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Classical shadows of stated skein representations at roots of unity

JULIEN KORINMAN
ALEXANDRE QUESNEY

We extend some results of Bonahon, Wong, Bullock and Turaev concerning the skein algebras of closed
surfaces to L&’s stated skein algebras associated to open surfaces. We prove that the stated skein algebra
with deforming parameter +1 embeds canonically into the center of the stated skein algebra whose
deforming parameter is an odd root unity. We also construct an isomorphism between the stated skein
algebra at 41 and the algebra of regular functions of the relative SL,—character variety of the surface. As
a result, we associate to each isomorphism class of irreducible or local representations of the stated skein
algebra an invariant which is a point in the relative character variety.
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1 Introduction

A punctured surface is a pair X = (X, %), where X is a compact oriented surface and % is a (possibly
empty) finite subset of ¥ which intersects nontrivially each boundary component. We write g := X \ P.
The set 0% \ & consists of a disjoint union of open arcs which we call boundary arcs.

Warning In this paper, the punctured surface X will be called open if the surface ¥ has nonempty
boundary and closed if X is closed. This convention differs from the traditional one, where some authors
refer to an open punctured surface as a punctured surface ¥ = (2, ?) with X closed and P # & (in
which case X is not closed).

We will consider two related objects associated to a punctured surface, namely the Kauffman-bracket
skein algebra and the SL, (C)—character variety. These objects have been well studied in the case where
the punctured surface is closed. They were recently generalized to open punctured surfaces in such a way
that they have a nice behavior relative to the operation of gluing two boundary arcs together. The goal of
this paper is to extend some classical results concerning skein algebras and character varieties to the case
of open punctured surfaces. Before we state the main results, let us give a brief historical background.

Historical background Closed surfaces: Culler and Shalen [1983] defined the SL, (C) character variety
%s1, (M) of a manifold M whose fundamental group is finitely generated. This affine variety is closely
related to the moduli space of flat connections on a trivial SL,(C) bundle over M and, therefore, it is
related to Chern—Simons topological quantum field theory, gauge theory and low-dimensional topology;
see [Labourie 2013; Marché 2012; 2016] for surveys. If X is a closed oriented surface, the smooth part
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of ¥s1,(Z) carries a symplectic form, first defined in [Atiyah and Bott 1983] in the context of gauge
theory. This symplectic structure was used by Goldman [1986] to equip the algebra of regular functions
C[%sL, (2)] with a Poisson bracket. A similar Poisson structure for character varieties of punctured closed
surfaces was introduced by Fock and Rosly [1999] (see also [Alekseev et al. 2002] for an alternative
construction) in the differential geometric context.

Turaev [1988] and Hoste and Przytycki [1992] independently defined the Kauffiman-bracket skein algebra
F4(2) as a tool to study the Jones polynomial and the SU(2) Witten—Reshetikhin—Turaev TQFTs. Skein
algebras are defined for any commutative unital ring & together with an invertible element A € R and a
closed punctured surface X.

Skein algebras are deformations of the algebra of regular functions of character varieties of closed
punctured surfaces. In particular, this means that there is an isomorphism of Poisson algebras between
F+1(2) and C[#s1,(X)]. In more detail, this relies on a (noncanonical) isomorphism from ¥ (X)
to ¥_1(X) [Barrett 1999]. The latter algebra carries a natural Poisson bracket (see Section 2.5). An
isomorphism of algebras between ¥_; (X) and C[¥s1, (X)] was defined by Bullock [1997], assuming that
the skein algebra is reduced, ie that its nilradical is null. This latter fact was later proved independently
in [Przytycki and Sikora 2000] and [Charles and Marché 2012]. Turaev [1991] showed that Bullock’s
isomorphism is Poisson.

In TQFT, skein algebras appear through their nontrivial finite-dimensional representations. Skein algebras
admit such representations if and only if the parameter A4 is a root of unity. A recent result of Bonahon and
Wong [2016] states, in particular, that when A4 has odd order, there exists an embedding of ¥4 1(X) into the
center of ¥4(X). Since each simple representation induces a character on the center of the skein algebra,
using Bullock’s isomorphism, one can associate to each isomorphism class of simple representation a
point in the character variety. This invariant is called the classical shadow of the representation.

Open surfaces: L& [2018] generalized the Kauffman-bracket skein algebras to open punctured surfaces
based on the original work of Bonahon and Wong [2011]. We call it stated skein algebra and denote it by
F»(X). It depends on an invertible element w € R*. When the surface is closed, it coincides with the
classical skein algebra with parameter A = w™~2. An important feature of the stated skein algebra is its
behavior under gluing of surfaces. More precisely, let ¢ and b be two boundary arcs of an open punctured
surface X, and let us denote by X|,4p the surface obtained from X by gluing a and b. L& showed that
there is an injective algebra morphism

(D Hap : o (Zlap) = Su(2)

which is coassociative in that it does not depend on the order we glue the arcs, ie for four distinct boundary
arcs a, b, ¢ and d, one has i |up 01 |c8q = 1|cq ©1 |- In particular, for each topological triangulation A
of X, one has an injective morphism of algebras

) i%: 9@ > X Fu(l).
TeF(A)
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Here T denotes the triangle, ie a disc with three punctures on its boundary. A punctured surface is
triangulable if it can be obtained from a disjoint union of triangles by gluing some pair of boundary arcs
(ie faces of triangles) together. A fopological triangulation is the data of such a union of triangles together
with the pairs of glued boundary arcs. In (2), the tensor product runs over the faces of the triangulation;
see Section 2 for precise definitions.

As applications, L& provided a simple proof that the algebra ¥,,(X) has no zero divisor (the case of closed
triangulable punctured surfaces was proved earlier in [Bonahon and Wong 2011] using the quantum trace
and the case of closed unpunctured surfaces was proved in [Przytycki and Sikora 2019]) and he obtained
a simpler formulation of Bonahon and Wong’s [2011] quantum trace map.

Motivated by L&’s construction, Korinman [2019] defined a generalization of character varieties to open
punctured surfaces. We denote it by ¥s1, (X). This (relative) character variety is a Poisson affine variety
which coincides with the classical one when the surface is closed. It shares a similar gluing property
to the stated skein algebra; namely, there exist injective Poisson morphisms i |4up: C[XsL, (X]qup)] —
C[#s1,(X)] and id: Cl%sL, (2)] — Qre F(a) C[¥sL, (T)] between the Poisson algebras of regular
functions. However, the Poisson structure on C[¥s;,, (X)] depends on a choice of an orientation o of the
boundary arcs of the punctured surface. We denote by {-, - }° its Poisson bracket.

Main results Let X be a punctured surface. L&’s morphism (2) embeds the skein algebra of a triangulated
surface into a tensor product of the skein algebras of the triangle. However, it does not provide a full
description of the stated skein algebra in terms of these smaller pieces. In a first result we provide
such a description; it goes as follows. Note that (1) endows the skein algebra of the bigon B (ie a disc
with two punctures on its boundary) with a bialgebra structure. It is in fact a Hopf algebra and one
can show that it is canonically isomorphic to the classical quantum SL,—algebra O,4[SL;] described in
[Chari and Pressley 1994; Kassel 1995] (with ¢ = w~*). Note also that (1) induces Hopf comodule
maps AL 5,(2) > %, (B) ® $»(Z) and AR : %, () - 9,(2) ® 9, (B) obtained by gluing a bigon on
a boundary arc, a or b, of X; see Section 2.2 for details.

Theorem 1.1 The sequence

L R
a—0°A

. .
0 = Foo (Dlasp) 2425 () 2y %y (B) ® (D)

is exact, where c(x ® y) = y Q Xx.
Theorem 1.1 can be reformulated using co-Hochschild cohomology, whose 0™ group (see Definition 2.26
and [Hess et al. 2009]) computes the skein algebra
oo (Zlanp) = coOHH" (0g[SLa]. o % (2)p).
where %, (Z),, is seen as a bicomodule over O,4[SL;] via the comodule maps AIC; and Ag.
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Theorem 1.1 provides, for any topological triangulation A of X, an isomorphism of algebras

oo (2) = coHH"( X GylsLal. @ %(T)),
ecd(A) TeF(A)
where the first tensor product runs over the inner edges of the triangulation and the second over the faces
of the triangulation. Hence ¥, (X) is completely determined by the combinatoric of the triangulation
together with %, (T ) and its appropriated structures of comodule over O4[SL,]. This is a key feature in
the proofs of the next two theorems.

Our second result is a generalization to open punctured surfaces of Bonahon and Wong’s [2016] main
theorem in the case where the root of unity has odd order. Given N > 1, denote by T (X) the N
Chebyshev polynomial of first kind.

Theorem 1.2 Suppose that w is a root of unity of odd order N > 1. There exists an embedding
Iz F41(2) = E(F0 (X))

of the (commutative) stated skein algebra with parameter +1 into the center of the stated skein algebra

with parameter w. Moreover, the morphism jy is characterized by the property that it sends a closed

N)

curve y to Ty (y) and a stated arc ager to oeg o » Where aéi\,’ ) is the tangle made by stacking N parallel

copies of age on top of the others.

In Theorem 1.2 we restrict ourselves to roots of unity of odd order for simplicity. Theorem 1.2 should
be compared to [Lé and Paprocki 2019, Theorem 8.1]. A marked 3—manifold is a pair (M, N) where
M is an oriented 3—manifold and N C dM is an oriented submanifold whose connected components
are diffeomorphic to [0, 1]. To such a pair and ¢ € C*, L& and Paprocki [2019] associate a vector space
Fe(M, N), which generalizes the Muller algebra. And for a root of unity ¢ such that ¢ 4 has arbitrary
order N > 1 (not necessary odd), L& and Paprocki [2019, Theorem 8.1] defined an injective linear map
07 9’(;) N2 (M, N) = Fe(M,N). If (X,P) is a punctured surface with no inner punctures and nontrivial
boundary, (M, N) := (X x (0,1),% x (0, 1)) is a marked 3—manifold and ¥ (M, N) is a subalgebra of
the stated skein algebra ¥ (X, %). If ¢ has odd order N > 1, the embedding /5 of Theorem 1.2 restricts
to the embedding ®¢ of [L€ and Paprocki 2019, Theorem 8.1]. A generalization of Theorem 1.2 for
roots of unity of even order has been recently proved by Bloomquist and L& [2022, Theorem 1.2] though

2 . .
N7 and the image is not always central but

in this case the source of jy is the skein algebra at  :=
rather spanned by (—1)!+" —transparent elements, where N’ := ord(w*) (see [Bloomquist and L& 2022,
Theorem 4.10] for details). Also a generalization of Theorem 1.2 for skein algebras of arbitrary connected
reductive groups G and for marked surfaces having 0 or 1 boundary arc was found by Ganev, Jordan and

Safronov [Ganev et al. 2024].

In the last result we generalize to open punctured surfaces Bullock’s isomorphism [1997] and Turaev’s
theorem [1991]; we prove that the stated skein algebra is a deformation of the relative character variety.
The fundamental result in this direction is as follows.
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The C[[A]-module 41 (X)[%] := $+1(2) ®c C[#] is endowed with a star product xz. The latter is
obtained by pulling back the product of %, (X) along an isomorphism ¥ ; (2)[#] = Foy, (2) of vector
spaces, where wy, := exp(—%h) (see Section 2.7 for details). This equips ¥41(X) with a Poisson algebra
structure; its Poisson bracket { -, - }* is defined by

frng—g*n [ =h{f g} (modh?) forall f,ge€ P (D).

The superscript s stands for “skein”. See Section 2.7.3 for an explicit description.

Theorem 1.3 Suppose that X has a topological triangulation A. Let o be an orientation of the edges of
A and o be the induced orientation of the boundary arcs of X. There exists an isomorphism of Poisson

algebras
p(d0n). (Pr1(D), {-,- ) = (C[#sL, (D)), £+, 1),

Moreover, the above isomorphism exists for small punctured surfaces (see Definition 2.8), for which it
only depends on o.

The isomorphism w(A:04) induces, by tensoring with C[[#], an isomorphism of vector spaces
C[%s1, (DMA] > F11 (D[A].

Denote by *(a ,,) the product on C[¥sL,(Z)][#] obtained by pulling back the product 3 by this
isomorphism.

Corollary 1.4 For any triangulable punctured surface X, the algebra ((C [EsL, (D)][A], * (a0 A)) is a
deformation quantization of the character variety with Poisson structure given by o.

Theorems 1.2 and 1.3 allow us to extend Bonahon and Wong’s [2016] classical shadow to open punctured
surfaces. Indeed, suppose that @ is a root of unity of odd order. A finite-dimensional representation
J»(X) — End(V') that sends each element of the image of jx: ¥ ((X) — ¥, (X) to scalar operators,
induces a character on the algebra ¥, 1 (X) = C[¥s1,(X)], hence defines a point in ¥s,, (X). To sum up,
and calling these representations central, one has the following.

Corollary 1.5 When w is a root of unity of odd order and X is triangulable, to each isomorphism class
of central representations of the stated skein algebra ¥,,(X), one can associate an invariant which is a
point in the relative character variety ¥sp,(X).

Central representations include the families of irreducible representations, local representations and
representations induced by simple modules of the balanced Chekhov—Fock algebras using the quantum
trace map (see Section 3.3 for details).

Soon after the prepublication of this paper on arXiv, Costantino and L& [2022] prepublished independently
some results similar to Theorems 1.1 and 1.3. More precisely, [Costantino and L& 2022, Theorem 4.7] is
identical to Theorem 1.1, and [Costantino and L& 2022, Theorem 8.12] is closely related, though different,
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to our Theorem 1.3. Instead of using the generalized character variety ¥sp, (2) defined in [Korinman
2019], the authors defined a twisted character variety y(X) (without Poisson structure) and constructed a
canonical algebra isomorphism between the stated skein algebra in +1 and the algebra of regular functions
of x(X), whereas our isomorphism in Theorem 1.3 depends on the noncanonical choice (A, 0) of a
triangulation and an orientation of the edges (and is Poisson). Inspired by their enlightening approach, in
this new version of the paper we add the following clarification of the isomorphism in Theorem 1.3. As
explained before, when the punctured surface is closed, the “standard” isomorphisms between & (%)
and C[%¥s1,(X)] are indexed by spin structures. In Section 3.3, we define the notion of relative spin
structure for punctured surfaces, which coincides with the standard definition when the punctured surface
is closed. The motivation for this definition is its good behavior for the operation of gluing boundary
arcs together. In particular we associate to each combinatorial data (A, o), appearing in Theorem 1.3, a
relative spin structure and prove:

Theorem 1.6 The isomorphism w(2:08) of Theorem 1.3 only depends on the relative spin structure
associated to (A, o).

In fact, in Theorem 3.20, we provide explicit formulas for the value of W(A-04) op stated arcs and closed
curves in terms of the relative spin structure. When the punctured surface is closed, we show that our
isomorphism coincides with the standard isomorphism associated to classical spin structures. We also
give, in Section 3.3.5, a detailed comparison between the isomorphism in Theorem 1.3 and Costantino
and L&’s isomorphism [2022, Theorem 8.12].

Even though our proof of Theorem 1.2 makes uses of triangulations, the theorem is proved for arbitrary
punctured surfaces, including (nontriangulable) closed surfaces without punctures, thus providing an
alternative proof of the results in [Bonahon and Wong 2016]. However, our proof of Theorem 1.3 only
works for triangulable punctured surfaces (and for the bigon), so it does not provide an alternative proof
of the result of [Bullock 1997] for closed unpunctured surfaces.

Plan of the paper In the second section we briefly recall from [L& 2018] the definition and general
properties of the stated skein algebra and prove Theorem 1.1. We then use the triangular decomposition
to reduce the proof of Theorem 1.2 to the cases of the bigon and the triangle for which the proof is a
simple computation. We eventually characterize the Poisson bracket arising in skein theory. In the third
section, we briefly recall from [Korinman 2019] the definition of character varieties for open surfaces.
Again, using triangular decompositions, we reduce the proof of Theorem 1.3 to the cases of the bigon
and the triangles for which the proof is elementary. We then introduce and study the notion of relative
spin structure and give in Theorem 3.20 an explicit description of the isomorphism of Theorem 1.3, from
which Theorem 1.6 is a straightforward consequence. In the appendix, we prove a technical result needed
in the proof of Theorem 1.2 and derive a generalization of the main theorem of [Bonahon 2019].
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Notation Throughout the paper we reserve the notation 4 := w =2 and g := w™*.

2 Stated skein algebras

2.1 Definitions and general properties of the stated skein algebras
We briefly review from [Lé 2018] the definition and main properties of the stated skein algebras.

Definition 2.1 A punctured surface is a pair ¥ = (X, %) where X is a compact oriented surface and
% is a finite subset of 3 which intersects nontrivially each boundary component. A boundary arc is a
connected component of % \ ?. The punctured surface is open when 0% # @ and closed otherwise.

Definition of stated skein algebras Let ¥ = (X, %) be a punctured surface and write g := X\ P. A
tangle in g x (0, 1) is a compact framed, properly embedded 1-dimensional manifold 7" C Xg x (0, 1)
such that for every point of 07 C dXg x (0, 1) the framing is parallel to the (0, 1) factor and points
in the direction of 1. Here, by framing, we refer to a thickening of 7" to an oriented surface. Define
the height of a point (v, 1) € Xg x (0, 1) to be h. If b is a boundary arc and 7" a tangle, the points of
dpT := 0T Nb x(0,1) are totally ordered by their height and we impose that no two points in d; T have
the same height. A tangle has vertical framing if for each of its points, the framing is parallel to the (0, 1)
factor and points in the direction of 1. Two tangles are isotopic if they are isotopic through the class of
tangles that preserves the partial boundary height orders. By convention, the empty set is a tangle only
isotopic to itself.

Every tangle is isotopic to a tangle with vertical framing. We can further isotope a tangle such that it
is in general position with the standard projection 7 : ¥g X (0, 1) - Xg with 7 (v, &) = v, that is such
that |7 : T — Xg is an immersion with at most transversal double points in the interior of Xg. We call
a diagram of T the image D = n(T') together with the over/undercrossing information at each double
point. An isotopy class of diagram D together with a total order of dp D = dD N b for each boundary
arc b define uniquely an isotopy class of tangle. Here isotopy of diagrams refers to isotopies where
endpoints of diagrams are not allowed to cross. When choosing an orientation 0(b) of a boundary arc b
and a diagram D, the set dp D receives a natural total order <, by setting that the points are increasing
when going in the direction of 0(b). We will represent tangles by drawing a diagram and an orientation
(an arrow) for each boundary arc. When a boundary arc b is oriented, dp D is ordered by <, according
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to the orientation. The data of an isotopy class of diagram D and a choice o of orientations of the
boundary arcs define uniquely an isotopy class of tangle 7" by imposing that for every boundary arc a,
for v, w € d4 D such that v <, w, the endpoint of d,T corresponding to w has higher height than the
endpoint corresponding to v. A state of a tangle is amap s: 37T — {—, +}. A pair (T, s) is called a stated
tangle. We define a stated diagram (D, s) in a similar manner.

Let % be a commutative unital ring and w € R* an invertible element.

Definition 2.2 The stated skein algebra 5, (%) is the free R—module generated by isotopy classes of
stated tangles in Xg x (0, 1) modulo the relations (3) and (4), which are

o the Kauffman bracket relations
3) X =w? ) ( + a)ZX and Q) = —(0* +oh

¢ the boundary relations

4) C{i = q: =0, (:11‘ =w ‘ and w_lz': —w_sj_ =D ‘

According to our graphical conventions, in these skein relations, the boundary points are consecutive in the
height order. The product of two classes of stated tangles [T, s1] and [T5, s;] is defined by isotoping 7}

and 75 in Xg X (%, 1) and =g x (0, %), respectively, and then setting [T, s1]-[T2, s2] = [T1 U T3, 51 Us3].

Bases for stated skein algebras A closed component of a diagram D is trivial if it bounds an embedded
disc in ¥. An open component of D is trivial if it can be isotoped, relatively to its boundary, inside
some boundary arc. A diagram is simple if it has neither double points nor trivial component. The empty
set is considered as a simple diagram. Let o be an orientation of the boundary arcs of X and denote by
<, the total orders induced on each boundary arc. A state s: dD — {—, 4} is o—increasing if for any
boundary arc b and any points x, y € d5 D, x <, y implies s(x) < s(y). Here we choose the convention
— < +. We denote by [D, 5] € ¥, (X) the class of the stated tangle associated to (D, s) (note that [D, 5]
depends on the orientation o).

Definition 2.3 We denote by B° C ¥,(X) the set of classes [D, s] such that D is simple and s is
o—increasing.

Theorem 2.4 [Lé 2018, Theorem 2.11] The set %B° is an R—module basis of ¥, (X).

Height exchange moves Important properties that we will use throughout the paper are the following

height exchange moves (5) and (6) proved in [Lé 2018, Lemma 2.4]. Note that the formula (20) of

Lemma 2.4 of [loc. cit.] contains a misprint. It is corrected here in (6):

5) s s e B s

(©) oI —o'D =@ 0% |
| T

37
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Remark 2.5 An important case that we will be led to consider is the stated skein algebra at parameter
o = +1. As shown in [L& 2018, Corollary 2.5] it is commutative; this is a direct consequence of (3) and
the height exchange formulas (5) and (6).

Trivial arcs relations We will also use the following trivial arcs relations. Set
ch ct 0 w _ 0 —w>
C=(t ~):= d ¢C'=-4°C= :
(c; C:) (—w5 0) an o' 0

Lemma 2.6 [Lé& 2018, Lemma 2.3] One has the following trivial arcs relations:

) d} =C]? ‘ and ;b =(C_1)§.

Splitting morphisms Suppose that ¥ has two boundary arcs, say « and b. Let X|,up be the punctured

surface obtained from X by gluing @ and b. Denote by n: X9 — (X|z4p)9|,,, the projection and
¢ :=n(a) = (D). Let (To, so) be a stated framed tangle of X|44pg| ,, X (0,1) transversed to ¢ x (0, 1)
and such that the heights of the points of Ty N ¢ x (0, 1) are pairwise distinct and such that framings of
the points of ¢ x (0, 1) are vertical. Let T C g x (0, 1) be the framed tangle obtained by cutting 7}
along ¢. Using the partition 07 = 9,7 Uz~ 1(37Ty) U dp T, a state on T can be written (sq, s, 55) Where
Sq, s and sp, are states on d,7, 0Ty and d, T, respectively. Both the sets d,7 and 9, T are in canonical
bijection with the set Ty N ¢ by the map 7. Hence the two sets of states s, and s, are both in canonical
bijection with the set St(c) ;= {s:c N Ty — {—, +}}. Let i|zap: T (Z|ap) = T (Z) be the linear map
given, for any (7, s¢) as above, by

ilans([To. s0]) := Y [T.(5.50.9)].

s€St(c)

Theorem 2.7 [L& 2018, Theorem 3.1] The linear map i|,4p is an injective morphism of algebras.
Moreover the gluing operation is coassociative in the sense that if a, b, ¢ and d are four distinct boundary

arcs, then i|qup o i |ctd = ilctd © 1 |atp-
Note that the splitting morphism i |,45 does not depend on any choice of the boundary arcs.
Triangulations

Definition 2.8 A small punctured surface is one of the following four connected punctured surfaces: the
sphere with one or two punctures; the disc with only one puncture (on its boundary); and the bigon (disc
with two punctures on its boundary).

Definition 2.9 A punctured surface is said to admit a triangulation if each of its connected components
has at least one puncture and is not small.
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Definition 2.10 Suppose X = (X, ?) admits a triangulation. A fopological triangulation A of X is a
collection €(A) of arcs in X (named edges) which satisfy the following conditions: the endpoints of the
edges belong to %; the interior of the edges are pairwise disjoint and do not intersect ?; the edges are
not contractible and are pairwise nonisotopic in Xg, if fixed their endpoints; and the boundary arcs of X
belong to €(A). Moreover, the collection ¢(A) is required to be maximal for these properties.

Each connected component of X \ €(A) is called a face and the set of faces is denoted by F(A). Given a
topological triangulation A, the punctured surface is obtained from the disjoint union | |, Fa) T of
triangles by gluing the triangles along the boundary arcs corresponding to the edges of the triangulation.
Very often, we will let T be both a face (which is an open contractible space) and the triangle (which is a
disc with exactly three punctures on its boundary). We hope that this abuse of notation is harmless. By
composing the associated splitting morphisms, one obtains an injective morphism of algebras

% 90D > Q) ).
TeF(A)

Filtrations The stated skein algebra has natural filtrations defined as follows. Let S = {ay,...,a,}
be a set of boundary arcs of X and fix an orientation o of the boundary arcs of X. For a basis element
[D, s] of B°, write d([D,s]) :== Y ,cs|0aD|. The map d extends to a map d: %, () — Z=° by the
formula d(zi xi[Dj, s,-]) := max;|x; £0 d([D;, si]). It follows from the relations (3) and (4) that for each
X,y €%,(X), we have d(xy) <d(x)+d(y). Given m > 0, denote by F,, C ¥, (X) the subvector space
of those vectors x satisfying d(x) < m. These subspaces satisfy F;; C F 11, o (Z) = >0 Fm and
Fmy * Fms C Fm, +m,; hence they form an algebra filtration of the stated skein algebra.

Definition 2.11 The sequence (F,)m>0 is called the filtration of ¥, (X) associated to the orientation o
and the set S of boundary arcs. For an element X =), .; x;[D;, s;] € 9»(XZ), developed in the basis RB°,
we call the leading term of X the element

wX):= Y  x[Dj.sj)

jel
d([Dj,sj)=d(X)
2.2 Alternative bases

In the next subsection, we will need alternative bases of ¥, (X) which we now introduce. We fix an
arbitrary orientation o for each boundary arc. Recall that o induces a total order <, on each boundary arc
that we use to associate a tangle to a diagram.

Notation 2.12 Let 9(X) be the set of isotopy classes of simple diagrams and €% (X) be its subset of
classes of connected diagrams. Fix an arbitrary total order < on €% (X) and fix an orientation o of the
boundary arcs of X as before. For [D] € €%(X), we denote by [T'(D)] the isotopy class of the tangle
T (D) with vertical framing whose projection is D and such that if 37 (D) = {vy, v} with v; and v, in
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Figure 1: A stated diagram [D, 5] in the triangle and its associated stated tangle [T (D), s]. Here,
we use the order y < 8 < «. Here s is o—increasing so [T (D), s] € TR°.

the same boundary arc a with v{ <, v, then h(v{) < h(v,). For a general class of diagram [D] € %(X)
with connected components D = | |!_; D;, where [D;] < [D;+1], we denote by [T(D)] the class of
the tangle 7(D) := |_[7_; T(D;) in Ty x (0, 1), where T'(D;4) is on the top of T'(D;) in the height
direction. See Figure 1 for an illustration. Let v: 3D = 3T (D) be the unique bijection such that, for
a a boundary arc, v restricts to a bijection v|,: dg D — 9,7 (D) which preserves the order <, on d, D
and the height order on 0,7 (D). Recall that d, D = D Na and that 0,7 (D) = T(D)Nax (0,1). A
state s on D defines a state s ov™! on T'(D) and we denote by [T (D), 5] the class of the stated tangle
(T(D),sov™1).

Definition 2.13 We denote by TB° C ¥,(X) the set of classes [T'(D), s] with [D] € 9(XZ) and s an
o—increasing state.

Note that in our pictures the orientation o is never represented, the arrows always refer to the height order
and not to o. The following lemma was proved in [Lé& 2018], during the proof of Theorem 4.6, in the
particular case where X is a triangle.

Proposition 2.14 The set T%° is a basis of ¥,,(X).
As an immediate consequence of Proposition 2.14, we get:

Corollary 2.15 The stated skein algebra is algebraically generated by the classes of closed curves and
stated arcs.

Here by closed curves and stated arcs we mean connected stated diagrams with no crossing which are
closed and open, respectively. Obviously, it is sufficient to prove Proposition 2.14 in the case where X is
connected. If 0¥ = @ or if X is a disc with one puncture on its boundary or a bigon whose boundary
arcs points towards the same puncture, then T%B° = B° so the proposition follows from Theorem 2.4 in
those cases. For the bigon whose boundary arcs point towards distinct punctures, Proposition 2.14 was
proved in [L& 2018, Step 1 of the proof of Theorem 4.1]. So we now assume that ¥ admits a topological
triangulation A that we fix. The proof of Proposition 2.14 is an easy adaption of L&’s argument from
the case of the triangle to the case of a triangulable punctured surface. The key feature is to consider a
suitable filtration that we now introduce.
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For a diagram D and an edge e € €(A), we denote by i (D, e) € N the geometric intersection of D with e;
that is, the minimal number of intersection points when isotoping D in such a way that it intersects e
transversally. We write

ID|:= Y i(D.e).
ecé(A)
and, for i € N, we set
%F; := Span{[D, s] such that | D| <i}.
Lemma 2.16 (1) One has F; -97]' C @H.j.
(2) The submodule %; has basis the set B; of elements [D, s] € B° such that |D| <i.
(3) For[D,s] € %R°, there exists n € Z such that

[T(D),s]= A"[D, s] (mod F|p|—2).

Proof (1) Let[Dy,s1]and [D;,s;]be two classes such that

(i) Dy U D5 has only transversed double intersection points in the interior of ¥ away from the edges
of A, and

(i) D; and D, are transversed to the edges of €(A) with minimal intersection such that
|Di| =|D; N€(A)|, i=1,2.
Let D denote the diagram obtained by stacking D; on top of D, and s the state corresponding to
s1 and s, such that [D,s] = [D1,s1][D2,52]. Then |D| < |D N¢é(A)| = |D1| + |D3|. Therefore,
[D1,51][D2,52] € F|p,|+|D,| and the first assertion is proved.

(2) To prove the second assertion, first note that since B; is a subset of %B°, it is free. We need to show
that B; generates ;. We proceed in two steps:

Step 1 We first prove that any class of stated diagram [D, s] is a linear combination of elements [D;, s;]
with | D;| = | D| and such that D; has no crossing.

Step 2 We then prove that any [D, s], where D has no crossing, is a linear combination of elements
of B |D|-

The two steps imply that B; generates %; and conclude the proof of the second assertion.

To prove the first step, fix an arbitrary stated diagram (D, s). A resolution of D is a diagram obtained
from D by replacing each crossing x by either )( (positive resolution of the crossing) or > (negative
resolution). Write Res(D) the set of resolutions and for Dy € Res(D), denote by n(Dy) the difference
between the numbers of positive and negative resolution crossings in Dg. Then, by the Kauffman-bracket
skein relation (3), one has
[D.s]= ) A"®P)[Ds],
D;€Res(D)

where for each resolution D;, one has |D; NE(A)| = |D NéE(A)| = |D|, so |D;j| = |D| and Step 1 is
proved.
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To prove the second step, consider a stated diagram (D, s) where D has no crossing. If s is o—increasing,
let (D', s) be the stated diagram obtained from (D, s) by removing its trivial components, so | D’| < |D|.
Then there exists a scalar ¢ such that [D,s] = ¢[D’,s] and [D’,s] € B|p|. Otherwise, we show by
induction on the number m (D, s) of pairs of points v <, w in dD lying in the same boundary arc such
that (s(v),s(w)) = (+,—), that (D, s) is a linear combination of elements of B|p|. Consider such a
pair (v, w) of points which are consecutive for <,, and let s’ be the state on D which agrees with s on
dD \ {v, w} and such that (s’'(v), s’ (w)) = (—, +). The skein relations

o-"H T e F R

show that there exists n € Z such that [D, s] = "[D, s'] (mod F|p|—;) (because the stated diagram
representing either the term D ‘ or ’ C is in F|p|—1). Since m(D,s") < m(D,s), we conclude by
decreasing induction on m that [D, s] is a linear combination of elements [D;, s;] where D; has no
crossing and s; is o—increasing. Now write [D;, s;] = ci[le,si], where ¢; is a scalar and (D;,si) is
obtained from (D;, s;) by removing its trivial components so that [ D}, s;] € B|p|. This concludes Step 2
and the proof of the second item.

(3) Let us first make an obvious but useful remark. Let D be a diagram transversed to €(A). We say that
D contains a returning arc if there exists a face T such that D N'T contains a connected component that
is an arc with both endpoints in the same edge. If D contains a returning arc, then D is not in minimal
intersection position with respect to €(A) so for all states s, [D, s] € F|p|_».

Now consider [D, s] € B° and denote by T D the projection diagram of the tangle 7' (D) so that
[T'(D),s]=[TD,s] (think of Figure 1). We further suppose that 7D is transversed to €(A) in minimal
position and has its crossings outside €(A). In the decomposition

[TD.s]= > A"PI[D; s,
D; eRes(TD)
we claim that there is exactly one resolution Dy € Res(7'D) such that Dy = D and that any other
resolution D; # Dy contains a returning arc, so satisfies [D;, s;] € %|p|—>. Since resolving a crossing is
a local operation, it is sufficient to prove the claim in the case of the triangle; this was done by L& [2018,
Lemma 4.7]. Recall that L.&’s proof consists noting that if [T(D), s] has two connected components, it
has 0 or 1 crossing (after eventually isotoping 7'D) and when there is one crossing in 7'D, exactly one of
the two resolutions does not contain returning arc. The results then follows by induction on the number
of components of 7'(D) using the fact that the arcs in 7'(D) are stacked on top of each other.

So we have [T'(D), s] = A"®)[D, s] (mod F|p|—2) and the proof is completed. |
Obviously one has #; C F; 11 and | J;5 Fi = $»(X). The first assertion of Lemma 2.16 implies that
(%Fi);>0 forms an algebra filtration of ¥, (X). Consider the graded algebra Gr, associated to the filtration.

In other words, we set Gry := %q, Gr; := %; / %;_1 fori > 1 and Gr, := @izo Gr;. It follows from
the second assertion of Lemma 2.16 that Gr; has basis the set %7 of classes [D, s] € %° such that |[D| =i.
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Since the set {%7};>o forms a partition of %°, the natural graded morphism ¢ : %,(Z) — Gr, is an
isomorphism. To prove Proposition 2.14, we will derive from the third assertion of Lemma 2.16 that the
image of T%° through ¥ is a basis of Gr,.

Proof of Proposition 2.14 As noted previously, if X is closed or if X is bigon or a disc with one
puncture on its boundary, then TB° = %B° so the lemma follows from Theorem 2.4. Otherwise, we can
consider a topological triangulation and consider the associated graded isomorphism v : %, (%) — Gr,.
Let TRB; C TR° be the subset of elements [7(D), s] such that | D| =1i. Since ¥ (%) is a basis of Gr;, the
third assertion of Lemma 2.16 implies that the image ¥ (T9Y) is also a basis of Gr;. Therefore ¥ (T%B°)
is a basis of Gr,, so TR’ is a basis of ¥, (X). a

2.3 Removing a puncture

Let ¥ = (X, ?) and consider a punctured surface ¥’ := (Z,% U {po}) obtained from ¥ by adding a
puncture py € X to P. The goal of this subsection is to define and study a map ¢: ¥ (X') — F,(X). Let
I (X) denote the set of stated tangles in Xg X (0, 1) and denote by $(X) C R[T(X)] the ideal generated
by the skein relations (3) and (4) and by the elements (7, s) — (T”, s), where T and T’ are isotopic; so
by definition, one has %, (Z) := R[T(Z)]/ $(X). The inclusion map ¢: Zgpygp,3 X (0, 1) = g x (0, 1)
induces a linear map ¢: R[T(Z)] — R[T (T)] sending a stated tangle (T, s) to (1(T),s ot~ 1).

First suppose that pg is in the interior of Xg. In this case, ¢ obviously sends isotopic stated tangles to
isotopic stated tangles and skein relations to skein relationsj so it sends $(X’) to $(X) and it induces a
linear map ¢: ¥, (X’) = ¥,(Z) by passing to the quotient. It is clear that ¢ is a morphism of algebras.
Moreover, since any tangle in Xg x (0, 1) can be isotoped in Xgpyqp,y X (0, 1), the map ¢ is surjective.

When py lies in some boundary arc, say a, of X, the construction is more subtle. Denote by b and ¢
the two boundary arcs of X" which are the connected components of a \ {po}. The linear map ¢ still
sends skein relations to skein relations; however if (7, s) and (7", s”) are two isotopic stated tangles, then
@(T,s) and ¢(T', s") are no longer necessarily isotopic. Indeed, recall that in our definition of isotopy, for
gny boundar;/ arc d, the height order of 9,7 should be preserved. Now if we choose T and T isotopic
in Tgpygpey % (0, 1), the isotopy relating 7' to T’ preserves the height orders of 9,7 and 9.7, but not
necessarily the height order of 9,7, so ¢(T',s) and Q(T’, s") might not be isotopic.

Even worse, T might have two endpoints in d; 7T and 9.7 with the same height, so ¢((7) is not a tangle
in our sense since it would have two points in d4¢(7") with the same height.

To remedy this problem, we introduce the subset 7°(X’) C T(X') of stated tangles (7', s) in ZpU{po}
such that for any two points v € d;(7") and v’ € 3.(T'), one has h(v) < h(v’) (h is the height function).
Since any stated tangle (7, s) € J(Z’) is isotopic to a stated tangle in 7°(X’), one has

Fo(Z) = AT (ZN]/ F(E) NRT(Z)].
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Now, the restriction 90: R[TOZN] = R[T(Z)] of 90 preserves skein relations and (7, s) is iso-
topic to (7', s’) implies that QO(T, s) is isotopic to QO(T’ ,s'); therefore ¢° induces a linear map
¢0: 9 (X") — S (X) which is obviously an algebra morphism and is surjective.

Definition 2.17 The off-puncture ideal $,, C $,(X') is the ideal generated by

(1) the elements y — ', where y and y’ are noncontractible simple closed curves in gy, Which
are isotopic in Xgp;

/

(2) the elements oeer — o,

where oz and o, are nontrivial simple stated arcs in Xy ,,3 Which
are isotopic in Xgp;

1

(3) when py is an inner puncture, the element y,, +¢ +¢~ ", where y,, is a peripheral curve encircling

Ppo (recall that ¢ = w™%);

(4) when pg is on the boundary of X4, the elements a,, ww C", where o 1o 18 the trivial arc encircling

“w
Do as
Upg 12
aPOMM/ = P(/)
n

such that the endpoint with state u has bigger height than the endpoint with state .
The purpose of this subsection it to prove:

Proposition 2.18 The following sequence is exact:

(8) 0— 9py = S (Z) L5 $p(Z) — 0.

The surjectivity of ¢ follows from the preceding discussion and the inclusion $,, C ker(¢) is an immediate
consequence of the definitions and the trivial arcs relations (7) (where the equalities ¢(cp, " M,) =C l’; are

proved), so we need to prove the inclusion ker(¢) C $p,.

Notation 2.19 * Let (D,s) be a connected simple stated diagram in Xg .y (so either a closed
curve or a stated arc or the empty diagram) and define a scalar c¢(D, s) € R as follows. If ¢(D)
is simple in Xg, set ¢(D,s) = 1. If pg is an inner puncture and (D, s) = y,, is a peripheral
curve around py, write ¢(¥p,) = —¢ —q~'. If pg is on the boundary of 24 and ¢(D) is a trivial
arc encircling py, let c(D, s) be the unique element Cl’j, or (C_I)Z/ such that (D, s) = ¢(D, s)
(using the trivial arcs relations (7)).

 For a not necessarily connected stated diagram (D, s) = | |;c;(D;, s;), where the (D;, s;) are
its connected components, write ¢(D, s) = [[;cy ¢(D;.s;). Let J C I be the subset of indices
j € I such that ¢(D;) is simple. The reduction of D is the simple diagram D™¢ :=| | ies Dj- By
definition, one has

©) ¢(IT(D).s5]) = c(D.5)p(I(T(D™), )]).
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Lemma 2.20 Let M and M’ be two free ?R—modules with respective bases B and B’. Let 7: B’ — B
and ¢ : B’ — R two maps and suppose that there exists %’ d — 98/ such that the restriction 7 | gyrrea B red _, g
is surjective and such that ¢(b"™%) = 1 for all b"™* € 3™, Consider the linear morphism ¢: M’ — M
defined by ¢(b’) := ¢(b")m (b’), for b’ € B'. Then

ker(¢) = Span{h’ — c(b')b"™" such that 7 (b"™%) = 7 (b'), b"™" € B, b’ € B'}.

Proof Let V C M’ be the submodule linearly spanned by the elements 5’ —c (b")b™® with 77 (b"™%) = 7 (b’)
for 5™ € ™% and b’ € . By definition, p(b'—c(b")b"™%) = ¢(b') (w(b") =7 (b"™%)) = 0 so the inclusion
V C ker(p) is obvious. Conversely, consider an arbitrary element x =), g 0tpb’ € ker(g). Fix a right
inverse t: B — B to 7; that is a map such that 7 ot = id. For b € B, write x;, := szen—l(b) ap b’
so that x = ) ,cq Xp. Since B is a basis, the elements ¢(xp) are linearly independent so ¢(x) = 0
implies that ¢(xp) = 0 for all b € B. Let b € B be such that x; # 0 and let us prove that x; € V. Let
b™ = ((b) € B"™. Since ¢(xp) = 0, one has > bren—ip) @rc(b’) = 0. Now

Xp= Y b= Y ab/(b’—c(b’)b’red)Jr( > ozb/c(b’))b’red

b’ex—1(b) b’'ex—1(b) b’ex—1(b)
= Y ap —c@)eV. O
b'ex—1(b)

Proof of Proposition 2.18 Applying Lemma 2.20 to M = $,(X), M’ = $,(X), B = TB° (),
B = TR°(T') and B the subset of B’ of diagrams (T'(D), s) such that D™ = D and 7 the reduction
map, we obtain that ker(¢) is spanned by elements of the form [T'(D), s] — c¢(D, s)[T(D™%), s]. By
definition, the off-puncture ideal is the ideal generated by the elements [T(D), s]—c(D, s)[T(D™Y), s],
where D is connected. Let us prove by induction on the number of connected components of D that
[T(D),s]—c(D,s)[T(D™),s] € $p,. If D is connected or reduced, this is immediate. Otherwise, (D, s)
contains a connected component (Dy, sg) such that t (D) is either contractible or a trivial arc. Decompose
(D,s)=(Dy,s1)U(Dg,s0) L (D3, s2) so that for any connected component C; C D1, one has C; X Dy
and for any connected component Cy C D, one has Dy < C, (recall that < was defined in Section 2.2).
By definition, [T'(D), s] = [T(D3), s2][T'(Dy), sol[T (D7), s1] in %, (X’) (this is where working with the
basis TA° is important), where s; are the restriction of s to D;. Therefore

[T(D),s]—¢(D. )T (D), s]
= [T(D2). 2](IT (Do). s0] — ¢(Dyg. 50))[T(D1). 51]
+¢(Do. 50) ([T (D2 U Dy), 53 Usi]—c(Dy U Dy, 55 Us)[T((Dy U Dy)™), 5])
= c([T(D', s —c(D', [T (D™, s]) (mod $p,),
where ¢ = ¢(Dyg, s¢) and D’ = D, U Dy has one connected component less than D, so we can apply the

induction hypothesis to prove that [T (D), s]—c(D, s)[T (D™9), s] € $p,. a
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2.4 Hopf comodule maps

Recall that the bigon B is a disc with two punctures on its boundary. It has two boundary arcs, say by
and b . Consider the simple diagram « made of a single arc joining b7, and bg. For n > 0, denote by
a™ the diagram made of n parallel copies of . Denote by e the class in &, (B) of the stated diagram
(o, s) where s(a Nby) = ¢ and s(a Nbg) = &'. Tt is proved in [Lé 2018, Theorem 4.1] that the stated
skein algebra &, (B) is presented by the four generators «ge/, with €, ¢’ = +, and the following relations,

where we put ¢ := ™%

U@ = ¢ g, G0y =¢ ey, @pqo—=14¢ lapa g,
OOy =qo4_0__, Q0 =qo—_y0__, o4t =1l4+qgouy_o_q,
O f Qg =4Oy,
Consider a disjoint union B LIB’ of two bigons. When gluing the boundary arcs bg with b, we obtain
another bigon. Denote by A: %,(B) - ¥, (B) ® ¥, (B) the composition

iy N
A: Sy (B) —ELy ¢ (BUB') =5 9, (B) @ $p(B).
The map A is characterized by the formula A(oge’) = (@t @ @4¢7) + (0e— ® a—,/). Define an algebra
morphism €: ¥, (B) — ® and an antialgebra morphism (that is S is linear and S(xy) = S(»)S(x))
S: % (B) = ¥, (B) by the formulas €(ge’) = Seer, S(04+) =0——, S(0——) = a4+, S(04—-) = —qoa4—

1

and S(o—+) = —q~ a—4. The coproduct A, the counit € and the antipode S endow ¥, (B) with the

structure of a Hopf algebra. This Hopf algebra is canonically isomorphic to the so-called quantum SL,
Hopf algebra 04[SL,] as defined in [Brown and Goodearl 2002, Definition 1.1.10; Chari and Pressley
1994, Definition 7.1.1; Kassel 1995, Chapter IV Section 6; Manin 1988] where the generators a4 4, ¢—,
a4— and o—_ are denoted by a, b, ¢ and d.

For later use, let us write the coproduct, counit and antipode by the more compact form
Ala++) Ala+-)Y _ (o4 a4— o (¥ 4+
Ale—4) Ala—o) Oy o ot a—_ )’
(6(01++) €(Ol+—)) _ (1 0) and (S(a++) S(Of+—)) _ ( o —610l+—)
ela—t) ela—)) ~\o1 S—1) S-—)) " \—g7'acy st
Note that when ¢ = +1, we recover the Hopf algebra of regular functions of SL;(C).

Consider a punctured surface ¥ with boundary arc a. When gluing the boundary a of ¥ with the boundary
arc by, of B we obtain the same punctured surface X. Define a left Hopf comodule map (see eg [Kassel
1995, Definition II1.7.1]) AL: 4,(2) — %, (B) ® %, (Z) as the composition

AL 9 (2) T Gy (B U D) = 9, (B) ® S (D).
Similarly, define a right Hopf comodule map Alae 1T (X) = Fp(X) ® %, (B) as the composition
AR 9,(2) R G, (SUB) S 5, (2) ® 9o (B).
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Figure 2: Top: the coproduct in ¥, (B). Bottom: the comodule map.

The coassociativity of A{; and A§ follows from the coassociativity of the splitting morphisms. Figure 2
illustrates the coproduct and the (left) comodule map.

2.5 The image of the splitting morphism

The goal of this subsection is to prove Theorem 1.1 that we rewrite here for convenience of the reader:

Theorem 2.21 Let X be a punctured surface, and a and b two distinct boundary arcs. Then the sequence
ilasb Ai —UOAf
0= So(Zlasp) = S0 (2) ——> 0 (B) @ Fp(X2)
is exact, where 6(x ® y) = y Q X.

Throughout this subsection, we fix an orientation o of its boundary arcs (though Theorem 2.21 is obviously
independent of this choice).

Notation 2.22 For a boundary arc ¢ and a diagram D, we write n,(D) := |0, D|. Given n > 1, define
the set St(n7) := {—, +}" and the subset St' () C St() which consists of n—tuples (€1, ..., &y) such that
i < j implies &; <&j. If s = (¢1,...,&n) € St(n), denote by s = (6).....8y) € St"(n) the unique
element such that the number of indices 7 such that ¢; = + is equal to the number of indices j such that
¢, = +. Given s = (g1, ..., &) € St(n), denote by k(s) the number of pairs (i, j) such that i < j and

J
ei >¢j. Fors € StT(n), let

Ha= Y ¢
s’ €St(n)

st=s

Let a and b be two boundary arcs of ¥ and consider the filtration associated to S := {a, b} and o of
Definition 2.11.
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Lemma 2.23 Let (D, s) be an o—oriented simple stated diagram and consider vy and v, two points
which both belong either to d, D or to d, D. Suppose that v{ <, v, and that there is no v € dD such
that v; <, v <, V. Further assume that s(v{) = + and s(v,) = —. Let s’ be the state of D such that
s'(v1) = —, s’(v2) = + and s'(v) = s(v) if v € dD \ {v1,v,}. Then one has It([D, s]) = qIt([D, s']),
where the leading term It is defined in Definition 2.11.

Proof This is a straightforward consequence of the boundary relations (4) and the height exchange
formulas (5) and (6). O

Let (D, s) be an o—oriented simple stated diagram of X and write s = (sq4, So, Sp) as in the definition of
the gluing map before Theorem 2.7. By Lemma 2.23 we have the equality

14([D. (sa: 50.5)]) = ¢*COHECI (D (5] 50.5)).
Fix an orientation op of the left and right boundary arcs of the bigon. Consider the filtration of
Fo(B) @ F»(X) = Fp»(BL X)

associated to the set of boundary arcs S":={by , bg.a, b} and the orientations 0 and o, as in Definition 2.11.
Given X' € 4,(B) ® 4, (X), we denote by 1t'(X”) the associated leading term. By definition of the left
comodule map, we have the formula

NG(D. Garsoosp)) = D [PV (54,9)]® D, (s, 50, 53)]
seSt(ny (D))

Lemma 2.24 Let [D, (sq4, o, Sp)] be an element of the basis %B°. Then

I (AL([D, (sars0.50))) = D Hs(@[ePPW (s, 5)] (D, (5,50, 5)],
seStT (nq (D))

It (00 AR(ID. (sa.s0.50)])) = Y. Hy(@e " P (5.5)] ® [D. (5a.50.5)]
seStT (np (D)

where the summands are written in the basis associated to (0, 0g) of $,(B) ® ¥, ().
Proof This is a straightforward consequence of Lemma 2.23. |
Proof of Theorems 1.1 and 2.21 We want to show that the sequence

L R
a—0°A

5 Fo (B) ® S0 (Z)

is exact, where o(x ® y) = y ® x. The injectivity of i|,4p was proved in [L€ 2018]. The inclusion

0= S (lany) 1225 1, (3) 2

Im(i | 44p) C ker(A{; —0o Ag ) follows from the coassociativity of the comodule maps. To prove the reverse
inclusion, consider an element X := ) ;. x;[D;, si] € ker(Aé —0go Ag) developed in the basis %°.
If It(X) = 0, then X is a linear combination of diagrams which do not intersect a and b; hence X
belongs to the image of 7 |445. Suppose that It(X) > 0. We will find an element Y € 5, (X|,#p) such that
1t(7 | 42 (Y)) = 1t(X). Now X belongs to the image of i |,up if and only if Z := X —i|,up(Y) belongs to
this image. Since d(Z) < d(X), the proof will follow by induction on d(X).
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Consider the set @ of pairs (D, s¢) for which there exists some states s, and s such that the basis element
[D, (sq, 50, 5p)] appears in the expression of X. Given D= (D, sg) € %, denote by StX(ﬁ) the set of
couples (sS4, 5p) such that [D, (s4, So, S)] appears in the expression of X. We rewrite the development of
X in the basis as

X = Z Z XD, (sa,50,55)1[ D> (Sa> S0, 55)]-
D=(D,s50)€% (sa,sp)€Stx (D)

Consider the subset B pax C D of pairs (D, s¢) such that d(X) = ng(D) + np (D). By Lemma 2.24,

It' (A% (X))
= > Y XDeses) Q. He@ P (s4.5)]® [D. (5. 50.55)]:
(D,50)EBmax Sa>5)ESty ((D,50)) seStT (na (D))
It (o 0 AR (X))
= ) S Yoo Y. He@™P) (s sp)]®[D. (sa. 0. 5]
(D,50) EBmax Sa»5p)EStx ((D,50)) s’eSt’ (ny, (D))

From the equality 1t' (AL (X)) =1t' (o o A§ (X)), we find that for any pair (D, o) € Dmax, for any pair
(54, 8p) €Sty ((D, s9)) and for any state s € st (n4(D)), there exists a unique pair (s}, sl’)) e Sty (D, s9))
and a unique state s’ € st (np(D)) such that
X[D,Gassousm)) Hs @17 PY (50, )] @ [D. (5. 50.5p)]
= X(D.(spus0.s ) Hs @™ PV (s s ®[D, (55, 50, 5')]

We deduce the following:

e For any (D, sg) € Dmax, we have ng(D) =np(D) = %d(X). We will denote by 7 this integer.

» We have the equalities s’ = 5, = s and s = s/, = s[/). Hence for any (D, s¢) € % max, We have

Sty (D, 50)) = {(s.5).s € St ()}
e For any (D, s9) € Dmax and s € St (n), the coefficient x[p (s5,,5)]Hs(¢) is independent of 5. We

will denote this coefficient by x(p g,)-

With the above notation, we rewrite the leading term of X as
KX)= Y x0s) ., [D.(s.50,9)]
(D:SO)egjmux SEStT (n)

Given (D, sg) € Dmax, since ng(D) = np(D) = n, there exists a diagram Dgy of X|,u4p such that D is
obtained from Dy by cutting along the common image in X|,4p of a and b by the projection. Define the

element
Yi= Y xs0[Do. 50l € %o (D).
(DaSO)ngmax
By the above expression, 1t(X) = 1t(i | 44 (Y)). a
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Consider a topological triangulation A of X. The punctured surface X is obtained from the disjoint union
2A = UTGF(A) T by gluing the triangles along their common edges. Denote by %(A) C é(A) the
subset of edges which are not boundary arcs. Each edge e € %(A) lifts in X A to two boundary arcs ey,
and eg. By composing all the left comodule maps A%L together (the order does not matter thanks to the
coassociativity property in Theorem 2.7) one gets a Hopf comodule map

A Q) S’w(T)—>( (0% %(B))@( (0% wa(T)).

TGF(A) ee%(A) TGF(A)
Similarly, composing all the right comodule maps AfR together gives
AR R Fu(T) — ( X wa(ﬂr)) ® ( X wa(B)).
TeF(A) TeF(A) eE%(A)

Recall the definition of ;2 in Section 2.1.

Corollary 2.25 The following sequence is exact:

0- %)= & %(T)%( 0% %(B))@( 0% wamr)).

TeF(A) ecd(A) TeF(A)

Proof Theorem 1.1 applied to each inner edge provides an isomorphism between ¥, (X) and the
intersection, over the inner edges e, of Ker(A%L —0o AISR). We conclude by observing that the latter
intersection is Ker(AL — o o AR). a

We can reformulate the above exact sequence in terms of co-Hochschild cohomology.

Definition 2.26 Given a coalgebra C with a bicomodule M, with comodules maps AL: M — C @ M
and AR: M — M ® C, the 0" co-Hochschild cohomology group is coHH®(C, M) := ker(AL —o o AR).

We refer to [Hess et al. 2009] for a self-contained introduction to co-Hochschild (co)homology. The
above triangular decomposition of skein algebra can be rewritten as

wa(z);coHHo( ® 0glSLal. X Efw(T))

ee%( A) TeF(A)
2.6 The center of stated skein algebras at odd roots of unity

Here we prove Theorem 1.2. We prove it for the bigon, then for the triangle, and we conclude with the
general case. Let us start by the following classical result.

Lemma 2.27 Let R be aring and g € R* a root of unity of order N > 1. Suppose that s is an R—algebra
and x, y € o are such that yx = gxy. Then (x + y)V = xV 4 yV
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Proof By [Kassel 1995, Proposition 1V.2.2],

NN
N _ k N—k
(x+N = Z(k)qx N,
k=0
where
(), = T(=4)
kg i 1—gitt )
Since qN = 1, the coefficients (]Z )q vanish for 1 <k < N — 1, and we get the desired formula. O

2.6.1 The case of the bigon Recall from Section 2.2 that the Hopf algebra ¥, (B) is canonically
isomorphic to O4[SL;]. In this case, Theorem 1.2 is a well-known theorem of Lusztig. More precisely,
it is proved in [Lusztig 1990] (see also [Lusztig 1993, Theorem 3.5.1]) that there exists a morphism of
braided Hopf algebras Fr,: qulz — U+15[2 which induces a braided functor Fr: Rep(SL) — Rep, (SL>)
between the category of finite-rank representations of SL, and the category Rep, (SL;) of finite-rank
Uysl, modules. Since Og4[SL;] (resp. O[SL;]) is isomorphic to the coend of the forgetful functor
F: Rep,(SLy) — Modg, (resp. of the forgetful functor Rep(SL;) — Modg) the Frobenius functor
Fr induces a morphism j : O[SL,] — O4[SL,]. Moreover, as noticed in [Negron 2021], the image of Fr lies
in the Miigen center of Rep, (SL) so the image of j is central. We refer to [Negron 2021, Section 5.1]
for details on this approach. A down-to-earth construction of j, based on elementary computations using
the definition of O4[SL;] by generators and relations, was described by Brown and Goodearl and goes as
follows:

4 is a root of

Lemma 2.28 [Brown and Goodearl 2002, Proposition III.3.1] Suppose that q := w™
unity of odd order N > 1. There exists a injective morphism of Hopf algebras jg: $11(B) — J»(B)

characterized by jg(0tes) := (ctee)N whose image lies in the center of %, (B).

2.6.2 The case of the triangle Denote by «, 8 and y the three arcs of Figure 3 and t the automorphism of
%, (T) induced by the rotation sending ¢, 8 and y to B, v and «, respectively. In [L& 2018, Theorem 4.6],
it was proved that the stated skein algebra 5, (T) is presented by the generators oge’, Beer and yge, and
the following relations together with their images through t and 2:

(10) A—etter = A0 peag —0 C,

(11) ety = APog 1oy —w  CE,

(12) ,B,ueau’a’ = Aaae’ﬂuu’ - AZC&/V&’M,

(13) Of—s,Bs’—f— = Aza—f-sﬂs’— - 0)_5)/88’7

(14) Oe—V+e = AZO‘S-{-V—&’ + wBee.

Here we use the notation 4 := w2, C~ = ij :=0,Cy :=—w’ and Ct := 0.
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o /
a

Figure 3: Left: the three diagrams «, f and y. Middle: the stated diagram representing o,’.
Right: the diagram 6Z-1-1.

When w = +1, the algebra ¥ {(T) has the following simpler presentation. Consider the commutative
unital polynomial algebra o := R[ee’, Beer, Veer|€, € = £]. Given § € {«, B, ¥}, denote by M the 2 x 2

(S S4—
My .= (5_+ 5__)

Lemma 2.29 The algebra 91 (T) is isomorphic to

matrix with coefficients in & defined by

and write C := (_(1) (1)) and 1 := ((1) (1))

Rlotss, Bes' Ves | €€ = £]/(det(Mg) = det(Mp) = det(M,,) = 1, M, CMpCM,C =1).

Proof That ¥y (T) commutative is a particular case of [Lé 2018, Corollary 2.5]. After setting w = +1
we see that (10) and (11) coincide; (14) is the image of (13) by rotation, and the latter is a particular
case of (12). Moreover, a direct inspection shows that the other part of (10) and of (12) correspond to
det(My) =1 and (M,,C)~! = MgCMyC, respectively. |

Lemma 2.30 Suppose that w is a root of unity of odd order N > 1. For every ¢, &', u, i’ € {—, +} with
& # ', one has
N oN N pN N
Ol’urg/ﬂug _Q’SS/IB[L[L’ = )/8/,“.

Proof We suppose that (¢, ') = (—, +). The proof in the case where (¢, ') = (+, —) is similar and
left to the reader. For n > 0, let D, be the simple diagram made of n parallel copies of « and n parallel
copies of B and consider the orientation o depicted in Figure 4. For = (91,...,n,) € {—, +}" let
nY = {-nn.....—n1}. For n,5" € {—, +}", let 55 4 be the state of D, sending all points of dp Dy,
to &', all points of d4 Dy, to 1 and the points (pi, ..., pu. p}..... p,) of 3¢ Dy, ordered by o, to the states
Mo Moo 1) Write Xy g :=[Dy, 5q,97]-

Using the skein relations (4), as illustrated in Figure 4, we find that
(15) Xy Veu =0 X)) =0 Xa.o).+a):

where (3, +) := (N1..... M0, +) and (=, 7') := (= n}.....n,). Let n4(n) be the number of indices
i €{l,...,n} such that n; = +. Using (15), we prove by induction of » that

(16) e = ) (@ )P (oY
Tle{—:+}n
Algebraic € Geometric Topology, Volume 24 (2024)



2114 Julien Korinman and Alexandre Quesney

T > [T 1L

Figure 4: Top: the element Xy ,/. Bottom: an illustration of (15).

Letm(n) :=#{1 <i < j <n|(ni,nj) = (+,—)} and denote by n the unique element of {—, +}" such
that n4(n) = ny(n+) and m(n4+) = 0. Note that m(n) = m(n"). Using the skein relation (4), we find
that for any n, ' € {—, +}",

+ 4
(17) Xy = qm(n) m(n )XU+JI/+'

For1 <k <N, let ng]_c) € {—, +}" be the unique element such that m(nglf)) =0 and n+(ng]_€)) =k, ie
)y _|— forl=<i=<N—k,
T+ = + fori >N —k.
Putting (16) and (17) together, one finds that

N
o)™ = Z(a)‘l)k(—w‘S)N—k( > qzm“ﬂ)xn(k) S
+ M+

k=0 716{—,+}N
ny(m)=k

Now, a simple computation shows that

—n(n— P et 1 ifk=0o0rk=N,
( 3 q2m(n)) _ g2nN=n(n=1) ) g 2in) :{

0 otherwise.

776{_,+}N 1<i|<izp<-<ip<N
ny (m=k
Therefore,
N N N N N
(Vo)™ = Xn(JrM,,,(_N) - Xn(_N),nSiV) = O‘+s'/3u— _a—s’ﬂu-f-‘
Note that we used that (—1)" = —1, so that N is odd. a
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Lemma 2.31 Suppose that w is a root of unity of odd order N > 1. There exists an injective mor-
phism of algebras jr: %41(T) — ¥, (T), whose image lies in the center of $,,(T), characterized by
JT Bser) := (8egr)N for 8 € {ax, B, y} and ¢, &’ = +. Moreover, if a is a boundary arc of T, the following

diagrams commute:

St (T) 255 9 B)®Ssr(T)  F41(T) —225 911 (T) ® F41(B)

\[j T \[j BRJT \[j T \[j T®JB
AL AR

o (T) —— S (B) ® % (T) Fo(T) —— Fo(T) ® % (B)

Proof We proceed in a similar way to Lemma 2.28, by showing first that the extension of the assignment
JT (8eer) := 5?;, to a morphism of algebras is well defined. In virtue of Lemma 2.29 and by the rotation
automorphism, it is enough to show that afg/ lies in the center of ¥, (T) and that jp sends det(My) — 1
and M,,CMgCMyC —1 to zero.

First note that the relations (10) and (11) put together coincide with the defining relations of ¥, (B);
hence one has an inclusion of algebras ¢: 5, (B) < %, (T) defined by ¢(ze’) = ase. By applying
Lemma 2.28, one obtains an inclusion ¢ o jg: ¥11(B) — F, (T ) which coincides with j on the g ’s.
It remains to show that the aé\s’,’s commute with the B, ’s and the y,,/’s, and that jr vanishes on
M,CMgCMyC —1.
We have aé\g,ﬂw = A_N,B,woz]\g, = ﬂugag,. From
054]\-[3,36’ = 0‘+g I(A d—efert + @~ Vaa’) =(4" N+ —eBer+ +w_1AN_1)’8£’)0‘-]+Yg !
and
Ber— 0‘-1-8 (Aa—gBe+ + 0Vee )054-3 )
one obtains
0‘+gﬂs’ — Ber— 0‘+g (A(A_3N —Doa—efer+ + w(A I)VSS/)afg_l =0.
Similarly, we compute
O[]—VSIBS/'F = aN_l (A2a+€:38/— - 0)_5)/88’) = (AN+1a+8,B&‘/— - w_SANVgs’)a]_va_l s
Be +05 = (Aa4efer——w~ Vse )0‘—3
Thus we find
o Bt — Berral, = (AAN = Doyefo—— 0> (AN = Dyee)a " =0.

So we have proven that a » commutes with every elements ,,,/. The commutativity of o, with each

eg’
element y,,, is shown in a very similar way.

Next, showing that jp vanishes on M, CMgCMyC — 1 amounts to showing that
ﬁﬁ’saﬁ[/y — 88/,5 )/SZX# for e # 1.
This was proved in Lemma 2.30.
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Now let us prove that j is injective. To this end, let us consider the following basis of ¥, (T).
Consider the counterclockwise orientation o of the boundary arcs of T as in Figure 3. Given

denote by 6% the (not simple) diagram ake ,Bkl’ ka; see Figure 3 for an example. By Proposition 2.14
the set of classes [#¥, 5], where s is o—increasing, forms a basis of %, (T).

By construction, j sends the elements [6% | 5] of #; (T), where s is o—increasing, to some basis elements
[6N* 5'], where s’ is also o increasing, therefore jT is injective.

It remains to prove that jr is a morphism of Hopf comodules. To avoid confusion, let us denote by X/
the generators of ¥, (B) and reserve the notation . for the element of 5, (T ). By definition, we have
A%(agg/) = Xpt QUi+ Xeo @0t_g. Write u 1= Xy ® 0ty and v := X, @ a_g. Since uv = g~ 2vu,

by Lemma 2.27 we have (u + v)Y = u®™ + vV, so
AL (B(aes) = (A (@se))V = 4+ v)V =u™ + N
=xN ®aly +xN ®a¥, = j ® jr (AL (0ee)).
The proof that A% (jB(aeer)) = jB ® JT (A% (0tger)) is done using a similar computation and the equality
N

ge’”
generators «, f8, ¥, we have proved that jg commutes with the left comodule maps. That it commutes

Aé (jB(0ee’)) = jB ® JT (Aﬁ (ager)) holds since both sides are equal to 1 @ «.',. By symmetry in the

with the right comodule maps is proved similarly. |

2.6.3 The general case: proof of Theorem 1.2 We restate Theorem 1.2 here for the convenience of
the reader:

Theorem 2.32 Suppose that w is a root of unity of odd order N > 1 and X a punctured surface. There
exists an embedding
Jg:41(2) = (o (X))

of the (commutative) stated skein algebra with parameter +1 into the center of the stated skein algebra

with parameter w. Moreover, the morphism jx is characterized by the property that it sends a closed

N)

curve y to Ty (y) and a stated arc oge to ag o » Where ag\,’ ) is the tangle made by stacking N parallel

copies of ager on top of the others.
Recall from Section 2.2 that closed curves and arcs do not have self-intersection points by definition. We
divide the proof in five steps.

In Step 1, we show that the decomposition Theorem 1.1 together with the two previous sections provide
an injective morphism of algebras

(18) Jz,A): Fr1(2) = S (X),
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which is central. We study further properties of jx A) and we show that it is does not depend on a
topological triangulation A. The other steps are devoted to making explicit the morphism j(x A) on arcs
and loops. In Steps 2—4, we suppose that the punctured surface has a nondegenerated triangulation (see
below); in Step 5 we treat the other punctured surfaces.

In Step 2, we prove that j(x a) sends the stated arcs that have their endpoints on two different boundary
arcs of X, to their N™ power.

In Step 3, we prove that j(s a) sends some particular closed curves of ¥y to their N " Chebyshev
polynomial of first kind.

Step 4 is more involved. We first prove a structural result. Adding a puncture on a surface X gives rise to
a surjective map ¢ from the skein algebra of the new punctured surface to that of the initial one defined
in Section 2.3. We show that j(z aA) commutes with these surjections (see Lemma 2.40). From this, we
deduce the image by j(z,a) of stated arcs that have both their endpoints on the same boundary arc of X
and of any closed curve of Xg.

In Step 5, we treat the remaining cases of connected punctured surfaces that do not admit a nondegenerate
topological triangulation (including those with no puncture). The proof consists, again, in adding a
puncture and using the previous study.

These five steps prove Theorem 1.2.

Throughout this section, X is a punctured surface, A a topological triangulation ¥ and w a root of unity
of odd order N > 1. Except for Steps 1 and 3, the triangulation A is required to be nondegenerate, that
is, such that each of its inner edges separates two distinct faces.

Step 1: formal definition Assume that ¥ admits a (possibly degenerate) triangulation A. Consider the

diagram
VAN AL— oAR
0 — $41(2) — Qrer@) F1(T) =—7= (®,e2a) F+1B) ® (Rrer(a) F+1(T))
(19) Jjz.a) Ell LX)T JT £(®ejB)®(®TjT)

AL —goAR

i A
0 — $0(2) — Qrer) Jo(T) == (®EE%(A) J0(B)) ® (Rrera) Fo(T))
where both lines are exact by Theorem 1.1 and the vertical maps are given by Lemmas 2.28 and 2.31.

The existence of an injective morphism j(g a): $4+1(Z) <> %, (Z) follows from the exactness of the
lines and the injectivity of @) F(a) JT (and the fact that all maps involved in the diagram are algebra
morphisms). Moreover, since j is central, s0 is j(z, A)-

Let us show that j(x a) is compatible with the gluing maps.
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Lemma 2.33 If a and b are two boundary arcs of X, the following diagram commutes:

7a#b

L1 Zlaap) — S (Zlanp)

\[i |a#b \[i |a#b

i1 (2) — s 9,(D)

Proof Let A4, the topological triangulation of X|,4p that is induced by A. Let us consider the diagram

iDasb

ilasp

Fr1Clatp) — F+1(2) AN QT S4+1(T)

ljo:\a#b Aanp) Ji]kz A) £®1rj1r
A

ilasb

Fo (Zlapp) — ffw(z) — T F0(T)
Agup

The outer triangles commute by coassociativity of the gluing maps. Two of the three squares commute by

A

diagram (19). Since i © is injective, the remaining (left-hand side) square commutes. |

We now prove that the morphism j(5 a) does not depend on A. We first need a preliminary result.

Lemma 2.34 Let Q be a square (ie a disc with four punctures on its boundary) and AQ a topological

triangulation of Q. If oz € %, (Q) is the class of a stated arc, then j(g, A ) (Ctee’) = o, In particular,

eg’”

J(Q,A o) does not depend on Ag.

Proof Let e be the inner edge of Ap which is a common boundary arc of two triangles Ty and T>.
Make the intersection o N e transversal and minimal via an isotopy on «. If the intersection is empty,
then « is included in one of the triangles and the lemma follows from Lemma 2.31. If « N e is not empty,
then it has only one element. Therefore, by letting «Ti := o N'T; for i = 1,2, one has

T>

120 (@pe) =gl @ +all ®al2.

Write x := oz ®a o and y = a L Qo2 _. and note that xy = ¢ 2yx. By Lemma 2.27,

iAansg,) =i%0(ee)™ = (x + )V =2V + 3N = (1, ® j1,) 0189 ().
Hence, jig,Ap)(@ce) = aé\g,. |
Lemma 2.35 The morphism jg a) does not depend on A.

Proof Every two triangulations can be related by a finite sequence of flips on the edges. Therefore, it is
enough to prove that if A" differs from A by a flip of one edge, then jiz A) = j(z.A)-

Let e be an inner edge of A that bounds two distinct faces T; and T,. Consider the topological
triangulation A’ obtained from A by flipping the edge e inside the square Q = Ty U T. Let

[ 0(X) = J0(E\ Q) ® %0 (0Q)
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T %[0, 1]

Figure 5: Instance of tangles 7T and qugN).

be the gluing morphism. By Lemma 2.34, the morphism jg: ¥4 1(Q) <> %, (Q) does not depend on the
triangulation of (). Therefore, by Lemma 2.33, both the morphisms j(x a) and j s, Ay make the diagram

P41(Z) = F11(E\ Q) ®F41(0)
f(;,mljj(;.m lj(;\Q,A;\Q)@’jQ

F(Z) —— Fp(Z\ Q) ® % (Q)

commutative. This proves that jiz A) = Jj(z,A)- |

Step 2: arcs with endpoints in distinct boundary arcs We now assume that the triangulation A is
nondegenerate.

Lemma 2.36 If o, € ¥,(X) is the class of a stated arc such that its endpoints lie on two different
boundary arcs, then jg (ge’) = aé\g/.

Proof By the defining property of jx, as depicted in diagram (19), it is enough to prove that

(20) i%(all) = ( (09 jT)iA(assf).

TeF(A)
Without lost of generality, we suppose that the arc « is in minimal and transverse position with the
edges of A. Let T be a (vertical framed) tangle of Xg x (0, 1) that projects on o and such that its height
projection is an injective map (this is possible since « is an arc). Note that for each T € F(A), the tangle
Tt :=T N (T x (0, 1)) may have various connected components; since the height projection is injective,
these components are ordered by height. Let TW) be a tangle of N parallel copies of T obtained by
stacking N copies of 7', but close enough to have the following property. For each T € F(A), if 77 and
T, are two connected components of 7 such that 77 is below T3, then, in T%N) =TWM N (T x(0, 1)),
each copy of 77 is below all the copies of 7>. See Figure 5 for an illustration. Note that since « is an
arc with boundary points at two distinct boundary arcs, the tangle T is a representative of the N'™
product of oz in F, (X); otherwise it may not be true.

The left-hand term of (20) can be described as the cutting of 7" along each edge of the triangulation,
and summing the result over all possible states at each edge. More formally, it is described as follows.
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Let K be a subset of edges of A that intersect . We let Stx (o) be the set of maps
s:TN(Kx(0,1) = {—,+}.

We identify Stg () with | |, g Stgey(ar), which allows us to write s € Stg (o) as Llse. We will only
consider the two sets K: the set E of all the internal edges of A that intersect «, and the set K = {e} for

an edge e.
For s € Stg(a), write s&V) := (s, ..., 5) € Stg (). We denote by s the state of agg’ (50 tger = [T, So]).
For s = (s1,...,5n) € Stg (o)™, we let
a):= @ IV .sussrle Q) u(D).
TeF(A) TeF(A)

where we associate, to the k' copy of T. q%N), the restriction of the state s;. With this notation, the left-hand
term of (20) can be written as

(21) iA(ag/) = Z als).

sEStg ()N

Now, let us describe the right-hand term of (20). Note that the construction of 7° (V) ensures that, for
each triangle T and each state s of T, one has jr([TT, s]) = [Tq%N), s(M)]. Therefore, using that j is
an algebra morphism,

(22) ( X jT)iA(ase/) = Y at™).

TeF(A) sEStE (@)
Let Y be the set of nondiagonal states Stg (o)™ \ {(s,...,s) | s € Stg()}. The sum in (21) and in (22)
differ by the sum of a(s) fors € Y.

Let us fix an edge e of E and let us split ¥ into J LI Y, where Y, is the set of N—tuples of states at e, that
is, Yo={s €Y |s: T™ N(ex(0,1)) - {—, +}}. Therefore, showing (20) amounts to showing that

Z Z a(s'Us)=0.
s’eJ s€Y,
In fact, let us show that, for each s’ € J, one has Zseye a(s’us)=0.
Let Ty and T, be the two triangles adjoining e (they are distinct since A is assumed nondegenerate)

and let Q C Xy be the resulting square. Denote by ig: %, (0) = Qe F(a) Jo(T) the corresponding
embedding and write T := T N (Q x (0, 1)). For each s’ € J,

3 a(s'us) = ( 0% [TéN’,swaT]) ® (ig(T5".5lag)) — (i1, ® jr,) 0ip(T5" 5" g)).
seYe T#T,,T>

The last term is zero by Lemma 2.34 and the commutativity of the diagrams in Lemma 2.31. O
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Step 3: closed curves that intersect A nicely

Definition 2.37 The N™ Chebyshev polynomial of first kind is the polynomial 7 (X) € Z[X] defined
by the recursive formulas 7o(X) =2, T1(X) = X and T42(X) = X T;41(X) — T(X) for n > 0.

The following proposition is at the heart of (our proof of) the so-called “miraculous cancellations” from
[Bonahon and Wong 2016]. We postpone its proof to the appendix.

Proposition 2.38 If w is a root of unity of odd order N > 1, then in %, (B),
T+ +oa—_)= af+ +alN_.
Recall that we suppose that the triangulation is nondegenerate.

Lemma 2.39 Let y € $,(X) be the class of a closed curve. If the closed curve can be chosen such that it
intersects an edge of A once and only once, then jg(y) = Tn(y).

Proof Consider the punctured surface X(e) obtained from X by replacing e by two arcs ¢’ and e”
parallel to e with the same endpoints and removing the bigon between ¢’ and e”. Consider the injective
morphism I |¢rser : F (Z) — F»(X(e)). By Lemma 2.33, the following diagram commutes:

D41(Z) s 9, (D)

\l}‘e’#e” \[”e’#e”

Fe1(2(0) 2 Sy (2(e)

By cutting y along e, we get an arc B C X (e) such that, by the hypothesis, i |¢/#e7 (V) = B++ + P—.
Consider the algebra morphism ¢: &, (B) — ¥, (Z(e)) sending oz’ to Bzer. One has

Js(e) oilerser (v) = Jx(e)(B++ + )
=g, +a) (by Lemma 2.36)
=@(Tny(a++ +a—_)) (by Proposition 2.38)
= ilerse (TN (7))
Hence, by the above diagram, jz(y) = Tn(y). |

Step 4: adding a puncture Let X' = (X, % U {po}) be a punctured surface obtained from X = (X, P)
by adding one puncture py € Xg and consider the algebra morphism ¢: %, (X") — %, (X) of Section 2.3.
We assume that X is equipped with a nondegenerated triangulation.

Lemma 2.40 The following diagram is commutative:

P (D) <= 9,2

Lw L

P11 (D) < ()
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Proof First consider the diagram

0 —— 95} —— P41 (Z) — F41(8) — 0

(23) e = =

0 > $po > Fp(Z) —2— Fp(Z) — 0

where ﬁ;ol C %41(X') and $p, C F»(X') denote the off-puncture ideals in ¥4 (X’) and ¥, (X'), respec-
tively (see Definition 2.17). By Proposition 2.18, both lines are exact so we need to prove the inclusion
Jxr (9;01) C $p, to conclude. We divide the proof in two steps.

Step 1 We first suppose that ¥ = T, is a triangle. In this case, T(’) is a punctured triangle and we have
two possibilities depending whether py is in the boundary or the interior of Ty. Some nondegenerate
triangulations A/, of T are drawn in Figure 6.

Claim The off-kernel ideal $p,, is generated by elements e’ — ., and y —y’, where a and o' are arcs
isotopic in Ty whose endpoints lie in distinct boundary arcs and y and y' are curves isotopic in Ty which
intersect each edge of A/, once.

If the claim is proved, then for oz —a, and y —y’ some generators of $,,, Lemma 2.36 implies that
Jry(teer — o) C $p, and Lemma 2.39 implies that Jry(y = Y)=Tn(y)—Tn (') € $p,. The claim
implies the inclusion jT(f) (ﬁ;‘ol) C 9 p,» which concludes the proof in the case of the triangle. To prove the
claim, recall from Proposition 2.18 that $,, is generated by elements oz —rl,,, and y —y’ with o and
o’ isotopic in Tg and y and y’ isotopic in Ty. First note that when pq lies in the boundary of Ty, then
T, does not contain any noncontractible simple closed curve and the nontrivial arcs of T have endpoints
in distinct boundary arcs, so the claim is immediate in this case. When p lies in the interior of T, there
is only one nontrivial simple closed curve (which encircles pgy once) and this curves intersects each edges
of A’o once. However T(’) contains three nontrivial arcs with endpoints in the same boundary arcs which
are related by a %n radian rotation. Let § be one of these arcs and

&

Seer = 8'

Since x := §ger — Cf/ € $p,, we need to show that x belongs to the ideal $,, generated by elements

’
ge’

the skein relation (4):

g g _ g/ \M gl \M
,LL=+,-

Therefore x belongs to the ideal generated by elements

aeer — ., with o and o’ isotopic in T with distinct endpoints. This is done by a simple application of

This proves the claim and concludes the proof of the lemma in the case where ¥ = T.
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/
Ty

Po Do

Figure 6: Punctured triangles T and their nondegenerated triangulations.

Step 2 We consider the general case. Recall that ¥ is equipped with a nondegenerate triangulation
A and let Ty be the face containing the point py. Let X be the (possibly empty) punctured surface
made of the faces of A distinct from Ty so that X is obtained from Ty Ll ¥ by gluing some pairs of
boundary arcs together and let i : 9, (X) — $»(To) ® $»(Zo) denote the gluing map. Similarly, let
" Fp(E) = Fu(Ty) ® S (Xo) be the gluing map of X’. Consider the diagram

j’]r(/) ®j20

F+1(Ty) ® F11(Zo) < > Fu(T) ® Fu(Zo)
g N> ’
Fr1(X) —— Fp(X)

o ®id L{p iw o ®id

So(Z) o Fu(D)

i

¥ 1

F1(To) ® £1-1(Xo) ©

In this diagram,

¥

> Jo(To) ® F0(Zo)

JTo®Jz,

¢ the outer square commutes by Step 1;
¢ the squares on the top and bottom commute by Lemma 2.33;

¢ the squares on the left and right sides commute by definition of ¢.

Therefore the innermost square commutes. O

(V) be the class of the stated

ge’
tangle made by stacking N parallel copies of ;e on top of the others in the framing direction. More
(N)

ge’
endpoints, say v and w, in the same boundary arc with 4(v) < A(w) such that v has state ¢ and w
g:,[) is the class of the stated tangle (¢, s(V)) defined as follows. The tangle
a™) is made of N parallel copies ™ = a; U---Uay of « such that the height order is given by

h(vy) < h(vy) <--- < h(vy) < h(wy) < --- < h(wy). The state s*N) sends the points v; to ¢ and the

Notation 2.41 For o € ¥,(X) the class of a stated arc, we denote by «

precisely, if both endpoints of « lie in different boundary arcs, then «,.,’ = (age)™N. If @ has its two

has state ¢/, then «

s /
points wj toe.

Lemma 242 If o € 5, () is the class of a stated arc such that its endpoints lie on the same boundary
arcs, then jx (ager) = agg).
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Proof Since the two endpoints of « lie on the same boundary arc a, we can pick a puncture py € a
that lies between these two endpoints. Denote by X/ = (X, P U {po}) the punctured surface obtained
by adding this puncture, and ¢: %, (X') = %, (X) the morphism of Section 2.3. With the notation of
Section 2.3, the two components of a \ {po} are two boundary arcs b and ¢ of ¥’ and we choose the

convention such that « € 70 (X). Note that ™) is in T (Z) as well. To avoid confusion, we denote by

1(N)
gg’

By commutativity of the diagram in Lemma 2.40 and by definition of ¢, the image jx (o) is the class
in 9, (X) of the unique stated tangle in F©) (%) which is isotopic to o’ (M) this is ). a

eg’ - sg’

o the arc o seen as an arc in Xy p,3. 50 that ((a’) = a. By Lemma 2.36, js/(a],/) = (agg/)N =«

Lemma 2.43 If y € 9,(X) is the class of a closed curve, then jg(y) = Tn(y).

Proof If the closed curve can be chosen such that it intersects an edge of A once and only once, then this
is Lemma 2.39. Otherwise, we can refine the triangulation by adding an inner puncture in order to have
this property. Denote by ¥’ the resulting punctured surface and let Y’ € ¥4 1(X’) be such that ((y’) = y.
Lemma 2.39 implies that j5/(y’') = Tn(y’) and Lemma 2.40 implies that jz(y) = Tn (y). O

Step 5: punctured surfaces which do not admit nondegenerate triangulations It remains to prove
Theorem 1.2 for connected punctured surfaces which do not admit nondegenerate topological triangula-
tions; that is, for the small punctured surfaces, for the disc with one inner puncture and one puncture on
its boundary and for the unpunctured surfaces ¥ = (X, &) with empty set of puncture.

The disc with only one puncture (on its boundary) and the sphere with zero or one puncture both have
trivial skein algebra, while the sphere with two punctures has a commutative skein algebra. Therefore,
Theorem 1.2 holds trivially for them. It remains to prove:

Lemma 2.44 Theorem 1.2 holds when X is either a disc with one inner puncture and one puncture on its
boundary or an unpunctured surface ¥ = (X, @) of genus at least one.

Proof Choose an inner puncture pg € E)@ and consider the punctured surface ¥’ := (X, P U{po}). Since
Y/ admits a nondegenerate triangulation, our previous study shows the existence of the Chebyshev mor-
phism jz/: F41(X') — %(F»(X')). Consider the off-puncture ideals 55;01 C%41(X) and $p, C Fp(X).
Exactly the same argument used in the proof of Lemma 2.40 shows the inclusion jyx/ (9;01) C Ipo- By

Proposition 2.18, both lines in the following diagram are exact:

0 —— Il —— Py () — F41() — 0

ljz/ jfz/ s
o ~

0 > o y () —— Fp(Z) — 0

Therefore there exists a unique algebra morphism jg: ¥4 1(X) — %, (Z) which makes the diagram
commute. Since jy is obtained from jx/ by passing to the quotient, its image is also central and one has

the equalities jx([y]) = Tn([y]) and jg(aee) = oegje\,’ ) for any closed curve y and any stated arc ager. O
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2.7 A Poisson bracket on ¥41(X)
In this section, we define and make explicit a Poisson structure on ¥4 1(X).

2.7.1 Preliminaries We briefly recall some general facts concerning deformation quantization.

Let o be a complex commutative unital algebra, C[#] be the ring of formal series in a parameter A and
AA] := A ®c C[h]. A star product » on s is an associative product on s{[#] such that if f =3"; fih'
andg =) ; gih! are elements of s{[[#], then

f*xg= fogo mod A,

where fogo denotes the product of fy and g¢ in 4. A star product induces a Poisson structure on s by
the formula

(24) fxg—gxf=h{fg} modh

for all f, g € A. The algebra (A[A], ) is called a deformation quantization of the commutative Poisson
algebra (4, {-,-}). We refer to [Kontsevich 2003; Gutt et al. 2005, I1.2] for detailed discussions. A
morphism of star products between (4, x5) and (9B, xg) is an algebra morphism V : A[h] — B[#A] whose
restriction to § C [#] induces a morphism ¢ : § — %B. Note that such a ¢ is, in fact, a morphism of
Poisson algebras for the induced Poisson algebra structures. An isomorphism

¥ (sAR], *1) = (AA] %2)

of star products is called a gauge equivalence if ¥ (f) = f (mod #). If two star products are gauge
equivalent, they induce the same Poisson bracket on .

To end this preamble, let us mention that deformation quantization is well behaved with respect to the
tensor product. Indeed, if 4[] and B[A] are deformation quantizations of & and %, respectively, then
AlA] @ B[A] = (4 ® B)[#A] is a deformation quantization of { ® %B. Note also that the Poisson structure
on A ® B given by (24) is

(25) (feg f'egt=/"elgst+{/f [}®gs

for f, f' €A and g, g’ € B.

2.7.2 Formal definition Let X be a punctured surface and o an orientation of its boundary arc. Denote
by ¥41(X) the stated skein algebra associated to the ring C with @ = 41 and denote by ¥, (X) the
stated skein algebra associated to the ring C[[A] with wy, := exp(—%h). The convention is chosen so

that ¢ = exp(%). Recall the basis B° from Definition 2.3. Since &° is independent of w, one has an
isomorphism of C[[A]-modules

(26) RS ART05)] 1] E= AN 0 )}

Note that o tells us how to lift the basis elements [D, s] of ¥4+1(X) (which are independent of the height
order) in ¥,, (£). We emphasize that ¥° is not an algebra morphism.
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Definition 2.45 Pulling back the product of ¥, (¥) along ¥° gives a star product %z on ¥, 1(X). We
denote by {-, - }® the resulting Poisson bracket on & (X) given by (24).

Here the superscript s stands for “skein”.

Remark 2.46 For any two orientations o and o, of the boundary arcs of X, the automorphism (y°2)~!o
VoL Py 1 (2)[A] => F41(2)[H] is a gauge equivalence; hence the Poisson bracket { - , - }* does not depend
on o.

By definition, (41 (Z)[#%], *5) is a quantization deformation of the Poisson algebra (¥41(X),{-, - }*).
Moreover, this structure of Poisson algebra is compatible with decompositions of surfaces. More precisely,
one has the following.

Lemma 2.47 The gluing maps i |qaup: $+1(Z|qup) — F+1(X), the maps
i%:90(@ > Q) Fi(T)
TeF(A)

and the coproduct maps AL and AR are Poisson morphisms.
Proof This follows from the fact that each of these morphisms arises from a morphism of star products. O

2.7.3 Explicit formula This section is devoted to making explicit the Poisson bracket { -, - }* on stated
diagrams. It will be expressed in terms of resolutions of stated diagrams, which are defined at crossings
and at points on the boundary arcs.

Throughout this section, X is a punctured surface.
Resolution at a crossing Let (D, s) be a stated diagram and ¢ a crossing of D. Denote by D4 and

D_ the diagrams obtained from D by replacing the crossing ¢ X by its positive )( and negative >
resolution, respectively. The resolution of (D, s) at the crossing ¢ is defined by

Resc(D, s) :=[D+,s]—[D—, s] € $+1(2).
Resolution at boundary points Let by, ..., by be the boundary arcs of Xg.

Definition 2.48 A height order on a stated diagram (D, s) of X4 is a k—tuple 0 = (0y,...,0f) of
bijections of sets 0;: dp, D — {1,...,|dp, D|}.

Note that the product of symmetric groups S, X ---x Sy, acts freely and transitively on the set of height
orders by left composition.

To a height order o on (D, s) corresponds a stated tangle with same height order and which projects to
(D, s). Therefore, one can consider the class of (D, s, 0) in 9, (X). If o = +1, the class [ D, s, 0] € ¥4 1 (X)
is independent of o, and we denote it simply by [D, s].

Let us choose a boundary arc b; and suppose there are two points py and py of dp, D such that
0i(pg) = 0;(pr) + 1 (ie py is the o,—successor of pr). Let 0 be the order on b; that is induced by
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the orientation of X. To alleviate notation, we write p <z ¢ for 6(p) < 6(¢q). For instance, in the stated
diagram ;H, if py is the endpoint with s(pr) = +, pg the endpoint with s(pg) = — and o is the
orientation given by the arrow, then p; >z pg whereas pr <, pg (because the o and 0 orientation of
the boundary arc where live py and pg are opposite).

Let T € Sy; be the transposition that exchanges the o; order of py and py. The resolution of (D, s)
along 7, denoted by Res; (D, s, 0) € ¥11(X), is given by

1[D, s] if s(pg) =s(pL) and pr <z pg or (s(pg).s(pr)) =(—.+) and pyg <3 pL,
—1[D.s] if s(pg)=s(pr) and pg <5 pr or (s(pg),s(pL)) = (+,—) and pr <; pH,
3[D.s1=2[D,ws]  if (s(pm).s(pL)) = (+,—) and py <5 pr,
—3[D.s]+2[D,ts] if (s(pr).s(pr)) = (= +) and pr <5 pu.

where 7s is the state that differs from s only by exchanging the states of pg and py.

Let us extend the resolution to several points, namely any permutation of the boundary heights on a given
boundary component. For two transpositions o; and 0, of o—consecutive points, let

27) Resg 00, (D, 5,0) =Resq, (D, 5,02 00) + Resg, (D, 5, 0).

Definition 2.49 For a permutation 0 € S, x--- xSy, , the resolution Resy (D, s, 0) is defined via (27), by
considering the decomposition of ¢ into transpositions of o—consecutive points. This is clearly independent
of the choice of decomposition into transpositions.

Remark 2.50 The resolution Resy (D, s, 0) is invariant under isotopy of (D, s). Also, Resjq(D, s,0) =0.

Lemma 2.51 In the skein algebra 9, (X), the following two statements hold.
(1) Let D,, and D, be two diagrams that differ from each other only by a change of a crossing c. Then
[D,,.s.0]—[D..s.0] =hResc(D.s) mod h>.
(2) Let(D,s,o0) be an o—ordered stated diagram. For w € Sy, X -+ X Sy, ,
[D,s,0]—[D,s,moo]=hResy(D,s,0) mod k.

In the two statements, the resolutions Res are seen in ¥, (X) via the isomorphism wa of (26).

Proof Recall that wp = exp (—%h) =1- %h (mod £?). The first equality follows from (3):
M-NX =@ -0+ -0H)X = () ( —X)h (mod A2).

Let us prove the second equality when 7 a transposition of two consecutive points pg, pr with pg >, pr.
If s(pg) = s(pr) = ¢, then (5) gives

jﬁ :wzzlAi and :lAi =w_2:|;
from which we deduce
1 1
j; _jg _ (_5:[; )i (mod #?) ,jj —:ﬁ - (+§j; ) (mod #2).
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Note that in the stated skein algebra at @ = +1, the height order is irrelevant; said differently, at
wj = exp (—%h), we have the skein relation

:lj. E:[; (mod h).

Now, if either pg <z pr and (s(pm).s(pL)) = (=, +) orif py <z pg and (s(pm).s(pL)) = (+,-)

then, using (5),
j‘l‘ =a)_2:[f and jf =a)_2:|;
from which we deduce
= o (L= 2 - = (1= 2
:j_ j_ _(+2:[_ ) (mod #2) ,j_ :1_ = 2:1_ ) (mod #)

If pg < pr and (s(pg),s(pr)) = (4, —), then (6) and (4) imply that

=
= - = (50 2= ) (moan?),

Eventually the case where py < pg and (s(pg),s(pr)) = (—, +) is deduced from this case by taking

from which we deduce

the opposite of the preceding equality. This concludes the proof of the second equality of the lemma
when t is a transposition. The case of a general permutation 7 follows by induction on the number of
transpositions in a decomposition of 7. |

Proposition 2.52 Let (D1, s5,01) and (D, 55, 03) be two height ordered stated diagrams such that D
and D, intersect transversally in the interior of . Let (D1 D,, s15,) be the stated diagram obtained by
staking D1 on top of D,, 00, the resulting height order and 7 the permutation sending 0,07 to 0105. In
$+1(X), the Poisson bracket from Definition 2.45 satisfies

{[D1.51).[D2.521)* = Y Resc(D1Dy.515) + Resy (D1 Dy, 5152, 0,0,).
ceDND,

Proof In the algebra ¥, (X), the product gives [Dy, sy, 01] - [D2,52,02] = [D1D3,5152,0102] and
[D7,52,02]-[D1,81,01] =[D2D1,5251,0,01]. We pass from the diagram D D, to D, D by changing
each crossing in the intersection of the diagrams and changing the height order using 7, so the formula is
a consequence of Lemma 2.51. |

Remark 2.53 Neither { -, - }* nor the formula in Proposition 2.52 depend on a choice of orientation of the
boundary arcs by Remark 2.46. When X is a closed surface, we recover Goldman’s formula [1986]. When
3’ has nontrivial boundary and no inner punctures, the subalgebra of the stated skein algebra generated by
tangles with states having only value + is isomorphic to the Muller algebra defined in [Muller 2016] (see
also [Lé 2018, Section 6]). The Poisson bracket restricts to the corresponding subalgebra of ¥ 1(X) and
the resulting Poisson algebra is isomorphic to Yuasa’s Poisson algebra [2015].
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Example 2.54 The Poisson bracket {—, —}* on the commutative algebra ¥ ;(B) is given by

lopr oy} =—oqoqq, {ogt,0 4 =—a_yapy,
ooy =apa——,  Ho—oy} =ajo__,
{oq— a4} =0, lopr o} =204 a4,

Example 2.55 For the triangle T, the Poisson structure is described by the formulas in Example 2.54 by
replacing o by each of the three arcs «, 8 and y, together with the following relations and their images
through the automorphisms t and 72:

1 1 3
Wew el = —3vepwe, {V—p-ow+} = gvV—pow+, V4p odw-} = —3V+uow—+2Buw.

3 Relative character varieties

3.1 Relative character varieties for open surfaces

In this subsection we briefly recall from [Korinman 2019] the definition and main properties of character
varieties for open surfaces.

The character variety of a closed punctured connected surface X is the algebraic quotient (familiar in
geometric invariant theory)

¥sL,(Z) := Hom(mr{(Zg), SL2(C)) /SL,(C)

under the action by conjugation of SL,(C). Recall that by “closed”, we mean that X is closed though in
this case g is not closed when & # @&. Goldman [1986] defined a Poisson structure on its algebra of
regular functions. It follows from [Barrett 1999; Bullock 1997; Przytycki and Sikora 2000; Turaev 1991]
that, given a spin structure S on ¥ with quadratic form wg, there is a Poisson isomorphism

¢ (I (D). -3 = (CHsL (D)4 })-
For each noncontractible closed curve y, it is given by ¢S (y) = (—=1)@s (¥D+1 7y, where 7, is the regular
function 7, ([p]) := Tr(p(y)).

Korinman [2019] introduced a generalization of the character varieties to punctured surfaces which are
not necessarily closed and which is closely related to the construction of Fock and Rosly [1999] and
specifies to the constructions in [Alekseev and Malkin 1995; Alekseev et al. 1998; 2002; Guruprasad et al.
1997] when the marked surface is connected and has exactly one boundary arc (see [Korinman 2019] for
a precise comparison). We will also denote it by ¥sp, (X2).

Notation 3.1 For a topological space X, we let IT (X') denote its fundamental groupoid: objects are the
points in X and morphisms are homotopy classes of oriented paths. We let s and ¢ denote the source and
target maps, which for a morphism «: v; — v, are given by s(«) = vy and #(«) = v,. By convention,
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we compose the morphisms from left to right, ie if a;: vy — vy and oy : vy — v3 are two paths, their
composition is a path aja;: v — v3. For S C X, we denote by IT; (X, S) the full subcategory of
IT{ (X) whose objects are points in S. For a group G, the set Hom(I1; (X, S), G) denotes the set of
functors p: I1; (X, S) — G, where G is seen as a category with one element. With our conventions, if

1(ay) = s(az), then p(ajaz) = pay)p(ez).

Let Rgp, (X) be the set of functors p: IT;(Xg) — SL, whose restriction to I1;(0Xg) C IT;(Zg) is the
constant map with value the neutral element 1, € SL,. Let 4 be the group of maps g: ¥» — SL, whose
restriction to dXg is constant with value 1, and with finite support. It acts on Rgy, (X) by the formula

g-p(@) :=g(s(@) ' pla)gt(@), peRsi, (). g €Gaell(Zy).

Both Rg1, (X) and 6 have a structure of affine scheme and the action is algebraic so we can define the
GIT quotient

(28) XsL, (Z) 1= RsL, (X)/G.

The character variety turns out to be an affine Poisson variety whose Poisson structure (given by a
generalized Goldman formula) depends on a choice of orientation of the boundary arcs. It is proved in
[Korinman 2019, Theorem 1.1] that its algebra of regular functions C[¥sy,(X)] is well behaved under
triangular decompositions: for a topological triangulation A, there are an injective Poisson morphism

A Cl%s1,(2)] — Qe F(a) Cl%s1, (T)] and Poisson Hopf comodule maps AL and AR such that the
following sequence is exact:

(29) 0 Cletsp, (2)] > ) Cletse, (T)] 22245 ( X @[SLZ]) ® ( & C[%SLZ(T)]).
TeF(A) ecd(h) TeF(A)

In the present paper, we proceed by describing the character variety for the bigon and the triangle, together

with the Hopf comodule maps AL and AR. Then, in virtue of the above property, we characterize the

Poisson structure of the relative character variety for any triangulated punctured surface as the kernel of

AL — 5o AR,

First, recall that s[, denotes the Lie algebra of the 2 x 2 traceless matrices. It has a basis formed by

1 O 01 00
H'_(O—l)’ E'_(OO) and F.—(1 O)'

In order to define the Poisson structure, we will need the following.

5[?2 are the bivectors r+ := 1H ®H+2EQF and
= %H ® H+2F ® E. Their symmetric part t = %H ® H+ EQ®F + F® E is the invariant bivector

Definition 3.2 The classical r—matrices r*

associated to the (suitably normalized) Killing form and we denote by iT := EQ F— F® E =: —7
their skew-symmetric part.

The classical r—matrices satisfy the classical Yang—-Baxter equation (see [Chari and Pressley 1994,
Section 2.1; Drinfeld 1983] for details).
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Notation 3.3 Given a a boundary arc of X, we write o(a) = + if the o—orientation of a coincides with
the orientation induced by the orientation of X4, and write 0(a) = — if the orientation are opposite.

3.1.1 The bigon Consider the bigon B and write 0(by) = &1 and o(bgr) = &,.

Definition 3.4 The relative character variety of the bigon is ¥y, (B) := SL2(C). Denote by

N = (X++ X+—)
X— X——
the 2 x 2 matrix with coefficients in C[¥sr, (B)]. The Poisson bracket associated to o is defined by

{NQN}**2 =1 (NQN)+ (N ® N)i°2.

Here we used the classical notation { N ® N } to denote the matrix defined by { N ® N }ee/ yupr = X’ X’ }
(see for instance [Chari and Pressley 1994, Section 2.2.A] for details on this notation).

Denote the Poisson variety (C[SL;], {-, - }1:¥2) by C[SL;]°!*2. Note that {-,- }*1-¥2 = —{. .} 781782,
By [Korinman 2019, Lemma 4.1], the coproduct A: C[SL,]1:¥2 — C[SL,[!*¥ ® C[SL,]~%*2 and the
antipode S': C[SL,]¢1:¥2 — C[SL,]~%1-7%2 are Poisson morphisms. In particular, the Poisson brackets
{-,-3>% and {-,-}" are the only ones which endow SL,(C) with a Poisson-Lie structure.

3.1.2 The triangle Consider the triangle T and fix an orientation o of each of its three boundary arcs a,
b and ¢. We will use the notation s(«x) = ¢(8) :=c¢, s(y) =t(«) := b and s(B8) = t(y) := a. Here, for
instance, we think of « as an oriented path joining a point in ¢ = s(«) (source) to a point in b = ¢(«)
(target).

Definition 3.5 The relative character variety of the triangle is the affine variety

Xsi, (T) := {(My, Mg, M) € SLy(C)* | My MgMg = 1}.

(5. 4) 8+ o)
M= (5(_,+) 5(_,_))

the 2 x 2 matrix with coefficients in C[¥sr, (T)]. The Poisson bracket { -, - }° is defined by the formulas
(N3 ® N3} := POV (N; @ Np) + (N5 @ Np)P*C D § e {ar By
{Ny ® NyJ° := —(Ny @ Dr'®@ (1@ Ny),
{N, ® Ng}° := —(N, @ )r° @D (1 ® Np),
{Ng® No}° 1= —(Ng @ 1)r* (1 ® Ny).

Given § € {«, B, y}, denote by

Note that, writing

| (=) =b(+.-)
S(Ng) = (—8(—, +) 8(+, +)) ’
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the last expressions can be rewritten in the form
{Na ® S(Ny)}* = (Na @ S(Ny))r*®,
{Ny ® S(Np)}* = (Ny ® S(Np)r*@,
{Ng® S(Ng)}* = (Ng ® S(Ng))r°©.
Given a boundary arc d € {a, b, ¢}, we define a left Hopf-comodule
ClésL,(T)] — CISLo D) @ Clatsy, ()
( (5(+ +)) AL(5(+, ))) _ {(iﬁti )@ Ns ifs@)=d
Aﬁ (6(— +)) AL 7(6(=.-) © 1® N otherwise.
Similarly, define a right Hopf-comodule AR: C[#sL, (T)] — C[%sL, (T)] ® C[SLy] o) Fod) by
<A§(8(+ +)) ARG+, ))) B {Na ® (T ) if1(8) =
R(— +)) AR 46(=.—) Ns®1 otherwise.
By [Korinman 2019, Lemma 4.6], both Afi and A{; are Poisson morphisms.
3.1.3 The general case Let X be a punctured surface, A a topological triangulation of X, and oA an
orientation of each edge of A. For a face T € F(A), let o be the orientation of its boundary arcs given
by oa. Equip the algg:bra Qrera) Cl&sL, (T)]°T with the Poisson bracket defined in Definition 3.5.
Each inner edge e € €(A) lifts to two oriented boundary arcs in £a :=| |pepa) T- We denote by er,

the lift of e whose orientation coincides with the induced orientation of X A and by eg the other lift. The
comodule maps A]gL and A§R induce the comodule maps

Al Q) C[%SLZ(T)]"T—>( (09 (C[SLZ]_"")@( X C[%SLz(T)]"T),

TeF(A) ecd(A) TeF(A)
M @t (@ clitsr)e( @ cista).
TeF(A) TeF(A) ect(A)

Definition 3.6 The relative character variety ¥sp,(X) is the affine variety whose algebra of regular
functions is the kernel of AL — ¢ o AR,

Lemma 3.7 [Korinman 2019, Theorem 1.4] As a Poisson variety, ¥si,(X) only depends, up to
canonical isomorphism, on the marked surface ¥ and the orientation o of the boundary arcs (so does not
depend on the triangulation A or on op).

We denote by { -, - }° the Poisson bracket on C[¥sy, (X)]. More precisely, in [Korinman 2019], we endow
the variety ¥s1,(X) := Rsr, (Z) /% (which only depends on X) with a Poisson structure, given by a
generalization of Goldman formula, which only depends on 0. We then construct a splitting morphism

A and prove in [Korinman 2019, Theorem 1.4] that we have the exact sequence (29), thus #s1,(X) can
be alternatively defined using Definition 3.6.
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Moreover when X is closed, the Poisson variety &sj,(X) is canonically isomorphic to the “classical”
(Culler—Shalen) character variety with its Goldman Poisson structure [Korinman 2019, Theorem 1.1].

3.2 Relation between relative character varieties and stated skein algebras

The goal of this subsection is to prove Theorem 1.3 which we recall here for the reader’s convenience:

Theorem 3.8 Suppose that ¥ has a topological triangulation A. Let o be an orientation of the edges of
A and o be the induced orientation of the boundary arcs of ¥. There exists an isomorphism of Poisson
algebras

W) (S (). {11 = (ClsL (D)) {0 10).
Moreover, the above isomorphism exists for small punctured surfaces (see Definition 2.8), for which it
only depends on o.

We first prove this theorem for the bigon and the triangle, then we prove the general case using a topological

triangulation.

3.2.1 The case of the bigon Let

M= %) Ne= (T ) and C= 01
Oy o—_ X_p X__ —-10
be three matrices with coefficients in ¥ (B), C[SL;] and C, respectively.

Lemma 3.9 For ¢1,¢&, € {—, +}, there is a Poisson isomorphism

W2 (S 1 (B), { -, }) => C[SL,yJ*1-*2
defined by
N if (¢1,€2) = (=, +),
CNC if (e1,8) =(+,-),
—CN if (81, 82) = (+, +),
—-NC if (81, 82) = (—, —).

WEe2 (M) =

Proof That W®!-*2 is an isomorphism of algebras follows from the fact that det(C) = 1. Let us see the
compatibility of W1-¥2 with the Poisson structures. For (g1, &;) = (—, +), this follows from a direct
comparison of Definition 3.4 and Example 2.54. Indeed,

(N®N} T =F (N®N)+(N®N)Fit
=(FQE-EQF)(N®N)+(NQN)YE®F—-FQE)

_ 0 X4+ X4— 0 _ X4— 0 0 X4+
~()e (o) ()2 ()
0 0 X4 X__ X4 X__ 0 0
+(x++ X+—)®( 0 0 ) ( 0 0 )®(X++ x+—)'
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We recover the formulas computed in Example 2.54. For (g1, €3) = (4, +), we prove that the isomorphism
¢: C[SL,]t =5 C[SL,]Tt given by ¢ := W+ o (>F)~1 is a Poisson morphism. Note that
@(N)=—CN and that (C ® C)i®* =7~ ¥(C ® C). It follows that
lp(N) @ p(N)} "+ =7 (CN ® CN) +(CN ® CN)7 ™"
=(C®C)F (N®N)+(N®N)it)=9®2(N@N}~™),

which proves the claim. The two remaining cases for (¢1, £;) are proved similarly. O

3.2.2 The case of the triangle For § € {«, B, y}, let
S+ G- 8+, ) $(+.-)
M .= (8_+ 5. and Nj:= S(—. +) 8(—.—)
be two matrices with coefficients in ¥11(T) and C[Xs, (T)], respectively.

Lemma 3.10 There is a Poisson isomorphism W°: (¥4 1(T),{-,-}*) = (Cl%s1,(T)].{-.-}°) defined
by

Ns if (o(s(@)), 0(z())) = (—. +).

CNsC  if (o(s(@)), o(t(@))) = (+. ).

—CNs if (o(s(@)), 0(t(@))) = (+, +),

—NsC if (o(s(@)), 0(t(@))) = (—. ),

foreach § € {«, B, y}. Moreover, if d € {a, b, c} is a boundary arc of T, the following diagrams commute:

V(Ms) =

S (T) —20 s % (B) @ Sy (T) P (T) —20 s F, () ® 41 (B)
gl\po gl\pa(d).—a(d)@q,u gl/\po gl/q,o®q;—a(d).a(d)
Cltsi, (T)] —% C[SLy]® Clési,(T)]  Cls, (T)] —% Clese, (T)] @ C[SLy)]

Proof That W° is an algebra morphism follows from Lemma 2.29. For § € {«, B, y}, the equality
(W°)®2 ({8, Suw$°) = {¥°(8esr), ¥ (Spuu)}’ follows from the same computation that the proof of
Lemma 3.9. For o(a) = o(b) = o(c) = +,

{No ® N, }* = —(Nq ®]l)(%H®H+2E®F)(]1®Ny)

_ ! (a(+, +) —a(+, —)) o ( y(H 4 y(+-) )
2 Ol(—,+) —Ol(—,—) _V(_’ +) —V(—»—)

(0 a(+.+) 0 0

We recover the formulas of Example 2.55; hence (W°)®2 ({ager, Y }°) = {W°(teer), WO (yup)}*. We
get similar formulas by permuting cyclically the arcs y, f and «. This proves that W° is a Poisson
morphism when o(a) = 0(h) = o(c) = +. For another choice o’ of orientation of the boundary arcs, we
prove that W is Poisson by showing that the isomorphism W o (W°)~! is Poisson. This follows from a
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similar computation to the one in the proof of Lemma 3.9 by using the fact that (C Q C)r® =r~*(C ®C).
The fact that the two diagrams in the lemma commute follows from a straightforward computation. 0O

3.2.3 The general case: proof of Theorem 1.3 Consider a topological triangulation A of a punctured
surface X, together with a choice o of orientation of its edges. Consider the commutative diagram

L_goAR

0 —— Ef’+1(2) — 2 @I (T) —22 s (®c41(B) ® (®1F41(T))

JIp(Aoa): 5 = ®Tq,aqu= CA +)®(®T\PU(T))l

~ A o

0 — Cltsi,(2)] — @rClsi,(T)] 2255 (,CISLa| ) @ (®1Clitst, (T))
In this diagram, both lines are exact and all morphisms are Poisson by Lemma 2.47 and [Korinman 2019];
hence there exists a unique Poisson isomorphism W(2-24): (¥, (), {-,-}¥) => (C [XsL, (2], {-.-}°)
induced by restriction of ®T wo(T) | This concludes the proof.

3.3 Relative spin structures and explicit formulas

The goal of this subsection is to give an explicit formula for the morphism W(4-°4) when evaluated on
the generators of ¥;1(X). A key point is to have a global method to compute some signs that depend
on the combinatorial data (A, 0a). We provide such a method by introducing the notion of relative spin
structure, which gives a geometric interpretation these signs. We end the section by relating the NACGLIY)
with the morphism of [Costantino and L& 2022, Theorem 8.12].

3.3.1 Relative spin structures Since the classical identifications between skein algebras of closed
punctured surfaces and character varieties are indexed by spin structures, it is natural to expect that the
combinatorial data (A, 0a) indexing the isomorphism of Theorem 1.3 encode a generalization of the
notion of spin structures which would have a good behavior for the operation of gluing boundary arcs
together. Before defining this notion, we introduce some notation.

Notation 3.11 (1) In this subsection, ¥ = (X, %) will denote a triangulable punctured surface, o
an orientation of its boundary arcs and (A, 0A) a combinatorial data, and we equip Xy with a
Riemannian structure compatible with the orientation. For each boundary arc a, we fix a point
vg € a. If 0¥ # &, we write V := {v,}, where a runs through the set of boundary arcs. If ¥ is
closed, we fix an arbitrarily point v, in each connected component a of Xg and write V := {vg},.

(2) Let 7: ULy — Xy denote the unitary tangent bundle. For v = (v,u) € U X, we denote by
—v = (v, —u) the vector with opposite orientation. Let 951/ 2.3 — — be the class in I1; (U Zg) of
a path making a half-twist in the fiber over () in the direction given by the orientation and write
0; = 5/291/2 For simplicity, for a path «: T; — U, we will write 8!/ and «6!/2 instead of
01%?0{ and a@d 2/ 2 with no confusion possible. When 0% # @, for each boundary arc a, we denote
by 1, € U Xy the lift of v, pointing in the direction of 0. When X is closed, we fix an arbitrarily

lift v, of each v,. We write @4_ = {U4}q and V= {Va, —Vg}a.
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Definition 3.12 A relative spin structure on X is a functor W € Hom(I1{ (U X, %A’+), 7,/27) such that
W(0;) =1forall v e WA/JF. We denote by Spin(X) the set of relative spin structures on X.

Remark 3.13 When ¥ is closed and connected, an element W € Spin(X) is a group morphism
W ni(UZgp, 6:) — Z/2Z such that W(05+) = 1. Since Z/2Z is abelian, such a morphism is
equivalent to a group morphism W :H(U X4, Z/27) — 7./ 2Z satistying W([6]) = 1. Such a morphism
W defines a regular double covering U of U Sy such that the covering on each fiber is nontrivial. Since
Spin(2) is the only nontrivial double covering of SO(2), the space U is the total space of a Spin(2) fiber
bundle over Xg lifting the bundle of orthogonal frames induced by the metric; hence it defines a spin
structure. There is actually a one-to-one correspondence between isomorphism classes of spin structures
and such morphisms W (see [Milnor 1963] for details). Therefore a relative spin structure is the same
as a “standard” spin structure in the closed case. When the surface has nonempty boundary, an element
W € Spin(X) still induces a group morphism W, thus a spin structure. However, the functor W contains
more information than W which permits to “glue” relative spin structures together.

Let a and b be two distinct boundary arcs of ¥ and denote by p: X3 — Xg|,4p the projection. Write
¢ := p(a) = p(b). We assume that

(1) the restriction p: Xg \ (a Ub) — Zgp|up \ ¢ is an isometry,

(2) the restriction p:a — ¢ and p: b — ¢ are isometries, and

(3) the orientations o of @ and b coincide when gluing the arcs and p(v,) = p(vp) =: ve.

The projection induces a lift v, € U X3 |44p of v, and a functor

P T (UZg, Vi) = T (U g |asp, VI U (50)).

Lemma 3.14 For W € Spin(X), there exists a unique W | zup € Spin(X|,4p) such that

W anp (px () = W(a)
forall o € T1; (U X, V3).

Proof Note that the image of p, generates the groupoid I1; (U o |45, @i#b U {¥.}) in the sense that
any path « € I1; (U X | g8p, \7_‘,1_#[’ U {¥¢}) can be written as a composition & = py (1) -+ p«(ay) for
some «; € [1{(U Xy, @+). Hence for W e Spin(X), there exists a unique functor

W L (U Slan, Vi U (0c)) > /22

such that W (7« () = W(a) for all @ € T1;(UEg, V), and W |44 has to be the restriction of W to
the full subcategory I1;(U 2 | 445 @sl_#b). o

Note that the map 7,45 : Spin(X) — Spin(Z|,4p) sending W to W | ,p is surjective but not injective. Indeed
when lifting a functor in Hom(I1; (U X, %7_,_), 7Z/27) to a functor in Hom(I1; (U X, WA/_F U{V¢}), Z/27,)
there is a 7Z /27 ambiguity. Note also that if a, b, ¢ and d are four distinct boundary arcs, one obviously
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has rgup © Fegd = Tend © Faup- In particular, once some combinatorial data (A, o) of X are fixed, any
relative spin structure on X can be obtained by gluing some relative spin structure on each face of the
triangulation.

3.3.2 Lifts of embedded curves and the function w Let us call embedded arc a smooth embedding
a:[0,1] = X such that @(0), x(1) € 0Xe. To any embedded arc and any simple closed curve, we
associate two lifts in U X g as follows.

For o an embedded arc oriented from the boundary arc « to the boundary arc b, we isotope « (in the class
of embedded arc) such that «(0) = v,, a(1) = vy, the vectors a’(0) and /(1) are tangent to a and b,
and such that «’(0) points in the direction of a opposite to the orientation induced by the orientation of
Y and ’(1) points in the direction of b induced by the orientation of Xg. The positive lift of a is the
homotopy class @t € T (U =g, WA/) of the continuous map ¢ — («(z), o' (2) /]|’ @)])).

For v a point in a boundary arc a, we write o(v) = 0 if the orientation of a agrees with the induced
orientation of g and o(v) = 1 otherwise. The o-lift &° € I11(U X, WA/+) is defined by the formula

30) et = (91/2)l—o(s(a))&o(e1/2)u(t(a))'

Let y be a smooth embedded curve and v € V. We define 7, as the as the homotopy class of a map
t— (,B(t), ﬂ’(t)/||,3’(t)||) where 8 is a smooth immersion §: [0, 1] = Xg which is isotopic to y such
that 8(0) = v = (1) and B’(0) points in the direction induced by the orientation of the surface for 7,
Similarly, we define 7 as the homotopy class of a map 7 — (B(¢), 8'(¢)/[|B(¢)||) where this time S'(0)
points in the direction of o for ;. If X is closed and y is in a connected component b, we impose that
PF = P9 is defined from an immersion B such that (8(0), 8’(0)) = vp.

Notation 3.15 For W € Spin(X) and « an embedded arc, we write w(«) := W(&°) € Z/27. For y a
closed curve we write w(y) := W(yy).

Remark 3.16 The value w(y) associated to a closed curve is obviously independent of the choice of
the point v. Moreover, as noted in Remark 3.13, the value W(y) only depends on the homology class
[y°] € Hi(U Xg; Z/27Z) and is closely related to the Johnson quadratic form as follows. Let {y;}i=
be a collection of simple closed curves. Johnson [1980, Theorem 1.A] proved that the class

n
y = Z P71+ nl0le Hy(UXp; Z/2Z)
i=1
only depends on the homology class of x := > ;_,[yi] € H1(Z9; Z/2Z); hence the assignation x > y
defines a map (not a morphism) H; (Xg;Z/27) — H{ (U Xg; Z/27). Moreover, for a (relative) spin
structure W, Johnson [1980, Theorem 1.B] proved that the map w: H;(X9; Z/27Z) — 7 /27 defined by
o(Xiziv]) :=n+ Y j—; w([y:]) (mod 2) satisfies the relation

o(la+ ) = () + o(B]) + ([«]. [B]):
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hence w is a quadratic form for (H{(2g¢;Z/27),{-,-)}), where (-, ) represents the intersection form.
Thus the values w(y) in Notation 3.15 are related to the Johnson quadratic form of the underlying spin
structure by w([y]) = w(y) + 1 (mod 2).

3.3.3 Relative spin structures associated to combinatorial data In order to assign a relative spin
structure to some combinatorial data (A, o) in a canonical way, we need to assign to each triangle T,
equipped with an orientation o of its boundary arcs, a canonical relative spin structure and then glue the
triangles along their faces. Let o,  and y be the three paths in Figure 3 which generate the groupoid
IT, (T, V) with relation yBa = 1. Note that for any choice of o, one has the relation p°T ,3°T a°T =672,
Hence a relative spin structure W on T is described by three elements W (&°T), W(,é“T ), W(p°T)YeZ/2Z
such that W(&°T) + W(/§ °T) + W(p°T) = 0. Therefore there exist four different relative spin structures
onT.

Definition 3.17 The distinguished relative spin structure on T is the relative spin structure W such that
W T) = W(B"T) = W(p°T) = 0. For X a punctured surface with combinatorial data (A, 0p), we
associate a relative spin structure W (4-°4) e Spin(X) by gluing together the distinguished spin structures
on the faces of the triangulation.

Note that the distinguished relative spin structure W on T satisfies w(a) = w(8) = w(y) = 0 and
we ) =wBH)=wy)=1

Remark 3.18 Since we associate to each face a specific (named distinguished) relative spin structure,
there is no reason to believe that every spin structure on ¥g can be associated to some combinatorial data.
Moreover we will not investigate under which condition two combinatorial data induce the same relative
spin structure. Novak and Runkel [2015] showed that any spin structure on a surface can be encoded by
the combinatorial data consisting in a triangulation (with no degenerate face), an orientation of the edges
and a choice of distinguished vertex for each face. Moreover they proved that two such combinatorial
data induce the same spin structure if and only if they can be related by a sequence of elementary moves.
It would be interesting to compare their approach to Definition 3.17.

We now state an explicit formula for the values w(«) associated to a relative spin structure W (&s0a),
For each edge e € €(A), fix a point v, € e and let VA = {Veteet(n)- When 0X # &, we assume that
VAN 0X9 = V. When X is closed, we assume that V C VA, Let Ve € UX g be the lift of v, oriented in
the direction of 0 and set @ﬁ = {T | e €€(A)} and VA := {T,, T, | e € €(A)}. Note that the set

G2 = {(@H)E, (BDEL (POHE T € F(A)}

generates the groupoid I1; (U Zg, \% ﬁ). By definition of the gluing operation, the functor W (8-04) js the
restriction of the functor W € Hom(IT{ (U X, Vﬁ), 7Z./27) characterized by

W (@) =W (BT =WEer) =0
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for every face T and V[N/'(Q;,) =1 for any v € @_ﬁ Set GA := n(@ﬁ) = {a%l,ﬂ%l, y{rtl;T € F(A)}
and for § € G2 apath in T, write w(§) := W(S"T). Hence w(8) =0if 6 = at, Bt or yT and w(§) =1
if § =ag!, Bl orygpl.

Let o be either an embedded arc or a closed curve and choose a decomposition

3D o =00y, aieGA,

such that either «; and «;+1 lie in different faces T; # T;4+; of A, or T; = T;4 is a degenerate triangle,
with two boundary arcs glued together to give an arc ¢ in Xg, and o;o; 1 crosses ¢ = t(®;) = s(j+1)
transversally. In the above statement, the indices i are taken in Z/nZ when « is a closed curve. Note
that such a decomposition is obtained by isotoping ¢ transversally with minimal intersection to the edges
of the triangulation, and then cutting « along the edges. For (T, o) a triangle with oriented edges, a an
edge and v, € a, recall that we write oT (v,) = 0 if the orientation of a corresponds to the orientation
induced by the orientation of T and write o1 (v;) = +1 otherwise.

Lemma 3.19 The function w associated to the relative spin structure W (8-04) js characterized by the
formula
S w(e) + 021 o, (t(;)) (mod 2) if « is an embedded arc,

wie) = {Z?Zl w(og) + Y 7=y oT, ((;)) (mod 2) if « is a closed curve.

Proof First note that for the positive lifts,

This equality follows from the fact that the embedded curve chosen to represent @+ can be isotoped
such that it crosses tangentially the edges of A in such a way that, when cutting along the edges, one
obtains the composition de ---@;F. Note also that this equality is essentially [Costantino and L& 2022,
Proposition 8.11]. Recall from (30) that &I.’L = (91/2)1_"(3(“"))&1? (61/2)0((@)) and note that, since we

assume that the faces T; and T; 4 are distinct,

(1 —or,; (t(@i))) + o, (s(i+1)) = 207, (s(i))

(where indices are understood modulo # when « is a closed curve). When « is an arc, we thus obtain the
equality
GG = pXi=1 om, (@) (g1/2) 1ol (@) g+ (g 1/2)0( (@)
from which we deduce that
w(a) — W(&a) — W((9—1/2)l—a(s(ot))&—l—(9—1/2)a(t(a)))

= W(Q_er'l;ll oT; (t(oci))&?Tl o &ZT”)

n—1 n
=3 o, (1)) + 3 wle) (mod 2).

i=1 i=1

The computation when « is a closed curve is done in the same manner. O
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3.3.4 Explicit formulas for the isomorphism In order to describe the isomorphism W(2:°a) of
Theorem 1.3 more explicitly, let us recall from [Korinman 2019] a set of generators for the ring of
regular functions of the relative character varieties.

For o an embedded arc, seen as a path in the fundamental groupoid, and ¢, ¢’ = =, the regular function
Fy,,, € C[¥s1,(Z)] is defined on the class [p] of a functor p € RsL, (Z») by

_ (Fays(p) Fa+(p))
p() (Fa_+(p> Fu ()

For y a closed curve, represented by an arbitrary path y, € IT{ (X, V), one defines F) € C[¥sp,(Z)]
by Fy([p]) := Tr(p(yv)). Since the trace is invariant by conjugacy, the value Tr(o()y)) does not depend
on the choice of base point v nor on the representative p in the class [p]. The functions Fy__, and F),
generate the algebra C[¥sy, (X)]. For « an arc, we set

. FOl++ FOl+_
Nec:= (Fw_+ Fa

the 2 x 2 matrix with coefficients in C[¥sr, (Z)]. Note that
Fo _ —Fy _)
Ny-1 = .
o (_Fa—+ Foyy
For @ an embedded arc and ¢, ¢’ = +, we denote by s € F11(2) the class of the arc o with state ¢ at

s(a) and &’ at £(a). We write
M. = ¥+ 9+=
«r —yp O——

the 2 x 2 matrix with coefficients in ¥41(X). Note that

Ot Oy
Myt = (Mo)T = (a+_ a__).

Recall the isomorphism W(2-°4) of Theorem 1.3 and recall that C~! = ((1) _(1)).

Theorem 3.20 For each embedded arc o,
(32) \IJ(A’OA)(MO[) — (—l)w(a)(C_l)l_o(a(o))Na(C_l)o(a(l)).
For each closed curve y,
A, —
(33) Ao () = ()PP F,,
Remark 3.21 When X is closed, recall from Remarks 3.13 and 3.16 that W (2-°4) is a standard spin
structure associated to a quadratic form @ such that w(y) = w([y]) + 1. Hence in the closed case,

the isomorphism W(2-24) coincides with the “standard” isomorphisms described at the beginning of
Section 3.1.
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Recall that W(2-°4) is defined by the diagram

i A
F11(Z) ——— @1%4+1(T)
(34) \p(A.oA)\Lg T lI/UTl/g
iA
Cl¥s1,(2)] —— Q1 C[%sL,(T)]
For x € $11(T), we still denote by x the element in @ %41 (T) having 1 in the factors ¥4 {(T') for
T’ # T and x in the factor &, {(T). Hence for § € G? a path in T, the matrix Mj is considered as a

2 x 2 matrix with coefficients in @ T %41 (T). Similarly, the matrix Ny is considered as a 2 x 2 matrix
with coefficients in ® 1 C[Xs1, (T)].

Proof We first show that if (32) holds for an arc «, then it holds for «~!. This follows from the fact that
w(a™ ') = w(a) + 1, from the equalities (C~!1)T =C and A~! = —C~1ATC~! for 4 € SL,(C), and
from the computation
W(My-1) = \IJ(MJ) — (_l)w(ot)cﬂ(t(a))(Na)TC1—0(S(04))

— (_l)w(a)—i-l (C—l) 1—o(s(a™1)) (_C—l NJC—I)(C—I)o(t(a_l))

— (_l)w(ot_l)(Cv—l)l—a(s(ot_l))]va_1 (C—l)o(t(ot_l))'
Next let us prove the theorem for the triangle T. The fact that (32) holds for the arcs e, BT and yT is an
immediate consequence of the definition of W°T in Lemma 3.10 and from the definition of the canonical

spin structure in T. By the preceding arguments, (32) also holds for the arcs ozq_rl, ,Bfl and yp 1 and the
theorem is proved for T.

In the general case, consider an arc o and choose a decomposition
o= 0y, eG4,
as before. By the gluing formula for stated skein algebras [Lé 2018, Theorem 3.1], i A (My)=My, -+ My,
By definition of the morphism i 2 in (29), i 2(Ng) = Ny, -+ Ng, . By the preceding case of the triangle,
(@TYT)(My,) = (_1)w(ai)(c—l)1—01r,~ () (C™hHom; (t(a)
Hence, by Lemma 3.19,
(@TW°T)0i Y (My) =i 2 (=)@ (CTH)! @ N (71t @)),

and (32) follows from the commutativity of the diagram (34). The proof for a closed curved is done
similarly by taking the trace of the above equality. |

3.3.5 Comparison with Costantino and Lé&’s isomorphism Let X be a connected punctured surface
with nontrivial boundary. Costantino and L& [2022] defined the twisted character variety x(X) as the
space of functors p € Hom(IT{ (U X3, @), SL,(C)) such that ,6(91/2) = C~! forany v € V. Let &

v
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denote the maximal spectrum of ¥4 1(X). For x € &, seen as a character x: ¥+1(Z) — C*, and for @ an

[ xlag4) x(aq—)
x(@) = (x(a+_> x(a__))‘

oriented arc, write

Costantino and L& [2022, Theorem 8.12] defined an affine isomorphism ©: ¥ =5 x(X) sending a
character y to a functor p such that x(o) = p(@™) for any embedded (even immersed) arc and such
that x(y) = Tr(p(pT)) for any closed curve. Composing ® with the isomorphism induced by W(A-04)
one obtains an isomorphism ¥sp,(X) = x(X). By Theorem 3.20, this isomorphism sends a functor
p € Hom(IT{(Zg, V), SL,(C)) to a functor p € Hom(IT{ (U Zg, WA/) SL,(C)) characterized by the
formulas ,o(a") = (=1)*@ p(a) for any arc o, Tr(5(7°) = (—=1)®¥) Tr(p(y)) for any closed curve y
1/2 —1
and ,0(9 )= for any v € V.

3.4 C(lassical Shadows

Suppose that w € C is a root of unity of odd order N > 1. A central representation of the stated skein
algebra is a finite-dimensional representation r: 5, (X) — End(V) which sends each element of the
image of the morphism j of Theorem 1.2 to scalar operators. Fix a topological triangulation A of X
and an orientation o of its edges. Then r induces a character on ¥4 (X) ~—=— ‘I’(A 7 C[¥sL,(X)] and this
character induces a point in the relative character variety &sp, (X) that we call the classical shadow of r,
as in [Bonahon and Wong 2016] in the closed case. By definition, the classical shadow only depends on
the isomorphism class of r.

To motivate the results of this paper, we list three families of central representations. First, irreducible
representations are obviously central. Then choose for each triangle T € F(A) an irreducible representation
T 4,(T) — End(Vr) and consider the composition

e (S) 15 QR Fu(T) 817, End(®@7 V).
TeF(A)
Such a representation is central and were called local representations in [Bai et al. 2007]. Eventually,
consider the balanced Chekhov—Fock algebra %, (X, A) defined in [Bonahon and Wong 2011] after the
original construction of [Fock and Chekhov 1999]. Given a triangulated marked surface, Bonahon and
Wong [2011] defined an algebra morphism (the quantum trace) Tr: 5, (X) — %, (2, A) (see also [Lé
2018]). One motivation is the fact that the representation theory of the balanced Chekhov—Fock algebra
is easier to study than the one of the skein algebras (see [Bonahon and Liu 2007; Bonahon and Wong
2017]). For an irreducible representation 7 : %, (X, A) — End V' of the balanced Chekhov—Fock algebra,

we call the quantum Teichmiiller representation, the composition
r S (D) 25 %4, (2, A) %> End(V).
Quantum Teichmiiller representations are central.
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Appendix Proof of Proposition 2.38 and an application

A.1 Proof of Proposition 2.38

We divide the proof of Proposition 2.38 into five lemmas.

Throughout this section, we write 4 := w~2. Denote by A = ([0, 1] x S, {p, p’}) the annulus with
punctures p ={0}x{1}and p’ = {1}x{1} in each of its boundary components and let b = {0} xS '\ {p} and
b’ ={1}xS"\{p'} beits boundary arcs. Let y C [0, 1]xS! be the curve {%}XSI. Let 5™ n™ o0, 1]xS!
be the arcs with endpoints b and b’ such that §® spirals n times in the counterclockwise direction and 7™
spirals n times in the clockwise direction while oriented from 4’ to b. The arcs are drawn in Figure 7. By
convention, §(® and r](o) represent the empty diagram. Denote by B the arc [0, 1] x {—1}. By convention,
if o is one of the arcs B, 8™ or n™, we denote by g € %, (A) the class of the corresponding stated
tangle with sign ¢ in b and ¢’ in b’. The following lemma and its proof are quite similar, though stated in
a different skein algebra, to [L& 2015, Proposition 2.2].

Lemma A.1 In ¥,(A), the elements Ty (y) and B, commute.

Proof First note that a direct application of the Kauffman bracket skein relations implies that

y 8% = A5UHD 4 4718 and y ") = an@TD 4 a7y

ge’ ge’
when n > 1. Next we show by induction on n > 0 that 7,,(y) - Beer = A”Sé’;,) + 47" ng? The statements
is an immediate consequence of the definitions when » = 0 and a direct application of the Kauffman

bracket relations when n = 1. Suppose that the results holds for n and n 4 1. Then

Tu2(V)Beer =V - Tuv1(¥) - Beer — Tu(y) - Beer
=y (An+18(n+1) + A—(n+1)n("+1)) _ (An(s(n) + A—nn(n))

eg’ ee’ x4 eg’

:An+25(”+2)+A—(n+2) n+2

ee’ Nee' >
and the statement follows by induction. Similarly, we show that B¢ - Ty, (y) = A_”ng/) + 4" 772}2 Hence,
— N N
TN () Beer = Beer- TN (y) = (AN = 47N =) = 0. 0

by

A 0 0
(O "
b1b3

Figure 7: The annulus A, the square Q and some arcs and curves.
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Denote by Q the square, ie a disc with four punctures on its boundary. Let by, . .., b4 be its four boundary
arcs labeled in the counterclockwise order. When gluing b; along b3, we obtain the annulus with b, sent to
b and by sent to b’. We denote by i |p, 4p, : S (A) — %, (Q) the gluing morphism. Let &, B, §0 ™o
be the arcs which are glued together to form y, 8, 87 and n™, respectively, as in Figure 7. Fix an
arbitrary orientation o of the boundary arcs of Q and consider the filtration (%,),,>0 associated to
S = {by, b3} of Definition 2.11. Write d : %,,(Q) — Z=° the corresponding map and G, := F, / Fu_1
the corresponding graduation.

Lemma A.2 It((gy + o)) =(Tn(assr +a__)) = aL +aolN .

Proof First note that in 4,4, we have o _a 4 = g?a+ya_—. So it follows from Lemma 2.27 that
in %, n, we have It((aq4 +a__)N) = aer + o . Since Ty (X) — X is a polynomial of degree

strictly smaller that N, the degree of T (o4 + +o—_) — (44 + a—_)" is strictly smaller than 2N ;
thus It(Tn (044 +o——)) = lt((e++ + O(__)N). O

Let o™ be the diagram made of n parallel copies of or. Using the identifications 9§ ™ = dn™ = 9™ U,
we denote by 58')8 &) ngl)s &) € %, (0) the classes of the tangles § and ™ with states given by a state

s of ™ and a state (e, &) of B.

Lemma A.3 For 0 <n < N and s a state of o™,

([, 5], Bee')) = (A" = ATB( )= e o).

(s.8,6) " Ns,e.6

where we used the notation [x, y] = xy — yx.

Proof The diagram obtained by stacking o™ on top of B has n crossings and thus 2" resolutions using
the Kauffman bracket relation. We remark that the resolution obtained by replacing each crossing by x
1s A”Sg")ss &) while the resolution obtained by replacing each crossing by J( is A_”ng',)s, &) These two

resolutions have degree 27 and all the others resolutions have degrees strictly smaller; thus

lt([a(”),s]-ﬁgg/) — gng™ ) +A_n77(n)

(5,8, (s,8,8)"

)

(s,8,8")

We similarly prove 1t(Bss -[@ ™, s]) = A_”c?(")g’s,) + An

s and conclude by taking the difference. O

Lemma A.4 If x € $,(Q) is a polynomial in $,(Q) in the elements «gs such that d(x) < 2N and
such that x commutes with all elements 8, -, then x is a constant.

Proof Let x = ) ;.7 x;[a",s;] be the decomposition in the basis of stated tangles with increasing
states s5; and denote by 2n < 2N its degree. Suppose, for the sake of contradiction, that n # 0. Let
J={jel|ni=n}Cl,solt(x)= Zje.l xj[a”,s;]. The hypothesis on x and Lemma A.3 imply that

0 =1t([x, Bee']) = Y X7 (A" = AT)ER 1 oy = 1o o o)
JjeJ
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(n)

Since the elements 5 and 1, o)
YERZ)

(51 .£.6") are linearly independent for n > 1, we conclude that
YERZ)

Xj(An —A™") =0

forall j € J. Since 0 <n < N and N is odd, we obtain that x; = 0 for all j € J thus lt(x) = 0. This
gives the contradiction. |

The set B := {aﬁ+ai+ai_,a, b,c >0} U {aZJraf_ocﬁr_,a, b,c > 0} forms a basis of the algebra
S (B). This fact is Exercise 7 in Chapter IV, Section 6 of [Kassel 1995], and is proved as follows. Choose
an orientation o of the boundary arcs of B such that b7, and b points towards different punctures and
consider the filtration associated to S = {br,, bg}. For each element of the basis %°, there exists exactly
one element of %’ which has the same leading term. For x € ¥,,(B), denote by ¢(x) € R the coefficient
of 1 in the decomposition of the basis %'.

Lemma A.5 c(Tn(o44++a——))=0.

Proof Letn > 1 be an odd integer and let us show that ¢((o¢4+ +a——)") = 0. The proof will then follow
from the fact that T (X)) is an odd polynomial, thus is a linear combination of such elements, and the
fact that ¢ is linear. The product ((e++ + a——_)") develops as a sum of terms of the form x = x1 --- x,
where x; is either a4 or o—_. Using the defining relations of ¥, (B), we can further develop each term
x as a linear combination of terms of the form o% +ai +a5’r_ and o4 +oeb _ozﬁ’r_ where 2a + b has the

same parity as zn. Since # is odd, each of these summands satisfies b # 0 so ¢(x) = 0. |

Proof of Proposition 2.38 Consider the element x := Ty (044 +a—_) — af L= oN €%,(0). By
Lemma A.2, its degree is strictly smaller that 2/N. By Lemma A.1, in ¥, (A) the elements 7 (y) and
Beer commute. The image through the algebra morphism 7|5, 4p, : 0 (A) — F,(Q) of Tn(y) and Bee
are respectively T (c4++ + o——) and S, thus they commute. By Lemma 2.36, the elements ozf 4 and

aN_ also commute with Beer SO x commutes with each element 8,.,. Lemma A.4 implies that x is a

constant and Lemma A.5 implies that this constant is null. |
A.2 A generalization of a theorem of Bonahon

Proposition 2.38 provides the following generalization of the main theorem of [Bonahon 2019]. Let <4 be
an R—algebra and p: Cq[SL2]®k — 9 be a morphism of algebras. Let p; be the i component of p. For
1 <i <k, consider the following two matrices with coefficients in «{:

e (,Oi(ol++) ,Oi(Ol+—)) AN (pi(a++)N pi (06+—)N)
= , = .
pi(a—1) pi(a—-) i pila—p)N pi(a—)N
The following proposition was proved in [Bonahon 2019, Theorem 1] in the particular case where
pi(ag—)pi(ea—4) =0foreachi e {l,... k}.
Proposition A.6 If g is a root of unity of odd order N > 1, then

N N
Tn(Tr(A; - Ag)) = Tr(AN - 4.
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Proof By Proposition 2.38 and using that both p and the (k—1) coproduct

A®=D: C,[SLy] — C,4[SL,]®*

are morphisms of algebras,
Tnyopo A(k_l)(oz++ +oa__)=po A(k_l)(aiYJr +aoV).
We conclude by remarking that
po A(k_l)(a++ +o__)=Tr(Ay---A4A;) and po A(k_l)(af+ + ozj_v_) = Tr(A(lN) ---A,(CN)),

where the second equality follows from the fact that jg is a morphism of Hopf algebras (Lemma 2.28),
hence commutes with A1) O
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