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Commensurators of thin normal subgroups and abelian quotients
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We give an affirmative answer to many cases of a question due to Shalom, which asks if the commensurator
of a thin subgroup of a Lie group is discrete. Let K < � < G be an infinite normal subgroup of an
arithmetic lattice � in a rank-one simple Lie group G, such that the quotient QD �=K is infinite. We
show that the commensurator of K in G is discrete, provided that Q admits a surjective homomorphism
to Z. In this case, we also show that the commensurator of K contains the normalizer of K with finite
index. We thus vastly generalize a 2021 result of the authors, which showed that many natural normal
subgroups of PSL2.Z/ have discrete commensurator in PSL2.R/.
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1 Introduction

Let G be a semisimple Q–algebraic group, and let G.Z/ denote its group of integer points. Roughly
speaking, a subgroup � of G is called arithmetic if it is commensurable in a wide sense with G.Z/;
see Witte Morris [36]. That is, there is an element g 2 G such that the group G.Z/\ �g has finite
index in both G.Z/ and �g. In general, if G is an algebraic group and � < G is a subgroup, we write
CommG.�/ for the commensurator of � in G, ie the subgroup consisting of g 2G such that � \�g has
finite index in both � and �g. The commensurability criterion for arithmeticity due to Margulis [24] (see
also Witte Morris [36]) characterizes arithmetic subgroups of algebraic groups via their commensurators.
A convention we shall follow throughout in this article: whenever we refer to a semisimple Lie group, we
shall mean a connected semisimple real Lie group with no compact factors, unless noted otherwise.
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Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://dx.doi.org/10.2140/agt.2024.24.2149
http://www.ams.org/mathscinet/search/mscdoc.html?code=22E40, 20F65, 20F67, 57M50
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


2150 Thomas Koberda and Mahan Mj

Theorem 1.1 (Margulis) Let G be a semisimple Lie group with no compact factors and let � be an
irreducible lattice in G. Then � is arithmetic if and only if CommG.�/ is dense in G.

Here, we are primarily concerned with the discreteness properties of commensurators of thin groups, a
class of groups which has received a large amount of attention in recent years; see Sarnak [28]. A subgroup
K < G is thin if K is discrete and Zariski dense in G, and if G=K has infinite volume with respect to
the Haar measure on G. Thus, K fails to be a lattice in G only by virtue of having infinite covolume
in G. Natural examples of thin groups arise from infinite-index Zariski-dense subgroups of lattices in G.

In the present manuscript, we continue our previous investigations from [21] of the following question
due to Shalom (see especially Shalom and Willis [33], wherein the problem has its genesis):

Question 1.2 [22] Let K be a thin subgroup of a semisimple Lie group G.

(i) Is the commensurator CommG.K/ of K in G discrete?

(ii) In particular , is the normalizer of K in G of finite index in CommG.K/?

For an infinite normal subgroup K of a lattice � , the two subquestions of Question 1.2 are equivalent.
Indeed, the commensurator of K contains its normalizer, which contains � . Since � is a lattice, we see that
if CommG.K/ is discrete then it is a finite-index superlattice of � . For the other implication, any such K

is discrete and Zariski dense, and thus has a discrete normalizer; cf Lemma 2.1. Since the normalizer of K

contains � and since � has finite covolume, we have that the normalizer of K is itself a lattice. Thus, if the
commensurator of K contains the normalizer of K with finite index then the commensurator is discrete.

Positive answers to Question 1.2 are known for all finitely generated thin subgroups K of PSL2.R/ and
PSL2.C/ (see Greenberg [16], Leininger, Long and Reid [22] and Mj [26]), and for thin subgroups of a
semisimple Lie groups with limit set a proper subset of the Furstenberg boundary [26]. Here, the limit set
is a generalization of the limit set occurring in the theory of Kleinian groups, and is a minimal nonempty
closed invariant subset of the Furstenberg boundary for a group acting on the corresponding symmetric
space; see Benoist [4].

We were thus prompted in [21] to address Question 1.2 when the ambient Lie group is the simplest
possible, viz PSL2.R/, for thin groups whose limit sets consist of the entire Furstenberg boundary,
ie S1 D @H2. More generally, natural examples of thin groups with limit set equal to the Furstenberg
boundary come from normal subgroups of rank-one lattices. This general problem provides the context
for this paper.

1.1 Main result

Since many rank-one arithmetic lattices surject onto nonabelian free groups, every finitely generated group
can be realized as a quotient of an arithmetic lattice. Observe, in particular, that all finitely generated
free groups arise as finite-index subgroups of �.2/, the level-two congruence subgroup of PSL2.Z/, and
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therefore all infinite, finitely generated groups arise as quotients of a rank-one arithmetic lattice by a
thin normal subgroup. This level of generality has led us to impose some natural algebraic conditions
on the quotient Q. We will establish the following result, which handles normal subgroups with “nice”
quotients.

Theorem 1.3 Let � < G be an arithmetic lattice in a rank-one simple Lie group G and let K < � be
an infinite normal subgroup. Write Q D �=K for the corresponding quotient group. Then the group
CommG.K/ is discrete , provided that the group Q admits a surjective homomorphism to Z. Under these
hypotheses , the commensurator of K in G contains the normalizer of K with finite index.

The reader is directed to Theorem 5.1 for the context and proof surrounding the main result. Note
that the hypotheses of Theorem 1.3 are never satisfied for irreducible lattices in higher rank nor for
lattices in the rank-one simple Lie groups Sp.n; 1/ for n� 2, nor in the exceptional group F�20

4
. This

is because lattices in these Lie groups have Kazhdan’s Property (T). Thus, Theorem 1.3 is vacuously
true in these cases. Therefore in the course of establishing Theorem 1.3, we pay exclusive attention to
G 2 fSO.n; 1/;SU.n; 1/gn�2, which give rise to real and complex hyperbolic spaces, respectively, as the
associated symmetric spaces of noncompact type.

In [21] we answered Question 1.2 in the special case that K is the commutator subgroup of � , where
� < PSL2.Z/ is a finite-index normal subgroup of PSL2.Z/ contained in a principal congruence sub-
group �.k/ for some k � 2. We vastly generalize this result, since if K D Œ�; �� has infinite index in � ,
then K falls under the purview of Theorem 1.3.

1.2 Tools and techniques

The main theorems and techniques of [21] are the starting point of this paper.

Preserving lines with holes An important technical tool introduced in [21] was that of a homology
pseudoaction. We adapt it here to the notion of preservation of lines with holes. Let � be a lattice in a
rank-one simple Lie group G, let K < � be a normal subgroup, and let QD �=K. Quite generally, for
g 2G we say that g preserves Q–lines with holes if for all  2 � , there exists N > 0 such that

 n
Š . n/g mod K for all n 2N Z:

The terminology arises from thinking of infinite cyclic groups as “lines” and a finite-index subgroup of
an infinite cyclic group as a “line with holes”. We direct the reader to Section 3 for a detailed discussion.

The usefulness of preserving lines with holes is illustrated by the following purely group-theoretic fact,
which provides a rather general criterion for deciding noncommensurability (see Theorem 3.4):

Theorem 1.4 Let � <G, let K < � be normal , and let QD �=K. If

g 2 CommG K\CommG �;

then Kg WD g�1Kg preserves Q–lines with holes.

Algebraic & Geometric Topology, Volume 24 (2024)
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Harmonic forms and maps The other principal tool used in this paper comes from harmonic forms
and harmonic maps via Hodge theory. These include classical Hodge theory and its L2 analogue for
noncompact manifolds. Preservation of Q–lines with holes, or equivalently, lines with holes in � modulo
the normal subgroup K, can be promoted to something stronger: the harmonic form allows us to convert
the “coarse” lines in �=K into actual maps to R, ie it allows us to “fill the holes” of coarse lines in a
canonical fashion, and thus find canonical G–invariant maps to R.

Discrete patterns Harmonic maps are coupled with the notion of discrete patterns, an idea going back
to Schwartz [30], and which was exploited in proving discreteness of commensurators in Leininger, Long
and Reid [22] and Mj [26]. Throughout the paper, many of our ideas and methods are inspired by the
basic example of arithmetic hyperbolic surfaces as well as the special case KD Œ�; ��, and in some places
we explicate the underlying geometric intuition. In the context of PSL2.R/ and hyperbolic surfaces,
Teichmüller-theoretic notions such as zeros and saddle connections of abelian differentials provide us the
necessary discrete patterns that are preserved by the commensurator when the underlying surface has
positive genus and lines with holes in the integral homology are preserved. Preservation of such discrete
patterns finally ensures that the commensurator is discrete. With the notion of preserving homological
lines with holes in place, the discussion for lattices in SO.n; 1/ and SU.n; 1/ splits into uniform and
nonuniform cases. For uniform lattices, we use Hodge theory coupled with a Lie-theoretic idea that we
learned from Venkataramana [34] and Agol [1]. For nonuniform lattices, we use L2–Hodge theory along
with the fact that preservation of homology lines with holes guarantees the preservation of a discrete
pattern given by horoballs. Discreteness of a pattern-preserving subgroup is an essential ingredient in the
nonvanishing cuspidal cases: see the proof of Theorem 5.1, especially Claim 5.2 therein.

Relationship with existing literature The previous works [22; 26] on discreteness of commensurators
derived discreteness by showing that the commensurator preserves a “discrete geometric subobject” or
“pattern” in the sense of Schwartz [29]. These may be regarded as a collection of geometrically defined
subspaces of the domain symmetric space X. We refer the reader to the appendix for the material on
patterns that will be used in this paper. There is a shift in focus in this paper, as we look at naturally
defined dual objects. The canonical nature of harmonic maps ensures that they are preserved by the
commensurator. We derive much of our inspiration from Shalom’s work [31; 32; 33].

1.3 Structure of the paper

Section 2 contains an account of the general tools from the theory of lattices in Lie groups which we
will need. Section 3 describes preservation of lines with holes in detail. Section 4 introduces the notion
of a discrete invariant set as it arises from classical and L2–Hodge theory. In the same section, the
commensurator of a form is introduced and the construction of an invariant harmonic form is carried out.
Section 5 proves Theorem 1.3.
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Remarks on notation Throughout this paper, we will use the notation K to denote a subgroup a discrete
group. Usually, this will be a normal subgroup of an arithmetic lattice � . In particular, K will generally
not denote a maximal compact subgroup of the ambient Lie group G. We will use N to denote a positive
integer, as opposed to the more common notation of the unipotent subgroup in the Iwasawa decomposition
of a semisimple Lie group. The Iwasawa decomposition will be used briefly in the proof of Claim 5.2,
but no confusion will arise. We will use the exponentiation shorthand for conjugation in groups, so that
Kg D g�1Kg, where K and g are contained in an ambient group. The group G will denote an ambient
Lie group, which will typically be fSO.n; 1/;SU.n; 1/gn�2 unless otherwise explicitly noted.

2 Generalities on discrete subgroups of Lie groups

In this section, we gather some general facts about Zariski-dense discrete subgroups of semisimple Lie
groups which we will require in this article.

2.1 Zariski-dense subgroups and commensurators

We begin with the following general fact about normalizers of discrete groups. The statement and proof
are contained as Lemma 2.1 in [21], and so we omit the proof.

Lemma 2.1 Let G be a simple Lie group and let � <G be a discrete Zariski-dense subgroup. Then the
normalizer NG.�/ is again discrete.

The following well-known fact will be used throughout the paper.

Lemma 2.2 Let G be a simple real group and let H < G be a Zariski-dense subgroup. If H is not
discrete then H is dense.

Indeed, since H is not discrete, the topological closure H of H has the property that the component H 0

of H containing the identity is a Zariski-dense subgroup of G which has positive dimension, and therefore
must be all of G; indeed the tangent space to H 0 at the identity coincides with the tangent space to G,
and so H 0 contains a neighborhood of the identity in G, which generates the identity component of G.
We remark that if G is allowed to be a complex group then one must assume that H is not precompact,
as can be seen from the Zariski density of the unit complex numbers in C for instance.

The following lemma generalizes the corresponding statement in [21] for PSL2.R/.

Lemma 2.3 Let �0 be a lattice in a noncompact simple Lie group G. Let � be a subgroup of G

containing �0 such that there exists an N > 0 satisfying the property that for all g 2 � , we have gN 2 �0.
Then � is also discrete.
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Proof We have that G acts by isometries on an associated symmetric space X of noncompact type.
Since �0 is a lattice, there exists � > 0 such that any semisimple element of �0 has translation length on X

at least �. Since G is simple and � is Zariski dense, it follows that � is either discrete or dense in G. We
argue by contradiction. If � is dense, then since the property of being semisimple is an open condition
and since translation lengths of semisimple elements of G coincide with R>0, there exists a semisimple
element g 2 � such that the translation length of g is less than �=2N . Hence gN is a semisimple element
with translation length at most �=2. In particular, gN 62 �0, which yields a contradiction.

We remark that Lemma 2.3 is false for merely discrete subsets of G, since even the square roots of a fixed
matrix can fail to be a discrete set. If G has rank one then one can allow �0 to be a more general subset of G.

Let G be a semisimple Lie group and let � < G be a subgroup. As usual, we write CommG.�/ to
denote its commensurator in G. We shall need the following special case of a general theorem of
Borel [8, Theorem 2]; see Zimmer [37, page 123]. This will be the only real use of arithmeticity of the
ambient lattice � in Theorem 1.3. Strictly speaking, the statement of Proposition 6.2.2 in [37] is for
the full group of integral points in an ambient group. The reader will note however that the only salient
feature of the group of integral points which is used is its Zariski density. Thus, we obtain the following
conclusion:

Proposition 2.4 Let � <G be an arithmetic lattice in a semisimple algebraic Q–group and let K <� be
a Zariski-dense subgroup. Then CommG.K/ < CommG.�/. Suppose furthermore that the center of G is
trivial. Then CommG.�/ coincides with the Q–points of G.

The hypothesis that G has trivial center in the second part of Proposition 2.4 is crucial. For instance,
the commensurator of SL2.Z/ properly contains SL2.Q/. The reader will observe that throughout this
paper, we will implicitly assume that K is a Zariski-dense subgroup of an arithmetic lattice, though in the
statement of Theorem 1.3, we only assume that K is infinite and normal. This latter assumption implies
that K is indeed Zariski dense:

Proposition 2.5 Let K < � be an infinite normal subgroup of an irreducible lattice in a semisimple
algebraic group G. Then K is Zariski dense in G.

Proof Let ƒ denote the limit set of K. Since K is infinite, ƒ¤¿, since the limit set consists of the
limit points of K in the Furstenberg boundary of G. Let p 2 ƒ. If  2 � then  .p/ 2 ƒ, since K is
normal in � . It follows that ƒ is a closed, nonempty �–invariant subset of the Furstenberg boundary. It
therefore contains all of the limit set of � by the lemma in Section 3.6 of [4]. It follows that ƒ is equal to
the limit set of � .

Since � is Zariski dense, so is K. Else, if K were contained in a proper Lie subgroup H < G, then
ƒ would be contained in the Furstenberg boundary of H , which in turn is not Zariski dense in the
Furstenberg boundary of G. However, the limit set of � is Zariski dense in the boundary: see the remarks
at the beginning of Section 3 of [4], especially the lemma in Section 3.6. This is a contradiction.
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The following technical fact will be used several times in this paper, and we extract it for modularity.

Lemma 2.6 Let K <G be a Zariski-dense subgroup of a simple algebraic group G, and let

KG
D hfKg

j g 2 CommG.K/gi

be the subgroup of G generated by the conjugates of K by g 2CommG.K/. If KG is a discrete subgroup
of G, then CommG.K/ is discrete.

It is a trivial though useful observation that KG < CommG.K/.

Proof of Lemma 2.6 We have immediately that K < CommG.K/, since K normalizes itself. We
therefore conclude that CommG.K/ is Zariski dense and hence is either discrete or dense in G. If
CommG.K/ is dense then there is a sequence gi ! 1 of nontrivial group elements in CommG.K/

converging to the identity. We write Ki D Kgi , and we observe that Ki < KG for each i . Choosing
finitely many elements fk1; : : : ; kmg �K which generate a Zariski-dense subgroup K0<G, we have that
if gi is nontrivial then it cannot fix the entire collection fk1; : : : ; kmg, since then gi would centralize K0,
contradicting Zariski density of K0 and the simplicity of G. However, as i tends to infinity, the conjugation
action of gi on fk1; : : : ; kmg tends to the identity. Thus, viewing G as a matrix group, we have that
fk

gi

1
; : : : ; k

gi
m g converges to fk1; : : : ; kmg in any matrix norm. Since K

gi

0
<Ki <KG , the last of which is

discrete, we have that fkgi

1
; : : : ; k

gi
m gD fk1; : : : ; kmg elementwise for i� 0, and hence that gi commutes

with K0 for i � 0. Again using the fact that K0 is Zariski dense and G is simple and hence center-free,
we conclude that gi is the identity for i � 0. This is a contradiction, whence it follows that CommG.K/

is discrete.

The argument in Lemma 2.6 even shows that only the set[
g2CommG.K /

K
g
0

need be discrete in order to conclude the discreteness of CommG.K/, for an arbitrary Zariski-dense
subgroup K0 <K.

3 Preservation of lines with holes

In this section, we develop some ideas which originate in homological algebra and which play a central
role in this paper, with the goal of producing a criterion for showing that a particular group element does
not commensurate a given subgroup. The historical motivation comes from Chevalley–Weil theory — see
Chevalley, Weil and Hecke [12] and Gaschütz [15] — and which we developed in [21] under the name of
a pseudoaction.

Throughout this section, let � <G, let K < � be a normal subgroup, and let g 2 CommG.�/. We write
QD�=K for the quotient group. Conjugating by g 2G, we obtain groups Kg <�g and a corresponding
quotient Qg WD �g=Kg.
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For  2 � , we shall refer to the cyclic group h i as a –line in � . Further, any finite-index subgroup
hN i of h i— considered for arbitrary  2 � and a positive integer N — will be referred to as a �–line
with holes. For any  2 � and g 2 CommG.�/, there exists a positive integer N such that . g/N 2 � .
Hence, for any  2 � , and g 2 CommG.�/, (the conjugation action by) g sends some –line with holes
to a �–line with holes.

Definition 3.1 The element g 2 CommG.�/ preserves Q–lines with holes if for all  2 � there exists
an integer N > 0 such that

 n
� . n/g mod K

for all n 2N Z. That is, there exists N > 0 such that xm D Œ
mN;g� 2K for all m 2 Z.

Thus if N and .N /g should both be elements of � (which they are after passing to multiples of
a sufficiently large N, since g commensurates �), then one can compare their images in Q D �=K.
If g preserves Q–lines with holes then they must represent the same element of Q. A special case of
Definition 3.1 is given by the following:

Definition 3.2 In Definition 3.1, if we specialize to the case where K is the commutator subgroup Œ�; ��
(so that in particular QDH1.�;Z/), we say that g preserves homological lines with holes in � .

The usefulness of preservation of homological lines with holes will become apparent when one considers
its cohomological consequences in Section 4.1. For now, consider the set of all elements g 2 CommG.�/

that preserve Q–lines with holes. It is not difficult to see that this subset of G is actually a monoid. Clearly
the identity lies in this set. Moreover, if g and h preserve Q–lines with holes, then for all  2 � , there is
an N DN.g;  / such that ŒN ;g� 2K. Then, .N /g D N � k 2 � , so there is an M DM.h; N � k/

such that Œ.N � k/M ; h� 2K. This shows that

NM
� .NM /gh mod K;

which implies that the set of elements of CommG.�/ which preserve Q–lines with holes does in fact
form a monoid. It is not clear that inversion of elements is possible within this set, however. We will not
require this monoidal structure in the sequel, though we abstract out the following fact:

Observation 3.3 Consider the set C � CommG.�/ consisting of elements which preserve Q–lines with
holes. Then C is closed under multiplication of group elements and contains the identity , and is therefore
a monoid. In particular , if K1;K2 � C are subgroups , then the group

hK1;K2i< CommG.�/

is contained in C .

The following is the basic result about preservation of Q–lines with holes.
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Theorem 3.4 Let � <G, let K be a normal subgroup of � , and let QD �=K. Suppose that

g 2 CommG � \CommG K:

Then Kg preserves Q–lines with holes.

Proof Let z 2Kg and let  2 � be arbitrary fixed elements. For N � 0 we have that N 2 � \�g and
.N /z 2 � . Let aD .N /z and b D N . We have that am; bm 2 � for all m 2 Z.

Since z 2Kg and since Kg is normal in �g, we have that

a� b mod Kg:

Hence, for all m 2 Z,
am
� bm mod Kg:

Thus, the commutators
xm WD Œ

mN ; z�D amb�m

have the property that xm 2Kg for all m 2 Z. It is also clear that xm 2 � for all m 2 Z.

Since K and Kg are commensurable, the collection of elements

fxm D amb�m
gm2Z

has the property that for some s ¤ t , the elements xs D asb�s and xt D atb�t lie in the same right coset
of K\Kg in Kg, as follows immediately from the pigeonhole principle.

It follows that there exists an element k 2K such that

kasb�s
D atb�t :

Therefore, we see that
a�tkas

D bs�t ;

which furnishes an element k 0 2K such that k 0as�t D bs�t .

Thus, there exists M D s� t ¤ 0 such that aM � bM mod K. In particular, z preserves Q–lines with
holes, the desired conclusion.

In the sequel, we will be interested in specific cases in which Q–lines with holes are preserved, and
especially the case where Q is the integral homology of �=K.

We now discuss a mild generalization of the notion of preserving homological lines with holes in
Definition 3.2. Let QD �=K be a quotient group. Clearly, H1.Q;Z/ is a quotient of H1.�;Z/.

Let  2 � and let g 2 CommG.�/. There is an integer N > 0 such that f n; . g/ng � � for all n 2N Z.
We can then compare the homology classes of  n and . g/n in H1.�;Z/, and hence in H1.Q;Z/. As
before, we say that g preserves homological lines with holes in Q if for all  2 � , there exists an integer
N > 0 such that for all n 2N Z, the homology classes of  n and . g/n in H1.Q;Z/ are equal.

Let Qab denote the abelianization of Q. Then the condition that g preserves homological lines with holes
in Q is equivalent to saying that g preserves Qab–lines with holes in the sense of Definition 3.1.

Algebraic & Geometric Topology, Volume 24 (2024)
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When b1.Q/ > 0 then Theorem 3.4 above furnishes the following commensurability criterion, whose
proof is straightforward now.

Theorem 3.5 Let QD �=K, let
g 2 CommG � \CommG K:

Then Kg preserves homological lines with holes in Q.

Proof Let Q0 be a quotient of Q, and let h2Kg. Since h preserves Q–lines with holes by Theorem 3.4,
it also preserves Q0–lines with holes. Specializing to Q0 DQab proves the result.

In particular, when the commensurator of � in G contains the commensurator of K, we have that

KG
D hKg

j g 2 CommG.K/i

preserves homological lines with holes in Q. We remark that in our applications, CommG K<CommG �

by Proposition 2.4.

4 Homological lines with holes and Hodge theory

The goal of this section is to translate between preservation of lines with holes and the existence of
commensuration-invariant harmonic 1–forms. We shall first deduce cohomological consequences of
preserving homological lines with holes.

4.1 Preserving homological lines with holes and cohomological consequences

For the purposes of this subsection, let G denote a semisimple Lie group with no compact factors, with
associated symmetric space of nonpositive curvature X. Let � be a lattice in G and let g 2 CommG.�/.
We write S D X=� and Sg D X=�g. Since g 2 CommG.�/, the group � \ �g is of finite index in
both � and �g. Let W DX=.� \�g/ denote the corresponding common cover of S and Sg. We shall
refer to S and Sg as conjugate manifolds and W as their minimal common cover. Here, W depends
on g. However, since g will be fixed throughout, we will suppress it from the notation. We will also fix a
differential 1–form ! on S . Let p W X ! S denote the universal covering map. Note that the 1–form
p�! is a 1–form on X. In applications in the sequel, ! will be a harmonic form.

The element g 2 G is an isometry of X and hence acts on differential forms on X via pullback. The
form g�p�! is a 1–form on X which is invariant under �g and hence descends to Sg. The resulting
1–form on the quotient manifold Sg is denoted by !g. Let q WW ! S and qg WW ! Sg denote the
natural covering maps. Denote q�! by !W and .qg/�!g by !g

W
.

We shall also need to set up notation for g–conjugates of cycles and loops, as basepoints will play an
important role in what follows. Let o2W be a basepoint. By choosing a lift zo2X and by joining zo to g:zo
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by a geodesic segment in X and projecting back to W, we obtain a natural geodesic segment Œo;g:o�
in W, where g:o denotes the image of g:zo under the covering projection. Thus, g:o may be regarded as a
new basepoint for integrating chains against a pulled back form.

Now suppose that ˛ is a loop in W representing an element h 2 �1.W / such that hg also belongs to
�1.W /, where here we have identified �1.W / with � \�g. Lifting ˛ to a path z̨ in X, translating by g

and quotienting X by � \ �g we obtain a new loop denoted g:˛ on W based at g:o. Here, we use
notation that is similar to the case of a genuine g–action on W, though the action is well-defined only on
the universal cover X.

The concatenation Œo;g:o� � g:˛ � Œo;g:o� gives a loop based at o, where Œo;g:o� denotes Œo;g:o�
parametrized in the opposite direction from g:o to o. We denote this loop as ˛g:

˛g
D Œo;g:o��g:˛ � Œo;g:o�:

Finally, for � any closed, oriented loop on W, based at o say, the nth power of the loop � will be the loop
which traverses the loop � a total of n times. The result will be denoted by �n.

Remark 4.1 A subtlety in the following lemma needs to be noted. On the one hand, the hypothesis
is about preserving homological lines with holes in � . The conclusion, on the other hand, is about
cohomology classes in the common minimal cover W. The reason for this is that the pullback of ! to X

and its pullback by g are both invariant under � \�g, though not necessarily by � nor �g. Thus, !g
W

is
well-defined as a form on W, but does not necessarily live in S .

Lemma 4.2 Let
f�;S;g;Sg;W; !W ; !

g
W
g

be as above , Suppose that g preserves homological lines with holes in � . Then we have Œ!W �D Œ!
g
W
� as

elements of H 1.W;R/.

The importance of Lemma 4.2 will become apparent in Section 4.2, particularly Corollary 4.7. It follows
from the Hodge theorem that if !W is a harmonic form representing Œ!W � 2H 1.W;R/, then !W D !

g
W

as forms, and not just as cohomology classes.

Proof We continue with the notation from the discussion before the statement of the lemma. Let � be
any closed loop on W based at o. Since g commensurates � , we may choose n > 0 such that �n and
.�n/g are both cycles, and so are viewed as loops based at o. Observe that if h denotes the element of
�1.W; o/ represented by �n then the loop .�n/g represents the group element hg 2 �1.W; o/.

Since g is assumed to preserve homological lines with holes in� , there exists an integer N >0 such that �N

and .�N /g represent the same element of H1.S;Z/. Indeed, for any differential 1–form ! on S , we have

(1)
Z

q.�N /

! D

Z
q..�N /g/

! D

Z
q.g:�N /

!;

Algebraic & Geometric Topology, Volume 24 (2024)



2160 Thomas Koberda and Mahan Mj

where q WW ! S is the covering projection, and where the second inequality holds because the integrals
of ! along Œo;g:o� and Œo;g:o� cancel each other. Note that the integrals in equation (1) are over S .

Next, by the definition of the pullback form !W D q�!, we have thatZ
�N

!W D

Z
q.�N /

! and
Z
.�N /g

!W D

Z
q..�N /g/

!:

Combining the equations above, we obtain

(2)
Z
�N

!W D

Z
.�N /g

!W D

Z
g:�N

!W ;

where all the integrals in equation (2) are over W.

Finally, we observe that by the definition of the pullback !g
W

, we have

(3)
Z

g:.�N /

!W D

Z
�N

!
g
W
;

again using the fact that the integrals of !W along Œo;g:o� and Œo;g:o� cancel each other.

Putting all these equalities together, we obtain

(4)
Z
�N

!W D

Z
�N

!
g
W
:

Since Z
�N

!W DN

Z
�

!W ;

we conclude that

(5)
Z
�

!W D

Z
�

!
g
W

for any closed loop � in W based at o. The forms !W and !g
W

represent well-defined elements of
H 1.W;R/, by their very definition. By equation (5) above they have the same periods, and since they
are both closed differential forms, they are cohomologous.

The cohomological consequence of preserving homological lines with holes in quotients is the following
(cf Remark 4.1):

Lemma 4.3 Let Q D �=K, let g 2 CommG.�/ preserve homological lines with holes in Q, and let
! 2H 1.Q;R/. Then the periods of Œ!W � and Œ!g

W
� agree , where W is the common minimal cover of

S DX=� and its conjugate manifold Sg DX=�g, and where !W is the pullback of ! to H 1.W;R/.

Proof Let ! 2H 1.Q;R/ be a nontrivial cohomology class. Then the quotient map q W �!Q induces
a pullback form q�! 2H 1.�;R/, which can be viewed as a differential form on S DX=� . The map q

also induces a map q� WH1.�;Z/!H1.Q;Z/. If � is any 1–cycle on X=� then by definitionZ
�

q�! D !.q��/;

where the right-hand side denotes the evaluation of ! on q�.�/ (recall ! is a cohomology class of Q).
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Writing !W for the form on W given by pullback of q�! along the covering map p WW ! S , we have
that !g

W
and !W have the same periods, provided that g preserves homological lines with holes in Q. A

justification of this claim is identical to that in the proof of Lemma 4.2.

We note the following easy observation (cf Observation 3.3 above).

Observation 4.4 Consider the set C � CommG.�/ consisting of elements which preserve homological
lines with holes in Q. Then C is closed under multiplication of group elements and contains the identity,
and is therefore a monoid. In particular , if K1;K2 � C are subgroups , then the group hK1;K2i is
contained in C .

4.2 Hodge theory

Hodge theory will allow us to leverage preservation of homological lines with holes in order to promote
equality of cohomology classes to equality of forms. We recall the necessary tools from Hodge theory
and L2–cohomology that we shall need. Let M be a (not necessarily compact) Riemannian manifold.
We fix notation: �k will denote the space of smooth k–forms, d will denote the differential on forms,
� will denote the Hodge star operator, d� will denote the adjoint of d , and �D dd�C d�d will denote
the Laplacian on forms. A form ! 2�k is a harmonic k–form for the given metric on M if �! D 0.
Harmonic forms are closed and coclosed.

Theorem 4.5 [35, Chapter 6] Let M be a compact Riemannian manifold. Then for all k and every real
cohomology class Œ!� 2H k.M;R/, there exists a unique harmonic form !harm representing Œ!�.

We shall need a version of Theorem 4.5 for noncompact complete manifolds M. The appropriate
cohomology theory used is L2–cohomology. Let �k

2
denote the space of smooth square-integrable

k–forms. The reduced L2–cohomology groups are given by

H k
.2/.M /D ker.d/=Im.d/;

where Im.d/ denotes the closure of the image of d . We refer the reader to [10] for more details. We shall
need only the following special case (see [10, Lemma 1.5] due to Gaffney, or [11] for instance):

Theorem 4.6 Let M be a complete negatively curved manifold of finite volume modeled on Hn or CHn.
Then for every real cohomology class Œ!� 2H 1

.2/
.M;R/, there exists a unique L2 harmonic form !harm

representing Œ!�.

Note that a compactly supported cohomology class is an L2 class. Thus in our context, if X=� has
nontrivial real cohomology with compact supports, then we can find nontrivial L2 harmonic forms
representing such cohomology classes. In our analysis of the case b1.Q/ > 0 for groups arising as
quotients of nonuniform lattices � , the absence of a nonzero L2 harmonic 1–form will (roughly) allow
us to assume that H 1

c .X=�;R/D 0. See the proof of Theorem 5.1 below.
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We recall the setup of Lemma 4.2 in a slightly restricted setting: we are given a lattice � in a group
G 2 fSO.n; 1/;SU.n; 1/gn�2 with associated symmetric space of noncompact type X, and an element
g 2 G commensurating � . We have an orbifold S D X=� , the conjugate manifold Sg D X=�g,
the common refinement W D X=.� \ �g/ and a cohomology class ! 2 H 1.S;R/. We assume the
existence of a (possibly L2) harmonic representative !harm of !, whose uniqueness is then guaranteed by
Theorems 4.5 and 4.6. Note that such a harmonic representative may not exist only in the case where S

is noncompact.

We will also call the resulting harmonic form ! as it will not cause confusion. Recall the notation

p WX ! S; W; !W ; !
g
W
;

from Section 4.1. For convenience, we will denote p�! by !X and g�!X by !g
X

, where g� is the action
on 1–forms induced by the isometry g of X.

Corollary 4.7 Assume the above setup , and suppose that g preserves homological lines with holes in � .
Then the harmonic representatives of !W and !g

W
are equal as differential 1–forms on W. In particular ,

the harmonic representatives of !X and !g
X

are equal.

Proof Since g acts on X by an isometry, the pullback of a harmonic form under g is also harmonic;
see Section 4 of [14], for example. Thus, !g

W
is a form on W which is cohomologous to the form !W ,

by Lemma 4.2. Since � \�g has finite index in � , we have that W still has finite volume and hence
the suitable Hodge theorem (Theorem 4.5 or 4.6) applies, whence the harmonic representatives of !W

and !g
W

are equal. The equality of forms on X is immediate.

A part of the remainder of the paper will deal with the case where there is no harmonic form representing
a nontrivial homology class, which is to say a complement to Corollary 4.7 adapted to cusped orbifolds.

4.3 The commensurator of a form

The notion of the commensurator of a form will now be introduced. It will be shown that under suitable
hypotheses, KG lies in the commensurator of a harmonic form, as is forced by preservation of homological
lines with forms. The rigid nature of the harmonic form will force it to be zero whenever KG fails to be
discrete, which only occurs if CommG.K/ is dense. As before, cohomology with compact supports will
be denoted by H�c . � /.

Definition 4.8 Let � <G be a lattice in a semisimple Lie group G with associated symmetric space X,
and let S D X=� . Let ! be a closed form such that Œ!� 2H p.S;Q/ or Œ!� 2H

p
c .S;Q/ is a nonzero

cohomology class. Let p W X ! S denote the universal cover. The commensurator Comm.!/ of the
form ! is defined as

Comm.!/D fh 2G j h�p�! D p�!g:

A subgroup H of G is said to commensurate ! if H < Comm.!/. It is immediate the Comm.!/ is itself
a group.
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We have the following general discreteness result that applies to the isometries of real and complex
hyperbolic spaces. We will not consider isometries of quaternionic hyperbolic spaces or the Cayley plane;
see the remarks following Theorem 1.3. We direct the reader to [34; 1], from which the main idea used in
the following proposition is taken.

Proposition 4.9 Let X be Hn or CHn. For � a torsion-free lattice , let S DX=� . Let ! be a nonzero
harmonic or L2–harmonic 1–form according to whether S is compact or noncompact. Then Comm.!/ is
discrete.

Proof Let p WX!S denote the universal cover. We now argue by contradiction. Suppose that Comm.!/
is not discrete. Since the associated Lie group G (ie SO.n; 1/ or SU.n; 1/) is simple, it follows that
Comm.!/ is dense in G, as Comm.!/ contains the Zariski-dense subgroup � . Also, since Comm.!/
preserves p�.!/, we have that G must preserve p�.!/, since G is identified with the group of isometries
of X. That is, p�.!/ is a G–invariant nonzero harmonic 1–form on X. (Note that here, compactness or
noncompactness of S is not relevant, as p�.!/ being defined on X is all that we are concerned with
at this stage.) Hence p�.!/ gives a nonzero harmonic differential 1–form !� on the compact dual of
Hn or CHn; see Venkataramana [34] and Agol [1], cf Sections 2 and 3 of Chapter II in [9]. Since the
compact duals Sn and CPn of Hn and CHn respectively have trivial first cohomology (at least when
n� 2), this is a contradiction.

From Lemma 4.3, we obtain the following consequence:

Corollary 4.10 Suppose � is torsion-free. Let QD �=K, and let C � CommG.�/ denote the set of
elements which preserve homological lines with holes in Q. If there exists a (possibly L2/ harmonic form
on S DX=� representing a pullback of a nonzero cohomology class of Q, then C is discrete.

Proof Let ! be the harmonic representative of a form on S arising by pullback from Q, and let g 2 C .
Then by Lemma 4.3 and Corollary 4.7, we have that !W D!

g
W

as forms, by either classical or L2–Hodge
theory, and where here W is the common refinement of S and its conjugate Sg. Pulling back these
forms to the universal cover X, we have that g 2 Comm.!/. By Proposition 4.9, we conclude that C is
discrete.

5 Abelian quotients and harmonic 1–forms

We are now in a position to assemble the pieces to prove Theorem 1.3. The ideas to establish the result
naturally bifurcate:

(i) The vanishing cuspidal case, amenable to L2–cohomology techniques. For PSL2.R/, this is the
case where the underlying hyperbolic surface has genus greater than zero. This part of the argument
uses Hodge theory.
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(ii) The nonvanishing cuspidal case, where discrete patterns of horoballs are used to obtain discreteness
of the commensurator; see the appendix. For PSL2.R/, this is the case where the underlying
hyperbolic surface has genus equal to zero, and compactly supported cohomology vanishes. This
part of the argument borrows heavily from the ideas in [21].

5.1 Proof of Theorem 1.3

We now establish part of the main result of this paper:

Theorem 5.1 Let � <G be a lattice in a rank-one simple Lie group. Let K < � be an infinite normal
subgroup , and let Q D �=K. If the first Betti number of Q satisfies b1.Q/ > 0 then CommG.K/ is
discrete.

Here, the lattice may or may not be torsion-free, and may or may not be uniform. As remarked in the
introduction, we only consider lattices in SO.n; 1/ and SU.n; 1/.

Proof We begin by passing to a torsion-free finite-index subgroup � 0 of � , and by replacing K with the
corresponding finite-index subgroup of K given by the corresponding intersection K\� 0. The resulting
subgroup of K is commensurable with K and hence has the same commensurator in G as K. Moreover,
by restricting the quotient map � !Q to � 0, we get a finite-index subgroup Q0 < Q which also has
positive first Betti number. Thus without loss of generality, we will assume that � D � 0.

Recall that we write
KG
D hKg

j g 2 CommG.K/i

for the subgroup generated by the collection fKgg, as g ranges over CommG.K/. By Proposition 2.4,
we have that CommG.K/ < CommG.�/. By Theorem 3.5 and Observation 4.4, we have that if y 2KG ,
then y preserves homological lines with holes in Q.

By hypothesis, we have H 1.Q;R/¤ 0. Writing S DX=� as usual, we have that H 1.S;R/¤ 0 since
Q is a quotient of � and since � D �1.S/. We have that S is metrically complete and is either compact
or noncompact, which yields two possible cases concerning cohomology:

(i) S is compact By Theorem 4.5, there is a harmonic form ! on S which represents the pullback of a
nontrivial cohomology class of Q.

(ii) S is not compact This case bifurcates into further possibilities:

(a) The composition
H 1.Q;R/!H 1.S;R/!H 1.@S;R/

has a nontrivial kernel, where the first map is the pullback along the quotient map � !Q and
the second map is the pullback along the inclusion map @S ! S . Note that the first arrow is an
injection. Furthermore,

H 1..S; @S/; R/DH 1
c .S; R/DH 1

.2/.S; R/:
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See [23, Lemma 1.93]. Hence, by Theorem 4.6, there is a nonzero cohomology class of S that
is represented by a nonzero L2 harmonic form ! such that Œ!� 2H 1

.2/
.S;R/ is the pullback of a

cohomology class of Q.

(b) The composition
H 1.Q;R/!H 1.S;R/!H 1.@S;R/

is injective.

In case (ii), we interpret @S in the usual way, ie by removing a small horoball around the cusps of S ,
whereby the boundary of S becomes the image of the horosphere bounding the horoball.

Suppose first that there exists a nontrivial (possibly L2) harmonic form on S D X=� representing a
pullback of a nontrivial class in H 1.Q;Q/, as in case (i) or (ii)(a) above. Then KG is discrete by
Corollary 4.10. That CommG.K/ is discrete now follows from Lemma 2.6.

If no such form exists, then we are in case (ii)(b). Writing q W �!Q for the quotient map, we have that

q� ı i� WH1.@S;Q/!H1.Q;Q/

is surjective, where i W @S ! S denotes inclusion. Because H1.Q;Q/¤ 0 by hypothesis, there exists a
finite collection of cusps fT1; : : : ;Tkg of S which contain homology classes zj 2H1.Tj ;Q/ for which

q� ı i�.zj /¤ 0:

For 1 � j � k, let tj 2 @X denote the basepoint (at infinity) of a horoball lift of Tj to X. Let Tj

denote the set of the �–translates of tj in @X. Also, let Hj (resp. @Hj ) denote the collection of horoballs
(resp. horospheres) in X that are lifts of Tj (resp. @Tj ). These are an instance of a discrete pattern in
the sense of Schwartz [29]; see Definition A.3 below, for instance. Let �j < G denote the subgroup
preserving the collection @Hj . By [27, Propositions 5.3 and 5.4] (see Lemma A.6 for instance), the
group �j is a lattice containing � as a subgroup of finite index.

We complete the proof assuming Claim 5.2 below. It follows from Claim 5.2 that each element of KG

has a uniformly bounded power contained in the discrete group
Tk

sD1 �s . Hence KG is discrete by
Lemma 2.3. Lemma 2.6 now implies that CommG.K/ itself is discrete.

Claim 5.2 There is an N > 0 such that for all y 2KG , we have

yN
2

k\
sD1

�s:

Proof By Theorem 3.5, we know that KG preserves homological lines with holes in Q. Choose parabolic
subgroups fG1; : : : ;Gkg of G, which we use to identify �1.Tj / as a subgroup of �1.S/ for 1� j � k,
and let fx1; : : : ;xkg � @X be their respective fixed points. Let  2� be a parabolic isometry representing
zj 2 H1.Tj ;Z/, and such that q� ı i�.zj / is nonzero. Replacing  by a conjugate in � if necessary,
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 fixes xj and hence lies in Gj . Let y 2KG . Since y preserves homological lines with holes in Q, there
exists a positive integer m such that

Œ.m/y �D Œm�Dm � q� ı i�.zj /;

where Œ � � denotes the corresponding homology class in H1.Q;Z/, and where elements of � acquire
homology classes in H1.Q;Z/ via q�. Since y 2 G, we have that .m/y is also parabolic. Since y

commensurates � (by Proposition 2.4) and preserves homological lines with holes in Q, we have that
there exists r 2 � such that .m/yr 2G` for some 1� `� k. Thus, y preserves homological lines with
holes in Q but may “change the cusp” which supports a given cuspidal homology class. Since there are
only k many cusps of S which contribute to the homology of Q via q� ı i�, for N D k! we may assume
that .m/y

N

is conjugate into Gj by an element r 2 � . We thus have that yN r 2Gj .

Now, any element of the parabolic subgroup Gj can be decomposed as A�N�, where A� acts on @X nfxg
by a conformal homothety and N� acts by an isometry. Here, the metric on @X n fxg is obtained by
identifying it with a reference horosphere in X based at x via projection along geodesics from x.

For X DHn, these are all Euclidean similarities and for X DCHn, these are all Heisenberg similarities
(see [29, Section 8.1]). In particular, for any j , and for any g 2Gj , g scales all distances on the reference
horosphere by a fixed rg > 0. We call rg the scale factor of g. Let

yg WH1.Tj /!H1.Tj /

denote the induced map on H1.Tj / thought of as a subset of @X n fxg. Here, we use the notation yg in
place of g� to avoid confusing with the action on homology of the cusp per se. Since g scales the length
of all elements by rg, it follows that yg.u/D rg �u for all u 2H1.Tj /. Let A�.y

N r/ > 0 denote the scale
factor of the homothety component of yN r . Write Hxj

2Hj for the horoball in X based at xj .

Since
Œ.m/y

N r �DA�.y
M r/Œm� 2H1.Q;Q/;

the scale factor A�.y
N r/ must equal one. But A�.y

N r/ D 1 if and only if yN r preserves the horo-
sphere @Hxj

. Since r 2� necessarily preserves @Hj , it follows that yN stabilizes @Hj , ie yN 2�j . Since
y 2KG and 1� j � k were arbitrary, and since �j contains

Tk
sD1 �s with finite index (as follows easily

from Lemma A.6) this completes the proof of the claim.

5.2 Applications

We conclude this section by giving three sets of examples to which Theorem 5.1 applies.

Irrational pencils in complex hyperbolic manifolds Many cocompact arithmetic lattices in SU.2; 1/
admit irrational pencils, ie S D X=� admits a holomorphic fibration (with singular fibers) onto a
Riemann surface of genus greater than zero. Let F denote the general fiber and i W F ! S denote
inclusion. Then K D i�.�1.F // is normal in � and QD �=K is a surface group. Theorem 5.1 applies
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to show that CommG.K/ is discrete. We note that M Kapovich in unpublished work [19] (see Biswas,
Mj and Pancholi [6] for a small generalization) established that K is never finitely presented.

Real hyperbolic manifolds that algebraically fiber Agol [2] shows that hyperbolic 3–manifolds
virtually fiber over the circle with surface group fibers. The resulting normal surface subgroups were
dealt with in [22] without the arithmeticity hypothesis. However, a new family of examples of finitely
generated (but not necessarily finitely presented) normal subgroups of arithmetic hyperbolic n–manifolds
has recently been discovered. A classical result of Dodziuk [13] (see also Anghel [3]) shows that the first
L2–Betti number of a hyperbolic manifold of dimension greater than 2 vanishes. Kielak [20] shows that
a cubulated hyperbolic group � is virtually algebraically fibered (ie � admits a virtual surjection to Z

with a finitely generated kernel) if and only if ˇ1
.2/
.�/D 0. On the other hand, Bergeron, Haglund and

Wise [5] show that standard cocompact arithmetic congruence subgroups � of SO.n; 1/ are cubulated.
Thus standard cocompact arithmetic congruence subgroups � of SO.n; 1/ admit finitely generated normal
subgroups K with quotient Z. This furnishes a family of examples K to which Theorem 5.1 applies to
show that CommG.K/ is discrete (since b1.Q/D b1.Z/D 1 in this case).

Uncountably many pairwise nonisomorphic 2–generated groups P Hall produced uncountably many
pairwise nonisomorphic quotients of a free group F2 on two generators; see [17, III.C.40], for instance.
Evidently, the free group on two generators can be realized as a lattice in a rank-one simple Lie group.
Hall’s construction produces uncountable families of 2–generated torsion-free solvable groups, and each
of his groups surjects to Z. This furnishes a continuum’s worth of thin normal subgroups of lattices to
which Theorem 5.1 applies.

Appendix Discrete patterns of horoballs

In the course of the proof of Theorem 5.1, case (ii)(b), we have used the fact that a certain discrete pattern
of horoballs is preserved by Kg. Since the notion of a discrete pattern also makes its appearance in earlier
approaches to Question 1.2, we give a quick account here.

Let G be a rank-one semisimple Lie group and let X be the associated symmetric space. The space X is, in
a natural way, a Riemannian manifold endowed with a left-invariant metric [18]. Following [29; 30; 27; 7]
we define the following (see [27, Definition 1.6] in particular):

Definition A.3 Let � <G be a lattice and S DX=� . A �–discrete pattern of points on X is a nonempty
�–invariant set S�X such that S=� is finite.

Let � < G be a nonuniform lattice, and let S D X=� . A �–discrete pattern of horoballs in X is
a nonempty �–invariant collection S � X of closed horoballs such that S=� is a disjoint union of
neighborhoods of cusps.
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Definition A.4 Let � <G be a lattice. A subgroup H of G is said to preserve a �–discrete pattern S

points if h.S/� S for all h 2H .

Propositions 3.5 and 3.7 of [27] show that a subgroup H of G preserving a �–discrete pattern S is closed
and totally disconnected. Since any such subgroup of G is necessarily discrete, we have the following:

Lemma A.5 [27, Propositions 3.5 and 3.7] Let � <G be a lattice and S a �–discrete pattern (of points
or geodesics). Then the subgroup H of G preserving S is discrete , and ŒH W �� <1.

Propositions 5.3 and 5.4 of [27] (see also [25, Theorem 3.11]) prove that the subgroup H of G preserving
a �–discrete pattern of horoballs is closed and totally disconnected. It follows that:

Lemma A.6 [27, Propositions 5.3 and 5.4] Let � <G be a nonuniform lattice in a rank-one Lie group
and S DX=� , where X is the associated symmetric space. Let S be a �–discrete pattern of horoballs.
Then the subgroup H of G preserving S is discrete , and ŒH W �� <1.

As an aside, we mention that for lattices in PSL2.R/DSO.2; 1/, there are more direct ways of understand-
ing discrete patterns, and in particular Proposition 4.9 above, that are inspired by ideas from Teichmüller
theory. In this context, one can view the commensurator of a nontrivial harmonic form as explicitly
producing a �–discrete pattern. Specifically, one can use the fact that a harmonic form is the real part of
an abelian differential on the Riemann surface H2=� . In the case of a cocompact lattice, one can use the
fact that the set of zeros of the form is nonempty and discrete, and preserved by the commensurator of the
form. Then Lemma A.5 gives discreteness of the commensurator itself. In the case of a nonuniform lattice,
one uses saddle connections in the Baily–Borel–Satake compactification of H2=� , and the fact that these
are invariant under the commensurator. Again, Lemma A.5 gives discreteness of the commensurator.
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