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We prove that the systole function on a connected component of area-1 translation surfaces admits a local
maximum that is not a global maximum if and only if the connected component is not hyperelliptic.

32G15; 30F30

1 Introduction

We deal with flat metrics defined by abelian differentials on compact Riemann surfaces (translation
surfaces). Such flat metrics have conical singularities of angle .kC 1/2� , where k is the order of the
zero of the corresponding abelian differential. A stratum of the moduli space of abelian differentials
corresponds to translation surfaces that share the same combinatorics of zeroes.

Connected components of the strata have been classified by Kontsevich and Zorich in [6]. In each genus
g � 2, there are exactly two components that consist of hyperelliptic translation surfaces, the so-called
hyperelliptic connected components.

A saddle connection on a translation surface S is a geodesic joining two singularities (possibly the same)
and with no singularity in its interior. We define the relative systole Sys.S/ to be the length of the shortest
saddle connection of S . A sequence of area-1 translation surfaces .Sn/n2N in a stratum of the moduli
space of translation surfaces leaves any compact set if and only if Sys.Sn/! 0; see Kerckhoff, Masur and
Smillie [5, Proposition 1]. The set of translation surfaces with short relative systole and compactification
issues of strata are related to dynamics and counting problems on translation surfaces, and have been
widely studied in the last 30 years; see for instance Eskin, Kontsevich and Zorich [2], Eskin, Masur and
Zorich [3] and Kerckhoff, Masur and Smillie [5].

Here we are interested in the opposite problem: we study surfaces that are “far” from the boundary. In [1],
we have characterized global maxima for Sys, and we have shown that each stratum of genus greater than
or equal to 3 contains local but nonglobal maxima for the function Sys.

We prove that there are no such local maxima in hyperelliptic connected components (Theorem 3.1), while
they exist in every other connected component (Theorem 4.1). This gives us the following characterization:
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Main Theorem Let C be a connected component of a stratum of area-1 surfaces with no marked points.
The relative systole function on C admits a local maximum that is not a global maximum if and only if C
is not a hyperelliptic connected component.

Note that our notion of relative systole is different from the “true systole” (ie shortest closed curve) that
has been studied by Judge and Parlier in [4]. Henceforth, for simplicity, if not mentioned otherwise the
term “systole” will mean “relative systole”.

Acknowledgments The authors thank the referee for useful comments and D-M Nguyen for suggesting
a reference.

2 Background

2.1 Translation surfaces

A translation surface is a (real compact connected) genus-g surface S with a translation atlas, ie a triple
.S;U ; †/ such that † (whose elements are called singularities) is a finite subset of S and U D f.Ui ; zi/g

is an atlas of S n† whose transition maps are translations of C'R2. We will require that for each s 2†

there is a neighborhood of s isometric to a Euclidean cone whose total angle is a multiple of 2� . One can
show that the holomorphic structure on S n† extends to S and that the holomorphic 1–form ! D dzi

extends to a holomorphic 1–form on S where † corresponds to the zeroes of ! and maybe some marked
points. We usually call ! an abelian differential. A zero of ! of order k corresponds to a singularity of
angle .kC 1/2� . By a slight abuse of notation, we allow the order of a zero to be 0, and in this case it
corresponds to a (regular) marked point.

A saddle connection is a geodesic segment joining two singularities (possibly the same) and with no
singularity in its interior. Integrating ! along the saddle connection we get a complex number. Considered
as a planar vector, this complex number represents the affine holonomy vector of the saddle connection.
In particular, its Euclidean length is the modulus of its holonomy vector.

For g � 1, we define the moduli space of abelian differentials Hg as the moduli space of pairs .X; !/
where X is a genus-g (compact connected) Riemann surface and ! a nonzero holomorphic 1–form
defined on X . The term moduli space means that we identify the points .X; !/ and .X 0; !0/ if there
exists an analytic isomorphism f WX !X 0 such that f �!0 D !.

One can also see a translation surface obtained from a polygon (or a finite union of polygons) whose
sides come by pairs, and for each pair, the corresponding segments are parallel and of the same length.
These parallel sides are glued together by translation and we assume that this identification preserves the
natural orientation of the polygons. In this context, two translation surfaces are identified in the moduli
space of abelian differentials if and only if the corresponding polygons can be obtained from each other
by cutting and gluing, and preserving the identifications.
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The moduli space of abelian differentials is stratified by the combinatorics of the zeroes; we will denote by
H.k1; : : : ; kr / the stratum of Hg consisting of (classes of) pairs .X; !/ such that ! has exactly r zeroes,
of order k1; : : : ; kr . This space is (Hausdorff) complex analytic, and local coordinates for a stratum of
abelian differentials are obtained by integrating the holomorphic 1–form along a basis of the relative
homology H1.S; †IZ/, where † denotes the set of conical singularities of S ; see for instance [7; 8; 9].
We have the classical Gauss–Bonnet formula

P
i ki D 2g� 2, where g is the genus of the underlying

surfaces. We often restrict to the subset H1.k1; : : : ; kr / of area-1 surfaces.

2.2 Connected component of strata

Here we recall the Kontsevich–Zorich classification of the connected components of the strata of abelian
differentials [6].

A translation surface .X; !/ is hyperelliptic if the underlying Riemann surface is hyperelliptic, ie there
is an involution � such that X=� is the Riemann sphere. In this case ! satisfies ��! D�!. A connected
component of a stratum is said to be hyperelliptic if it consists only of hyperelliptic translation surfaces (note
that a connected component which is not hyperelliptic may contain some hyperelliptic translation surfaces).

Let 
 be a simple closed smooth curve parametrized by the arc length on a translation surface that avoids
the singularities. Then t ! 
 0.t/ defines a map from S1 to S1. We denote by Ind.
 / the index of this
map. Assume that the translation surface S has only even-degree singularities S 2H.2k1; : : : ; 2kr /. Let
.ai ; bi/i2f1;:::;gg be a collection of simple closed curves as above that represents a symplectic basis of the
homology of S . Then

gX
iD1

.Ind.ai/C 1/.Ind.bi/C 1/ mod 2

is an invariant of connected components and is called the parity of the spin structure (see [6] for details).

Here is a reformulation of the classification of connected components of strata by Kontsevich and Zorich:

Theorem 2.1 [6, Theorems 1 and 2] Let HDH.k1; : : : ; kr / be a stratum of genus g � 2 translation
surfaces , without marked points.

� The stratum H contains a hyperelliptic connected component if and only if H D H.2g � 2/ or
HDH.g�1;g�1/. In this case there is only one hyperelliptic component. In genus 2, any stratum
is connected (and hyperelliptic).

� If there exists i such that ki is odd , or if g D 3, then there exists a unique nonhyperelliptic
connected component.

� If g� 4 and , for all i , ki is even , then there are exactly two nonhyperelliptic connected components
distinguished by the parity of the spin structure.

The following lemma is classical and will be useful in the next section.

Algebraic & Geometric Topology, Volume 24 (2024)
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Lemma 2.2 Let S be a translation surface in a hyperelliptic connected component and let 
 be a saddle
connection. Then Œ
 �D�Œ�.
 /� in H1.S; †IZ/.

Proof If the images in S of 
 and �.
 / coincide, Œ
 �D�Œ�.
 /� since they have opposite orientation.

Otherwise the images in S of 
 and �.
 / intersect at most at the ends of the curves. We note that in the case
of the stratum H.g�1;g�1/, the two singularities are interchanged by the involution; see [6, Section 2.1].

Hence, the image of 
 (and �.
 /) in the quotient sphere S=� is always a simple closed curve. Therefore it
is the boundary of a subsurface that contains ramification points of the covering. Considering its preimage,
we obtain that 
 [ �.
 / is the boundary of a subsurface of S .

3 Hyperelliptic connected component

In this section, we prove the first part of the Main Theorem.

Theorem 3.1 Let C be a hyperelliptic connected component of the moduli space of abelian differentials.
Let S 2 C be a local maximum of the relative systole function Sys. Then S is a global maximum for Sys
in C.

The proof uses the following technical lemma. We postpone its proof to the end of the section.

Lemma 3.2 Let D be a translation surface that is topologically a disk and whose boundary consists of
n–saddle connections (an “n–gon” ) with n� 4. We assume that all boundary saddle connections are of
length greater than or equal to 1. Then we can continuously deform D so that its area decreases and the
boundary saddle connections of length 1 remain of length 1.

Proof of Theorem 3.1 Let S 2 C be a translation surface that such that Sys.S/ is not a global maximum.
We use the same normalization as in [1]: after rescaling the surface we assume that Sys.S/ equals 1, and
then continuously deform S so that Sys.S/ remains 1 and Area.S/ decreases.

Let f
1; : : : ; 
r g be the set of saddle connections realizing the systole. Recall that 
1; : : : ; 
r are sides of
the Delaunay triangulation and that global maxima correspond to surfaces whose Delaunay cells are only
equilateral triangles; see [1, Lemma 3.1 and Theorem 3.3]. Let C1; : : : ;Ck be the connected components
of S n

S
i 
i . Up to renumbering we can assume that C1 is not a triangle. We consider �.C1/, where � is

the hyperelliptic involution. We study the two possible cases: whether �.C1/ equals C1 or not. Note that
C1 does not contain any singularity in its interior, since there are at most two singularities in S and if
there are two singularities P1 and P2, we must have �.P1/D P2.

Case 1 We first assume that �.C1/ ¤ C1. Since the hyperelliptic involution preserves
S

i 
i , up to
renumbering, �.C1/D C2.

We observe that C1 has only one boundary component. Indeed, suppose that there are more than one
such components and consider a saddle connection � in C1 that joins a singularity of one boundary
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component to a singularity of another boundary component. Then �.�/ is a curve in C2 and Œ�.�/�D�Œ��
by Lemma 2.2. But C1 n � is connected, and hence S n .�[ �.�// is connected, which is a contradiction.
Therefore C1 is a disk because it embeds in S=� , which is a sphere.

Since the boundary of C1 consists of at least four saddle connections of length 1, by Lemma 3.2 we can
continuously decrease its area while keeping the boundary saddle connections of length 1.

This continuous deformation of C1 leads to the following area-decreasing continuous deformation of S :

The component C2 is deformed in a symmetric way as C1.

For each saddle connection 
 in the boundary of C1, the components of S n .
 [ �.
 // correspond to
components of the complement of Œ
 � in the quotient sphere S=� . Since ŒC1�D ŒC2�, we have that C1

and C2 are in the same connected component of S n .
 [ �.
 //. We denote by D
 the other component.
By construction, the boundary of D
 consists of 
 and �.
 /. Note that D
 is empty if 
 and �.
 / have
the same image in S . We observe that if 
 and 
 0 are two distinct saddle connections in the boundary
of C1, then D
 and D
 0 are disjoint.

We denote by 
1; : : : ; 
k the boundary saddle connections of C1. When continuously deforming C1, each

i is rotated by an angle �i (with �1; : : : ; �k continuous functions) and �.
i/ is also rotated by �i since
C2 is deformed in a symmetric way. Since the components D
1

; : : : ;D
r
are disjoint, for each i we can

glue by translation the component D
i
rotated by �i with the boundary saddle connections corresponding

to 
i and �.
i/.

Since the identifications are done by translation, we get a continuous family of translation surfaces and
they are in the same stratum.

Case 2 Now we assume that �.C1/D C1.

We claim that we can cut C1 along saddle connections and obtain two discs A and B such that �.A/DB

and for each saddle connection 
 in the boundary of A either 
 is of length 1 or �.
 /D 
 (equivalently,

 is also a boundary saddle connection of B).

To prove the claim, we first consider the Delaunay cells of S . Recall that the shortest geodesics (and
hence the boundary saddle connections of C1) are sides of the Delaunay cells; see [1, Lemma 3.1]. This
induces a decomposition of C1 into Delaunay cells, and this decomposition is preserved by the involution
� because of the uniqueness of the Delaunay cell decomposition. We define a Delaunay subdivision D in
the following way: For each Delaunay cell d , if �.d/¤ d then d; �.d/ 2 D. If �.d/D d (and since d is
cyclic) it can be cut by a diagonal into two polygons d 0 and d 00 D �.d 0/. Then d 0; d 00 2 D.

Now we use the following algorithm:

� We start from a pair .d0; �.d0// in D2 and let A0 D d0 and B0 D �.d0/.

� Suppose we have constructed the disks Ak and Bk such that �.Ak/D Bk , and Ak and Bk are unions
of elements in D.
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If Ak [Bk ¤ C1, there exists an element dkC1 2 D adjacent to Ak along a saddle connection 
k (and
�.dkC1/ 2 D is adjacent to Bk along �.
k/). We define AkC1 by gluing Ak and dkC1 along 
k . Note
that 
k is the only saddle connection in the common boundary of Ak and dkC1, because otherwise
S n .
k [ �.
k// would be connected, which is impossible in the hyperelliptic connected component.

If Ak [Bk D C1 we define ADAk and B D Bk .

The boundary of the disk A consists of n� 3 saddle connections of lengths at least 1.

If n � 4, then from Lemma 3.2 it can be continuously deformed so that the area decreases and the
boundary saddle connections of length 1 remain of length 1.

If n D 3 then A is a triangle. Two of its sides are boundary saddle connections of C1, and hence of
length 1. The third side of A is a saddle connection inside C1 and is, by construction of C1, of length
greater than 1 (recall that C1; : : : ;Cr are obtained after removing all saddle connections of length 1).
Such a triangle can be deformed so that the area decreases and the boundary saddle connections of length
1 remain of length 1.

We deform B in a symmetric way. Note that A and B are directly glued together in C1 along the boundary
saddle connections of lengths greater than 1. Therefore the possible changes of these saddle connections
are not a problem. The deformation of S nC1 is treated as in the previous case.

Proof of Lemma 3.2 The sum of the boundary angles (coming from the intersection of two consecutive
boundary saddle connections) of D equals .n�2/� . Therefore D has boundary angles smaller than � . If
such a boundary angle has a corresponding boundary saddle connection which is of length greater than 1,
then by slightly changing its length we can decrease the area of the corresponding triangle and hence of D.

So we can assume that for each boundary angle smaller than � the two adjacent saddle connections are
of length 1. We claim that we can find two consecutive angles such that one is smaller than � and the
other is smaller than 2� (note that since D is not necessarily embedded in the plane, it can have boundary
angles greater than 2�). Indeed, consider the sequence of consecutive boundary angles of D. If each
time an angle is smaller than � the following one is greater than or equal to 2� , then the global sum will
be greater than n� , which is not possible.

Now we consider the three consecutive saddle connections corresponding to these two angles, and see
them as a broken line on the plane. We close this line by adding a segment t to obtain a quadrilateral Q
(that can be also crossed). Without loss of generality, we can assume that t is horizontal. We have

Area.D/D Area.D0/CAreaalg.Q/;

where D0 is the translation surface obtained by “replacing” the broken line by t (see Figure 1). Here
Areaalg.Q/ means that the part of Q below the segment t is counted negatively.

Claim We can continuously deform Q without changing the lengths of its sides so that Areaalg.Q/
decreases.

Algebraic & Geometric Topology, Volume 24 (2024)
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Figure 1: The disk D and the quadrilateral Q in three configurations.

Denote by MNPQ the quadrilateral Q, and by a, b, c and d the lengths of the sides of Q with a being the
length of the segment t DMN. Denote by ˛ the oriented angle from MN to MQ, and by 
 its opposite
angle in Q (ie the angle from PQ to PN). Without loss of generality we assume that bD cD 1, d � 1 and
0< 
 < � (in fact we must have 
 > 1

3
� , otherwise there would be a smallest saddle connection). We

also have �� < ˛ < � . Further, the sides NP and QM do not intersect since it would imply intersecting
boundary saddle connections in D (see Figure 1).

Write K D Areaalg.Q/. We compute K by adding the (algebraic) area of the triangles MNQ and NPQ.
We obtain

(1) K D 1
2
.ad sin.˛/C bc sin.
 //:

The expression of the length of NQ gives the second equality:

(2) a2
C d2

� 2ad cos.˛/D b2
C c2

� 2bc cos.
 /:

These two equations imply Bretschneider’s formula for Q:

(3) K2
D .s� a/.s� b/.s� c/.s� d/� abcd cos

�
1
2
.˛C 
 /

�
:

Here s D 1
2
.aC bC cC d/.

From now on we fix a, b, c and d and study the variations of the area with respect to ˛ and 
 . Equation (2)
implies that 
 depends differentially on ˛. Hence we can write K DK.˛/. We need to prove that either
K0.˛/¤ 0 or K.˛/ is a strict local maximum (note that ˛ varies in an open set). We have

.K2/0.˛/D abcd.1C 
 0.˛// sin
�

1
2
.˛C 
 /

�
cos
�

1
2
.˛C 
 /

�
:

We assume that K0.˛/D 0, and hence .K2/0.˛/D 0, so we are in one of the following three cases:

(i)
�
sin

�
1
2
.˛C
/

�
D 0

�
The conditions �� < ˛ < � and 0< 
 < � imply ˛ D�
 < 0. Hence the

quadrilateral Q has self-intersections. Since the sides NP and QM do not intersect, the sides MN and
PQ intersect. The condition ˛ D �
 implies that the points M , N , P and Q are cocyclic, and since
b D c D 1 we must have d < 1, which is a contradiction.

(ii)
�
cos

�
1
2
.˛C
/

�
D 0

�
Then ˛C 
 D � , and therefore ˛ > 0, and hence K > 0. From (2) and (3)

we have a strict local maximum for K2, and therefore for K.
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(iii) .
 0.˛/D �1/ By differentiating (2) and using (1), we see that K D 0, and hence Q has a self-
intersection I DMN\PQ. By differentiating (1) and using (2), we obtain K0.˛/D 0D 1

2

�
1
2
.a2Cd2/�1

�
,

and hence a2C d2 D 2. Since d � 1, we have a � 1 � d . However, triangle inequalities for INP and
IMQ give aC c > d C b, and hence a> d , which is a contradiction.

4 Nonhyperelliptic connected components

In this section, we prove the second part of the Main Theorem.

Theorem 4.1 Each nonhyperelliptic connected component of each stratum of area-1 surfaces with no
marked points contains local maxima of the function Sys that are not global.

We will need the following lemma, which is a refinement of [1, Lemma 3.2(2)].

Lemma 4.2 Let C �H.2k1; : : : ; 2kr / be a connected component of a stratum of abelian differentials
with 2k1; : : : ; 2kr � 0. There exists a surface S 2 C realizing the global maximum for the systole function ,
and such that there exists a shortest saddle connection 
 joining a singularity of degree 2k1 to itself and
Ind.Œ
 �/D 0.

Proof We do as in the proof of [1, Lemma 3.2]. There exists a square-tiled surface in C with singularities
on each corner of the squares as in Figure 2, and we can assume that the top left horizontal segment
identifies with the bottom left horizontal segment (see Figure 2). After a suitable transformation as in the
figure, we obtain the required surface.

Proof of Theorem 4.1 In [1, Theorem 4.7] we have already constructed examples in each genus g � 3

stratum. By Theorem 3.1 each such example is in a nonhyperelliptic component. So it remains to construct
new examples only in strata with more than one nonhyperelliptic connected component.

From the theorem of Kontsevich and Zorich (Theorem 2.1) there is more than one nonhyperelliptic
connected component only for genus g � 4 strata with only even-degree singularities, and in this case
there are two nonhyperelliptic components distinguished by the parity of the spin structure.

In Figure 3 we give surfaces S2;0 2H.2; 0/ and S2;0;0 2H.2; 0; 0/ that are local but nonglobal maxima
for the systole function.

1
� � � � � � � �

��������
1

�

�

1
� � � � � � � �

��������
1

�


�

Figure 2: A global maximum with a closed shortest saddle connection 
 satisfying Ind.Œ
 �/D 0.
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Figure 3: Local but nonglobal maxima in H.2; 0/ and H.2; 0; 0/.

We consider the following construction: Start from the surface S2;0 and a surface M that is a global
maximum for Sys in H.2k1; : : : ; 2kr /. There exists a shortest saddle connection 
1 in S2;0 joining the
two singularities. By Lemma 4.2, we can assume that there exists a shortest saddle connection 
2 in M

joining the singularity of degree 2k1 to itself and such that Ind.Œ
2�/D 0. We can further assume that

1 and 
2 are vertical and of the same length. Now we glue the two surfaces by the following classical
surgery: cut the two surfaces along 
1 and 
2, and glue the left side of 
1 with the right side of 
2 and
the right side of 
1 with the left side of 
2. We get a surface S in H.2k1C 4; 2k2; : : : ; 2kr / that satisfies
the hypothesis of [1, Theorem 4.1], and hence is a local but nonglobal maximum. By Theorem 3.1, the
surface S is necessarily in a nonhyperelliptic component.

We compute Spin.S/: Choose a symplectic basis .ai ; bi/i of H1.M;Z/ such that Œ
2� D a1. Then a
simple computation gives

(4) Spin.S/D Spin.S0;2/CSpin.M /C Ind.a1/C 1 mod 2:

Since Ind.a1/D 0,
Spin.S/D Spin.S0;2/CSpin.M /C 1 mod 2:

When
P

i 2ki � 4, we can prescribe any value of Spin.M / by choosing M in a suitable component, and
in this way we can obtain any possible value for Spin.S/. Note that this is also true for M 2H.4/ or
M 2H.2; 2/. Indeed, in these strata there are two components, hyperelliptic and nonhyperelliptic, and
the spin structure distinguishes them; see [6, Theorem 2 and Corollary 5].

By this construction, we obtain a local but nonglobal maximum for Sys in any (nonhyperelliptic) connected
component of any stratum H.2n1; : : : ; 2nr / for r � 1, as soon as

P
i 2ni � 8 and 2nj � 4 for at least

one j 2 f1; : : : ; rg.

We do an analogous construction as above starting from S2;0;0 (see Figure 3) and M 2H.0; 2r /, with

1 2 S2;0;0 joining the two marked points and 
2 2M joining the marked point to itself. We obtain a
local but nonglobal maximum in H.2rC2/. For r � 2 we can choose the spin structure of M and thus get
S in any nonhyperelliptic component of H.2rC2/. Note that for r D 1 we get S 2H.2; 2; 2/ with odd
spin structure.

There remain the following cases:
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Figure 4: Global maxima in H.2/ and H.1; 1/.

� H.6/ We do the same construction as above, starting from S2;0 and M 2 H.2/. We consider for
M 2H.2/ the surface S2 in Figure 4. We see that Œa� and Œb� in this figure have different indices mod 2.
Hence choosing 
2 D a or 
2 D b gives surfaces with different Spin structure; see (4).

� H.4; 2/ We do the same as for H.6/, starting from S2;0;0 and M D S2.

� The even component of H.2 ; 2 ; 2/ We do the same construction but starting from S2;0;0 and
M 2H.1; 1/, the surface S1;1 in Figure 4. We consider 
2D a (joining the two singularities of degree 1).
By a direct computation, the above construction gives a surface S 2H.2; 2; 2/with Spin.S/D0 mod 2.
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