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Classical shadows of stated skein representations at roots of unity

JULIEN KORINMAN

ALEXANDRE QUESNEY

We extend some results of Bonahon, Wong, Bullock and Turaev concerning the skein algebras of closed
surfaces to Lê’s stated skein algebras associated to open surfaces. We prove that the stated skein algebra
with deforming parameter C1 embeds canonically into the center of the stated skein algebra whose
deforming parameter is an odd root unity. We also construct an isomorphism between the stated skein
algebra atC1 and the algebra of regular functions of the relative SL2–character variety of the surface. As
a result, we associate to each isomorphism class of irreducible or local representations of the stated skein
algebra an invariant which is a point in the relative character variety.
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1 Introduction

A punctured surface is a pair †D .†;P/, where † is a compact oriented surface and P is a (possibly
empty) finite subset of † which intersects nontrivially each boundary component. We write †P WD†nP.
The set @† nP consists of a disjoint union of open arcs which we call boundary arcs.

Warning In this paper, the punctured surface † will be called open if the surface † has nonempty
boundary and closed if † is closed. This convention differs from the traditional one, where some authors
refer to an open punctured surface as a punctured surface † D .†;P/ with † closed and P ¤ ∅ (in
which case †P is not closed).

We will consider two related objects associated to a punctured surface, namely the Kauffman-bracket
skein algebra and the SL2.C/–character variety. These objects have been well studied in the case where
the punctured surface is closed. They were recently generalized to open punctured surfaces in such a way
that they have a nice behavior relative to the operation of gluing two boundary arcs together. The goal of
this paper is to extend some classical results concerning skein algebras and character varieties to the case
of open punctured surfaces. Before we state the main results, let us give a brief historical background.

Historical background Closed surfaces: Culler and Shalen [1983] defined the SL2.C/ character variety
XSL2

.M / of a manifold M whose fundamental group is finitely generated. This affine variety is closely
related to the moduli space of flat connections on a trivial SL2.C/ bundle over M and, therefore, it is
related to Chern–Simons topological quantum field theory, gauge theory and low-dimensional topology;
see [Labourie 2013; Marché 2012; 2016] for surveys. If † is a closed oriented surface, the smooth part

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://dx.doi.org/10.2140/agt.2024.24.2091
http://www.ams.org/mathscinet/search/mscdoc.html?code=57R56
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


2092 Julien Korinman and Alexandre Quesney

of XSL2
.†/ carries a symplectic form, first defined in [Atiyah and Bott 1983] in the context of gauge

theory. This symplectic structure was used by Goldman [1986] to equip the algebra of regular functions
CŒXSL2

.†/� with a Poisson bracket. A similar Poisson structure for character varieties of punctured closed
surfaces was introduced by Fock and Rosly [1999] (see also [Alekseev et al. 2002] for an alternative
construction) in the differential geometric context.

Turaev [1988] and Hoste and Przytycki [1992] independently defined the Kauffman-bracket skein algebra
SA.†/ as a tool to study the Jones polynomial and the SU.2/ Witten–Reshetikhin–Turaev TQFTs. Skein
algebras are defined for any commutative unital ring R together with an invertible element A 2R� and a
closed punctured surface †.

Skein algebras are deformations of the algebra of regular functions of character varieties of closed
punctured surfaces. In particular, this means that there is an isomorphism of Poisson algebras between
SC1.†/ and CŒXSL2

.†/�. In more detail, this relies on a (noncanonical) isomorphism from SC1.†/

to S�1.†/ [Barrett 1999]. The latter algebra carries a natural Poisson bracket (see Section 2.5). An
isomorphism of algebras between S�1.†/ and CŒXSL2

.†/� was defined by Bullock [1997], assuming that
the skein algebra is reduced, ie that its nilradical is null. This latter fact was later proved independently
in [Przytycki and Sikora 2000] and [Charles and Marché 2012]. Turaev [1991] showed that Bullock’s
isomorphism is Poisson.

In TQFT, skein algebras appear through their nontrivial finite-dimensional representations. Skein algebras
admit such representations if and only if the parameter A is a root of unity. A recent result of Bonahon and
Wong [2016] states, in particular, that when A has odd order, there exists an embedding of SC1.†/ into the
center of SA.†/. Since each simple representation induces a character on the center of the skein algebra,
using Bullock’s isomorphism, one can associate to each isomorphism class of simple representation a
point in the character variety. This invariant is called the classical shadow of the representation.

Open surfaces: Lê [2018] generalized the Kauffman-bracket skein algebras to open punctured surfaces
based on the original work of Bonahon and Wong [2011]. We call it stated skein algebra and denote it by
S!.†/. It depends on an invertible element ! 2R�. When the surface is closed, it coincides with the
classical skein algebra with parameter AD !�2. An important feature of the stated skein algebra is its
behavior under gluing of surfaces. More precisely, let a and b be two boundary arcs of an open punctured
surface †, and let us denote by †ja#b the surface obtained from † by gluing a and b. Lê showed that
there is an injective algebra morphism

(1) i ja#b W S!.†ja#b/ ,! S!.†/

which is coassociative in that it does not depend on the order we glue the arcs, ie for four distinct boundary
arcs a, b, c and d , one has i ja#b ı i jc#d D i jc#d ı i ja#b . In particular, for each topological triangulation �
of †, one has an injective morphism of algebras

(2) i� W S!.†/ ,!
O

T2F.�/

S!.T /:
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Here T denotes the triangle, ie a disc with three punctures on its boundary. A punctured surface is
triangulable if it can be obtained from a disjoint union of triangles by gluing some pair of boundary arcs
(ie faces of triangles) together. A topological triangulation is the data of such a union of triangles together
with the pairs of glued boundary arcs. In (2), the tensor product runs over the faces of the triangulation;
see Section 2 for precise definitions.

As applications, Lê provided a simple proof that the algebra S!.†/ has no zero divisor (the case of closed
triangulable punctured surfaces was proved earlier in [Bonahon and Wong 2011] using the quantum trace
and the case of closed unpunctured surfaces was proved in [Przytycki and Sikora 2019]) and he obtained
a simpler formulation of Bonahon and Wong’s [2011] quantum trace map.

Motivated by Lê’s construction, Korinman [2019] defined a generalization of character varieties to open
punctured surfaces. We denote it by XSL2

.†/. This (relative) character variety is a Poisson affine variety
which coincides with the classical one when the surface is closed. It shares a similar gluing property
to the stated skein algebra; namely, there exist injective Poisson morphisms i ja#b W CŒXSL2

.†ja#b/� ,!
CŒXSL2

.†/� and i� W CŒXSL2
.†/� ,!N

T2F.�/CŒXSL2
.T /� between the Poisson algebras of regular

functions. However, the Poisson structure on CŒXSL2
.†/� depends on a choice of an orientation o of the

boundary arcs of the punctured surface. We denote by f � ; � go its Poisson bracket.

Main results Let† be a punctured surface. Lê’s morphism (2) embeds the skein algebra of a triangulated
surface into a tensor product of the skein algebras of the triangle. However, it does not provide a full
description of the stated skein algebra in terms of these smaller pieces. In a first result we provide
such a description; it goes as follows. Note that (1) endows the skein algebra of the bigon B (ie a disc
with two punctures on its boundary) with a bialgebra structure. It is in fact a Hopf algebra and one
can show that it is canonically isomorphic to the classical quantum SL2–algebra Oq ŒSL2� described in
[Chari and Pressley 1994; Kassel 1995] (with q D !�4). Note also that (1) induces Hopf comodule
maps �L

a W S!.†/! S!.B/˝S!.†/ and �R
b
W S!.†/! S!.†/˝S!.B/ obtained by gluing a bigon on

a boundary arc, a or b, of †; see Section 2.2 for details.

Theorem 1.1 The sequence

0! S!.†ja#b/
ija#b��! S!.†/

�L
a��ı�R

b������! S!.B/˝S!.†/

is exact , where �.x˝y/D y˝x.

Theorem 1.1 can be reformulated using co-Hochschild cohomology, whose 0th group (see Definition 2.26
and [Hess et al. 2009]) computes the skein algebra

S!.†ja#b/Š coHH0.Oq ŒSL2�; aS!.†/b/;

where aS!.†/b is seen as a bicomodule over Oq ŒSL2� via the comodule maps �L
a and �R

b
.
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Theorem 1.1 provides, for any topological triangulation � of †, an isomorphism of algebras

S!.†/Š coHH0

� O
e2VE.�/

Oq ŒSL2�;
O

T2F.�/

S!.T /

�
;

where the first tensor product runs over the inner edges of the triangulation and the second over the faces
of the triangulation. Hence S!.†/ is completely determined by the combinatoric of the triangulation
together with S!.T / and its appropriated structures of comodule over Oq ŒSL2�. This is a key feature in
the proofs of the next two theorems.

Our second result is a generalization to open punctured surfaces of Bonahon and Wong’s [2016] main
theorem in the case where the root of unity has odd order. Given N � 1, denote by TN .X / the N th

Chebyshev polynomial of first kind.

Theorem 1.2 Suppose that ! is a root of unity of odd order N � 1. There exists an embedding

j† W SC1.†/ ,! Z.S!.†//

of the (commutative) stated skein algebra with parameter C1 into the center of the stated skein algebra
with parameter !. Moreover , the morphism j† is characterized by the property that it sends a closed
curve 
 to TN .
 / and a stated arc ˛""0 to ˛.N /""0 , where ˛.N /""0 is the tangle made by stacking N parallel
copies of ˛""0 on top of the others.

In Theorem 1.2 we restrict ourselves to roots of unity of odd order for simplicity. Theorem 1.2 should
be compared to [Lê and Paprocki 2019, Theorem 8.1]. A marked 3–manifold is a pair .M;N/ where
M is an oriented 3–manifold and N � @M is an oriented submanifold whose connected components
are diffeomorphic to Œ0; 1�. To such a pair and � 2C�, Lê and Paprocki [2019] associate a vector space
S�.M;N/, which generalizes the Muller algebra. And for a root of unity � such that �4 has arbitrary
order N > 1 (not necessary odd), Lê and Paprocki [2019, Theorem 8.1] defined an injective linear map
ˆ� W S.�/N 2 .M;N/ ,! S�.M;N/. If .†;P/ is a punctured surface with no inner punctures and nontrivial
boundary, .M;N/ WD .†� .0; 1/;P� .0; 1// is a marked 3–manifold and S�.M;N/ is a subalgebra of
the stated skein algebra S�.†;P/. If � has odd order N > 1, the embedding j† of Theorem 1.2 restricts
to the embedding ˆ� of [Lê and Paprocki 2019, Theorem 8.1]. A generalization of Theorem 1.2 for
roots of unity of even order has been recently proved by Bloomquist and Lê [2022, Theorem 1.2] though
in this case the source of j† is the skein algebra at � WD !N 2

and the image is not always central but
rather spanned by .�1/1CN 0–transparent elements, where N 0 WD ord.!4/ (see [Bloomquist and Lê 2022,
Theorem 4.10] for details). Also a generalization of Theorem 1.2 for skein algebras of arbitrary connected
reductive groups G and for marked surfaces having 0 or 1 boundary arc was found by Ganev, Jordan and
Safronov [Ganev et al. 2024].

In the last result we generalize to open punctured surfaces Bullock’s isomorphism [1997] and Turaev’s
theorem [1991]; we prove that the stated skein algebra is a deformation of the relative character variety.
The fundamental result in this direction is as follows.
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The CŒŒ„��–module SC1.†/ŒŒ„�� WD SC1.†/˝C CŒŒ„�� is endowed with a star product ?„. The latter is
obtained by pulling back the product of SC1.†/ along an isomorphism SC1.†/ŒŒ„�� Š�!S!„.†/ of vector
spaces, where !„ WD exp

��1
4
„� (see Section 2.7 for details). This equips SC1.†/ with a Poisson algebra

structure; its Poisson bracket f � ; � gs is defined by

f ?„ g�g ?„ f D „ff;ggs .mod „2/ for all f;g 2 SC1.†/:

The superscript s stands for “skein”. See Section 2.7.3 for an explicit description.

Theorem 1.3 Suppose that † has a topological triangulation �. Let o� be an orientation of the edges of
� and o be the induced orientation of the boundary arcs of †. There exists an isomorphism of Poisson
algebras

‰.�;o�/ W .SC1.†/; f � ; � gs/ Š�! .CŒXSL2
.†/�; f � ; � go/:

Moreover , the above isomorphism exists for small punctured surfaces (see Definition 2.8), for which it
only depends on o.

The isomorphism ‰.�;o�/ induces, by tensoring with CŒŒ„��, an isomorphism of vector spaces

CŒXSL2
.†/�ŒŒ„�� Š�! SC1.†/ŒŒ„��:

Denote by ?.�;o�/ the product on CŒXSL2
.†/�ŒŒ„�� obtained by pulling back the product ?„ by this

isomorphism.

Corollary 1.4 For any triangulable punctured surface †, the algebra
�
CŒXSL2

.†/�ŒŒ„��; ?.�;o�/
�

is a
deformation quantization of the character variety with Poisson structure given by o.

Theorems 1.2 and 1.3 allow us to extend Bonahon and Wong’s [2016] classical shadow to open punctured
surfaces. Indeed, suppose that ! is a root of unity of odd order. A finite-dimensional representation
S!.†/! End.V / that sends each element of the image of j† W SC1.†/ ,! S!.†/ to scalar operators,
induces a character on the algebra SC1.†/ŠCŒXSL2

.†/�, hence defines a point in XSL2
.†/. To sum up,

and calling these representations central, one has the following.

Corollary 1.5 When ! is a root of unity of odd order and † is triangulable , to each isomorphism class
of central representations of the stated skein algebra S!.†/, one can associate an invariant which is a
point in the relative character variety XSL2

.†/.

Central representations include the families of irreducible representations, local representations and
representations induced by simple modules of the balanced Chekhov–Fock algebras using the quantum
trace map (see Section 3.3 for details).

Soon after the prepublication of this paper on arXiv, Costantino and Lê [2022] prepublished independently
some results similar to Theorems 1.1 and 1.3. More precisely, [Costantino and Lê 2022, Theorem 4:7] is
identical to Theorem 1.1, and [Costantino and Lê 2022, Theorem 8.12] is closely related, though different,
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to our Theorem 1.3. Instead of using the generalized character variety XSL2
.†/ defined in [Korinman

2019], the authors defined a twisted character variety �.†/ (without Poisson structure) and constructed a
canonical algebra isomorphism between the stated skein algebra inC1 and the algebra of regular functions
of �.†/, whereas our isomorphism in Theorem 1.3 depends on the noncanonical choice .�; o�/ of a
triangulation and an orientation of the edges (and is Poisson). Inspired by their enlightening approach, in
this new version of the paper we add the following clarification of the isomorphism in Theorem 1.3. As
explained before, when the punctured surface is closed, the “standard” isomorphisms between SC1.†/

and CŒXSL2
.†/� are indexed by spin structures. In Section 3.3, we define the notion of relative spin

structure for punctured surfaces, which coincides with the standard definition when the punctured surface
is closed. The motivation for this definition is its good behavior for the operation of gluing boundary
arcs together. In particular we associate to each combinatorial data .�; o�/, appearing in Theorem 1.3, a
relative spin structure and prove:

Theorem 1.6 The isomorphism ‰.�;o�/ of Theorem 1.3 only depends on the relative spin structure
associated to .�; o/.

In fact, in Theorem 3.20, we provide explicit formulas for the value of ‰.�;o�/ on stated arcs and closed
curves in terms of the relative spin structure. When the punctured surface is closed, we show that our
isomorphism coincides with the standard isomorphism associated to classical spin structures. We also
give, in Section 3.3.5, a detailed comparison between the isomorphism in Theorem 1.3 and Costantino
and Lê’s isomorphism [2022, Theorem 8.12].

Even though our proof of Theorem 1.2 makes uses of triangulations, the theorem is proved for arbitrary
punctured surfaces, including (nontriangulable) closed surfaces without punctures, thus providing an
alternative proof of the results in [Bonahon and Wong 2016]. However, our proof of Theorem 1.3 only
works for triangulable punctured surfaces (and for the bigon), so it does not provide an alternative proof
of the result of [Bullock 1997] for closed unpunctured surfaces.

Plan of the paper In the second section we briefly recall from [Lê 2018] the definition and general
properties of the stated skein algebra and prove Theorem 1.1. We then use the triangular decomposition
to reduce the proof of Theorem 1.2 to the cases of the bigon and the triangle for which the proof is a
simple computation. We eventually characterize the Poisson bracket arising in skein theory. In the third
section, we briefly recall from [Korinman 2019] the definition of character varieties for open surfaces.
Again, using triangular decompositions, we reduce the proof of Theorem 1.3 to the cases of the bigon
and the triangles for which the proof is elementary. We then introduce and study the notion of relative
spin structure and give in Theorem 3.20 an explicit description of the isomorphism of Theorem 1.3, from
which Theorem 1.6 is a straightforward consequence. In the appendix, we prove a technical result needed
in the proof of Theorem 1.2 and derive a generalization of the main theorem of [Bonahon 2019].
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Notation Throughout the paper we reserve the notation A WD !�2 and q WD !�4.

2 Stated skein algebras

2.1 Definitions and general properties of the stated skein algebras

We briefly review from [Lê 2018] the definition and main properties of the stated skein algebras.

Definition 2.1 A punctured surface is a pair †D .†;P/ where † is a compact oriented surface and
P is a finite subset of † which intersects nontrivially each boundary component. A boundary arc is a
connected component of @† nP. The punctured surface is open when @†¤∅ and closed otherwise.

Definition of stated skein algebras Let †D .†;P/ be a punctured surface and write †P WD† nP. A
tangle in †P � .0; 1/ is a compact framed, properly embedded 1–dimensional manifold T �†P � .0; 1/
such that for every point of @T � @†P � .0; 1/ the framing is parallel to the .0; 1/ factor and points
in the direction of 1. Here, by framing, we refer to a thickening of T to an oriented surface. Define
the height of a point .v; h/ 2 †P � .0; 1/ to be h. If b is a boundary arc and T a tangle, the points of
@bT WD @T \ b� .0; 1/ are totally ordered by their height and we impose that no two points in @bT have
the same height. A tangle has vertical framing if for each of its points, the framing is parallel to the .0; 1/
factor and points in the direction of 1. Two tangles are isotopic if they are isotopic through the class of
tangles that preserves the partial boundary height orders. By convention, the empty set is a tangle only
isotopic to itself.

Every tangle is isotopic to a tangle with vertical framing. We can further isotope a tangle such that it
is in general position with the standard projection � W†P � .0; 1/!†P with �.v; h/D v, that is such
that �jT W T !†P is an immersion with at most transversal double points in the interior of †P. We call
a diagram of T the image D D �.T / together with the over/undercrossing information at each double
point. An isotopy class of diagram D together with a total order of @bD D @D \ b for each boundary
arc b define uniquely an isotopy class of tangle. Here isotopy of diagrams refers to isotopies where
endpoints of diagrams are not allowed to cross. When choosing an orientation o.b/ of a boundary arc b

and a diagram D, the set @bD receives a natural total order �o by setting that the points are increasing
when going in the direction of o.b/. We will represent tangles by drawing a diagram and an orientation
(an arrow) for each boundary arc. When a boundary arc b is oriented, @bD is ordered by �o according
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to the orientation. The data of an isotopy class of diagram D and a choice o of orientations of the
boundary arcs define uniquely an isotopy class of tangle T by imposing that for every boundary arc a,
for v;w 2 @aD such that v �o w, the endpoint of @aT corresponding to w has higher height than the
endpoint corresponding to v. A state of a tangle is a map s W @T !f�;Cg. A pair .T; s/ is called a stated
tangle. We define a stated diagram .D; s/ in a similar manner.

Let R be a commutative unital ring and ! 2R� an invertible element.

Definition 2.2 The stated skein algebra S!.†/ is the free R–module generated by isotopy classes of
stated tangles in †P � .0; 1/ modulo the relations (3) and (4), which are

� the Kauffman bracket relations

(3) D !�2 C!2 and D�.!�4C!4/ I
� the boundary relations

(4) C
C D

�
� D 0; C� D ! and !�1 �

C �!�5 C� D :

According to our graphical conventions, in these skein relations, the boundary points are consecutive in the
height order. The product of two classes of stated tangles ŒT1; s1� and ŒT2; s2� is defined by isotoping T1

and T2 in †P�
�

1
2
; 1
�

and †P�
�
0; 1

2

�
, respectively, and then setting ŒT1; s1� � ŒT2; s2�D ŒT1[T2; s1[s2�.

Bases for stated skein algebras A closed component of a diagram D is trivial if it bounds an embedded
disc in †P. An open component of D is trivial if it can be isotoped, relatively to its boundary, inside
some boundary arc. A diagram is simple if it has neither double points nor trivial component. The empty
set is considered as a simple diagram. Let o be an orientation of the boundary arcs of † and denote by
�o the total orders induced on each boundary arc. A state s W @D! f�;Cg is o�increasing if for any
boundary arc b and any points x;y 2 @bD, x <o y implies s.x/ < s.y/. Here we choose the convention
�<C. We denote by ŒD; s� 2 S!.†/ the class of the stated tangle associated to .D; s/ (note that ŒD; s�
depends on the orientation o).

Definition 2.3 We denote by Bo � S!.†/ the set of classes ŒD; s� such that D is simple and s is
o–increasing.

Theorem 2.4 [Lê 2018, Theorem 2.11] The set Bo is an R–module basis of S!.†/.

Height exchange moves Important properties that we will use throughout the paper are the following
height exchange moves (5) and (6) proved in [Lê 2018, Lemma 2.4]. Note that the formula (20) of
Lemma 2.4 of [loc. cit.] contains a misprint. It is corrected here in (6):

C
C D !2 C

C ;
C� D !�2 C� ;

�
� D !2 �

� ;(5)

!�3 �
C �!3 �

C D .!�4�!4/ :(6)
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Remark 2.5 An important case that we will be led to consider is the stated skein algebra at parameter
! DC1. As shown in [Lê 2018, Corollary 2.5] it is commutative; this is a direct consequence of (3) and
the height exchange formulas (5) and (6).

Trivial arcs relations We will also use the following trivial arcs relations. Set

C D
�

CCC CC�
C�C C��

�
WD
�

0 !

�!5 0

�
and C�1 D�A3C D

�
0 �!�5

!�1 0

�
:

Lemma 2.6 [Lê 2018, Lemma 2.3] One has the following trivial arcs relations:

(7) i
j
D C i

j and i
j

D .C�1/ij :

Splitting morphisms Suppose that † has two boundary arcs, say a and b. Let †ja#b be the punctured
surface obtained from † by gluing a and b. Denote by � W †P ! .†ja#b/Pja#b

the projection and
c WD �.a/D �.b/. Let .T0; s0/ be a stated framed tangle of †ja#bPja#b

� .0; 1/ transversed to c � .0; 1/
and such that the heights of the points of T0\ c � .0; 1/ are pairwise distinct and such that framings of
the points of c � .0; 1/ are vertical. Let T � †P � .0; 1/ be the framed tangle obtained by cutting T0

along c. Using the partition @T D @aT t��1.@T0/t @bT , a state on T can be written .sa; s; sb/ where
sa, s and sb are states on @aT , @T0 and @bT , respectively. Both the sets @aT and @bT are in canonical
bijection with the set T0\ c by the map � . Hence the two sets of states sa and sb are both in canonical
bijection with the set St.c/ WD fs W c \T0! f�;Cgg. Let i ja#b W S!.†ja#b/! S!.†/ be the linear map
given, for any .T0; s0/ as above, by

i ja#b.ŒT0; s0�/ WD
X

s2St.c/

ŒT; .s; s0; s/�:

Theorem 2.7 [Lê 2018, Theorem 3.1] The linear map i ja#b is an injective morphism of algebras.
Moreover the gluing operation is coassociative in the sense that if a, b, c and d are four distinct boundary
arcs , then i ja#b ı i jc#d D i jc#d ı i ja#b .

Note that the splitting morphism i ja#b does not depend on any choice of the boundary arcs.

Triangulations

Definition 2.8 A small punctured surface is one of the following four connected punctured surfaces: the
sphere with one or two punctures; the disc with only one puncture (on its boundary); and the bigon (disc
with two punctures on its boundary).

Definition 2.9 A punctured surface is said to admit a triangulation if each of its connected components
has at least one puncture and is not small.
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Definition 2.10 Suppose †D .†;P/ admits a triangulation. A topological triangulation � of † is a
collection E.�/ of arcs in † (named edges) which satisfy the following conditions: the endpoints of the
edges belong to P; the interior of the edges are pairwise disjoint and do not intersect P; the edges are
not contractible and are pairwise nonisotopic in †P, if fixed their endpoints; and the boundary arcs of †
belong to E.�/. Moreover, the collection E.�/ is required to be maximal for these properties.

Each connected component of †nE.�/ is called a face and the set of faces is denoted by F.�/. Given a
topological triangulation �, the punctured surface is obtained from the disjoint union

F
T2F.�/ T of

triangles by gluing the triangles along the boundary arcs corresponding to the edges of the triangulation.
Very often, we will let T be both a face (which is an open contractible space) and the triangle (which is a
disc with exactly three punctures on its boundary). We hope that this abuse of notation is harmless. By
composing the associated splitting morphisms, one obtains an injective morphism of algebras

i� W S!.†/ ,!
O

T2F.�/

S!.T /:

Filtrations The stated skein algebra has natural filtrations defined as follows. Let S D fa1; : : : ; ang
be a set of boundary arcs of † and fix an orientation o of the boundary arcs of †. For a basis element
ŒD; s� of Bo, write d.ŒD; s�/ WDPa2S j@aDj. The map d extends to a map d W S!.†/! Z�0 by the
formula d

�P
i xi ŒDi ; si �

� WDmaxijxi¤0 d.ŒDi ; si �/. It follows from the relations (3) and (4) that for each
x;y 2S!.†/, we have d.xy/� d.x/Cd.y/. Given m� 0, denote by Fm �S!.†/ the subvector space
of those vectors x satisfying d.x/�m. These subspaces satisfy Fm � FmC1, S!.†/D

S
m�0 Fm and

Fm1
�Fm2

� Fm1Cm2
; hence they form an algebra filtration of the stated skein algebra.

Definition 2.11 The sequence .Fm/m�0 is called the filtration of S!.†/ associated to the orientation o

and the set S of boundary arcs. For an element X DPi2I xi ŒDi ; si � 2S!.†/, developed in the basis Bo,
we call the leading term of X the element

lt.X / WD
X
j2I

d.ŒDj ;sj �/Dd.X /

xj ŒDj ; sj �:

2.2 Alternative bases

In the next subsection, we will need alternative bases of S!.†/ which we now introduce. We fix an
arbitrary orientation o for each boundary arc. Recall that o induces a total order �o on each boundary arc
that we use to associate a tangle to a diagram.

Notation 2.12 Let D.†/ be the set of isotopy classes of simple diagrams and CD.†/ be its subset of
classes of connected diagrams. Fix an arbitrary total order � on CD.†/ and fix an orientation o of the
boundary arcs of † as before. For ŒD� 2 CD.†/, we denote by ŒT .D/� the isotopy class of the tangle
T .D/ with vertical framing whose projection is D and such that if @T .D/D fv1; v2g with v1 and v2 in
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ŒD; s�
�C

C

� C

CC
C

˛

ˇ 


ŒT .D/; s�

�

C
C

� C

C
C
C

Figure 1: A stated diagram ŒD; s� in the triangle and its associated stated tangle ŒT .D/; s�. Here,
we use the order 
 � ˇ � ˛. Here s is o–increasing so ŒT .D/; s� 2 TBo.

the same boundary arc a with v1 �o v2, then h.v1/ < h.v2/. For a general class of diagram ŒD� 2D.†/

with connected components D D Fn
iD1 Di , where ŒDi � � ŒDiC1�, we denote by ŒT .D/� the class of

the tangle T .D/ WDFn
iD1 T .Di/ in †P � .0; 1/, where T .DiC1/ is on the top of T .Di/ in the height

direction. See Figure 1 for an illustration. Let � W @D Š�! @T .D/ be the unique bijection such that, for
a a boundary arc, � restricts to a bijection �ja W @aD! @aT .D/ which preserves the order �o on @aD

and the height order on @aT .D/. Recall that @aD D D \ a and that @aT .D/ D T .D/\ a� .0; 1/. A
state s on D defines a state s ı ��1 on T .D/ and we denote by ŒT .D/; s� the class of the stated tangle
.T .D/; s ı ��1/.

Definition 2.13 We denote by TBo � S!.†/ the set of classes ŒT .D/; s� with ŒD� 2 D.†/ and s an
o–increasing state.

Note that in our pictures the orientation o is never represented, the arrows always refer to the height order
and not to o. The following lemma was proved in [Lê 2018], during the proof of Theorem 4.6, in the
particular case where † is a triangle.

Proposition 2.14 The set TBo is a basis of S!.†/.

As an immediate consequence of Proposition 2.14, we get:

Corollary 2.15 The stated skein algebra is algebraically generated by the classes of closed curves and
stated arcs.

Here by closed curves and stated arcs we mean connected stated diagrams with no crossing which are
closed and open, respectively. Obviously, it is sufficient to prove Proposition 2.14 in the case where † is
connected. If @†D∅ or if † is a disc with one puncture on its boundary or a bigon whose boundary
arcs points towards the same puncture, then TBo DBo so the proposition follows from Theorem 2.4 in
those cases. For the bigon whose boundary arcs point towards distinct punctures, Proposition 2.14 was
proved in [Lê 2018, Step 1 of the proof of Theorem 4.1]. So we now assume that † admits a topological
triangulation � that we fix. The proof of Proposition 2.14 is an easy adaption of Lê’s argument from
the case of the triangle to the case of a triangulable punctured surface. The key feature is to consider a
suitable filtration that we now introduce.
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For a diagram D and an edge e 2E.�/, we denote by i.D; e/2N the geometric intersection of D with e;
that is, the minimal number of intersection points when isotoping D in such a way that it intersects e

transversally. We write
jDj WD

X
e2E.�/

i.D; e/;

and, for i 2N, we set
Fi WD SpanfŒD; s� such that jDj � ig:

Lemma 2.16 (1) One has Fi �Fj � FiCj .

(2) The submodule Fi has basis the set Bi of elements ŒD; s� 2Bo such that jDj � i .

(3) For ŒD; s� 2Bo, there exists n 2 Z such that

ŒT .D/; s��AnŒD; s� .mod FjDj�2/:

Proof (1) Let ŒD1; s1� and ŒD2; s2� be two classes such that

(i) D1[D2 has only transversed double intersection points in the interior of †P away from the edges
of �, and

(ii) D1 and D2 are transversed to the edges of E.�/ with minimal intersection such that

jDi j D jDi \E.�/j; i D 1; 2:

Let D denote the diagram obtained by stacking D1 on top of D2 and s the state corresponding to
s1 and s2 such that ŒD; s� D ŒD1; s1�ŒD2; s2�. Then jDj � jD \ E.�/j D jD1j C jD2j. Therefore,
ŒD1; s1�ŒD2; s2� 2 FjD1jCjD2j and the first assertion is proved.

(2) To prove the second assertion, first note that since Bi is a subset of Bo, it is free. We need to show
that Bi generates Fi . We proceed in two steps:

Step 1 We first prove that any class of stated diagram ŒD; s� is a linear combination of elements ŒDi ; si �

with jDi j D jDj and such that Di has no crossing.

Step 2 We then prove that any ŒD; s�, where D has no crossing, is a linear combination of elements
of BjDj.
The two steps imply that Bi generates Fi and conclude the proof of the second assertion.

To prove the first step, fix an arbitrary stated diagram .D; s/. A resolution of D is a diagram obtained
from D by replacing each crossing by either (positive resolution of the crossing) or (negative
resolution). Write Res.D/ the set of resolutions and for D0 2 Res.D/, denote by n.D0/ the difference
between the numbers of positive and negative resolution crossings in D0. Then, by the Kauffman-bracket
skein relation (3), one has

ŒD; s�D
X

Di2Res.D/

An.Di /ŒDi ; s�;

where for each resolution Di , one has jDi \E.�/j D jD \E.�/j D jDj, so jDi j D jDj and Step 1 is
proved.
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To prove the second step, consider a stated diagram .D; s/ where D has no crossing. If s is o–increasing,
let .D0; s/ be the stated diagram obtained from .D; s/ by removing its trivial components, so jD0j � jDj.
Then there exists a scalar c such that ŒD; s� D cŒD0; s� and ŒD0; s� 2 BjDj. Otherwise, we show by
induction on the number m.D; s/ of pairs of points v <o w in @D lying in the same boundary arc such
that .s.v/; s.w// D .C;�/, that .D; s/ is a linear combination of elements of BjDj. Consider such a
pair .v; w/ of points which are consecutive for <o, and let s0 be the state on D which agrees with s on
@D n fv;wg and such that .s0.v/; s0.w//D .�;C/. The skein relations

D !�1 �
C �!�5 C� ; D ! C� �!5 �

C

show that there exists n 2 Z such that ŒD; s� � !nŒD; s0� .mod FjDj�1/ (because the stated diagram
representing either the term or is in FjDj�1). Since m.D; s0/ < m.D; s/, we conclude by
decreasing induction on m that ŒD; s� is a linear combination of elements ŒDi ; si � where Di has no
crossing and si is o–increasing. Now write ŒDi ; si � D ci ŒD

0
i ; si �, where ci is a scalar and .D0i ; si/ is

obtained from .Di ; si/ by removing its trivial components so that ŒD0i ; si � 2 BjDj. This concludes Step 2
and the proof of the second item.

(3) Let us first make an obvious but useful remark. Let D be a diagram transversed to E.�/. We say that
D contains a returning arc if there exists a face T such that D\T contains a connected component that
is an arc with both endpoints in the same edge. If D contains a returning arc, then D is not in minimal
intersection position with respect to E.�/ so for all states s, ŒD; s� 2 FjDj�2.

Now consider ŒD; s� 2 Bo and denote by TD the projection diagram of the tangle T .D/ so that
ŒT .D/; s�D ŒTD; s� (think of Figure 1). We further suppose that TD is transversed to E.�/ in minimal
position and has its crossings outside E.�/. In the decomposition

ŒTD; s�D
X

Di2Res.TD/

An.Di /ŒDi ; s�;

we claim that there is exactly one resolution D0 2 Res.TD/ such that D0 D D and that any other
resolution Di ¤D0 contains a returning arc, so satisfies ŒDi ; si � 2 FjDj�2. Since resolving a crossing is
a local operation, it is sufficient to prove the claim in the case of the triangle; this was done by Lê [2018,
Lemma 4.7]. Recall that Lê’s proof consists noting that if ŒT .D/; s� has two connected components, it
has 0 or 1 crossing (after eventually isotoping TD) and when there is one crossing in TD, exactly one of
the two resolutions does not contain returning arc. The results then follows by induction on the number
of components of T .D/ using the fact that the arcs in T .D/ are stacked on top of each other.

So we have ŒT .D/; s��An.D/ŒD; s� .mod FjDj�2/ and the proof is completed.

Obviously one has Fi � FiC1 and
S

i�0 Fi D S!.†/. The first assertion of Lemma 2.16 implies that
.Fi/i�0 forms an algebra filtration of S!.†/. Consider the graded algebra Gr� associated to the filtration.
In other words, we set Gr0 WD F0, Gri WD Fi =Fi�1 for i � 1 and Gr� WD

L
i�0 Gri . It follows from

the second assertion of Lemma 2.16 that Gri has basis the set Bo
i of classes ŒD; s� 2Bo such that jDj D i .
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Since the set fBo
i gi�0 forms a partition of Bo, the natural graded morphism  W S!.†/! Gr� is an

isomorphism. To prove Proposition 2.14, we will derive from the third assertion of Lemma 2.16 that the
image of TBo through  is a basis of Gr�.

Proof of Proposition 2.14 As noted previously, if † is closed or if † is bigon or a disc with one
puncture on its boundary, then TBo DBo so the lemma follows from Theorem 2.4. Otherwise, we can
consider a topological triangulation and consider the associated graded isomorphism  W S!.†/!Gr�.
Let TBo

i �TBo be the subset of elements ŒT .D/; s� such that jDj D i . Since  .Bo
i / is a basis of Gri , the

third assertion of Lemma 2.16 implies that the image  .TBo
i / is also a basis of Gri . Therefore  .TBo/

is a basis of Gr�, so TBo is a basis of S!.†/.

2.3 Removing a puncture

Let † D .†;P/ and consider a punctured surface †0 WD .†;P[ fp0g/ obtained from † by adding a
puncture p0 2†P to P. The goal of this subsection is to define and study a map ' WS!.†0/!S!.†/. Let
T.†/ denote the set of stated tangles in †P � .0; 1/ and denote by J.†/�RŒT.†/� the ideal generated
by the skein relations (3) and (4) and by the elements .T; s/� .T 0; s/, where T and T 0 are isotopic; so
by definition, one has S!.†/ WDRŒT.†/� =J.†/. The inclusion map � W†P[fp0g � .0; 1/ ,!†P � .0; 1/
induces a linear map ' WRŒT.†0/�!RŒT.†/� sending a stated tangle .T; s/ to .�.T /; s ı ��1/.

First suppose that p0 is in the interior of †P. In this case, ' obviously sends isotopic stated tangles to
isotopic stated tangles and skein relations to skein relations, so it sends J.†0/ to J.†/ and it induces a
linear map ' W S!.†0/! S!.†/ by passing to the quotient. It is clear that ' is a morphism of algebras.
Moreover, since any tangle in †P � .0; 1/ can be isotoped in †P[fp0g � .0; 1/, the map ' is surjective.

When p0 lies in some boundary arc, say a, of †, the construction is more subtle. Denote by b and c

the two boundary arcs of †0 which are the connected components of a n fp0g. The linear map ' still
sends skein relations to skein relations; however if .T; s/ and .T 0; s0/ are two isotopic stated tangles, then
'.T; s/ and '.T 0; s0/ are no longer necessarily isotopic. Indeed, recall that in our definition of isotopy, for
any boundary arc d , the height order of @dT should be preserved. Now if we choose T and T 0 isotopic
in †P[fp0g � .0; 1/, the isotopy relating T to T 0 preserves the height orders of @bT and @cT , but not
necessarily the height order of @aT , so '.T; s/ and '.T 0; s0/ might not be isotopic.

Even worse, T might have two endpoints in @bT and @cT with the same height, so �.T / is not a tangle
in our sense since it would have two points in @a�.T / with the same height.

To remedy this problem, we introduce the subset T0.†0/ � T.†0/ of stated tangles .T; s/ in †P[fp0g
such that for any two points v 2 @b.T / and v0 2 @c.T /, one has h.v/ < h.v0/ (h is the height function).
Since any stated tangle .T; s/ 2 T.†0/ is isotopic to a stated tangle in T0.†0/, one has

S!.†
0/DRŒT0.†0/� =J.†0/\RŒT0.†0/�:
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Now, the restriction '0 W RŒT0.†0/� ! RŒT.†/� of '0 preserves skein relations and .T; s/ is iso-
topic to .T 0; s0/ implies that '0.T; s/ is isotopic to '0.T 0; s0/; therefore '0 induces a linear map
' W S!.†0/! S!.†/ which is obviously an algebra morphism and is surjective.

Definition 2.17 The off-puncture ideal Ip0
� S!.†

0/ is the ideal generated by

(1) the elements 
 � 
 0, where 
 and 
 0 are noncontractible simple closed curves in †P[fp0g which
are isotopic in †P;

(2) the elements ˛""0 �˛0""0 , where ˛""0 and ˛0""0 are nontrivial simple stated arcs in †P[fp0g which
are isotopic in †P;

(3) when p0 is an inner puncture, the element 
p0
CqCq�1, where 
p0

is a peripheral curve encircling
p0 (recall that q D !�4);

(4) when p0 is on the boundary of†P, the elements p̨0��0�C
�
�0 , where p̨0

is the trivial arc encircling
p0 as

p̨0��0 D
p̨0 �

p0

�0

such that the endpoint with state � has bigger height than the endpoint with state �0.

The purpose of this subsection it to prove:

Proposition 2.18 The following sequence is exact :

(8) 0! Ip0
! S!.†

0/ '�! S!.†/! 0:

The surjectivity of ' follows from the preceding discussion and the inclusion Ip0
�ker.'/ is an immediate

consequence of the definitions and the trivial arcs relations (7) (where the equalities '. p̨0��0/D C
�
�0 are

proved), so we need to prove the inclusion ker.'/� Ip0
.

Notation 2.19 � Let .D; s/ be a connected simple stated diagram in †P[fp0g (so either a closed
curve or a stated arc or the empty diagram) and define a scalar c.D; s/ 2 R as follows. If �.D/
is simple in †P, set c.D; s/ D 1. If p0 is an inner puncture and .D; s/ D 
p0

is a peripheral
curve around p0, write c.
p0

/D�q� q�1. If p0 is on the boundary of †P and �.D/ is a trivial
arc encircling p0, let c.D; s/ be the unique element C

�
�0 or .C�1/

�
�0 such that '.D; s/D c.D; s/

(using the trivial arcs relations (7)).

� For a not necessarily connected stated diagram .D; s/ D F
i2I .Di ; si/, where the .Di ; si/ are

its connected components, write c.D; s/ DQi2I c.Di ; si/. Let J � I be the subset of indices
j 2 I such that �.Dj / is simple. The reduction of D is the simple diagram Dred WDFj2J Dj . By
definition, one has

(9) '
�
ŒT .D/; s�

�D c.D; s/'
�
Œ.T .Dred/; s/�

�
:
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Lemma 2.20 Let M and M 0 be two free R–modules with respective bases B and B0. Let � WB0!B

and c WB0!R two maps and suppose that there exists B0red�B0 such that the restriction �jB0redB0red!B

is surjective and such that c.b0red
/D 1 for all b0red 2B0red. Consider the linear morphism ' WM 0!M

defined by '.b0/ WD c.b0/�.b0/, for b0 2B0. Then

ker.'/D Spanfb0� c.b0/b0red such that �.b0red
/D �.b0/; b0red 2B0red

; b0 2B0g:

Proof Let V �M 0 be the submodule linearly spanned by the elements b0�c.b0/b0red with�.b0red
/D�.b0/

for b0red2B0red and b02B0. By definition, '.b0�c.b0/b0red
/D c.b0/.�.b0/��.b0red

//D0 so the inclusion
V � ker.'/ is obvious. Conversely, consider an arbitrary element x DPb02B0 ˛b0b0 2 ker.'/. Fix a right
inverse � WB!B0red to �; that is a map such that � ı �D id. For b 2B, write xb WD

P
b02��1.b/ ˛b0b0

so that x DP
b2B xb . Since B is a basis, the elements '.xb/ are linearly independent so '.x/ D 0

implies that '.xb/D 0 for all b 2B. Let b 2B be such that xb ¤ 0 and let us prove that xb 2 V . Let
b0red WD �.b/ 2B0red. Since '.xb/D 0, one has

P
b02��1.b/ ˛b0c.b0/D 0. Now

xb D
X

b02��1.b/

˛b0b
0 D

X
b02��1.b/

˛b0.b
0� c.b0/b0red

/C
� X

b02��1.b/

˛b0c.b
0/
�

b0red

D
X

b02��1.b/

˛b0.b
0� c.b0/b0red

/ 2 V:

Proof of Proposition 2.18 Applying Lemma 2.20 to M D S!.†/, M 0 D S!.†
0/, B D TBo.†/,

B0DTBo.†0/ and B0red the subset of B0 of diagrams .T .D/; s/ such that DredDD and � the reduction
map, we obtain that ker.'/ is spanned by elements of the form ŒT .D/; s� � c.D; s/ŒT .Dred/; s�. By
definition, the off-puncture ideal is the ideal generated by the elements ŒT .D/; s�� c.D; s/ŒT .Dred/; s�,
where D is connected. Let us prove by induction on the number of connected components of D that
ŒT .D/; s��c.D; s/ŒT .Dred/; s� 2Ip0

. If D is connected or reduced, this is immediate. Otherwise, .D; s/
contains a connected component .D0; s0/ such that �.D0/ is either contractible or a trivial arc. Decompose
.D; s/D .D1; s1/t .D0; s0/t .D2; s2/ so that for any connected component C1 �D1, one has C1 �D0

and for any connected component C2 �D2 one has D0 � C2 (recall that � was defined in Section 2.2).
By definition, ŒT .D/; s�D ŒT .D2/; s2�ŒT .D0/; s0�ŒT .D1/; s1� in S!.†

0/ (this is where working with the
basis TBo is important), where si are the restriction of s to Di . Therefore

ŒT .D/; s�� c.D; s/ŒT .Dred/; s�

D ŒT .D2/; s2�
�
ŒT .D0/; s0�� c.D0; s0/

�
ŒT .D1/; s1�

C c.D0; s0/
�
ŒT .D2[D1/; s2[ s1�� c.D2[D1; s2[ s1/ŒT ..D2[D1/

red/; s�
�

� c
�
ŒT .D0; s0/�� c.D0; s0/ŒT .D0red/; s�

�
.mod Ip0

/;

where c D c.D0; s0/ and D0 DD2[D1 has one connected component less than D, so we can apply the
induction hypothesis to prove that ŒT .D/; s�� c.D; s/ŒT .Dred/; s� 2 Ip0

.
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2.4 Hopf comodule maps

Recall that the bigon B is a disc with two punctures on its boundary. It has two boundary arcs, say bL

and bR. Consider the simple diagram ˛ made of a single arc joining bL and bR. For n � 0, denote by
˛.n/ the diagram made of n parallel copies of ˛. Denote by ˛""0 the class in S!.B/ of the stated diagram
.˛; s/ where s.˛\ bL/D " and s.˛\ bR/D "0. It is proved in [Lê 2018, Theorem 4.1] that the stated
skein algebra S!.B/ is presented by the four generators ˛""0 , with "; "0 D˙, and the following relations,
where we put q WD !�4:

˛CC˛C� D q�1˛C�˛CC; ˛CC˛�C D q�1˛�C˛CC; ˛CC˛�� D 1C q�1˛C�˛�C;
˛��˛C� D q˛C�˛��; ˛��˛�C D q˛�C˛��; ˛��˛CC D 1C q˛C�˛�C;

˛�C˛C� D ˛C�˛�C:
Consider a disjoint union BtB0 of two bigons. When gluing the boundary arcs bR with b0

L
, we obtain

another bigon. Denote by � W S!.B/! S!.B/˝S!.B/ the composition

� W S!.B/
ij

bR#b0
L����! S!.BtB0/ Š�! S!.B/˝S!.B/:

The map � is characterized by the formula �.˛""0/D .˛"C˝˛C"0/C .˛"�˝˛�"0/. Define an algebra
morphism � W S!.B/! R and an antialgebra morphism (that is S is linear and S.xy/ D S.y/S.x/)
S WS!.B/!S!.B/ by the formulas �.˛""0/D ı""0 , S.˛CC/D ˛��;S.˛��/D ˛CC;S.˛C�/D�q˛C�
and S.˛�C/ D �q�1˛�C. The coproduct �, the counit � and the antipode S endow S!.B/ with the
structure of a Hopf algebra. This Hopf algebra is canonically isomorphic to the so-called quantum SL2

Hopf algebra Oq ŒSL2� as defined in [Brown and Goodearl 2002, Definition I.1.10; Chari and Pressley
1994, Definition 7:1:1; Kassel 1995, Chapter IV Section 6; Manin 1988] where the generators ˛CC, ˛�C,
˛C� and ˛�� are denoted by a, b, c and d .

For later use, let us write the coproduct, counit and antipode by the more compact form�
�.˛CC/ �.˛C�/
�.˛�C/ �.˛��/

�
D
�
˛CC ˛C�
˛�C ˛��

�
˝
�
˛CC ˛C�
˛�C ˛��

�
;�

�.˛CC/ �.˛C�/
�.˛�C/ �.˛��/

�
D
�

1 0

0 1

�
and

�
S.˛CC/ S.˛C�/
S.˛�C/ S.˛��/

�
D
�

˛�� �q˛C�
�q�1˛�C ˛CC

�
:

Note that when q DC1, we recover the Hopf algebra of regular functions of SL2.C/.

Consider a punctured surface† with boundary arc a. When gluing the boundary a of† with the boundary
arc bL of B we obtain the same punctured surface †. Define a left Hopf comodule map (see eg [Kassel
1995, Definition III.7.1]) �L

a W S!.†/! S!.B/˝S!.†/ as the composition

�L
a W S!.†/

ija#bL���! S!.Bt†/ Š�! S!.B/˝S!.†/:

Similarly, define a right Hopf comodule map �R
a W S!.†/! S!.†/˝S!.B/ as the composition

�R
a W S!.†/

ijbR#a���! S!.†tB/ Š�! S!.†/˝S!.B/:
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B B B

C

C�

C
� X

i;j ;kD˙

C

C�

i
j

k
˝

i
j

k

C

† B †

C
�

a �L
a X

i;jD˙

C
�

i

j
˝ i

j

Figure 2: Top: the coproduct in S!.B/. Bottom: the comodule map.

The coassociativity of �L
a and �R

a follows from the coassociativity of the splitting morphisms. Figure 2
illustrates the coproduct and the (left) comodule map.

2.5 The image of the splitting morphism

The goal of this subsection is to prove Theorem 1.1 that we rewrite here for convenience of the reader:

Theorem 2.21 Let † be a punctured surface , and a and b two distinct boundary arcs. Then the sequence

0! S!.†ja#b/
ija#b��! S!.†/

�L
a��ı�R

b������! S!.B/˝S!.†/

is exact , where �.x˝y/D y˝x.

Throughout this subsection, we fix an orientation o of its boundary arcs (though Theorem 2.21 is obviously
independent of this choice).

Notation 2.22 For a boundary arc a and a diagram D, we write na.D/ WD j@aDj. Given n� 1, define
the set St.n/ WD f�;Cgn and the subset St".n/� St.n/ which consists of n–tuples ."1; : : : ; "n/ such that
i < j implies "i � "j . If s D ."1; : : : ; "n/ 2 St.n/, denote by s" D ."0

1
; : : : ; "0n/ 2 St".n/ the unique

element such that the number of indices i such that "i DC is equal to the number of indices j such that
"0j DC. Given s D ."1; : : : ; "n/ 2 St.n/, denote by k.s/ the number of pairs .i; j / such that i < j and
"i > "j . For s 2 St".n/, let

Hs.q/ WD
X

s02St.n/
s0"Ds

q2k.s0/:

Let a and b be two boundary arcs of † and consider the filtration associated to S WD fa; bg and o of
Definition 2.11.
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Lemma 2.23 Let .D; s/ be an o–oriented simple stated diagram and consider v1 and v2 two points
which both belong either to @aD or to @bD. Suppose that v1 <o v2 and that there is no v 2 @D such
that v1 <o v <o v2. Further assume that s.v1/ D C and s.v2/ D �. Let s0 be the state of D such that
s0.v1/ D �, s0.v2/ D C and s0.v/ D s.v/ if v 2 @D n fv1; v2g. Then one has lt.ŒD; s�/ D q lt.ŒD; s0�/,
where the leading term lt is defined in Definition 2.11.

Proof This is a straightforward consequence of the boundary relations (4) and the height exchange
formulas (5) and (6).

Let .D; s/ be an o–oriented simple stated diagram of † and write s D .sa; s0; sb/ as in the definition of
the gluing map before Theorem 2.7. By Lemma 2.23 we have the equality

lt
�
ŒD; .sa; s0; sb/�

�D qk.sa/Ck.sb/ lt
�
ŒD; .s"a ; s0; s

"
b
/�
�
:

Fix an orientation oB of the left and right boundary arcs of the bigon. Consider the filtration of

S!.B/˝S!.†/Š S!.Bt†/
associated to the set of boundary arcs S 0 WDfbL; bR;a;bg and the orientations o and oB, as in Definition 2.11.
Given X 0 2 S!.B/˝S!.†/, we denote by lt0.X 0/ the associated leading term. By definition of the left
comodule map, we have the formula

�L
a

�
ŒD; .sa; s0; sb/�

�D X
s2St.na.D//

Œ˛.na.D//; .sa; s/�˝ ŒD; .s; s0; sb/�:

Lemma 2.24 Let ŒD; .sa; s0; sb/� be an element of the basis Bo. Then

lt0
�
�L

a

�
ŒD; .sa; s0; sb/�

��D X
s2St".na.D//

Hs.q/Œ˛
.j@a.D/j/; .sa; s/�˝ ŒD; .s; s0; sb/�;

lt0
�
� ı�R

b

�
ŒD; .sa; s0; sb/�

��D X
s2St".nb.D/

Hs.q/Œ˛
.j@b.D/j/; .s; sb/�˝ ŒD; .sa; s0; s/�;

where the summands are written in the basis associated to .o; oB/ of S!.B/˝S!.†/.

Proof This is a straightforward consequence of Lemma 2.23.

Proof of Theorems 1.1 and 2.21 We want to show that the sequence

0! S!.†ja#b/
ija#b��! S!.†/

�L
a��ı�R

b������! S!.B/˝S!.†/

is exact, where �.x ˝ y/ D y ˝ x. The injectivity of i ja#b was proved in [Lê 2018]. The inclusion
Im.i ja#b/� ker.�L

a�� ı�R
b
/ follows from the coassociativity of the comodule maps. To prove the reverse

inclusion, consider an element X WDPi2I xi ŒDi ; si � 2 ker.�L
a � � ı�R

b
/ developed in the basis Bo.

If lt.X / D 0, then X is a linear combination of diagrams which do not intersect a and b; hence X

belongs to the image of i ja#b . Suppose that lt.X / > 0. We will find an element Y 2 S!.†ja#b/ such that
lt.i ja#b.Y //D lt.X /. Now X belongs to the image of i ja#b if and only if Z WDX � i ja#b.Y / belongs to
this image. Since d.Z/ < d.X /, the proof will follow by induction on d.X /.
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Consider the set zD of pairs .D; s0/ for which there exists some states sa and sb such that the basis element
ŒD; .sa; s0; sb/� appears in the expression of X . Given zD D .D; s0/ 2 zD, denote by StX . zD/ the set of
couples .sa; sb/ such that ŒD; .sa; s0; sb/� appears in the expression of X . We rewrite the development of
X in the basis as

X D
X

zDD.D;s0/2zD

X
.sa;sb/2StX . zD/

xŒD;.sa;s0;sb/�ŒD; .sa; s0; sb/�:

Consider the subset zDmax � zD of pairs .D; s0/ such that d.X /D na.D/C nb.D/. By Lemma 2.24,

lt0.�L
a.X //

D
X

.D;s0/2zDmax

X
.sa;sb/2StX ..D;s0//

xŒD;.sa;s0;sb/�

X
s2St".na.D//

Hs.q/Œ˛
.na.D//; .sa; s/�˝ ŒD; .s; s0; sb/�;

lt0.� ı�R
b .X //

D
X

.D;s0/2zDmax

X
.sa;sb/2StX ..D;s0//

xŒD;.sa;s0;sb/�

X
s02St".nb.D//

Hs0.q/Œ˛
.nb.D//; .s0; sb/�˝ ŒD; .sa; s0; s

0/�:

From the equality lt0.�L
a.X //D lt0.� ı�R

b
.X //, we find that for any pair .D; s0/ 2 zDmax, for any pair

.sa; sb/2StX ..D; s0// and for any state s 2St".na.D//, there exists a unique pair .s0a; s0b/2StX ..D; s0//

and a unique state s0 2 St".nb.D// such that

xŒD;.sa;s0;sb/�Hs.q/Œ˛
.na.D//; .sa; s/�˝ ŒD; .s; s0; sb/�

D xŒD;.s0a;s0;s
0
b
/�Hs0.q/Œ˛

.nb.D//; .s0; s0b/�˝ ŒD; .s0a; s0; s
0/�:

We deduce the following:

� For any .D; s0/ 2 zDmax, we have na.D/D nb.D/D 1
2
d.X /. We will denote by n this integer.

� We have the equalities s0 D sa D sb and s D s0a D s0
b
. Hence for any .D; s0/ 2 zDmax, we have

StX ..D; s0//D f.s; s/; s 2 St".n/g.
� For any .D; s0/ 2 zDmax and s 2 St".n/, the coefficient xŒD;.s;s0;s/�Hs.q/ is independent of s. We

will denote this coefficient by x.D;s0/.

With the above notation, we rewrite the leading term of X as

lt.X /D
X

.D;s0/2zDmax

x.D;s0/

X
s2St".n/

ŒD; .s; s0; s/�:

Given .D; s0/ 2 zDmax, since na.D/ D nb.D/ D n, there exists a diagram D0 of †ja#b such that D is
obtained from D0 by cutting along the common image in †ja#b of a and b by the projection. Define the
element

Y WD
X

.D;s0/2zDmax

x.D;s0/ŒD0; s0� 2 S!.†/:

By the above expression, lt.X /D lt.i ja#b.Y //.
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Consider a topological triangulation � of †. The punctured surface † is obtained from the disjoint union
†� WD

F
T2F.�/ T by gluing the triangles along their common edges. Denote by VE.�/ � E.�/ the

subset of edges which are not boundary arcs. Each edge e 2 VE.�/ lifts in †� to two boundary arcs eL

and eR . By composing all the left comodule maps �L
eL

together (the order does not matter thanks to the
coassociativity property in Theorem 2.7) one gets a Hopf comodule map

�L W
O

T2F.�/

S!.T /!
� O

e2VE.�/
S!.B/

�
˝
� O

T2F.�/

S!.T /

�
:

Similarly, composing all the right comodule maps �R
eR

together gives

�R W
O

T2F.�/

S!.T /!
� O

T2F.�/

S!.T /

�
˝
� O

e2VE.�/
S!.B/

�
:

Recall the definition of i� in Section 2.1.

Corollary 2.25 The following sequence is exact :

0! S!.†/
i��!

O
T2F.�/

S!.T /
�L��ı�R������!

� O
e2VE.�/

S!.B/

�
˝
� O

T2F.�/

S!.T /

�
:

Proof Theorem 1.1 applied to each inner edge provides an isomorphism between S!.†/ and the
intersection, over the inner edges e, of Ker.�L

eL
� � ı�R

eR
/. We conclude by observing that the latter

intersection is Ker.�L� � ı�R/.

We can reformulate the above exact sequence in terms of co-Hochschild cohomology.

Definition 2.26 Given a coalgebra C with a bicomodule M , with comodules maps �L WM ! C ˝M

and �R WM !M ˝C , the 0th co-Hochschild cohomology group is coHH0.C;M / WD ker.�L�� ı�R/.

We refer to [Hess et al. 2009] for a self-contained introduction to co-Hochschild (co)homology. The
above triangular decomposition of skein algebra can be rewritten as

S!.†/Š coHH0

� O
e2VE.�/

Oq ŒSL2�;
O

T2F.�/

S!.T /

�
:

2.6 The center of stated skein algebras at odd roots of unity

Here we prove Theorem 1.2. We prove it for the bigon, then for the triangle, and we conclude with the
general case. Let us start by the following classical result.

Lemma 2.27 Let R be a ring and q 2R� a root of unity of order N > 1. Suppose that A is an R–algebra
and x;y 2A are such that yx D qxy. Then .xCy/N D xN CyN .
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Proof By [Kassel 1995, Proposition IV.2.2],

.xCy/N D
NX

kD0

�N

k

�
q
xkyN�k ;

where �N

k

�
q
WD

k�1Y
iD0

�
1� qN�i

1� qiC1

�
:

Since qN D 1, the coefficients
�
N
k

�
q

vanish for 1� k �N � 1, and we get the desired formula.

2.6.1 The case of the bigon Recall from Section 2.2 that the Hopf algebra S!.B/ is canonically
isomorphic to Oq ŒSL2�. In this case, Theorem 1.2 is a well-known theorem of Lusztig. More precisely,
it is proved in [Lusztig 1990] (see also [Lusztig 1993, Theorem 3.5.1]) that there exists a morphism of
braided Hopf algebras Fr� W PUqsl2! PUC1sl2 which induces a braided functor Fr WRep.SL2/!Repq.SL2/

between the category of finite-rank representations of SL2 and the category Repq.SL2/ of finite-rank
PUqsl2 modules. Since Oq ŒSL2� (resp. OŒSL2�) is isomorphic to the coend of the forgetful functor

F W Repq.SL2/ ! ModR (resp. of the forgetful functor Rep.SL2/ ! ModR) the Frobenius functor
Fr induces a morphism j W OŒSL2�! Oq ŒSL2�. Moreover, as noticed in [Negron 2021], the image of Fr lies
in the Mügen center of Repq.SL2/ so the image of j is central. We refer to [Negron 2021, Section 5.1]
for details on this approach. A down-to-earth construction of j , based on elementary computations using
the definition of Oq ŒSL2� by generators and relations, was described by Brown and Goodearl and goes as
follows:

Lemma 2.28 [Brown and Goodearl 2002, Proposition III.3.1] Suppose that q WD !�4 is a root of
unity of odd order N � 1. There exists a injective morphism of Hopf algebras jB W SC1.B/! S!.B/

characterized by jB.˛""0/ WD .˛""0/N whose image lies in the center of S!.B/.

2.6.2 The case of the triangle Denote by ˛, ˇ and 
 the three arcs of Figure 3 and � the automorphism of
S!.T / induced by the rotation sending ˛, ˇ and 
 to ˇ, 
 and ˛, respectively. In [Lê 2018, Theorem 4.6],
it was proved that the stated skein algebra S!.T / is presented by the generators ˛""0 , ˇ""0 and 
""0 , and
the following relations together with their images through � and �2:

˛�"˛C"0 DA2˛C"˛�"0 �!�5C "
"0 ;(10)

˛"�˛"0C DA2˛"C˛"0��!�5C "
"0 ;(11)

ˇ�"˛�0"0 DA˛""0ˇ��0 �A2C "
�0
"0�;(12)

˛�"ˇ"0C DA2˛C"ˇ"0��!�5
""0 ;(13)

˛"�
C"0 DA2˛"C
�"0 C!ˇ"0":(14)

Here we use the notation A WD !�2, C�� D CCC WD 0, C�C WD �!5 and CC� WD !.
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c b

a

˛

ˇ 


˛" "0

Figure 3: Left: the three diagrams ˛, ˇ and 
 . Middle: the stated diagram representing ˛""0 .
Right: the diagram � .2;1;1/.

When ! DC1, the algebra SC1.T / has the following simpler presentation. Consider the commutative
unital polynomial algebra A WDRŒ˛""0 ; ˇ""0 ; 
""0 j"; "0 D˙�. Given ı 2 f˛; ˇ; 
 g, denote by Mı the 2� 2

matrix with coefficients in A defined by

Mı WD
�
ıCC ıC�
ı�C ı��

�
and write C WD � 0

�1
1
0

�
and 1 WD �1

0
0
1

�
.

Lemma 2.29 The algebra SC1.T / is isomorphic to

RŒ˛""0 ; ˇ""0 ; 
""0 j "; "0 D˙�=.det.M˛/D det.Mˇ/D det.M
 /D 1; M
CMˇCM˛C D 1/:

Proof That SC1.T / commutative is a particular case of [Lê 2018, Corollary 2.5]. After setting ! DC1

we see that (10) and (11) coincide; (14) is the image of (13) by rotation, and the latter is a particular
case of (12). Moreover, a direct inspection shows that the other part of (10) and of (12) correspond to
det.M˛/D 1 and .M
C /�1 DMˇCM˛C , respectively.

Lemma 2.30 Suppose that ! is a root of unity of odd order N � 1. For every "; "0; �; �0 2 f�;Cg with
"¤ �0, one has

˛N
�0"0ˇ

N
�"�˛N

""0ˇ
N
��0 D 
N

"0;�:

Proof We suppose that ."; �0/D .�;C/. The proof in the case where ."; �0/D .C;�/ is similar and
left to the reader. For n� 0, let Dn be the simple diagram made of n parallel copies of ˛ and n parallel
copies of ˇ and consider the orientation o depicted in Figure 4. For � D .�1; : : : ; �n/ 2 f�;Cgn let
�_ WD f��n; : : : ;��1g. For �;�0 2 f�;Cgn, let s�;�0 be the state of Dn sending all points of @bDn

to "0, all points of @aDn to � and the points .p1; : : : ;pn;p
0
1
; : : : ;p0n/ of @cDn ordered by o, to the states

.�1; : : : ; �n; �
0
1
; : : : ; �0n/. Write X�;�0 WD ŒDn; s�;�0 �.

Using the skein relations (4), as illustrated in Figure 4, we find that

(15) X�;�0
"0;� D !�1X.�;C/;.�;�0/�!�5X.�;�/;.C;�0/;

where .�;C/ WD .�1; : : : ; �n;C/ and .�;�0/ WD .�; �0
1
; : : : ; �0n/. Let nC.�/ be the number of indices

i 2 f1; : : : ; ng such that �i DC. Using (15), we prove by induction of n that

(16) .
"0�/
n D

X
�2f�;Cgn

.!�1/nC.�/.�!�5/n�nC.�/X�;�_ :
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X�;�0 �1
�2

�n

�0
1

�0
2

�0
n

"0
"0

"0

n

� ��

n


"0�X�;�0 D

�1

�n

�0
1

�0
n

"0

"0

"0

� � �

D !�1

�1

�n

C�
�0

1

�0
n

"0

"0

"0

� � �

�!�5

�1

�n�C
�0

1

�0
n

"0
"0

"0

� � �

Figure 4: Top: the element X�;�0 . Bottom: an illustration of (15).

Let m.�/ WD #f1� i < j � n j .�i ; �j /D .C;�/g and denote by �C the unique element of f�;Cgn such
that nC.�/D nC.�C/ and m.�C/D 0. Note that m.�/Dm.�_/. Using the skein relation (4), we find
that for any �; �0 2 f�;Cgn,

(17) X�;�0 D qm.�/Cm.�0/X�C;�0C :

For 1� k �N , let �.k/C 2 f�;CgN be the unique element such that m.�
.k/
C /D 0 and nC.�.k/C /D k, ie

�
.k/
C i
D
�� for 1� i �N � k;

C for i >N � k:

Putting (16) and (17) together, one finds that

.
"0�/
N D

NX
kD0

.!�1/k.�!�5/N�k

� X
�2f�;CgN
nC.�/Dk

q2m.�/

�
X
�
.k/
C ;�

.k/_
C

:

Now, a simple computation shows that� X
�2f�;CgN
nC.�/Dk

q2m.�/

�
D q2nN�n.n�1/

X
1�i1<i2<���<in�N

q2.i1C���Cin/ D
�

1 if k D 0 or k DN;

0 otherwise:

Therefore,

.
"0�/
N DX

�
.N /
C ;�.N /�

�X
�.N /� ;�

.N /
C
D ˛NC"0ˇN

���˛N�"0ˇN
�C:

Note that we used that .�1/N D�1, so that N is odd.
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Lemma 2.31 Suppose that ! is a root of unity of odd order N � 1. There exists an injective mor-
phism of algebras jT W SC1.T /! S!.T /, whose image lies in the center of S!.T /, characterized by
jT .ı""0/ WD .ı""0/N for ı 2 f˛; ˇ; 
 g and "; "0 D˙. Moreover , if a is a boundary arc of T , the following
diagrams commute:

SC1.T / SC1.B/˝SC1.T /

S!.T / S!.B/˝S!.T /

�L
a

jT jB˝jT

�L
a

SC1.T / SC1.T /˝SC1.B/

S!.T / S!.T /˝S!.B/

�R
a

jT jT˝jB

�R
a

Proof We proceed in a similar way to Lemma 2.28, by showing first that the extension of the assignment
jT .ı""0/ WD ıN

""0 to a morphism of algebras is well defined. In virtue of Lemma 2.29 and by the rotation
automorphism, it is enough to show that ˛N

""0 lies in the center of S!.T / and that jT sends det.M˛/� 1

and M
CMˇCM˛C � 1 to zero.

First note that the relations (10) and (11) put together coincide with the defining relations of S!.B/;
hence one has an inclusion of algebras � W S!.B/ ,! S!.T / defined by �.˛""0/ D ˛""0 . By applying
Lemma 2.28, one obtains an inclusion � ı jB W SC1.B/ ,! S!.T / which coincides with jT on the ˛""0’s.
It remains to show that the ˛N

""0’s commute with the ˇ��0’s and the 
��0’s, and that jT vanishes on
M
CMˇCM˛C � 1.

We have ˛N
""0ˇ�" DA�Nˇ�"˛

N
""0 D ˇ�"˛N

""0 . From

˛NC"ˇ"0� D ˛N�1C" .A�2˛�"ˇ"0CC!�1
""0/D .A�3NC1˛�"ˇ"0CC!�1AN�1
""0/˛
N�1C"

and
ˇ"0�˛NC" D .A˛�"ˇ"0CC!
""0/˛N�1C" ;

one obtains

˛NC"ˇ"0��ˇ"0�˛NC" D .A.A�3N � 1/˛�"ˇ"0CC!.AN � 1/
""0/˛
N�1C" D 0:

Similarly, we compute

˛N�"ˇ"0C D ˛N�1�" .A2˛C"ˇ"0��!�5
""0/D .ANC1˛C"ˇ"0��!�3AN 
""0/˛
N�1�" ;

ˇ"0C˛N�" D .A˛C"ˇ"0��!�3
""0/˛
N�1�" :

Thus we find

˛N�"ˇ"0C�ˇ"0C˛N�" D .A.AN � 1/˛C"ˇ"0��!�3.AN � 1/
""0/˛
N�1�" D 0:

So we have proven that ˛N
""0 commutes with every elements ˇ��0 . The commutativity of ˛N

""0 with each
element 
��0 is shown in a very similar way.

Next, showing that jT vanishes on M
CMˇCM˛C � 1 amounts to showing that

ˇN
�"˛

N
�0"0 �˛N

""0ˇ
N
��0 D 
N

"0;� for "¤ �0:
This was proved in Lemma 2.30.
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Now let us prove that jT is injective. To this end, let us consider the following basis of S!.T /.

Consider the counterclockwise orientation o of the boundary arcs of T as in Figure 3. Given

kD .k˛; kˇ; k
 / 2 .Z�0/3;

denote by �k the (not simple) diagram ˛k˛ˇkˇ
 k
 ; see Figure 3 for an example. By Proposition 2.14
the set of classes Œ�k; s�, where s is o–increasing, forms a basis of S!.T /.

By construction, jT sends the elements Œ�k; s� of SC1.T /, where s is o–increasing, to some basis elements
Œ�N k; s0�, where s0 is also o increasing, therefore jT is injective.

It remains to prove that jT is a morphism of Hopf comodules. To avoid confusion, let us denote by x""0

the generators of S!.B/ and reserve the notation ˛""0 for the element of S!.T /. By definition, we have
�L

c .˛""0/D x"C˝˛C"0Cx"�˝˛�"0 . Write u WD x"C˝˛C"0 and v WD x"�˝˛�"0 . Since uvD q�2vu,
by Lemma 2.27 we have .uC v/N D uN C vN , so

�L
c .jB.˛""0//D .�L

c .˛""0//
N D .uC v/N D uN C vN

D xN
"C˝˛NC"0 CxN

"�˝˛N�"0 D jB˝ jT .�
L
c .˛""0//:

The proof that �L
b
.jB.˛""0//D jB˝ jT .�

L
b
.˛""0// is done using a similar computation and the equality

�L
a.jB.˛""0//D jB˝ jT .�

L
a.˛""0// holds since both sides are equal to 1˝ ˛N

""0 . By symmetry in the
generators ˛, ˇ, 
 , we have proved that jB commutes with the left comodule maps. That it commutes
with the right comodule maps is proved similarly.

2.6.3 The general case: proof of Theorem 1.2 We restate Theorem 1.2 here for the convenience of
the reader:

Theorem 2.32 Suppose that ! is a root of unity of odd order N � 1 and † a punctured surface. There
exists an embedding

j† W SC1.†/ ,! Z.S!.†//

of the (commutative) stated skein algebra with parameter C1 into the center of the stated skein algebra
with parameter !. Moreover , the morphism j† is characterized by the property that it sends a closed
curve 
 to TN .
 / and a stated arc ˛""0 to ˛.N /""0 , where ˛.N /""0 is the tangle made by stacking N parallel
copies of ˛""0 on top of the others.

Recall from Section 2.2 that closed curves and arcs do not have self-intersection points by definition. We
divide the proof in five steps.

In Step 1, we show that the decomposition Theorem 1.1 together with the two previous sections provide
an injective morphism of algebras

(18) j.†;�/ W SC1.†/ ,! S!.†/;
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which is central. We study further properties of j.†;�/ and we show that it is does not depend on a
topological triangulation �. The other steps are devoted to making explicit the morphism j.†;�/ on arcs
and loops. In Steps 2–4, we suppose that the punctured surface has a nondegenerated triangulation (see
below); in Step 5 we treat the other punctured surfaces.

In Step 2, we prove that j.†;�/ sends the stated arcs that have their endpoints on two different boundary
arcs of †, to their N th power.

In Step 3, we prove that j.†;�/ sends some particular closed curves of †P to their N th Chebyshev
polynomial of first kind.

Step 4 is more involved. We first prove a structural result. Adding a puncture on a surface † gives rise to
a surjective map ' from the skein algebra of the new punctured surface to that of the initial one defined
in Section 2.3. We show that j.†;�/ commutes with these surjections (see Lemma 2.40). From this, we
deduce the image by j.†;�/ of stated arcs that have both their endpoints on the same boundary arc of †
and of any closed curve of †P.

In Step 5, we treat the remaining cases of connected punctured surfaces that do not admit a nondegenerate
topological triangulation (including those with no puncture). The proof consists, again, in adding a
puncture and using the previous study.

These five steps prove Theorem 1.2.

Throughout this section, † is a punctured surface, � a topological triangulation † and ! a root of unity
of odd order N � 1. Except for Steps 1 and 5, the triangulation � is required to be nondegenerate, that
is, such that each of its inner edges separates two distinct faces.

Step 1: formal definition Assume that † admits a (possibly degenerate) triangulation �. Consider the
diagram

(19)

0 SC1.†/
N

T2F.�/ SC1.T /
�N

e2VE.�/ SC1.B/
�˝ �NT2F.�/ SC1.T /

�

0 S!.†/
N

T2F.�/ S!.T /
�N

e2VE.�/ S!.B/
�˝ �NT2F.�/ S!.T /

�
i�

9!j.†;�/

�L��ı�R

˝T jT .˝ejB/˝.˝T jT /

i� �L��ı�R

where both lines are exact by Theorem 1.1 and the vertical maps are given by Lemmas 2.28 and 2.31.

The existence of an injective morphism j.†;�/ W SC1.†/ ,! S!.†/ follows from the exactness of the
lines and the injectivity of

N
T2F.�/ jT (and the fact that all maps involved in the diagram are algebra

morphisms). Moreover, since jT is central, so is j.†;�/.

Let us show that j.†;�/ is compatible with the gluing maps.
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Lemma 2.33 If a and b are two boundary arcs of †, the following diagram commutes:

SC1.†ja#b/ S!.†ja#b/

SC1.†/ S!.†/

j†a#b

ija#b ija#b

j†

Proof Let �a#b the topological triangulation of †ja#b that is induced by �. Let us consider the diagram

SC1.†ja#b/ SC1.†/ ˝T SC1.T /

S!.†ja#b/ S!.†/ ˝T S!.T /

ija#b

j.†ja#b ;�a#b/

i�a#b

i�

j.†;�/ ˝T jT

ija#b

i�a#b

i�

The outer triangles commute by coassociativity of the gluing maps. Two of the three squares commute by
diagram (19). Since i� is injective, the remaining (left-hand side) square commutes.

We now prove that the morphism j.†;�/ does not depend on �. We first need a preliminary result.

Lemma 2.34 Let Q be a square (ie a disc with four punctures on its boundary) and �Q a topological
triangulation of Q. If ˛""0 2 S!.Q/ is the class of a stated arc , then j.Q;�Q/.˛""0/D ˛N

""0 . In particular ,
j.Q;�Q/ does not depend on �Q.

Proof Let e be the inner edge of �Q which is a common boundary arc of two triangles T1 and T2.
Make the intersection ˛ \ e transversal and minimal via an isotopy on ˛. If the intersection is empty,
then ˛ is included in one of the triangles and the lemma follows from Lemma 2.31. If ˛\ e is not empty,
then it has only one element. Therefore, by letting ˛Ti WD ˛\Ti for i D 1; 2, one has

i�Q.˛""0/D ˛T1

"C˝˛T2C"0 C˛T1
"� ˝˛T2�"0 :

Write x WD ˛T1

"C˝˛T2C"0 and y WD ˛T1
"� ˝˛T2�"0 and note that xy D q�2yx. By Lemma 2.27,

i�Q.˛N
""0/D i�Q.˛""0/

N D .xCy/N D xN CyN D .jT1
˝ jT2

/ ı i�Q.˛""0/:

Hence, j.Q;�Q/.˛""0/D ˛N
""0 .

Lemma 2.35 The morphism j.†;�/ does not depend on �.

Proof Every two triangulations can be related by a finite sequence of flips on the edges. Therefore, it is
enough to prove that if �0 differs from � by a flip of one edge, then j.†;�/ D j.†;�0/.

Let e be an inner edge of � that bounds two distinct faces T1 and T2. Consider the topological
triangulation �0 obtained from � by flipping the edge e inside the square QD T1[T2. Let

i W S!.†/ ,! S!.† nQ/˝S!.Q/
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0

1

T � Œ0; 1�

N

Figure 5: Instance of tangles TT and T
.N /
T .

be the gluing morphism. By Lemma 2.34, the morphism jQ W SC1.Q/ ,! S!.Q/ does not depend on the
triangulation of Q. Therefore, by Lemma 2.33, both the morphisms j.†;�/ and j.†;�0/ make the diagram

SC1.†/ SC1.† nQ/˝SC1.Q/

S!.†/ S!.† nQ/˝S!.Q/

i

j.†;�0/ j.†;�/ j.†nQ;�†nQ/˝jQ

i

commutative. This proves that j.†;�/ D j.†;�0/.

Step 2: arcs with endpoints in distinct boundary arcs We now assume that the triangulation � is
nondegenerate.

Lemma 2.36 If ˛""0 2 S!.†/ is the class of a stated arc such that its endpoints lie on two different
boundary arcs , then j†.˛""0/D ˛N

""0 .

Proof By the defining property of j†, as depicted in diagram (19), it is enough to prove that

(20) i�.˛N
""0/D

� O
T2F.�/

jT

�
i�.˛""0/:

Without lost of generality, we suppose that the arc ˛ is in minimal and transverse position with the
edges of �. Let T be a (vertical framed) tangle of †P � .0; 1/ that projects on ˛ and such that its height
projection is an injective map (this is possible since ˛ is an arc). Note that for each T 2 F.�/, the tangle
TT WD T \ .T � .0; 1// may have various connected components; since the height projection is injective,
these components are ordered by height. Let T .N / be a tangle of N parallel copies of T obtained by
stacking N copies of T , but close enough to have the following property. For each T 2 F.�/, if T1 and
T2 are two connected components of TT such that T1 is below T2, then, in T

.N /
T WD T .N /\ .T � .0; 1//,

each copy of T1 is below all the copies of T2. See Figure 5 for an illustration. Note that since ˛ is an
arc with boundary points at two distinct boundary arcs, the tangle T .N / is a representative of the N th

product of ˛""0 in S!.†/; otherwise it may not be true.

The left-hand term of (20) can be described as the cutting of T .N / along each edge of the triangulation,
and summing the result over all possible states at each edge. More formally, it is described as follows.
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Let K be a subset of edges of � that intersect ˛. We let StK .˛/ be the set of maps

s W T \ .K � .0; 1//! f�;Cg:
We identify StK .˛/ with

F
e2K Stfeg.˛/, which allows us to write s 2 StK .˛/ as tse. We will only

consider the two sets K: the set E of all the internal edges of � that intersect ˛, and the set K D feg for
an edge e.

For s 2 StE.˛/, write s.N / WD .s; : : : ; s/2 StE.˛/�N . We denote by s0 the state of ˛""0 (so ˛""0 D ŒT; s0�).

For s D .s1; : : : ; sN / 2 StE.˛/�N , we let

˛.s/ WD
O

T2F.�/

ŒT
.N /
T ; .s t s

.N /
0

/j@T � 2
O

T2F.�/

S!.T /;

where we associate, to the k th copy of T
.N /
T , the restriction of the state sk . With this notation, the left-hand

term of (20) can be written as

(21) i�.˛N
""0/D

X
s2StE.˛/�N

˛.s/:

Now, let us describe the right-hand term of (20). Note that the construction of T .N / ensures that, for
each triangle T and each state s of TT , one has jT .ŒTT ; s�/D ŒT .N /

T ; s.N /�. Therefore, using that jT is
an algebra morphism,

(22)
� O

T2F.�/

jT

�
i�.˛""0/D

X
s2StE.˛/

˛.s.N //:

Let Y be the set of nondiagonal states StE.˛/�N n f.s; : : : ; s/ j s 2 StE.˛/g. The sum in (21) and in (22)
differ by the sum of ˛.s/ for s 2 Y .

Let us fix an edge e of E and let us split Y into J tYe where Ye is the set of N –tuples of states at e, that
is, Ye D fs 2 Y j s W T .N /\ .e� .0; 1//! f�;Cgg. Therefore, showing (20) amounts to showing thatX

s02J

X
s2Ye

˛.s0 t s/D 0:

In fact, let us show that, for each s0 2 J , one has
P

s2Ye
˛.s0 t s/D 0.

Let T1 and T2 be the two triangles adjoining e (they are distinct since � is assumed nondegenerate)
and let Q�†P be the resulting square. Denote by iQ W S!.Q/ ,!

N
T2F.�/ S!.T / the corresponding

embedding and write TQ WD T \ .Q� .0; 1//. For each s0 2 J ,X
s2Ye

˛.s0 t s/D
� O

T¤T1;T2

ŒT
.N /
T ; s0j@T �

�
˝ �iQ.ŒT .N /

Q
; s0j@Q�/� .jT1

˝ jT2
/ ı iQ.ŒT

.N /
Q

; s0jQ�/
�
:

The last term is zero by Lemma 2.34 and the commutativity of the diagrams in Lemma 2.31.
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Step 3: closed curves that intersect� nicely

Definition 2.37 The N th Chebyshev polynomial of first kind is the polynomial TN .X / 2 ZŒX � defined
by the recursive formulas T0.X /D 2, T1.X /DX and TnC2.X /DXTnC1.X /�Tn.X / for n� 0.

The following proposition is at the heart of (our proof of) the so-called “miraculous cancellations” from
[Bonahon and Wong 2016]. We postpone its proof to the appendix.

Proposition 2.38 If ! is a root of unity of odd order N � 1, then in S!.B/,

TN .˛CCC˛��/D ˛NCCC˛N��:

Recall that we suppose that the triangulation is nondegenerate.

Lemma 2.39 Let 
 2 S!.†/ be the class of a closed curve. If the closed curve can be chosen such that it
intersects an edge of � once and only once , then j†.
 /D TN .
 /.

Proof Consider the punctured surface †.e/ obtained from † by replacing e by two arcs e0 and e00

parallel to e with the same endpoints and removing the bigon between e0 and e00. Consider the injective
morphism i je0#e00 W S!.†/ ,! S!.†.e//. By Lemma 2.33, the following diagram commutes:

SC1.†/ S!.†/

SC1.†.e// S!.†.e//

j†

ije0#e00 ije0#e00
j†.e/

By cutting 
 along e, we get an arc ˇ � †.e/ such that, by the hypothesis, i je0#e00.
 /D ˇCCC ˇ��.
Consider the algebra morphism ' W S!.B/! S!.†.e// sending ˛""0 to ˇ""0 . One has

j†.e/ ı i je0#e00.
 /D j†.e/.ˇCCCˇ��/
D '.˛NCCC˛N��/ (by Lemma 2.36)

D '.TN .˛CCC˛��// (by Proposition 2.38)

D i je0#e00.TN .
 //:

Hence, by the above diagram, j†.
 /D TN .
 /.

Step 4: adding a puncture Let †0 D .†;P[fp0g/ be a punctured surface obtained from †D .†;P/
by adding one puncture p0 2†P and consider the algebra morphism ' W S!.†0/! S!.†/ of Section 2.3.
We assume that † is equipped with a nondegenerated triangulation.

Lemma 2.40 The following diagram is commutative:

SC1.†
0/ S!.†

0/

SC1.†/ S!.†/

j†0

' '

j†
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Proof First consider the diagram

(23)
0 IC1

p0
SC1.†

0/ SC1.†/ 0

0 Ip0
S!.†

0/ S!.†/ 0

j†0

'

j†0 j†

'

where IC1
p0
� SC1.†

0/ and Ip0
� S!.†

0/ denote the off-puncture ideals in SC1.†
0/ and S!.†

0/, respec-
tively (see Definition 2.17). By Proposition 2.18, both lines are exact so we need to prove the inclusion
j†0.IC1

p0
/� Ip0

to conclude. We divide the proof in two steps.

Step 1 We first suppose that †D T0 is a triangle. In this case, T 0
0

is a punctured triangle and we have
two possibilities depending whether p0 is in the boundary or the interior of T0. Some nondegenerate
triangulations �0

0
of T 0

0
are drawn in Figure 6.

Claim The off-kernel ideal Ip0
is generated by elements ˛""0 �˛0""0 and 
 � 
 0, where ˛ and ˛0 are arcs

isotopic in T0 whose endpoints lie in distinct boundary arcs and 
 and 
 0 are curves isotopic in T0 which
intersect each edge of �0

0
once.

If the claim is proved, then for ˛""0 �˛0""0 and 
 � 
 0 some generators of Ip0
, Lemma 2.36 implies that

jT 0
0
.˛""0 �˛0""0/� Ip0

and Lemma 2.39 implies that jT 0
0
.
 � 
 0/D TN .
 /�TN .


0/ 2 Ip0
. The claim

implies the inclusion jT 0
0
.IC1

p0
/� Ip0

, which concludes the proof in the case of the triangle. To prove the
claim, recall from Proposition 2.18 that Ip0

is generated by elements ˛""0 �˛0""0 and 
 � 
 0 with ˛ and
˛0 isotopic in T0 and 
 and 
 0 isotopic in T0. First note that when p0 lies in the boundary of T0, then
T 0

0
does not contain any noncontractible simple closed curve and the nontrivial arcs of T 0

0
have endpoints

in distinct boundary arcs, so the claim is immediate in this case. When p0 lies in the interior of T0, there
is only one nontrivial simple closed curve (which encircles p0 once) and this curves intersects each edges
of �0

0
once. However T 0

0
contains three nontrivial arcs with endpoints in the same boundary arcs which

are related by a 2
3
� radian rotation. Let ı be one of these arcs and

ı""0 D
"

"0 ı

Since x WD ı""0 �C "0
" 2 Ip0

, we need to show that x belongs to the ideal Jp0
generated by elements

˛""0 �˛0""0 with ˛ and ˛0 isotopic in T0 with distinct endpoints. This is done by a simple application of
the skein relation (4):

x D "

"0 ı
� "

"0 D
X

�DC;�
C���

 
"

"0
�
�� � "

"0
�
��
!
:

Therefore x belongs to the ideal generated by elements

"0 �� �
"0 ��

This proves the claim and concludes the proof of the lemma in the case where †D T0.

Algebraic & Geometric Topology, Volume 24 (2024)



Classical shadows of stated skein representations at roots of unity 2123

p0

T 0
0

p0

Figure 6: Punctured triangles T 0
0

and their nondegenerated triangulations.

Step 2 We consider the general case. Recall that † is equipped with a nondegenerate triangulation
� and let T0 be the face containing the point p0. Let †0 be the (possibly empty) punctured surface
made of the faces of � distinct from T0 so that † is obtained from T0 t†0 by gluing some pairs of
boundary arcs together and let i W S!.†/ ,! S!.T0/˝S!.†0/ denote the gluing map. Similarly, let
i 0 W S!.†0/ ,! S!.T 00/˝S!.†0/ be the gluing map of †0. Consider the diagram

SC1.T
0
0
/˝SC1.†0/ S!.T 00/˝S!.†0/

SC1.†
0/ S!.†

0/

S!.†
0/ S!.†/

SC1.T0/˝SC1.†0/ S!.T0/˝S!.†0/

jT 0
0
˝j†0

'0˝id '0˝id

i0 j†0

'

i0

'

i

j†

i

jT0
˝j†0

In this diagram,

� the outer square commutes by Step 1;

� the squares on the top and bottom commute by Lemma 2.33;

� the squares on the left and right sides commute by definition of '.

Therefore the innermost square commutes.

Notation 2.41 For ˛""0 2 S!.†/ the class of a stated arc, we denote by ˛.N /""0 be the class of the stated
tangle made by stacking N parallel copies of ˛""0 on top of the others in the framing direction. More
precisely, if both endpoints of ˛ lie in different boundary arcs, then ˛.N /""0 D .˛""0/N . If ˛ has its two
endpoints, say v and w, in the same boundary arc with h.v/ < h.w/ such that v has state " and w
has state "0, then ˛.N /""0 is the class of the stated tangle .˛.N /; s.N // defined as follows. The tangle
˛.N / is made of N parallel copies ˛.N / D ˛1 [ � � � [ ˛N of ˛ such that the height order is given by
h.v1/ < h.v2/ < � � � < h.vN / < h.w1/ < � � � < h.wN /. The state s.N / sends the points vi to " and the
points wj to "0.

Lemma 2.42 If ˛""0 2 S!.†/ is the class of a stated arc such that its endpoints lie on the same boundary
arcs , then j†.˛""0/D ˛.N /""0 .
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Proof Since the two endpoints of ˛ lie on the same boundary arc a, we can pick a puncture p0 2 a

that lies between these two endpoints. Denote by †0 D .†;P[ fp0g/ the punctured surface obtained
by adding this puncture, and ' W S!.†0/! S!.†/ the morphism of Section 2.3. With the notation of
Section 2.3, the two components of a n fp0g are two boundary arcs b and c of †0 and we choose the
convention such that ˛ 2T.0/.†/. Note that ˛.N / is in T.0/.†/ as well. To avoid confusion, we denote by
˛0 the arc ˛ seen as an arc in †P[fp0g, so that �.˛0/D ˛. By Lemma 2.36, j†0.˛0""0/D .˛0""0/N D ˛0.N /""0 .
By commutativity of the diagram in Lemma 2.40 and by definition of ', the image j†.˛""0/ is the class
in S!.†/ of the unique stated tangle in T.0/.†/ which is isotopic to ˛0.N /""0 : this is ˛.N /""0 .

Lemma 2.43 If 
 2 S!.†/ is the class of a closed curve , then j†.
 /D TN .
 /.

Proof If the closed curve can be chosen such that it intersects an edge of � once and only once, then this
is Lemma 2.39. Otherwise, we can refine the triangulation by adding an inner puncture in order to have
this property. Denote by †0 the resulting punctured surface and let 
 0 2 SC1.†

0/ be such that �.
 0/D 
 .
Lemma 2.39 implies that j†0.
 0/D TN .


0/ and Lemma 2.40 implies that j†.
 /D TN .
 /.

Step 5: punctured surfaces which do not admit nondegenerate triangulations It remains to prove
Theorem 1.2 for connected punctured surfaces which do not admit nondegenerate topological triangula-
tions; that is, for the small punctured surfaces, for the disc with one inner puncture and one puncture on
its boundary and for the unpunctured surfaces †D .†;∅/ with empty set of puncture.

The disc with only one puncture (on its boundary) and the sphere with zero or one puncture both have
trivial skein algebra, while the sphere with two punctures has a commutative skein algebra. Therefore,
Theorem 1.2 holds trivially for them. It remains to prove:

Lemma 2.44 Theorem 1.2 holds when † is either a disc with one inner puncture and one puncture on its
boundary or an unpunctured surface †D .†;∅/ of genus at least one.

Proof Choose an inner puncture p0 2 V†P and consider the punctured surface†0 WD .†;P[fp0g/. Since
†0 admits a nondegenerate triangulation, our previous study shows the existence of the Chebyshev mor-
phism j†0 WSC1.†

0/ ,!Z.S!.†
0//. Consider the off-puncture ideals IC1

p0
�SC1.†

0/ and Ip0
�S!.†

0/.
Exactly the same argument used in the proof of Lemma 2.40 shows the inclusion j†0.IC1

p0
/� Ip0

. By
Proposition 2.18, both lines in the following diagram are exact:

0 IC1
p0

SC1.†
0/ SC1.†/ 0

0 Ip0
S!.†

0/ S!.†/ 0

j†0

'

j†0 9!j†
'

Therefore there exists a unique algebra morphism j† W SC1.†/ ! S!.†/ which makes the diagram
commute. Since j† is obtained from j†0 by passing to the quotient, its image is also central and one has
the equalities j†.Œ
 �/D TN .Œ
 �/ and j†.˛""0/D ˛.N /""0 for any closed curve 
 and any stated arc ˛""0 .
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2.7 A Poisson bracket on SC1.†/

In this section, we define and make explicit a Poisson structure on SC1.†/.

2.7.1 Preliminaries We briefly recall some general facts concerning deformation quantization.

Let A be a complex commutative unital algebra, CŒŒ„�� be the ring of formal series in a parameter „ and
AŒŒ„�� WDA˝C CŒŒ„��. A star product ? on A is an associative product on AŒŒ„�� such that if f DPi fi„i

and g DPi gi„i are elements of AŒŒ„��, then

f ?g D f0g0 mod „;
where f0g0 denotes the product of f0 and g0 in A. A star product induces a Poisson structure on A by
the formula

(24) f ?g�g ?f D „ff;gg mod „2;

for all f;g 2A. The algebra .AŒŒ„��; ?/ is called a deformation quantization of the commutative Poisson
algebra .A; f � ; � g/. We refer to [Kontsevich 2003; Gutt et al. 2005, II.2] for detailed discussions. A
morphism of star products between .A; ?A/ and .B; ?B/ is an algebra morphism  WAŒŒ„��!BŒŒ„�� whose
restriction to A�AŒŒ„�� induces a morphism � WA!B. Note that such a � is, in fact, a morphism of
Poisson algebras for the induced Poisson algebra structures. An isomorphism

 W .AŒŒ„��; ?1/
Š�! .AŒŒ„��; ?2/

of star products is called a gauge equivalence if  .f / D f .mod „/. If two star products are gauge
equivalent, they induce the same Poisson bracket on A.

To end this preamble, let us mention that deformation quantization is well behaved with respect to the
tensor product. Indeed, if AŒŒ„�� and BŒŒ„�� are deformation quantizations of A and B, respectively, then
AŒŒ„��˝BŒŒ„��Š .A˝B/ŒŒ„�� is a deformation quantization of A˝B. Note also that the Poisson structure
on A˝B given by (24) is

(25) ff ˝g; f 0˝g0g D ff 0˝fg;g0gC ff; f 0g˝gg0

for f; f 0 2A and g;g0 2B.

2.7.2 Formal definition Let † be a punctured surface and o an orientation of its boundary arc. Denote
by SC1.†/ the stated skein algebra associated to the ring C with ! D C1 and denote by S!„.†/ the
stated skein algebra associated to the ring CŒŒ„�� with !„ WD exp

��1
4
„�. The convention is chosen so

that q D exp.„/. Recall the basis Bo from Definition 2.3. Since Bo is independent of !, one has an
isomorphism of CŒŒ„��–modules

(26)  o W SC1.†/ŒŒ„�� Š�! S!„.†/:

Note that o tells us how to lift the basis elements ŒD; s� of SC1.†/ (which are independent of the height
order) in S!„.†/. We emphasize that  o is not an algebra morphism.
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Definition 2.45 Pulling back the product of S!„.†/ along  o gives a star product ?„ on SC1.†/. We
denote by f � ; � gs the resulting Poisson bracket on SC1.†/ given by (24).

Here the superscript s stands for “skein”.

Remark 2.46 For any two orientations o1 and o2 of the boundary arcs of†, the automorphism . o2/�1ı
 o1 WSC1.†/ŒŒ„�� Š�!SC1.†/ŒŒ„�� is a gauge equivalence; hence the Poisson bracket f � ; � gs does not depend
on o.

By definition, .SC1.†/ŒŒ„��; ?„/ is a quantization deformation of the Poisson algebra .SC1.†/; f � ; � gs/.
Moreover, this structure of Poisson algebra is compatible with decompositions of surfaces. More precisely,
one has the following.

Lemma 2.47 The gluing maps i ja#b W SC1.†ja#b/ ,! SC1.†/, the maps

i� W SC1.†/ ,!
O

T2F.�/

SC1.T /

and the coproduct maps �L and �R are Poisson morphisms.

Proof This follows from the fact that each of these morphisms arises from a morphism of star products.

2.7.3 Explicit formula This section is devoted to making explicit the Poisson bracket f � ; � gs on stated
diagrams. It will be expressed in terms of resolutions of stated diagrams, which are defined at crossings
and at points on the boundary arcs.

Throughout this section, † is a punctured surface.

Resolution at a crossing Let .D; s/ be a stated diagram and c a crossing of D. Denote by DC and
D� the diagrams obtained from D by replacing the crossing c by its positive and negative
resolution, respectively. The resolution of .D; s/ at the crossing c is defined by

Resc.D; s/ WD ŒDC; s�� ŒD�; s� 2 SC1.†/:

Resolution at boundary points Let b1; : : : ; bk be the boundary arcs of †P.

Definition 2.48 A height order on a stated diagram .D; s/ of †P is a k–tuple o D .o1; : : : ; ok/ of
bijections of sets oi W @bi

D! f1; : : : ; j@bi
Djg.

Note that the product of symmetric groups Sn1
� � � � �Snk

acts freely and transitively on the set of height
orders by left composition.

To a height order o on .D; s/ corresponds a stated tangle with same height order and which projects to
.D; s/. Therefore, one can consider the class of .D; s; o/ in S!.†/. If !DC1, the class ŒD; s; o�2SC1.†/

is independent of o, and we denote it simply by ŒD; s�.

Let us choose a boundary arc bi and suppose there are two points pH and pL of @bi
D such that

oi.pH / D oi.pL/C 1 (ie pH is the oi–successor of pL). Let Qo be the order on bi that is induced by
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the orientation of †. To alleviate notation, we write p <Qo q for Qo.p/ < Qo.q/. For instance, in the stated
diagram C� , if pL is the endpoint with s.pL/ D C, pH the endpoint with s.pH / D � and o is the
orientation given by the arrow, then pL >Qo pH whereas pL <o pH (because the o and Qo orientation of
the boundary arc where live pL and pH are opposite).

Let � 2 Sni
be the transposition that exchanges the oi order of pH and pL. The resolution of .D; s/

along � , denoted by Res� .D; s; o/ 2 SC1.†/, is given by8̂̂̂<̂
ˆ̂:

1
2
ŒD; s� if s.pH /D s.pL/ and pL<Qo pH or .s.pH /; s.pL//D .�;C/ and pH <Qo pL;

�1
2
ŒD; s� if s.pH /D s.pL/ and pH <Qo pL or .s.pH /; s.pL//D .C;�/ and pL<Qo pH ;

1
2
ŒD; s��2ŒD; �s� if .s.pH /; s.pL//D .C;�/ and pH <Qo pL;

�1
2
ŒD; s�C2ŒD; �s� if .s.pH /; s.pL//D .�;C/ and pL<Qo pH ;

where �s is the state that differs from s only by exchanging the states of pH and pL.

Let us extend the resolution to several points, namely any permutation of the boundary heights on a given
boundary component. For two transpositions �1 and �2 of o–consecutive points, let

(27) Res�1ı�2
.D; s; o/D Res�1

.D; s; �2 ı o/CRes�2
.D; s; o/:

Definition 2.49 For a permutation � 2Sn1
�� � ��Snk

, the resolution Res� .D; s; o/ is defined via (27), by
considering the decomposition of � into transpositions of o–consecutive points. This is clearly independent
of the choice of decomposition into transpositions.

Remark 2.50 The resolution Res� .D; s; o/ is invariant under isotopy of .D; s/. Also, Resid.D; s; o/D 0.

Lemma 2.51 In the skein algebra S!„.†/, the following two statements hold.

(1) Let D and D be two diagrams that differ from each other only by a change of a crossing c. Then

ŒD ; s; o�� ŒD ; s; o�D „Resc.D ; s/ mod „2:

(2) Let .D; s; o/ be an o–ordered stated diagram. For � 2 Sn1
� � � � �Snk

,

ŒD; s; o�� ŒD; s; � ı o�D „Res�.D; s; o/ mod „2:

In the two statements , the resolutions Res are seen in S!„.†/ via the isomorphism  Qo of (26).

Proof Recall that !„ D exp
��1

4
„�� 1� 1

4
„ .mod „2/. The first equality follows from (3):

� D .!�2�!2/ C .!2�!�2/ �
�

�
�
„ .mod „2/:

Let us prove the second equality when � a transposition of two consecutive points pH ;pL with pH >o pL.
If s.pH /D s.pL/D ", then (5) gives

"
"
D !2 "

"
and "

"
D !�2 "

"

from which we deduce

"
"
� "

"
�
�
�1

2
"
"

�
„ .mod „2/ ; "

"
� "

"
�
�
C1

2
"
"

�
„ .mod „2/:
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Note that in the stated skein algebra at ! D C1, the height order is irrelevant; said differently, at
!„ D exp

��1
4
„�, we have the skein relation

i
j
� i

j
.mod „/:

Now, if either pH <Qo pL and .s.pH /; s.pL//D .�;C/ or if pL <Qo pH and .s.pH /; s.pL//D .C;�/
then, using (5),

C� D !�2 C� and C� D !�2 C�
from which we deduce

C� � C� �
�
C1

2
C�
�
„ .mod „2/ ; C� � C� �

�
�1

2
C�
�
„ .mod „2/:

If pH <Qo pL and .s.pH /; s.pL//D .C;�/, then (6) and (4) imply that

�
C D !�2 �

C C .!2�!�6/ C�
from which we deduce

�
C �

�
C D

�
1

2
�
C � 2 C�

�
„ .mod „2/:

Eventually the case where pL <Qo pH and .s.pH /; s.pL//D .�;C/ is deduced from this case by taking
the opposite of the preceding equality. This concludes the proof of the second equality of the lemma
when � is a transposition. The case of a general permutation � follows by induction on the number of
transpositions in a decomposition of � .

Proposition 2.52 Let .D1; s2; o1/ and .D2; s2; o2/ be two height ordered stated diagrams such that D1

and D2 intersect transversally in the interior of †P. Let .D1D2; s1s2/ be the stated diagram obtained by
staking D1 on top of D2, o1o2 the resulting height order and � the permutation sending o2o1 to o1o2. In
SC1.†/, the Poisson bracket from Definition 2.45 satisfies

fŒD1; s1�; ŒD2; s2�gs D
X

c2D1\D2

Resc.D1D2; s1s2/CRes�.D1D2; s1s2; o1o2/:

Proof In the algebra S!„.†/, the product gives ŒD1; s1; o1� � ŒD2; s2; o2� D ŒD1D2; s1s2; o1o2� and
ŒD2; s2; o2� � ŒD1; s1; o1�D ŒD2D1; s2s1; o2o1�. We pass from the diagram D1D2 to D2D1 by changing
each crossing in the intersection of the diagrams and changing the height order using � , so the formula is
a consequence of Lemma 2.51.

Remark 2.53 Neither f � ; � gs nor the formula in Proposition 2.52 depend on a choice of orientation of the
boundary arcs by Remark 2.46. When† is a closed surface, we recover Goldman’s formula [1986]. When
† has nontrivial boundary and no inner punctures, the subalgebra of the stated skein algebra generated by
tangles with states having only value C is isomorphic to the Muller algebra defined in [Muller 2016] (see
also [Lê 2018, Section 6]). The Poisson bracket restricts to the corresponding subalgebra of SC1.†/ and
the resulting Poisson algebra is isomorphic to Yuasa’s Poisson algebra [2015].
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Example 2.54 The Poisson bracket f�;�gs on the commutative algebra SC1.B/ is given by

f˛CC; ˛C�gs D�˛C�˛CC; f˛CC; ˛�Cgs D�˛�C˛CC;
f˛��; ˛C�gs D ˛C�˛��; f˛��; ˛�Cgs D ˛�C˛��;
f˛C�; ˛�Cgs D 0; f˛CC; ˛��gs D�2˛C�˛�C:

Example 2.55 For the triangle T , the Poisson structure is described by the formulas in Example 2.54 by
replacing ˛ by each of the three arcs ˛, ˇ and 
 , together with the following relations and their images
through the automorphisms � and �2:

f
"�; ˛�0"gs D�1
2

"�˛�0"; f
��; ˛�0Cgs D 1

2

��˛�0C; f
C�; ˛�0�gs D�3

2

C�˛�0�C 2ˇ��0 :

3 Relative character varieties

3.1 Relative character varieties for open surfaces

In this subsection we briefly recall from [Korinman 2019] the definition and main properties of character
varieties for open surfaces.

The character variety of a closed punctured connected surface † is the algebraic quotient (familiar in
geometric invariant theory)

XSL2
.†/ WD Hom.�1.†P/;SL2.C//==SL2.C/

under the action by conjugation of SL2.C/. Recall that by “closed”, we mean that † is closed though in
this case †P is not closed when P¤∅. Goldman [1986] defined a Poisson structure on its algebra of
regular functions. It follows from [Barrett 1999; Bullock 1997; Przytycki and Sikora 2000; Turaev 1991]
that, given a spin structure S on † with quadratic form !S , there is a Poisson isomorphism

�S W .SC1.†/; f � ; � gs/ Š�!
�
CŒXSL2

.†/�; f � ; � g�:
For each noncontractible closed curve 
 , it is given by �S .
 /D .�1/!S .Œ
 �/C1�
 , where �
 is the regular
function �
 .Œ��/ WD Tr.�.
 //.

Korinman [2019] introduced a generalization of the character varieties to punctured surfaces which are
not necessarily closed and which is closely related to the construction of Fock and Rosly [1999] and
specifies to the constructions in [Alekseev and Malkin 1995; Alekseev et al. 1998; 2002; Guruprasad et al.
1997] when the marked surface is connected and has exactly one boundary arc (see [Korinman 2019] for
a precise comparison). We will also denote it by XSL2

.†/.

Notation 3.1 For a topological space X , we let …1.X / denote its fundamental groupoid: objects are the
points in X and morphisms are homotopy classes of oriented paths. We let s and t denote the source and
target maps, which for a morphism ˛ W v1! v2 are given by s.˛/D v1 and t.˛/D v2. By convention,
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we compose the morphisms from left to right, ie if ˛1 W v1! v2 and ˛2 W v2! v3 are two paths, their
composition is a path ˛1˛2 W v1 ! v3. For S � X , we denote by …1.X;S/ the full subcategory of
…1.X / whose objects are points in S . For a group G, the set Hom.…1.X;S/;G/ denotes the set of
functors � W…1.X;S/!G, where G is seen as a category with one element. With our conventions, if
t.˛1/D s.˛2/, then �.˛1˛2/D �.˛1/�.˛2/.

Let RSL2
.†/ be the set of functors � W…1.†P/! SL2 whose restriction to …1.@†P/�…1.†P/ is the

constant map with value the neutral element 12 2 SL2. Let G be the group of maps g W†P! SL2 whose
restriction to @†P is constant with value 12 and with finite support. It acts on RSL2

.†/ by the formula

g � �.˛/ WD g.s.˛//�1�.˛/g.t.˛//; � 2RSL2
.†/;g 2 G; ˛ 2…1.†P/:

Both RSL2
.†/ and G have a structure of affine scheme and the action is algebraic so we can define the

GIT quotient

(28) XSL2
.†/ WDRSL2

.†/==G:

The character variety turns out to be an affine Poisson variety whose Poisson structure (given by a
generalized Goldman formula) depends on a choice of orientation of the boundary arcs. It is proved in
[Korinman 2019, Theorem 1.1] that its algebra of regular functions CŒXSL2

.†/� is well behaved under
triangular decompositions: for a topological triangulation �, there are an injective Poisson morphism
i� WCŒXSL2

.†/� ,!N
T2F.�/CŒXSL2

.T /� and Poisson Hopf comodule maps �L and �R such that the
following sequence is exact:

(29) 0!CŒXSL2
.†/� i��!

O
T2F.�/

CŒXSL2
.T /� �

L��ı�R������!
� O

e2VE.�/
CŒSL2�

�
˝
� O

T2F.�/

CŒXSL2
.T /�

�
:

In the present paper, we proceed by describing the character variety for the bigon and the triangle, together
with the Hopf comodule maps �L and �R. Then, in virtue of the above property, we characterize the
Poisson structure of the relative character variety for any triangulated punctured surface as the kernel of
�L� � ı�R.

First, recall that sl2 denotes the Lie algebra of the 2� 2 traceless matrices. It has a basis formed by

H WD
�

1 0

0 �1

�
; E WD

�
0 1

0 0

�
and F WD

�
0 0

1 0

�
:

In order to define the Poisson structure, we will need the following.

Definition 3.2 The classical r–matrices r˙ 2 sl˝2
2

are the bivectors rC WD 1
2
H ˝H C 2E˝F and

r� WD 1
2
H˝HC2F˝E. Their symmetric part � D 1

2
H˝HCE˝FCF˝E is the invariant bivector

associated to the (suitably normalized) Killing form and we denote by NrC WDE˝F �F ˝E DW �Nr�
their skew-symmetric part.

The classical r–matrices satisfy the classical Yang–Baxter equation (see [Chari and Pressley 1994,
Section 2.1; Drinfeld 1983] for details).
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Notation 3.3 Given a a boundary arc of †, we write o.a/DC if the o–orientation of a coincides with
the orientation induced by the orientation of †P, and write o.a/D� if the orientation are opposite.

3.1.1 The bigon Consider the bigon B and write o.bL/D "1 and o.bR/D "2.

Definition 3.4 The relative character variety of the bigon is XSL2
.B/ WD SL2.C/. Denote by

N D
�

xCC xC�
x�C x��

�
the 2� 2 matrix with coefficients in CŒXSL2

.B/�. The Poisson bracket associated to o is defined by

fN ˝N g"1;"2 WD Nr "1.N ˝N /C .N ˝N / Nr "2 :

Here we used the classical notation fN˝N g to denote the matrix defined by fN˝N g""0��0Dfx""0 ;x��0g
(see for instance [Chari and Pressley 1994, Section 2.2.A] for details on this notation).

Denote the Poisson variety .CŒSL2�; f � ; � g"1;"2/ by CŒSL2�
"1;"2 . Note that f � ; � g"1;"2 D�f � ; � g�"1;�"2 .

By [Korinman 2019, Lemma 4.1], the coproduct � W CŒSL2�
"1;"2 ! CŒSL2�

"1;"˝CŒSL2�
�";"2 and the

antipode S W CŒSL2�
"1;"2 ! CŒSL2�

�"1;�"2 are Poisson morphisms. In particular, the Poisson brackets
f � ; � g�;C and f � ; � gC;� are the only ones which endow SL2.C/ with a Poisson–Lie structure.

3.1.2 The triangle Consider the triangle T and fix an orientation o of each of its three boundary arcs a,
b and c. We will use the notation s.˛/D t.ˇ/ WD c, s.
 /D t.˛/ WD b and s.ˇ/D t.
 / WD a. Here, for
instance, we think of ˛ as an oriented path joining a point in c D s.˛/ (source) to a point in b D t.˛/

(target).

Definition 3.5 The relative character variety of the triangle is the affine variety

XSL2
.T / WD f.M˛;Mˇ;M
 / 2 SL2.C/

3 jM
MˇM˛ D 1g:
Given ı 2 f˛; ˇ; 
 g, denote by

Nı WD
�
ı.C;C/ ı.C;�/
ı.�;C/ ı.�;�/

�
the 2� 2 matrix with coefficients in CŒXSL2

.T /�. The Poisson bracket f � ; � go is defined by the formulas

fNı˝Nıgo WD Nr o.s.ı//.Nı˝Nı/C .Nı˝Nı/ Nr o.t.ı//; ı 2 f˛; ˇ; 
 g;
fN˛˝N
 go WD �.N˛˝ 1/r o.b/.1˝N
 /;

fN
 ˝Nˇgo WD �.N
 ˝ 1/r o.a/.1˝Nˇ/;

fNˇ˝N˛go WD �.Nˇ˝ 1/r o.c/.1˝N˛/:

Note that, writing

S.Nı/ WD
�

ı.�;�/ �ı.C;�/
�ı.�;C/ ı.C;C/

�
;
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the last expressions can be rewritten in the form

fN˛˝S.N
 /go D .N˛˝S.N
 //r
o.b/;

fN
 ˝S.Nˇ/go D .N
 ˝S.Nˇ//r
o.a/;

fNˇ˝S.N˛/go D .Nˇ˝S.N˛//r
o.c/:

Given a boundary arc d 2 fa; b; cg, we define a left Hopf-comodule

�L
d WCŒXSL2

.T /�!CŒSL2�
.Co.d/;�o.d//˝CŒXSL2

.T /�; 
�L

d
.ı.C;C// �L

d
.ı.C;�//

�L
d
.ı.�;C// �L

d
.ı.�;�//

!
WD
�� xCC xC�

x�C x��
�˝Nı if s.ı/D d;

1˝Nı otherwise:

Similarly, define a right Hopf-comodule �R
d
WCŒXSL2

.T /�!CŒXSL2
.T /�˝CŒSL2�

.�o.d/;Co.d// by 
�R

d
.ı.C;C// �R

d
.ı.C;�//

�R
d
.ı.�;C// �R

d
.ı.�;�//

!
WD
�

Nı˝
� xCC xC�

x�C x��
�

if t.ı/D d;

Nı˝ 1 otherwise:

By [Korinman 2019, Lemma 4.6], both �L
d

and �R
d

are Poisson morphisms.

3.1.3 The general case Let † be a punctured surface, � a topological triangulation of †, and o� an
orientation of each edge of �. For a face T 2 F.�/, let oT be the orientation of its boundary arcs given
by o�. Equip the algebra

N
T2F.�/CŒXSL2

.T /�oT with the Poisson bracket defined in Definition 3.5.
Each inner edge e 2 VE.�/ lifts to two oriented boundary arcs in †� WD

F
T2F.�/ T . We denote by eL

the lift of e whose orientation coincides with the induced orientation of †� and by eR the other lift. The
comodule maps �L

eL
and �R

eR
induce the comodule maps

�L W
O

T2F.�/

CŒXSL2
.T /�oT !

� O
e2VE.�/

CŒSL2�
�;C

�
˝
� O

T2F.�/

CŒXSL2
.T /�oT

�
;

�R W
O

T2F.�/

CŒXSL2
.T /�oT !

� O
T2F.�/

CŒXSL2
.T /�oT

�
˝
� O

e2VE.�/
CŒSL2�

�;C
�
:

Definition 3.6 The relative character variety XSL2
.†/ is the affine variety whose algebra of regular

functions is the kernel of �L� � ı�R.

Lemma 3.7 [Korinman 2019, Theorem 1.4] As a Poisson variety, XSL2
.†/ only depends , up to

canonical isomorphism , on the marked surface † and the orientation o of the boundary arcs (so does not
depend on the triangulation � or on o�).

We denote by f � ; � go the Poisson bracket on CŒXSL2
.†/�. More precisely, in [Korinman 2019], we endow

the variety XSL2
.†/ WD RSL2

.†/==G (which only depends on †) with a Poisson structure, given by a
generalization of Goldman formula, which only depends on o. We then construct a splitting morphism
i� and prove in [Korinman 2019, Theorem 1.4] that we have the exact sequence (29), thus XSL2

.†/ can
be alternatively defined using Definition 3.6.
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Moreover when † is closed, the Poisson variety XSL2
.†/ is canonically isomorphic to the “classical”

(Culler–Shalen) character variety with its Goldman Poisson structure [Korinman 2019, Theorem 1.1].

3.2 Relation between relative character varieties and stated skein algebras

The goal of this subsection is to prove Theorem 1.3 which we recall here for the reader’s convenience:

Theorem 3.8 Suppose that † has a topological triangulation �. Let o� be an orientation of the edges of
� and o be the induced orientation of the boundary arcs of †. There exists an isomorphism of Poisson
algebras

‰.�;o�/ W .SC1.†/; f � ; � gs/ Š�! .CŒXSL2
.†/�; f � ; � go/:

Moreover , the above isomorphism exists for small punctured surfaces (see Definition 2.8), for which it
only depends on o.

We first prove this theorem for the bigon and the triangle, then we prove the general case using a topological
triangulation.

3.2.1 The case of the bigon Let

M WD
�
˛CC ˛C�
˛�C ˛��

�
; N WD

�
xCC xC�
x�C x��

�
and C WD

�
0 1

�1 0

�
be three matrices with coefficients in SC1.B/, CŒSL2� and C, respectively.

Lemma 3.9 For "1; "2 2 f�;Cg, there is a Poisson isomorphism

‰"1;"2 W .SC1.B/; f � ; � gs/ Š�!CŒSL2�
"1;"2

defined by

‰"1;"2.M / WD

8̂̂̂<̂
ˆ̂:

N if ."1; "2/D .�;C/;
CNC if ."1; "2/D .C;�/;
�CN if ."1; "2/D .C;C/;
�NC if ."1; "2/D .�;�/:

Proof That ‰"1;"2 is an isomorphism of algebras follows from the fact that det.C /D 1. Let us see the
compatibility of ‰"1;"2 with the Poisson structures. For ."1; "2/ D .�;C/, this follows from a direct
comparison of Definition 3.4 and Example 2.54. Indeed,

fN ˝N g�;C D Nr�.N ˝N /C .N ˝N / NrC

D .F ˝E �E˝F /.N ˝N /C .N ˝N /.E˝F �F ˝E/

D
�

0 xCC
0 x�C

�
˝
�

xC� 0

x�� 0

�
�
�

xC� 0

x�� 0

�
˝
�

0 xCC
0 x�C

�
C
�

0 0

xCC xC�

�
˝
�

x�C x��
0 0

�
�
�

x�C x��
0 0

�
˝
�

0 0

xCC xC�

�
:
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We recover the formulas computed in Example 2.54. For ."1; "2/D .C;C/, we prove that the isomorphism
' W CŒSL2�

�;C Š�! CŒSL2�
C;C given by ' WD ‰C;C ı .‰�;C/�1, is a Poisson morphism. Note that

'.N /D�CN and that .C ˝C / Nr " D Nr�".C ˝C /. It follows that

f'.N /˝'.N /gC;C D NrC.CN ˝CN /C .CN ˝CN / NrC

D .C ˝C /. Nr�.N ˝N /C .N ˝N / NrC/D '˝2.fN ˝N g�;C/;
which proves the claim. The two remaining cases for ."1; "2/ are proved similarly.

3.2.2 The case of the triangle For ı 2 f˛; ˇ; 
 g, let

Mı WD
�
ıCC ıC�
ı�C ı��

�
and Nı WD

�
ı.C;C/ ı.C;�/
ı.�;C/ ı.�;�/

�
be two matrices with coefficients in SC1.T / and CŒXSL2

.T /�, respectively.

Lemma 3.10 There is a Poisson isomorphism ‰o W .SC1.T /; f � ; � gs/ Š�!
�
CŒXSL2

.T /�; f � ; � go� defined
by

‰o.Mı/ WD

8̂̂̂<̂
ˆ̂:

Nı if .o.s.˛//; o.t.˛///D .�;C/;
CNıC if .o.s.˛//; o.t.˛///D .C;�/;
�CNı if .o.s.˛//; o.t.˛///D .C;C/;
�NıC if .o.s.˛//; o.t.˛///D .�;�/;

for each ı 2f˛; ˇ; 
 g. Moreover , if d 2fa; b; cg is a boundary arc of T , the following diagrams commute:

SC1.T / SC1.B/˝SC1.T /

CŒXSL2
.T /� CŒSL2�˝CŒXSL2

.T /�

�L
d

‰oŠ ‰o.d/;�o.d/˝‰oŠ
�L

d

SC1.T / SC1.T /˝SC1.B/

CŒXSL2
.T /� CŒXSL2

.T /�˝CŒSL2�

�R
d

‰oŠ ‰o˝‰�o.d/;o.d/Š
�R

d

Proof That ‰o is an algebra morphism follows from Lemma 2.29. For ı 2 f˛; ˇ; 
 g, the equality
.‰o/˝2.fı""0 ; ı��0go/ D f‰o.ı""0/; ‰o.ı��0/gs follows from the same computation that the proof of
Lemma 3.9. For o.a/D o.b/D o.c/DC,

fN˛˝N
 go D�.N˛˝ 1/
�

1

2
H ˝H C 2E˝F

�
.1˝N
 /

D�1

2

�
˛.C;C/ �˛.C;�/
˛.�;C/ �˛.�;�/

�
˝
�

 .C;C/ 
 .C;�/
�
 .�;C/ �
 .�;�/

�
�2

�
0 ˛.C;C/
0 ˛.�;C/

�
˝
�

0 0


 .C;C/ 
 .C;�/
�
:

We recover the formulas of Example 2.55; hence .‰o/˝2.f˛""0 ; 
��0go/D f‰o.˛""0/; ‰o.
��0/gs . We
get similar formulas by permuting cyclically the arcs 
 , ˇ and ˛. This proves that ‰o is a Poisson
morphism when o.a/D o.b/D o.c/DC. For another choice o0 of orientation of the boundary arcs, we
prove that ‰o0 is Poisson by showing that the isomorphism ‰o0 ı .‰o/�1 is Poisson. This follows from a
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similar computation to the one in the proof of Lemma 3.9 by using the fact that .C˝C /r "D r�".C˝C /.
The fact that the two diagrams in the lemma commute follows from a straightforward computation.

3.2.3 The general case: proof of Theorem 1.3 Consider a topological triangulation � of a punctured
surface †, together with a choice o� of orientation of its edges. Consider the commutative diagram

0 SC1.†/ ˝T SC1.T / .˝eSC1.B//˝ .˝T SC1.T //

0 CŒXSL2
.†/� ˝T CŒXSL2

.T /� .˝eCŒSL2�
�;C/˝ .˝T CŒXSL2

.T /�/

i�

Š9!‰.�;o�/

�L��ı�R

Š˝T‰
oT Š.˝e‰

�;C/˝.˝T‰
o.T//

i� �L��ı�R

In this diagram, both lines are exact and all morphisms are Poisson by Lemma 2.47 and [Korinman 2019];
hence there exists a unique Poisson isomorphism ‰.�;o�/ W .SC1.†/; f � ; � gs/ Š�! .CŒXSL2

.†/�; f � ; � go/
induced by restriction of ˝T‰

o.T/. This concludes the proof.

3.3 Relative spin structures and explicit formulas

The goal of this subsection is to give an explicit formula for the morphism ‰.�;o�/, when evaluated on
the generators of SC1.†/. A key point is to have a global method to compute some signs that depend
on the combinatorial data .�; o�/. We provide such a method by introducing the notion of relative spin
structure, which gives a geometric interpretation these signs. We end the section by relating the ‰.�;o�/

with the morphism of [Costantino and Lê 2022, Theorem 8.12].

3.3.1 Relative spin structures Since the classical identifications between skein algebras of closed
punctured surfaces and character varieties are indexed by spin structures, it is natural to expect that the
combinatorial data .�; o�/ indexing the isomorphism of Theorem 1.3 encode a generalization of the
notion of spin structures which would have a good behavior for the operation of gluing boundary arcs
together. Before defining this notion, we introduce some notation.

Notation 3.11 (1) In this subsection, † D .†;P/ will denote a triangulable punctured surface, o
an orientation of its boundary arcs and .�; o�/ a combinatorial data, and we equip †P with a
Riemannian structure compatible with the orientation. For each boundary arc a, we fix a point
va 2 a. If @†¤∅, we write V WD fvaga where a runs through the set of boundary arcs. If † is
closed, we fix an arbitrarily point va in each connected component a of †P and write V WD fvaga.

(2) Let � W U†P ! †P denote the unitary tangent bundle. For Ev D .v;u/ 2 U†P, we denote by
�EvD .v;�u/ the vector with opposite orientation. Let �1=2

Ev W Ev!�Ev be the class in …1.U†P/ of
a path making a half-twist in the fiber over �.Ev/ in the direction given by the orientation and write
�Ev WD �1=2

Ev �
1=2

�Ev . For simplicity, for a path ˛ W Ev1! Ev2, we will write �1=2˛ and ˛�1=2 instead of
�1=2
�Ev1

˛ and ˛�1=2
Ev2

with no confusion possible. When @†¤∅, for each boundary arc a, we denote
by Eva 2 U†P the lift of va pointing in the direction of o. When † is closed, we fix an arbitrarily
lift Eva of each va. We write yVC WD fEvaga and yV WD fEva;�Evaga.
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Definition 3.12 A relative spin structure on † is a functor W 2 Hom.…1.U†P; yVC/;Z=2Z/ such that
W .�Ev/D 1 for all Ev 2 yVC. We denote by Spin.†/ the set of relative spin structures on †.

Remark 3.13 When † is closed and connected, an element W 2 Spin.†/ is a group morphism
W W �1.U†P; EvC0 / ! Z=2Z such that W .�EvC

0
/ D 1. Since Z=2Z is abelian, such a morphism is

equivalent to a group morphism W WH1.U†P;Z=2Z/!Z=2Z satisfying W .Œ� �/D 1. Such a morphism
W defines a regular double covering zU of U†P such that the covering on each fiber is nontrivial. Since
Spin.2/ is the only nontrivial double covering of SO.2/, the space zU is the total space of a Spin.2/ fiber
bundle over †P lifting the bundle of orthogonal frames induced by the metric; hence it defines a spin
structure. There is actually a one-to-one correspondence between isomorphism classes of spin structures
and such morphisms W (see [Milnor 1963] for details). Therefore a relative spin structure is the same
as a “standard” spin structure in the closed case. When the surface has nonempty boundary, an element
W 2 Spin.†/ still induces a group morphism W , thus a spin structure. However, the functor W contains
more information than W which permits to “glue” relative spin structures together.

Let a and b be two distinct boundary arcs of † and denote by p W†P!†Pja#b the projection. Write
c WD p.a/D p.b/. We assume that

(1) the restriction p W†P n .a[ b/!†Pja#b n c is an isometry,

(2) the restriction p W a! c and p W b! c are isometries, and

(3) the orientations o of a and b coincide when gluing the arcs and p.va/D p.vb/DW vc .

The projection induces a lift Evc 2 U†Pja#b of vc and a functor

p� W…1.U†P; yVC/!…1.U†Pja#b; yV a#bC [fEvcg/:

Lemma 3.14 For W 2 Spin.†/, there exists a unique W ja#b 2 Spin.†ja#b/ such that

W ja#b.p�.˛//DW .˛/

for all ˛ 2…1.U†P; yVC/.

Proof Note that the image of p� generates the groupoid …1.U†Pja#b; yV a#bC [fEvcg/ in the sense that
any path ˛ 2 …1.U†Pja#b; yV a#bC [ fEvcg/ can be written as a composition ˛ D p�.˛1/ � � �p�.˛n/ for
some ˛i 2…1.U†P; yVC/. Hence for W 2 Spin.†/, there exists a unique functor�W W…1.U†Pja#b; yV a#bC [fEvcg/! Z=2Z

such that �W .��.˛//DW .˛/ for all ˛ 2…1.U†P; yVC/, and W ja#b has to be the restriction of �W to
the full subcategory …1.U†Pja#b; yV a#bC /.

Note that the map ra#b WSpin.†/!Spin.†ja#b/ sending W to W ja#b is surjective but not injective. Indeed
when lifting a functor in Hom.…1.U†P; yVC/;Z=2Z/ to a functor in Hom.…1.U†P; yVC[fEvcg/;Z=2Z/

there is a Z=2Z ambiguity. Note also that if a, b, c and d are four distinct boundary arcs, one obviously
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has ra#b ı rc#d D rc#d ı ra#b . In particular, once some combinatorial data .�; o�/ of † are fixed, any
relative spin structure on † can be obtained by gluing some relative spin structure on each face of the
triangulation.

3.3.2 Lifts of embedded curves and the function w Let us call embedded arc a smooth embedding
˛ W Œ0; 1�! †P such that ˛.0/; ˛.1/ 2 @†P. To any embedded arc and any simple closed curve, we
associate two lifts in U†P as follows.

For ˛ an embedded arc oriented from the boundary arc a to the boundary arc b, we isotope ˛ (in the class
of embedded arc) such that ˛.0/ D va, ˛.1/ D vb , the vectors ˛0.0/ and ˛0.1/ are tangent to a and b,
and such that ˛0.0/ points in the direction of a opposite to the orientation induced by the orientation of
†P and ˛0.1/ points in the direction of b induced by the orientation of †P. The positive lift of ˛ is the
homotopy class ǪC 2…1.U†P; yV / of the continuous map t 7! .˛.t/; ˛0.t/=k˛0.t/k/.
For v a point in a boundary arc a, we write o.v/ D 0 if the orientation of a agrees with the induced
orientation of †P and o.v/D 1 otherwise. The o–lift Ǫ o 2…1.U†P; yVC/ is defined by the formula

(30) ǪC D .�1=2/1�o.s.˛// Ǫ o.�1=2/o.t.˛//:

Let 
 be a smooth embedded curve and v 2 V . We define O
Cv as the as the homotopy class of a map
t 7! �

ˇ.t/; ˇ0.t/=kˇ0.t/k� where ˇ is a smooth immersion ˇ W Œ0; 1�! †P which is isotopic to 
 such
that ˇ.0/D v D ˇ.1/ and ˇ0.0/ points in the direction induced by the orientation of the surface for O
Cv .
Similarly, we define O
 o

v as the homotopy class of a map t 7! �
ˇ.t/; ˇ0.t/=kˇ0.t/k� where this time ˇ0.0/

points in the direction of o for O
 o
v . If † is closed and 
 is in a connected component b, we impose that

O
Cv D O
 o
v is defined from an immersion ˇ such that .ˇ.0/; ˇ0.0//D vb .

Notation 3.15 For W 2 Spin.†/ and ˛ an embedded arc, we write w.˛/ WDW . Ǫ o/ 2 Z=2Z. For 
 a
closed curve we write w.
 / WDW . O
 o

v /.

Remark 3.16 The value w.
 / associated to a closed curve is obviously independent of the choice of
the point v. Moreover, as noted in Remark 3.13, the value W . O
 / only depends on the homology class
Œ O
 o� 2 H1.U†PIZ=2Z/ and is closely related to the Johnson quadratic form as follows. Let f
igiD1;:::;n

be a collection of simple closed curves. Johnson [1980, Theorem 1.A] proved that the class

y WD
nX

iD1

Œ O
 o
i �C nŒ� � 2 H1.U†PIZ=2Z/

only depends on the homology class of x WDPn
iD1Œ
i � 2 H1.†PIZ=2Z/; hence the assignation x 7! y

defines a map (not a morphism) H1.†PIZ=2Z/! H1.U†PIZ=2Z/. Moreover, for a (relative) spin
structure W , Johnson [1980, Theorem 1.B] proved that the map ! W H1.†PIZ=2Z/! Z=2Z defined by
!
�Pn

iD1Œ
i �
� WD nCPn

iD1w.Œ
i �/ .mod 2/ satisfies the relation

!.Œ˛Cˇ�/D !.Œ˛�/C!.Œˇ�/ChŒ˛�; Œˇ�iI
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hence ! is a quadratic form for .H1.†PIZ=2Z/; h � ; � i/, where h � ; � i represents the intersection form.
Thus the values w.
 / in Notation 3.15 are related to the Johnson quadratic form of the underlying spin
structure by !.Œ
 �/D w.
 /C 1 .mod 2/.

3.3.3 Relative spin structures associated to combinatorial data In order to assign a relative spin
structure to some combinatorial data .�; o�/ in a canonical way, we need to assign to each triangle T ,
equipped with an orientation oT of its boundary arcs, a canonical relative spin structure and then glue the
triangles along their faces. Let ˛, ˇ and 
 be the three paths in Figure 3 which generate the groupoid
…1.T ;V / with relation 
ˇ˛D 1. Note that for any choice of oT , one has the relation O
 oT ǑoT Ǫ oT D ��2.
Hence a relative spin structure W on T is described by three elements W . Ǫ oT /;W . ǑoT /;W . O
 oT /2Z=2Z

such that W . Ǫ oT /CW . ǑoT /CW . O
 oT /D 0. Therefore there exist four different relative spin structures
on T .

Definition 3.17 The distinguished relative spin structure on T is the relative spin structure W such that
W . Ǫ oT / DW . ǑoT / DW . O
 oT / D 0. For † a punctured surface with combinatorial data .�; o�/, we
associate a relative spin structure W .�;o�/ 2 Spin.†/ by gluing together the distinguished spin structures
on the faces of the triangulation.

Note that the distinguished relative spin structure W on T satisfies w.˛/ D w.ˇ/ D w.
 / D 0 and
w.˛�1/D w.ˇ�1/D w.
�1/D 1.

Remark 3.18 Since we associate to each face a specific (named distinguished) relative spin structure,
there is no reason to believe that every spin structure on †P can be associated to some combinatorial data.
Moreover we will not investigate under which condition two combinatorial data induce the same relative
spin structure. Novak and Runkel [2015] showed that any spin structure on a surface can be encoded by
the combinatorial data consisting in a triangulation (with no degenerate face), an orientation of the edges
and a choice of distinguished vertex for each face. Moreover they proved that two such combinatorial
data induce the same spin structure if and only if they can be related by a sequence of elementary moves.
It would be interesting to compare their approach to Definition 3.17.

We now state an explicit formula for the values w.˛/ associated to a relative spin structure W .�;o�/.
For each edge e 2 E.�/, fix a point ve 2 e and let V� D fvege2E.�/. When @†¤ ∅, we assume that
V�\@†P D V . When † is closed, we assume that V � V�. Let Eve 2U†P be the lift of ve oriented in
the direction of o� and set yV�C WD fEve j e 2 E.�/g and yV� WD fEve;�Eve j e 2 E.�/g. Note that the set

yG� WD f. Ǫ oT /˙1; . ǑoT /˙1; . O
 o
T /
˙1 j T 2 F.�/g

generates the groupoid …1.U†P; yV�C /. By definition of the gluing operation, the functor W .�;o�/ is the
restriction of the functor �W 2 Hom.…1.U†P; yV�C /;Z=2Z/ characterized by�W . Ǫ oT

T /D �W . ǑoT
T /D �W . O
 oT

T /D 0
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for every face T and �W .�Ev/ D 1 for any Ev 2 yV�C . Set G� WD �. yG�C/ D f˛˙1
T ; ˇ˙1

T ; 
˙1
T IT 2 F.�/g

and for ı 2G� a path in T , write w.ı/ WD �W . OıoT /. Hence w.ı/D 0 if ıD ˛T , ˇT or 
T and w.ı/D 1

if ı D ˛�1
T , ˇ�1

T or 
�1
T .

Let ˛ be either an embedded arc or a closed curve and choose a decomposition

(31) ˛ D ˛1 � � �˛n; ˛i 2G�;

such that either ˛i and ˛iC1 lie in different faces Ti ¤ TiC1 of �, or Ti D TiC1 is a degenerate triangle,
with two boundary arcs glued together to give an arc c in †P, and ˛i˛iC1 crosses c D t.˛i/D s.˛iC1/

transversally. In the above statement, the indices i are taken in Z=nZ when ˛ is a closed curve. Note
that such a decomposition is obtained by isotoping ˛ transversally with minimal intersection to the edges
of the triangulation, and then cutting ˛ along the edges. For .T ; oT / a triangle with oriented edges, a an
edge and va 2 a, recall that we write oT .va/D 0 if the orientation of a corresponds to the orientation
induced by the orientation of T and write oT .va/DC1 otherwise.

Lemma 3.19 The function w associated to the relative spin structure W .�;o�/ is characterized by the
formula

w.˛/D
�Pn

iD1w.˛i/C
Pn�1

iD1 oTi
.t.˛i// .mod 2/ if ˛ is an embedded arc;Pn

iD1w.˛i/C
Pn

iD1 oTi
.t.˛i// .mod 2/ if ˛ is a closed curve:

Proof First note that for the positive lifts,

ǪC D ǪC
1
� � � ǪCn :

This equality follows from the fact that the embedded curve chosen to represent ǪC can be isotoped
such that it crosses tangentially the edges of � in such a way that, when cutting along the edges, one
obtains the composition ǪC

1
� � � ǪCn . Note also that this equality is essentially [Costantino and Lê 2022,

Proposition 8.11]. Recall from (30) that ǪCi D .�1=2/1�o.s.˛i // Ǫ oi .�1=2/o.t.˛i // and note that, since we
assume that the faces Ti and TiC1 are distinct,

.1� oTi
.t.˛i///C oTiC1

.s.˛iC1//D 2oTiC1
.s.˛i//

(where indices are understood modulo n when ˛ is a closed curve). When ˛ is an arc, we thus obtain the
equality

Ǫ oT1

1
� � � Ǫ oTn

n D �
Pn�1

iD1 oTi
.t.˛i //.�1=2/1�o.s.˛// ǪC.�1=2/o.t.˛//;

from which we deduce that

w.˛/ WDW . Ǫ o/DW
�
.��1=2/1�o.s.˛// ǪC.��1=2/o.t.˛//

�
DW

�
��

Pn�1
iD1 oTi

.t.˛i // Ǫ oT1

1
� � � Ǫ oTn

n

�
D

n�1X
iD1

oTi
.t.˛i//C

nX
iD1

w.˛i/ .mod 2/:

The computation when ˛ is a closed curve is done in the same manner.
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3.3.4 Explicit formulas for the isomorphism In order to describe the isomorphism ‰.�;o�/ of
Theorem 1.3 more explicitly, let us recall from [Korinman 2019] a set of generators for the ring of
regular functions of the relative character varieties.

For ˛ an embedded arc, seen as a path in the fundamental groupoid, and "; "0 D˙, the regular function
F˛""0 2CŒXSL2

.†/� is defined on the class Œ�� of a functor � 2RSL2
.†P/ by

�.˛/D
�

F˛CC.�/ F˛C�.�/
F˛�C.�/ F˛��.�/

�
:

For 
 a closed curve, represented by an arbitrary path 
v 2…1.†P;V /, one defines F
 2CŒXSL2
.†/�

by F
 .Œ��/ WD Tr.�.
v//. Since the trace is invariant by conjugacy, the value Tr.�.
v// does not depend
on the choice of base point v nor on the representative � in the class Œ��. The functions F˛""0 and F


generate the algebra CŒXSL2
.†/�. For ˛ an arc, we set

N˛ WD
�

F˛CC F˛C�
F˛�C F˛��

�
the 2� 2 matrix with coefficients in CŒXSL2

.†/�. Note that

N˛�1 D
�

F˛�� �F˛C�
�F˛�C F˛CC

�
:

For ˛ an embedded arc and "; "0 D˙, we denote by ˛""0 2 SC1.†/ the class of the arc ˛ with state " at
s.˛/ and "0 at t.˛/. We write

M˛ WD
�
˛CC ˛C�
˛�C ˛��

�
the 2� 2 matrix with coefficients in SC1.†/. Note that

M˛�1 D .M˛/
| D

�
˛CC ˛�C
˛C� ˛��

�
:

Recall the isomorphism ‰.�;o�/ of Theorem 1.3 and recall that C�1 D �0
1
�1

0

�
.

Theorem 3.20 For each embedded arc ˛,

(32) ‰.�;o�/.M˛/D .�1/w.˛/.C�1/1�o.˛.0//N˛.C�1/o.˛.1//:

For each closed curve 
 ,

(33) ‰.�;o�/.
 /D .�1/w.
/F
 :

Remark 3.21 When † is closed, recall from Remarks 3.13 and 3.16 that W .�;o�/ is a standard spin
structure associated to a quadratic form ! such that w.
 / D !.Œ
 �/C 1. Hence in the closed case,
the isomorphism ‰.�;o�/ coincides with the “standard” isomorphisms described at the beginning of
Section 3.1.
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Recall that ‰.�;o�/ is defined by the diagram

(34)

SC1.†/ ˝T SC1.T /

CŒXSL2
.†/� ˝T CŒXSL2

.T /�

i�

Š‰.�;o�/ Š˝T‰
oT

i�

For x 2 SC1.T /, we still denote by x the element in ˝T SC1.T / having 1 in the factors SC1.T
0/ for

T 0 ¤ T and x in the factor SC1.T /. Hence for ı 2G� a path in T , the matrix Mı is considered as a
2� 2 matrix with coefficients in ˝T SC1.T /. Similarly, the matrix Nı is considered as a 2� 2 matrix
with coefficients in ˝T CŒXSL2

.T /�.

Proof We first show that if (32) holds for an arc ˛, then it holds for ˛�1. This follows from the fact that
w.˛�1/D w.˛/C 1, from the equalities .C�1/| D C and A�1 D�C�1A|C�1 for A 2 SL2.C/, and
from the computation

‰.M˛�1/D‰.M |
˛ /D .�1/w.˛/C o.t.˛//.N˛/

|C 1�o.s.˛//

D .�1/w.˛/C1.C�1/1�o.s.˛�1//.�C�1N
|
˛ C�1/.C�1/o.t.˛

�1//

D .�1/w.˛
�1/.C�1/1�o.s.˛�1//N˛�1.C�1/o.t.˛

�1//:

Next let us prove the theorem for the triangle T . The fact that (32) holds for the arcs ˛T , ˇT and 
T is an
immediate consequence of the definition of ‰oT in Lemma 3.10 and from the definition of the canonical
spin structure in T . By the preceding arguments, (32) also holds for the arcs ˛�1

T , ˇ�1
T and 
�1

T , and the
theorem is proved for T .

In the general case, consider an arc ˛ and choose a decomposition

˛ D ˛1 � � �˛n; ˛i 2G�;

as before. By the gluing formula for stated skein algebras [Lê 2018, Theorem 3.1], i�.M˛/DM˛1
� � �M˛n

.
By definition of the morphism i� in (29), i�.N˛/DN˛1

� � �N˛n
. By the preceding case of the triangle,

.˝T‰
oT /.M˛i

/D .�1/w.˛i /.C�1/1�oTi
.s.˛i //N˛i

.C�1/oTi
.t.˛/:

Hence, by Lemma 3.19,

.˝T‰
oT / ı i�.M˛/D i�

�
.�1/w.˛/.C�1/1�o.s.˛//N˛.C�1/o.t.˛//

�
;

and (32) follows from the commutativity of the diagram (34). The proof for a closed curved is done
similarly by taking the trace of the above equality.

3.3.5 Comparison with Costantino and Lê’s isomorphism Let † be a connected punctured surface
with nontrivial boundary. Costantino and Lê [2022] defined the twisted character variety �.†/ as the
space of functors O� 2 Hom.…1.U†P; yV /;SL2.C// such that O�.�1=2

Ev / D C�1 for any Ev 2 yV . Let S
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denote the maximal spectrum of SC1.†/. For � 2 S, seen as a character � W SC1.†/!C�, and for ˛ an
oriented arc, write

�.˛/ WD
�
�.˛CC/ �.˛C�/
�.˛C�/ �.˛��/

�
:

Costantino and Lê [2022, Theorem 8.12] defined an affine isomorphism ‚ W S Š�! �.†/ sending a
character � to a functor O� such that �.˛/ D O�. ǪC/ for any embedded (even immersed) arc and such
that �.
 /D Tr. O�. O
C// for any closed curve. Composing ‚ with the isomorphism induced by ‰.�;o�/,
one obtains an isomorphism XSL2

.†/ Š �.†/. By Theorem 3.20, this isomorphism sends a functor
� 2 Hom.…1.†P;V /;SL2.C// to a functor O� 2 Hom.…1.U†P; yV /;SL2.C// characterized by the
formulas O�. Ǫ o/ D .�1/w.˛/�.˛/ for any arc ˛, Tr. O�. O
 o/ D .�1/w.
/ Tr.�.
 // for any closed curve 

and O�.�1=2

Ev /D C�1 for any Ev 2 yV .

3.4 Classical Shadows

Suppose that ! 2C is a root of unity of odd order N > 1. A central representation of the stated skein
algebra is a finite-dimensional representation r W S!.†/! End.V / which sends each element of the
image of the morphism j of Theorem 1.2 to scalar operators. Fix a topological triangulation � of †
and an orientation o� of its edges. Then r induces a character on SC1.†/

‰.�;o�/

Š����!CŒXSL2
.†/� and this

character induces a point in the relative character variety XSL2
.†/ that we call the classical shadow of r ,

as in [Bonahon and Wong 2016] in the closed case. By definition, the classical shadow only depends on
the isomorphism class of r .

To motivate the results of this paper, we list three families of central representations. First, irreducible
representations are obviously central. Then choose for each triangle T 2F.�/ an irreducible representation
rT W S!.T /! End.VT / and consider the composition

r W S!.†/ i��!
O

T2F.�/

S!.T /
˝T rT���! End.˝T VT /:

Such a representation is central and were called local representations in [Bai et al. 2007]. Eventually,
consider the balanced Chekhov–Fock algebra Z!.†;�/ defined in [Bonahon and Wong 2011] after the
original construction of [Fock and Chekhov 1999]. Given a triangulated marked surface, Bonahon and
Wong [2011] defined an algebra morphism (the quantum trace) Tr W S!.†/! Z!.†;�/ (see also [Lê
2018]). One motivation is the fact that the representation theory of the balanced Chekhov–Fock algebra
is easier to study than the one of the skein algebras (see [Bonahon and Liu 2007; Bonahon and Wong
2017]). For an irreducible representation � W Z!.†;�/! End V of the balanced Chekhov–Fock algebra,
we call the quantum Teichmüller representation, the composition

r W S!.†/ Tr�! Z!.†;�/
��! End.V /:

Quantum Teichmüller representations are central.
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Appendix Proof of Proposition 2.38 and an application

A.1 Proof of Proposition 2.38

We divide the proof of Proposition 2.38 into five lemmas.

Throughout this section, we write A WD !�2. Denote by A D .Œ0; 1� � S1; fp;p0g/ the annulus with
punctures pDf0g�f1g and p0Df1g�f1g in each of its boundary components and let bDf0g�S1nfpg and
b0Df1g�S1nfp0g be its boundary arcs. Let 
 � Œ0; 1��S1 be the curve f1

2
g�S1. Let ı.n/; �.n/� Œ0; 1��S1

be the arcs with endpoints b and b0 such that ı.n/ spirals n times in the counterclockwise direction and �.n/

spirals n times in the clockwise direction while oriented from b0 to b. The arcs are drawn in Figure 7. By
convention, ı.0/ and �.0/ represent the empty diagram. Denote by ˇ the arc Œ0; 1��f�1g. By convention,
if ˛ is one of the arcs ˇ, ı.n/ or �.n/, we denote by ˛""0 2 S!.A/ the class of the corresponding stated
tangle with sign " in b and "0 in b0. The following lemma and its proof are quite similar, though stated in
a different skein algebra, to [Lê 2015, Proposition 2.2].

Lemma A.1 In S!.A/, the elements TN .
 / and ˇ""0 commute.

Proof First note that a direct application of the Kauffman bracket skein relations implies that


 � ı.n/""0 DAı
.nC1/
""0 CA�1ı

.n�1/
""0 and 
 � �.n/""0 DA�

.n�1/
""0 CA�1�

.nC1/
""0

when n� 1. Next we show by induction on n� 0 that Tn.
 / �ˇ""0 DAnı
.n/
""0 CA�n�

.n/
""0 . The statements

is an immediate consequence of the definitions when n D 0 and a direct application of the Kauffman
bracket relations when nD 1. Suppose that the results holds for n and nC 1. Then

TnC2.
 /ˇ""0 D 
 �TnC1.
 / �ˇ""0 �Tn.
 / �ˇ""0
D 
 � .AnC1ı

.nC1/
""0 CA�.nC1/�

.nC1/
""0 /� .Anı

.n/
""0 CA�n�

.n/
""0 /

DAnC2ı
.nC2/
""0 CA�.nC2/�nC2

""0 ;

and the statement follows by induction. Similarly, we show that ˇ""0 �Tn.
 /DA�nı
.n/
""0 CAn�

.n/
""0 . Hence,

TN .
 / �ˇ""0 �ˇ""0 �TN .
 /D .AN �A�N /.ı
.N /
""0 � �.N /""0 /D 0:

A

b0 b

ˇ

p

p0




A ı.2/
Q

b1

b2

b3

b4

ˇ

˛

Q ı.2/

Figure 7: The annulus A, the square Q and some arcs and curves.
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Denote by Q the square, ie a disc with four punctures on its boundary. Let b1; : : : ; b4 be its four boundary
arcs labeled in the counterclockwise order. When gluing b1 along b3, we obtain the annulus with b2 sent to
b and b4 sent to b0. We denote by i jb1#b3

WS!.A/ ,!S!.Q/ the gluing morphism. Let ˛; ˇ; ı.n/; �.n/�Q

be the arcs which are glued together to form 
 , ˇ, ı.n/ and �.n/, respectively, as in Figure 7. Fix an
arbitrary orientation o of the boundary arcs of Q and consider the filtration .Fm/m�0 associated to
S D fb1; b3g of Definition 2.11. Write d W S!.Q/!Z�0 the corresponding map and Gm WDFm =Fm�1

the corresponding graduation.

Lemma A.2 lt..˛CCC˛��/N /D lt.TN .˛CCC˛��//D ˛NCCC˛N��.

Proof First note that in G4, we have ˛��˛CC D q2˛CC˛��. So it follows from Lemma 2.27 that
in G2N , we have lt..˛CC C ˛��/N / D ˛NCC C ˛N��. Since TN .X /�X N is a polynomial of degree
strictly smaller that N , the degree of TN .˛CCC ˛��/� .˛CCC ˛��/N is strictly smaller than 2N ;
thus lt.TN .˛CCC˛��//D lt..˛CCC˛��/N /.

Let ˛.n/ be the diagram made of n parallel copies of ˛. Using the identifications @ı.n/D@�.n/D@˛.n/[@ˇ,
we denote by ı.n/

.s;";"0/; �
.n/

.s;";"0/ 2S!.Q/ the classes of the tangles ı.n/ and �.n/ with states given by a state
s of ˛.n/ and a state ."; "0/ of ˇ.

Lemma A.3 For 0< n<N and s a state of ˛.n/,

lt
�
ŒŒ˛.n/; s�; ˇ""0 �

�D .An�A�n/.ı
.n/

.s;";"0/� �
.n/

.s;";"0//;

where we used the notation Œx;y�D xy �yx.

Proof The diagram obtained by stacking ˛.n/ on top of ˇ has n crossings and thus 2n resolutions using
the Kauffman bracket relation. We remark that the resolution obtained by replacing each crossing by
is Anı

.n/

.s;";"0/ while the resolution obtained by replacing each crossing by is A�n�
.n/

.s;";"0/. These two
resolutions have degree 2n and all the others resolutions have degrees strictly smaller; thus

lt.Œ˛.n/; s� �ˇ""0/DAnı
.n/

.s;";"0/CA�n�
.n/

.s;";"0/:

We similarly prove lt.ˇ""0 � Œ˛.n/; s�/DA�nı
.n/

.s;";"0/CAn�
.n/

.s;";"0/ and conclude by taking the difference.

Lemma A.4 If x 2 S!.Q/ is a polynomial in S!.Q/ in the elements ˛""0 such that d.x/ < 2N and
such that x commutes with all elements ˇ�;�0 , then x is a constant.

Proof Let x DP
i2I xi Œ˛

ni ; si � be the decomposition in the basis of stated tangles with increasing
states si and denote by 2n < 2N its degree. Suppose, for the sake of contradiction, that n ¤ 0. Let
J D fj 2 I j ni D ng � I , so lt.x/DPj2J xj Œ˛

n; sj �. The hypothesis on x and Lemma A.3 imply that

0D lt.Œx; ˇ""0 �/D
X
j2J

xj .A
n�A�n/.ı

.n/

.sj ;";"0/� �
.n/

.sj ;";"0//:
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Since the elements ı.n/
.sj ;";"0/ and �.n/

.sj ;";"0/ are linearly independent for n� 1, we conclude that

xj .A
n�A�n/D 0

for all j 2 J . Since 0< n<N and N is odd, we obtain that xj D 0 for all j 2 J thus lt.x/D 0. This
gives the contradiction.

The set B0 WD f˛a�C˛bCC˛cC�; a; b; c � 0g [ f˛a�C˛b��˛cC�; a; b; c � 0g forms a basis of the algebra
S!.B/. This fact is Exercise 7 in Chapter IV, Section 6 of [Kassel 1995], and is proved as follows. Choose
an orientation o of the boundary arcs of B such that bL and bR points towards different punctures and
consider the filtration associated to S D fbL; bRg. For each element of the basis Bo, there exists exactly
one element of B0 which has the same leading term. For x 2 S!.B/, denote by c.x/ 2R the coefficient
of 1 in the decomposition of the basis B0.

Lemma A.5 c.TN .˛CCC˛��//D 0.

Proof Let n� 1 be an odd integer and let us show that c..˛CCC˛��/n/D 0. The proof will then follow
from the fact that TN .X / is an odd polynomial, thus is a linear combination of such elements, and the
fact that c is linear. The product ..˛CCC˛��/n/ develops as a sum of terms of the form x D x1 � � �xn

where xi is either ˛CC or ˛��. Using the defining relations of S!.B/, we can further develop each term
x as a linear combination of terms of the form ˛a�C˛bCC˛aC� and ˛a�C˛b��˛aC� where 2aC b has the
same parity as n. Since n is odd, each of these summands satisfies b ¤ 0 so c.x/D 0.

Proof of Proposition 2.38 Consider the element x WD TN .˛CCC ˛��/� ˛NCC � ˛N�� 2 S!.Q/. By
Lemma A.2, its degree is strictly smaller that 2N . By Lemma A.1, in S!.A/ the elements TN .
 / and
ˇ""0 commute. The image through the algebra morphism i jb1#b3

W S!.A/ ,! S!.Q/ of TN .
 / and ˇ""0
are respectively TN .˛CCC˛��/ and ˇ""0 , thus they commute. By Lemma 2.36, the elements ˛NCC and
˛N�� also commute with ˇ""0 so x commutes with each element ˇ""0 . Lemma A.4 implies that x is a
constant and Lemma A.5 implies that this constant is null.

A.2 A generalization of a theorem of Bonahon

Proposition 2.38 provides the following generalization of the main theorem of [Bonahon 2019]. Let A be
an R–algebra and � WCq ŒSL2�

˝k !A be a morphism of algebras. Let �i be the i th component of �. For
1� i � k, consider the following two matrices with coefficients in A:

Ai WD
�
�i.˛CC/ �i.˛C�/
�i.˛�C/ �i.˛��/

�
; A

.N /
i WD

�
�i.˛CC/N �i.˛C�/N
�i.˛�C/N �i.˛��/N

�
:

The following proposition was proved in [Bonahon 2019, Theorem 1] in the particular case where
�i.˛C�/�i.˛�C/D 0 for each i 2 f1; : : : ; kg.
Proposition A.6 If q is a root of unity of odd order N > 1, then

TN .Tr.A1 � � �Ak//D Tr.A.N /
1
� � �A.N /

k
/:

Algebraic & Geometric Topology, Volume 24 (2024)



2146 Julien Korinman and Alexandre Quesney

Proof By Proposition 2.38 and using that both � and the .k�1/st coproduct

�.k�1/ WCq ŒSL2�!Cq ŒSL2�
˝k

are morphisms of algebras,

TN ı � ı�.k�1/.˛CCC˛��/D � ı�.k�1/.˛NCCC˛N��/:

We conclude by remarking that

� ı�.k�1/.˛CCC˛��/D Tr.A1 � � �Ak/ and � ı�.k�1/.˛NCCC˛N��/D Tr.A.N /
1
� � �A.N /

k
/;

where the second equality follows from the fact that jB is a morphism of Hopf algebras (Lemma 2.28),
hence commutes with �.k�1/.
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