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A variant of a Dwyer–Kan theorem for model categories
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If all objects of a simplicial combinatorial model category A are cofibrant, we construct the homotopy
model structure on the category of small functors SA, where the fibrant objects are the levelwise fibrant
homotopy functors, ie functors preserving weak equivalences. When A fails to have all objects cofibrant,
we construct the bifibrant-projective model structure on SA and prove that it is an adequate substitute
for the homotopy model structure. Next, we generalize a theorem of Dwyer and Kan, characterizing
which functors f WA!B induce a Quillen equivalence SA � SB with the model structures above. We
include an application to Goodwillie calculus, and we prove that the category of small linear functors
from simplicial sets to simplicial sets is Quillen equivalent to the category of small linear functors from
topological spaces to simplicial sets.

18N40, 55P65

Introduction

Homotopy functors are functors taking weak equivalences to weak equivalences. They have been a
central object of interest in algebraic topology from the very beginning of the subject. W G Dwyer and
D Kan [18] began the systematic study of the categories of homotopy functors with the theory of (what
are nowadays called) relative categories (fully developed by C Barwick and D Kan [1]). In more detail,
Dwyer and Kan ask when a map f W .A; U /! .B; V / of relative categories induces a Quillen equivalence
f � WSB;V !SA;U between the categories of homotopy functors (called restricted diagrams in [18]) from
the relative categories to the category S of simplicial sets. Dwyer and Kan prove that f � is a Quillen
equivalence if and only if the induced map of simplicial localizations Lf W L.A; U /! L.B; V / is an
r–equivalence of simplicial categories [18, Theorem 2.2]. In the current paper we formulate a version of
this theorem for model categories.

Since the concept of r–equivalences is rarely used, especially in comparison to the concept of Dwyer–Kan
equivalences, introduced in the same article [18], we recall that a map f WA!B of simplicial categories
is an r–equivalence if

� for every two objects A1; A2 2A, the induced map

homA.A1; A2/! homB.fA1; fA2/

is a weak equivalence, and

� every object in the “category of components” �0B is a retract of an object in the image of �0f .
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A completely different approach to the study of the category of homotopy functors from spaces to spaces
is given by Goodwillie’s calculus of functors [20; 21; 22]. It was noticed by W G Dwyer [17] that
Goodwillie’s polynomial approximation may be interpreted as a homotopical localization. This approach
was reworked in terms of model categories by G Biedermann, the first author and O Röndigs [4]; in
particular constructing the model category of homotopy functors on the categories of small functors from
simplicial sets to simplicial sets and to spectra.

Later on, various generalizations of Goodwillie calculus to other contexts have appeared — see Basterra,
Bauer, Beaudry, Eldred, Johnson, Merling and Yeakel [2], Biedermann and Röndigs [5], and Pereira [28] —
and, hence, a natural question that arises here is the question of invariance of Goodwillie’s calculus under
Quillen equivalence. For example, topological spaces Top and simplicial sets S are Quillen equivalent
simplicial model categories. Are the model categories of small homotopy (or linear, or n–excisive)
functors STop and SS Quillen equivalent?

First we give an analog of the Dwyer–Kan theorem to model categories with all objects cofibrant: in
Theorem 3.1 we construct a model category of homotopy functors and in Theorem 5.2 we show that
a Quillen equivalence of two combinatorial model categories with all objects cofibrant gives rise to a
Quillen equivalence of the categories of small functors into simplicial sets. Unfortunately this approach
does not generalize further; we were not able to construct the homotopy model structure for arbitrary
model categories.

The purpose of this paper is to develop a context in which the Dwyer–Kan theorem may be formulated for
model categories, and then to prove that the categories of what replaces homotopy functors in our setup are
equivalent if and only if the domain categories are r–equivalent. We prove this result in Theorem 5.8. In
particular, Example 5.6 implies together with Theorem 5.8 that a Quillen equivalence A � B of simplicial
combinatorial model categories induces a Quillen equivalence SA � SB of the model categories of small
homotopy functors.

The absolute version of the Dwyer–Kan theorem states that a map of simplicial categories f WA!B

induces a Quillen equivalence Lanf WSA �SB Wf � if and only if f is an r–equivalence, [18, Theorem 2.1].
Lukáš Vokřínek [31] generalized this result to categories enriched in a closed symmetric monoidal model
category. The categories of homotopy functors are not discussed in his work. We give a version of
the relative Dwyer–Kan theorem [18, Theorem 2.2] (which generalizes [18, Theorem 2.1]) for model
categories in this paper.

As an application, we prove that the categories of small n–excisive functors defined on simplicial sets
and on topological spaces are Quillen equivalent. More generally, given a Quillen pair such that the right
adjoint preserves homotopy pushouts, we show that the model categories of n–excisive functors defined
on this Quillen pair and taking values in simplicial sets, are Quillen equivalent.

The paper is organized as follows. In the preliminary section we characterize which simplicial functors of
simplicial combinatorial model categories induce a Quillen adjunction between the categories of small
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functors into simplicial sets equipped with the projective and the fibrant-projective — see Biedermann and
the first author [3] — model structures. In Section 2 we introduce the bifibrant-projective model structure,
show its existence and extend the results from the preliminary section to this new setting.

Section 3 is devoted to the study of the homotopy model structures (such that the fibrant objects are the
fibrant homotopy functors) on the categories of small functors from a model category to simplicial sets. In
order to prove the existence of the homotopy model structure, we require that the domain model category
has all objects cofibrant. This is not a major restriction, since, as shown by Ching and Riehl [9] and
Dugger [15], every combinatorial model category is Quillen equivalent to one with all objects cofibrant
(and in [9] even to one whose objects are objects of the original category). Furthermore, we show that
whenever the homotopy model category exists, it is Quillen equivalent to the bifibrant-projective model
structure, which exists without the requirement that all objects be cofibrant, and is a suitable replacement.
Our comparison of the small functors from topological spaces to simplicial sets with the small functors
from simplicial sets to simplicial sets is carried out in Section 4. The homotopy model structure on SS

was constructed in [4] and it is Quillen equivalent to the fibrant-projective model structure. Because the
Quillen model structure on Top does not have all objects cofibrant, we do not know if the homotopy
model structure on STop exists, but the cofibrant-projective model structure on STop is Quillen equivalent
to the fibrant-projective model structure on SS. This means that the bifibrant-projective model structures
on both categories produce Quillen equivalent model categories, as we wanted to show.

In Section 5 we prove our main result generalizing the Dwyer–Kan theorem. We first treat the simpler
case of the homotopy model structures when all objects in the domain category are cofibrant, and then
prove the general case cited above. An application to Goodwillie calculus is given in Section 6. We prove
the Quillen equivalence of the categories of the n–excisive functors by localizing the Quillen equivalent
categories of small functors equipped with the bifibrant-projective model structure. A tool allowing for
such comparison is developed in the appendix and hopefully will be useful in other situations as well.
The question of the existence of the n–excisive model structure is not addressed in this work, since it
was considered in a number of papers [4; 5; 11], and the methods of localization developed there may be
easily applied to the current situation.

Acknowledgements We are grateful to Brooke Shipley and Karol Szumiło for valuable comments.
Chorny acknowledges the support of ISF grant 1138/16. White thanks the Center for Mathematics and
Scientific Computation for supporting a visit to the University of Haifa at Oranim in 2015, when this
work began.

1 Preliminaries

In this section we recall the homotopy theory of small functors and establish some basic properties of
various model categories of small functors. We assume the reader is familiar with the basics of model
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2188 Boris Chorny and David White

categories and left Bousfield localization, eg [23; 24]. Note that all our model categories and functors
between them are simplicial, and hom.X; Y / denotes the simplicial set of morphisms from X to Y . A
model category is combinatorial if it is locally presentable and cofibrantly generated.

Definition 1.1 Let A be a simplicial category. A functor F WA! S is small if it is a left Kan extension
from some small subcategory. In other words, there exists a small full subcategory i WA0 ,!A such that
F D Lani i�F . We denote the category of small functors from A to S by SA.

Remark 1.2 In the book by M Kelly [25], small functors are called accessible, which does not correspond
to modern terminology (accessible functors are functors of accessible categories preserving �–filtered
colimits for some cardinal �), though accessible functors are always small and small functors of accessible
categories are accessible. A functor is small if and only if it is a small (weighted) colimit of representable
functors [25, Proposition 4.83]. Since the category of small functors from A to S is cocomplete [25,
Proposition 5.34], in particular tensored over S, a colimit of the functor G W .A0/op!SA weighted by the
functor F WA0! S may be computed using the coend formula: F ?A0 G D

R A2A0
FA˝GA [25, 3.70].

Now we would like to analyze what kind of functors are induced on the categories of small functors by
an adjunction of domain categories.

Proposition 1.3 Let L WA!B be a simplicial accessible functor between locally presentable simplicial
categories. Then there exists a pair of adjoint functors between the categories of small functors

LanL W SA � SB
WL�:

If in addition L has a right adjoint R, then LanL DR� is given by the precomposition with R.

Proof Note that every small functor F 2 SA is a left Kan extension from a full small subcategory
i WA0 ,!A. Then

LanL.F /D LanL.Lani i�F /D LanLi i�F

by the transitivity property of the iterated left Kan extensions [25, Theorem 4.47]. Hence, LanL.F / 2SA

is a small functor.

Given a representable functor RB D homB.B;�/, the functor L�RB D hom.B;L�/ is no longer
representable, but it is �–accessible if B is �–presentable and L is �–accessible. Hence it is a small
functor as an accessible functor of accessible categories.

For any G 2 SB,

L�G D L�
�Z B

hom.B;�/˝GB
�
D

Z B

hom.B;L�/˝GB

is a weighted colimit of small functors, which is again small [25, 5.34].
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Suppose now that L has a right adjoint L aR. Then, using Yoneda’s lemma,

hom.R�F;G/D hom
�
R�
�Z A2A0

hom.A;�/˝FA
�
; G

�
D

Z
A

hom.hom.A;R.�//˝FA;G/

D

Z
A

hom.FA; hom.hom.LA;�/; G//

D

Z
A

hom.FA;G.LA//

D

Z
A

hom.FA;L�G.A//

D

Z
A

hom.FA; hom.hom.A;�/; L�G//

D

Z
A

hom.hom.A;�/˝FA;L�G/

D hom
�Z A

hom.A;�/˝FA;L�G
�
D hom.F;L�G/:

In other words R� a L�; hence R� D LanL.

We are interested in the homotopy theory of small functors. The projective model structure (where
weak equivalences and fibrations are levelwise) on the category of small functors was constructed in
[12, Theorem 3.1] for all cocomplete domain categories. The condition of cocompleteness is required to
ensure that the category of small functors is complete [14, Corollary 3.9].

Proposition 1.4 Given a simplicial accessible functor f W A! B of simplicial combinatorial model
categories , the adjunction Lanf a f � discussed in Proposition 1.3 is a Quillen pair for the projective
model structures on the categories of small functors from A and B to S.

Proof Consider the adjunction

SA

Lanf
**
SB

f �
jj

between the two model categories of small functors equipped with the projective model structure [12].
Let p W F ! G be a (trivial) fibration in SB. Consider the induced map f �p W f �F ! f �G in SA.
Let A 2 A be an arbitrary object. Then pfA W F.fA/! G.fA/ is a (trivial) fibration by assumption.
Furthermore, f �pA D pfA is also a (trivial) fibration:

.f �F /.A/
f �pA

// .f �G/.A/

F.fA/pfA
. /o /

// // G.fA/
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The fibrant-projective model structure on the category of small functors with domain in a combinatorial
model category (where weak equivalences and fibrations are levelwise in fibrant objects) was constructed
in [3, Definition 3.2]. This is a particular case of the relative model structure [10, Definition 2.2]. In the
next proposition we analyze its interaction with the adjunction of Proposition 1.3.

Proposition 1.5 Given a simplicial accessible functor f W A! B of simplicial combinatorial model
categories , the adjunction Lanf a f � discussed in Proposition 1.3 is a Quillen pair for the fibrant-
projective model structure on the categories of small functors from A and B to S if and only if f
preserves fibrant objects.

Proof The “if” direction follows in the same manner as Proposition 1.4 above.

For the “only if” direction, assume that f � is a right Quillen functor and we need to show that for every
fibrant A 2 A the map p W fA! � has the right lifting property with respect to any trivial cofibration
i W B1

�,�! B2 in B. By [23, Proposition 9.4.3], it suffices to show that .i; p/ is a homotopy lifting-
extension pair. In other words, it suffices to show that hom.B2; fA/! hom.B1; fA/ is a trivial fibration
of simplicial sets.

For any trivial cofibration i W B1 �,�! B2 in B the induced map of representable functors

i� W hom.B2;�/! hom.B1;�/

is a trivial fibration in the fibrant-projective model structure on SB, by the SM7 axiom [23, Definition 9.1.6].
Since f � is a right Quillen functor, the map

f �i� W hom.B2; f �/! hom.B1; f �/

is a trivial fibration in the fibrant-projective model structure on SA, ie

hom.B2; fA/ ��� hom.B1; fA/

is a trivial fibration of simplicial sets for all fibrant A 2A.

2 Bifibrant-projective model structure

Let A be a simplicial combinatorial model category. By analogy with the fibrant-projective [3, Definition
3.2] and cofibrant-projective [6, Definition 2.1] model structures on the categories of small functors SA,
we introduce the bifibrant-projective model structure on SA.

Definition 2.1 Let A be a simplicial combinatorial model category, and let F;G 2 SA be small functors.
A natural transformation f W F !G is a bifibrant weak equivalence (resp. bifibrant fibration) if for all
bifibrant objectsA2A (ie objects which are both fibrant and cofibrant), the induced map fA WF.A/!G.A/

is a weak equivalence (resp. a fibration) of simplicial sets. A natural transformation is a bifibrant cofibration
if it has the left lifting property with respect to bifibrant trivial fibrations.
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Next, we establish the existence of the bifibrant-projective model structure as a particular case of the
relative model structure [10, Definition 2.1].

Proposition 2.2 Let A be a simplicial combinatorial model category. Then the category of small functors
SA may be equipped with the bifibrant model structure.

Proof We will verify the conditions of [10, Proposition 2.8] in order to establish the bifibrant model
structure, which is also the bifibrant relative model structure in the terminology of [10].

The condition requiring verification is the local smallness [10, Definition 2.4] of the subcategory of
bifibrant objects in the category Aop, or, dually, the solution set condition in A, ie for every object A 2A

we need to find a set of bifibrant objects WA such that for every bifibrant object B and every map A!B

there exists a (nonunique) object W 2WA such that A!W ! B .

For every objectA2A, choose a cardinal � large enough thatA is �–presentable and A is �–combinatorial.
Next, look at the set W0A of �–presentable cofibrant objects in A, then put WA D f

�W jW 2W0Ag, where�W denotes fibrant replacement.

The fat small object argument [27, Corollary 5.1] shows that every cofibrant object is a �–filtered colimit of
�–presentable cofibrant objects in the �–combinatorial model category A. It follows that every morphism
A! B into a bifibrant object B factors first through some W1 2W0A. Finally, the morphism W1! B

factors through the fibrant replacement W D �W1 of W1, since B is fibrant: W1 �,�!W ! B .

Now we need to find the conditions on a functor f W A! B between simplicial combinatorial model
categories such that the induced adjunction Lanf a f � of Proposition 1.3 is a Quillen pair.

Proposition 2.3 Given a simplicial accessible functor f W A! B of simplicial combinatorial model
categories , the adjunction Lanf a f � discussed in Proposition 1.3 is a Quillen pair for the bifibrant-
projective model structure on the categories of small functors from A and B to S if f preserves both
fibrant and cofibrant objects.

Proof Similar to Proposition 1.4.

Example 2.4 The classical Quillen equivalence j�jW S � Top WSing induces the Quillen map of
bifibrant-projective model structures

Sing� W SS � STop
Wj�j
�;

which turn out to be the fibrant-projective and the cofibrant-projective model structures respectively. Of
course, this is a very special case when the left Quillen functor preserves fibrant objects. We will have to
find a way around this difficulty in order to generalize this example.
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3 Homotopy model structure

Let A be a simplicial combinatorial model category. Recall that homotopy functors are functors preserving
the weak equivalences. If it exists, the homotopy model structure on the category of small functors SA is
a localization of the projective model structure in such a way that the local objects are the projectively
fibrant homotopy functors. We will only construct the homotopy model structure on the category of small
presheaves SA under the additional assumption that all objects of A are cofibrant.

3.1 Localization construction

If we localize the projective model structure on the category of small functors SA with respect to the
class of maps

HA D fhom.A1;�/! hom.A2;�/ j A1 ��! A2 in Ag;

then the fibrant objects in the new model structure will be precisely the levelwise fibrant homotopy
functors. The resulting model structure is the homotopy model structure on SA. Since the projective
model structure is not cofibrantly generated (it has a proper class of generating cofibrations, instead of a
small set), and HA is a proper class of maps, the localization techniques of Smith and Hirschhorn may
not be applied.

In the case that all objects of A are cofibrant, we will use the Bousfield–Friedlander [8, Appendix A]
Q–model structure construction further improved by Bousfield [7, Theorem 9.3] in order to obtain the
left Bousfield localization of SA with respect to HA.

Theorem 3.1 Let A be a simplicial combinatorial model category with all objects cofibrant. Then there
exists a localization of the projective model structure on SA, such that the fibrant objects are precisely the
levelwise fibrant homotopy functors.

Proof Since A is a simplicial combinatorial model category, we can fix a continuous, accessible fibrant
replacement functor FibA WA!A together with a natural transformation " W IdA! FibA. These properties
are required to ensure that the precomposition of FibA with a small functor F WA! S produces a small
functor again.

We denote the fibrant replacement in S by b.�/. In this case the homotopy approximation functor may be
constructed very explicitly. Namely, for any small F WA! S, we can put H.F /D2Fib�A F D3F ıFibA.
It is equipped with the coaugmentation bF" W F !2Fib�A F . This is a homotopy idempotent construction
that takes values in homotopy functors, since weak equivalences of objects which are fibrant and cofibrant
are simplicial weak equivalences [29, II.2.5] and the latter are preserved by simplicial functors; see [4,
Proposition 3.3].

By [30, Proposition 4.3], in any model category M equipped with a homotopy idempotent functor
L WM!M, the class of L–equivalences (the maps rendered by L into weak equivalences) coincides with
the class of the local equivalences (the class of maps simplicially orthogonal to the L–local objects);
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therefore H–equivalences are precisely the local equivalences with respect to the fibrant homotopy functors.
Since our construction is very simple, we can see immediately that H–equivalences, ie maps rendered into
projective weak equivalences by the functor H, are precisely the fibrant-projective weak equivalences of
small functors [3, Definition 3.2], ie the natural transformations of functors inducing weak equivalences
of fibrant objects.

It remains to verify that our localization construction satisfies the conditions A1–A3 of [7, Theorem 9.3].
The projective model structure on the category SA of small functors is proper by [3, Theorem 3.6], since
S is a right proper model category and a strongly left proper monoidal model category [16, Definition 4.5].

Conditions A1 and A2 are satisfied by the construction of H and the discussion above. To verify A3,
consider the pullback of a fibrant-projective weak equivalence along a projective fibration. Since S is right
proper, the base change of a fibrant-projective weak equivalence is a fibrant-projective weak equivalence
again.

Hence the left Bousfield localization exists, and defines the H–local model structure on the category of
small functors from A to S. This is the homotopy model structure, since the H–local objects are precisely
the projectively fibrant homotopy functors. In other words, H–localization is the localization with respect
to HA.

If we drop the assumption that all objects are cofibrant, we are unable to construct the left Bousfield
localization of the projective model category SA with local objects being precisely the homotopy functors,
but we will show the existence of a homotopy idempotent (nonfunctorial) localization construction Q,
such that Q–equivalences are precisely the HA–equivalences.

Proposition 3.2 Let A be a simplicial combinatorial model category. Then for each functor F 2 SA

there exists an HA–equivalence F !QF such that QF is a homotopy functor.

Proof Let f W A! A be a bifibrant replacement functor. Notice that the adjunction Lanf a f � is a
Quillen pair for the projective model structure on SA, since the right adjoint f � preserves fibrations and
trivial fibrations.

For every functor F 2HA consider the construction

zF

�O

����

//� q

""

f � Lanf zF

Q0F

8x
88 88

�O

��

F // QF

We begin with F 2HA, take its cofibrant replacement zF in the projective model structure and factor the
unit of the adjunction Lanf a f � into a projective cofibration followed by a projective trivial fibration.
Denote the middle term of the factorization by Q0F and put QF DQ0F q zF F .
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Unfortunately this construction is not functorial, since the cofibrant replacement in the projective model
structure is not known to be functorial. On the other hand, it naturally extends to morphisms and can be
rendered functorial on any small subcategory of SA.

This construction preserves weak equivalences of functors, since all the stages of the construction do. In
particular, Lanf preserves weak equivalences between cofibrant objects and f � preserves all projective
weak equivalences.

Now, QF is projectively weakly equivalent to f � Lanf zF , so in order to show that QF is a homotopy
functor it suffices to show that f � Lanf zF is. We will show it by cellular induction, assuming that
zF D colimi<� Fi , so that F0 D∅ and Fi is obtained from Fi�1 by attaching a cell

RAi ˝ @�n� _

��

// Fi�1� _

��

RAi ˝�n // Fi

if i is a successor ordinal or Fi D colima<i Fa if i is a limit ordinal.

In order to compute Lanf zF , notice that Lanf commutes with colimits, and Lanf RAi DRf .Ai /. In other
words, Lanf zF is a cellular complex with cells of type Rf .Ai /, ie represented in cofibrant objects.

Next, we must show that QF is a homotopy functor, ie it preserves weak equivalences. The following
argument proves that a projectively equivalent functor f � Lanf zF is a homotopy functor by cellular
induction. First, note that f � preserves colimits, as a left adjoint to Ranf , which exists, in turn, by [14], or
just because the colimits in the diagrams of functors are computed levelwise. Therefore, f � Lanf zF is a
cellular construction, with cells of type f �Rf .Ai /D hom.f .Ai /; f .�//, so it is no longer a representable
functor, but is a homotopy functor. Hence, assuming for induction that f � Lanf Fa is a homotopy functor
for all a < i , we obtain that f � Lanf Fi is also a homotopy functor; hence f � Lanf zF is a homotopy
functor as a sequential colimit of homotopy functors into S.

The last claim that we need to show is that the map F !QF is an HA–equivalence. In other words, that
our construction is homotopy idempotent. We will show the equivalent statement that the map F !QF

is initial in a suitable sense, ie we will show that in the homotopy category Ho.SA/ the unit of the derived
pair of adjoint functors " W Œ zF � D ŒF �! ŒQF � D Rf �L Lanf Œ zF � is initial with respect to maps into
homotopy functors.

Let H 2 SA be a projectively fibrant homotopy functor, and let g W ŒF �! ŒH � be a map in the homotopy
category. Notice that since H preserves weak equivalences, ŒH � D Œf �H� D Rf �ŒH �. Then by the
universal property of the unit there exists a unique map h WRf �L Lanf zF !Rf �ŒH �D ŒH � such that
g D h".

Therefore, our initial construction F !QF is a homotopy localization turning every small functor into a
homotopy functor, ie localization with respect to SA.
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3.2 Comparison of the homotopy and the bifibrant-projective model structures

We next prove that the homotopy model structure on SA is Quillen equivalent to the bifibrant-projective
model structure (Definition 2.1), when both model structures exist. This means we can use the bifibrant-
projective model structure as a substitute for the homotopy model structure in contexts where the homotopy
model structure is not yet known to exist. We conjecture that the homotopy model structure on SA

exists even if not all objects of A are cofibrant. We expect that localization of class-combinatorial model
categories [13] can be used to prove this conjecture.

For the sake of comparison, we assume in this section that the homotopy model structure exists. We note
that the bifibrant-projective model structure exists whenever A is combinatorial. We show now that these
model structures are Quillen equivalent.

Theorem 3.3 Let A be a simplicial combinatorial model category. Then the pair of identity functors
induces a Quillen equivalence of the homotopy and the bifibrant-projective model structures.

Proof Consider the pair of adjoint functors

Id W SA
bifib-proj � SA

proj WId;

where the left adjoint is pointing from left to right.

This is a Quillen pair because the right adjoint obviously preserves fibrations and trivial fibrations. Now
we localize the projective model structure and obtain the homotopy model structure on the right-hand
side. The identity functors still form an adjoint pair

Id W SA
bifib-proj � SA

ho WId;

where SA
ho denotes the homotopy model structure (which we have assumed to exist). This adjoint pair is

still a Quillen pair, as a composition of the previous adjunction with the Quillen pair arising from the left
Bousfield localization of the projective model structure. To show that this is a Quillen equivalence we
will use [24, Corollary 1.3.16(b)]. The left adjoint reflects weak equivalences between cofibrant objects,
since the fibrant approximation in the homotopy model structure (approximation by the levelwise fibrant
homotopy functor constructed in Proposition 3.2) can only change the values of a bifibrant-projectively
cofibrant functor in fibrant objects up to a weak equivalence.

It remains to show that for every fibrant (homotopy) functor F 2 SA
ho, the cofibrant replacement map

i W zF!F in the bifibrant-projective model structure SA
bifib-proj is a weak equivalence in the homotopy model

structure. In other words, if we apply the homotopy approximation construction Q from Proposition 3.2
we obtain a projective weak equivalence. Indeed, there is a projective weak equivalence QF ' F , since
F is a homotopy functor. Furthermore, Q zF is homotopy functor bifibrant-projectively equivalent to zF ,
hence also to F 'QF . So, by the 2-out-of-3 property, Qi WQ zF !QF is a bifibrant-projective weak
equivalence of homotopy functors and hence is a levelwise weak equivalence, as required.
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4 Motivating example

Before we turn to the proof of the main result, let us consider the example of (�–generated [19])
topological spaces Top and simplicial sets S, two Quillen equivalent simplicial model categories with
very different categories of small functors STop and SS. For the category of functors from simplicial sets
to simplicial sets, we have both the bifibrant-projective model structure and the homotopy model structure
constructed in the previous sections. For the case of functors from topological spaces to simplicial sets,
we have several model structures to choose from. The fibrant-projective model structure is not different
from the projective model structure, since all objects in Top are fibrant. The observation that simplicial
functors preserve weak equivalences between cofibrant topological spaces (since every object is fibrant)
suggests that for our comparison to SS we should establish the cofibrant-projective model structure
on STop. We do so below. Such a model structure has been previously established on the category of
contravariant functors [6], but for the category of covariant functors it is new.

Proposition 4.1 The cofibrant-projective model structure on the category of small functors STop exists ,
ie weak equivalences (resp. fibrations) are the natural transformations inducing weak equivalences
(resp. fibrations) on the values of functors in cofibrant objects.

Proof The cofibrant-projective model structure is a particular case of the relative model structure [10].
The latter exists if the solution set condition (dual to the local smallness in the case of contravariant
functors) for the inclusion functor of cofibrant objects into Top is satisfied [10, Proposition 2.8]. For
every uncountable regular cardinal � there exists a set P� of �–presentable cofibrant spaces, such that
every cofibrant space is a filtered colimit of the elements of this set [27, Corollary 5.1], since the domains
and the codomains of the generating trivial cofibrations are finitely presentable, hence �–presentable.

The solution set condition readily follows. Given an object X 2 Top, there exists an uncountable regular
cardinal � such that X is �–presentable. Therefore, every map X !A with a cofibrant A factors through
the set of all possible maps fX ! B j B 2 P�g.

We now analyze the connection between the newly established cofibrant-projective model structure and
the homotopy model structure.

Proposition 4.2 The Quillen equivalence .LDj�j; RDSing.�// between simplicial sets and topological
spaces induces a Quillen equivalence .R�; L�/ between the categories of small functors SS and STop

with the fibrant-projective and the cofibrant-projective model structures , respectively.

Proof Since L preserves fibrant objects, .R�; L�/ is a Quillen pair by Proposition 1.5 between the
fibrant-projective and the projective model structure, ie R� takes fibrations (resp. trivial fibrations) in
fibrant objects into levelwise (resp. trivial) fibrations, which are also cofibrant-projective (resp. trivial)
fibrations.

We will show now that .R�; L�/ is a Quillen equivalence by verifying [24, Definition 1.3.12].
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Given a fibrant-projectively cofibrant F 2 SS and cofibrant-projectively fibrant G 2 STop, consider a
cofibrant-projective weak equivalence f WR�F !G in STop. The corresponding map g W F ! L�G in
SS is constructed as a composition of the unit of the adjunction � W F ! L�R�F D F.Sing.j�j/ with
L�f W L�R�F ! L�G DG.j�j/. For every Kan complex K 2 S, the natural map K! Sing.jKj/ is a
simplicial homotopy equivalence (as a weak equivalence between cofibrant-fibrant objects). Since F is a
simplicial functor, it preserves simplicial homotopy equivalences; therefore � is a fibrant-projective weak
equivalence. The second map L�f is a projective (levelwise) weak equivalence, since f is a cofibrant-
projective weak equivalence and LD j�j takes values in cofibrant objects. Therefore g D L�f ı � is a
fibrant-projective weak equivalence.

Conversely, if we start from a fibrant-projective weak equivalence g WF !L�G, then the adjoint map is a
composition of R�g with the counit � WR�L�G DG.jSing.�/j/!G. The first map R�g is a levelwise
weak equivalence since RD Sing takes values in Kan complexes and the counit � is a cofibrant-projective
weak equivalence, since for every (retract of) a CW–complex X the map jSing.X/j !X is a simplicial
homotopy equivalence preserved by the simplicial functor G.

Corollary 4.3 The homotopy model structure on SS is zigzag Quillen equivalent to the cofibrant-
projective model structure on STop.

5 Dwyer–Kan theorem for model categories

In this section, we prove our main result, an extension of [18, Theorem 2.2] to the context of the model
structures discussed above. We first prove the case where all objects are cofibrant, and then the general
case. Recall that the homotopy model structure is a localization of the projective model structure.

5.1 All objects cofibrant

First we need to show that the adjunction .R�; L�/ is still a Quillen adjunction after the localization
performed in Section 3.

Proposition 5.1 Consider a Quillen pair of two combinatorial model categories L WA � B WR. Then the
adjunction .R�; L�/ constructed in Proposition 1.3 between the categories of small functors equipped
with the projective model structure is also a Quillen pair by Proposition 1.4. Assume in addition that all
objects of A and B are cofibrant. Then the adjunction .R�; L�/ remains a Quillen pair for the homotopy
model structure.

Proof By Dugger’s lemma [23, 8.5.4], it is sufficient to verify that the right adjoint L� preserves
fibrations of fibrant homotopy functors and all trivial fibrations.

Trivial fibrations are preserved since L� is a right Quillen functor in the nonlocalized model structure and
trivial fibrations do not change (since cofibrations do not) under left Bousfield localization.
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Given a fibration of two fibrant homotopy functors f W F �G in SB, the induced map

L�f W F.L�/D L�F � L�G DG.L�/

is again a levelwise fibration.

Notice that L preserves trivial cofibrations as a left Quillen functor. By Ken Brown’s lemma, L preserves
weak equivalences between cofibrant objects [23, Corollary 7.7.2]. Since all objects of A are cofibrant, L
preserves weak equivalences.

Then L�f is a fibration of homotopy functors, since L, G and, hence, G ıL are homotopy functors, ie
L�f is a fibration in the localized model structure.

We are ready now to prove the first main result of this section stating that if the Quillen pair .L;R/ is
a Quillen equivalence of simplicial combinatorial model categories with all objects cofibrant, then the
induced Quillen pair .R�; L�/ between the categories of small functors to simplicial sets, equipped with
the homotopy model structure, is also a Quillen equivalence.

Theorem 5.2 Given a Quillen equivalence L W A � B WR of two model categories with all objects
cofibrant , the induced Quillen pair .R�; L�/ on the categories of small functors equipped with the
homotopy model structure (obtained as a localization of the projective model structure) is also a Quillen
equivalence.

Proof We will use the criterion for a Quillen pair to be a Quillen equivalence [24, Corollary 1.3.16(c)].

First we show that the right adjoint L� reflects weak equivalences of fibrant objects. Given a map of
homotopy functors f W F !G, assume that the induced map L�f W L�F ! L�G is a weak equivalence
(of homotopy functors, since L preserves weak equivalences).

For every B 2B consider its fibrant replacement B �,�! yB and put ADR yB 2A. Then LA ��! yB is a
weak equivalence, since .L;R/ is a Quillen equivalence. We obtain the commutative diagram

F.B/
fB

//

�O

��

G.B/

�O

��

F. yB/
f yB

// G. yB/

F.LA/

O�

OO

// G.LA/

O�

OO

L�F.A/
/o
// L�G.A/

Therefore, f yB is a weak equivalence and hence fB is a weak equivalence for all B 2B by the 2-out-of-3
property; hence f is a weak equivalence.
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For every cofibrant F 2SA, the derived unit of the adjunctionR� aL� from Proposition 1.3 is constructed
as an adjoint map to the fibrant approximation in the homotopy model category R�F !HR�F ,

(1) F ! L�HR�F :

It remains to show that it is a weak equivalence in the homotopy model structure.

Note that L�H.R�F.�// D L�HF.R.�// D L� yF .R FibB.�// D yF .R FibBL.�//. Since the pair
.L;R/ is a Quillen equivalence, for all (cofibrant) X 2A there is a weak equivalence X ��!R FibBL.X/.
Hence, the initial map (1) is a weak equivalence in the homotopy model structure because we can apply
H also to F turning it into a homotopy functor.

Corollary 5.3 Assume A and B satisfy the conditions of Theorem 5.2, and suppose that the homotopy
model structures on SA and SB, from Theorem 3.1, exist. Then the fibrant-projective model structures on
SA and SB are Quillen equivalent.

Proof By Theorem 3.3, the fibrant-projective model structure on SA is Quillen equivalent to the homotopy
model structure, and the same for SB. By Theorem 5.2, the homotopy model structures are Quillen
equivalent. Hence, the fibrant-projective model structures are Quillen equivalent, via a chain of Quillen
equivalences (where the left adjoints are depicted): SA

fib-proj! SA
ho! SB

ho SB
fib-proj.

5.2 General case

We adapt the definition of r–equivalences [18] for simplicial model categories.

Definition 5.4 A continuous functor f WA!B of simplicial model categories is an r–equivalence if

(1) for every two bifibrant objects A1; A2 2A, the induced map hom.A1; A2/! hom.fA1; fA2/ is
a weak equivalence, and

(2) every object in the category of components �bifib
0 B is a retract of an object in the image of �bifib

0 f ,
ie for every bifibrant object B 2 B there exists a bifibrant object A 2 A such that B is a retract
of f .A/, up to homotopy.

Remark 5.5 Note that B is a retract of f .A/, up to homotopy, if there are maps A i
�!B r

�!A such that
ri � IdA. We do not specify the kind of homotopy relation in Definition 5.4(2), since for maps between
bifibrant objects in a simplicial model category left, right, simplicial and strict simplicial homotopy
relations coincide and are equivalence relations [23, 9.5.24(2)].

Example 5.6 Let

A
L

?
))
B

R

ii
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be a Quillen equivalence between simplicial combinatorial model categories. Put f D yL the composition
of the left adjoint with the fibrant replacement functor in B, and let zR be the composition of R with
cofibrant replacement in A. Then f is an r–equivalence:

(1) For all bifibrant A1; A2 2A,

homB.fA1; fA2/D homB.yLA1; fA2/' homB.LA1; fA2/D homA.A1; R yLA2/

' homA.A1; A2/:

(2) For all bifibrant B 2B, factor the weak equivalence L zRB ��! B as a trivial cofibration followed
by a fibration (also trivial by the 2-out-of-3 property): L zRB �,�! yL zRB ��� B . Therefore, B is a
retract of yL zRB:

∅� _

��

// yL zRB

�O

����

B

<<

B

On the other hand, yL zRB ' f . zRB/, ie B is a retract of f . zRB/, up to homotopy.

Lemma 5.7 Let A;B 2 A be two bifibrant objects in a simplicial model category A such that A is a
retract of B , up to homotopy. Then there exists a bifibrant object B 0 2 A such that B 0 ' B and A is a
strict retract of B 0.

Proof Suppose that the composition A i
�! B r

�! A is simplicially homotopic to the identity map on
A: ri � IdA. Then A˝ I is a very good cylinder object, ie factors the codiagonal AqA! A into a
cofibration followed by a trivial fibration. Consider the commutative diagram

A
i

//
� _

i0 �O

��

B
r

//
� _

�O

��

A

A
� �

i1

/o
// A˝ I

H

FF

{
// B1
� � /o

i 0
// B 0

r 0
?? ??

where Hi0 D ri and Hi1 D IdA. Put B1 D A˝ I qA B , and, in order to ensure the fibrancy of the
intermediate object, we factor the natural map B1!A as a trivial cofibration i 0 followed by a fibration r 0.

Hence, A is a (strict) retract of the bifibrant object B 0,

A
i 0{i1
//

Hi1DIdA

55B 0
r 0
// A

and B 0 ' B .
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Theorem 5.8 Let f WA!B be an accessible functor between simplicial combinatorial model categories.
Suppose f preserves fibrant and cofibrant objects. Then the Quillen pair

Lanf W S
A � SB

Wf �

between functor categories equipped with the fibrant-projective model structure is a Quillen equivalence if
and only if f is an r–equivalence of simplicial model categories.

Proof Since f preserves both fibrant and cofibrant objects, the induced adjunction Lanf a f � is a
Quillen map by Proposition 2.3.

Suppose that f is an r–equivalence. We will use [24, 1.3.16(c)] to show that Lanf a f � is a Quillen
equivalence. In other words, we will prove that f � reflects weak equivalences of bifibrant-projectively
fibrant objects and for every cofibrant F 2 SA, the map

(2) F ! f �2Lanf F

is a bifibrant-projective weak equivalence.

Consider a natural transformation p WG!H of bifibrant-projectively fibrant functors in SB. Assume
that f �p is a weak equivalence. Then for any bifibrant object A 2 A there is a weak equivalence of
simplicial sets

.f �p/.A/ WG.f .A//D .f �G/.A/ ��! .f �H/.A/DH.f .A//:

Since f is an r–equivalence of model categories, Definition 5.4(2) implies that for any bifibrant object
B 2 B there exists a bifibrant object A 2 A such that B is a retract of f .A/, up to homotopy. By
Lemma 5.7 there exists B 0 2 B weakly equivalent to f .A/ such that B is a retract of B 0. Since f .A/
and B 0 are bifibrant objects, the weak equivalence between them is a simplicial weak equivalence. Since
G and H are simplicial functors, they preserve simplicial weak equivalences. Therefore, p.B 0/ is a
weak equivalence by the 2-out-of-3 property, because .f �p/.A/D p.f .A// WG.f .A// ��!H.f .A// is
a weak equivalence by assumption. Hence, p.B/ WG.B/ ��!H.B/ is a weak equivalence as a retract of
the weak equivalence p.B 0/ WG.B 0/ ��!H.B 0/. Therefore p is a bifibrant-projective weak equivalence.

The retract argument implies that it is sufficient to prove (2) is a weak equivalence for any cellular F 2SA

with respect to the bifibrant-projective model structure.

For every bifibrant A 2A,
f �2Lanf F .A/D

�
Lanf F.f .A//

�fib

since f .A/ 2B is also a bifibrant object and the fibrant replacement in the bifibrant-projective model
structure on SB applies levelwise to the values of the functor in bifibrant objects. Hence there is a
bifibrant-projective weak equivalence

f �2Lanf F ' f
�Lanf F :
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In other words, it suffices to show that the unit of adjunction

F ! f �Lanf F

is a bifibrant-projective weak equivalence.

We proceed by cellular induction.

Suppose F D colimi<� Fi , so that F0 D∅ and FiC1 is obtained from Fi by attaching a cell

RAi ˝ @�n� _

��

// Fi� _

��

RAi ˝�n // FiC1

if i C 1 is a successor ordinal or Fi D colima<i Fa if i is a limit ordinal. Note that Ai 2A is bifibrant
for every i < �.

Since both Lanf and f � preserve colimits, so does f � Lanf . Since bifibrant-projective weak equivalences
are preserved under sequential colimits, it suffices to show for each i < � that if Fi ! f �Lanf Fi is
a fibrant-projective weak equivalence, then so is FiC1 ! f �Lanf FiC1. Let us consider the unit of
adjunction of the homotopy pushout square above:

f �Rf .Ai /˝ @�n //

��

f � Lanf Fi

��

RAi ˝ @�n

i)
ii

� _

��

// Fi

7w
77

� _

��

RAi ˝�n

u5

uu

// FiC1

''

f �Rf .Ai /˝�n // f � Lanf FiC1

Then the outer square is also a pushout; moreover, this is a levelwise homotopy pushout.

The slanted map on the right is a weak equivalence by the induction assumption. The slanted maps on the
left are bifibrant-projective weak equivalences by Definition 5.4(1), since for every bifibrant A 2A,

f �Rf .Ai /.A/D hom.f .Ai /; f .A//:

Hence the dashed map is also a bifibrant-projective weak equivalence as an induced map of homotopy
pushouts. This completes the cellular induction proving that (2) is a bifibrant-projective weak equivalence,
as required.

Conversely, if f W A! B preserves bifibrant objects and induces a Quillen equivalence Lanf a f �

between the categories of small functors into simplicial sets, then for any bifibrant object A1 2A, the
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induced map RA1! f � Lanf RA1 D f �Rf .A1/ is a bifibrant equivalence, ie evaluating at any bifibrant
object A2 2A we obtain a weak equivalence of simplicial sets

homA.A1; A2/
��! homB.f .A1/; f .A2//:

In other words, f satisfies the first part of Definition 5.4.

It remains to verify Definition 5.4(2), ie that every bifibrant object B 2B is a retract, up to homotopy, of
f .A/ for some bifibrant A 2A.

For all (bifibrant projectively) fibrant G 2 SB, let � be the maximum of the accessibility ranks of G
and f . Then

G ' Lanf Af �G D Lanf

Z A2A� CG.f .A//˝RA.�/D
Z A2A� CG.f .A//˝Rf .A/.�/:

Take G D hom.B;�/DRB.�/. ThenZ A2A� Fhom.B; f .A//˝ hom.f .A/;�/' hom.B;�/:

After evaluating at B and passing to connected components, we obtain a bijection (see [31, Theorem 10])Z A2A�

�0 hom.B; f .A//��0 hom.f .A/; B/Š �0 hom.B;B/:

Let A 2 A� correspond to the identity on the right-hand side. Then B is a retract, up to homotopy,
of f .A/.

6 Invariance of Goodwillie calculus under Quillen equivalence

Given a Quillen equivalence f of simplicial combinatorial model categories, consider the model categories
of homotopy functors (bifibrant-projective model structure on the categories of small functors) from this
Quillen pair to simplicial sets. This is a starting point for Goodwillie’s calculus of homotopy functors
[22; 26]. Consider the localization of these categories such that the fibrant objects are the fibrant n–excisive
functors. Does f induce a Quillen equivalence of these model structures? In other words, is Goodwillie
calculus invariant under Quillen equivalence? Under a few additional conditions the answer is “yes”.

Theorem 6.1 Let

A
L

?
))
B

R

ii

be a Quillen equivalence between simplicial combinatorial model categories. Put f D yL. Then the Quillen
pair of functor categories

Lanf W S
A � SB

Wf �

is a Quillen equivalence. Moreover , if we left Bousfield localize the functor categories so that the local
objects are the n–excisive functors in the bifibrant-projective model structures on both sides , then the
adjunction Lanf a f � is a Quillen equivalence of the model categories of n–excisive functors.
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Proof That the first Quillen pair is a Quillen equivalence follows from Theorem 5.8 and Example 5.6.
In order to conclude that the categories of n–excisive functors are Quillen equivalent we will apply
Theorem A.1.

First, f � preserves n–excisive functors. This is because f D yL preserves homotopy pushouts of cofibrant
objects; hence f preserves strongly cocartesian cubes.

It remains to show that Lanf commutes with the nth polynomial approximation functor. Let us denote by
PA
n and PB

n the n–excisive approximations of functors with domain in A and B respectively. Then we
need to prove that for all cofibrant F 2 SA there is a bifibrant-projective weak equivalence of functors
Lanf PA

n F ' P
B
n Lanf F .

We next prove that Lanf takes n–excisive functors to n–excisive functors. We will need the right adjoint
R to preserve homotopy pushout squares of bifibrant objects to verify this property. This is true, in turn,
since R is a part of a Quillen equivalence; hence its total derived functor is an equivalence of homotopy
categories. It follows that there is an equivalence of homotopy categories of diagrams indexed by the
category � �! �. Since the homotopy pushout is a left adjoint to the constant functor, it is preserved
by any equivalence of categories, so R preserves homotopy pushout squares.

Let F be a cofibrant functor. Suppose that PA
n F is a �–accessible functor. Let A��A be the subcategory

of �–presentable objects. Then

Lanf P
A
n F D Lanf

Z A2A�

hom.A;�/˝PA
n F.A/D

Z A2A�

Lanf hom.A;�/˝PA
n F.A/

D

Z A2A�

hom.f .A/;�/˝PA
n F.A/

D

Z A2A�

hom.yL.A/;�/˝PA
n F.A/

'

Z A2A�

hom.L.A/;�/˝PA
n F.A/

D

Z A2A�

hom.A;R.�//˝PA
n F.A/DR

�PA
n F:

Since R preserves homotopy pushouts, it preserves strongly cocartesian cubes; hence R�PA
n F 2 SB is

an n–excisive functor.

Consider the diagram
Lanf F

��

// PB
n Lanf F

vv

Lanf PA
n F

66

The dotted arrow exists by the initial, up to homotopy, property of n–excisive approximation in SB, since
Lanf PA

n F is n–excisive.
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The dashed arrow exists by the same reason in the adjoint diagram

F

��

// f �PB
n Lanf F

PA
n F

66

Both maps are unique, up to homotopy, hence mutually homotopy inverse. Therefore, Lanf commutes
with polynomial approximation, up to homotopy.

We have verified the conditions of Theorem A.1, so the Quillen pair Lanf ` f � is a Quillen equivalence
between the categories of small functors equipped with the n–excisive model structures.

Example 6.2 For the Quillen equivalence j�jW S � Top WSing the categories of n–excisive functors SS

and STop are Quillen equivalent. In other words, simplicial sets and topological spaces have the same
calculus of homotopy functors.

Appendix Localization of a Quillen equivalence

Given two Quillen equivalent model categories, consider a left Bousfield localizations of both sides.
Under what conditions are the resulting localized categories Quillen equivalent again? We provide a new
answer, needed for our Theorem 6.1, in the following theorem. We fix the following notation: for a model
category A equipped with the homotopy localization functor F�1A WA!A the left Bousfield localization
of A with respect to F�1A –equivalences is denoted by F�1A A. For all A 2 A we write F�1A .A/ for the
fibrant replacement of A in F�1A A in order to distinguish it from the fibrant replacement in A.

Theorem A.1 Let

A
L

?
))
B

R

ii

be a Quillen equivalence between simplicial model categories. Suppose there exist left Bousfield localiza-
tions F�1A A of A and F�1B B of B such that :

(1) R takes FB–local objects to FA–local objects.

(2) L commutes with the localization , ie for all cofibrant A 2A the map LF�1A .A/! F�1B .LA/ is a
weak equivalence. The latter map is adjoint to the lift in the commutative square in F�1A A:

A //
� _

�O
��

RLA // RF�1B .LA/

����

F�1A .A/ //

44

�

Then there exists a Quillen equivalence of the localized model categories

F�1A A
L

?

--
F�1B B:

R

ll
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Proof L is a left Quillen functor between A and B; hence it preserves the cofibrations in the localized
model structures as well. In order to show that L remains a left Quillen functor after the localization we
need to verify that for every cofibration A1 ,!A2, which is also an FA–local equivalence, the cofibration
LA1 ,!LA2 is an FB–local equivalence. In other words, we need to prove that F�1B LA1!F�1B LA2 is a
weak equivalence. SinceL commutes with the localization, it suffices to show thatLF�1A A1!LF�1A A2 is
a weak equivalence, which readily follows from the assumption that A1 ,!A2 is an FA–local equivalence
and the fact that L preserves weak equivalences of cofibrant objects.

We will use [24, 1.3.16(c)] to show that L aR is a Quillen equivalence.

(1) R reflects local equivalences of local objects, since these are just weak equivalences in A and B,
and R reflects weak equivalences.

(2) For every cofibrantA2A we need to show that the mapA!RF�1B LA is an F�1A –local equivalence.
We need to rely on the assumption thatL commutes with the localization, ie thatLF�1A A!F�1B LA

is a weak equivalence in B.
Consider the commutative square in the model category F�1B B:

LF�1A A
� _

�O

��

/o
// F�1B LA

����
yLF�1A A //

h

::

�

The lift h is a weak equivalence of fibrant objects in F�1B B. Hence Rh below is a weak equivalence:

A� _

loc. equiv.
��

// RF�1B LA

F�1A A
/o
// R yLF�1A A

RhO�

OO

In the diagram above the lower horizontal map is a weak equivalence since L a R is a Quillen
equivalence between A and B. Thus, the map A!RF�1B LA is a local equivalence in F�1B A.

Example A.2 Consider the Quillen equivalence j�jW S � Top WSing, and consider the localization of
both sides with respect to integral homology. Then the conditions of Theorem A.1 are readily verified;
hence the category of HZ–local topological spaces is Quillen equivalent to the category of HZ–local
simplicial sets.
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