)

Hn.M2; @M2/

exc
��

// Hn.M2;M2�fxg/

Š

��

Hn.M / // Hn.M;M1/ // Hn.M;M �fxg/

where x 2 VM2 DM2 � @M2. By classic algebraic topology [11, Lemma 3.27], the two rows send the
fundamental classes to the generators associated with the point x, which shows the lemma.
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Now we show the existence of a relative fundamental class of an .nC1/–dimensional Zk–manifold with
boundary BD .B; @B;  i/, where the Zk–boundary is @BD .M; ıM; �i/. We find the fundamental class
ŒB; @B�Zk

using the commutative diagram

(17)

HnC1.@B;M IZk/ //

q�
��

HnC1.B;M IZk/

q�
��

i�
// HnC1.B; @BIZk/

q�
��

@
// Hn.@B;M IZk/

q�
��

HnC1.f@B; �M IZk/ // HnC1. zB; �M IZk/
i�
// HnC1. zB;f@BIZk/

@
// Hn.f@B; �M IZk/

In the previous diagram, the rows are the long exact sequences associated with the triples .B; @B;M / and
. zB;f@B; �M /, respectively, and the quotient map induces the vertical morphisms. We start with the relative
fundamental class ŒB; @B�2Hn.B; @BIZk/ and using Lemma 6.1 we have @ŒB; @B�D ŒkıB; @M �, where
kıB WD

F
i2Zk

 i.ıB/, and

(18) Hn.f@B; �M IZk/
Š�!Hn.ıB; ıM IZk/; q�ŒkıB; @M � 7! kŒıB; ıM �:

Thus q�ŒkıB; @M �D 0 by the coefficients. We have isomorphisms of the form

q� WHnC1.B; @BIZk/
Š�!HnC1. zB;f@BIZk/ and HnC1.f@B; �M IZk/ŠHnC1.ıB; ıM IZk/D 0:

Therefore, there exists a unique class ŒB; @B�Zk
2HnC1. zB; �M IZk/ with the property

(19) i�.ŒB; @B�Zk
/D q�.ŒB; @B�/:

Proposition 6.2 Let BD .B; @B;  i/ be an .nC1/–dimensional Zk–manifold with boundary , where
the Zk–boundary is @BD .M; ıM; �i/. Then the class Œ@B�Zk

is the image of ŒB; @B�Zk
under the map

@ WHnC1. zB; �M IZk/!Hn. �M IZk/.

Proof We apply the differential maps to the middle square in (17), and we obtain the commutative cube

(20)

HnC1.B;M IZk/

@ ))

q�

��

i�
// HnC1.B; @BIZk/

q�

��

@

))

Hn.M IZk/
i�

//

q�

��

Hn.@BIZk/

q�

��

HnC1. zB; �M IZk/
i�

//

@ ))

HnC1. zB;f@BIZk/

@ ))

Hn. �M IZk/
i�

// Hn.f@BIZk/

We continue with the long exact sequence of the pairs .@B; kıB/ and .f@B; kf@B/ for the front square
of (20), and we obtain the middle square in the commutative diagram

(21)

Hn.M IZk/

q�
��

i�
// Hn.@BIZk/

q�
��

j�
// Hn.@B; kıBIZk/

q�
��

Š

exc
// Hn.M; @M IZk/

q�Š
��

Hn. �M IZk/
i�
// Hn.f@BIZk/

j�
// Hn.f@B; zkıBIZk/

Š

exc
// Hn. �M ;e@M IZk/
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In the previous commutative diagram, we use excision for the third square on the right. Notice that
the composition of the horizontal maps in (21) are the maps i� W Hn.M IZk/! Hn.M; @M IZk/ and
i� WHn. �M IZk/!Hn. �M ; @ �M IZk/.

We chase the class ŒB; @B�Zk
2HnC1. zB; �M IZk/ in the diagrams (20) and (21), where we obtain, as

consequences,

i�@.ŒB; @B�Zk
/D @i�.ŒB; @B�Zk

/D @q�.ŒB; @B�/D q�@.ŒB; @B�/D q�.Œ@B�/:

By Lemma 6.1, we have the equation j�.Œ@B�/D ŒM; @M �. Thus, we obtain the property (14) and the
result follows.

Proposition 6.3 The natural transformation ˆ W��.X IZk/!H�.X IZk/ is well defined.

Proof For an n–dimensional singular Zk–manifold .M; f / which is null Zk–bordant, there exists an
.nC1/–dimensional Zk–bordism .B;F / with @BDM, where F extends f . We have the commutative
diagram

(22)

ŒB; @B�Zk
2Hn. zB; �M IZk/

@
��

// Hn.X;X IZk/D 0

@

��

ŒM�Zk
2Hn. �M IZk/ // Hn.X IZk/

This ends the proposition.

In the case of stratifolds, the fundamental classes are defined by Tene [22]. More precisely, let S be a
compact oriented regular p–stratifold of dimension n and denote by .M; @M / the smooth manifold we
attach as top stratum. We have isomorphisms

(23) Hn.M; @M /
Š

exc
// Hn.S;Sn�2/ Hn.S/;

Š
oo

where Sn�2 is the .n�2/–skeleton of S . The fundamental class ŒS � 2Hn.S/ is defined as the image of
ŒM; @M � 2Hn.M; @M /.

Let .T; @T / be a compact oriented regular p–stratifold of dimension nC 1 with boundary and denote by
.B; @B/ the smooth manifold with boundary and collar attached as the top stratum. Then

(24) HnC1.B; @B/
Š

exc
// HnC1.T;Tn�1[ @T / HnC1.T; @T /;

Š
oo

where Tn�1 is the .n�1/–skeleton of T . The relative fundamental class ŒT; @T �2HnC1.T; @T / is defined
as the image of ŒB; @B� 2HnC1.B; @B/.

Proposition 6.4 [22, Lemma 3.9] Let T be a compact oriented regular stratifold of dimension nC 1,
where the boundary is @T. Then the image of ŒT; @T � under the map @ WHnC1.T; @T /!Hn.@T / is the
class Œ@T �.
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Assume S D .S; ıS; �i/ is a closed n–dimensional Zk–stratifold, where both S and ıS are compact
oriented regular p–stratifolds. Similarly as in diagram (12), we can find the fundamental class ŒS�Zk

in
Hn. zS IZk/ using the commutative diagram

(25)

Hn.@S IZk/ //

q�
��

Hn.S IZk/

q�
��

i�
// Hn.S; @S IZk/

q�
��

@
// Hn�1.@S IZk/

q�
��

Hn.f@S IZk/ // Hn. zS IZk/
i�
// Hn. zS ;f@S IZk/

@
// Hn�1.f@S IZk/

In the previous diagram, the rows are the long exact sequences associated with the pairs .S; @S/
and . zS ;f@S/. The quotient map induces the vertical morphisms. Again, we have the isomorphism
q� WHn.S; @S IZk/!Hn. zS ;f@S IZk/ and Hn.f@S IZk/ŠHn.ıS IZk/D 0. The same arguments as those
for Zk–manifolds, show that there exists a unique fundamental class ŒS�Zk

2Hn. zS IZk/ with the property

(26) i�.ŒS�Zk
/D q�.ŒS; @S �/:

The local orientations at each point define the fundamental class of a manifold. This property also follows
for stratifolds considering points inside the interior of the top stratum. Therefore, we use this fact to
generalize Lemma 6.1 for stratifolds. More precisely, let S be a compact oriented regular p–stratifold
of dimension n, which is the gluing S D S 0 t@S 0D@S 00 S

00, then in the next diagram, we have that the
fundamental classes are mapped to the generators associated with the point x:

(27)

ŒS 00; @S 00� 2Hn.S
00; @S 00/

Š
// Hn.S

00; .S 00/n�2[ @S
00/ // Hn.S

00;S 00�fxg/

Š

��

Hn.S;S
0/

Š exc

OO

ŒS � 2Hn.S/

OO

Š
// Hn.S;Sn�2/ // Hn.S;S �fxg/

Here .S 00/n�2 and Sn�2 are the .n�2/–skeletons of S 00 and S .

Similarly, we show the existence of a relative fundamental class of an .nC1/–dimensional Zk–stratifold
with boundary TD .T; @T;  i/. The Zk–boundary is @TD .S; ıS; �i/ and all stratifolds are compact
oriented regular p–stratifolds. We can find the fundamental class ŒT; @T�Zk

using the commutative
diagram

(28)

HnC1.@T;S IZk/ //

q�
��

HnC1.T;S IZk/

q�
��

i�
// HnC1.T; @T IZk/

q�
��

@
// Hn.@T;S IZk/

q�
��

HnC1.f@T ; zS IZk/ // HnC1. zT ; zS IZk/
i�
// HnC1. zT ;f@T IZk/

@
// Hn.f@T ; zS IZk/

where the rows are the long exact sequences associated with the triples .T; @T;S/ and . zT ;f@T ; zS/,
respectively, and the vertical morphisms are induced by considering the quotient spaces. The same
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arguments show the existence of the fundamental class ŒT; @T�Zk
2HnC1. zT ; zS IZk/ with the property

(29) i�.ŒT; @T�Zk
/D q�.ŒT; @T �/:

The same arguments as those for Zk–manifolds, show that the image of ŒT; @T�Zk
under the map

@ WHnC1. zT ; zS IZk/!Hn. zS IZk/ is the class Œ@T�Zk
.

As a consequence, the following result is straightforward.

Proposition 6.5 There is a well-defined natural transformation ˆ0 W SH�.X IZk/!H�.X IZk/, which
fits into the commutative diagram

(30)

��.X IZk/
ˆ
//

��

H�.X IZk/

SH�.X IZk/

ˆ0

77

In addition , ˆ0 is an isomorphism for all CW–complexes.

7 A geometric description of the Atiyah–Hirzebruch spectral sequence for
Zk–coefficients

We assume all spaces are CW–complexes, and for a CW–complex X we denote by X k its k th skeleton.
For a generalized homology theory h, a Postnikov tower is a sequence of homology theories h.r/ and
natural transformations

(31)

h

��
(( ** ,,

� � � // h.r/ // � � � // h.2/ // h.1/ // h.0/

such that

� hn.�/! h
.r/
n .�/ is an isomorphism for n� r , and

� h
.r/
n .�/ is trivial for n> r .

These properties determine h.r/ completely, see [16, Chapter II, 4.13-4.18].

Every generalized homology theory h, has an associated Atiyah–Hirzebruch spectral sequence .Er
s;t ; d

r
s;t /.

For r � 2, Tene [23] constructs a natural isomorphism of spectral sequences Er
s;t !

yEr
s;t , where

Er
s;t D

Im
�
hsCt .X

s;X s�r /! hsCt .X
s;X s�1/

�
Im
�
hsCtC1.X sCr�1;X s/! hsCt .X s;X s�1/

� ; yEr
s;t D Im

�
h
.tCr�2/
sCt .X s/!h

.t/
sCt .X

sCr�1/
�
:

The argument of Tene [23, Section 4] that gives the isomorphisms

Er
s;t D

Im.f 0/
Im.f /

Š Im.f1/Š Im.f2/Š Im.f3/D yE
r
s;t
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we now explain with diagram (32):

(32)

h
.tCr�2/
sCt .X s/

f3
//

����

h
.t/
sCt .X

sCr�1/

Š

��

h
.tCr�2/
sCt .X s;X s�r /

))

hsCt .X
s;X s�r / //

f 0

��

f1

((

66 66

f2

,,

hsCt .X
sCr�1;X s�r / //

��

h
.t/
sCt .X

sCr�1;X s�r /
��

��

hsCtC1.X
sCr�1;X s/

f
//

66

hsCt .X
s;X s�1/ // hsCt .X

sCr�1;X s�1/
Š
// h
.t/
sCt .X

sCr�1;X s�1/

The differential ydr
s;t W
yEr

s;t !
yEr

s�r;tCr�1
is the homomorphism induced by the diagram

(33)

h
.tCr�2/
sCt .X s/ //

ˆ
��

h
.t/
sCt .X

sCr�1/

ˆ
��

hsCt�1.X
s�rC1/ //

‰
��

hsCt�1.X
s�1/

‰
��

h
.tC2r�3/
sCt�1

.X s�r / // h
.tC2r�3/
sCt�1

.X s�rC1/ // h
.tCr�1/
sCt�1

.X s�1/

where the natural transformation ˆ is defined by the composition

h.r/n .X /! h.r/n .X;X n�r�1/ Š�! hn.X;X
n�r�1/! hn�1.X

n�r�1/;

and ‰ is the natural transformation given by the composition of the natural transformations in the
Postnikov tower.

For oriented bordism ��, Tene [23] has a geometric description of the Atiyah–Hirzebruch spectral
sequence, coming from a geometric description of Postnikov tower SH .r/. This description of the
spectral sequence is similar in spirit to the Conner–Floyd spectral sequence appearing in equivariant
bordism [6] and the spectral sequence for orbifold cobordism of [1]. The bordism theory SH .r/ is
defined using oriented p–stratifolds, with all strata of codimension 0< k < r C2 empty. Thus, a singular
stratifold S in X, of the form f W S ! X , gives an element of SH

.r/
n .X / if S is an n–dimensional

stratifold with singular part of dimension at most n� r � 2. We put a similar restriction to the stratifold
bordisms, which are .nC1/–dimensional stratifolds with boundary, and the singular part is of dimension
at most n� r � 1.

Therefore, we have natural transformations �n!SH
.r/
n such that �n.�/!SH

.r/
n .�/ are isomorphisms

for n� r , and SH
.r/
n .�/ is trivial for n> r . Among other properties, we obtain that SH

.r/
n .X k/ is trivial

for kC r < n.
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For r � 2, write

(34) yEr
s;t D Im.SH

.tCr�2/
sCt .X s/! SH

.t/
sCt .X

sCr�1//;

and the differential ydr
s;t W
yEr

s;t !
yEr

s�r;tCr�1
is the homomorphism induced by the diagram

(35)

SH
.tCr�2/
sCt .X s/ //

ˆ
��

SH
.t/
sCt .X

sCr�1/

ˆ
��

�sCt�1.X
s�rC1/

‰
��

// �sCt�1.X
s�1/

‰
��

SH
.tC2r�3/
sCt�1

.X s�r / // SH
.tC2r�3/
sCt�1

.X s�rC1/ // SH
.tCr�1/
sCt�1

.X s�1/

where ˆ is a natural transformation defined by

(36) SH .r/
n .X /! SH .r/

n .X;X n�r�1/ Š�!�n.X;X
n�r�1/!�n�1.X

n�r�1/:

The isomorphism SH
.r/
n .X;X n�r�1/ Š�!�n.X;X

n�r�1/ is the restriction to the top stratum and the
map �n.X;X

n�r�1/!�n�1.X
n�r�1/ is the boundary homomorphism. The natural transformation ‰

is the composition of the natural transformations in the Postnikov tower. Therefore, for a stratifold S of
dimension sC t , with a map f W S !X s , the image of the differential dr

s;t is induced by

(37) Œf W S !X s � 7! Œf jsing.S/ ıg W @W !X s�1�;

where W is the top stratum of S and g W @W ! sing.S/ is the attaching map used to glue W to the
singular part sing.S/.

The Zk–bordism groups �n.X IZk/ form a generalized homology theory (this follows by Section 6 or
see [5, Chapter III]). The authors define bordism theory for resolutions with abelian groups in that book.
The standard resolution for Zk and the theory of this section coincide with that given by the definition
of Zk–manifolds. We construct a Postnikov tower SH .r/. � IZk/ defined with oriented Zk–stratifolds,
with all strata of codimension 0 < k < r C 2 empty. Thus a singular Zk–stratifold in X, of the form
f W .S; ıS/!X , represents an element of SH

.r/
n .X IZk/ if

� S is an n–dimensional Zk–stratifold with singular part of dimension at most n� r � 2, and

� ıS is an .n�1/–dimensional Zk–stratifold with singular part of dimension at most n� r � 3.

Similarly, the stratifold bordism .T; ıT / should be such that

� T is an .nC1/–dimensional Zk–stratifold with boundary, the singular part is of dimension at most
n� r � 1, and

� ıT is an n–dimensional Zk–stratifold with boundary, and the singular part is of dimension at most
n� r � 2.

Notice that we obtain SH .0/. � IZk/D SH. � IZk/. In what follows, we use the important property that
��.�/ has no odd torsion and just 2–torsion; see [14].
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Theorem 7.1 For k an odd number , the homology theories SH
.r/
� . � IZk/ give the Postnikov tower of

the generalized homology theory ��. � IZk/.

Proof We have natural transformations

(38)

��. � IZk/

�� **
,, --

// SH
.r/
� . � IZk/ // � � � // SH

.2/
� . � IZk/ // SH

.1/
� . � IZk/ // SH

.0/
� . � IZk/

The conditions of the Postnikov tower are proven as follows:

� Assume n � r , hence n � r � 2 � �2 and n � r � 1 � �1. Thus the Zk–stratifolds are Zk–
manifolds and the Zk–stratifolds bordism are Zk–manifolds with boundary. Therefore, the maps
�n.�;Zk/! SH

.r/
n .�;Zk/ are isomorphisms for n� r .

� Assume n > r C 1, hence n � r � 1 � 1 and n � r � 2 � 0. Thus for an n–dimensional Zk–
stratifold .S; ıS/ in SH

.r/
n .�IZk/, we construct the cone as in Definition 4.10. As a consequence,

SH
.r/
n .�IZk/D 0 for n> r C 1.

� Assume nD rC1, hence n�r �2D�1 and n�r �3D�2. Thus an n–dimensional Zk–stratifold
in SH

.r/
n .�IZk/ is a Zk–manifold .M; ıM /. Because n� r �1D 0 and n� r �2D�1, we allow

Zk–stratifold bordisms with singular points of dimension at most 0 and the Bockstein has to be an
n–dimensional manifold with boundary. In �n�1.�/ we have kŒıM �D 0, but since �� has no odd
torsion, then there exists an n–dimensional manifold with boundary N where @N D ıM. Consider
the Zk–stratifold bordism .C.kN t@M M /;N / where C.kN t@M M / is the closed cone. The
Zk–boundary is precisely the Zk–manifold .M; ıM / which shows that SH

.r/
n .�IZk/ D 0 for

nD r C 1.

For k D 2, this argument fails, and we cannot work around it using the cone of ıM because we obtain
singular points of dimension � 1.

The same arguments of Tene [23] give a geometric description of the Atiyah–Hirzebruch spectral sequence
for Zk–bordism. For r � 2 and X a CW–complex, define

(39) yEr
s;t D Im.SH

.tCr�2/
sCt .X s

IZk/! SH
.t/
sCt .X

sCr�1
IZk//;

and the differential ydr
s;t W
yEr

s;t !
yEr

s�r;tCr�1
is the homomorphism induced by the diagram

(40)

SH
.tCr�2/
sCt .X sIZk/ //

ˆ
��

SH
.t/
sCt .X

sCr�1IZk/

ˆ
��

�sCt�1.X
s�rC1IZk/

‰
��

// �sCt�1.X
s�1IZk/

‰
��

SH
.tC2r�3/
sCt�1

.X s�r IZk/ // SH
.tC2r�3/
sCt�1

.X s�rC1IZk/ // SH
.tCr�1/
sCt�1

.X s�1IZk/
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Therefore, for a singular Zk–stratifold ..S; ıS/; f W S ! X s/, we consider the top stratum, which is
a Zk–manifold with boundary .W; ıW /. Denote the Zk–boundary by .M; ıM / WD @.W; ıW / and
g WM ! sing.S/ the attaching map used to glue W to the singular part which is of dimension at most
s� r . The image of the differential dr

s;t is induced by

(41) Œ.S; ıS/; f W S !X s � 7�! Œ.M; ıM /; f jsing.S/ ıg WM !X s�r �:

We have finally proved:

Theorem 7.2 For k an odd number , the filtration of the Atiyah–Hirzebruch spectral sequence of Zk–
bordism

(42) E1n;0 � � � � �ErC2
n;0
� � � � �E2

n;0 ŠHn.X IZk/;

coincides with

(43) Er
n;0 D Im

�
SH .r�2/

n .X IZk/! SH .0/
n .X IZk/ŠHn.X IZk/

�
;

ie the set of classes generated by singular Zk–stratifolds in X with singular part of dimension at most
n� r � 2.

Notice that the Atiyah–Hirzebruch spectral sequence is trivial for k D 2; hence, the last theorem does not
apply.

8 Geometric representatives of nonrepresentable classes

The present section is motivated by the authors’ counterexamples of the Steenrod problem in [2].

The Steenrod problem [7] states the following: if z 2Hn.X / is an integral homology class, does there
exist an oriented manifold M and a map f WM !X such that z is the image of the generator of Hn.M /?

Conner and Floyd [6] rephrased the Steenrod realization problem in terms of the Atiyah–Hirzebruch
spectral sequence .Er

s;t ; d
r
s;t /. More precisely, the homomorphism from oriented bordism to integral

homology ��.X /!H�.X / is an epimorphism if and only if the differentials dr
s;t WE

r
s;t !Er

s�r;tCr�1

are trivial for all r � 2.

Using the previous section, the Steenrod realization problem for Zk–coefficients has the following form.

Theorem 8.1 If X is a CW–complex and k an odd number , then for the Atiyah–Hirzebruch spectral
sequence .Er

s;t ; d
r
s;t /, the differentials dr

s;t WEs;t !Es�r;tCr�1 are trivial for all r � 2 if and only if the
map � W�n.X IZk/!Hn.X IZk/ is an epimorphism for all n� 0.

For the rest of this section, we assume that k is an odd prime number p. Following Conner and Floyd [6],
we identify stratifolds with maps to BZp with stratifolds with free actions of Zp.

The Bockstein exact sequence of BZp implies the isomorphisms

(44) H2n�1.BZp/
mod p
ŠH2n�1.BZpIZp/ and H2n.BZpIZp/

ˇ
ŠH2n�1.BZp/
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V 2i

pS2i�1

C.M 4/�S2i�5
C.M 8/�S2i�9 � � �

Figure 7: The class ˛2i .

for n > 0 (the map ˇ was formerly denoted by ı). Take generators ˛i 2 Hi.BZpIZp/ such that
ˇ.˛i/D ˛i�1 for i even, and ˇ.˛i/D 0 for i odd. The odd generators are represented by spheres. The
generator ˛2i is determined by the identity ˇ.˛2i/D ˛2i�1. From Conner and Floyd [6, page 144], we
know that the following equation holds in bordism of BZp:

(45) p˛2i�1C ŒM
4�˛2i�5C ŒM

8�˛2i�9C � � � D 0 for i � 1:

The manifolds M 4k for k D 1; 2; : : : are constructed inductively in [6]. Therefore, there is a compact
oriented manifold V 2i , with a free action of Zp, such that

(46) @V 2i
D pS2i�1

[ .M 4
�S2i�5/[ .M 8

�S2i�9/[ � � � :

There are two representations of the generator ˛2i by Zp–stratifolds, which we will show are Zp–bordant:

(i) Denote by C.M 4l/ the cone of M 4l for l D 1; 2; : : : , and take the gluing of V 2i with

.C.M 4/�S2i�5/[ .C.M 8/�S2i�9/[ � � � :

The boundary of this construction is pS2i�1 and therefore the Bockstein is ˛2i�1. We obtain a 2i–
dimensional Zp–stratifold .S; ıS/, where S D V [ .C.M 4/�S2i�5/[ .C.M 8/�S2i�9/[ � � �

is a 2i–dimensional Zp–stratifold with singular part S2i�5 [ S2i�9 [ � � � , and the Bockstein
ıS D S2i�1 is a .2i�1/–dimensional Zp–stratifold with empty singular part. We illustrate this
construction in Figure 7.

(ii) The manifolds M 4l , with 4l < 2p � 2, belong to p��; see the paper by Floyd [8, page 336].
Therefore, there exist manifolds Ml 2�4l such that M 4l D pMl . For p D 2kC 1, consider the
cone C.M 4m/ for mD k; kC 1; : : : , and take the gluing of V 2i with

.C.M 4k/�S2i�4k�1/[ .C.M 4.kC1//�S2i�4.kC1/�1/[ � � � :

We obtain a 2i–dimensional Zp–stratifold .S; ıS/, where

S D V [ .C.M 4k/�S2i�4k�1/[ .C.M 4.kC1//�S2i�4.kC1/�1/[ � � �
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is a 2i–dimensional Zp–stratifold with singular part S2i�4k�1 [ S2i�4.kC1/�1 [ � � � , and the
Bockstein ıS D S2i�1[ .M1�S2i�5/[ � � �[ .Mk�1�S2i�4.k�1/�1/ is a .2i�1/–dimensional
Zp–stratifold with empty singular part.

Notice that for a generic Zp–stratifold .S; ıS/ 2H2i.BZp �BZpIZp/ the singular parts of S and ıS
are allowed up to dimensions 2i�2 and 2i�3, respectively. The two previous Zp–stratifolds satisfy these
dimension conditions for the singular parts. The bordism of Zp–stratifolds is of the form .T; ıT /, where
the singular parts of T and ıT are allowed up to dimensions 2i � 1 and 2i � 2, respectively. If we show
the two Zp–stratifolds in (i) and (ii) are Zp–bordant, we will have two representations of the generator ˛2i .
Apply Proposition 5.2 using the bordism in stratifolds between M1�S2i�5[� � �[Mk�1�S2i�4.k�1/�1

and the empty stratifold produced by the cone C.M1/�S2i�5[ � � � [C.Mk�1/�S2i�4.k�1/�1, which
has singular part S2i�5[ � � �S2i�4.k�1/�1. The proof of Proposition 5.2 uses a product with the interval
producing a Zp–stratifold .T 0; ıT 0/ with the singular parts of T 0 and ıT 0 of dimensions 2i�4 and 2i�5.
This shows that the two Zp–stratifolds in (i) and (ii) are Zp–bordant, consequently both Zp–stratifolds
represent the generator ˛2i .

Theorem 8.2 For X DBZp, the differentials dr
s;t are trivial for r � 2p�2. In particular , the differential

d
2p�1
2i;0

is of the form

d
2p�1
2i;0

WH2i.BZpI�0.�IZp//!H2p�2iC1.BZpI�2p�2.�IZp//;

and the image of the class ˛2i 2H2i.BZpIZp/ with i � p under the differential d2p�1 is nontrivial.

Proof We can restrict to the differentials dr
2i;0

since those starting on coordinates .2i C 1; 0/ are
always trivial since the classes ˛2iC1 are represented by spheres. From Section 7, the differential
dr

2i;0
WEr

2i;0
!Er

2i�r;r�1
has the form

Im
�
SH

.r�2/
2i

.X 2i IZp/! SH
.0/
2i
.X 2iCr�1IZp/

�
dr

��

Im
�
SH

.2r�3/
2i�1

.X 2i�r IZp/! SH
.r�1/
2i�1

.X 2i�1IZp/
�

For pD 2kC1, recall the representation of the generator ˛2i by a 2i–dimensional Zp–stratifold .S; ıS/,
where

� S D V [ .C.M 4k/ � S2i�4k�1/ [ .C.M 4.kC1// � S2i�4.kC1/�1/ [ � � � is a 2i–dimensional
Zp–stratifold with singular part S2i�4k�1[S2i�4.kC1/�1[ � � � , and

� ıSDS2i�1[.M1�S2i�5/[� � �[.Mk�1�S2i�4.k�1/�1/ is a .2i�1/–dimensional Zp–stratifold
with empty singular part.

Since r � 2p�2D 4k, we obtain 2i�4k�1� 2i�.r�2/�2; hence ˛2i belongs to SH
.r�2/
2i

.X 2i IZp/.
From Section 7, the representation of the differential dr .˛2i/ is calculated with the top stratum, which is the
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Zp–manifold .V [M 4k� Œ0; 1��S2i�4k�1[� � � ;S2i�1[.M1�S2i�5/[� � � .Mk�1�S2i�4.k�1/�1//,
which has Zp–boundary ..M 4k � S2i�4k�1/ [ .M 4.kC1/ � S2i�4.kC1/�1/ [ � � � ;∅/. Therefore,
dr .˛2i/ D .M 4k � S2i�4k�1/ [ .M 4.kC1/ � S2i�4.kC1/�1/ [ � � � and we can cone all the M 4m

since the singular parts of the bordisms in SH
.r�1/
2i�1

�
X 2i�1IZk

�
are allowed up to dimension 2i � r � 1

and 2i � 4k � 1 � 2i � r � 1 precisely when r � 4k. Therefore, the differential dr .˛2i/ is zero for
r � 4k D 2p� 2. In fact, we have E2 Š � � � ŠE2p�1 because we have a commutative diagram

(47)

Er
s;0
˝�t .�IZp/ //

dr˝id
��

Er
s;t

dr

��

Er
s�r;r�1

˝�t .�IZp/ // Er
s�r;tCr�1

as in Conner and Floyd [6, pages 17 and 41], and we have by induction that the rows are isomorphisms
for r � 2p� 2. Finally, for r D 2p� 1, the element d

2p�1
2i;0

.˛2i/DM 2p�2 �S2i�2pC1 is not zero in
H2i�2pC1.BZpI�2p�2.�IZp//, since M 2p�2 is a Milnor generator of �=p�. For pD 3, M 4 can be
taken to be CP2 and we find the obstruction to realizability with d5.

9 Z2–stratifold homology is stratifold homology with Z2–coefficients

Kreck [12, Chapter 4] introduces the theory of Z2–oriented stratifolds in order to represent homology with
Z2–coefficients. He calls this theory stratifold homology with Z2–coefficients, denoted by SH�.X IZ2/.
The elements are bordism classes of singular stratifolds where the stratum of codimension 1 is empty, but
there is no requirement of an orientation of the top stratum. There is a natural isomorphism

(48) SH�.X IZ2/!H�.X IZ2/

that, for a singular stratifold .S; f W S ! X /, takes the pushforward of the fundamental class ŒS � in
H�.S IZ2/.

This article introduces the theory of Z2–stratifolds, which also represent homology with Z2–coefficients.
This is called Z2–stratifold homology, denoted by SH�.X IZ2/. The elements are Z2–bordism classes
of singular Z2–stratifolds where the stratum of codimension 1 is empty, but we require an orientation of
the top stratum. There is a natural isomorphism

(49) SH�.X IZ2/!H�.X IZ2/

that, for a singular Z2–stratifold ..S; ıS/; f W S !X /, takes the pushforward of the fundamental class
ŒS �Z2

2Hn. zS IZ2/.

Therefore, we have the commutative diagram

(50)

SH�.X IZ2/
q

//

Š
''

SH�.X IZ2/:

Š
ww

H�.X IZ2/
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To define the map q, note that for an n–dimensional Z2–stratifold .S; ıS; �i/, the quotient space zS
is an n–dimensional Z2–oriented stratifold. This is true because the two disjoint collars associated
with the two embedded copies of the Bockstein ıS are combined to produce a bicollar on the quotient
space zS . For .S; f / an n–dimensional singular Z2–stratifold with S D .S; ıS; �i/, we have the map
q W SHn.X IZ2/! SHn.X IZ2/ defined by q.ŒS; f �/D Œ zS ; zf �, where zf is the quotient map.

The description of the inverse for the isomorphism q W SH�.X IZ2/! SH�.X IZ2/ is an open question.
Wall [26] shows a description for an n–dimensional manifold whose first Stiefel–Whitney class !1

in H 1.M IZ2/ is the restriction mod 2 of a class with integer coefficients. Thus there is a map
f WM !K.Z; 1/D S1, which can be approximated by a smooth map. Take a regular value t and
consider the cutting f �1.t/. The manifold with boundary M � f �1.t/ is orientable, and in that case
f �1.t/ is also orientable; this describes q�1 for this particular case.

Appendix

A.1 Regular values for Zk–stratifolds

In [12, page 27], Kreck defines a regular value for a smooth map f W S !N from a closed stratifold S

to a boundaryless manifold N as a point x 2 N such that for all y 2 f �1.x/ the differential dfy is
surjective, or, equivalently, x is a regular value of f jS i for all i . Kreck [12, Propositions 2.6 and 2.7,
pages 27–29] shows that the set of regular values of f is dense in N , and f �1.x/ is a stratifold of
dimension dim S � dim N .

In [12, page 35], Kreck defines a smooth map f W T ! N from a stratifold with boundary T to a
boundaryless manifold N as a continuous function whose restriction to VT D T � @T and to @T is
smooth and which commutes with the collar c W @T � Œ0; �/! U, ie there is a ı > 0 with ı � � such that
fc.x; t/D f .x/ for all x 2 @T and t < ı. Kreck [12, page 38] says x 2N is a regular value if x is a
regular value for f jT�@T and f j@T . In this case, the preimage f �1.x/ is a stratifold with boundary of
dimension dim T � dim N . This fact is a generalization of a result of [12, Proposition 2.7] using local
retractions for T � @T and @T , together with Theorem A.1. Also, by Theorem A.1, the set of regular
values is dense in N .

Theorem A.1 [10, pages 60–62] Let f WM !N be a smooth map of a manifold M with boundary
onto a boundaryless manifold N and let x 2 N a regular value of both f and @f . Then the preimage
f �1.x/ is a submanifold of M with boundary f �1.x/\ @M of dimension dim M � dim N . Moreover ,
the set of critical values of both f and @f has measure zero.

In what follows, we obtain the version for stratifolds with boundary of Propositions 4.2 and 4.3 of
Kreck [12].
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Proposition A.2 Let T be an oriented , regular stratifold with boundary , f W T !R a smooth function
and t a regular value. Then f �1.t/ is an oriented , regular stratifold with boundary.

Proof We use the work of Kreck [12, Proposition 4.2, page 44] in order to show that f jT�@T
�1.t/ and

f j@T
�1.t/ are regular stratifolds. We induce the collar by restriction. We notice f �1.t/ is an oriented

stratifold, since T n�1 D∅ and the intersection with the top stratum is an oriented manifold.

Remark A.3 In the case T is a p–stratifold with boundary, see Remark 3.11; hence the preimage
f �1.t/ is also a p–stratifold with boundary, for t a regular value. The construction of this p–stratifold
is as follows: for t a regular value, on each stratum Ti the preimage f j�1

Ti
.t/ is a submanifold of Ti

with boundary f j�1
Ti
\ @Ti by Theorem A.1. Similarly, the preimage @f j�1

@Ti
.t/ is a submanifold of @Ti .

Moreover, these submanifolds come with collars and attaching maps that construct this p–stratifold with
boundary inductively.

Proposition A.4 Let T be a regular stratifold with boundary. Then the set of regular points of a smooth
map f W T !R is an open subset of T . If , in addition , T is compact , the regular values form an open set.

Proof We know the regular points of f jT�@T and f j@T are open in T � @T and @T , respectively. By
definition fc.x; t/D f .x/ for some collar c in T . So, the regular points of f j@T extend to the collar by
an open set. Thus, we obtain the first statement. Now, in the case T is compact, the singular points that
are the complement of the regular points, form a closed set which is compact. Thus, the image under f
is closed, implying that the regular values are an open set.

A crucial fact for the Mayer–Vietoris sequence for stratifolds is the following:

Proposition A.5 [12, Proposition 2.8] Let S be a closed n–dimensional , connected stratifold and
A and B disjoint closed nonempty subsets of S . Then there is a nonempty .n�1/–dimensional stratifold P

with P � S � .A[B/. That is , P separates A and B.

Remark A.6 More precisely, Kreck [12, Proposition 2.4, page 26] constructs a smooth function f WS!R

which maps A to 1 and B to �1. The stratifold P is the preimage f �1.t/ of a regular value t 2 .�1; 1/

such that f �1.t/� S � .A[B/ and A� f �1.t;1/ and B � f �1.�1; t/. After composition with an
appropriate translation, we can assume t D 0.

We extend Proposition A.5 to the theory of Zk–stratifolds. However, it is not enough to consider stratifolds
with boundary. The reason is that the smooth function must be Zk–invariant on the boundary. One needs
a smooth function that factors as

S
f

//

pr
��

R

zS

zf

??

We need a Zk–stratifold version of the following result.

Algebraic & Geometric Topology, Volume 24 (2024)



Zk–stratifolds 1895

Proposition A.7 [12, Proposition 2.4] Let A� S be a closed subset of a stratifold S , let U be an open
neighborhood of A, and f W U !R a smooth function. Then there is a smooth function g W S !R such
that gjA D f jA.

Proposition A.8 Let S D .S; ıS; �i/ be an n–dimensional compact closed Zk–stratifold , A � zS a
closed subset of the quotient space , U an open neighborhood of A and f WU !R a smooth function. Then
there exists a smooth function G W S !R that factors through the quotient space zS such that GjA D f jA

in the quotient space.

Proof We construct a smooth function on S , which is the gluing of the following two functions:

� For the first function, consider ıS inside the quotient space zS . By normality of S , there exists a
closed subset A1 � ıS such that A\ ıS � int A1 and A1 � ıS \U. By compactness and using
the collar, pr W ıS � Œ0; �/! zS , we find 0< t < � such that

pr�1.A/\ .@S � Œ0; 2t//� pr�1.A1/� Œ0; 2t/� pr�1.U /:

Proposition A.7 implies that it is possible to construct a smooth function f1 W ıS !R such that
A1 maps to 1 and f1.x/ D 0 for x 2 ıS �U \ ıS . Lift f1 to a smooth function on the whole
boundary @S and take the smooth function g1 W @S � Œ0; 2t/!R by writing g1.x; s/D f1.x/.

� For the second function, take the stratifold S1 WD S � .@S � Œ0; t �/ and again by Proposition A.7
we can construct a smooth function g2 W S1! R such that A\S1 maps to 1 and g2.x/D 0 for
x 2 S1�U \S1.

A partition of unity glues these two functions together into a smooth function G W S ! R, which is
Zk–invariant. Thus it descends to the quotient and sends A to 1 and zS �U to 0. Using Proposition 2.4 of
Kreck [12] (Proposition A.7), we apply the previous process to construct the function G W S !R, which
is Zk–invariant and is such that GjA D f jA in the quotient space.

In conclusion, we obtain the Zk–stratifold version of Kreck [12, Proposition 2.8] (Proposition A.5).

Proposition A.9 Let .S; ıS/ be an n–dimensional , compact , connected Zk–stratifold and A and B

disjoint closed nonempty subsets of the quotient space zS . Then there is a nonempty .n�1/–dimensional
Zk–stratifold .P; ıP / with zP � zS � .A[B/ and ıP � ıS � ..A[B/\ ıS/.

We construct a smooth function G W S !R that factors through the quotient space zS , and maps A to 1

and B to �1. The Zk–stratifold .P; ıP / is provided by a regular value t 2 .�1; 1/ of both S and @S ,
and we have P D G�1.t/ and ıP D Gj�1

ıS
.t/. The pair .P; ıP / is a Zk–stratifold because we choose

a regular value by Proposition A.4 and the preimage P D G�1.t/ is a stratifold with boundary, where
@P DG�1.t/\@S D

F
i2Zk

�i.G
�1.t/\ıS/D

F
i2Zk

�i.Gj
�1
ıS
.t// and the Bockstein is ıP DGj�1

ıS
.t/.
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A.2 Mayer–Vietoris sequence

Let U and V be open subsets of a space X. In this section we show that the long exact sequence

(51)

� � �
d
// SHn.U \V IZk/

i�
// SHn.U IZk/˚SHn.V IZk/

j�
// SHn.U [V IZk/

d

// SHn�1.U \V IZk/
i�

// � � �

is exact for n � 1. Denote by iU and iV the inclusions U \V ,! U and U \V ,! V. Denote by jU

and jV the inclusions U ,! U [V and V ,! U [V. We describe the homomorphisms as follows:

� i� W SHn.U \V IZk/! SHn.U IZk/˚SHn.V IZk/ is given by .iU �; iV �/.

� j� W SHn.U IZk/˚SHn.V IZk/! SHn.U [V IZk/ is given by jU �� jV �.

� The connecting homomorphism d W SHn.U [V IZk/! SHn�1.U \V IZk/ considers an element
Œ.S; ıS/;g� 2 SHn.U [V IZk/. For the projection pr W S ! zS , we obtain disjoint closed subsets
of zS given by A WD pr.g�1.X �V // and B WD pr.g�1.X �U //. By Proposition A.9, we obtain an
.n�1/–dimensional Zk–stratifold .P; ıP / such that zP � zS�.A[B/ and ıP �ıS�..A[B/\ ıS/.
We define

(52) d.Œ.S; ıS/;g�/D Œ.P; ıP /;gjP �:

In the case that A or B is empty, the Zk–stratifold .P; ıP / is empty, and the differential is zero.

Proof that d is well defined It was pointed out by Kreck [13, page 304] that in the case of bordism
of smooth manifolds, the connecting homomorphism for the Mayer–Vietoris sequence is well defined
because of the existence of a bicollar for P WDG�1.0/, ie an isomorphism with P � .��; �/, where 0 is
a regular value by the composition of a translation. For a stratifold S , this is only possible up to bordism
where we naively change S by S�P[.P�.��; �//. The formal statement is [12, Lemma B.1, page 197],
and the proof is as follows. Kreck’s Proposition 4.3 in [12] (our Proposition A.4) allows us to choose
ı > 0 such that .�ı; ı/ consists only of regular values of G. Consider a monotone smooth map � WR!R

which is the identity for jt j> ı=2 and 0 for jt j< ı=4. Take � W S �R!R mapping .x; t/ 7!G.x/��.t/,
which has 0 as regular value. Kreck’s Proposition 4.2 in [12] implies that S 0 D ��1.0/ is a regular
stratifold containing P � .�ı=4; ı=4/, which is the required bicollar. It remains to construct a bordism
between S and S 0. Now take the function 
 W S �R� Œ0; 1�!R defined by

.x; t; s/ 7!G.x/� .�.s/�.t/C .1� �.s//t/;

where � W Œ0; 1�! R is 0 near 0, and 1 near 1. This map has 0 as a regular value, and the preimage
Q WD 
�1.0/ is the bordism between S and S 0.

For the case of Zk–stratifolds, we start with a closed Zk–stratifold .S; ıS; �i/ and we need to separate
this Zk–stratifold by a bicollar over the regular Zk–stratifold

.P; ıP; �i jıP /D .G
�1.0/;Gj�1

ıS .0/; �i jGj�1
ıS
.0//:

Algebraic & Geometric Topology, Volume 24 (2024)
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In such a case, the bicollar consists of a pair of embedded cylinders .G�1.0/�.��; �/;Gj�1
ıS
.0/�.��; �//

which are consistent with respect to the embeddings �i . In order to reproduce Kreck’s [12, Lemma B.1]
in the context of Zk–stratifolds, we observe that the map � W S �R! R is Zk–invariant for our case
and we take .S 0; ıS 0/ WD .��1.0/; �j�1

ıS�R.0//, which is a regular Zk–stratifold by Proposition A.2. We
construct the bicollar taking � D ı=4 with ı as in the previous paragraph. The Zk–bordism between
..S; ıS/; id/ and ..S 0; ıS 0/; �1/, where �1 is the projection on the first variable, is constructed similarly,
as in the case of stratifolds.

The remaining steps to show d is well defined are analogous to the case of stratifolds [12, pages 199–200].
The idea is to assume that Œ.S; ıS/;g� is trivial, then Œ.S 0; ıS 0/;g ı�1� is also trivial. For the modified
Zk–stratifold .S 0; ıS 0/, we can take the separating function given by the projection on the second variable.
This means that there exists a Zk–bordism .T; ıT / that has as Zk–boundary .S 0; ıS 0/. Moreover, the
separating function extends to T . This function has a regular value t very close to 0, then .P�ftg; ıP�ftg/
is null Zk–bordant taking the preimage of t . However, this last Zk–stratifold is Zk–bordant to .P; ıP /.

The following results are required to show that (51) is exact.

Proposition A.10 Suppose M is a manifold with boundary of dimension n and g WM !R a smooth
map with regular value 0. Then the preimage g�1.�1; 0� is a manifold with boundary , and the boundary
has the form

g�1.0/t.g�1.0/\@M / .g
�1.�1; 0�\ @M /:

In addition , if M is oriented , then g�1.�1; 0� is oriented.

Proof Here we will dismiss the orientation of the manifolds, which is understood depending on the
case. From [10, page 62], we have that for a manifold N without boundary and f WN ! R a smooth
map, the preimage f �1.�1; 0� is a manifold with boundary given by f �1.0/. Thus the restriction to
the boundary gj@M is such that gj�1

@M
.�1; 0� D g�1.�1; 0�\ @M is a manifold whose boundary is

gj�1
@M
.0/D g�1.0/\ @M. Furthermore, we use Theorem A.1 (or [10, pages 60–62]) which shows that

g�1.0/ is also a manifold with boundary g�1.0/\ @M. Then we glue these two manifolds obtaining a
boundaryless smooth manifold of dimension n�1. In Figure 8 we illustrate the boundary of g�1.�1; 0�.

g�1.0/

g�1.0/\ @M

g�1.�1; 0�\ @M

Figure 8: The boundary of g�1.�1; 0�.
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Now we consider the restriction gjM�@M and we obtain a smooth structure for

gj�1
M�@M .�1; 0�D g�1.�1; 0�� .g�1.�1; 0�\ @M /

with boundary g�1.0/� .g�1.0/\ @M /. We can establish a collar around g�1.0/. As g commutes
with the collar of @M, there is a collar around .g�1.�1; 0� \ @M /. Finally, similar to the proof of
Proposition 4.15, we combine the two collars of g�1.0/ and .g�1.�1; 0�\ @M /, where we smooth the
corners by straightening the angle [6, pages 9–10] (or see Section 4).

Proposition A.10 follows for stratifolds with boundary (all p–stratifolds). Notice that

g�1.�1; 0�\ @T D .g�1.�1; 0�\S/[ .g�1.�1; 0�\ kıT /

and hence g�1.�1; 0� is a stratifold with boundary where

@g�1.�1; 0�D g�1.0/[ .g�1.�1; 0�\S/[ .g�1.�1; 0�\ kıT /:

Thus we obtain the following application for Zk–stratifolds.

Corollary A.11 Suppose .T; ıT / is a Zk–stratifold with boundary of dimension n, where the Zk–
boundary is denoted by .S; ıS/. Let g W T !R be a smooth map which factors to the quotient space zT
with 0 as a regular value for g. Then the preimage�

g�1.�1; 0�;g�1.�1; 0�\ ıT
�

is a Zk–stratifold whose Zk–boundary is the Zk–stratifold�
g�1.0/[ .g�1.�1; 0�\S/; .g�1.0/\ ıT /[ .g�1.�1; 0�/\ ıS/

�
:

Now we use these tools to show the exactness of the Mayer–Vietoris sequence.

Proof of exactness of (51) We follow the arguments used for the case of stratifolds [12, pages 200–208],
where we will specify the additional details used for the case of Zk–stratifolds.

To show that we have a complex, we notice that both jU ı iU and jV ı iV are the canonical inclusion
U \ V ,! U [ V , therefore j� ı i� D 0. We show the other cases i� ı d D 0 and d ı j� D 0 in what
follows: for the first identity, we choose a representative for the homology class (with Zk–coefficients)
in U \V such that we can cut along the separating Zk–stratifold defining the boundary operator. The
two pieces separated by this Zk–stratifold induce the null Zk–bordisms on the homology groups (with
Zk–coefficients) associated with U and V . For the second identity, if Œ.S; ıS/;g� 2 SH.U IZk/, we can
choose a smooth function and the regular value such that the separating regular Zk–stratifold is empty,
therefore, d.jU �/D 0. By the same argument d.jV �/D 0.

Now we show exactness.

� ker j� � im i� Consider Œ.S; ıS/; f � 2 SHn.U IZk/ and Œ.S 0; ıS 0/; f 0� 2 SHn.V IZk/ which are
such that jU �.Œ.S; ıS/; f �/ D jV �.Œ.S

0; ıS 0/; f 0�/. There exists a Zk–bordism ..T; ıT /;F / between
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.SC tP Z/� f0g

Œ0; 1�

SC tP S�
Œ1; 2�

.S� tP Z/� f2g

Figure 9: The Zk–bordism T.

Œ.S; ıS/; jUf � and Œ.S 0; ıS 0/; jV f
0�, where F D zF ı pr for the quotient zF W zT ! U [V . For the closed

disjoint subsets AT D
zS [ zF�1.X �V / and BT D

zS 0[ zF�1.X �U /, we construct a separating function
G WT !R which is Zk–invariant with G.AT /D 1 and G.BT /D�1 and with a regular value �1< s < 1

(we can assume that s D 0) such that .G�1.0/;G�1.0/\ ıT / is a separating Zk–stratifold. We can find
a bicollar around G�1.0/ similarly to when we show that d is well defined. Therefore, Corollary A.11
implies that ..S; ıS/; f / and ..G�1.0/;G�1.0/\ ıT /;F jG�1.0// are Zk–bordant in U by the Zk–
bordism ..G�1Œ0;1/;G�1Œ0;1/ \ ıT /;F jG�1Œ0;1//, and ..G�1.0/;G�1.0/ \ ıT /;F jG�1.0// and
..S 0; ıS 0/;f 0/ are Zk–bordant in V by the Zk–bordism ..G�1.�1;0�;G�1.�1; 0�\ıT /;F jG�1.�1;0�/.
Thus,

iU �
�
Œ.G�1.0/;G�1.0/\ ıT /;F jG�1.0/�

�
D Œ.S; ıS/; f �;

iV �
�
Œ.G�1.0/;G�1.0/\ ıT /;F jG�1.0/�

�
D Œ.S 0; ıS 0/; f 0�:

� ker i�� im d Suppose we have Œ.P; ıP /; r �2SHn�1.U\V IZk/ which satisfies iU �.Œ.P; ıP /; r �/D 0

and iV �.Œ.P; ıP /; r �/ D 0. Then there exist null Zk–bordisms ..T1; ıT1/;R1/ and ..T2; ıT2/;R2/ of
iU �.Œ.P; ıP /; r �/ and iV �.Œ.P; ıP /; r �/, respectively. We construct ..T1tP T2; ıT1tıP ıT2/;R1tr R2/

with image under d equal to Œ.P; ıP /; r �.

� ker d � im j� Consider Œ.S; ıS/; f � 2 SHn.U [V IZk/ with d.Œ.S; ıS/; f �/D 0. For a separating
function G with regular value s as in the definition of d , write .P; ıP /D .G�1.s/;Gj�1

ıS
.s//, which has

a bicollar. We put

.SC; ıSC/D .G
�1Œs;1/;Gj�1

ıS Œs;1// and .S�; ıS�/D .G
�1.�1; 0�;Gj�1

ıS .�1; 0�/:

Then SDSCtP S� and ıSDıSCtıP ıS�. By the assumptions, there is ..Z; ıZ/; r/with r WZ!U\V ,
which has the Zk–boundary .P; ıP / and f jP D r jP . Consider the continuous maps fC W SCtP Z! U

and f� W S� tP Z! V . The gluing T WD ..SC tP Z/� Œ0; 1�/tZ ..S� tP Z/� Œ1; 2�/ (similarly for
the Bockstein ıT ) gives a Zk–bordism between

jU �

��
.SC tP Z; ıSC tıP ıZ/; fC

��
� jV �

��
.S� tP Z; ıS� tıP ıZ/; f�

��
and ..S; ıS/; f /. We show an illustrative picture of the Zk–bordism .T; @T / in Figure 9.
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