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Smooth singular complexes and diffeological principal bundles

HIROSHI KIHARA

In previous papers, we used the standard simplices �p (p � 0) endowed with diffeologies having several
“good” properties to introduce the singular complex SD.X/ of a diffeological space X . (Here, D denotes
the category of diffeological spaces.) On the other hand, Hector and Christensen–Wu used the standard
simplices �psub .p � 0/ endowed with the subdiffeology of RpC1 and the standard affine p–spaces Ap

(p � 0) to introduce the singular complexes SD
sub.X/ and SD

aff.X/, respectively, of a diffeological space X .
We prove that SD.X/ is a fibrant approximation of both SD

sub.X/ and SD
aff.X/. This result immediately

implies that the homotopy groups of SD
sub.X/ and SD

aff.X/ are isomorphic to the smooth homotopy groups
of X , which enables us to give a positive answer to a conjecture of Christensen and Wu. Further, we
characterize diffeological principal bundles (ie principal bundles in the sense of Iglesias-Zemmour) using
the singular functor SD

aff. By using these results, we extend the characteristic classes for D–numerable
principal bundles to those for diffeological principal bundles.

58A40; 18F15, 55U10

1 Introduction

Let D denote the category of diffeological spaces. In [Kihara 2019], we constructed diffeologies on
�p D

˚
.x0; : : : ; xp/ 2RpC1 j

P
xi D 1; xi � 0 for any i

	
(p � 0). We called them good because they

allowed us to define the singular complex SD.X/ of a diffeological spaceX , which enables us to introduce
a model structure on the category D (see Section 2.2). Further, in [Kihara 2023], we also used the singular
functor SD to introduce a simplicial category structure on D, and developed a smooth homotopy theory
based on the simplicial and model category structures on D.

On the other hand, Hector [1995] used the sets �p endowed with the subdiffeology of RpC1 .p � 0/ to
define the singular complex SD

sub.X/ of a diffeological space X . His singular complex is also used in
[Kuribayashi 2020]. Christensen and Wu [2014] also used the affine spaces

Ap D
n
.x0; : : : ; xp/ 2RpC1

ˇ̌X
xi D 1

o
endowed with the subdiffeology of RpC1 .p � 0/ to define the singular complex SD

aff.X/ in an attempt to
construct a model structure on D. Their singular complex is also used in [Bunk 2022; Kuribayashi 2020;
2021].

As is described in the references cited above, the singular complexes SD.X/, SD
sub.X/, and SD

aff.X/ are
playing crucial roles in the smooth homotopical study of diffeological spaces. However, the natural weak
equivalences between them have not yet been established.
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1914 Hiroshi Kihara

In this paper, we show that the singular complexes SD.X/, SD
sub.X/, and SD

aff.X/ are weakly equivalent
(Theorem 1.1). As a corollary of this result, we identify the homotopy groups of SD

aff.X/ and SD
sub.X/ with

the smooth homotopy groups of X , proving a conjecture of Christensen and Wu (Corollary 1.2). Though
we mainly use the singular functor SD, we also use the singular functor SD

aff to characterize diffeological
principal bundles (ie principal bundles in the sense of Iglesias-Zemmour) (Theorem 1.3). This theorem,
along with the weak equivalence between SD

aff.X/ and SD.X/, is used to extend the characteristic classes
for D–numerable principal G–bundles to those for diffeological principal G–bundles (Proposition 1.4).

Throughout this paper, D and S denote the category of diffeological spaces and the category of simplicial
sets, respectively. (See [Goerss and Jardine 1999; May 1992; Kihara 2014] for the basics of simplicial
homotopy theory.)

Weak equivalences between SD.X/, SD
sub.X/, and SD

aff.X/

The following theorem is the main result of this paper. Note that the canonical maps �p id
�!�

p
sub ,!Ap

.p � 0/ induce natural morphisms of simplicial sets SD
aff.X/! SD

sub.X/ ,! SD.X/ (see Lemma 3.1(3)
and Proposition 3.4); note that the first and second canonical maps induce the second and first morphisms
of singular complexes, respectively. Recall that SD.X/ is always Kan (ie fibrant in the category S); see
Corollary 2.6(1) (cf Remark 3.2(2)).

Theorem 1.1 The natural morphisms of simplicial sets

SD
aff.X/! SD

sub.X/ ,! SD.X/

are weak equivalences. In particular , SD.X/ is a fibrant approximation of both SD
aff.X/ and SD

sub.X/.

That SD.X/ is a fibrant approximation of SD
sub.X/ was announced in [Kihara 2019, Remark A.5].

Next we recall that �i .SD.X/; x/ is isomorphic to the smooth homotopy group �D
i .X; x/ (Theorem 2.7),

and use Theorem 1.1 to identify the homotopy groups of SD
aff.X/ and SD

sub.X/; see Section 4.4 for the
homotopy groups of a simplicial set which need not satisfy the Kan condition.

Corollary 1.2 Let .X; x/ be a pointed diffeological space. Then both �i .SD
aff.X/; x/ and �i .SD

sub.X/; x/

are naturally isomorphic to the smooth homotopy group �D
i .X; x/ for i � 0.

Christensen and Wu [2014, Theorem 4.11] showed that if SD
aff.X/ is fibrant, then �i .SD

aff.X/; x/ is
isomorphic to the smooth homotopy group �D

i .X; x/ for i � 0, and conjectured that for every diffeological
space X , �i .SD

aff.X/; x/ is isomorphic to �D
i .X; x/ for i � 0 [Christensen and Wu 2014, page 1272].

Corollary 1.2 contains their conjecture.

(Co)homology of diffeological spaces Following [Kihara 2023, Section 3.1], we define the homology
H�.X IA/ and the cohomology H�.X IA/ of a diffeological space X with coefficients in an abelian
group A by

H�.X IA/DH�.ZS
D.X/˝A/; H�.X IA/DH�

�
Hom.ZSD.X/; A/

�
;
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Smooth singular complexes and diffeological principal bundles 1915

where the simplicial abelian group ZK freely generated by a simplicial set K is regarded as a chain
complex by setting @D

P
.�1/idi . It follows from Theorem 1.1 that the (co)homology of X is naturally

isomorphic to the (co)homologies defined using SD
sub.X/ and SD

aff.X/ instead of SD.X/. However, this
fact is actually proved in Section 3.2 as a key to proving Theorem 1.1; the (co)homology of X is also
naturally isomorphic to the cubic (co)homology introduced in [Iglesias-Zemmour 2013, pages 176–186]
(Remark 3.6).

Application to diffeological principal bundles

Let G be a diffeological group. A D–numerable principal G–bundle � W P !X is a principal G–bundle
which admits a trivialization open cover fUig of X and a smooth partition of unity subordinate to it. On
the other hand, Iglesias-Zemmour introduced a weaker notion of a principal G–bundle; such a principal
G–bundle, referred to as a diffeological principal G–bundle, is defined by local triviality of the pullback
along any plot (Definition 5.1(2)).

Though we mainly use the singular complexes SD.X/ in smooth homotopy theory, the singular complexes
SD

aff.X/, along with Theorem 1.1 play an essential role in the study of diffeological principal bundles, as
explained below.

Characterization of diffeological principal G–bundles Let C be a category with finite products, and
G a group in C. Then CG denotes the category of right G–objects of C (ie objects of C endowed with a
right G–action). For B 2 C, CG=B denotes the category of objects of CG over B , where B is regarded
as an object of CG with trivial G–action.

Since SD
aff WD!S is a right adjoint (Remark 3.2(1)), SD

aff induces the functor DG=X to SSD
aff.G/=S

D
aff.X/.

We then have the following characterization theorem for diffeological principal G–bundles (the notion of
a simplicial principal bundle is introduced in Definition 5.3).

Theorem 1.3 (1) Let � W P !X be an object of DG=X . Then � W P !X is a diffeological principal
G–bundle if and only if

SD
aff.�/ W S

D
aff.P /! SD

aff.X/

is a principal SD
aff.G/–bundle.

(2) The functor SD
aff W D! S induces a faithful functor from the category PDGdiff of diffeological

principal G–bundles to the category PSSD
aff.G/ of principal SD

aff.G/–bundles.

The essential reason why SD
aff is useful in the study of diffeological principalG–bundles is because SD

aff.X/

can be regarded as the set of global plots of X . We can use Theorem 1.3 to calculate the (co)homology
of exceptional diffeological spaces such as irrational tori and R=Q (see Section 2.3 and Example 6.7);
other cohomology theories of irrational tori were calculated by Iglesias-Zemmour and Kuribayashi (see
Remark 6.8).

Algebraic & Geometric Topology, Volume 24 (2024)



1916 Hiroshi Kihara

Characteristic classes of diffeological principal G–bundles We apply Theorem 1.3 to construct
characteristic classes for diffeological principal G–bundles.

A characteristic class for a class P of smooth principal G–bundles is a rule assigning to a principal
G–bundle � WP!X in P a cohomology class ˛.P / ofX such that ˛.f �P /Df �˛.P /. Christensen and
Wu [2021, Theorem 5.10] constructed the universal D–numerable principal G–bundle �G WEG! BG

and proved that the set of isomorphism classes of D–numerable principal G–bundles over X bijectively
corresponds to the smooth homotopy set ŒX; BG�D. Thus, a cohomology class ˛ 2Hk.BGIA/ defines
the characteristic class ˛. � / for the class of D–numerable principal G–bundles. More precisely, the
characteristic class ˛.P / 2Hk.X IA/ of a D–numerable principal G–bundle � W P !X is defined by

˛.P /D f �P ˛;

where fP WX ! BG is a classifying map of P .

We would like to extend the characteristic class ˛. � / to the class of diffeological principal G–bundles.
Since pullbacks of EG are necessarily D–numerable, the above definition of the characteristic class ˛. � /
does not apply to the class of diffeological principal G–bundles. Further, since the class of diffeological
principal G–bundles does not have the homotopy invariance property with respect to pullback, it has no
classifying space; see [Christensen and Wu 2021, Section 3].

Nevertheless, we can prove the following result.

Proposition 1.4 Let G be a diffeological group and ˛ an element of Hk.BGIA/. Then the characteristic
class ˛. � / for D–numerable principal G–bundles extends to a characteristic class for diffeological
principal G–bundles.

This paper is organized as follows. In Section 2, we recall the basic notions and results on diffeological
spaces and the singular functor SD. In Section 3, we briefly review the singular functors SD

sub and SD
aff,

and show that there exist natural morphisms between SD
aff.X/, S

D
sub.X/, and SD.X/ which induce isomor-

phisms on (co)homology. We prove Theorem 1.1 and Corollary 1.2 in Section 4. In Section 5, we recall
the notions of a diffeological principal bundle and a simplicial principal bundle, and prove Theorem 1.3.
In Section 6, we prove Proposition 1.4 and discuss the sets of characteristic classes for the three classes
PDG, PDGnum, and PDGdiff of smooth principal G–bundles (see Definition 5.1(3) for these three classes).

2 Diffeological spaces

In this section, we first recall the convenient properties of the category D of diffeological spaces, along
with the adjoint pair Q� W D� C0 WR of the underlying topological space functor and its right adjoint
(Section 2.1). Then we recall the standard simplices �p .p � 0/ and the adjoint pair j � jD WS�D WSD of
the realization and singular functors (see Section 2.2). Last, we make a brief review of some results of
[Kihara 2023], in which the adjoint pairs . Q� ; R/ and .j � jD; SD/ play an essential role (Section 2.3).

Algebraic & Geometric Topology, Volume 24 (2024)



Smooth singular complexes and diffeological principal bundles 1917

2.1 Categories D and C0

In this subsection, we summarize the convenient properties of the category D of diffeological spaces,
recalling the adjoint pair Q� W D� C0 WR of the underlying topological space functor and its right adjoint;
see [Iglesias-Zemmour 2013; Kihara 2019] for full details.

Let us begin with the definition of a diffeological space. A parametrization of a set X is a (set-theoretic)
map p W U !X , where U is an open subset of Rn for some n.

Definition 2.1 (1) A diffeological space is a setX together with a specified setDX of parametrizations
of X satisfying the following conditions:

(i) Covering Every constant parametrization p W U !X is in DX .

(ii) Locality Let p W U !X be a parametrization such that there exists an open cover fUig of U
satisfying pjUi 2DX . Then p is in DX .

(iii) Smooth compatibility Let p W U ! X be in DX . Then for every n � 0, every open set V
of Rn, and every smooth map F W V ! U , p ıF is in DX .

The set DX is called the diffeology of X , and its elements are called plots.

(2) Let X D .X;DX / and Y D .Y;DY / be diffeological spaces, and let f WX! Y be a (set-theoretic)
map. We say that f is smooth if f ıp 2DY for every p 2DX .

The convenient properties of D are summarized in the following proposition. Recall that a topological
space X is called arc-generated if its topology is final for the continuous curves from R to X , and let C0

denote the category of arc-generated spaces and continuous maps. See [Frölicher and Kriegl 1988, pages
230–233] for initial and final structures with respect to the underlying set functor.

Proposition 2.2 (1) The category D has initial and final structures with respect to the underlying set
functor. In particular , D is complete and cocomplete.

(2) The category D is cartesian closed.

(3) The underlying set functor D ! Set is factored as the underlying topological space functor
Q� WD! C0 followed by the underlying set functor C0! Set. Further , the functor Q� WD! C0 has a
right adjoint R W C0! D.

Proof See [Christensen et al. 2014, page 90; Iglesias-Zemmour 2013, pages 35–36; Kihara 2019,
Propositions 2.1 and 2.10].

The following remark relates to Proposition 2.2.

Remark 2.3 (1) Let X be a concrete category (ie a category equipped with a faithful functor to
Set); the faithful functor X! Set is called the underlying set functor. See [Frölicher and Kriegl
1988, Section 8.8] for the notions of an X–embedding, an X–subspace, an X–quotient map, and an
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1918 Hiroshi Kihara

X–quotient space. D–subspaces and D–quotient spaces are usually called diffeological subspaces
and diffeological quotient spaces, respectively.

(2) For Proposition 2.2(3), recall that the underlying topological space zA of a diffeological space
AD .A;DA/ is defined to be the set A endowed with the final topology for DA [Iglesias-Zemmour
2013, 2.8] and that R assigns to an arc-generated space X the set X endowed with the diffeology

DRX D fcontinuous parametrizations in Xg:

Then we can easily see that Q� ıR D IdC0 and that the unit A! R zA of the adjoint pair . Q� ; R/ is
set-theoretically the identity map.

(3) The notion of an arc-generated space is equivalent to that of a �–generated space (see [Christensen
et al. 2014; Kihara 2019, Section 2.2]). The categories D and C0 share convenient properties (1)
and (2) in Proposition 2.2, which often enables us to deal with D and C0 simultaneously (see
[Kihara 2023]). See [Kihara 2023, Remark 2.4] for the reason why C0 is the most suitable category
as a target category of the underlying topological space functor for diffeological spaces.

2.2 Standard simplices�p

In this subsection, we recall the standard simplices�p .p�0/, along with the adjoint pair j � jD WS�D WSD

of the realization and singular functors.

In [Kihara 2019], we introduced a model structure on the category D. The principal part of our construction
of a model structure on D is the construction of so-called good diffeologies on the sets

�p D
n
.x0; : : : ; xp/ 2RpC1

ˇ̌X
xi D 1; xi � 0 for any i

o
.p � 0/

which enable us to define weak equivalences, fibrations, and cofibrations and to verify the model axioms
(see Remark 2.8). The required properties of the diffeologies on�p .p� 0/ are expressed in the following
four axioms:

Axiom 1 The underlying topological space of �p is the topological standard p–simplex �ptop for p � 0.

Recall that f W�p!�q is an affine map if f preserves convex combinations.

Axiom 2 Any affine map f W�p!�q is smooth.

For K 2 S, the simplex category � #K is defined to be the full subcategory of the overcategory S #K

consisting of maps � W �Œn�! K. By Axiom 2, we can consider the diagram � # K ! D sending
� W�Œn�!K to �n. Thus, we define the realization functor

j � jD W S! D

by jKjD D colim�#K �n.

Consider the smooth map j P�Œp�jD ,! j�Œp�jD D �p induced by the inclusion of the boundary P�Œp�
into �Œp�.
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Axiom 3 The canonical smooth injection

j P�Œp�jD ,!�p

is a D–embedding.

The D–homotopical notions, especially the notion of a D–deformation retract, are defined in the same
manner as in the category of topological spaces by using the unit interval I D Œ0; 1� endowed with a
diffeology via the canonical bijection with �1 [Kihara 2019, Section 2.4]. The kth horn of �p is a
diffeological subspace of �p defined by

ƒ
p

k
D f.x0; : : : ; xp/ 2�

p
j xi D 0 for some i ¤ kg:

Axiom 4 The kth horn ƒp
k

is a D–deformation retract of �p for p � 1 and 0� k � p.

For a subset A of the affine p–space Ap D
˚
.x0; : : : ; xp/ 2RpC1 j

P
xi D 1

	
, Asub denotes the set A

endowed with the subdiffeology of Ap (and hence of RpC1). The diffeological spaces �psub .p � 0/

satisfy Axioms 1 and 2, but �psub satisfies neither Axiom 3 nor 4 for p � 2 [Kihara 2019, Proposition A.2].
Thus, we must construct a new diffeology on �p, at least for p � 2.

Let .i/ denote the vertex .0; : : : ; 1.i/; : : : ; 0/ of �p, and let d i denote the affine map from �p�1 to �p,
defined by

d i ..k//D

�
.k/ if k < i;
.kC 1/ if k � i:

Definition 2.4 We define the standard p–simplices �p (p � 0) inductively. Set �p D�psub for p � 1.
Suppose that the diffeologies on �k (k < p) are defined. We define the map

'i W�
p�1
� Œ0; 1/!�p

by 'i .x; t/D .1� t /.i/C td i .x/, and endow �p with the final structure for the maps '0; : : : ; 'p.

The following result is established in [Kihara 2019, Propositions 3.2, 5.1, 7.1, and 8.1].

Proposition 2.5 The standard p–simplices �p .p � 0/ in Definition 2.4 satisfy Axioms 1–4.

Without explicit mention, the symbol �p denotes the standard p–simplex defined in Definition 2.4 and a
subset of �p is endowed with the subdiffeology of �p. Since the diffeology of �p is the subdiffeology
of Ap for p � 1, the D–homotopical notions, especially the notion of a D–deformation retract, coincide
with the ordinary smooth homotopical notions in the theory of diffeological spaces [Iglesias-Zemmour
2013, page 108; Kihara 2019, Remark 2.14].

Since��Df�pg is a cosimplicial diffeological space by Axiom 2, the singular complex SD.X/ is defined
by

SD.X/D D.��; X/:

Algebraic & Geometric Topology, Volume 24 (2024)



1920 Hiroshi Kihara

We can easily see that j � jD W S� D WSD is an adjoint pair [Kihara 2019, Proposition 9.1]. Further, we
can derive the following result from Proposition 2.5.

Corollary 2.6 (1) The natural isomorphisms

j�Œp�jD D�
p; j P�Œp�j D P�p and jƒkŒp�jD Dƒ

p

k

exist.

(2) SDX is a Kan complex for any diffeological space X .

Proof (1) See [Kihara 2019, Proposition 9.2].

(2) See [Kihara 2019, Lemma 9.4(1)].

See [Christensen and Wu 2014, Section 3.1] or [Iglesias-Zemmour 2013, Chapter 5] for the smooth
homotopy groups �D

p .X; x/ of a pointed diffeological space .X; x/. Note that SDX is always a Kan
complex (Corollary 2.6(2)) and see [Goerss and Jardine 1999, page 25] for the homotopy groups �p.K; x/
of a pointed Kan complex .K; x/.

Theorem 2.7 Let .X; x/ be a pointed diffeological space. Then there exists a natural bijection

�X W �
D
p .X; x/! �p.S

DX; x/ for p � 0;

that is an isomorphism of groups for p > 0.

Proof See [Kihara 2019, Theorem 1.4].

Remark 2.8 (1) Define a map f WX ! Y in D to be

(i) a weak equivalence if SDf W SDX! SDY is a weak equivalence in the category of simplicial sets,

(ii) a fibration if the map f has the right lifting property with respect to the inclusions ƒp
k
,!�p for

all p > 0 and 0� k � p, and

(iii) a cofibration if the map f has the left lifting property with respect to all maps that are both fibrations
and weak equivalences.

Then D is a compactly generated model category whose object is always fibrant. In fact, the sets of
morphisms of D,

ID f P�p ,!�p j p � 0g;

JD fƒ
p

k
,!�p j p > 0; 0� k � pg;

are the sets of generating cofibrations and generating trivial cofibrations, respectively [Kihara 2019,
Theorem 1.3]. See [May and Ponto 2012, Definition 15.2.1] for a compactly generated model category.
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Smooth singular complexes and diffeological principal bundles 1921

By Theorem 2.7, weak equivalences in D are just smooth maps inducing isomorphisms on smooth
homotopy groups.

(2) The adjoint pairs
j � jD W S� D WSD and Q� W D� C0 WR

are pairs of Quillen equivalences [Kihara 2023, Theorem 1.5]. Note that the composite of these adjoint
pairs is just the adjoint pair

j � j W S� C0 WS

of the topological realization and singular functors.

2.3 Homotopy type of SD.X/

In this subsection, we recall from [Kihara 2023] the basic results on the homotopy type of SD.X/; they
are not essential in the later sections, but they are related to a few results in Section 6.

For a diffeological space X , consider the unit id WX!R zX of the adjoint pair Q� WD�C0 WR. By applying
SD.D D.��; � //, we have the natural inclusion

SD.X/ ,! S. zX/

(see Proposition 2.5, in particular Axiom 1).

If X is a nice diffeological space such as a cofibrant object or a C1–manifold in the sense of [Kriegl
and Michor 1997, Section 27], then SD.X/ ,! S. zX/ is a weak equivalence [Kihara 2023, Corollary 1.6,
Proposition 2.6, and Theorem 11.2]. Hence, we can calculate the homotopy groups and the (co)homology
groups of such nice diffeological spaces as those of the underlying topological spaces.

Conversely, if X is an exceptional diffeological space such as an irrational torus, then SD.X/ ,! S. zX/ is
not a weak equivalence; see [Kihara 2023, Appendix A]. See Section 6.2 for an approach to the homotopy
type of SD.X/ of exceptional diffeological spaces X such as irrational tori and R=Q.

Remark 2.9 The (co)homology and homotopy groups of diffeological spaces have the same desirable
properties as those of topological spaces. Further, the (co)homology and homotopy groups of a diffeo-
logical space are just those of its singular complex. Thus, we can apply various algebraic topological
and simplicial homotopical tools to the calculation of the (co)homology and homotopy groups of a
diffeological space X whether or not X is a nice diffeological space; see [Kihara 2023, Section 3.1],
Theorem 2.7, and Remark 5.8.

3 Smooth singular complexes

In this section, we summarize the basic notions and results on the smooth singular complexes SD
sub.X/

and SD
aff.X/ (Section 3.1), and then show that there exist natural morphisms between SD

aff.X/, S
D
sub.X/,
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and SD.X/ which induce chain homotopy equivalences, and hence isomorphisms on (co)homology
(Section 3.2). We also show that the singular functors SD

aff, S
D
sub, and SD transform diffeological coverings

to simplicial coverings (Section 3.3); this result is used to reduce the proof of Theorem 1.1.

3.1 Smooth singular complexes SD.X/, SD
sub.X/, and SD

aff.X/

By using the cosimplicial diffeological space �� D f�pg, the singular complex SD.X/ is defined by

SD.X/D D.��; X/;

which is intensively studied in [Kihara 2019; 2023] (see Section 2.2).

Let Ap denote the affine p–space
˚
.x0; : : : ; xp/ 2RpC1 j

P
xi D 1

	
endowed with the subdiffeology

of RpC1. Since A� D fApg is a cosimplicial diffeological space, the singular complex SD
aff.X/ is defined

by
SD

aff.X/D D.A�; X/:

The singular complex SD
aff.X/ was introduced by Christensen and Wu [2014]; they used the singular

functor SD
aff to define the classes of weak equivalences, fibrations, and cofibrations in D, but the model

axioms are not yet verified.

Let �psub denote the set �p endowed with the subdiffeology of Ap . Since ��subD f�
p
subg is a cosimplicial

diffeological space, the singular complex SD
sub.X/ is defined by

SD
sub.X/D D.��sub; X/:

The singular complex SD
sub.X/ was used by Hector [1995] to study diffeological spaces by homotopical

means such as singular (co)homology.

Now, we summarize the basic properties of �p, �psub, and Ap, and the relations among them, which
are needed later. A subset A of Ap endowed with the subdiffeology of Ap is denoted by Asub. The
notion of D–contractibility (or smooth contractibility) is defined in the obvious manner (a D–contractible
diffeological space is often called simply a contractible diffeological space if there is no confusion in
context).

Lemma 3.1 (1) The diffeological spaces �p, �psub, and Ap are smoothly contractible.

(2) The underlying topological space of �p and �psub is just the standard topological p–simplex. The
underlying topological space of Ap is just the set Ap endowed with the usual topology.

(3) The map id W�p!�
p
sub is smooth , which restricts to the diffeomorphism

id W�p � skp�2�p Š�! .�p � skp�2�p/sub;

where skp�2�p denotes the .p�2/–skeleton of �p.
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Proof (1) The smooth contractibility of �psub and Ap are obvious. See [Kihara 2019, Remark 9.3] for
the smooth contractibility of �p.

(2) The result for �p follows from Proposition 2.5. The results for �psub and Ap follow from [Kihara
2019, Lemma 2.12].

(3) See [Kihara 2019, Lemmas 3.1 and 4.2].

Remark 3.2 In this remark, we recall the left adjoints of SD
sub and SD

aff, and see that SD
sub.X/ and SD

aff.X/

need not be Kan.

(1) As mentioned above, the realization functor j � jD W S! D is a left adjoint of the singular functor
SD WD!S, and the composite of the adjoint pairs j � jD WS�D WSD and Q� WD�C0 WR is just the adjoint
pair j � j W S� C0 WS (see Remark 2.8(2)).

Similarly, we can define the realization functor j � j0D W S! D by

jKj0D D colim
�#K

�nsub;

which is a left adjoint of the singular functor SD
sub W D ! S. The composite of the adjoint pairs

j � j0D W S� D WSD
sub and Q� W D� C0 WR is also just the adjoint pair j � j W S� C0 WS (see Lemma 3.1(2)).

The realizations jKjD and jKj0D of a simplicial complex K viewed as a simplicial set [May 1992,
Example 1.4] are just the diffeological polyhedra jKjD and jKj0D respectively [Kihara 2023, Section 8.1];
they played an essential role in the proof of the homotopy cofibrancy theorem [Kihara 2023, Theorem 1.10].

Christensen and Wu [2014] defined the realization functor j � j00D W S! D by

jKj00D D colim
�#K

An;

which is a left adjoint of the singular functor SD
aff W D! S.

(2) Let us see that SD
sub.X/ need not be Kan. For this, we consider the extension problem in S

ƒ0Œ2� SD
sub.ƒ

2
0 sub/

�Œ2�

d1Cd2

where ƒ0Œ2�
d1Cd2
����! SD

sub.ƒ
2
0 sub/ is the simplicial map whose restriction to the i th face corresponds to

(the corestriction of) d i W �1! �2 for i D 1; 2. Suppose that this extension problem has a solution r .
Then we have the commutative diagram in D

jƒ0Œ2�j
0
D ƒ20 sub

�2sub

d1Cd2

r
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(see part (1)). Noticing that jƒ0Œ2�j0D can be set-theoretically identified with ƒ20, we see that r is a
D–retraction of �2sub onto ƒ20 sub, which is a contradiction [Kihara 2019, Proposition A.2(2)]; see also
[Kihara 2023, Remark 8.2].

Similarly, we can use [Bröcker and Jänich 1982, Theorem 5.13] to see that SD
aff..d

1A1[ d2A1/sub/ is
not Kan; however, it has already been shown that SD

aff.X/ need not be Kan [Christensen and Wu 2014,
Section 4.3].

3.2 Natural transformations between SD
aff, S

D
sub, and SD

In this subsection, we construct natural morphisms between SD
aff.X/, S

D
sub.X/, and SD.X/, and show

that they induce chain homotopy equivalences between ZSD
aff.X/, ZSD

sub.X/, and ZSD.X/, and hence
isomorphisms on the (co)homology with arbitrary coefficients.

First, we show that the singular functors SD, SD
sub, and SD

aff preserve homotopy. Recall the D–homotopical
notions from Section 2.2 and let 'D denote the D–homotopy relation.

Lemma 3.3 For smooth maps f; g WX ! Y , consider the conditions

(i) f 'D g WX ! Y ,

(ii) SDf ' SDg W SD.X/! SD.Y /,

(iii) H�.f IZ/DH�.gIZ/ WH�.X IZ/!H�.Y IZ/.

The implications .i/D) .ii/D) .iii/ hold. The same conclusion applies to the functors SD
sub and SD

aff, and
their homologies.

Proof For SD: see [Kihara 2019, Lemma 9.4(2)] for .i/ D) .ii/, and [May 1992, pages 12–13] for
.ii/D) .iii/.

For SD
sub: recall that �1 D�1sub; then a similar argument applies.

For SD
aff: observe that f 'D g if and only if there exists a smooth map H W X �A1 ! Y such that

H. � ; .0//D f and H. � ; .1//D g; then a similar argument applies.

Using Lemmas 3.1 and 3.3, we can prove the following result.

Proposition 3.4 There exist natural morphisms of simplicial sets

SD
aff.X/! SD

sub.X/ ,! SD.X/

which induce chain homotopy equivalences

ZSD
aff.X/! ZSD

sub.X/! ZSD.X/:

Proof We prove the result in three steps.
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Step 1: construction of natural morphisms By Lemma 3.1(3), we have the canonical morphisms of
cosimplicial diffeological spaces

�� id
�!��sub ,!A�;

which induce natural morphisms

SD
aff.X/

�
�! SD

sub.X/
�,�! SD.X/:

(Note that the first and second morphisms of cosimplicial diffeological spaces induce the second and first
morphisms of singular complexes, respectively.)

Step 2 We show that for p � 0,

H�.ZS
D
aff.�

p//ŠH�.ZS
D
sub.�

p//ŠH�.ZS
D.�p//Š ZŒ0�;

where ZŒ0� denotes the graded module with ZŒ0�0 D Z and ZŒ0�i D 0 (i ¤ 0). It is easily seen that these
isomorphisms hold for p D 0. Thus, they hold for any p � 0 by Lemmas 3.3 and 3.1(1).

Step 3 To prove the rest of the statement, we “augment” the singular chain complexes ZSD.X/,
ZSD

sub.X/, and ZSD
aff.X/ in a canonical manner (see [Eilenberg and Mac Lane 1953, page 194]); the

augmented singular chain complexes are denoted by ZSD.X/˜, ZSD
sub.X/˜, and ZSD

aff.X/˜. Then

H�.ZS
D
aff.�

p/˜/DH�.ZSD
sub.�

p/˜/DH�.ZSD.�p/˜/D 0

(by Step 2). Since each component of degree � 0 of ZSD.X/˜ (resp. ZSD
sub.X/˜, ZSD

aff.X/˜) is repre-
sentable for the set of model objects f�pgp�0 (resp. f�psubgp�0, fApgp�0) in the sense of [Eilenberg and
Mac Lane 1953, page 189], we can use [Eilenberg and Mac Lane 1953, Theorem II] to construct chain
homotopy inverses of the augmented natural chain maps

ZSD
aff.X/˜

Z�˜
�! ZSD

sub.X/˜
Z�̃
�! ZSD.X/˜

such that they restrict to chain homotopy inverses of the natural chain maps

ZSD
aff.X/

Z�
�! ZSD

sub.X/
Z�
�! ZSD.X/

(see Step 1).

Recall the definitions of H�.X IA/ and H�.X IA/ from Section 1.

Corollary 3.5 Let A be an abelian group.

(1) The natural morphisms of simplicial sets

SD
aff.X/

�
�! SD

sub.X/
�,�! SD.X/

induce isomorphisms of graded modules

H�.ZS
D
aff.X/˝A/

��
Š
�!H�.ZS

D
sub.X/˝A/

��
Š
�!H�.X IA/;

H�
�
Hom.ZSD

aff.X/; A/
�
��

Š
 �H�

�
Hom.ZSD

sub.X/; A/
�

��

Š
 �H�.X IA/:
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(2) If A is a commutative associative ring with unit , then H�.X IA/, H�
�
Hom.ZSD

sub.X/; A/
�
, and

H�
�
Hom.ZSD

aff.X/; A/
�

have natural commutative graded A–algebra structures and the isomor-
phisms between them are isomorphisms of graded A–algebras.

Proof (1) The result is immediate from Proposition 3.4.

(2) See [Kihara 2023, Remark 3.8(2)] for H�.X IA/. The argument there can also be applied to
H�Hom.ZSD

sub.X/; A/ and H�Hom.ZSD
aff.X/; A/. Since the cohomology isomorphisms in

part (1) are induced by the natural simplicial maps

SD
aff.X/! SD

sub.X/ ,! SD.X/;

they are isomorphisms of graded A–algebras.

Remark 3.6 In the study of differential forms and de Rham cohomology of diffeological spaces, Iglesias-
Zemmour [2013, pages 182–183] introduced the complex C?.X/ of reduced groups of cubic chains for a
diffeological space X , and called its homology H�.X/ the cubic homology of X .

We can easily see that H�.X/ is a smooth homotopy invariant. In fact, given a smooth homotopy
H WR�X! Y between f and g, a chain homotopy H] W C�.X/! C�C1.Y / between C�.f / and C�.g/

is defined by
Rp �
�!X 7!RpC1 DR�Rp 1��

��!R�X H
�! Y:

Thus, by an argument similar to that in the proof of Proposition 3.4, we can use [Eilenberg and Mac Lane
1953, Theorem II] to construct a natural chain homotopy equivalence between C�.X/ and ZSD.X/,
showing that H�.X/ is naturally isomorphic to H�.X/.

The basic idea of the proof that ZSD.X/, ZSD
sub.X/, and C�.X/ are chain homotopy equivalent was

briefly discussed in [Kihara 2023, Remark 3.9]. It is also shown in [Kuribayashi 2020, Section 4.1] that
ZSD

aff.X/, ZSD
sub.X/, and C�.X/ are chain homotopy equivalent.

3.3 Diffeological coverings

The notion of a diffeological fiber bundle is a generalization of that of a locally trivial fiber bundle,
and is defined by local triviality of the pullback along any plot; see [Iglesias-Zemmour 2013, 8.9]. A
diffeological fiber bundle with discrete fiber is called a diffeological covering.

Similarly, a simplicial fiber bundle is defined by triviality of the pullback along any map from �Œp�

(p� 0); see [May 1992, Definition 11.8]. A simplicial fiber bundle with discrete fiber is called a simplicial
covering.

We prove the following result, which is used in the proof of Theorem 1.1.

Algebraic & Geometric Topology, Volume 24 (2024)



Smooth singular complexes and diffeological principal bundles 1927

Proposition 3.7 The singular functors SD, SD
sub, and SD

aff transform diffeological coverings with fiber F
to simplicial coverings with fiber F . Hence , a diffeological covering � WE!X with fiber F defines the
natural morphisms of simplicial coverings with fiber F

SD
aff.E/ SD

sub.E/ SD.E/

SD
aff.X/ SD

sub.X/ SD.X/:

SD
aff.�/ SD

sub.�/ SD.�/

Proof We prove the result in three steps.

Step 1 We show that SD.�/ W SD.E/! SD.X/ is a simplicial covering with fiber F .

Assume given a map k W �Œp�! SD.X/ and let � W �p ! X be the smooth map corresponding to k.
Noticing that �p is smoothly contractible (Lemma 3.1(1)), we then have a pullback diagram in D

�p �F E

�p X

proj �

�

(see [Iglesias-Zemmour 2013, page 264]). Note that SD is a right adjoint and consider the commutative
diagram in S consisting of two pullback squares

�Œp��SD.F / SD.�p/�SD.F / SD.E/

�Œp� SD.�p/ SD.X/

proj proj SD.�/

SD.�/

where �Œp�! SD.�p/ is the map corresponding to the p–simplex 1�p of SD.�p/. Then the outer
rectangle gives the desired local triviality of SD.�/; see [Mac Lane 1998, Exercise 8 on page 72].

Step 2 Note that �psub and Ap are smoothly contractible (Lemma 3.1(1)) and that SD
sub and SD

aff are right
adjoints (Remark 3.2(1)). Then, by an argument similar to that in Step 1, we can see that SD

sub.�/ and
SD

aff.�/ are also simplicial coverings with fiber F .

Step 3 The natural morphisms of simplicial coverings are defined by Proposition 3.4.

4 Weak equivalences between smooth singular complexes

In this section, we prove Theorem 1.1 and Corollary 1.2, using results of Section 3.

The main statement of Theorem 1.1 is divided into the following two parts:

(I) The natural map SD
sub.X/ ,! SD.X/ is a weak equivalence in S.

(II) The natural map SD
aff.X/! SD.X/ is a weak equivalence in S.
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After constructing a fibrant approximation functor for the category of simplicial sets in Section 4.1, we
prove parts (I) and (II) in Sections 4.2 and 4.3, respectively. We complete the proofs of Theorem 1.1 and
Corollary 1.2 in Section 4.4.

4.1 Fibrant approximation to a simplicial set

The category S of simplicial sets is a cofibrantly generated model category having

JS D fƒkŒp� ,!�Œp� j p > 0; 0� k � pg

as a set of generating trivial cofibrations. Applying the infinite gluing construction [Dwyer and Spaliński
1995, pages 104–105] for JS to a simplicial map ' WK! L, we obtain the factorization

K K 0

L

i

'
p

where i is a trivial cofibration and p is a fibration. However, since every simplicial map to the terminal
object � has a right lifting property forƒkŒ1� ,!�Œ1� (kD 0; 1), we can construct a fibrant approximation
Kˆ of K by applying the infinite gluing construction for

J0S D fƒkŒp� ,!�Œp� j p > 1; 0� k � pg

to K!�. Let Sf denote the full subcategory of S consisting of fibrant objects (ie Kan complexes). Then
the functor �ˆ W S! Sf is a fibrant approximation functor, for which Kˆ0 DK0 holds. An attachment of
�Œ2� alongƒkŒ2� adds one nondegenerate 2–simplex and one nondegenerate 1–simplex, which correspond
to the basic 2–simplex of �Œ2� and its kth face respectively.

4.2 Proof of part (I)

We prove part (I) of Theorem 1.1 (see the introduction of this section). Let us begin by reducing the
proof to simpler cases. First, consider the decomposition X D

`
X˛ into connected components; see

[Iglesias-Zemmour 2013, pages 105–107]. Since

SD
sub.X/D

a
SD

sub.X˛/ and SD.X/D
a

SD.X˛/;

we may assume that X is connected.

Next consider the universal covering$ WZ!X ; see [Iglesias-Zemmour 2013, page 264]. By Proposition
3.7, we then have the morphism of simplicial coverings with fiber �D

1 .X/

�D
1 .X/ �D

1 .X/

SD
sub.Z/ SD.Z/

SD
sub.X/ SD.X/
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Hence, we may assume that X is 1–connected (note that SD
sub.X/ need not be a Kan complex and use

[Gabriel and Zisman 1967, Chapter III, Theorem 4.2]).

Since SD.X/ is Kan (Corollary 2.6(2)), the inclusion SD
sub.X/ ,! SD.X/ extends to a map

SD
sub.X/ˆ! SD.X/;

which induces an isomorphism on the homology (Corollary 3.5). Thus, we have only to show that

�1.S
D
sub.X/ˆ; x0/D 0

for any fixed x0 2X (see Theorem 2.7 and [May 1992, Theorem 13.9]).

Recall from [Goerss and Jardine 1999, page 8; May 1992, Lemma 16.3] the following facts concerning
the topological realization functor j � j W S! C0:

� The topological realization jKj of a simplicial set K is a CW –complex having one n–cell for each
nondegenerate n–simplex of K.

� For a pointed Kan complex .K; k0/, the simplicial fundamental group �1.K; k0/ is naturally
isomorphic to the topological fundamental group �1.jKj; k0/.

For a simplicial set K, NKn denotes the set of nondegenerate n–simplices of K. The n–cell of jKj
corresponding to � 2 NKn is also denoted by � . The 1–cell � of jKj is endowed with the canonical
orientation; the 1–cell � endowed with the reverse orientation is denoted by N� . We also use the standard
notation sknK for the n–skeleton of K.

From these facts and the construction of the fibrant approximation Kˆ of K, we see the following:

� �1.S
D
sub.X/ˆ; x0/Š �1.jsk2 SD

sub.X/ˆj; x0/.

� Every element of �1.jsk2 SD
sub.X/ˆj; x0/ can be represented by a continuous map

! W .�1top;
P�1top/! .jsk1 SD

sub.X/ˆj; x0/:

Further, ! can be chosen as the concatenation of finitely many 1–cells �1; : : : ; �l , where �j D �j
or N�j for some �j 2NSD

sub.X/1.

We would like to simplify the expression �1 � � � �l for ! and show that ! is null homotopic rel P�1top.

A smooth 1–simplex � W�1sub!X of a diffeological space X is called tame if � is constant near each
vertex. By the following lemma, we may assume that each �j is tame.

Lemma 4.1 LetX be a diffeological space and � a 1–simplex of SD
sub.X/. Then there exists a 2–simplex

† of SD
sub.X/ such that d0† is the constant map to �..1//, d1† is tame , and d2†D � .

Proof We choose a nondecreasing smooth function � W Œ0; 1�! Œ0; 1� such that �� 0 near 0 and �� 1
near 1, and construct the desired 2–simplex † of SD

sub.X/ in two steps.

Algebraic & Geometric Topology, Volume 24 (2024)



1930 Hiroshi Kihara

Step 1: construction of F W�2
sub !�2

sub We construct a smooth map F W�2sub!�2sub (ie a 2–simplex
F of SD

sub.�
2
sub/) satisfying the following condition:

� Each diF corestricts to the i th face of �2sub and the corestriction of diF is identified with�
id if i D 0; 2;
� if i D 1;

in a canonical manner.

Set U D
˚
.x0; x1; x2/ 2�

2
sub j 0� x1 <

1
2

	
. Choose a nonincreasing smooth function � W

�
0; 1
2

�
! Œ0; 1�

such that � � 1 near 0 and � � 0 near 1
2

. Under the identification

U Š
�! Œ0; 1��

�
0; 1
2

�
; .x0; x1; x2/ 7!

�
x2

1� x1
; x1

�
;

define the self-map U f
�! U by

f .x; y/D
�
�.y/�.x/C .1��.y//x; y

�
:

Then the desired map �2sub
F
�!�2sub is defined by

F D

�
f on U;
id outside U:

Step 2: construction of † W �2
sub ! X The desired 2–simplex † of SD

sub.X/ is defined to be the
composite

�2sub
F
�!�2sub

s1
�!�1sub

�
�!X;

where s1 is defined by s1.x0; x1; x2/D .x0; x1C x2/.

Second, let us see that! can be chosen as the concatenation of �1; : : : ; �l for some �1; : : : ; �l 2NSD
sub.X/1.

For this, consider †j 2 SD
sub.X/2 defined to be the composite

�2sub
s
�!�1sub

�j
�!X;

where s.x0; x1; x2/ D .x0 C x2; x1/. Then d2†j D �j , d1†j is constant, and � 0j WD d0†j satisfies
� 0j .t/D �j .1� t /. Thus, if �j D N�j , then we can replace �j with � 0j . Hence, we may assume that ! is the
concatenation of �1; : : : ; �l .

Third, let us see that ! can be chosen as the continuous map corresponding to a single tame 1–simplex �
of SD

sub.X/. For this, we first consider the extension problem in D

ƒ21 sub X

�2sub

�2C�1
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.1/ .2/

.0/

Figure 1: The retraction r .

where �2C�1 Wƒ21 sub!X is defined to be �2 on the 0th face and �1 on the 2nd face. (the smoothness of
�2C �1 follows from the tameness of �1 and �2). We define the map † W�2sub!X to be the composite

�2sub
r
�!ƒ21 sub

�2C�1
����!X;

where r is the continuous retraction onto ƒ21 sub depicted in Figure 1. Noticing that �1 and �2 are tame,
we can easily see that † is a solution of the extension problem in D such that � WD d1† is also tame.
Thus, ! can be chosen as the concatenation of �; �3; : : : ; �l . By iterating this procedure, we may assume
that ! is the continuous map corresponding to a single tame 1–simplex � of SD

sub.X/.

Last, let us see that ! is null homotopic rel P�1top. Since X is 1–connected, the extension problem in D

P�2 X

�2

�C0C0

has a solution †, where 0 denotes the constant map to the base point x0 (see Theorem 2.7).

Now, we recall the smooth map  20 W�
2!�2 from [Kihara 2023, Steps 1–3 in the proof of Theorem 8.6].

For 0 < � < 1
2

, set Vi .�/D f.x0; x1; x2/ 2�2 j xi > 1� �g. For a given �0 with 0 < �0 < 1
2

, the smooth
map

 20 W�
2
!�2

is constructed such that

�  20 preserves each closed simplex of �2,

�  20 maps each Vi .�0=2/ to the vertex .i/,

�  20 coincides with 1�2 on �2n
S
Vi .�0/.

Thus, we see from Lemma 3.1(3) that  20 W�
2
sub!�2 is smooth.

Consider the smooth map  20 W�
2
sub!�2 defined for sufficiently small �0 > 0, and define the 2–simplex

†0 of SD
sub.X/ to be the composite

�2sub
 20
�!�2 †

�!X:

Since †0j P�2sub
D �C0C0, †0 yields a homotopy (rel P�1top) between ! and 0, which completes the proof.
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4.3 Proof of part (II)

We prove part (II) of Theorem 1.1 (see the introduction of this section). By Proposition 3.7 and an
argument similar to that in Section 4.2, we may assume that X is 1–connected.

Since SD.X/ is Kan (Corollary 2.6(2)), the canonical map SD
aff.X/! SD.X/ extends to a map

SD
aff.X/ˆ! SD.X/;

which induces an isomorphism on the homology (Corollary 3.5). Thus, we have only to show that

�1.S
D
aff.X/ˆ; x0/D 0

for any fixed x0 2X (see Theorem 2.7 and [May 1992, Theorem 13.9]).

Similarly to the proof of part (I), we have the following:

� �1.S
D
aff.X/ˆ; x0/Š �1.jsk2 SD

aff.X/ˆj; x0/.

� Every element of �1.jsk2 SD
aff.X/ˆj; x0/ can be represented by a continuous map

! W .�1top;
P�1top/! .jsk1 SD

aff.X/ˆj; x0/:

Further, ! can be chosen as the concatenation of finitely many 1–cells �1; : : : ; �l , where �j D �j
or N�j for some �j 2NSD

aff.X/1.

We would like to simplify the expression �1 � � � �l for ! and show that ! is null homotopic rel P�1top.

A smooth 1–simplex � WA1!X of a diffeological space X is called tame if � is constant near .�1; 0�
and near Œ1;1/, where A1 is identified with R in a canonical manner. By the following analogue of
Lemma 4.1, we may assume that each �j is tame.

Lemma 4.2 Let X be a diffeological space and � a 1–simplex of SD
aff.X/. Then there exists a 2–simplex

† of SD
aff.X/ such that d0† is the constant map to �..1//, d1† is tame , and d2†D � .

Proof SetU D
˚
.x0; x1; x2/2A2 j�1

2
<x1<

1
2

	
. Choose a nondecreasing smooth function� WR! Œ0; 1�

such that �� 0 near .�1; 0� and �� 1 near Œ1;1/, and a smooth function � W
�
�
1
2
; 1
2

�
! Œ0; 1� such

that � � 1 near 0 and � � 0 near
˚
�
1
2
; 1
2

	
. Then we can construct the desired 2–simplex † in a manner

similar to that in the proof of Lemma 4.1.

Second, let us see that ! can be chosen as the concatenation of �1; : : : ; �l for some �1; : : : ; �l 2NSD
aff.X/1.

For this, consider †j 2 SD
aff.X/2 defined to be the composite

A2 s
�!A1

�j
�!X;

where s.x0; x1; x2/ D .x0 C x2; x1/. Then d2†j D �j ; d1†j is constant, and � 0j WD d0†j satisfies
� 0j .t/D �j .1� t /. Thus, if �j D N�j , then we can replace �j with � 0j . Hence, we may assume that ! is the
concatenation of �1; : : : ; �l .
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.supp0  
2
0 /
ı
f1g

.supp0  
2
0 /
ı
f2g

.supp0  
2
0 /
ı
f0g

.0/

.1/ .2/
.supp1  

2
1 /
ı
f1;2g

.supp1  
2
1 /
ı
f0;2g

.supp1  
2
1 /
ı
f0;1g

Figure 2

Next we show the following lemma. For i D 0; 1; 2, d i WA1!A2 denotes the obvious affine extension
of d i W�1!�2 (see Section 2.2).

Lemma 4.3 Let X be a diffeological space and 
0, 
1, and 
2 tame 1–simplices of SD
aff.X/ such that

d0
2 D d1
0, d0
0 D d0
1, and d1
1 D d1
2. If the extension problem in D

P�2 X

�2

P

i j�1

has a solution , then the extension problem in DS
d iA1 X

A2

P

i

also has a solution.

Proof We choose a solution † of the first extension problem, and use the smooth map  2 W�2!�2

constructed in [Kihara 2023, Steps 1–3 in the proof of Theorem 8.6] to modify and extend †.

To describe the basic properties of  2, we adopt the following notation. For a continuous self-map f
of �p, we set

carrk f D fx 2�
p
j f .x/¤ x; f .x/ 2 skk �

p
g and suppk f D carrk f :

Further, for a subset fi0; : : : ; ikg of f0; : : : ; pg, we set

Vfi0;:::;ikg D f.x0; : : : ; xp/ 2�
p
j xi > xj for i 2 fi0; : : : ; ikg and j … fi0; : : : ; ikgg;

.suppk f /
ı
fi0;:::;ikg

D .suppk f /
ı
\Vfi0;:::;ikg:

For a given �0 with 0 < �0 < 1
2

, the smooth maps  2
k
W �2! �2 (k D 0; 1) are defined such that they

satisfy the following conditions (see Figure 2):
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.1/ .2/

.0/

A0

A1 A2
B0

B1B2

Figure 3

�  2
k

preserves each closed simplex of �2 and  2
k
D id on skk �2 (note that sk0�2 D f.0/; .1/; .2/g

and that sk1�2 D P�2).

� .supp0  
2
0 /
ı
fig
D Vi .�0=2/ and  20 D id on �2n

S
Vi .�0/ (see Section 4.2).

� .supp0  
2
0 /
ı[ .supp1  

2
1 /
ı is a neighborhood of P�2.

� .supp1 
2
1 /
ıD.supp1 

2
1 /
ı
f1;2g

`
.supp1 

2
1 /
ı
f0;2g

`
.supp1 

2
1 /
ı
f0;1g

, and 21 preserves each Vi .�0=2/
and maps a point x of .supp1  

2
1 /
ı
fi0;i1g

to the intersection of the i th face of �2 and the line through
the vertex .i/ and x, where i ¤ i0; i1.

The map  2 W�2!�2 is defined to be the composite

�2
 21
�!�2

 20
�!�2:

Consider the smooth map  2 W�2!�2 for a sufficiently small �0 > 0 and define †0 to be the composite

�2
 2
�!�2 †

�!X:

Then †0 has the following properties:

� †0j P�2 D†j P�2 .

� †0j.supp0 
2
0 /
ı
fig

is constant.

� †0j.supp1 
2
1 /
ı
fi0;i1g

is constant along any ray from the vertex .i/ with i ¤ i0; i1.

We thus extend †0 to A2 as follows. Define †0jAi to be constant for i D 0; 1; 2, and define †0jBi to be
constant along any ray from the vertex .i/ (see Figure 3). Then we can easily see that †0 WA2!X is the
desired solution of the second extension problem.

Let us see that ! can be chosen as the continuous map corresponding to a single tame 1–simplex � of
SD

aff.X/. For this, we first consider the extension problem in D

ƒ21 X

�2

�2j�1C�1j�1
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Then we can use the continuous retraction r W �2 ! ƒ21 depicted in Figure 1 to construct a solution
† W �2! X such that the composite �1 d1

�!�2 †
�!X is constant near each vertex. Define the tame

1–simplex � of SD
aff.X/ by �j�1 D† ı d

1 and consider the extension problem in DS
d iA1 X

A2

�2C�C�1

Since this extension problem has a solution (see Lemma 4.3), ! can be chosen as the concatenation of
�; �3; : : : ; �l . By iterating this procedure, we may assume that ! is the continuous map corresponding to
a single tame 1–simplex � of SD

aff.X/.

Last, let us see that ! is null homotopic rel P�1top. Since X is 1–connected, the extension problem in D

P�2 X

�2

� j
�1
C0C0

has a solution (see Theorem 2.7). Hence, the extension problem in DS
d iA1 X

A2

�C0C0

also has a solution (Lemma 4.3), which shows that ! is null homotopic rel P�1top.

4.4 Proofs of Theorem 1.1 and Corollary 1.2

In this subsection, we complete the proofs of Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1 The proof of the main statement is given in Sections 4.2 and 4.3. Since SD.X/ is
always fibrant (Corollary 2.6(2)), the last statement is obvious.

Let S� denote the category of pointed simplicial sets, and let S�f denote the full subcategory of S�

consisting of fibrant objects (ie pointed Kan complexes). Choosing a fibrant approximation functor
R W S�! S�f , we define the i th homotopy group functor �i W S�! Gr to be the composite

S�
R
�! S�f

�i
�! Gr:

(Strictly speaking, �0 is defined as a Set�–valued functor, where Set� denotes the category of pointed
sets.) Then, up to natural isomorphisms, the functor �i W S�! Gr extends the original homotopy group
functor �i WS�f !Gr and the extension �i WS�!Gr is independent of the choice of R. Further, we can
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see that if a fibrant approximation K!K 0 and a point k of K are given, then �i .K; k/ is canonically
isomorphic to the i th homotopy group of the pointed Kan complex .K 0; k/.

Proof of Corollary 1.2 The result follows immediately from Theorems 1.1 and 2.7.

5 Diffeological principal bundles

In this section, we recall the notions of a diffeological principal bundle and a simplicial principal bundle
(Section 5.1) and establish Theorem 1.3, which characterizes diffeological principal bundles using the
singular functor SD

aff (Section 5.2).

5.1 Diffeological and simplicial principal bundles

In this subsection, we recall the three notions of principal bundles in D; the weakest notion is due to
Iglesias-Zemmour (see Definition 5.1(2)). We also make a brief review on simplicial principal bundles.

Let C be a category with finite products, and G a group in C. Then CG denotes the category of right
G–objects of C. For B 2 C, CG=B denotes the category of objects of CG over B , where B is regarded
as an object of CG with trivial G–action.

Definition 5.1 Let G be a diffeological group, and X a diffeological space.

(1) An object � WE!X of DG=X is called a locally trivial principal G–bundle if there exists an open
cover fUig of X such that for each i , a pullback diagram in D

Ui �G E

Ui X

proj �

with equivariant upper arrow exists; such an open cover fUig is called a trivialization open cover of
� WE!X . An object � WE!X of DG=X is called a D–numerable principal G–bundle if � admits a
D–numerable trivialization open cover (ie a trivialization open cover fUig which admits a smooth partition
of unity subordinate to it).

(2) An object � WE!X of DG=X is called a diffeological principalG–bundle if for any plot p WU !X ,
the pullback p�E! U is a locally trivial principal G–bundle.

(3) A morphism between locally trivial (or diffeological) principalG–bundles � WE!X and � 0 WE 0!X 0

is a commutative diagram in DG of the form

(5-1)
E E 0

X X 0

Of

� � 0

f
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Note that (5-1) is necessarily a pullback diagram in D; see [Iglesias-Zemmour 2013, 8.13 Note 2]. The
categories of locally trivial principal G–bundles, D–numerable principal G–bundles, and diffeological
principal G–bundles are denoted by PDG, PDGnum, and PDGdiff, respectively.

We have the obvious fully faithful embeddings

PDGnum ,! PDG ,! PDGdiff:

We see from the following examples that the two inclusions are proper (or strict). Recall from [Iglesias-
Zemmour 2013, 8.15] that for a diffeological group G and its diffeological subgroup H , the quotient
map � WG!G=H is a diffeological principal H–bundle.

Example 5.2 (1) Let 
 W Zm!Rn be a monomorphism of abelian groups with � WD 
.Zm/ dense.
Then the quotient diffeological group T� DRn=� is called an irrational torus. Since the underling
topology of T� is indiscrete, the diffeological principal Zm–bundle � W Rn! T� is not locally
trivial.

(2) Christensen and Wu constructed a nontrivial locally trivial principal R>0–bundle � W P !X with
X 'D �; see [Christensen and Wu 2021, Example 3.12]. By [Christensen and Wu 2021, Theorem
5.10], the locally trivial principal R>0–bundle � is not D–numerable.

To study diffeological principal bundles, we also need the notion of a simplicial principal bundle [May
1992, Chapter IV].

Definition 5.3 Let H be a simplicial group, and K a simplicial set.

(1) An object � WE!K of SH=K is called a principalH–bundle if for any map k W�Œp�!K, there
exists a pullback diagram

�Œp��H E

�Œp� K

Ok

proj

k

with Ok equivariant.

(2) A morphism between principal H–bundles � WE!K and � 0 WE 0!K 0 is a commutative diagram
in SH of the form

(5-2)
E E 0

K K 0

Of

� � 0

f

Note that (5-2) is necessarily a pullback diagram in S. The category of principal H–bundles are
denoted by PSH .
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Remark 5.4 An object � WE!K of SH=K is a principal H–bundle if and only if the action of H on
E is free and � induces the isomorphism E=H N�

Š
�!K; see [May 1992, Definition 18.1].

Let �0 WS! Set denote the 0th component functor, which is naturally isomorphic to the functor S.�Œ0�; � /.
The following simple result is used in the proof of Theorem 1.3.

Lemma 5.5 (1) The composite

D
SD

aff
�! S

�0
�! Set

is naturally isomorphic to the underlying set functor for D.

(2) The functor �0 W S! Set is a right adjoint.

Proof (1) Obvious.

(2) Define the functor d W Set! S to assign to a set A the discrete simplicial set whose 0th component
is A. Then we can easily see that .d; �0/ is an adjoint pair.

For a given set A, the discrete simplicial set dA is usually denoted by A.

5.2 Proof of Theorem 1.3

In this subsection, we prove Theorem 1.3; we begin by proving the “only if” part of (1) and (2), and then
prove the “if” part of (1).

Recall that SD
aff is a right adjoint (Remark 3.2(1)). Then we see that SD

aff.G/ is a simplicial group and that
SD

aff.�/ W S
D
aff.P /! SD

aff.X/ is an object of SSD
aff.G/=S

D
aff.X/.

Proof of the “only if” part of Theorem 1.3(1) Assume given a map k W �Œp� ! SD
aff.X/ and let

� WAp!X be the smooth map corresponding to k. Then we have a pullback diagram in D

Ap �G P

Ap X

proj �

�

with equivariant upper arrow; see [Iglesias-Zemmour 2013, 8.19]. Note that SD
aff is a right adjoint and

consider the commutative diagram in S consisting of two pullback squares with equivariant upper arrows

�Œp��SD
aff.G/ SD

aff.A
p/�SD

aff.G/ SD
aff.P /

�Œp� SD
aff.A

p/ SD
aff.X/

proj proj SD
aff.�/

SD
aff.�/

where �Œp�! SD
aff.A

p/ is the map corresponding to the p–simplex 1Ap of SD
aff.A

p/. Then the outer
rectangle gives the desired local triviality of SD

aff.�/; see [Mac Lane 1998, Exercise 8 on page 72].
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Proof of Theorem 1.3(2) Noting that SD
aff is a right adjoint, we see from part (1) that SD

aff induces a
functor from PDGdiff to PSSD

aff.G/. The faithfulness of the functor follows from Lemma 5.5(1).

Remark 5.6 The functor SD
aff W PDGdiff! PSSD

aff.G/ need not be fully faithful. In fact, let � W P !X

be the locally trivial principal R>0–bundle in Example 5.2(2), and let � 0 W P 0!X be the trivial principal
R>0–bundle. Since X 'D �, the diagram in D

X � X
x

1X

is commutative up to homotopy for x 2X . Thus, by Lemma 3.3, the diagram in S

SD
aff.X/ � SD

aff.X/
x

1SD
aff.X/

is also commutative up to homotopy. Hence, both SD
aff.P / and SD

aff.P
0/ are trivial principal SD

aff.R
>0/–

bundles (see [May 1992, Corollary 20.6]), which shows that SD
aff W PDR>0! PSSD

aff.R
>0/ is not fully

faithful. (From this argument, we also see that the faithful functor SD
aff W D! S is not fully faithful.)

Next we prove the following lemma, which is used in the proof of “if” part of Theorem 1.3(1).

Lemma 5.7 Let � W P ! X be an object of DG=X . Then � W P ! X is a diffeological principal
G–bundle if and only if � satisfies the following conditions:

(i) G acts on P freely and � W P !X induces a bijection P=G!X .

(ii) Given a solid arrow diagram in D

P

Ap X

�

�

there exists a dotted arrow, making the diagram commute.

(iii) The translation function � W P �X P !G, defined by u � �.u; v/D v, is smooth.

Proof We begin with the forward direction.

(i) Obvious.

(ii) By [Iglesias-Zemmour 2013, 8.19],

(5-3) ��P ŠAp �G in DG=Ap:

Hence, � satisfies condition (ii).
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(iii) We have only to show that � W P �X P !G preserves global plots.
Assume given a global plot f WAp! P �X P . Since the components f1 and f2 of f are global
plots of P with � ıf1 D � ıf2, we only have to show that the composite

��P �
Ap
��P ! P �

X
P �
�!G

is smooth, where � WD � ıf1 D � ıf2. By (5-3), we have the identifications

��P �
Ap
��P Š .Ap �G/ �

Ap
.Ap �G/ŠAp �G �G;

under which the composite ��P �Ap �
�P ! P �X P

�
�!G is just the smooth map

Ap �G �G!G

sending .x; g; h/ to g�1h.

For the reverse direction, assume we are given a smooth map � W Ap ! X . By condition (ii), we can
choose a section � of the pullback ��P O�

�!Ap of P �
�!X along �. Define the maps

Ap �G
��

 �
�! � �

�P

by ��.x; g/D �.x/ � g and  �.u/D
�
O�.u/; �

�
�. O�.u//; u

��
, respectively. Then we see that �� and  �

are mutually inverses in DG=Ap.

We give a proof of the “if” part of Theorem 1.3(1), completing the proof of Theorem 1.3.

Proof of the “if” part of Theorem 1.3(1) We only have to show that � W P ! X satisfies conditions
(i)–(iii) in Lemma 5.7. Throughout this proof, bear the following in mind: for a diffeological space Z,

� SD
aff.Z/0 is just the set Z,

� SD
aff.Z/ can be regarded as the set of global plots of Z.

Recall also that SD
aff is a right adjoint (see Remark 3.2(1)).

(i) Consider the pullback diagram in D

Px P

fxg X

�

for x 2X . By applying the singular functor SD
aff, we have the pullback diagram in S

SD
aff.Px/ SD

aff.P /

�Œ0� SD
aff.X/

SD
aff.�/

Since SD
aff.�/ is a principal SD

aff.G/–bundle, SD
aff.Px/Š S

D
aff.G/ in SSD

aff.G/, and hence Px ŠG in SetG
holds (see Lemma 5.5), which shows that � satisfies condition (i).
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(ii) Consider the pullback diagram in D

��P P

Ap X

�

�

and let k denote the simplicial map �Œp�! SD
aff.X/ corresponding to �. Then we have the commutative

diagram in S consisting of two pullback squares

k�SD
aff.P / SD

aff.�
�P / SD

aff.P /

�Œp� SD
aff.A

p/ SD
aff.X/

SD
aff.�/

SD
aff.�/

where �Œp�! SD
aff.A

p/ is the simplicial map corresponding to the p–simplex 1Ap of SD
aff.A

p/; see
[Mac Lane 1998, Exercise 8 on page 72]. Since SD

aff.�/ is a simplicial SD
aff.G/–bundle, k�SD

aff.P /!�Œp�

has a section s. Then the composite

�Œp� s
�! k�SD

aff.P /! SD
aff.P /

defines the desired lifting of � along � .

(iii) We show that the map � W P �X P ! G preserves global plots. Assume given a global plot
f D .f1; f2/ W Ap ! P �X P . Since f1 and f2 are global plots of P with � ı f1 D � ı f2, we set
� D � ı f1 D � ı f2 and let �1 and �2 denote the sections of ��P ! Ap corresponding to f1 and f2,
respectively. Then �1 and �2 correspond to sections of k�SD

aff.P /!�Œp�, which are denoted by s1 and s2,
respectively (see the verification of condition (ii)). Since the principal SD

aff.G/–bundle k�SD
aff.P /!�Œp�

is trivial, there exists a unique p–simplex g of SD
aff.G/ such that s1 �gD s2. We thus see that the composite

Ap
f
�! P �

X
P �
�!G

is just the global plot g.

Remark 5.8 (1) Recall the notion of a diffeological fiber bundle and that of a simplicial fiber bundle
from Section 3.3. We can then use the argument in the proof of the “only if” part of Theorem 1.3(1)
to prove the following: If � WE!X is a diffeological fiber bundle, then SD

aff.�/ WS
D
aff.E/!SD

aff.X/

is a simplicial fiber bundle.
This result along with Theorem 1.1 enables us to apply the Serre spectral sequence [May 1992,
Section 32] to diffeological fiber bundles (cf [Kihara 2023, Remark 3.8(3)]).

(2) If we restrict ourselves to locally trivial principal G–bundles (resp. locally trivial fiber bundles),
then the “only if” part of Theorem 1.3(1) (resp. the result stated in part (1)) remains true for the
functor SD (instead of SD

aff); see [Kihara 2023, Corollary 5.15(1)].
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(3) If we restrict ourselves to diffeological coverings, then the result stated in part (1) remains true for
the functor SD (instead of SD

aff); see Proposition 3.7. Similarly, if G is discrete, then Theorem 1.3
remains true for the functor SD (instead of SD

aff).

6 Characteristic classes of diffeological principal bundles

In this section, we first give a criterion for a simplicial principal bundle to be universal (Section 6.1).
We then use this criterion to determine the homotopy type of SD.X/ for a diffeological space X which
admits a diffeological principal bundle with contractible total space (Proposition 6.3), applying it to the
classifying space BG of a diffeological group G and exceptional diffeological spaces such as irrational
tori and R=Q (Section 6.2). We use the proof of Proposition 6.3 along with Theorems 1.1 and 1.3 to
prove Proposition 1.4 (Section 6.3). We end this section by discussing the sets of characteristic classes
for various classes of principal bundles and their relation (Section 6.4).

6.1 Universal simplicial principal bundles

In this subsection, we recall the basics of universal simplicial principal bundles and give a criterion for a
simplicial principal bundle to be universal.

Let H be a simplicial group. A principal H–bundle $ WE!L is called universal if L is Kan (ie fibrant
in S) and the natural map

ŒK;L�! fisomorphism classes of principal H–bundles over Kg; Œf � 7! Œf �E�;

is bijective; the base L of a universal principal H–bundle $ W E ! L is called a classifying complex
of H . By a simple argument, a classifying complex of H is unique up to homotopy. Recall that the
W –construction q WWH !WH is a universal principal H–bundle [Goerss and Jardine 1999, Chapter V,
Section 4; May 1992, Section 21] and that WH is contractible [May 1992, Proposition 21.5].

Lemma 6.1 Let H be a simplicial group , and $ WE! L be a principal H–bundle. Then the following
are equivalent :

(i) $ WE! L is universal.

(ii) L is Kan and the canonical map E!� is a weak equivalence.

(iii) E is a contractible Kan complex.

Proof (ii)() (iii) Noticing that H is Kan [May 1992, Theorem 17.1], we see that L is Kan if and
only if E is Kan (see [May 1992, Proposition 7.5]), and hence that (ii)() (iii).

(i)() (iii) We have only to prove that under the assumption that L is Kan,

$ WE! L is universal () E is contractible

(see [May 1992, Proposition 7.5]).
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Since q WWH !WH is universal, we have a morphism of principal H–bundles

(6-1)
E WH

L WH

$ q

'

Note thatH and the four simplicial sets in (6-1) are Kan and consider the morphism between the homotopy
exact sequences induced by (6-1). Then we have the equivalences

$ WE! L is universal () ' W L!WH is a homotopy equivalence () E is contractible.

Remark 6.2 Lemma 6.1 can be regarded as a variant of [Goerss and Jardine 1999, Chapter V, Theorem
3.9]. However, we record this lemma along with its proof for the following two reasons: one reason is to
avoid using the model structure on SG (see [Goerss and Jardine 1999, Section V.2]) and the other reason
is to emphasize the importance of the fibrancy of the base (cf the proof of Proposition 6.3).

6.2 Diffeological principal bundles with contractible total space

In this subsection, we determine the homotopy type of SD.X/ for a diffeological space X which admits
a diffeological principal bundle � WE!X with E weakly contractible. Here, a diffeological space Z is
called weakly contractible if the canonical map Z!� is a weak equivalence. We can easily see that

Z is weakly contractible () SD.Z/' � () �D
� .Z; z/D 0 for any z 2Z

(see Remark 2.8(1), Corollary 2.6(2), and Theorem 2.7).

Proposition 6.3 Let G be a diffeological group and � WE!X a diffeological principal G–bundle with
E weakly contractible. Then SD.X/ is a classifying complex of the simplicial group SD.G/.

Proof By Theorem 1.3, SD
aff.�/ W S

D
aff.E/! SD

aff.X/ is a principal SD
aff.G/–bundle. Let us construct a

principal SD
aff.G/–bundle SD

aff.�/
0 W SD

aff.E/
0! SD

aff.X/ˆ (see Section 4.1) and a morphism of principal
SD

aff.G/–bundles

SD
aff.E/ SD

aff.E/
0

SD
aff.X/ SD

aff.X/ˆ

SD
aff.�/ SD

aff.�/
0

First, choose a classifying map 'E W SD
aff.X/!W SD

aff.G/. Then note that W SD
aff.G/ is Kan and choose

an extension '0E W S
D
aff.X/ˆ!W SD

aff.G/. By setting SD
aff.E/

0D '0E
�
WSD

aff.G/, we then obtain the desired
diagram.

Thus, we can use [Gabriel and Zisman 1967, Chapter III, Theorem 4.2] to see that SD
aff.E/ ,! SD

aff.E/
0 is

a weak equivalence. Noticing that SD
aff.E/!� is a weak equivalence (see Theorem 1.1), we see from

Lemma 6.1 that SD
aff.�/

0 W SD
aff.E/

0! SD
aff.X/ˆ is a universal principal SD

aff.G/–bundle. Hence, SD.X/ is
a classifying complex of SD

aff.G/, and hence of SD.G/ (see Theorem 1.1).
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Corollary 6.4 Let G be a diffeological group. Then the singular complex SD.BG/ of the classifying
space BG is a classifying complex of the simplicial group SD.G/.

Proof Recall from [Christensen and Wu 2021, Corollary 5.5] that EG is smoothly contractible. Then
the result is immediate from Proposition 6.3.

Corollary 6.5 Suppose that X is a pointed diffeological space which has the weakly contractible
universal covering. Then the singular complex SD.X/ is the Eilenberg–Mac Lane complex K.�D

1 .X/; 1/.
In particular , the (co)homology of X is just the (co)homology of the group �D

1 .X/.

Proof Recall from [Iglesias-Zemmour 2013, 8.26] that the universal covering � WZ!X is a diffeological
principal �D

1 .X/–bundle. Then the result follows from Proposition 6.3.

Remark 6.6 (1) We can prove Corollary 6.4, using neither the functor SD
aff nor Theorem 1.1. In

fact, by Remark 5.8(2) and Lemma 6.1, SD.�G/ W S
D.EG/! SD.BG/ is a universal principal

SD.G/–bundle. However, the construction in the proof of Proposition 6.3 is useful in the proof of
Proposition 1.4.

(2) We can also prove Corollary 6.5, using neither the functor SD
aff nor Theorem 1.1. In fact, Corollary 6.5

follows from Proposition 3.7. Alternatively, Corollary 6.5 follows from [Iglesias-Zemmour 2013,
8.24] and Theorem 2.7.

Corollary 6.5 determines the homotopy type of SD.X/, and hence the (co)homology of X for well-known
homogeneous diffeological spaces X such as irrational tori and R=Q.

Example 6.7 (1) Let 
 W Zm!Rn be a monomorphism of abelian groups with � WD 
.Zm/ dense,
and consider the irrational torus T� DRn=� . By Corollary 6.5, the singular complex SD.T�/ of
T� is just the m–dimensional torus K.Zm; 1/. Hence, H�.T� IZ/Šƒ.Zm/ holds.

(2) The singular complex SD.R=Q/ of the quotient diffeological group R=Q is just the rationalized
circleK.Q; 1/, and hence zH�.R=QIZ/DH1.R=QIZ/DQ. More generally, let A be a countable
subgroup of F (DR;C). Then the singular complex SD.F=A/ of the quotient diffeological group
F=A is just K.A; 1/.

Remark 6.8 Iglesias-Zemmour [2024, Corollary, page 253] and Kuribayashi [2020, Remark 2.9; 2021,
Proposition 3.2] obtained calculational results similar to Example 6.7(1) for other cohomology theories of
irrational tori. On the other hand, the de Rham cohomology H�

dR
.T�/ is isomorphic to ƒ.Rn/ [Iglesias-

Zemmour 2013, Exercise 119], which along with Example 6.7(1), shows that the de Rham theorem does
not hold for irrational tori. This motivates the study of a forthcoming paper [Kihara � 2024].

Next we introduce new aspherical homogeneous diffeological spaces, using Corollary 6.5.

Example 6.9 Let k be a countable subfield of F (DR;C) (eg an algebraic number field or a countable
extension of Q such as Q\R or Q). For an algebraic group G over k, we can consider the homogeneous
diffeological space G.F/=G.k/.
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If G is a unipotent algebraic group over k, then the exponential map exp W g! G is an isomorphism
of algebraic varieties, where g is the Lie algebra of G; see [Milne 2017, page 289]. Thus, we have the
diffeomorphism

g.F/
exp
Š
�!G.F/

and the universal covering
G.F/!G.F/=G.k/

of G.F/=G.k/. Hence, by Corollary 6.5,

SD.G.F/=G.k//DK.G.k/; 1/;

so the (co)homology of G.F/=G.k/ is that of the group G.k/. The group Un.k/ of upper triangular
unipotent matrices and the Hisenberg group Hn.k/ (see [Onishchik and Vinberg 1994, page 54]) are
typical examples of unipotent algebraic groups.

Further if G is defined over a subring k0 of k, then

SD.G.F/=G.k0//DK.G.k0/; 1/:

We are interested in the case where k0 is the ring Ok of integers of an algebraic number field k. If k
is an algebraic number field of degree n with Q ¤ k ¤ R, then k0 (D Ok) is a finitely generated free
Z–module of rank n, and hence is dense in R.

6.3 Proof of Proposition 1.4

In this subsection, we prove Proposition 1.4.

Proof of Proposition 1.4 Let �G WEG! BG denote the universal D–numerable principal G–bundle
constructed in [Christensen and Wu 2021]. Then by Theorem 1.3(1), SD

aff.�G/ W S
D
aff.EG/! SD

aff.BG/ is
a principal SD

aff.G/–bundle.

We prove the result in two steps.

Step 1: construction of a universal principal SD
aff.G/–bundle which is an extension of SD

aff.�G /

Recall from [Christensen and Wu 2021, Corollary 5.5] that EG is smoothly contractible. Then, by the
proof of Proposition 6.3, we have a universal principal SD

aff.G/–bundle SD
aff.�G/

0 WSD
aff.EG/

0!SD
aff.BG/ˆ

and a morphism of principal SD
aff.G/–bundles

SD
aff.EG/ SD

aff.EG/
0

SD
aff.BG/ SD

aff.BG/ˆ

SD
aff.�G/ SD

aff.�G/
0

Step 2: definition of ˛.P/ Let � W P !X be a diffeological principal G–bundle. Since

SD
aff.�/ W S

D
aff.P /! SD

aff.X/

is a principal SD
aff.G/–bundle (Theorem 1.3(1)), we have a classifying map 'P W SD

aff.X/! SD
aff.BG/ˆ.
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Note that H�.ZIA/ WD H�Hom.ZSD.Z/; A/ Š H�Hom.ZSD
aff.Z/; A/ (see Corollary 3.5) and that

H�Hom.ZK;A/ ŠH�Hom.ZKˆ; A/. Then we can define ˛.P / 2Hk.X IA/ by ˛.P / D '�P˛. We
can use Theorem 1.3 to show that ˛.f �P /D f �˛.P /, and hence that ˛. � / defines a characteristic class
for diffeological principal G–bundles.

Similarly, we can use Theorem 1.3 to show that ˛. � / extends the characteristic class ˛. � / for D–numerable
principal G–bundles (see Section 1 for the definition).

Remark 6.10 The author does not know whether SD
aff.BG/ is always Kan. If SD

aff.BG/ is always Kan,
the proof of Proposition 1.4 becomes simpler (see Lemma 6.1).

Let us apply Proposition 1.4 to special cases.

Example 6.11 (1) Let � WZ!X be a Galois covering with structure group �; see [Iglesias-Zemmour
2013, page 262]. Then for a given class ˛2Hk.�IA/ (ŠHk.B�IA/), the class ˛.Z/2Hk.X IA/

is defined by Proposition 1.4.

(2) Let G be a diffeological group and H a diffeological subgroup of G. Then for a given class
˛ 2 Hk.BH IA/, the class ˛.G/ 2 Hk.G=H IA/ is defined by Proposition 1.4; see [Iglesias-
Zemmour 2013, 8.15].

If a relevant diffeological principal bundle in Example 6.11 happens to be D–numerable, then the class at
issue is just the image of ˛ under the homomorphism induced by the classifying map. However, this is not
the case in general. See the following example, which specializes both parts (1) and (2) of Example 6.11.

Example 6.12 Let 
 W Zm!Rn be a monomorphism of abelian groups with � WD 
.Zm/ dense, and
consider the diffeological principal Zm–bundle P WDRn �

�!T� over the irrational torus T� (see Examples
6.7(1) and 6.11(2)); note that T� is a diffeological group and that � is the universal covering of T� .

Since SD
aff.T�/ is already Kan (see [Christensen and Wu 2014, Proposition 4.30 or Theorem 4.34]),

SD
aff.�/ WS

D
aff.P /!SD

aff.T�/ is a universal principal Zm–bundle (see Step 1 in the proof of Proposition 1.4),
and hence, we have a classifying map 'P W SD

aff.T�/ ! SD
aff.BZm/ˆ which is obviously a homotopy

equivalence in S.

Since SD
aff.BZm/ˆ is just the Eilenberg–Mac Lane complex K.Zm; 1/, H�.BZmIA/ Š .ƒZm/˝ A.

Thus, for any ˛ 2 H�.BZmIA/, the characteristic class ˛.P / 2 H�.T� IA/ is just the image '�P .˛/
under the isomorphism H�.T� IA/

'�P
Š
 �H�.BZmIA/.

On the other hand, since � W P ! T� is not locally trivial (see Example 5.2(1)), P has no classifying
map to BZm. Further, every nonzero element ˇ 2 zH�.T� IA/ is not contained in the image of the
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homomorphism induced by any smooth map f W T� ! BZm. In fact, we have the commutative diagram

SD.T�/ SD.BZm/

S. zT�/ S.eBZm/

SD.f /

S. Qf /

(see Section 2.3). Since SD.BZm/! S.eBZm/ is a homotopy equivalence (see [Kihara 2023, Corollary
5.16]) and S. zT�/' �, SD.f / is homotopic to a constant map. (We actually show that BZm is smoothly
homotopy equivalent to the torus Tm, and hence that f is smoothly homotopic to a constant map; see a
forthcoming paper.)

6.4 Sets of characteristic classes for the classes PDG , PDGnum, and PDGdiff

In this subsection, we discuss the sets of characteristic classes for the classes (or categories) PDG,
PDGnum, and PDGdiff (see Definition 5.1) and their relation.

Let P denote one of the categories PDG, PDGnum, and PDGdiff. For an abelian group A, char.PIA/
denotes the set of characteristic classes with coefficients in A for the class P. Then, by [Christensen and
Wu 2021, Theorem 5.10] and Proposition 1.4, we have the natural bijection

char.PDGnumIA/ŠH
�.BGIA/

and the retract diagram

char.PDGnumIA/ char.PDGdiffIA/ char.PDGnumIA/
ext res

1

where res is the obvious restriction map and ext is the extension map introduced in Proposition 1.4.

We can also show that char.PDGIA/Š char.PDGnumIA/. To prove this, we define the map

ext W char.PDGnumIA/! char.PDGIA/

as follows. Let ˛. � / be an element of char.PDGnumIA/ corresponding to ˛ 2H�.BGIA/. For a given
locally trivial principal G–bundle � W P !X , consider the CW –approximation jSD.X/jD

pX
�!X in D,

which is the counit of the adjoint pair (j � jD; SD); see Remark 2.8(2) and [Kihara 2023, Section 3]. Since
we can prove that every CW –complex in D is smoothly paracompact (see [Kihara � 2024]), the pullback
p�XP is a D–numerable principal G–bundle. Thus, we can define the characteristic class ˛.P / of P by
˛.P /D ˛.p�XP / under the identification H�.X IA/ŠH�.jSD.X/jD; A/. Then it is clear that the map
ext W char.PDGnumIA/! char.PDGIA/ and the obvious restriction map

res W char.PDGIA/! char.PDGnumIA/

are mutually inverses. We can easily see from Theorem 1.3 that ext W char.PDGnumIA/! char.PDGIA/

is just the corestriction of ext W char.PDGnumIA/! char.PDGdiffIA/. (Recall that the class of locally
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trivial principal G–bundles also does not have the homotopy invariance property with respect to pullback
and hence that it has no classifying space; see [Christensen and Wu 2021, Section 3].)

We end this section by raising a problem on diffeological principal bundles.

Problem Let X be a CW –complex in D (or more generally, a cofibrant diffeological space); see [Kihara
2023, Section 3.1]. Is every diffeological principal G–bundle over X locally trivial?

This problem asks whether there exists a non-locally-trivial diffeological principal bundle over a nice
diffeological space; all the non-locally-trivial diffeological principal bundles the author knows are ones
over bad diffeological spaces.

If the problem is solved affirmatively, we can use the CW –approximation jSD.X/jD
pX
�!X to directly

construct the map
char.PDGnumIA/

ext
�! char.PDGdiffIA/

which is the inverse of char.PDGdiffIA/
res
�! char.PDGnumIA/.

Further, if the problem is solved affirmatively, then we can replace the singular functor SD
aff with SD in

Theorem 1.3 and Remark 5.8(1).

Remark 6.13 (1) Results similar to those mentioned above hold in the category T of topological spaces.
More precisely, the homotopy invariance property with respect to pullback need not hold for topological
principal G–bundles which are not numerable, and hence the class of topological principal G–bundles
does not have a classifying space; see [Andrade 2013; Christensen and Wu 2021, Section 3; Goodwillie
2012]. However, we have two ways of extending the characteristic class associated to a cohomology class
˛ of the (topological) classifying space BG; one uses the CW –approximation jS.X/j pX�!X of the base
and the other uses the theory of simplicial principal bundles. We can easily see that they define the same
extension; the resulting map is denoted by

char.PTGnumIA/
ext
�! char.PTGIA/;

where char.PTGnumIA/ and char.PTGIA/ are defined in a way similar to the diffeological case. We
then see that

char.PTGnumIA/ŠH
�.BGIA/

and that
char.PTGnumIA/

ext
res
�! � char.PTGIA/

are mutually inverses.

The results here remain true even if T is replaced with the category C0 of arc-generated spaces; see
[Kihara 2023, Proposition 5.14(1)].

(2) Since the underlying topological space functor Q� W D! C0 preserves finite products [Kihara 2019,
Proposition 2.13], it induces the functor

Q� W PDG! PC0 zG
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(see [Kihara 2023, Lemma 5.7 and Remark 5.8]). Thus, we use this functor to study the relation between
characteristic classes of smooth principal G–bundles and ones of continuous principal G–bundles.

The natural inclusion SDX ,! S zX (see Section 2.3) induces the natural homomorphism

H�.X IA/
 X
 �H�. zX IA/;

which along with [Kihara 2023, Proposition 5.14], defines the horizontal arrows in the commutative
diagram

H�.BGIA/ H�.B zGIA/

char.PDGnumIA/ char.PC0 zGnumIA/

char.PDGIA/ char.PC0 zGIA/

Š

 BG
Š

ext

Š ext

Š

We can easily see that the equality

. BG˛/.P /D  X .˛. zP //

holds for P 2 PDG.

If G is a Lie group (or more generally, in the class VD), then H�.BGIA/  BG
 �� H�.B zGIA/ is an

isomorphism (see [Kihara 2023, Theorem 11.2, and Corollaries 1.6 and 5.16]), and hence all the arrows
in the above commutative diagram are bijective. (Here, a Lie group is defined to be a group in the
category C1 of C1–manifolds in the sense of [Kriegl and Michor 1997, Section 27]; see [Kihara 2023,
Section 2.2].)
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