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We study the space Xg �Mg consisting of surfaces with filling systoles and its subset, critical points
of the systole function. In the first part we obtain a surface with Teichmüller distance 1

5
log logg to Xg ,

and in the second and third parts prove that most points in Mg have Teichmüller distance 1
5

log logg
and Weil–Petersson distance 0:6521.

p
logg�

p
7 log logg/ to Xg . So the radius-r neighborhood of Xg

cannot cover the thick part of Mg for any fixed r > 0. In the last two parts, we get critical points with
small and large (comparable to the diameter of the thick part of Mg ) distances.
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1 Introduction

1.A Motivations

A long-standing and difficult question on the moduli space of Riemann surfaces of genus g (denoted
by Mg ) is to construct a spine of Mg (the deformation retract of Mg with minimal dimension.)1

This question is equivalent to constructing a mapping class group equivariant deformation retract with
the minimal dimension of the Teichmüller space Tg . In an unpublished manuscript, Thurston [1986b]
proposed a candidate for the spine of Mg ; see Anderson, Parlier and Pettet [Anderson et al. 2016]. This
candidate consists of surfaces whose shortest geodesics are filling, and is denoted by Xg (A finite set of

1In some papers a deformation retract of Mg is called a spine of Mg , and the ones with minimal dimension are called minimal
(or optimal) spines
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essential curves on a surface is filling if the curves cut the surface into polygonal disks.) Thurston outlined
a proof that Xg is a deformation retract of Mg , but the proof seems difficult to complete. Recently, some
progress on the dimension of Xg has been made; for example, a codimension-2 deformation retract of
Mg containing Xg (see Ji [2014]) and a .4g�5/–cell contained in Xg (see Fortier Bourque [2020]). But
determining the dimension of Xg still seems very difficult.

Our work mainly concerns the shape of Xg with respect to the Teichmüller and Weil–Petersson metrics
on Mg . The shape of Xg was first studied by Anderson, Parlier and Pettet [Anderson et al. 2016], and
our work is partly inspired by the notion of the sparseness of subsets in Mg they raised. Our question is:

Question 1.1 Does there exist a number RDR.g/ > 0 such that, for most points p 2Mg , dT .p;Xg/
(or dWP.p;Xg/) is larger than R.g/?

In other words: is Xg in some sense “sparse” in Mg?

Another motivation to study the shape of Xg is to understand the shape of the critical-point set of the
systole function. On each surface p 2Mg , the systole is the length of the shortest geodesics on p.
Therefore it can be treated as a function on Mg . Akrout [2003] showed that this function is a topological
Morse function; hence the systole function has regular and critical points. The critical-point set of this
function is denoted by Crit.sysg/. By Schmutz Schaller [1999, Corollary 20], Crit.sysg/�Xg . Therefore
conclusions on the shape of Xg imply corollaries on the shape of Crit.sysg/. On the other hand, a natural
question is to compare the shape difference between Xg and Crit.sysg/. This program is closely related
to the question of Mirzakhani as to whether long fingers exist. Details are in the following subsection.

1.B Results and perspectives

Our first result is the construction of an example of a surface in the thick part of Mg that is distant fromXg .

Proposition 3.6 When g � 3 there is a surface Sg with sys.Sg/D arccosh 2 whose distance to Xg is at
least 1

4
log.logg�K/, where K D log 12.

Remark 1.2 If a surface’s systole is sufficiently small, then its Teichmüller distance to Xg could be
arbitrarily large. But our example has constant systole while it is distant from Xg .

Before stating Theorem 4.3, we make “most points” in Question 1.1 precise.

The Weil–Petersson metric is a mapping class group equivariant Riemannian metric on the Teichmüller
space. Therefore the volume of Mg and Borel subsets of Mg with respect to this metric is well defined.
Mirzakhani [2007] invented the integration formula for geometric functions on Mg with respect to this
volume and then calculated the volume of Mg . She initiated a fast-growing area: random surfaces with
respect to the Weil–Petersson metric; see Mirzakhani [2007; 2013].
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The random surface theory is based on the probability of Borel sets in Mg . Mirzakhani defined the
probability of a Borel set B �Mg as

PWP.B/D
volWP.B/

volWP.Mg/
:

Theorem 4.3 PWP
˚
S 2Mg j dT .S;Xg/ <

1
5

log logg
	
! 0 as g!1.

Remark 1.3 The distance 1
5

log logg is calculated from (3-1) in Lemma 3.2 and the width by Nie, Wu
and Xue [Nie et al. 2023, Theorem 2]. Actually, if we replace 1

5
by any number smaller than 1

4
, this

theorem still holds. Besides Lemma 3.2 and [Nie et al. 2023, Theorem 2], Theorem 4.3 also depends on
Mirzakhani’s Theorem 2.8 in [Mirzakhani and Petri 2019].

Theorem 4.3 gives a positive answer to Question 1.1 with respect to Teichmüller distance. When g is
sufficiently large, most points in Mg have Teichmüller distance at least 1

5
log logg to Xg .

The moduli space Mg is divided into two parts. The thick part consists of surfaces with systole larger
than or equal to " for some fixed " > 0, denoted by M�"g . This part is compact in Mg , and its diameter
with respect to the Teichmüller metric is C log.g="/ for some C > 0 by Rafi and Tao [2013]. The
complementary part of the thick part is the thin part.

By the collar lemma (see for example Buser [1992, Chapter 4]), Xg is contained in the thick part of Mg

and we have:

Corollary 4.4 PWP
˚
dT .S;Xg/ <

1
5

log logg j S lies in the thick part of Mg

	
! 0 as g!1.

From Proposition 3.6 or Corollary 4.4, the Hausdorff distance between the thick part of Mg and Xg is at
least 1

5
log logg.

The study of the shape ofXg with respect to the Teichmüller metric was pioneered by Anderson, Parlier and
Pettet [Anderson et al. 2016]. By comparing Xg with Yg , the subset of Mg with Bers’ constant bounded
above and below by constants, they obtained the following two results: the diameter of Xg is comparable
with the thick part of Mg [Anderson et al. 2016, Theorem 1.1], and the sparseness of Xg \ Yg in Yg ,
that is, most points in Yg have distance at least logg to Xg \Yg [Anderson et al. 2016, Theorem 1.3].2

The distance in Proposition 3.6 and Theorem 4.3 is smaller than that of [Anderson et al. 2016, Theorem 1.3],
but we remove the restriction to Yg and obtain the sparseness of Xg in Mg and thick part of Mg .

An immediate corollary to Proposition 3.6 or Corollary 4.4 is:

Corollary 1.4 For any R > 0, when g is sufficiently large , the R–neighborhood of Xg does not cover
the thick part of Mg . Hence the R–neighborhood of Crit.sysg/ does not cover the thick part of Mg .

For the thick part of Mg , Fletcher, Kahn and Markovic [Fletcher et al. 2013] determined the minimal
size of a point set in M�"g whose R neighborhood covers the whole thick part for any R > 0. The size

2For the meaning of the “most points” and the definition of the distance, see [Anderson et al. 2016].
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is .Cg/2g for C D C.";R/ > 0. Currently the size of Crit.sysg/ is not determined, but a known lower
bound for jCrit.sysg/j given by the Euler characteristic of Mg (see [Harer and Zagier 1986]) is quite
close to this number. However, by Corollaries 4.4 and 1.4, Crit.sysg/ is sparse in M�"g .

We also answer Question 1.1 with respect to the Weil–Petersson metric:

Theorem 5.7 PWPfS 2Mg j dWP.S;Xg/ < 0:6521.
p

logg�
p
7 log logg/g ! 0 as g!1.

Besides the tools used in the proof of Theorem 4.3, to prove this theorem we also use Wu’s estimate [2022]
of lower bounds of Weil–Petersson distance. Using this estimate, Wu [2022, Theorem 1.4] has obtained
that the probability of the Weil–Petersson

p
logg–neighborhood of all surfaces with o.logg/ Bers’

constant tends to 0 as g tends to infinity.

After answering Question 1.1, a further question is:

Question 1.5 Is there a critical point p 2 Crit.sysg/ and a large number R.g/ such that B.p;R.g//
contains no critical point except p?

This question concerns the distances between the elements of Crit.sysg/ and Xg . The radius gives a
lower bound for the Hausdorff distance between Xg and Crit.sysg/. Moreover, Question 1.5 is very
close to but slightly weaker than Mirzakhani’s question of whether there exists a long finger (see Fortier
Bourque and Rafi [2022]) when the systole has a large local maximum at p.

For such a point p, a component of the level set fq j sys.q/ > Lg that contains p but does not contain any
other critical point of the systole function is called a finger. The length of a finger is sys.p/�L. If a finger
is long, then the Teichmüller distance from p to other critical points is large (at least 1

2
log.sys.p/=L/).

We make the first attempt to compare the difference between Xg and Crit.sysg/.

For any g � 2, we take three surfaces S1g , S2g and S3g that were originally constructed by Anderson,
Parlier and Pettet [Anderson et al. 2011], Gao and Wang [2023] and Fortier Bourque and Rafi [2022],
respectively. The surfaces S1g and S3g are known critical points, and we prove S2g is a critical point by our
Proposition 6.3. Then we calculate the distance between the critical points.

Theorem 8.3 For the surfaces S1g ; S
3
g 2 Crit.sysg/, when g � 13,

dT .S
1
g ; S

3
g/ >

1
2

log.g� 6/�K;

where K D 1
2

log
�
40
3

log..4gC 4/=�/
�
.

Hence the diameter of Crit.sysg/ is comparable with the diameter of Xg and the diameter of the thick
part of Mg .

On the other hand, the distance between S1g and S2g is small.

Theorem 7.10 For any g � 2 and S1g ; S
2
g 2 Crit.sysg/,

dT .S
1
g ; S

2
g/� 2:3:

Algebraic & Geometric Topology, Volume 24 (2024)
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It is worth mentioning that to prove the surface†2g is a critical point, we use a conclusion (Proposition 6.3)
that among all surfaces with a specific symmetry, the surface with maximal systole is a critical point.
This proposition is a generalization of Schmutz Schaller [1999, Theorem 37] and Fortier Bourque [2020,
Proposition 6.3]. The key point of this generalization is to construct a domain in Mg containing the point
p we consider, and p is the maximal point of the systole function in the domain.

1.C Methods

To prove “most surfaces” are distant from Xg , we avail ourselves of lower bounds of Teichmüller and
Weil–Petersson distance (Lemma 3.2 and Wu [2022, Theorem 1.1], respectively). For “most surfaces”
there is an embedded cylinder with a large length and large width by Nie, Wu and Xue [Nie et al. 2023] and
the systoles of the surfaces are relatively small by a theorem of Mirzakhani [Mirzakhani and Petri 2019,
Theorem 2.8]. By the lower bound estimates, surfaces containing such a cylinder are distant from Xg .

Theorem 8.3 is obtained by comparing the diameter of the two surfaces. This method is from Rafi and
Tao [2013, Lemma 5.1].

The shapes of S1g and S2g are similar. Then we can construct the deformation from S1g to S2g explicitly.
From the deformation we describe in Section 7, we calculate the distance and get Theorem 7.10.

Organization In Section 2, we provide some preliminary knowledge on Teichmüller theory and the
systole. Then we prove Proposition 3.6 in Section 3 and Theorem 4.3 in Section 4. On the Weil–Petersson
distance, we prove Theorem 5.7 in Section 5. In Section 6, Proposition 6.3 is proved. Then using
Proposition 6.3, Theorem 7.10 is proved in Section 7. Finally, Theorem 8.3 is proved in Section 8.
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on Theorem 5.7. We acknowledge Prof. Jiajun Wang for his helpful suggestions. We acknowledge the
referee for invaluable suggestions. The author is supported by grant 12301082 of the National Natural
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2 Preliminaries

2.A Teichmüller space

We denote by Tg the Teichmüller space consisting of marked hyperbolic surfaces with genus g, and by
Mg the moduli space consisting of hyperbolic surfaces with genus g. It is known that

Mg Š Tg=�g :

Here �g is the mapping class group of a closed orientable surface of genus g.
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The Teichmüller metric is a complete mapping class group equivariant metric on Tg defined using the
dilatation of quasiconformal maps. For X; Y 2 Tg , the distance between X and Y is denoted by dT .X; Y /.
The formal definition of this metric is deferred to Section 7.C.1 since it is not needed for most of this paper.

2.B Thurston’s metric

Thurston [1986a] defined an asymmetric metric on the Teichmüller space. For X; Y 2 Tg and f WX! Y

a Lipschitz homeomorphism between X and Y , we let

L.f /D sup
x;y2X
x¤y

d.f .x/; f .y//

d.x; y/
:

Then this metric is defined as

dL.X; Y /D inf
f
flogL.f / j f WX ! Y is a Lipschitz homeomorphismg:

Theorem 2.1 [Thurston 1986a] For X; Y 2Mg ,

dL.X; Y /D sup
˛2C.X/

inf
f WX!Y

log
lf .˛/.Y /

l˛.X/
:

Here f is a Lipschitz homeomorphism and C.X/ is the set of simple closed curves in X .

For X; Y 2 Tg , Rafi and Tao [2013, (2)] have shown that

(2-1) 1
2
dL.X; Y /� dT .X; Y /:

2.C The topological Morse function and generalized systole

Definition 2.2 On a topological manifold M n, a function f WM n!R is a topological Morse function if,
at each point p 2M , there is a neighborhood U of p and a map  WU !Rn. Here  is a homeomorphism
between U and its image such that f ı �1 is either a linear function or

f ı �1..x1; x2; : : : ; xn//D f .p/� x
2
1 � � � � � x

2
j C x

2
jC1C � � �C x

2
n:

In the former case the point p is called a regular point of f , while in the latter case the point p is called
a singular point with index j .

On a Riemannian manifold M , l˛ WM !RC is a family of smooth functions on M indexed by ˛ 2 I ,
called the (generalized) length function. The length function family is required to satisfy the following
condition: for every p 2M there exists a neighborhood U of p and a number K > 0 such that the set
f˛ j l˛.q/�K for all q 2 U g is a nonempty finite set. The (generalized) systole function is defined as

sys.p/ WD inf
˛2I

l˛.p/ for all p 2M:

Theorem 2.3 [Akrout 2003] If , for any ˛ 2 I , the Hessian of l˛ is positively definite , then the
generalized systole function is a topological Morse function.

Algebraic & Geometric Topology, Volume 24 (2024)
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The critical point of the systole function is also characterized in [Akrout 2003]. A p 2M is a eutactic
point if and only if it is a critical point of the systole function.

We assume that, for p 2M ,
S.p/ WD f˛ 2 I j l˛.p/D sys.p/g:

Definition 2.4 For p 2M , p is eutactic if and only if 0 is contained in the interior of the convex hull of
fdl˛jp j ˛ 2 S.p/g.

An equivalent definition is:

Definition 2.5 p 2 M is eutactic if and only if for v 2 TpM , if dl˛.v/ � 0 for all ˛ 2 S.p/, then
dl˛.v/D 0 for all ˛ 2 S.p/.

2.D Teichmüller space and length function

For a marked hyperbolic surface † in the Teichmüller space Tg , ˛ � † is an essential simple closed
geodesic. Its length is denoted by l˛.†/. In another point of view, l˛ is a function on Tg :

l˛ W Tg !RC; † 7! l˛.†/:

The set of all the shortest geodesics on † is denoted by S.†/. For ˛ 2 S.†/,

l˛.†/� lˇ .†/ for all simple closed geodesics ˇ �†:

The length of the shortest geodesics of † is called systole of †.

Similarly, the systole can be treated as a function on Tg , and we denote it by sysg or shortly sys. Obviously

sys.†/D l˛.†/D inf
simple closed geodesics ˇ�†

lˇ .†/:

Remark 2.6 In a small neighborhood U of † in Tg , the systole function is realized by the minimum
lengths of finitely many simple closed geodesics.

Remark 2.7 Systole function can also be defined as a function on Mg :

sys WMg !RC; † 7! sys.†/:

However, the length function l˛ is not well-defined on Mg because of the monodromy.

By [Wolpert 1987], the Hessian of l˛ is always positive definite for any simple closed geodesic ˛ �†
with respect to the Weil–Petersson metric. Therefore:

Corollary 2.8 [Akrout 2003, corollaire, page 2] The systole function is a topological Morse function
on Tg .

The systole function is also a topological Morse function on Mg , because the systole function is an
invariant function on Teichmüller space.

The set of all the critical points of sysg in Tg is denoted by Crit.sysg/.
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Figure 1: Hyperbolic polygons. The right-angled triangle (left), trirectangle (middle left), right-
angled pentagon (middle right) and right-angled hexagon (right).

2.E Hyperbolic trigonometric formulae

The following are from [Buser 1992, page 454] and are pictured in Figure 1:

cosh cDcot˛ cotˇ: .right-angled triangles/;(2-2)

cos'Dsinh a sinh b .trirectangles/;(2-3)

cosh cDsinh a sinh b .right-angled pentagons/;(2-4)

cosh cDsinh a sinh b cosh 
 � cosh a cosh b .right-angled hexagons/:(2-5)

3 The surface Sg

In this section we construct a surface Sg whose Teichmüller distance toXg is at least 1
4

log.logg�log 12/.

3.A Construction of the surface Sg when g D 3 � 2n�1

To construct a surface Sg , we first construct a tree T .n/ with m vertices. The tree’s diameter is required
to be comparable with logm.

We define the tree T .n/ by the following two properties:

(1) Every vertex, except the leaves of T .n/, has degree 3.

(2) There is a vertex O of T .n/ such that the combinatorial distance from every leaf of T .n/ to O is n.

The tree T .2/ is shown in Figure 2.

O

Figure 2: The tree T .2/.
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Figure 3: The sphere with 6 � 2n boundary components.

Now we construct the surface Sg from the tree T .n/. We pick several isometric pairs of pants as building
blocks of Sg . Each pair consists of two regular right-angled hexagons. A boundary component of the
pants is called a cuff, and an edge of the hexagons in the interior of the pants is called a seam. We glue
the pants together according to the tree T .n/.

Then we glue together the pants. A vertex of T .n/ corresponds to a pair of pants; two pairs of pants are
glued together at a cuff if there is an edge that connects the corresponding vertices. Now we get a sphere
with 3 � 2n boundary components (Figure 3). For each pair of pants corresponding to a leaf in the tree,
we glue together the two cuffs of the pair that are not glued with the other pants. Then we get a closed
surface with genus g, where gD 3 �2n�1. At each cuff, we require the gluing to have “no twist”. In other
words, when gluing two pairs of pants together at a cuff, endpoints of seams from one pair of pants are
required to be glued with the endpoints of seams from the other; when gluing two cuffs in the same pair
of pants, ends of seams from the two sides of the cuff are required to be glued together. Therefore we
construct a unique hyperbolic surface, denoted by Sg .

In Sg , in each one-holed torus (glued from a pair of pants) corresponding to a leaf of the tree, there is
a unique simple closed curve consisting of one seam of the pants. We denote this curve by ˛k , where
k D 1; 2; : : : ; g. Now we prove that this curve is the shortest in Sg .

Lemma 3.1 The shortest closed geodesics on Sg are exactly the curves ˛1; ˛2; : : : ; ˛g , and therefore the
systole of Sg is arccosh 2.

Proof By (2-5), the edge length of regular right-angled hexagons is arccosh 2, and hence the cuff length
of the pants is 2 arccosh 2 and the seam length is arccosh 2. Therefore the length of ˛k is the seam length
of the pants, arccosh 2. If a curve in Sg intersects at least three pairs of pants, then this curve is longer
than ˛k because this curve must pass through two cuffs that belong to one of the three pants.

In a pair of pants, the only simple closed geodesics are the cuffs. The cuff length of the pants is exactly
twice the length of ˛k .

Algebraic & Geometric Topology, Volume 24 (2024)
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If a curve is contained in two neighboring pairs of pants, then it intersects the two pants’ shared cuff and
the seams opposite the cuff. However, by (2-4), the distance between the cuff and the seam is larger than
the length of ˛k .

Therefore f˛kg
g

kD1
is the set of shortest geodesics of Sg .

3.B Distance between Sg and Xg

The distance between a surface and Xg is estimated below by the following lemma:

Lemma 3.2 For a surface S 2Mg , let L> 0. If , for any filling curve set F in which each pair of curves
intersect at most once , F contains a curve longer than L, then

(3-1) dT .S;Xg/�
1
4

log
L

sys.S/
:

Proof We let S 2Mg . For any filling curve set F � S in which each pair of curves intersects at most
once, F contains a curve longer than L.

For any S 02Xg , we assume F 0�S 0 is the set of shortest geodesics in S 0. Since S 02Xg , F 0 is filling in S 0.

For any Lipschitz homeomorphisms f W S! S 0 and g W S 0! S , we let ˛ � S be a shortest geodesic in S
and ˇ � S 0 be a shortest geodesic with lg.ˇ/.S/ >L. Then by Theorem 2.1,

exp.dL.S; S 0//�
lf .˛/.S

0/

l˛.S/
�

sys.S 0/
sys.S/

:

On the other hand,

exp.dL.S 0; S//�
lg.ˇ/.S/

lˇ .S
0/
�

L

sys.S 0/
:

Then, by (2-1), dT .S; S 0/� 1
2
dL.S; S

0/ and dT .S; S 0/� 1
2
dL.S

0; S/. For any sys.S 0/ > 0,

max
�

sys.S 0/
sys.S/

;
L

sys.S 0/

�
�

r
L

sys.S/
:

Therefore,

dT .S; S
0/� 1

2
log

r
L

sys.S/
D

1
4

log
L

sys.S/
:

Now we estimate the distance between Sg and Xg using Lemma 3.2.

We let Pk , k D 1; : : : ; g be the one-holed tori corresponding to leaves of the tree T .n/. An observation is
that SgnfPkg

g

kD1
is a g–holed sphere.

Immediately we have:

Lemma 3.3 In Sg , for any filling curve set F in which each pair of curves intersects at most once , any
curve in F intersects at least one Pk in fPkg

g

kD1
.
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Proof If a curve does not intersect any Pk for k D 1; 2; : : : ; g, then it is contained in the g–holed sphere
SgnfPkg

g

kD1
, and hence is a separating curve. A separating curve cannot intersect any curve once. On

the other hand, a curve in a filling set F always intersects other curves in F .

Lemma 3.4 In Sg , for any filling curve set F in which each pair of curves intersects at most once , F
contains a curve ˇ such that

lˇ .Sg/ > n arccosh 2;
where g D 3 � 2n�1.

Proof The construction of Sg gives a natural pants decomposition on Sg . A filling curve set must
intersect every pair of pants in this decomposition because filling curve sets cut the surface into disks.

For the pants corresponding to the center vertex O shown in Figure 2, we let ˇ be a curve in F passing
through this pair of pants. Then by Lemma 3.3, ˇ intersects some one-holed sphere corresponding to
a leaf in the tree T .n/. The combinatorial distance between the vertex O and any leaf of the tree is at
least n. Then by the construction of Sg , the distance between the corresponding two pairs of pants is at
least n arccosh 2, where arccosh 2 is the length of seams of the pairs of pants used to construct Sg .

Therefore lˇ .Sg/ > n arccosh 2.

By Lemmas 3.4 and 3.2, immediately we have:

Proposition 3.5 When g D 3 � 2n�1 for any positive integer n, the distance between Sg and Xg is
larger than

dT .Sg ; Xg/ >
1
4

logn:

3.C Construction in general genus

We have proved Proposition 3.6 when g D 3 � 2n�1. Now we construct Sg when 3 � 2n�1 < g < 3 � 2n.

Take a tree T with g leaves, such that T .n/� T � T .nC 1/. By the embedding T .n/! T , we define
the vertex of O in T as the image of vertex O in T .n/. Then in the tree T , the combinatorial distance
from O to any leaf of T is larger than n.

Similarly to the construction at the beginning of this section, we can construct a genus-g surface Sg from
the tree T . By Lemma 3.2, the distance between Sg andXg is larger than 1

4
logn. Since g<3�2n, we have:

Proposition 3.6 For any g � 3, the distance from the surface Sg with sys.Sg/D arccosh 2 to the space
Xg is larger than

dT .Sg ; Xg/ >
1
4

log.logg� log 12/:

4 Sparseness of Xg

4.A Two theorems on random surfaces

We list two theorems on random surfaces we need for the proof of Theorem 4.3.
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Theorem 4.1 [Mirzakhani and Petri 2019, Theorem 2.8] There exist A;B > 0 such that , for any
sequence fcgg of positive numbers with cg < A logg, we have

PWPfS 2Mg j sys.S/ > cgg< Bcge�cg :

In a hyperbolic surface, the half collar of a simple closed geodesic 
 with width w is an embedded
cylinder in the surface. One of the boundary curves of the cylinder is the geodesic 
 , and this cylinder
consists of points with distance at most w to 
 on one side of 
 .

Theorem 4.2 [Nie et al. 2023, Theorems 1 and 2] For any " > 0, consider the following conditions:

(a) There is a simple closed curve 
 in S that has a half collar with width 1
2

logg�
�
3
2
C "

�
log logg.

(b) The length of the curve 
 in (a) is larger than 2 logg� 5 log logg.

Then
PWPfS 2Mg j S satisfies (a) and (b)g ! 1

as g!1.

4.B The sparseness of Xg

Theorem 4.3 PWP
˚
S 2Mg j dT .S;Xg/ <

1
5

log logg
	
! 0 as g!1.

Proof By Theorem 4.1, if we let cg D 1
5

log logg, then

PWP
˚
S 2Mg j sys.S/ > 1

5
log logg

	
< B

1
5

log logg

.logg/1=5
:

For S 2Mg and sys.S/� 1
5

log logg, if S satisfies Theorem 4.2(a), then for any filling curve set F in S ,
F contains a curve of length at least logg� 2 log logg since in F there must be a curve intersecting the
separating curve 
 in condition (a). Then by Lemma 3.2, the distance between S and Xg is bounded
below by

1
4

log
logg� 2 log logg

1
5

log logg
> 1
5

log logg:

By Theorem 4.2, PWP
˚
S 2Mg j dT .S;Xg/ >

1
5

log logg
	
! 1 as g!1 and so the theorem holds.

Recall that Xg is contained in the thick part M�"g in Mg . The thick part M�"g has positive probability
in Mg by [Mirzakhani and Petri 2019, Theorem 4.1]; immediately we have:

Corollary 4.4 PWP
˚
dT .S;Xg/ <

1
5

log logg j S lies in the thick part of Mg

	
! 0 as g!1.

5 The Weil–Petersson distance version of Theorem 4.3

Besides the Teichmüller distance, if we consider the Weil–Petersson distance to Xg , we can prove
Theorem 5.7.
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5.A Lower bounds on Weil–Petersson distance

The main tools to prove Theorem 5.7 are Theorems 4.1 and 4.2, and the lower bounds on Weil–Petersson
distance of Wu [2022].

Before stating Wu’s result, we prepare some definitions; for details, see [Wu 2022].

We let M be the space of complete Riemannian metrics on the topological surface Sg with constant
curvature �1. Then by the definition of Teichmüller space, Tg DM=Diff0.Sg/ where Diff0.Sg/ is the
group of diffeomorphism of Sg isotopic to the identity. Let � WM! Tg be the natural projection. We
recall from Rupflin and Topping [2018] that a smooth path c.t/�M is a horizontal curve if there exists
a holomorphic quadratic differential q.t/ on c.t/ such that @c.t/=@t D Re q.t/.3

On a surface X 2M for p 2X , we let injX .p/ be the injectivity radius of X at p, namely the half length
of shortest essential loop on X passing through p. Then we define

Definition 5.1 On a topological surface †g.g � 2/, fix p 2†g . For any X; Y 2 Tg , we define

j
p

injX .p/�
p

injY .p/j WD sup
c
j
p

injc.0/.p/�
p

injc.1/.p/j;

where c W Œ0; 1� !M runs over all smooth horizontal curves, with �.c.0// D X , �.c.1// D Y and
�.c.Œ0; 1//� Tg the Weil–Petersson geodesic connecting X and Y .

Theorem 5.2 [Wu 2022, Theorem 1.1] For a topological surface †g with g � 2, fix a point p 2 Sg .
Then , for any X; Y 2 Tg ,

j
p

injX .p/�
p

injY .p/j � 0:3884dWP.X; Y /;

where dWP.X; Y / is the Weil–Petersson distance.

A corollary to this theorem is also needed:

Corollary 5.3 [Wu 2022, Corollary 1.2] For X; Y 2 Tg ,

j
p

sys.X/�
p

sys.Y /j � 0:5492 dWP.X; Y /

Remark 5.4 Before this corollary, the function
p

sys. � / was proved to be uniformly Lipschitz on Tg
endowed with the Weil–Petersson metric by Wu [2019].

5.B The theorem with respect to Weil–Petersson distance

Now we begin to prove Theorem 5.7. First, we prove the following two lemmas:

Lemma 5.5 If S 2 Tg satisfies Theorem 4.2(a)–(b), then there is a curve ˛ � S , freely homotopic to the
geodesic 
 in the conditions (a) and (b), such that , for any point p 2 ˛,

injS .p/�
1
4

logg�
�
3
4
C
"
2

�
log logg:

3For a hyperbolic metric g 2M, the tangent space of M can be decomposed as fRe q j q is a quadratic differential on .S; g/g˚
fLg jX 2 �.TS/g. For details, see [Rupflin and Topping 2018].
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Proof By conditions (a) and (b), 
 � S is a simple closed geodesic of length 2 logg�5 log logg, having
a half collar of width 1

2
logg�

�
3
2
C"

�
log logg. Then let ˛ be the curve in the half collar of 
 consisting

of points whose distance to 
 is 1
4

logg�
�
3
4
C
"
2

�
log logg. The lemma follows immediately.

Lemma 5.6 For any surface S 0 2Xg , on any essential curve ˛0 � S 0 there is at least one point p0 2 ˛0

such that
injS 0.p0/� 1

2
sys.S 0/:

Proof Recall that S 0 2Xg means that the shortest geodesics on S 0 form a filling set of curves. Then any
essential curve ˛0 intersects at least one shortest closed geodesic. We pick one of the shortest geodesics that
intersects ˛0 and denote it by ˇ0. We let p0 be a point in ˛0\ˇ0. Then injS 0.p0/� 1

2
lˇ 0.S 0/D 1

2
sys.S 0/.

Theorem 5.7 PWPfS 2Mg j dWP.S;Xg/ < 0:6521.
p

logg�
p
7 log logg/g ! 0 as g!1.

Proof By Theorem 4.1, if we let cg D log logg, then

(5-1) PWPfS 2Mg j sys.S/ > log loggg< B
log logg

logg
:

Let S 2Mg satisfy Theorem 4.2(a) and (b) and sys.S/� log logg. For any S 0 2Xg , by Corollary 5.3,

(5-2) 0:5492 dWP.S; S
0/� j

p
sys.S 0/�

p
sys.S/j �

p
sys.S 0/�

p
sys.S/�

p
sys.S 0/�

p
log logg:

On the other hand, since S satisfies conditions (a) and (b), by Lemma 5.5 there is a curve ˛ � S such
that, for any p 2 ˛,

(5-3) injS .p/�
1
4

logg�
�
3
4
C
"
2

�
log logg:

We choose an arbitrary horizontal curve c.t/ W Œ0; 1� ! M�1 with �.c.0// D S , �.c.1// D S 0 and
�.c.Œ0; 1// a Weil–Petersson geodesic connecting S and S 0. Then by deforming the metric of S along
c.t/ to the metric of S 0, ˛ is also a well-defined essential simple closed curve on S 0. By Lemma 5.6,
there is a point p 2 ˛ � S 0 such that

(5-4) injS 0.p/� 1
2

sys.S 0/:

Therefore, by Definition 5.1, (5-3) and (5-4),

(5-5) 0:3884 dWP.S; S
0/� j

p
injS .p/�

p
injS 0.p/j �

p
injS .p/�

p
injS 0.p/

�

q
1
4

logg�
�
3
4
C
"
2

�
log logg�

q
1
2

sys.S 0/:

Combining (5-2) and (5-5), then eliminating sys.S 0/, we have

dWP.S; S
0/� 0:6521.

p
logg�

p
7 log logg/:

Hence, for any S satisfying (a), (b) and sys.S/� log logg,

dWP.S;Xg/� 0:6521.
p

logg�
p
7 log logg/:
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On the other hand, by Theorem 4.2 and (5-1),

PWPfS j S satisfies (a), (b) and sys.S/� log loggg ! 1

as g!1. Therefore,

PWPfS j dWP.S;Xg/� 0:6521.
p

logg�
p
7 log logg/g ! 1

as g!1, and the theorem holds.

6 A criterion for the critical points

This section aims to prove Proposition 6.3: the surface with maximal systole among all the surfaces
admitting a specific group action must be a critical point of the systole function.

In Section 6.A, some required knowledge on the tangent space of Tg for the proof is provided. In
Section 6.B, we prove lemmas on local properties of the subspace consisting of surfaces admitting a
specific group action. At last, in Section 6.C, we prove the proposition.

6.A Tangent space of the Teichmüller space

This subsection contains some required definitions and conclusions on the tangent space of Tg for the proof
of Proposition 6.3. One may refer to [Imayoshi and Taniguchi 1992; Wolpert 1987; Liu 2023] for details.

For S 2 Tg , let � be the Fuchsian group that uniformizes S ; hence S ŠH2=� . The tangent space of Tg
is identified with the space of harmonic Beltrami differentials with respect to � , denoted by HB.H2; �/.

Here B.H2; �/ consists of a �–invariant .�1; 1/–tensor � 2 L1.H2/ with j�j < 1. A �–invariant
.�1; 1/–tensor � satisfies that for any 
 2 � ,

(6-1) �D .� ı 
/

 0


 0
almost everywhere on H2:

The map H is a projection from B.H2; �/ to itself, depending only on the complex structure of Tg , and
HB.H2; �/ is the image of this projection.

There is an exponential mapˆ WHB.H2; 
/!Tg , given by associating to�2HB.H2; �/ the (equivalence
class of the marked) surface H2=f ��.f �/�1, where f � is the quasiconformal map on H2 satisfying
f
�
Nz D �f

�
z and fixing 0, 1 and1. Note that ˆ is a holomorphic homeomorphism; see [Wolpert 1987].

6.B Symmetric surfaces

For genus-g surface Sg , we assume G is a finite subgroup of MCG.Sg/, and � is a marked hyperbolic
structure on Sg such that †g D .Sg ; �/2 Tg . Then we define XGg � Tg , the hyperbolic surfaces admitting
a G action:

XGg D f†g D .Sg ; �/ 2 Tg jG � Aut.†g/g:

Here Aut.†g/ is the automorphism group of the hyperbolic surface †g .
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The following lemma says that the set of G–invariant tangent vectors at S 2XGg is HB.H2; � 0/ for the
Fuchsian group � 0 that uniformizes the orbifold S=G.

Lemma 6.1 For S 2Xgg , we let S be uniformized by the Fuchsian group � , and the orbifold S=G be
uniformized by a Fuchsian group denoted by � 0. Hence � E � 0 and G Š � 0=� . Then � 2 HB.H2; �/ is
a G–invariant tangent vector to Tg if and only if � 2 HB.H2; � 0/.

Proof For g 2Aut.S/, since HB.H2; �/ consists of .�1; 1/–tensors we know g acts on HB.H2; �/ by

(6-2) g�.�/D .� ı Qg
�1/

. Qg�1/0

. Qg�1/0
;

where Qg is a lift of g onto H2.

Since a lift of g is contained in � 0 andGŠ� 0=� , by (6-2), �Dg�.�/ is equivalent to �2HB.H2; � 0/.

For the exponential map ˆ, we have:

Lemma 6.2 For the G–invariant tangent vector � 2 HB.H2; � 0/, ˆ.�/ 2XGg .

Proof The group G, as a subgroup of the mapping class group MCGg , acts on Tg . To prove ˆ.�/2XGg
is to prove ˆ.�/ is a fixed point of this action.

For g 2G and ˆ.�/DH2=f ��.f �/�1, g acts on ˆ.�/ by

H2=f ��.f �/�1 7!H2=. Qg/�1f ��.f �/�1 Qg;

where Qg is a lift of g onto H2.

By the definition of f �, f �ı. Qg/�1Df � if and only if �D .�ı Qg�1/. Qg�1/0=. Qg�1/0; namely, �Dg�.�/.
Therefore, ˆ.�/ is G–invariant if � is G–invariant.

6.C The criterion

Proposition 6.3 If R 2XGg realizes the maximum of the systole function on XGg , namely

sysR � sysS for all S 2XGg ;

then R is a critical point of the systole function in Tg .

Proof We assume that R realizes the maximum of sys on XGg , S.R/ is the set of systoles of R, R is
uniformized by the Fuchsian group � , and the orbifold R=G is uniformized by the Fuchsian group � 0.

For � 2 HB.H2; �/, if for any ˛ 2 S.R/ we have dl˛.�/ � 0, we consider � D
P
g2G g��; then by

[Fortier Bourque 2020, (6.1)],

(6-3) dl˛.�/D dl˛

�X
g2G

g��

�
D

X
g2G

dl˛.g��/D
X
g2G

dlg.˛/.�/� dl˛.�/� 0:

Algebraic & Geometric Topology, Volume 24 (2024)



The shape of the filling-systole subspace in surface moduli space and critical points of the systole function 2027

The vector � D
P
g2G g�� is in HB.H2; � 0/. We let "0 be a small positive number and consider

U D f� j � 2HB.H2; � 0/ and k�k1 < "0g. Since U is an open neighborhood of 0 in HB.H2; � 0/, ˆ.U /
is an open neighborhood of R in XGg . If "0 is small enough, then for any S 2 ˆ.U / there is at least
one curve ˛ 2 S.R/ such that ˛ is a systole of S . The Hessian of l˛jˆ.U/ is positive definite since the
Hessian of l˛ is positive definite. Then by Theorem 2.3, sysjˆ.U/ is a topological Morse function.

Since R realizes the maximum of sysjXG
g

, R realizes the maximum of sysjˆ.U/ and R is a critical
point of sysjˆ.U/. HB.H2; � 0/ is the tangent space of ˆ.U / at the basepoint. By Definition 2.5, for
� 2 HB.H2; � 0/, if dl˛.�/� 0 for all ˛ 2 S.R/, then dl˛.�/D 0 for all ˛ 2 S.R/.

Therefore by (6-3), for � 2HB.H2; �/, if dl˛.�/� 0 for all ˛ 2 S.R/, then dl˛.�/D 0 for all ˛ 2 S.R/.
By Definition 2.5 R is a eutactic surface, and therefore a critical point of the systole function.

7 Small distance

7.A Construction of S 1
g and S 2

g

The surface S1g was initially constructed in [Anderson et al. 2011], while S2g was initially constructed in
[Gao and Wang 2023]. We briefly construct these two surfaces for completeness, which implies how to
obtain the Teichmüller distance between the two surfaces.

We first construct a family of genus-g hyperbolic surfaces denoted by fSg.c; t/g; each surface in this
family is determined by two parameters, c and t for c > 0 and 0 � t � 1

2
c. The example S1g is a

Sg.c1; 0/–surface for some c1 > 0, while the example S2g is a Sg.c2; t2/–surface for some c2; t2 > 0.

Let n� 3 and pick two isometric right-angled hyperbolic polygons with 2n edges admitting an order-n
rotation. Two such polygons can be glued to an n–holed sphere admitting the order-n rotation extended
from the polygons. By this rotation, all boundary curves of this n–holed sphere have equal length. The
geometry of the n–holed sphere is determined by its boundary curves’ length (denoted by c), and we denote
the corresponding n–holed sphere by S.c/. We call the boundary curves of S.c/ cuffs and the edges of the
polygons contained in the interior of S.c/ seams. By rotational symmetry, all seams also have equal length.

We pick two isometric n–holed spheres and glue them along their cuffs, getting a closed surface. As
shown in Figure 4, when gluing the two n–holed spheres, we require that every cuff of one of the n–holed
spheres is identified with a cuff in the other n–holed sphere, and every seam of one n–holed sphere is half
of a closed curve (denoted by ˛k for k D 1; 2; : : : ; n) while the other half of ˛k is a seam in the other
n–holed sphere. This constructed surface has genus g D n� 1, and the geometry of this closed surface is
determined by the cuff length c. We denote this surface by Sg.c; 0/.

For t > 0, the surface Sg.c; t/ is constructed from Sg.c; 0/ by conducting a Fenchel–Nielsen deformation
of length t simultaneously along each cuff 
k . Here a Fenchel–Nielsen deformation on X 2 Tg along a
simple closed geodesic ˛ �X with length t is constructed by cutting X along ˛ and then regluing the
boundary curves with a left twist of length t .
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Figure 4

There is a c1 > 0 such that on the surface Sg.c1; 0/, l.˛k/D l.
k/. This surface is the surface S1g . The
shortest geodesics of S1g consist of ˛k and 
k for k D 1; 2; : : : ; gC 1 by the proof of [Anderson et al.
2011, Theorem 3].

In a surface Sg.c; t/, we let ˇk be the image of ˛k by a Dehn twist along 
kC1 (Figure 4). The orientation
of this Dehn twist is required to be opposite to the Fenchel–Nielsen deformation.

There is a pair .c2; t2/ such that on the surface Sg.c2; t2/, l.˛k/ D l.ˇk/ D l.
k/. This surface is the
surface S2g . The shortest geodesics of S2g consist of ˛k , ˇk and 
k for k D 1; 2; : : : ; gC 1 by [Gao and
Wang 2023, Proposition 4].

7.B Symmetry on S.c; t/

We consider a group G acting isometrically on Sg.c; t/, generated by three elements, � , � and & . Here �
is the rotation of order n, � is the order-2 rotation that exchanges the two n–holed spheres, and & is the
order-2 rotation that is invariant on each n–holed sphere and when restricted to one of the two n–holed
spheres exchanges the two 2n–gons.

On the surface Sg.c; 0/, there is a reflection � extended from the reflection on one of the n–holed spheres
exchanging the two polygons of the n–holed sphere. The symmetric group generated by � , � , & and � is
denoted by G.

Remark 7.1 A reflection on the n–holed sphere can be extended to the whole surface Sg.c; t/ only if
t D 0 or t D 1

2
c.

The reflection on Sg
�
c; 1
2
c
�
, denoted by � 1

2
c , is not conjugate to �. This is because their fixed-point sets

are different. The fixed points of � on Sg.c; 0/ consist of gC1 curves (the ˇk curves), while fixed points
of � 1

2
c consist of one curve (when g is even) or two curves (when g is odd).

The surface S1g has been proved to be a critical point of the systole function; see [Fortier Bourque 2020,
Example 4.2 and Proposition 6.3].

On the other hand, it is proved in [Gao and Wang 2023] that the surface S2g is the surface with the maximal
systole among the surfaces admitting the action of G. Then immediately by Proposition 6.3, S2g is a
critical point of the systole function.
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Hence we have:

Proposition 7.2 The surfaces S1g and S2g are critical points of the systole function.

7.C Distance

This subsection aims to bound the Teichmüller distance between S1g and S2g .

Recall the parameter of the surfaces S1g D Sg.c1; 0/ and S2g D Sg.c2; t2/. To get an upper bound of
dT .S

1
g ; S

2
g/, we need an intermediate surface Sg.c2; 0/. Distance between S1g and S2g is bounded from

above by the sum of dT .S1g ; S.c2; 0// and dT .S.c2; 0/; S2g/.

7.C.1 Quadratic differential and Teichmüller geodesics Before the calculation, we need some
preparations; for details, see [Masur 2009].

For a quasiconformal map f W X ! Y for X; Y 2 Tg , the .�1; 1/–tensor �f .z/ D f Nz=fz is called the
Beltrami differential of f , where z is a local coordinate of X . We let

K.f /D sup
z2X

1Cj�f .z/j

1� j�f .z/j
:

Here �f is the complex dilatation of f defined in the last subsection.

The Teichmüller distance on Tg is defined to be

dT .X/D
1
2

inf
f�id
flogK.f / j f WX ! Y g:

A Teichmüller geodesic ray with respect to Teichmüller distance from X 2 Tg can be induced from
a holomorphic quadratic differential q on X . A holomorphic quadratic differential is a tensor locally
written as  .z/dz2, where  .z/ is a holomorphic function. We denote the space of quadratic differentials
on X by QD.X/. The bundle of quadratic differentials over Tg is denoted by QDg .

For X 2 Tg and q 2 QD.X/, for any 0 < k < 1, �k D k Nq=q is a Beltrami coefficient on X . We let fk
be the quasiconformal map induced by �k , fk W X ! X .k/. Then fk is the Teichmüller map from X

to X .k/, and the Teichmüller geodesic ray induced by .X; q/ consists of all the X .k/ for all k 2 .0; 1/.

A nonzero q 2 QD.X/ has a canonical coordinate. In this coordinate, q can be locally written as dz2 in
the neighborhood of any nonzero point of q, and q has only finitely many zero points.

The quadratic differential q determines a pair of transverse measured foliations on X , called horizontal
and vertical foliations for q and denoted by Fh.q/ and Fv.q/, respectively. In the canonical coordinate
of q, the leaves of Fh.q/ are given by y D const and the leaves of Fv.q/ are given by x D const. Here
z D xC iy is the coordinate. The measures of Fh.q/ and Fv.q/ are given by jdyj and jdxj, respectively.

ForXt on the geodesic induced by .X; q/with dT .X;Xt /D t , there is a quadratic differential qt 2QD.Xt /
as the pushforward of q by ft . We let z D xC iy be the canonical coordinate of .X; q/ and w D uC iv
be the canonical coordinate of .X; q/. Then

(7-1) uD etx and v D e�ty:
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7.C.2 Extremal length and the Jenkins–Strebel differential A quadratic differential q 2 QD.X/
is called a Jenkins–Strebel differential if any leaf of Fh.q/ and Fv.q/ is a simple closed curve, except
finitely many leaves that connect zeros of q.

For a Jenkins–Strebel differential q 2 QD.X/ and a simple closed leaf ˛ of Fh.q/, all simple closed
leaves of Fh.q/ parallel to ˛ form a cylinder in X . This cylinder is called the characteristic ring domain
of ˛ and, with respect to the metric jqj, is isometric to a Euclidean cylinder

RD Œ0; a�� .0; b/=..0; t/� .a; t/; 0 < t < b/:

We call a the length of R and b the height of R.

We need the following theorem on the Jenkins–Strebel differential:

Theorem 7.3 [Strebel 1984, Theorem 21.1] Let .
1; : : : ; 
p/ be a finite pairwise-disjoint essential
curve system in X 2 Tg . For each 
i , there is a regular neighborhood R0i of 
i in X and R01; : : : ; R

0
p

are pairwise disjoint. Then for any .b1; : : : ; bp/ 2 Rp
C

, there is a unique Jenkins–Strebel differential
q 2 QD.X/ such that :

� 
i is a leaf of Fh.q/ and any simple closed leaf of Fh.q/ is freely homotopic to a 
i . Here
i D 1; 2; : : : ; p.

� The height of the characteristic ring domain of 
i is bi .

The definition of the extremal length of an essential curve ˛ in a Riemann surface X is given by

Ext˛.X/D sup
�

l˛.�/
2

Area.X; �/
:

Here the supremum is taken over all metrics � conformal to the metric on X , l˛.�/ is the length of ˛ in
the metric � and Area.X; �/ is the area of X in the metric �.

For a Euclidean cylinder with length a and height b, the extremal length of its core curve in the cylinder
is a=b; see for example [Ahlfors 1966].

Distance between points on a Teichmüller geodesic can be expressed by extremal lengths of horizontal
foliation leaves in their characteristic ring domains. For a Jenkins–Strebel differential q 2 QD.X/, we
let ˛ be a simple closed leaf of Fh.q/ and R be the characteristic ring domain of ˛ with length a and
height b. For Xt on the Teichmüller geodesic induced by .X; q/ with dT .X;Xt /D t , the characteristic
ring Rt �Xt corresponding to R�X has length eta and height e�tb. Hence for the simple closed curve
˛t corresponding to ˛, Ext˛t

.Rt /D e
2ta=b and

(7-2) dT .X;Xt /D
1

2

ˇ̌̌̌
log

Ext˛t
.Rt /

Ext˛.R/

ˇ̌̌̌
:

The last necessary tool for estimating the distance is the comparison between hyperbolic length and
extremal length by Maskit.
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For a simple closed geodesic ˛ in a hyperbolic surface X , the collar of ˛ with width w is an embedded
cylinder in X consisting of points with distance at most w to ˛.

Theorem 7.4 [Maskit 1985] In hyperbolic surface X , if a simple closed geodesic ˛ has collar C with
width arccosh.1=cos �/ then

(7-3) 1

�
l˛.X/� Ext˛.X/� Ext˛.C /�

1

2�
l˛.X/:

7.C.3 The distance between S 1
g D S.c1; 0/ and S.c2; 0/ We estimate this distance in two steps:

(1) Prove fS.c; 0/ j c > 0g is a Teichmüller geodesic induced by a Jenkins–Strebel differential on some
surface S.c; 0/.

(2) Estimate distance between two points by (7-2) and (7-3).

For c > 0, on the surface S.c; 0/ we consider the cuffs of the n–holed spheres in S.c; 0/, namely f
kg
gC1

kD1
,

and assign to each 
k a positive number b. Then by Theorem 7.3, f.
k; b/g
gC1

kD1
induces a quadratic

differential q on S.c; 0/.

Lemma 7.5 The quadratic differential q 2 QD.Sg.c; 0// is invariant under the action of G.

Proof For g 2G, the quadratic form g�q is induced by the set f.g�1.
k/; b/g
gC1

kD1
. By the action of G

on Sg.c; 0/, f.g�1.
k/; b/g
gC1

kD1
D f.
k; b/g

gC1

kD1
. Therefore g�q D q and q is invariant.

We consider the Teichmüller geodesic induced by .S.c; 0/; q/.

Lemma 7.6 We write the Teichmüller geodesic induced by .S.c; 0/; q/ as l . Then the Teichmüller
geodesic l coincides with the curve fSg.c; 0/ j c > 0g.

Proof Since q is G–invariant by Lemma 7.5, for any surface S 0 2 l the Beltrami coefficient of the
Teichmüller map f W S.c; 0/ ! S 0 is t Nq=q for some t 2 .0; 1/. Hence this Beltrami coefficient is
G–invariant. Then, by Lemma 6.2, G isometrically acts on S 0 by

f ıg ıf �1 W S 0! S 0

for any g 2G.

Consider the set of cuffs of the n–holed spheres on Sg.c; 0/, denoted by f
kg
gC1

kD1
. Its image ff .
k/g

gC1

kD1
in

S 0 cuts S 0 into two n–holed spheres. Then G isometrically acts on these two n–holed spheres as G acts on
the two n–holed spheres in S.c; 0/. Hence S 0 is a S.c0; 0/–surface, where c0 is the length of f .
k/ on S 0.

Therefore the Teichmüller geodesic l is contained in the curve fSg.c; 0/ j c >0g. Then by the completeness
of Teichmüller geodesics, fSg.c; 0/ j c > 0g coincides with l .

Now we are ready to estimate:

Proposition 7.7 For S1g D Sg.c1; 0/ and Sg.c2; 0/, we have

dT .S
1
g ; Sg.c2; 0//� 0:65:
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1


2


3


4


5

�=.gC 1/

1
2
s2

1
4
c2

Figure 5: Left: characteristic ring domains. Right: calculate 1
2
s2.

Proof Recall that c1 and c2 are the systoles of S1g and S2g , respectively. Then by [Anderson et al. 2011]
c1 D 4 arcsinh

p
cos.�=.gC 1//, and c2 is given by the formula in [Gao and Wang 2023, Theorem 1].

Then we use the following lemma to get the Teichmüller distance:

Lemma 7.8 The Teichmüller distance between the hyperbolic surfaces Sg.c1; 0/ and Sg.c2; 0/ with
c1 < c2 is bounded above by

1
2

log
�c2

2�c1
;

where

cos � D
�
1C

cos2.�=.gC 1//
sinh2.c2=4/

��12
:

Proof For i D 1; 2, we let f
 .i/
k
g
gC1

kD1
be the cuffs in Sg.ci ; 0/, qi 2 QD.Sg.ci ; 0// be the quadratic

differential induced by f.
 .i/
k
; b/g

gC1

kD1
for some b > 0, and R.i/

k
be the characteristic ring domain of 
 .i/

k
.

Then, by Theorem 7.4,

(7-4) Ext



.1/

k

.R
.1/

k
/� Ext



.1/

k

.Sg.c1; 0//�
l.


.1/

k
/

�
D
c1

�
:

The set of characteristic ring domains fR.2/
k
g
gC1

kD1
is invariant under the G–action. Then by the symmetry

of G, in Sg.c2; 0/ the ring domains R.2/
k

for k D 1; : : : ; gC 1 are bounded by the hyperbolic geodesics
connecting a center of the 2n–gons and a middle point of the seams (Figure 5, left); otherwise, fR.2/

k
g
gC1

kD1

is not G–invariant.

Therefore, if the seam length of n–holed spheres of Sg.c2; 0/ is s2, then the collar Ck of 
 .2/
k

with width
s2=s is contained in the characteristic ring domain R.2/

k
.

The seam length s2 is given by the trirectangle formula (2-3):

(7-5) sinh
�
1
2
s2
�

sinh
�
1
4
c2
�
D cos �

gC1
:

See Figure 5, right. Therefore, by Theorem 7.4,

(7-6) Ext



.2/

k

.R
.2/

k
/� Ext



.2/

k

.Ck/�
l.


.2/

k
/

2 arccos
�
1=cosh

�
1
2
s2
�� D c2

2 arccos
�
1=cosh

�
1
2
s2
�� :

By combining (7-2), (7-4), (7-6) and (7-5), this lemma holds.

Proposition 7.7 follows immediately by Lemma 7.8.
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l l 0

p p0

q
q0

l

l 0

p

p0

q

q0
�


k

Figure 6: Left: the homeomorphism hjCk
. Right: the lift of Ck to H2.

7.C.4 The distance between Sg.c2; 0/ and S 2
g D Sg.c2; t2/ Recall that Sg.c2; t2/ is obtained from

Sg.c2; 0/ by a Fenchel–Nielsen deformation along the cuffs f
kg
gC1

kD1
in S.c2; 0/ with time t2. For the

collar Ck of 
k , we construct a homeomorphism h W Sg.c2; 0/! Sg.c2; t2/ such that h is an isometry
outside all these collars. Hence the dilatationK.h/ is reduced to the dilation restricted to a collarK.hjCk

/,
and the Teichmüller distance between the two surfaces is bounded from above by 1

2
logK.hjCk

/.

Proposition 7.9 For †2g and †1;2g , we have

dT .S
2
g ; Sg.c2; 0//� 1:6450:

Proof We proceed by constructing the homeomorphism h and calculating its dilatation on the largest
collar of 
k .

We let Ck be the collar of 
k with the width 1
2
s2, where s2 is the seam length of the n–holed spheres as

in Lemma 7.8. The homeomorphism h on Ck is described in Figure 6, left. A geodesic l orthogonal to
the core curve 
k is always mapped to a geodesic l 0. The line l is required to intersect l 0 at a point p
on 
k . The projection of one of the endpoints of l 0 (denoted by p0) is required to have distance 1

2
t2 to p.

We let h outside the collars be an isometry on this surface of Sg.c2; 0/; then the homeomorphism h maps
Sg.c2; 0/ to Sg.c2; t2/ by the construction on the collars.

The rest of the proof consists of the calculation of K.h/ on the collar Ck . To calculate this dilatation, we
lift Ck on the upper half-plane H2 (Figure 6, right).

We lift 
k to the y–axis, assuming p D i and p0 D iet2=2. The collar of 
k with width 1
2
s2 is lifted to a

strip
˚
rei' 2H2 j �� C 1

2
� < ' < � C 1

2
�
	
, where

(7-7) cos � D
1

cosh 1
2
s2
:

In this strip, l is the unit circle, and l 0 is the geodesic connecting i and exp
�
1
2
t2C i sin �

�
.
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The homeomorphism h can be expressed in the form

h.rei'/D rˆ.'/ei' :

When r D 1, h maps l to l 0 in Figure 6, right. By this requirement, we can calculate that

(7-8) ˆ.'/D sinh
�
1
2
t2
�cos'

sin �
C

s
sinh2

�
1
2
t2
�cos2 '

sin2 �
C 1:

The dilatation K.h/ is given by

(7-9) K.h/D
jhzjC jh Nzj

jhzj � jh Nzj
D

q
ˆ2C 1

4
ˆ02C 1

2
jˆ0jq

ˆ2C 1
4
ˆ02� 1

2
jˆ0j

:

Here z D rei' and Nz D re�i' .

Combining (7-9), (7-8), (7-7), (7-5) and the formula for .c2; t2/ in [Gao and Wang 2023, Theorem 1], we
obtain dT .Sg.c2; 0/; Sg.c2; t2//� 1

2
logK.h/� 1:6450.

Hence by Propositions 7.7 and 7.9, we have:

Theorem 7.10 For any g � 2,
dT .S

1
g ; S

2
g/� 2:3:

8 Large distance

8.A The S 3
g surface

We take the X.�/–surface in [Fortier Bourque and Rafi 2022] when nD 2 as the surface S3g . We briefly
describe this surface for completeness.

We consider the four-holed sphere admitting the order-4 rotation. We pick infinitely many copies of the
four-holed sphere fPkg

C1

kD�1
and glue them together into a surface S1 with infinite genus, as shown

in Figure 7.

The surface S1 admits an isometric action  W S1! S1 which takes every Pk to PkC1. The surface
S3g is the quotient S1=h g�1i. When g � 13, S3g is a local maximal point of the systole function.

P1 P2 P3

: : :: : :

Figure 7: The surface S1.
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O

AB

C

O

AB

Figure 8: Left: the right-angled octagon. Right: the polygon Q.

8.B The distance between S 1
g and S 3

g

This distance is obtained from diameter comparison. The diameter of S3g is comparable with g while the
diameter of S1g is comparable with logg. Then the distance between these two surfaces is comparable
with logg by the method in the proof of [Rafi and Tao 2013, Lemma 5.1].

Proposition 8.1 For the diameter of the surface S3g , we have

diam.S3g/� 0:6
�
1
2
.g� 5/

˘
:

Proof By the construction, the surface S3g consists of g�1 four-holed spheres, Pk for kD 1; 2; : : : ; g�1.

When g � 5, for any x 2 Pk and y 2 PkC2 for some k, a curve connecting x and y must pass through at
least one of the four-holed spheres other than Pk or PkC2. Without loss of generality, we assume this
curve passes through PkC1; then this curve, if given an orientation, enters PkC1 at one cuff and leaves
PkC1 at another cuff. Therefore, d.x; y/ is bounded from below by the distance between neighboring
cuffs of PkC1. We denote this distance by d . Then inductively, when k � 1

2
.g� 1/, distance between

x 2 P1 and y 2 Pk is at least d
�
1
2
.g� 1/� 2

˘
. Hence

diam.S3g/� d
�
1
2
.g� 1/� 2

˘
:

The rest of this proof is to calculate d . The distance d is the seam length of the four-holed spheres. The
seam length d is determined by the cuff length (denoted by c) of the four-holed sphere by (8-1). In
Figure 8, left, one of the two octagons forming the four-holed sphere, we have

(8-1) sinh jABj sinh jBC j D cos†O; which gives sinh
�
1
4
c
�

sinh
�
1
2
d
�
D cos

�
1
4
�
�
:

According to [Fortier Bourque and Rafi 2022, Lemma 2.5], the cuff length of the four-holed spheres is
approximately 6:980. Then by (8-1), this proposition holds.

For the surface S1g , we have:

Proposition 8.2 The diameter of the surface S1g satisfies

diam.S1g/ < 4 log
�
4gC 4

�

�
:
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Figure 9: The path between x and y.

Proof Recall that the surface S1g consists of two .gC1/–holed spheres, and each of the .gC1/–holed
spheres consists of two right-angled regular .2gC2/–gons. For any x; y 2 S1g , for the two (possibly
coinciding) regular .2gC2/–gons containing x and y, there is a curve connecting x and y, contained
in the union of these two polygons (see Figure 9). Therefore, if we denote one of the four regular
.2gC2/–gons by Q,

diam.S1g/� 2 diam.Q/;

The diameter of Q is realized by 2jOBj in Figure 8, right. In the triangle 4OAB , by (2-2),

coshjOBj D cot†O cot†B;

and so
coshjOBj D cot

�
1
4
�
�

cot �

2gC2
D cot �

2gC2
<
2gC2

�
:

Therefore,
diam.S1g/� 2 diam.Q/� 4jOBj< 4 arccosh

�
2gC2

�

�
< 4 log

�
4gC4

�

�
:

Theorem 8.3 When g � 13,

dT .S
1
g ; S

3
g/ >

1
2

log.g� 6/� 1
2

log
�
40
3

log
�
4gC4

�

��
:

Proof The proof here is similar to the proof of [Rafi and Tao 2013, Lemma 5.1].

We let f W S1g ! S3g be a Lipschitz homeomorphism with L.f / D dL.S
1
g ; S

3
g/. (The existence of

this homeomorphism is verified in [Thurston 1986a].) By Proposition 8.1, we pick x; y 2 S3g with

d.x; y/� 0:6
�1
2
.g� 5/

˘
. By Proposition 8.2, d.f �1.x/; f �1.y// < 4 log..4gC 4/=�/. Then

L.f /�
d.x; y/

d.f �1.x/; f �1.y//
>

0:6
�
1
2
.g� 5/

˘
4 log..4gC 4/=�/

>
3.g� 6/

40 log..4gC 4/=�/
:

Hence,
dL.S

1
g ; S

3
g/D logL.f / > log.g� 6/� log

�
40
3

log
�
4gC4

�

��
:

By (2-1),

dT .S
1
g ; S

3
g/�

1
2
dL.†

1
g ; †

3
g/ >

1
2

log.g� 6/� 1
2

log
�
40
3

log
�
4gC4

�

��
:
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