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Smooth singular complexes and diffeological principal bundles

HIROSHI KIHARA

In previous papers, we used the standard simplices A? (p > 0) endowed with diffeologies having several
“good” properties to introduce the singular complex S?(X) of a diffeological space X. (Here, & denotes
the category of diffeological spaces.) On the other hand, Hector and Christensen—Wu used the standard
simplices Afub (p > 0) endowed with the subdiffeology of R?T! and the standard affine p—spaces A?
(p = 0) to introduce the singular complexes Sfﬁb (X)and S Ef‘f’f()( ), respectively, of a diffeological space X .
We prove that S?(X) is a fibrant approximation of both SZ, (X) and S;%(X). This result immediately
implies that the homotopy groups of S, (X) and S:4(X) are isomorphic to the smooth homotopy groups

of X, which enables us to give a positive answer to a conjecture of Christensen and Wu. Further, we

sub

characterize diffeological principal bundles (ie principal bundles in the sense of Iglesias-Zemmour) using
the singular functor S:. By using these results, we extend the characteristic classes for @-numerable
principal bundles to those for diffeological principal bundles.

58A40; 18F15, 55U10

1 Introduction

Let 9 denote the category of diffeological spaces. In [Kihara 2019], we constructed diffeologies on
AP = {(xo, s Xp) €ERPTL IS % =1, x; > 0 for any i} (p = 0). We called them good because they
allowed us to define the singular complex S (X) of a diffeological space X, which enables us to introduce
a model structure on the category 9 (see Section 2.2). Further, in [Kihara 2023], we also used the singular
functor S¥ to introduce a simplicial category structure on %, and developed a smooth homotopy theory
based on the simplicial and model category structures on 9.

On the other hand, Hector [1995] used the sets A? endowed with the subdiffeology of R?*1 (p > 0) to

define the singular complex Ss%b(X ) of a diffeological space X. His singular complex is also used in
[Kuribayashi 2020]. Christensen and Wu [2014] also used the affine spaces

AP = {(xo,...,xp)eRp+1 { in = 1}

endowed with the subdiffeology of R?*! (p > 0) to define the singular complex S ;%(X ) in an attempt to
construct a model structure on %. Their singular complex is also used in [Bunk 2022; Kuribayashi 2020;
2021].

As is described in the references cited above, the singular complexes S¥(X), Ssgﬁb (X),and S sff(X ) are
playing crucial roles in the smooth homotopical study of diffeological spaces. However, the natural weak
equivalences between them have not yet been established.
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1914 Hiroshi Kihara

In this paper, we show that the singular complexes S¥(X), Sgub(X ), and S aff(X ) are weakly equivalent
(Theorem 1.1). As a corollary of this result, we identify the homotopy groups of S dﬁ(X ) and Ssgﬁb (X)) with
the smooth homotopy groups of X, proving a conjecture of Christensen and Wu (Corollary 1.2). Though
we mainly use the singular functor S¥, we also use the singular functor S ¢ to characterize diffeological
principal bundles (ie principal bundles in the sense of Iglesias-Zemmour) (Theorem 1.3). This theorem,
along with the weak equivalence between Saff(X ) and S¥(X), is used to extend the characteristic classes
for Y—numerable principal G—bundles to those for diffeological principal G-bundles (Proposition 1.4).

Throughout this paper, @ and & denote the category of diffeological spaces and the category of simplicial
sets, respectively. (See [Goerss and Jardine 1999; May 1992; Kihara 2014] for the basics of simplicial
homotopy theory.)

Weak equivalences between S“(X), S_, (X), and S_7.(X)

The following theorem is the main result of this paper. Note that the canonical maps A? BUN Afub — AP
(p = 0) induce natural morphisms of simplicial sets S aff(X ) —> Ssub(X ) — S?(X) (see Lemma 3.1(3)
and Proposition 3.4); note that the first and second canonical maps induce the second and first morphisms
of singular complexes, respectively. Recall that S (X) is always Kan (ie fibrant in the category ¥); see
Corollary 2.6(1) (cf Remark 3.2(2)).

Theorem 1.1 The natural morphisms of simplicial sets
aff(X) — S@ub(X) — S@(X)
are weak equivalences. In particular, S (X) is a fibrant approximation of both S aff(X ) and Sgub(X ).

That S (X) is a fibrant approximation of Ssgﬁb (X) was announced in [Kihara 2019, Remark A.5].

Next we recall that 7z; (S¥(X), x) is isomorphic to the smooth homotopy group nfb (X, x) (Theorem 2.7),
and use Theorem 1.1 to identify the homotopy groups of Saff(X ) and SgUlb (X); see Section 4.4 for the
homotopy groups of a simplicial set which need not satisfy the Kan condition.

Corollary 1.2 Let (X, x) be a pointed diffeological space. Then both r; (S, f(X ), x) and ; (S b (X)), x)
are naturally isomorphic to the smooth homotopy group nl.@ (X, x) fori >0.

Christensen and Wu [2014, Theorem 4.11] showed that if Sdff(X ) is fibrant, then ; (S (X)), x) is
isomorphic to the smooth homotopy group JT@ (X, x) fori >0, and conjectured that for every diffeological
space X, m; (S (X), x) is isomorphic to n@(X x) for i > 0 [Christensen and Wu 2014, page 1272].
Corollary 1.2 contains their conjecture.

(Co)homology of diffeological spaces Following [Kihara 2023, Section 3.1], we define the homology
H«(X; A) and the cohomology H*(X; A) of a diffeological space X with coefficients in an abelian
group A by

Hi(X; A) = Ho(ZS?(X)® A), H*(X; A) = H*(Hom(ZS"(X), A)),
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Smooth singular complexes and diffeological principal bundles 1915

where the simplicial abelian group Z K freely generated by a simplicial set K is regarded as a chain
complex by setting d = Y _(—1)"d;. It follows from Theorem 1.1 that the (co)homology of X is naturally
isomorphic to the (co)homologies defined using S fﬁb (X) and Sf?f(X ) instead of S¥(X). However, this
fact is actually proved in Section 3.2 as a key to proving Theorem 1.1; the (co)homology of X is also
naturally isomorphic to the cubic (co)homology introduced in [Iglesias-Zemmour 2013, pages 176—-186]
(Remark 3.6).

Application to diffeological principal bundles

Let G be a diffeological group. A @—numerable principal G-bundle 7 : P — X is a principal G-bundle
which admits a trivialization open cover {U; } of X and a smooth partition of unity subordinate to it. On
the other hand, Iglesias-Zemmour introduced a weaker notion of a principal G—bundle; such a principal
G-bundle, referred to as a diffeological principal G-bundle, is defined by local triviality of the pullback
along any plot (Definition 5.1(2)).

Though we mainly use the singular complexes S (X) in smooth homotopy theory, the singular complexes
SEfo(X ), along with Theorem 1.1 play an essential role in the study of diffeological principal bundles, as
explained below.

Characterization of diffeological principal G-bundles Let 6 be a category with finite products, and
G a group in 6. Then 6G denotes the category of right G—objects of € (ie objects of € endowed with a
right G—action). For B € 6, €G/ B denotes the category of objects of 6G over B, where B is regarded
as an object of 6€G with trivial G—action.

Since Si?f: % — ¢ is aright adjoint (Remark 3.2(1)), Sg?f induces the functor G/ X to SPSE%(G)/S%(X).
We then have the following characterization theorem for diffeological principal G—bundles (the notion of
a simplicial principal bundle is introduced in Definition 5.3).

Theorem 1.3 (1) Letw: P — X be an object of 9G/X. Then w: P — X is a diffeological principal
G-bundle if and only if
Suir(0): S (P) = Si(X)

is a principal Sffcf(G)—bundIe.

(2) The functor ng: 9 — ¥ induces a faithful functor from the category P9 Gy of ditfeological
principal G-bundles to the category P?S?ff(G) of principal S;Jff(G)—bundles.

The essential reason why S z%f is useful in the study of diffeological principal G-bundles is because S E?f(X )
can be regarded as the set of global plots of X. We can use Theorem 1.3 to calculate the (co)homology
of exceptional diffeological spaces such as irrational tori and R/Q (see Section 2.3 and Example 6.7);
other cohomology theories of irrational tori were calculated by Iglesias-Zemmour and Kuribayashi (see
Remark 6.8).
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1916 Hiroshi Kihara

Characteristic classes of diffeological principal G-bundles We apply Theorem 1.3 to construct
characteristic classes for diffeological principal G—bundles.

A characteristic class for a class P of smooth principal G-bundles is a rule assigning to a principal
G-bundle 77 : P — X in P a cohomology class a(P) of X such thata(f*P) = f*a(P). Christensen and
Wu [2021, Theorem 5.10] constructed the universal Y—numerable principal G-bundle 7g: EG — BG
and proved that the set of isomorphism classes of %—numerable principal G-bundles over X bijectively
corresponds to the smooth homotopy set [X, BG]g. Thus, a cohomology class @ € H¥(BG; A) defines
the characteristic class «(-) for the class of @—numerable principal G-bundles. More precisely, the
characteristic class a(P) € H*(X; A) of a Y—numerable principal G—bundle : P — X is defined by

a(P)= fpa,
where fp: X — BG is a classifying map of P.

We would like to extend the characteristic class «(-) to the class of diffeological principal G-bundles.
Since pullbacks of EG are necessarily @—numerable, the above definition of the characteristic class «(-)
does not apply to the class of diffeological principal G—bundles. Further, since the class of diffeological
principal G-bundles does not have the homotopy invariance property with respect to pullback, it has no
classifying space; see [Christensen and Wu 2021, Section 3].

Nevertheless, we can prove the following result.

Proposition 1.4 Let G be a diffeological group and « an element of HX(BG; A). Then the characteristic
class «(-) for Y—numerable principal G-bundles extends to a characteristic class for diffeological
principal G—bundles.

This paper is organized as follows. In Section 2, we recall the basic notions and results on diffeological
spaces and the singular functor S?. In Section 3, we briefly review the singular functors Sfﬂb and S f?f,
and show that there exist natural morphisms between S ;f?f(X ), S fgb(X ), and S (X) which induce isomor-
phisms on (co)homology. We prove Theorem 1.1 and Corollary 1.2 in Section 4. In Section 5, we recall
the notions of a diffeological principal bundle and a simplicial principal bundle, and prove Theorem 1.3.
In Section 6, we prove Proposition 1.4 and discuss the sets of characteristic classes for the three classes

P@G, P9 Gyum, and P9 G of smooth principal G-bundles (see Definition 5.1(3) for these three classes).

2 Diffeological spaces

In this section, we first recall the convenient properties of the category % of diffeological spaces, along
with the adjoint pair *: % 2 €% : R of the underlying topological space functor and its right adjoint
(Section 2.1). Then we recall the standard simplices A? (p > 0) and the adjoint pair |- |g: ¥ 2 D :S? of
the realization and singular functors (see Section 2.2). Last, we make a brief review of some results of
[Kihara 2023], in which the adjoint pairs (%, R) and (| - |5, S¥) play an essential role (Section 2.3).
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Smooth singular complexes and diffeological principal bundles 1917

2.1 Categories & and €¢°

In this subsection, we summarize the convenient properties of the category & of diffeological spaces,
recalling the adjoint pair ~: & = €° : R of the underlying topological space functor and its right adjoint;
see [Iglesias-Zemmour 2013; Kihara 2019] for full details.

Let us begin with the definition of a diffeological space. A parametrization of a set X is a (set-theoretic)
map p: U — X, where U is an open subset of R” for some n.

Definition 2.1 (1) A diffeological space is a set X together with a specified set Dy of parametrizations
of X satisfying the following conditions:
(i) Covering Every constant parametrization p: U — X is in Dy.
(i) Locality Let p: U — X be a parametrization such that there exists an open cover {U;} of U
satisfying p|y, € Dx. Then p isin Dy.
(iii) Smooth compatibility Let p: U — X be in Dy. Then for every n > 0, every open set V/
of R”, and every smooth map F:V — U, po F isin Dy.
The set Dy is called the diffeology of X, and its elements are called plots.
(2) Let X = (X, Dyx)and Y = (Y, Dy) be diffeological spaces, and let f: X — Y be a (set-theoretic)
map. We say that f is smooth if f o p € Dy forevery p € Dy.

The convenient properties of 29 are summarized in the following proposition. Recall that a topological
space X is called arc-generated if its topology is final for the continuous curves from R to X, and let €°
denote the category of arc-generated spaces and continuous maps. See [Frolicher and Kriegl 1988, pages
230-233] for initial and final structures with respect to the underlying set functor.

Proposition 2.2 (1) The category 9 has initial and final structures with respect to the underlying set
functor. In particular, % is complete and cocomplete.

(2) The category 9 is cartesian closed.

(3) The underlying set functor % — Set is factored as the underlying topological space functor
7: 9 — 40 followed by the underlying set functor €° — Set. Further, the functor = : % — €° has a
right adjoint R: €° — 9.

Proof See [Christensen et al. 2014, page 90; Iglesias-Zemmour 2013, pages 35-36; Kihara 2019,
Propositions 2.1 and 2.10]. a

The following remark relates to Proposition 2.2.

Remark 2.3 (1) Let X be a concrete category (ie a category equipped with a faithful functor to
Set); the faithful functor X — Set is called the underlying set functor. See [Frolicher and Kriegl
1988, Section 8.8] for the notions of an X—embedding, an X—subspace, an X—quotient map, and an
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1918 Hiroshi Kihara

X—quotient space. 9—subspaces and Z—quotient spaces are usually called diffeological subspaces
and diffeological quotient spaces, respectively.

(2) For Proposition 2.2(3), recall that the underlying topological space Aofa diffeological space
A = (A, Dy) is defined to be the set A endowed with the final topology for D 4 [Iglesias-Zemmour
2013, 2.8] and that R assigns to an arc-generated space X the set X endowed with the diffeology

D grx = {continuous parametrizations in X }.
Then we can easily see that “o R = Id¢o and that the unit 4 — RA of the adjoint pair (~, R) is

set-theoretically the identity map.

(3) The notion of an arc-generated space is equivalent to that of a A—generated space (see [Christensen
et al. 2014; Kihara 2019, Section 2.2]). The categories % and %° share convenient properties (1)
and (2) in Proposition 2.2, which often enables us to deal with @ and €° simultaneously (see
[Kihara 2023]). See [Kihara 2023, Remark 2.4] for the reason why %9 is the most suitable category
as a target category of the underlying topological space functor for diffeological spaces.

2.2 Standard simplices A?
In this subsection, we recall the standard simplices A? (p > 0), along with the adjoint pair | - |g: ¥ 2 % : S?

of the realization and singular functors.

In [Kihara 2019], we introduced a model structure on the category %. The principal part of our construction
of a model structure on 9 is the construction of so-called good diffeologies on the sets

AP = {(xo,...,xp)ER‘”‘"1 ‘ in =1, x; ZOforanyi} (p=0)

which enable us to define weak equivalences, fibrations, and cofibrations and to verify the model axioms
(see Remark 2.8). The required properties of the diffeologies on A? (p > 0) are expressed in the following
four axioms:

Axiom 1 The underlying topological space of AP is the topological standard p—simplex AP

wop for p = 0.

Recall that f: A? — A? is an affine map if f preserves convex combinations.
Axiom 2 Any affine map f: AP — A is smooth.

For K € &, the simplex category A |, K is defined to be the full subcategory of the overcategory & | K
consisting of maps o: A[n] — K. By Axiom 2, we can consider the diagram A | K — 9% sending
o: A[n] — K to A". Thus, we define the realization functor

| . |g7)i S —>9D
by |K|g = colimp | g A".
Consider the smooth map |A[p]|ls < |A[p]la = AP induced by the inclusion of the boundary A[p]
into A[p].
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Axiom 3 The canonical smooth injection

|A[pllg < AP
is a Y—embedding.

The %—homotopical notions, especially the notion of a @—deformation retract, are defined in the same
manner as in the category of topological spaces by using the unit interval / = [0, 1] endowed with a
diffeology via the canonical bijection with A! [Kihara 2019, Section 2.4]. The k”* horn of AP is a
diffeological subspace of A? defined by

Af = {(x0,...,xp) € AP | x; =0 for some i # k}.
Axiom 4 The k™ horn A} is a %—deformation retract of AP for p > 1 and 0 < k < p.

For a subset A of the affine p—space A? = {(xo, ..., Xp) € RPFHL| S x; = 1}, Agup denotes the set A
endowed with the subdiffeology of A? (and hence of R?*1). The diffeological spaces A‘:ub (p=0)
satisfy Axioms 1 and 2, but Als’ub satisfies neither Axiom 3 nor 4 for p > 2 [Kihara 2019, Proposition A.2].
Thus, we must construct a new diffeology on AP, at least for p > 2.

Let (i) denote the vertex (0,...,1(;y,...,0) of A?, and let d ! denote the affine map from A?~1 to A?,

defined by ) fko<i

4" () = (k+1) if k>i.

Definition 2.4 We define the standard p—simplices AP (p > 0) inductively. Set A? = Afub for p <1.
Suppose that the diffeologies on Af (k< p) are defined. We define the map

@it AP x[0,1) — AP

by @i (x,t) = (1 —1)(i) + td'(x), and endow A? with the final structure for the maps ¢y, . . ., ¢p.
The following result is established in [Kihara 2019, Propositions 3.2, 5.1, 7.1, and 8.1].
Proposition 2.5 The standard p—simplices AP (p > 0) in Definition 2.4 satisty Axioms [-4.

Without explicit mention, the symbol A? denotes the standard p—simplex defined in Definition 2.4 and a
subset of A? is endowed with the subdiffeology of A?. Since the diffeology of A? is the subdiffeology
of A? for p <1, the @-homotopical notions, especially the notion of a 9—deformation retract, coincide
with the ordinary smooth homotopical notions in the theory of diffeological spaces [Iglesias-Zemmour
2013, page 108; Kihara 2019, Remark 2.14].

Since A* = {AP} is a cosimplicial diffeological space by Axiom 2, the singular complex S¥(X) is defined
by
SUX) =D(A", X).
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1920 Hiroshi Kihara

We can easily see that |- |g: ¥ = @ : S is an adjoint pair [Kihara 2019, Proposition 9.1]. Further, we

can derive the following result from Proposition 2.5.

Corollary 2.6 (1) The natural isomorphisms
|Alplla = AP, |Alp]l=A? and |Ag[plla = Af
exist.

(2) S?X is a Kan complex for any diffeological space X .

Proof (1) See [Kihara 2019, Proposition 9.2].
(2) See [Kihara 2019, Lemma 9.4(1)]. O

See [Christensen and Wu 2014, Section 3.1] or [Iglesias-Zemmour 2013, Chapter 5] for the smooth
homotopy groups nf,z (X, x) of a pointed diffeological space (X, x). Note that S*X is always a Kan
complex (Corollary 2.6(2)) and see [Goerss and Jardine 1999, page 25] for the homotopy groups 7, (K, x)
of a pointed Kan complex (K, x).

Theorem 2.7 Let (X, x) be a pointed diffeological space. Then there exists a natural bijection
Ox: NE;D(X, x) —> np(S@X, x) for p >0,

that is an isomorphism of groups for p > 0.
Proof See [Kihara 2019, Theorem 1.4]. O

Remark 2.8 (1) Defineamap f: X — Y in P to be

(i) a weak equivalence if S? f: S?X — S?Y is a weak equivalence in the category of simplicial sets,

(ii) a fibration if the map f has the right lifting property with respect to the inclusions Ai — AP for
all p>0and 0 <k < p, and
(iii) a cofibration if the map f has the left lifting property with respect to all maps that are both fibrations

and weak equivalences.

Then 9 is a compactly generated model category whose object is always fibrant. In fact, the sets of

morphisms of %,
§={AP = A" | p=0},

$={A] >N |p>0,0<k<p},

are the sets of generating cofibrations and generating trivial cofibrations, respectively [Kihara 2019,
Theorem 1.3]. See [May and Ponto 2012, Definition 15.2.1] for a compactly generated model category.
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By Theorem 2.7, weak equivalences in % are just smooth maps inducing isomorphisms on smooth
homotopy groups.

(2) The adjoint pairs

|'lo: 9 29:8? and :22%°:R
are pairs of Quillen equivalences [Kihara 2023, Theorem 1.5]. Note that the composite of these adjoint
pairs is just the adjoint pair

BE=EAEN

of the topological realization and singular functors.

2.3 Homotopy type of S¥(X)

In this subsection, we recall from [Kihara 2023] the basic results on the homotopy type of S (X); they
are not essential in the later sections, but they are related to a few results in Section 6.

For a diffeological space X, consider the unitid: X — RX of the adjoint pair - : @ = € : R. By applying
S%(=%(A*,-)), we have the natural inclusion

S?(X) = S(X)
(see Proposition 2.5, in particular Axiom 1).

If X is a nice diffeological space such as a cofibrant object or a C ®°~manifold in the sense of [Kriegl
and Michor 1997, Section 27], then S?(X) — S (f ) is a weak equivalence [Kihara 2023, Corollary 1.6,
Proposition 2.6, and Theorem 11.2]. Hence, we can calculate the homotopy groups and the (co)homology
groups of such nice diffeological spaces as those of the underlying topological spaces.

Conversely, if X is an exceptional diffeological space such as an irrational torus, then S¥(X) < S ()? ) is
not a weak equivalence; see [Kihara 2023, Appendix A]. See Section 6.2 for an approach to the homotopy
type of S?(X) of exceptional diffeological spaces X such as irrational tori and R/Q.

Remark 2.9 The (co)homology and homotopy groups of diffeological spaces have the same desirable
properties as those of topological spaces. Further, the (co)homology and homotopy groups of a diffeo-
logical space are just those of its singular complex. Thus, we can apply various algebraic topological
and simplicial homotopical tools to the calculation of the (co)homology and homotopy groups of a
diffeological space X whether or not X is a nice diffeological space; see [Kihara 2023, Section 3.1],
Theorem 2.7, and Remark 5.8.

3 Smooth singular complexes

In this section, we summarize the basic notions and results on the smooth singular complexes Ss'ﬁb (X)

and S;%(X ) (Section 3.1), and then show that there exist natural morphisms between S,j?f(X ), Ss%b(X ),

Algebraic € Geometric Topology, Volume 24 (2024)



1922 Hiroshi Kihara

and S?(X) which induce chain homotopy equivalences, and hence isomorphisms on (co)homology
9

sub’
to simplicial coverings (Section 3.3); this result is used to reduce the proof of Theorem 1.1.

(Section 3.2). We also show that the singular functors S Z%f, S and S? transform diffeological coverings

3.1 Smooth singular complexes S“(X), S, (X), and S7.(X)

sub
By using the cosimplicial diffeological space A* = { AP}, the singular complex S?(X) is defined by
SYX)=D(A, X),
which is intensively studied in [Kihara 2019; 2023] (see Section 2.2).

Let A? denote the affine p—space {(xo, o Xp) ERPTL Sy = 1} endowed with the subdiffeology
of RP*1, Since A® = {A?} is a cosimplicial diffeological space, the singular complex Sf?f(X ) is defined
by

SA(X) =B(A*, X).

The singular complex S?E(X ) was introduced by Christensen and Wu [2014]; they used the singular
functor S f?f to define the classes of weak equivalences, fibrations, and cofibrations in &, but the model
axioms are not yet verified.

Let Afub denote the set A” endowed with the subdiffeology of A?. Since A} | = {Afub} is a cosimplicial
diffeological space, the singular complex S Eﬁb (X) is defined by

S2(X) =B(A%,, X).

sub

The singular complex Sfﬁb(X ) was used by Hector [1995] to study diffeological spaces by homotopical
means such as singular (co)homology.

Now, we summarize the basic properties of A?, Afub, and A?, and the relations among them, which
are needed later. A subset A of A? endowed with the subdiffeology of A? is denoted by Agy,. The
notion of Y—contractibility (or smooth contractibility) is defined in the obvious manner (a %—contractible
diffeological space is often called simply a contractible diffeological space if there is no confusion in
context).
Lemma 3.1 (1) The diffeological spaces A?, Afub, and AP are smoothly contractible.

(2) The underlying topological space of AP and Afub is just the standard topological p—simplex. The

underlying topological space of AP is just the set AP endowed with the usual topology.

(3) The map id: AP — Afub is smooth, which restricts to the diffeomorphism
id: AP — Skp_z AP ? (Ap — Skp_z Ap)sub,
where sk, _» AP denotes the (p—2)—skeleton of AP.
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Proof (1) The smooth contractibility of AP and AP are obvious. See [Kihara 2019, Remark 9.3] for

sub
the smooth contractibility of A?.

(2) The result for A? follows from Proposition 2.5. The results for Afub and A? follow from [Kihara
2019, Lemma 2.12].
(3) See [Kihara 2019, Lemmas 3.1 and 4.2]. O

Remark 3.2 In this remark, we recall the left adjoints of S fﬁb and S Eﬁf, and see that S fﬁb (X)and S ;lff(X )
need not be Kan.

(1) As mentioned above, the realization functor |- |g: ¥ — 9 is a left adjoint of the singular functor
S%:9 — &, and the composite of the adjoint pairs |- |g: ¥ = D :S? and ~: D 2 €° : R is just the adjoint
pair |-|: ¥ 2 €9 :S (see Remark 2.8(2)).

Similarly, we can define the realization functor | - |/, : ¥ — % by
1Kl = colim Ay,
which is a left adjoint of the singular functor Sfﬁb: 9 — &. The composite of the adjoint pairs

|1 2D :SS%b and 7 : % 2 €0 : R is also just the adjoint pair |-|: ¥ 2 €% :S (see Lemma 3.1(2)).
The realizations |K|y and |K|/, of a simplicial complex K viewed as a simplicial set [May 1992,

Example 1.4] are just the diffeological polyhedra | K|y and |K|f, respectively [Kihara 2023, Section 8.1];
they played an essential role in the proof of the homotopy cofibrancy theorem [Kihara 2023, Theorem 1.10].

Christensen and Wu [2014] defined the realization functor |- | : ¥ — % by
|K|o = colim A",
AlK
which is a left adjoint of the singular functor S;%: % — .

(2) Let us see that Ssgﬁb(X ) need not be Kan. For this, we consider the extension problem in &

dl+d? q
Ao [2] B Sib(A% sub)

-7
-
-
P
-
-
-

-

Al2]

where Ag[2] dl4d? ¢9

Sub(Ag «ub) 18 the simplicial map whose restriction to the i™ face corresponds to

(the corestriction of) d’: Al — A2 for i = 1,2. Suppose that this extension problem has a solution .
Then we have the commutative diagram in &

dl+d?
Aol = A
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(see part (1)). Noticing that |A¢[2]|/, can be set-theoretically identified with A3, we see that r is a
9-retraction of Azsub onto A% «ub» Which is a contradiction [Kihara 2019, Proposition A.2(2)]; see also
[Kihara 2023, Remark 8.2].

Similarly, we can use [Brocker and Jénich 1982, Theorem 5.13] to see that S w((d TATUd?AY)gyp) is
not Kan; however, it has already been shown that Saff(X ) need not be Kan [Chrlstensen and Wu 2014,
Section 4.3].

3.2 Natural transformations between S, S”,  and S”

In this subsection, we construct natural morphisms between S (X)), Ssub(X ), and S¥(X), and show

that they induce chain homotopy equivalences between Z.S dff(X ), ZS2 (X), and ZS?(X), and hence

sub
isomorphisms on the (co)homology with arbitrary coefficients.

First, we show that the singular functors S, SZ , and S S?f preserve homotopy. Recall the %—homotopical

sub’
notions from Section 2.2 and let ~g denote the Y—homotopy relation.

Lemma 3.3 For smooth maps f, g: X — Y, consider the conditions

) freg: XY,

(i) S?f ~S8%g:8YX)— SY(Y),
(i) Hx«(f:Z)= H«(g:Z): Hx(X:Z) —> Hx«(Y: Z).
The implications (i) => (ii) = (iii) hold. The same conclusion applies to the functors S, ?ub and Sg, and
their homologies.
Proof For S?: see [Kihara 2019, Lemma 9.4(2)] for (i) = (ii), and [May 1992, pages 12—13] for
(il)) = (iii).
For § “Db recall that Al = Al > then a similar argument applies.
For S Sf;f: observe that f ~g g if and only if there exists a smooth map H: X x Al — Y such that
H(-,(0)) = f and H(-, (1)) = g; then a similar argument applies. a

Using Lemmas 3.1 and 3.3, we can prove the following result.

Proposition 3.4 There exist natural morphisms of simplicial sets

Sa(X) = S (X) = $7(X)

which induce chain homotopy equivalences
ZSg(X) — 7S (X) — Z.5(X).
Proof We prove the result in three steps.
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Step 1: construction of natural morphisms By Lemma 3.1(3), we have the canonical morphisms of

cosimplicial diffeological spaces

A. id "ub (—>A.,

which induce natural morphisms
(Note that the first and second morphisms of cosimplicial diffeological spaces induce the second and first
morphisms of singular complexes, respectively.)

Step 2 We show that for p > 0,

Ho(ZSH(AP)) = Ho(ZS(AP)) = Hy(ZS” (AP)) = Z[0],

sub

where Z[0] denotes the graded module with Z[0]p = Z and Z[0]; = 0 (i # 0). It is easily seen that these
isomorphisms hold for p = 0. Thus, they hold for any p > 0 by Lemmas 3.3 and 3.1(1).

Step 3 To prove the rest of the statement, we “augment” the singular chain complexes ZS%(X),
ZS@b(X ), and ZS%(X ) in a canonical manner (see [Eilenberg and Mac Lane 1953, page 194]); the

augmented singular chain complexes are denoted by ZS?(X)", ZS2, (X)", and ZS (X)". Then

sub
Hi(ZS(AP)) = Hi(ZSg (AP)) = Ho(ZS(AP)) =0

(by Step 2). Since each component of degree > 0 of ZS%(X) (resp. ZSESb(X ), ZS?ff(X )) is repre-

sentable for the set of model objects {A?},~¢ (resp. {Als’ub}pzo, {AP},>0) in the sense of [Eilenberg and
Mac Lane 1953, page 189], we can use [Eilenberg and Mac Lane 1953, Theorem II] to construct chain
homotopy inverses of the augmented natural chain maps

q 7 ~ ~
ZS (X #5 LS (XY #5 287 (X)
such that they restrict to chain homotopy inverses of the natural chain maps

ZSi(X) 25 7,82 (X) L5 .57 (X)

sub

(see Step 1). O
Recall the definitions of H«(X; A) and H*(X; A) from Section 1.

Corollary 3.5 Let A be an abelian group.
(1) The natural morphisms of simplicial sets
Sair(X) == SGp(X) = S7(X)
induce isomorphisms of graded modules
H*(ZS #(X)® A4) —*> H*(ZS (X)) ® A) i) Hy«(X; A),
H*(Hom(ZSH(X), A)) << H* (Hom(ZSZ,(X), A)) <o H*(X: A).
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(2) If A is a commutative associative ring with unit, then H*(X; A), H* (Hom(ZSsub(X) A)) and
H* (Hom(ZS (X), A)) have natural commutative graded A—algebra structures and the isomor-
phisms between them are isomorphisms of graded A—algebras.

Proof (1) The result is immediate from Proposition 3.4.

(2) See [Kihara 2023, Remark 3.8(2)] for H*(X; A). The argument there can also be applied to
H* Hom(ZS wp(X), A) and H* Hom(ZS +(X),A). Since the cohomology isomorphisms in
part (1) are induced by the natural simplicial maps

Satr(X) = Sap(X) = SV (X),

sub

they are isomorphisms of graded A—algebras. |

Remark 3.6 In the study of differential forms and de Rham cohomology of diffeological spaces, Iglesias-
Zemmour [2013, pages 182-183] introduced the complex C, (X)) of reduced groups of cubic chains for a
diffeological space X, and called its homology Hi(X) the cubic homology of X.

We can easily see that H.(X) is a smooth homotopy invariant. In fact, given a smooth homotopy
H:RxX — Y between f and g, a chain homotopy Hy: C«(X) — Cx41(Y) between Cy(f) and Cx(g)
is defined by

R? %> X > RPTI =R xR? XS R x Ay,

Thus, by an argument similar to that in the proof of Proposition 3.4, we can use [Eilenberg and Mac Lane
1953, Theorem II] to construct a natural chain homotopy equivalence between C4(X) and ZS%(X),
showing that H, (X)) is naturally isomorphic to H,(X).

The basic idea of the proof that ZS*(X), ZS @b (X), and C«(X) are chain homotopy equivalent was
briefly discussed in [Kihara 2023, Remark 3.9]. It is also shown in [Kuribayashi 2020, Section 4.1] that
ZS Efif(X ), ZSZ (X), and C«(X) are chain homotopy equivalent.

sub
3.3 Diffeological coverings

The notion of a diffeological fiber bundle is a generalization of that of a locally trivial fiber bundle,
and is defined by local triviality of the pullback along any plot; see [Iglesias-Zemmour 2013, 8.9]. A
diffeological fiber bundle with discrete fiber is called a diffeological covering.

Similarly, a simplicial fiber bundle is defined by triviality of the pullback along any map from A[p]
(p = 0); see [May 1992, Definition 11.8]. A simplicial fiber bundle with discrete fiber is called a simplicial
covering.

We prove the following result, which is used in the proof of Theorem 1.1.
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sub’

to simplicial coverings with fiber F. Hence, a diffeological covering w: E — X with fiber F' defines the

Proposition 3.7 The singular functors S¥, S, , and S gf transform diffeological coverings with fiber I

natural morphisms of simplicial coverings with fiber F

SA2(E) —— S (E) —— SY(E)

sub

S| S0 S%)l

SA(X) —— SZ (X)) —— SP(X).

sub

Proof We prove the result in three steps.
Step 1 We show that S¥(r): S*(E) — S¥(X) is a simplicial covering with fiber F.

Assume given a map k: A[p] — S?(X) and let k: A? — X be the smooth map corresponding to k.
Noticing that A? is smoothly contractible (Lemma 3.1(1)), we then have a pullback diagram in %

AP xF —— F

m L

AP —F 5 X
(see [Iglesias-Zemmour 2013, page 264]). Note that S is a right adjoint and consider the commutative
diagram in & consisting of two pullback squares

A[p] x S?(F) —— SP(AP) x S?(F) — S%(E)

Projl prOjl §9 (n)l

Alp] ——5 §9(APy —S2®_, gaxy

where A[p] — S?(AP) is the map corresponding to the p—simplex 1a» of S?(A?). Then the outer
rectangle gives the desired local triviality of S¥(rr); see [Mac Lane 1998, Exercise 8 on page 72].

Step 2 Note that Afub and A? are smoothly contractible (Lemma 3.1(1)) and that Sfﬁb and S;Gf;f are right

adjoints (Remark 3.2(1)). Then, by an argument similar to that in Step 1, we can see that Sfﬁb () and

S?gf(n) are also simplicial coverings with fiber F.

Step 3 The natural morphisms of simplicial coverings are defined by Proposition 3.4. a

4 Weak equivalences between smooth singular complexes

In this section, we prove Theorem 1.1 and Corollary 1.2, using results of Section 3.
The main statement of Theorem 1.1 is divided into the following two parts:
(I) The natural map S, (X) < S?(X) is a weak equivalence in &.

(II) The natural map S ;%(X ) — S?(X) is a weak equivalence in &.
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After constructing a fibrant approximation functor for the category of simplicial sets in Section 4.1, we
prove parts (I) and (II) in Sections 4.2 and 4.3, respectively. We complete the proofs of Theorem 1.1 and
Corollary 1.2 in Section 4.4.

4.1 Fibrant approximation to a simplicial set

The category & of simplicial sets is a cofibrantly generated model category having

Jy ={Aklpl = Alp]| p > 0.0 <k < p}
as a set of generating trivial cofibrations. Applying the infinite gluing construction [Dwyer and Spaliiski

1995, pages 104-105] for $s to a simplicial map ¢: K — L, we obtain the factorization

K —— K
N I
L
where 7 is a trivial cofibration and p is a fibration. However, since every simplicial map to the terminal
object * has a right lifting property for Az [1] — A[l] (k =0, 1), we can construct a fibrant approximation
K"~ of K by applying the infinite gluing construction for
$5 = {Ax[pl = Alpl | p > 1,0 <k < p}

to K — *. Let ¢ denote the full subcategory of ¥ consisting of fibrant objects (ie Kan complexes). Then
the functor -": ¥ — ¥ is a fibrant approximation functor, for which K"g = Ko holds. An attachment of
A[2] along A[2] adds one nondegenerate 2—simplex and one nondegenerate 1-simplex, which correspond
to the basic 2—simplex of A[2] and its k™ face respectively.

4.2 Proof of part (I)

We prove part (I) of Theorem 1.1 (see the introduction of this section). Let us begin by reducing the
proof to simpler cases. First, consider the decomposition X = || X into connected components; see
[Iglesias-Zemmour 2013, pages 105-107]. Since

SanX) = [Sap(Xe) and  $7(X) =] [ $7(Xa),
we may assume that X is connected.

Next consider the universal covering w : Z — X; see [Iglesias-Zemmour 2013, page 264]. By Proposition
3.7, we then have the morphism of simplicial coverings with fiber Jr%b(X )

7y (X) === 77 (X)

’ ’

SI(Z) —— S9(Z)

! !

S (X) —— S?(X)
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Hence, we may assume that X is 1-connected (note that sz

«ub(X) need not be a Kan complex and use
[Gabriel and Zisman 1967, Chapter III, Theorem 4.2]).

Since S (X) is Kan (Corollary 2.6(2)), the inclusion S, (X) < S?(X) extends to a map

sub

S2 (X)) — SY(X),

sub

which induces an isomorphism on the homology (Corollary 3.5). Thus, we have only to show that
71 (Squp (X) ", %0) = 0
for any fixed xg € X (see Theorem 2.7 and [May 1992, Theorem 13.9]).

Recall from [Goerss and Jardine 1999, page 8; May 1992, Lemma 16.3] the following facts concerning
the topological realization functor |- |: ¥ — €°:

¢ The topological realization | K| of a simplicial set K is a C W—complex having one n—cell for each
nondegenerate n—simplex of K.

¢ For a pointed Kan complex (K, kg), the simplicial fundamental group 71 (K, ko) is naturally
isomorphic to the topological fundamental group 71 (| K|, ko).

For a simplicial set K, NK, denotes the set of nondegenerate n—simplices of K. The n—cell of |K]|
corresponding to 0 € NK, is also denoted by o. The 1-cell o of |K| is endowed with the canonical
orientation; the 1—cell o endowed with the reverse orientation is denoted by 6. We also use the standard
notation sk, K for the n—skeleton of K.

From these facts and the construction of the fibrant approximation K~ of K, we see the following:

. Nl(Sgb (X)A,X()) ;m(|sk2 SgD (X)A|,X()).

sub sub

9]

* Every element of 71 (|skz S,

(X)7|, x0) can be represented by a continuous map

w: (Al Atlop) — (Iski SZ (X)), x0).

top? sub

Further, @ can be chosen as the concatenation of finitely many 1—cells 71, ..., 77, where 7; = 0;
or G; for some 0; € NS2, (X)1.

1

We would like to simplify the expression 77 --- 77 for @ and show that w is null homotopic rel Atop.

A smooth 1-simplex o': Alsub — X of a diffeological space X is called tame if o is constant near each

vertex. By the following lemma, we may assume that each o; is tame.

Lemma 4.1 Let X be a diffeological space and o a 1-simplex of Sfﬁb (X). Then there exists a 2—simplex
3 of Ssgib(X) such that doX is the constant map to o ((1)), d1 X is tame, and d, ¥ = 0.

Proof We choose a nondecreasing smooth function w: [0, 1] — [0, 1] such that 4 = O near 0 and u = 1
near 1, and construct the desired 2—simplex X of S fﬁb (X) in two steps.
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We construct a smooth map F: A2 =~ — A?

Step 1: construction of F : A2 — A2 b sub

sub sub
F of Ssgﬁb(Azsub)) satisfying the following condition:

(ie a 2—simplex

e Each d; F corestricts to the i face of Azsub and the corestriction of d; F' is identified with
id ifi =0,2,
uo ifi =1,
in a canonical manner.

SetU = {(xo, X1,X2) € A%ub [0<x; < %} Choose a nonincreasing smooth function ¢ : [O, %] — [0, 1]
such that ¢ = 1 near 0 and ¢ = 0 near % Under the identification

U-=[0.1]x[0.5). (x0.x1,x2) > (1 -2 ,Xl),
define the self-map U Sy by
[ y) = (puE) + 1 =¢()x. ).

Then the desired map A%ub £, Aiub is defined by

Fz%f on U,

id outside U.

Step 2: construction of X : Agub — X The desired 2—simplex ¥ of S (X) is defined to be the

sub
composite
2 F 2 s! 1 [
Asub ? Asub ? Asub ? X’
where s! is defined by st (xo, x1,Xx2) = (X0, X1 + X2). O
Second, let us see that w can be chosen as the concatenation of oy, ..., 07 forsomeoy,...,01 € NS Eﬁb (X)1.

For this, consider X; € Ss%b (X)), defined to be the composite

2 s 1 9
Asub ” Asub X’

where s(xg, x1,x2) = (xo + x2,x1). Then d>X; = 0}, d1X; is constant, and 0]/. = doX; satisfies
(f]’. (t) =0 (1 —1). Thus, if 7; = 6;, then we can replace t; with a]’.. Hence, we may assume that w is the
concatenation of o1, ..., 07.

Third, let us see that w can be chosen as the continuous map corresponding to a single tame 1-simplex o

of § gb (X). For this, we first consider the extension problem in %

2 o02+07]
A1 sub

-
-
-
-
-
-
-

A2

sub

X
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©)

()

2)

Figure 1: The retraction r.

where 0, 4+ 07 : A% wb —> X 18 defined to be o2 on the 0™ face and o on the 2" face. (the smoothness of
02 + o1 follows from the tameness of 7 and 0,). We define the map X: Aiub — X to be the composite

2 r 2 02+0]
Asub Al sub X’

where r is the continuous retraction onto A% «ub depicted in Figure 1. Noticing that o and o2 are tame,
we can easily see that X is a solution of the extension problem in % such that 1 := d; X is also tame.
Thus, w can be chosen as the concatenation of 1, 03, ..., 0;. By iterating this procedure, we may assume
that w is the continuous map corresponding to a single tame 1-simplex o of Sfﬁb (X).

1

Last, let us see that w is null homotopic rel Atop. Since X is 1-connected, the extension problem in %

A2 G+O+O\TX

has a solution 3, where 0 denotes the constant map to the base point xo (see Theorem 2.7).

Now, we recall the smooth map 2 : A — A? from [Kihara 2023, Steps 1-3 in the proof of Theorem 8.6].
For0<e < %, set Vi (€) = {(x0, X1, Xx2) € A> | x; > 1 —€}. For a given €p with 0 < €g < %, the smooth
map
Y A* — A?

is constructed such that

. wg preserves each closed simplex of A2,

o wg maps each V;(e¢/2) to the vertex (i),

* 2 coincides with 1,2 on A%\ {J Vi (eo).

Thus, we see from Lemma 3.1(3) that ¥3: A%, — A? is smooth.

Consider the smooth map wg: A%ub

> of §Z

sub

— A? defined for sufficiently small €p > 0, and define the 2—simplex
(X) to be the composite

2
A2, Yo, A2 2,y

Since ¥’| A2, =0 +0+0, X/ yields a homotopy (rel Atlop) between w and 0, which completes the proof.
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4.3 Proof of part (II)

We prove part (II) of Theorem 1.1 (see the introduction of this section). By Proposition 3.7 and an
argument similar to that in Section 4.2, we may assume that X is 1—connected.

Since S¥(X) is Kan (Corollary 2.6(2)), the canonical map S;%(X) — S?(X) extends to a map
SE(X) — S2(X),

which induces an isomorphism on the homology (Corollary 3.5). Thus, we have only to show that
1 (Sef(X)", x0) =0

for any fixed xop € X (see Theorem 2.7 and [May 1992, Theorem 13.9]).

Similarly to the proof of part (I), we have the following:

L (Saff(X) Xo) = 7T1(|Sk2 Saff(X)A|, X()).

e Every element of 71 (|sky S aff(X )l xo) can be represented by a continuous map

CH S ) = (Isk1 Syze(X)], x0).

top? top

Further, @ can be chosen as the concatenation of finitely many 1—cells 71, ..., 77, where 7; = 0;
or G; for some 6; € NSA(X)1.

We would like to simplify the expression 7 - - - 77 for @ and show that @ is null homotopic rel Atop

A smooth 1-simplex o: A! — X of a diffeological space X is called tame if o is constant near (—oo, 0]

and near [1, 00), where A! is identified with R in a canonical manner. By the following analogue of
Lemma 4.1, we may assume that each o; is tame.

Lemma 4.2 Let X be a diffeological space and o a 1-simplex of Saff(X ). Then there exists a 2—simplex
Y of SE?E(X) such that doX is the constant map to o ((1)), d1 X is tame, and dr, ¥ = o.

Proof SetU = {(xo, x1,x2)€A?| -1 < X1 <5 } Choose a nondecreasing smooth functlon w:R—[0,1]
such that & = 0 near (—o0, 0] and i = 1 near [1, c0), and a smooth function ¢: [ ] [0, 1] such
that ¢ = 1 near 0 and ¢ = 0 near { ; 2} Then we can construct the desired 2— 51mplex ¥ in a manner
similar to that in the proof of Lemma 4.1. O

Second, let us see that w can be chosen as the concatenation of 1, ..., 0; forsomeoy,...,0; € N S,:fff(X )1.
For this, consider ¥; € S aff(X )2 defined to be the composite
A? S5 AV

where s(xg,x1,x2) = (xo + x2,x1). Then d>X; = 0;,d1X; is constant, and o*J’. = doX; satisfies
(7]’. (t) =0 (1 —1). Thus, if 7; = 6;, then we can replace t; with a]’.. Hence, we may assume that w is the
concatenation of o1, ..., 07.
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(suppo ¥3)5,

(suppy ¥,y (suppy ¥7)3 2

(suppo V)7, A\ £\ uppo V)t
(V N \2)
(Suppl I//1 ){1,2}

Figure 2

Next we show the following lemma. Fori =0, 1,2, d': Al — AZ denotes the obvious affine extension
of di: Al — A? (see Section 2.2).

Lemma 4.3 Let X be a diffeological space and Yy, Y1, and y, tame 1-simplices of SS:if(X ) such that
doy> = diyo, doyo = doy1, and d1y1 = dy1y,. If the extension problem in %

Az ZyilAl : X
n

has a solution, then the extension problem in %

UdiAl %{X

-
g
-
-
-
-

-
-

AZ
also has a solution.

Proof We choose a solution ¥ of the first extension problem, and use the smooth map ¥2: A> — A?
constructed in [Kihara 2023, Steps 1-3 in the proof of Theorem 8.6] to modify and extend X.

To describe the basic properties of 2, we adopt the following notation. For a continuous self-map f
of A?, we set

carrg f ={x € AP | f(x) # x, f(x) esky AP} and suppy f = carry f.
Further, for a subset {ig,...,ix} of {0,..., p}, we set

Viigsoizy = (X0, ..., xp) € AP | x; > xj fori € {ip,... i} and j ¢ {io, ..., ix}}

For a given € with 0 < €9 < 3, the smooth maps ¥Z: A> — A? (k = 0, 1) are defined such that they
satisfy the following conditions (see Figure 2):
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Ao

(0)
Bz Bl
(1) (2)
VR

Figure 3

o w,% preserves each closed simplex of A and w,f = id on sk A? (note that skg A% = {(0), (1), (2)}
and that sk; AZ = A?).

e (suppg wg)?l.} = Vi(eo/2) and wg =id on A%\ |J V; (o) (see Section 4.2).

* (suppo ¥2)° U (supp, ¥7)° is a neighborhood of A2,

o (supp;¥7)° = (supp )5, 5y LIGupp 9% 5, LI(supp )5, 1 and 7 preserves each V; (eo/2)
and maps a point x of (supp, wlz)‘{’l.o i to the intersection of the i" face of A? and the line through
the vertex (i) and x, where i # ig, i1.

The map ¥2: A2 — A? is defined to be the composite
N2V 2 Y8 2,
Consider the smooth map ¥2: A> — A? for a sufficiently small €9 > 0 and define ¥’ to be the composite
Y22y
Then X’ has the following properties:
o i =Sl
3/ | suppo 2%, is constant.

, . N e
e X |(Suppl v it is constant along any ray from the vertex (i) with i # ig, i7.

We thus extend ¥/ to A? as follows. Define | 4; to be constant for i =0, 1,2, and define ¥'|p, to be
constant along any ray from the vertex (i) (see Figure 3). Then we can easily see that ¥’: A2 — X is the
desired solution of the second extension problem. O

Let us see that @ can be chosen as the continuous map corresponding to a single tame 1-simplex o of
S%(X ). For this, we first consider the extension problem in &

02| a1 +01] Al

AT

-
-
-
-
-
-
-

A2

X
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Then we can use the continuous retraction r: A? — A% depicted in Figure 1 to construct a solution
. 1 .

¥: A? — X such that the composite Al 4, A2 Z, X is constant near each vertex. Define the tame

l-simplex 1 of S ?ff(X ) by n]a1 = Zod! and consider the extension problem in %

UdiAl 02+77+01\( 0%

-
-
-
-
-
-
-

A2
Since this extension problem has a solution (see Lemma 4.3), @ can be chosen as the concatenation of
n,0s,...,07. By iterating this procedure, we may assume that w is the continuous map corresponding to
a single tame 1-simplex o of S;%(X ).

1

Last, let us see that w is null homotopic rel Atop. Since X is 1-connected, the extension problem in %

. O] A1+0+0
A ——2

-
.
-
.
-
.
-
-

Az

-

has a solution (see Theorem 2.7). Hence, the extension problem in &
U d i Al L‘FO% X
a2

1

also has a solution (Lemma 4.3), which shows that @ is null homotopic rel Atop.

4.4 Proofs of Theorem 1.1 and Corollary 1.2

In this subsection, we complete the proofs of Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1 The proof of the main statement is given in Sections 4.2 and 4.3. Since S (X) is
always fibrant (Corollary 2.6(2)), the last statement is obvious. O

Let ¥« denote the category of pointed simplicial sets, and let ¥, r denote the full subcategory of &
consisting of fibrant objects (ie pointed Kan complexes). Choosing a fibrant approximation functor
R: %« — Sy 5, we define the i homotopy group functor 7; : ¥+ — Gr to be the composite

S 25 9 T Gr.

(Strictly speaking, mg is defined as a Set.—valued functor, where Set, denotes the category of pointed
sets.) Then, up to natural isomorphisms, the functor 7; : ¥« — Gr extends the original homotopy group
functor 7; : ¥4 r — Gr and the extension 7; : 5 — Gr is independent of the choice of R. Further, we can
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see that if a fibrant approximation K — K’ and a point k of K are given, then 7; (K, k) is canonically

isomorphic to the i™ homotopy group of the pointed Kan complex (K’, k).

Proof of Corollary 1.2 The result follows immediately from Theorems 1.1 and 2.7. |

5 Diffeological principal bundles

In this section, we recall the notions of a diffeological principal bundle and a simplicial principal bundle
(Section 5.1) and establish Theorem 1.3, which characterizes diffeological principal bundles using the
singular functor S;f_?f (Section 5.2).

5.1 Diffeological and simplicial principal bundles

In this subsection, we recall the three notions of principal bundles in &; the weakest notion is due to
Iglesias-Zemmour (see Definition 5.1(2)). We also make a brief review on simplicial principal bundles.

Let € be a category with finite products, and G a group in €. Then €G denotes the category of right
G-objects of €. For B € €, €G/B denotes the category of objects of €G over B, where B is regarded
as an object of €G with trivial G—action.

Definition 5.1 Let G be a diffeological group, and X a diffeological space.

(1) Anobject 7: E — X of @G/ X is called a locally trivial principal G-bundle if there exists an open
cover {U;} of X such that for each i, a pullback diagram in &

UxG—— E

m |

Uy — X
with equivariant upper arrow exists; such an open cover {U;} is called a trivialization open cover of
w:E— X.Anobject 7: E — X of 9G/ X is called a D—numerable principal G—-bundle if = admits a
%-numerable trivialization open cover (ie a trivialization open cover {U; } which admits a smooth partition
of unity subordinate to it).

(2) Anobject: E — X of @G/ X is called a diffeological principal G—bundle if for any plot p: U — X,
the pullback p*E — U is a locally trivial principal G-bundle.

(3) A morphism between locally trivial (or diffeological) principal G-bundles 7: E — X and 7’: E' — X’
is a commutative diagram in @G of the form

E%E’

(5-1) nl £

x - x
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Note that (5-1) is necessarily a pullback diagram in 9%; see [Iglesias-Zemmour 2013, 8.13 Note 2]. The
categories of locally trivial principal G—bundles, 9—numerable principal G-bundles, and diffeological
principal G-bundles are denoted by P@G, PD Gy, and PDGg;igr, respectively.

We have the obvious fully faithful embeddings
PDGrum <> PDG — PG i

We see from the following examples that the two inclusions are proper (or strict). Recall from [Iglesias-
Zemmour 2013, 8.15] that for a diffeological group G and its diffeological subgroup H, the quotient
map 7: G — G/H is a diffeological principal H-bundle.

Example 5.2 (1) Lety:Z™ — R” be a monomorphism of abelian groups with I' := y(Z™) dense.
Then the quotient diffeological group 7T = R” /I is called an irrational torus. Since the underling
topology of T is indiscrete, the diffeological principal Z™-bundle 7 : R” — Tt is not locally
trivial.

(2) Christensen and Wu constructed a nontrivial locally trivial principal R>%~bundle 7: P — X with
X ~g x; see [Christensen and Wu 2021, Example 3.12]. By [Christensen and Wu 2021, Theorem
5.10], the locally trivial principal R>%~bundle 7 is not Y—numerable.

To study diffeological principal bundles, we also need the notion of a simplicial principal bundle [May
1992, Chapter 1V].

Definition 5.3 Let H be a simplicial group, and K a simplicial set.
(1) Anobjectm: E — K of ¥H/K is called a principal H-bundle if for any map k: A[p] — K, there
exists a pullback diagram
Alp]xH —*%  E
o]
Alp) —F— K
with k equivariant.

(2) A morphism between principal H-bundles 7: E — K and 7": E/ — K’ is a commutative diagram

in ¥H of the form
E—L s E

(5-2) ,,l lﬂ,

K%K’

Note that (5-2) is necessarily a pullback diagram in &. The category of principal H—bundles are
denoted by P¥H .
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Remark 5.4 An object 7: E — K of ¥H/K is a principal H-bundle if and only if the action of H on
E is free and 7 induces the isomorphism E/H % K; see [May 1992, Definition 18.1].

Let -o: ¥ — Set denote the 0" component functor, which is naturally isomorphic to the functor (A[0], -).
The following simple result is used in the proof of Theorem 1.3.

Lemma 5.5 (1) The composite
9 = S ¥ % Set

is naturally isomorphic to the underlying set functor for %.

(2) The functor -¢: ¥ — Set is a right adjoint.

Proof (1) Obvious.

(2) Define the functor d : Set — & to assign to a set A the discrete simplicial set whose 0 component
is A. Then we can easily see that (d, -¢) is an adjoint pair. |

For a given set A, the discrete simplicial set d A is usually denoted by A.

5.2 Proof of Theorem 1.3

In this subsection, we prove Theorem 1.3; we begin by proving the “only if” part of (1) and (2), and then
prove the “if” part of (1).

Recall that Sibff is a right adjoint (Remark 3.2(1)). Then we see that S?ff(G) is a simplicial group and that
Si(m): S2(P) — S4(X) is an object of ¥S(G)/SL(X).

Proof of the “only if”” part of Theorem 1.3(1) Assume given a map k: A[p] — Sgﬁf(X ) and let

k: AP — X be the smooth map corresponding to k. Then we have a pullback diagram in %

A?xG —— P

ol

AP — X 5 X
with equivariant upper arrow; see [Iglesias-Zemmour 2013, 8.19]. Note that S% A 18 @ right adjoint and
consider the commutative diagram in & consisting of two pullback squares with equivariant upper arrows

A[p] x S;(G) —— S2(AP)x S2(G) —— S x(P)

pr0jl prOjl Sff‘f(n)l

)
Alp] ——————— SH(AP) S, Sete(X)

where A[p] — S +(A?) is the map corresponding to the p—simplex 14» of S ((AP). Then the outer
rectangle gives the desued local triviality of S aff(n), see [Mac Lane 1998, Exer(:lse 8 onpage 72]. O
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Proof of Theorem 1.3(2) Noting that Sfﬁf is a right adjoint, we see from part (1) that Sf?f induces a

functor from P9 Gy to PSS 2%f(G). The faithfulness of the functor follows from Lemma 5.5(1). O

Remark 5.6 The functor S E?f: PD G gir — PEf’S;gﬁf(G) need not be fully faithful. In fact,let 7: P — X
be the locally trivial principal R~ —bundle in Example 5.2(2), and let 7’: P’ — X be the trivial principal
R>%—bundle. Since X ~g, *, the diagram in &

X NS SEEE N ¢
l T

Ix

is commutative up to homotopy for x € X. Thus, by Lemma 3.3, the diagram in &

S2(X) >k —— SA(X)
| T
Lsioo

is also commutative up to homotopy. Hence, both S:(P) and S;x(P’) are trivial principal S;4(R™%)—
bundles (see [May 1992, Corollary 20.6]), which shows that ng: PHR>0 — PQS,E?f R>9%) is not fully
faithful. (From this argument, we also see that the faithful functor S ﬂf: % — & is not fully faithful.)

Next we prove the following lemma, which is used in the proof of “if”” part of Theorem 1.3(1).
Lemma 5.7 Let w: P — X be an object of 9G/X. Then n: P — X is a diffeological principal

G-bundle if and only if 7 satisfies the following conditions:

(i) G actson P freely and 7: P — X induces a bijection P/G — X.

(i1) Given a solid arrow diagram in %9

R
.7 T
7z
7

AP ¥ v x
there exists a dotted arrow, making the diagram commute.

(iii) The translation function t: P xy P — G, defined by u - t(u, v) = v, is smooth.

Proof We begin with the forward direction.

(i) Obvious.
(i) By [Iglesias-Zemmour 2013, 8.19],

(5-3) K*P=APxG in 9G/AP.
Hence, 7 satisfies condition (ii).
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(iii) We have only to show that 7: P xxy P — G preserves global plots.
Assume given a global plot f: A? — P xx P. Since the components f; and f> of f are global
plots of P with 7w o f1 = 7 o f>, we only have to show that the composite

K*P x k*P - PxP -G
Ap X
is smooth, where k := o f; = w o f,. By (5-3), we have the identifications
K*P x k*P =2 (AP xG) x (A’ xG)= AP xG xG,
A»r AP
under which the composite k* P xp» k* P — P xx P - G is just the smooth map

A?xGxG—>G
sending (x, g, h) to g~ 'h.

For the reverse direction, assume we are given a smooth map k: A? — X. By condition (ii), we can
choose a section o of the pullback «* P -Z> AP of P 2> X along k. Define the maps

AP x G 25 *p

by ¢ (x,g) =o0(x)-g and V¥ (u) = (fr (u), r(a(fr (u)), u)), respectively. Then we see that ¢, and v
are mutually inverses in 9G/A?P. |

We give a proof of the “if” part of Theorem 1.3(1), completing the proof of Theorem 1.3.

Proof of the ¢if”’ part of Theorem 1.3(1) We only have to show that 7: P — X satisfies conditions
(i)—(iii) in Lemma 5.7. Throughout this proof, bear the following in mind: for a diffeological space Z,
. S%(Z)o is just the set Z,
. Sf,?f(Z ) can be regarded as the set of global plots of Z.
Recall also that ng is a right adjoint (see Remark 3.2(1)).
(i) Consider the pullback diagram in &
Py —— P
b
{x} — X
for x € X. By applying the singular functor S 5‘7&, we have the pullback diagram in &

ng(Px) — S;?f(P)

l Jsaeo

A[0] ——— S2(X)

Since Sfff(n) is a principal ng(G)—bundle, Sf?f(Px) ~ S%(G) in SDS%(G), and hence Py =~ G in Set G
holds (see Lemma 5.5), which shows that 7 satisfies condition (i).
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(i) Consider the pullback diagram in %

k*P —— P

Lk

AP —* v x

and let k£ denote the simplicial map A[p] — S (X)) corresponding to . Then we have the commutative
diagram in & consisting of two pullback squares

k*Si(P) —— Si(k*P) —— SZ(P)

| L e

a0,
Alp] —— S;(AP) L> Sar(X)
where A[p] — S @f(Ap ) is the simplicial map corresponding to the p—simplex 14, of S (AP); see
[Mac Lane 1998, Exercise 8 on page 72]. Since Saff(yr) is a simplicial S +(G)-bundle, k*S altlC(P ) — A[p]
has a section s. Then the composite

Alp] = k*Sig(P) = Sy(P)
defines the desired lifting of « along 7.

(iii) We show that the map 7: P xx P — G preserves global plots. Assume given a global plot
f =(f1, f2): AP - P xx P. Since f1 and f, are global plots of P with w o fj = mw o f>, we set
k =mo fj =mo fp and let 01 and 07 denote the sections of k* P — AP corresponding to f and f>,
respectively. Then o7 and o, correspond to sections of k* S (P) — A[p], which are denoted by 51 and s>,
respectively (see the verification of condition (ii)). Since the principal S #(G)-bundle k* Saff(P) — A[p]
is trivial, there exists a unique p—simplex g of Saff(G) such that s1-g = s5. We thus see that the composite

A”LP;P%G

is just the global plot g. O

Remark 5.8 (1) Recall the notion of a diffeological fiber bundle and that of a simplicial fiber bundle
from Section 3.3. We can then use the argument in the proof of the “only if” part of Theorem 1.3(1)
to prove the following: If 7 : £ — X is a diffeological fiber bundle, then S ,:f?f(n) S aff(E )— S aff(X )
is a simplicial fiber bundle.

This result along with Theorem 1.1 enables us to apply the Serre spectral sequence [May 1992,
Section 32] to diffeological fiber bundles (cf [Kihara 2023, Remark 3.8(3)]).

(2) If we restrict ourselves to locally trivial principal G-bundles (resp. locally trivial fiber bundles),
then the “only if” part of Theorem 1.3(1) (resp. the result stated in part (1)) remains true for the
functor S¥ (instead of S ff) see [Kihara 2023, Corollary 5.15(1)].
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(3) If we restrict ourselves to diffeological coverings, then the result stated in part (1) remains true for
the functor S< (instead of S,‘%lbcf); see Proposition 3.7. Similarly, if G is discrete, then Theorem 1.3
remains true for the functor S¥ (instead of S ff?f).

6 Characteristic classes of diffeological principal bundles

In this section, we first give a criterion for a simplicial principal bundle to be universal (Section 6.1).
We then use this criterion to determine the homotopy type of S (X) for a diffeological space X which
admits a diffeological principal bundle with contractible total space (Proposition 6.3), applying it to the
classifying space BG of a diffeological group G and exceptional diffeological spaces such as irrational
tori and R/Q (Section 6.2). We use the proof of Proposition 6.3 along with Theorems 1.1 and 1.3 to
prove Proposition 1.4 (Section 6.3). We end this section by discussing the sets of characteristic classes
for various classes of principal bundles and their relation (Section 6.4).

6.1 Universal simplicial principal bundles
In this subsection, we recall the basics of universal simplicial principal bundles and give a criterion for a
simplicial principal bundle to be universal.

Let H be a simplicial group. A principal H-bundle @w: E — L is called universal if L is Kan (ie fibrant
in &) and the natural map

[K, L] — {isomorphism classes of principal H-bundles over K}, [f]+~ [f*E],

is bijective; the base L of a universal principal H-bundle w: E — L is called a classifying complex
of H. By a simple argument, a classifying complex of H is unique up to homotopy. Recall that the
W —construction ¢: WH — W H is a universal principal H—bundle [Goerss and Jardine 1999, Chapter V,
Section 4; May 1992, Section 21] and that W H is contractible [May 1992, Proposition 21.5].

Lemma 6.1 Let H be a simplicial group, and @w : E — L be a principal H—bundle. Then the following
are equivalent:

(i) @w:E — L is universal.
(i1) L is Kan and the canonical map E — * is a weak equivalence.

(iii) E is a contractible Kan complex.

Proof (ii) <= (iii) Noticing that H is Kan [May 1992, Theorem 17.1], we see that L is Kan if and
only if £ is Kan (see [May 1992, Proposition 7.5]), and hence that (ii) <= (iii).

(i) < (iii) We have only to prove that under the assumption that L is Kan,
w: E — L is universal <= F is contractible

(see [May 1992, Proposition 7.5]).
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Since ¢: WH — W H is universal, we have a morphism of principal H-bundles

E— WH

(6-1) wl lq

L—2% swH

Note that H and the four simplicial sets in (6-1) are Kan and consider the morphism between the homotopy

exact sequences induced by (6-1). Then we have the equivalences

w: E — L is universal <= ¢: L — WH is a homotopy equivalence <= E is contractible. O

Remark 6.2 Lemma 6.1 can be regarded as a variant of [Goerss and Jardine 1999, Chapter V, Theorem
3.9]. However, we record this lemma along with its proof for the following two reasons: one reason is to
avoid using the model structure on ¥G (see [Goerss and Jardine 1999, Section V.2]) and the other reason
is to emphasize the importance of the fibrancy of the base (cf the proof of Proposition 6.3).

6.2 Diffeological principal bundles with contractible total space

In this subsection, we determine the homotopy type of S (X) for a diffeological space X which admits
a diffeological principal bundle 7 : E — X with E weakly contractible. Here, a diffeological space Z is
called weakly contractible if the canonical map Z — * is a weak equivalence. We can easily see that

7 is weakly contractible <= S?(Z)~x <<= 712(Z,z)=0 forany z€Z
(see Remark 2.8(1), Corollary 2.6(2), and Theorem 2.7).

Proposition 6.3 Let G be a diffeological group and 7 : E — X a diffeological principal G-bundle with
E weakly contractible. Then S¥(X) is a classifying complex of the simplicial group S%(G).

Proof By Theorem 1.3, Sf?f(n) Saff(E ) — Saff(X ) is a principal S t(G)-bundle. Let us construct a
principal S +(G)-bundle ngf(n)’ S w(E) — Saﬁ(X )" (see Section 4.1) and a morphism of principal
S,f?f(G) —bundles

SH(E) — SH(E)

aff(ﬂ)l l aff(”)/

SE(X) —— S&(X)"

First, choose a classifying map ¢g : S aff(X ) — WSaff(G) Then note that WS (G ) is Kan and choose
an extension ¢ : S:ffif(X) — WS (G). By setting S w(E) =9 WSE?f(G) we then obtain the desired
diagram.

Thus, we can use [Gabriel and Zisman 1967, Chapter III, Theorem 4.2] to see that Saff(E ) — Saff(E ) is
a weak equivalence. Noticing that S atf(E ) — x is a weak equivalence (see Theorem 1.1), we see from
Lemma 6.1 that Sff?f(n)/ S w(E) — S dff(X )" is a universal principal S (G )-bundle. Hence, S?(X) is
a classifying complex of Saff(G), and hence of S?(G) (see Theorem 1.1). a
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Corollary 6.4 Let G be a diffeological group. Then the singular complex S (BG) of the classifying
space BG is a classifying complex of the simplicial group S%(G).

Proof Recall from [Christensen and Wu 2021, Corollary 5.5] that £ G is smoothly contractible. Then
the result is immediate from Proposition 6.3. a

Corollary 6.5 Suppose that X is a pointed diffeological space which has the weakly contractible
universal covering. Then the singular complex S¥(X) is the Eilenberg—Mac Lane complex K (Jr?(X ), 1).
In particular, the (co)homology of X is just the (co)homology of the group n? (X).

Proof Recall from [Iglesias-Zemmour 2013, 8.26] that the universal covering 7 : Z — X is a diffeological
principal ni@(X )-bundle. Then the result follows from Proposition 6.3. O

Remark 6.6 (1) We can prove Corollary 6.4, using neither the functor S gif nor Theorem 1.1. In
fact, by Remark 5.8(2) and Lemma 6.1, §¥(7g): S”(EG) — S?(BG) is a universal principal
S (G)-bundle. However, the construction in the proof of Proposition 6.3 is useful in the proof of
Proposition 1.4.
(2) We can also prove Corollary 6.5, using neither the functor S ,:fff nor Theorem 1.1. In fact, Corollary 6.5
follows from Proposition 3.7. Alternatively, Corollary 6.5 follows from [Iglesias-Zemmour 2013,
8.24] and Theorem 2.7.

Corollary 6.5 determines the homotopy type of S“(X), and hence the (co)homology of X for well-known
homogeneous diffeological spaces X such as irrational tori and R/Q.

Example 6.7 (1) Lety:Z™ — R” be a monomorphism of abelian groups with I" := y(Z") dense,
and consider the irrational torus 7t = R”/T". By Corollary 6.5, the singular complex S%(7T) of
Tt is just the m—dimensional torus K(Z™,1). Hence, H*(Tr;Z) = A(Z™) holds.

(2) The singular complex S?(R/Q) of the quotient diffeological group R/Q is just the rationalized
circle K(Q, 1), and hence H, (R/Q;Z)= H,(R/Q;Z) = Q. More generally, let A be a countable
subgroup of F (= R, C). Then the singular complex S (IF /A) of the quotient diffeological group
F/Aisjust K(A4,1).

Remark 6.8 Iglesias-Zemmour [2024, Corollary, page 253] and Kuribayashi [2020, Remark 2.9; 2021,
Proposition 3.2] obtained calculational results similar to Example 6.7(1) for other cohomology theories of
irrational tori. On the other hand, the de Rham cohomology H;R (Tr) is isomorphic to A(R") [Iglesias-
Zemmour 2013, Exercise 119], which along with Example 6.7(1), shows that the de Rham theorem does
not hold for irrational tori. This motivates the study of a forthcoming paper [Kihara > 2024].

Next we introduce new aspherical homogeneous diffeological spaces, using Corollary 6.5.

Example 6.9 Let k be a countable subfield of IF (= R, C) (eg an algebraic number field or a countable
extension of Q such as Q NR or Q). For an algebraic group G over k, we can consider the homogeneous
diffeological space G(IF)/ G (k).
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If G is a unipotent algebraic group over k, then the exponential map exp: g — G is an isomorphism
of algebraic varieties, where g is the Lie algebra of G; see [Milne 2017, page 289]. Thus, we have the
diffeomorphism
9(F) > G(F)
and the universal covering
GF)— GIF)/G(k)

of G(F)/G(k). Hence, by Corollary 6.5,
SY(G(F)/G(k)) = K(G(k), 1),

so the (co)homology of G(IF)/G(k) is that of the group G (k). The group Uy, (k) of upper triangular
unipotent matrices and the Hisenberg group H, (k) (see [Onishchik and Vinberg 1994, page 54]) are
typical examples of unipotent algebraic groups.

Further if G is defined over a subring k¢ of k, then
S*(G(F)/G(ko)) = K(G(ko), 1).

We are interested in the case where kg is the ring Oy of integers of an algebraic number field k. If k
is an algebraic number field of degree n with Q & k G R, then ko (= Oy ) is a finitely generated free
Z—-module of rank n, and hence is dense in R.

6.3 Proof of Proposition 1.4
In this subsection, we prove Proposition 1.4.

Proof of Proposition 1.4 Let 7g: EG — BG denote the universal @—numerable principal G-bundle
constructed in [Christensen and Wu 2021]. Then by Theorem 1.3(1), S dff(T[G) S dff(E G)— S #(BG) is
a principal S aff(G)—bundle.

We prove the result in two steps.

Step 1: construction of a universal principal S (G )-bundle which is an extension of S @ #(TG)
Recall from [Christensen and Wu 2021, Corollary 5 5] that EG is smoothly contractible. Then by the
proof of Proposition 6.3, we have a universal principal S aff(G) —bundle Saff(JTG)/ S aff(E G) — Saff(B G)
and a morphism of principal S (G )—-bundles

SI?(EG) — SI(EG)

Saff(ﬂG )l lS;?f(ﬂG)/

Sy (BG) —— S;x(BG)"
Step 2: definition of «(P) Let 7: P — X be a diffeological principal G—bundle. Since
(7T) Satf(P) - Satt(X)

is a principal Saff(G) —bundle (Theorem 1.3(1)), we have a classifying map ¢p : Saff(X ) — S;%(B G).
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Note that H*(Z; A) :== H*Hom(ZS%(Z), A) =~ H* Hom(ZSf?f(Z), A) (see Corollary 3.5) and that
H*Hom(ZK, A) = H*Hom(ZK", A). Then we can define «(P) € H*(X; A) by a(P) = ppa. We
can use Theorem 1.3 to show that «( f* P) = f*a(P), and hence that (- ) defines a characteristic class
for diffeological principal G—bundles.

Similarly, we can use Theorem 1.3 to show that (- ) extends the characteristic class «( - ) for @—numerable
principal G—bundles (see Section 1 for the definition). |

Remark 6.10 The author does not know whether Sﬁf(B G) is always Kan. If S?ff(B G) is always Kan,
the proof of Proposition 1.4 becomes simpler (see Lemma 6.1).

Let us apply Proposition 1.4 to special cases.

Example 6.11 (1) Let 7:Z — X be a Galois covering with structure group I'; see [Iglesias-Zemmour
2013, page 262]. Then for a given class @ € H¥(I"; A) (= H¥(BT'; A)), the class a(Z) € H*(X; A)
is defined by Proposition 1.4.

(2) Let G be a diffeological group and H a diffeological subgroup of G. Then for a given class
o € H*(BH; A), the class «(G) € H*(G/H; A) is defined by Proposition 1.4; see [Iglesias-
Zemmour 2013, 8.15].

If a relevant diffeological principal bundle in Example 6.11 happens to be @—numerable, then the class at
issue is just the image of & under the homomorphism induced by the classifying map. However, this is not
the case in general. See the following example, which specializes both parts (1) and (2) of Example 6.11.

Example 6.12 Let y: Z™ — R” be a monomorphism of abelian groups with I' := y(Z™) dense, and
consider the diffeological principal Z™-bundle P := R” % Tt over the irrational torus 7T (see Examples
6.7(1) and 6.11(2)); note that Tt is a diffeological group and that s is the universal covering of 7.

Since S%(Tp) is already Kan (see [Christensen and Wu 2014, Proposition 4.30 or Theorem 4.34]),
S ;%f(ﬂ) :S ff?f(P )—S g‘?f(Tp) is a universal principal Z™-bundle (see Step 1 in the proof of Proposition 1.4),
and hence, we have a classifying map ¢p: S%(Tp) — S?ff(B Z™)" which is obviously a homotopy
equivalence in &.

Since SZ:(BZ™)" is just the Eilenberg-Mac Lane complex K(Z™, 1), H*(BZ™; A) = (AZ™) ® A.
Thus, for any « € H*(BZ™; A), the characteristic class a(P) € H*(Tr; A) is just the image ¢y (o)
under the isomorphism H*(TT; A) % H*(BZ™; A).

On the other hand, since w: P — Tt is not locally trivial (see Example 5.2(1)), P has no classifying
map to BZ™. Further, every nonzero element § € H *(Tr; A) is not contained in the image of the
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homomorphism induced by any smooth map f: 7Tt — BZ™. In fact, we have the commutative diagram
)
s7(rr) = s7(Bzm)

| |

s(Tr) 22 sBzm)

(see Section 2.3). Since S¥(BZ™) — S (ﬁm) is a homotopy equivalence (see [Kihara 2023, Corollary
5.16]) and S (Tr) ~ %, S?( f) is homotopic to a constant map. (We actually show that BZ™ is smoothly
homotopy equivalent to the torus 7™, and hence that f is smoothly homotopic to a constant map; see a
forthcoming paper.)

6.4 Sets of characteristic classes for the classes P9G, P9 Ghum, and PD G gie
In this subsection, we discuss the sets of characteristic classes for the classes (or categories) PG,

PG hum, and P9 G i (see Definition 5.1) and their relation.
Let & denote one of the categories PDG, PDGpym, and PDGyir. For an abelian group A, char(%; A)

denotes the set of characteristic classes with coefficients in A for the class %. Then, by [Christensen and
Wu 2021, Theorem 5.10] and Proposition 1.4, we have the natural bijection
char(P@Gym; A) = H*(BG; A)

and the retract diagram

char(P9Gpym; A) SN char(PDG gigr; A) — char(PDGhym; A)

| ]

1

where res is the obvious restriction map and ext is the extension map introduced in Proposition 1.4.

We can also show that char(P2G; A) = char(P@Gyym; A). To prove this, we define the map
ext: char(P@Gyym; A) — char(P9G; A)

as follows. Let «(-) be an element of char(P% G ym; A) corresponding to « € H*(BG; A). For a given
locally trivial principal G-bundle 77: P — X, consider the C W—approximation |S?(X)|s £%> X in 9,
which is the counit of the adjoint pair (| - |g, S ?); see Remark 2.8(2) and [Kihara 2023, Section 3]. Since
we can prove that every C W —complex in 9 is smoothly paracompact (see [Kihara > 2024]), the pullback
Py P is a Y9—numerable principal G-bundle. Thus, we can define the characteristic class o (P) of P by
a(P) = a(p} P) under the identification H*(X; A) = H*(|S?(X)|a, A). Then it is clear that the map
ext: char(P@Gyym; A) — char(P@G; A) and the obvious restriction map

res: char(P9G; A) — char(PDGpym; A)

are mutually inverses. We can easily see from Theorem 1.3 that ext: char(PDGpym; A) — char(P2G; A)
is just the corestriction of ext: char(P@Gyym; A) — char(PDGgigr; A). (Recall that the class of locally
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trivial principal G-bundles also does not have the homotopy invariance property with respect to pullback
and hence that it has no classifying space; see [Christensen and Wu 2021, Section 3].)

We end this section by raising a problem on diffeological principal bundles.

Problem Let X be a CW—complex in & (or more generally, a cofibrant diffeological space); see [Kihara
2023, Section 3.1]. Is every diffeological principal G-bundle over X locally trivial?

This problem asks whether there exists a non-locally-trivial diffeological principal bundle over a nice
diffeological space; all the non-locally-trivial diffeological principal bundles the author knows are ones
over bad diffeological spaces.

If the problem is solved affirmatively, we can use the C W—approximation [S?(X)|s 2% X to directly
construct the map

char(PDGym; A) =5 char(PDGgifr; A)
which is the inverse of char(PD G gifr; A) —> char(PDGyum; A).

9 with S? in

Further, if the problem is solved affirmatively, then we can replace the singular functor S

Theorem 1.3 and Remark 5.8(1).

Remark 6.13 (1) Results similar to those mentioned above hold in the category I of topological spaces.
More precisely, the homotopy invariance property with respect to pullback need not hold for topological
principal G-bundles which are not numerable, and hence the class of topological principal G—bundles
does not have a classifying space; see [Andrade 2013; Christensen and Wu 2021, Section 3; Goodwillie
2012]. However, we have two ways of extending the characteristic class associated to a cohomology class
a of the (topological) classifying space BG; one uses the C W—approximation |S(X)| Z¥> X of the base
and the other uses the theory of simplicial principal bundles. We can easily see that they define the same
extension; the resulting map is denoted by

char(PT Gpum; A) <5 char(PT G A),

where char(PT Gpum; A) and char(PT G; A) are defined in a way similar to the diffeological case. We
then see that
char(PT Gyum; A) = H*(BG; A)
and that
char(PT Gpum: A) & char(PT G A)
are mutually inverses.

The results here remain true even if J is replaced with the category €° of arc-generated spaces; see
[Kihara 2023, Proposition 5.14(1)].

(2) Since the underlying topological space functor ~: % — €° preserves finite products [Kihara 2019,
Proposition 2.13], it induces the functor

TPBG — PG

Algebraic € Geometric Topology, Volume 24 (2024)
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(see [Kihara 2023, Lemma 5.7 and Remark 5.8]). Thus, we use this functor to study the relation between

characteristic classes of smooth principal G-bundles and ones of continuous principal G—bundles.
The natural inclusion S?X <> S X (see Section 2.3) induces the natural homomorphism
H*(X: A) <& g*(X; 4),

which along with [Kihara 2023, Proposition 5.14], defines the horizontal arrows in the commutative
diagram

H*(BG: A) + Y25 H*(BG; A)

b ]

char(PDGpum: A) —— char(P€°G um; A)

extlll? IIBl/ext

char(P%G; A) «——— char(P€°G:; A)
We can easily see that the equality

(VBGa)(P) = Yx (a(P))
holds for P € P9G.

If G is a Lie group (or more generally, in the class ¥V'g), then H*(BG: A) §.2:[2 H*(Bé; A) is an
isomorphism (see [Kihara 2023, Theorem 11.2, and Corollaries 1.6 and 5.16]), and hence all the arrows
in the above commutative diagram are bijective. (Here, a Lie group is defined to be a group in the
category C > of C°°—manifolds in the sense of [Kriegl and Michor 1997, Section 27]; see [Kihara 2023,
Section 2.2].)
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