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SOUMEN SARKAR

We introduce a new definition of weighted Grassmann orbifolds. We study their several invariant q–CW
complex structures and the orbifold singularities on the q–cells of these q–CW complexes. We discuss
when the integral cohomology of a weighted Grassmann orbifold has no p–torsion. We compute the
equivariant K–theory ring of weighted Grassmann orbifolds with rational coefficients. We introduce
divisive weighted Grassmann orbifolds and show that they have invariant CW complex structures. We
calculate the equivariant cohomology ring, equivariant K–theory ring and equivariant cobordism ring of a
divisive weighted Grassmann orbifold with integer coefficients. We discuss how to compute the weighted
structure constants for the integral equivariant cohomology ring of a divisive weighted Grassmann orbifold.
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1 Introduction

We consider the n–dimensional complex vector space Cn and a positive integer d satisfying 1� d < n.
Then the set of all d–dimensional vector subspaces of Cn is called a (complex) Grassmann manifold and
denoted by Gr.d; n/. In particular, the space Gr.1; n/ is called the .n�1/–dimensional complex projective
space. The space Gr.d; n/ has a manifold structure of dimension d.n� d/; see Mukherjee [24, Chapter 1].
This is a projective variety via the Plücker embedding. The natural .C�/n–action on Cn induces a
.C�/n–action on Gr.d; n/. Grassmann manifolds are central objects of study in algebraic geometry,
algebraic topology and differential geometry. Several interesting topological and geometrical properties
of Grassmann manifolds can be found in Laksov [21], Knutson and Tao [20] and Jiao and Peng [18].
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The orbifold version of a complex projective space was introduced in Kawasaki [19] and was called a
twisted projective space. Orbifolds, a generalization of manifolds, were introduced by Satake [27; 28]
with the name V –manifolds. Later, Thurston [31] used the terminology orbifolds instead. In the past two
decades, several developments have appeared to study orbifolds arising in algebraic geometry, differential
geometry and string topology. Some cohomology theories, such as de Rham cohomology (see Adem,
Leida and Ruan [2, Chapter 2]), singular cohomology (see Hatcher [16]), Dolbeault cohomology (see
Baily [5]), the Chen–Ruan cohomology ring [6] and orbifold K–theory [2, Chapter 3] for a class of
orbifolds were studied either with rational, real or complex coefficients. One can construct a CW complex
structure on an effective orbifold following Goresky [11]. However, in general, the computation of the
singular integral cohomology of an orbifold is considerably difficult.

Let G be a topological group and X a G–space. Then the equivariant map X ! fptg induces a graded
E�G.fptg/–algebra structure on E�G.X/. The readers are referred to May [22] for the definitions and several
results on the G–equivariant generalized cohomology theory E�G . If E�G DH

�
G , then it is known as the

equivariant cohomology theory defined by

H�G.X/ WDH
�.EG �G X/:

The ring H�G.X/ is called the Borel equivariant cohomology of X . If E�G D K
�
G , then it is known as

the equivariant K–theory. If X is compact, then K0G.X/ is the equivalence classes of G–equivariant
complex vector bundles on X ; see Segal [29]. If X is a point with trivial action, then K�G.fptg/ is
isomorphic to R.G/Œz; z�1�, where R.G/ is complex representation ring of G and z is the Bott element
of cohomological dimension �2. The G–equivariant ring MU�G.X/ is known as the equivariant complex
cobordism ring; see tom Dieck [9]. Sinha [30] and Hanke [13] have shown several developments on MU�G .
However, many interesting questions on MU�G.X/ remain undetermined. For example, MU�G.fptg/ is not
completely known for nontrivial groups G.

Corti and Reid [7] introduced the weighted projective analogs of a class of Grassmann manifolds and called
them weighted Grassmannians. Then Abe and Matsumura [1] defined weighted Grassmannians explicitly
and studied their equivariant cohomology ring of weighted Grassmannians with rational coefficients.
The weighted Grassmannians are projective varieties with orbifold singularities. The simplest weighted
Grassmannians are the weighted projective spaces. Kawasaki [19] proved that the integral cohomology of
weighted projective spaces has no torsion and is concentrated in even degrees. The equivariant cohomology
ring of a weighted projective space has been studied in Bahri, Franz and Ray [3] in terms of piecewise
polynomials. The equivariant K–theory and equivariant cobordism rings of divisive weighted projective
spaces have been discussed in Harada, Holm, Ray and Williams [15] in terms of piecewise Laurent
polynomials and piecewise cobordism forms, respectively.

Inspired by the above works, we introduce a different definition of weighted Grassmann orbifolds and study
their several topological properties such as torsion in the integral cohomology, equivariant cohomology
ring, equivariant K–theory ring and equivariant cobordism ring with integer coefficients. We note that
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Abe and Matsumura [1] and Corti and Reid [7] used the name “weighted Grassmannians”. However,
keeping other names in mind like Milnor manifolds and Seifert manifolds, we prefer to use Grassmann
manifolds and weighted Grassmann orbifolds.

The paper is organized as follows. In Section 2, analogously to the definition of Grassmann manifold
discussed in Mukherjee [24], we introduce another definition of a weighted Grassmann orbifold WGr.d; n/
for d < n, a 2 Z�1 and a “weight vector” W WD .w1; : : : ; wn/ 2 .Z�0/n. Interestingly, this definition
is equivalent to the previous one that appeared in Abe and Matsumura [1]. We recall the definition of
Schubert symbols for d < n and discuss how to get a total ordering on the Schubert symbols. Using
this total order we show that there is an equivariant embedding from a weighted Grassmann orbifold to
a weighted projective space; see Lemma 2.5. We describe a q–CW complex structure of WGr.d; n/ in
Proposition 2.7. Then we discuss a .C�/n–invariant filtration

fptg DX0 �X1 �X2 � � � � �Xm DWGr.d; n/

of WGr.d; n/ using the q–CW complex structure, where m WD
�
n
d

�
�1. Here, we consider q–CW complex

structure in the sense of Poddar and Sarkar [25, Section 4]. We note that one may get different q–CW
complex structures depending on the choice of the total orderings on the set of all Schubert symbols for
d < n. Accordingly, one may obtain different .C�/n–invariant filtrations of WGr.d; n/.

In Section 3, first we recall that there is an equivariant homeomorphism from WP.rc0; rc1; : : : ; rcm/ to
WP.c0; c1; : : : ; cm/ for any 1� r 2N. Using this technique, we show how the orbifold singularity on a
q–cell of some subcomplexes of WGr.d; n/ can be reduced; see Lemma 3.3. Consequently, we get a new
q–CW complex structure of these subcomplexes, including WGr.d; n/, possibly with less singularity
on each q–cell; see Theorem 3.4. We show in Theorem 3.5 that two weighted Grassmann orbifolds are
weakly equivariantly homeomorphic if their weight vectors differ by a permutation � 2 Sn. We define
“admissible permutation” � 2 Sn for a prime p and WGr.d; n/; see Definition 3.8. The following result
says when H�.WGr.d; n/IZ/ has no p–torsion.

Theorem A (Theorem 3.10) If there exists an admissible permutation � 2 Sn for a prime p and
WGr.d; n/, then H odd.WGr.d; n/IZp/ is trivial and H�.WGr.d; n/IZ/ has no p–torsion.

We introduce “divisive” weighted Grassmann orbifolds. We note that this definition coincides with the
concept of divisive weighted projective space of Harada, Holm, Ray and Williams [15] when 1D d < n.
We prove the following.

Theorem B (Theorem 3.19) If WGr.d; n/ is a divisive weighted Grassmann orbifold , then it has a
.C�/n–invariant CW complex structure. Moreover , the .C�/n–action on each cell of this CW complex
can be described explicitly.

This result implies that the integral cohomology of a divisive weighted Grassmann orbifold has no torsion
and is concentrated in even degrees. We discuss a class of nontrivial examples of divisive weighted
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Grassmann orbifolds. We remark that the weighted Grassmann orbifold in Example 3.12 is not divisive.
However, its integral cohomology has no torsion.

In Section 4, we show that the .C�/n–invariant stratification

fptg DX0 �X1 � � � � �Xm DWGr.d; n/

has the following property. The quotient Xi=Xi�1 is homeomorphic to the Thom space of an orbifold
.C�/n–bundle

� i WC`.�i /=Gi ! fptg

for some `.�i / 2 Z�1 and finite groups Gi for i D 1; : : : ; m; see Proposition 4.1. Then considering
T n WD .S1/n � .C�/n, we compute the equivariant K–theory ring of any weighted Grassmann orbifolds
with rational coefficients; see Theorem 4.4. If WGr.d; n/ is divisive then Gi is trivial for i D 1; : : : ; m.
The following result describes the integral equivariant cohomology of certain weighted Grassmann
orbifolds.

Theorem C (Theorem 4.7) Let WGr.d; n/ be a divisive weighted Grassmann orbifold for d < n. Then
the generalized T n–equivariant cohomology with integer coefficients E�T n.WGr.d; n/IZ/ can be given by�

.fi / 2

mM
iD0

E�T n.fptgIZ/
ˇ̌̌
eT n.�

ij / divides fi �fj for j < i and j�j \�i j D d � 1
�

for E�T n DH
�
T n , K�T n and MU�T n .

The computation of eT n.� ij / is discussed in (4-4). We compute the equivariant cohomology ring of some
weighted Grassmann orbifold with integer coefficients which are not divisive; see Theorem 4.10. For
m� 2, corresponding to each pair of positive integers .n; d/ such that d < n and mC 1D

�
n
d

�
, we have

a T n–action on WP.c0; c1; : : : ; cm/. For each pair .n; d/, we discuss the generalized T n–equivariant
cohomology of a divisive WP.c0; c1; : : : ; cm/ with integer coefficients; see Theorem 4.11.

In Section 5, we show that there exist equivariant Schubert classes fw zS�i g
m
iD0 which form a basis for

the integral T n–equivariant cohomology of a divisive weighted Grassmann orbifold; see Proposition 5.3.
We study some properties of weighted structure constants; see Lemma 5.5. Then we show the following
multiplication rule.

Proposition D (weighted Pieri rule, Proposition 5.7)

w zS�1w zS�j D .w
zS�1 j�j /w

zS�j C
X

�i!�j

c0

cj
w zS�i :

Moreover, we deduce a recurrence relation which helps to compute the weighted structure constants
fwckij g corresponding to this Schubert basis fw zS�i g

m
iD0 with integral coefficients.
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Proposition E (Proposition 5.8) For any three Schubert symbols �i , �j and �k , we have the recurrence
relation

.w zS�1 j�k �w
zS�1 j�i /wc

k
ij D

� X
�s!�i

c0

ci
wcksj �

X
�k!�t

c0

ct
wctij

�
:

2 Weighted Grassmann orbifolds and their invariant q–CW complexes

In this section, we introduce another definition of weighted Grassmann orbifold WGr.d; n/, where d < n.
We recall the definition of a Schubert symbol for d < n and discuss some (total) ordering on the set of
Schubert symbols. We show that there is an equivariant embedding from a weighted Grassmann orbifold
to a weighted projective space. We show that our definition of weighted Grassmann orbifold is equivalent
to the previous one, which appeared in [1]. We study the orbifold and q–CW complex structures of
weighted Grassmann orbifolds generalizing the Grassmann manifolds counterpart discussed in [23].

Let Md .n; d/ be the set of all complex n�d matrices of rank d , and GL.d;C/ the set of all nonsingular
complex matrices of order d . We denote a matrix A 2Md .n; d/ by

AD

0BB@
a11 a12 � � � a1d
a21 a22 � � � a2d
:::

:::
:::

:::
an1 an2 � � � and

1CCAD
0BB@

a1
a2
:::

an

1CCA; where ai 2Cd for i D 1; : : : ; n:

Definition 2.1 Let W WD .w1; w2; : : : ; wn/ 2 .Z�0/n and a 2 Z�1. Define an equivalence relation �w
on Md .n; d/ by 0BB@

a1
a2
:::

an

1CCA�w
0BB@
tw1a1
tw2a2
:::

twnan

1CCAT
for T 2 GL.d;C/ and t 2C� such that ta D det.T / 2C�. We denote the identification space by

WGr.d; n/ WDMd .n; d/=�w :

The quotient map

(2-1) �w WMd .n; d/!WGr.d; n/

is defined by �w.A/ D ŒA��w . The topology on WGr.d; n/ is given by the quotient topology via the
map �w .

Remark 2.2 If W D .0; 0; : : : ; 0/ and aD 1, then WGr.d; n/ is the Grassmann manifold Gr.d; n/. We
denote the corresponding quotient map by

(2-2) � WMd .n; d/! Gr.d; n/:
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The space Gr.d; n/ is a d.n�d/–dimensional smooth manifold and represents the set of all d–dimensional
vector subspaces in Cn. Several basic properties, such as the manifold and CW complex structure of
Gr.d; n/, can be found in [23]. In this paper, by dimension we mean complex dimension unless specified
explicitly.

Remark 2.3 If d D 1, then Md .n; d/DM1.n; 1/DCn n f0g and GL.1;C/DC�. The corresponding
�w is given by

.z1; z2; : : : ; zn/�w .t
aCw1z1; t

aCw2z2; : : : ; t
aCwnzn/:

The quotient space M1.n; 1/=�w is called the weighted projective space with weights

.aCw1; aCw2; : : : ; aCwn/;

and is denoted by WP.c0; c1; : : : ; cn�1/, where ci D aCwiC1 for i 2 f0; 1; : : : ; n�1g. For the weighted
projective space, we denote �w by �c when c D .c0; c1; : : : ; cn�1/. This identification �c is called a
weighted C�–action on Cn n f0g with weights .c0; c1; : : : ; cn�1/. In addition, if W D .0; 0; : : : ; 0/ and
aD 1, then c0 D 1D c1 D � � � D cn�1 and WP.c0; c1; : : : ; cn�1/ is CP n�1 D Gr.1; n/.

A Schubert symbol � for d < n is a sequence of d integers .�1; �2; : : : ; �d / such that 1 � �1 < �2 <
� � �< �d � n. The length `.�/ of a Schubert symbol � WD .�1; �2; : : : ; �d / is defined by

`.�/ WD .�1� 1/C .�2� 2/C � � �C .�d � d/:

There are
�
n
d

�
many Schubert symbols for d < n. One can define a partial order � on the Schubert

symbols for d < n by

(2-3) �� � if �i � �i for all i D 1; 2; : : : ; d:

Then the set of all Schubert symbols for d < n form a poset with respect to this partial order �.

Definition 2.4 Let �D .�1; �2; : : : ; �d / and �D .�1; �2; : : : ; �d / be two Schubert symbols for d < n.
We say that � < � if `.�/ < `.�/, otherwise we use the dictionary order if `.�/D `.�/.

This gives a total order on the set of all Schubert symbols. Note that the total order < in Definition 2.4
preserves the partial order � in (2-3). That is, for two Schubert symbols � and �, if �� � then �� �,
but the converse may not be true in general. Observe that there may exist several other total orders on the
set of all Schubert symbols which preserve the partial order �. For example, the dictionary order also
gives a total order on the Schubert symbols. By a total order on the set of all Schubert symbols for d < n,
we mean one of these total orders on it. For mD

�
n
d

�
� 1, let

(2-4) �0 < �1 < �2 < � � �< �m

be a total order on the Schubert symbols for d < n.
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For W D .w1; w2; : : : ; wn/ 2 .Z�0/n, a 2 Z�1 and i 2 f0; 1; : : : ; mg, let

(2-5) ci WD aC

dX
jD1

w�i
j
;

where �i D .�i1; �
i
2; : : : ; �

i
d
/ is the i th Schubert symbol given in (2-4). Then ci � 1 for any i 2 f0; : : : ; mg.

Therefore, one can define the weighted projective space WP.c0; c1; : : : ; cm/ from Remark 2.3. We denote
the associated orbit map CmC1 n f0g !WP.c0; c1; : : : ; cm/ by � 0c , which can be written as

(2-6) � 0c.z0; z1; : : : ; zm/D Œz0 W z1 W � � � W zm��c :

Note that when c0 D c1 D � � � D cm D 1, the corresponding orbit map is denoted by

� 0 WCmC1
n f0g !CPm:

Let .t1; t2; : : : ; tn/ 2 .C�/n and AD .a1; a2; : : : ; an/tr 2Md .n; d/. Then .C�/n acts on Md .n; d/ by

(2-7) .t1; : : : ; tn/.a1; a2; : : : ; an/
tr
WD .t1a1; t2a2; : : : ; tnan/

tr:

This induces a natural .C�/n–action on WGr.d; n/ such that the orbit map �w of (2-1) is .C�/n–
equivariant.

The standard ordered basis fe1; e2; : : : ; eng of Cn induces an ordered basis fe�0 ; e�1 ; : : : ; e�mg of
ƒd .Cn/, where e�D e�1 ^� � �^e�d for the Schubert symbol �D .�1; �2; : : : ; �d / for d < n. Therefore,
we can identify ƒd .Cn/ with CmC1.D Cfe�0 ; e�1 ; : : : ; e�mg/. The standard action of .C�/n on Cn

induces an action of .C�/n on CmC1 n f0g, which is defined by

(2-8) .t1; t2; : : : ; tn/

� mX
iD0

aie�i

�
D

mX
iD0

ai t�i e�i ;

where t�D t�1 � � � t�d for the Schubert symbol �D .�1; �2; : : : ; �d /. This induces a .C�/n–action on the
weighted projective space WP.c0; c1; : : : ; cm/ such that the orbit map � 0c in (2-6) is .C�/n–equivariant.

For each Schubert symbol �D .�1; �2; : : : ; �d /, let A� be the matrix with row vectors a�1 ; a�2 ; : : : ; a�d .
Define a map P WMd .n; d/!CmC1 n f0g by

(2-9) P.A/D v1 ^ v2 ^ � � � ^ vd D

mX
iD0

det.A�i /e�i ;

where v1; v2; : : : ; vd 2Cn are the columns of A. Observe that P.A/¤ 0 as A 2Md .n; d/ has rank d .

From (2-9) we have

P.DAT /D

mX
iD0

det..DAT /�i /e�i D
mX
iD0

tci det.A�i /e�i ;
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where T 2GL.d;C/,DDdiag.tw1 ; tw2 ; : : : ; twn/ is the diagonal matrix for t 2C� such that taDdet.T /,
and ci is defined in (2-5) for i D 0; 1; 2; : : : ; m. Therefore, the map P in (2-9) induces a map

(2-10) Plw WWGr.d; n/!WP.c0; c1; c2; : : : ; cm/

defined by Plw.ŒA��w /D Œdet.A�0/ W det.A�1/ W � � � W det.A�m/��c .

The map Plw satisfies the following commutative diagram:

Md .n; d/ CmC1 n f0g

WGr.d; n/ WP.c0; c1; : : : ; cm/

P

�w � 0c

Plw

Thus the map Plw is continuous, since �w and � 0c are quotient maps.

Lemma 2.5 The map Plw WWGr.d; n/!WP.c0; c1; c2; : : : ; cm/ is an embedding.

Proof Consider ŒA��w 2WGr.d; n/ for some A 2Md .n; d/. There exists a Schubert symbol �i such
that det.A�i /¤ 0. Without loss of generality, we can assume that A�i D Id , where Id is the identity matrix
of order d . If A�i ¤ Id then one can calculate s 2 C� such that sci D 1=det.A�i /. Now we consider
the matrices DD diag.sw1 ; sw2 ; : : : ; swn/ and T D .D�iA�i /

�1. Then det.T /D sa and .DAT /�i D Id .
Note that ŒDAT ��w D ŒA��w 2WGr.d; n/.

We prove that Plw is injective. Let ŒA��w ; ŒB��w 2WGr.d; n/ be such that Plw.ŒA��w /D Plw.ŒB��w /
for some A;B 2Md .n; d/. Now

(2-11) Plw.ŒA��w /D Plw.ŒB��w / D) det.A�j /D t
cj det.B�j /

for some t 2C� and for all j 2 f0; 1; : : : ; mg. Since A 2Md .n; d/ there exists a Schubert symbol �i D
.�i1; : : : ; �

i
d
/ such that det.A�i /¤0. Then using (2-11), det.B�i /¤0. So we can assumeA�i DB�i D Id .

Then tci D 1. Consider the matrices D D diag.tw1 ; tw2 ; : : : ; twn/ and T D diag.t�w�i1 ; : : : ; t�w�id /.
Thus, we have B�i D .DAT /�i .

For k … .�i1; : : : ; �
i
d
/ and 1 � l � d , let akl and bkl be the .k; l/ entries of the matrices A and B ,

respectively. For a fixed l , let �j be the Schubert symbol obtained by replacing �i
l

by k in �i and then
ordering the latter set. Then det.A�j /D akl and det.B�j /D bkl . Thus using (2-11), we get

bkl D t
cj akl D) bkl D t

cj�ciakl D) bkl D t
wk�w�i

l akl :

The above condition holds for all 1 � k � n and 1 � l � d . This gives B D DAT . Then we have
ŒA��w D ŒB��w . Hence, Plw is an injective map.

Observe that, if W D .0; 0; : : : ; 0/ and aD 1, then the map Plw is the usual Plücker map

Pl W Gr.d; n/!CPm:

Algebraic & Geometric Topology, Volume 24 (2024)
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It is well known that Pl is an embedding. Moreover, we have the following commutative diagrams:

(2-12)

WGr.d; n/ WP.c0; c1; : : : ; cm/

Md .n; d/ CmC1 n f0g

Gr.d; n/ CPm

Plw

P

�w

�

� 0c

� 0

Pl

Let U be an open subset of WGr.d; n/. Then ��1w .U / is an open subset of Md .n; d/. Since the map � in
(2-2) is an orbit map, �.��1w .U // is an open subset of Gr.d; n/. Thus Pl.�.��1w .U ///D� 0.P.��1w .U ///

is an open subset of Pl.Gr.d; n//. Then P.��1w .U // is an open subset of P.Md .n; d//. Therefore,
Plw.U /D � 0c.P.�

�1
w .U /// is an open subset of Plw.WGr.d; n//. Thus Plw is an embedding.

We call the embedding Plw the weighted Plücker embedding. Note that the actions of .C�/n on WGr.d; n/
and WP.c0; c1; : : : ; cm/ imply that the weighted Plücker embedding Plw is .C�/n–equivariant, and
Plw.WGr.d; n// is a .C�/n–invariant subset of WP.c0; c1; : : : ; cm/. Thus all the maps in the diagram
(2-12) are .C�/n–equivariant.

Now we show that Definition 2.1 is equivalent to the definition of a weighted Grassmannian studied in [1].
The algebraic torus .C�/nC1 acts on ƒd .Cn/ by

.t1; t2; : : : ; tn; t /

mX
iD0

a�i e�i D

mX
iD0

t � t�ia�i e�i ;

where t� D t�1 � � � t�d for �D .�1; : : : ; �d /. Consider the subgroup WD of .C�/nC1 defined by

WD WD f.tw1 ; tw2 ; : : : ; twn ; ta/ j t 2C�g:

Then the restricted action of WD on ƒd .Cn/ n f0g is given by

.tw1 ; tw2 ; : : : ; twn ; ta/

mX
iD0

a�i e�i D

mX
iD0

tcia�i e�i :

Observe that this action of WD is same as the weighted C�–action in Remark 2.3. Then we have
ƒd .Cn/ n f0g=WDDWP.c0; : : : ; cm/ and by the commutativity of the diagram (2-12) we have

Plw.WGr.d; n//D
P.Md .n; d//

WD
:

Therefore the topologies on WGr.d; n/ and P.Md .n; d//=WD are equivalent. Abe and Matsumura [1]
called the quotient P.Md .n; d//=WD a weighted Grassmannian and showed that it has an orbifold
structure. We call WGr.d; n/ a weighted Grassmann orbifold associated to the pair .W; a/.
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Next, we recall the Schubert cell decomposition of Gr.d; n/ following [23]. For k � n, we identify

Ck
D f.z1; z2; : : : ; zk; 0; : : : ; 0/ 2Cn

g:

For the Schubert symbol �D .�1; �2; : : : ; �d /, the Schubert cell E.�/ is defined by

E.�/ WD fX 2 Gr.d; n/ j dim.X \C�j /D j; dim.X \C�j�1/D j � 1 for allj 2 Œd �g;

where Œd � WD f1; 2; : : : ; dg. We have the following homeomorphism from [23, Chapter 6]:

(2-13) E.�/Š

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

266666666666666666666666664

� � � � � �
:::
:::

:::
� � � � � �

1 0 � � � 0

0 � � � � �
:::
:::

:::
0 � � � � �

0 1 � � � 0

0 0 � � � �
:::
:::

:::
0 0 � � � �

0 0 � � � 1

0 0 � � � 0
:::
:::

:::
0 0 � � � 0

377777777777777777777777775

ˇ̌̌̌
ˇ � 2C and ej is the �th

j row for j 2 Œd �

9>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>;

:

Note that the j th column in the matrices in (2-13) has �th
j entry 1 and all subsequent entries of this column

are zero for j 2 Œd �. Then E.�/ is an open cell of dimension `.�/D .�1�1/C .�2�2/C� � �C .�d �d/.

We recall some basic properties of q–cell and finite q–CW complex from [25; 4]. Let Dn be the open unit
disc in Rn and G a finite group acting on xDn such that @ xDn is invariant. Then Dn=G is called a q–cell
of real dimension n. Let Y be a space and � W @ xDn=G! Y a continuous map. Then the mapping cone

X WD

�
Y t

xDn

G

�.�
x � �.x/ for x 2

@ xDn

G

�
is obtained from Y by attaching the q–cell Dn=G. As a set, we can write X D Y t .Dn=G/ whenever
the attaching map is clear. If a space X is obtained from a finite set by attaching finitely many q–cells,
then X is called a finite q–CW complex.

Let k be a positive integer and G.k/ the group of kth roots of unity defined by

G.k/ WD ft 2C� j tk D 1g:

Then we have the following.
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Lemma 2.6 Let S be a C�–space , and suppose that C� acts on S �C� by t � .x; ˛/D .t � x; tk˛/. Then

S �C�

C�
Š

S

G.k/
;

where G.k/ acts on S by restriction of the C�–action.

Proof The inclusion map S ! S �C� defined by x! .x; 1/ induces a map

xf W S !
S �C�

C�
:

Note that every element in the codomain of xf can be written as Œ.u; 1/�, where u 2 S . To verify this,
consider an element Œ.x; t/� in the codomain of xf , where x 2 S and t 2C�. Consider s 2C� such that
sk D 1=t . Then s� .x; t/D .s� x; 1/. Hence Œ.x; t/�D Œ.u; 1/�, where uD s� x. Thus u2 S is the preimage
of Œu; 1� 2 codomain.f / and the map xf becomes onto.

Now G.k/ is a finite subgroup of C� acts on S as a restriction of the C�- action. For any t 2G.k/,

xf .t �u/D Œ.t �u; 1/�D Œ.t �u; tk/�D Œ.u; 1/�D xf .u/:

Thus xf induces an onto map f W S=G.k/! S �C�=C� such that the following diagram commutes:

(2-14)

S
xf

//

�G.k/ ##

S �C�

C�

S

G.k/

f

99

To check that f is one-to-one, if Œ.x; 1/� D Œ.y; 1/� then .y; 1/ D t � .x; 1/ D .t � x; tk/. This implies
y D t � x for some t 2G.k/. Thus Œx�D Œy� in S=G.k/. Therefore,

S �C�

C�
Š

S

G.k/
:

The next result gives a q–CW complex structure on WGr.d; n/.

Proposition 2.7 WGr.d; n/ is a finite q–CW complex for 0 < d < n.

Proof Consider a total order on the Schubert symbols for d < n as in (2-4), which satisfies the partial
order in (2-3). For each i 2 f0; 1; : : : ; mg, define zE.�i / WD ��1.E.�i //, where the map � is defined
in (2-2). The Schubert cell decomposition of Gr.d; n/ gives that Gr.d; n/D

Fm
iD0E.�

i /. This implies

(2-15) Md .n; d/D

mG
iD0

zE.�i /;

since the map � is surjective. Note that

zE.�i /D fA 2Md .n; d/ j det.A�i /¤ 0; det.A�j /D 0 for j > ig:

Let A 2 zE.�i / and A�w B for a matrix B 2Md .n; d/. Then B 2 zE.�i /.
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Therefore, we have the decomposition of WGr.d; n/

WGr.d; n/D �w. zE.�0//t�w. zE.�1//t � � � t�w. zE.�m//:

By the commutativity of the diagram (2-12), we get

Plw.�w. zE.�i ///D � 0c.P. zE.�
i /// and P. zE.�i //D .� 0/�1.Pl.E.�i ///:

The map � 0 is a principal C�–bundle, and E.�i / is contractible. So there is a bundle isomorphism

�i W P. zE.�
i //!E.�i /�C�:

Indeed, this map can be defined by �i .P.A// D .�.A/; det.A�i //. The inverse map is defined by
.�.A/; s/ 7! .s.det.A�i //

�1P.A//.

Let �.A/ 2 Gr.d; n/ for some AD .a1; a2; : : : ; an/tr 2Md .n; d/ and t 2C�. There is an action of C�

on Gr.d; n/ defined by

(2-16) t ��.A/D t ��..a1; a2; : : : ; an/
tr/ WD �..tw1a1; t

w2a2; : : : ; t
wnan/

tr/:

If �.A/D �.B/, then AD BT if and only if DADDBT for a diagonal matrix D and T 2 GL.d;C/.
Thus t ��.A/D t ��.B/. Then �i becomes C�–equivariant with the following weighted C�–action on
E.�i /�C� given by

t � .�.A/; s/D .t ��.A/; tci s/;

where t ��.A/ is defined in (2-16) and ci is defined in (2-5). Thus

� 0c.P.
zE.�i ///D

P. zE.�i //

weighted C�–action
Š

E.�i /�C�

weighted C�–action
Š
E.�i /

G.ci /
;

where the last identification follows from Lemma 2.6.

Now E.�i /=G.ci / is a q–cell of dimension `.�i / as E.�i / is an open cell of dimension `.�i / and
jG.ci /j<1.

Let C.i/ WD fŒz0 W z1 W � � � W zi�1 W 1 W 0 W � � � W 0� 2WP.c0; c1; : : : ; cm/g.

Consider

S2i�1 D

�
.z0; z1; : : : ; zi�1; 0; : : : ; 0/ 2CmC1

ˇ̌̌ i�1X
jD0

jzj j
2
D 1

�
and the G.ci /–action on S2i�1 by g.z0; : : : ; zi�1; 0; : : : ; 0/ 7! .gc0z0; : : : ; g

ci�1zi�1; 0; : : : ; 0/. The
orbit space is called an orbifold Lens space and denoted by L.ci I c0/, where c0 D .c0; : : : ; ci�1/. Then
C.i/DCi=G.ci / is homeomorphic to the cone C.L.ci I c0// on L.ci I c0/. The space WP.c0; : : : ; ci�1/

can be obtained by the weighted S1–action on S2i�1 with the weight vector c0. Thus there is a map

�i W
S2i�1

G.ci /
D L.ci I c

0/!
S2i�1

weighted S1–action
;

which plays the role of the attaching map for the q–cell C.i/; see [19].
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Note that the set E.�i /Š fŒz0 W � � � W zi�1 W 1 W 0 W � � � W 0� 2 Pl.Gr.d; n//g �CPm. Then E.�i /ŠC`.�i /

can be considered as a G.ci /–invariant subset of Ci as `.�i / < i . So S2i�1\E.�i / is a G.ci /–invariant
sphere of real dimension 2`.�i /� 1. Thus, we have

S

�
E.�i /

G.ci /

�
WD

S2i�1\E.�i /

G.ci /
,!

E.�i /

G.ci /
,!

Ci

G.ci /
D C.i/:

Therefore, the attaching map for the q–cell E.�i /=G.ci / is the restriction on S.E.�i /=G.ci // and the
following diagram commutes:

S

�
E.�i /

G.ci /

�
fŒ.z0 W � � � W zi�1 W 0 W � � � W 0/� 2 Plw.WGr.d; n//g

L.ci ; c
0/ WP.c0; c1; : : : ; ci�1/

 i

Plw

�i

Therefore, a q–CW complex structure on WGr.d; n/ is given by

Plw.WGr.d; n//D
E.�0/

G.c0/
t
E.�1/

G.c1/
t
E.�2/

G.c2/
t � � � t

E.�m/

G.cm/
:

For each k 2 f0; 1; 2; : : : ; mg, let

Xk WD

kG
iD0

E.�i /

G.ci /
�WGr.d; n/:

HereXk is built inductively by attaching the q–cells E.�0/=G.c0/; : : : ; E.�k/=G.ck/ so thatXk remains
a subset of WGr.d; n/. Then each Xk is a .C�/n–invariant and we have the following filtration of
WGr.d; n/:

(2-17) fptg DX0 �X1 �X2 � � � � �Xm DWGr.d; n/:

We note that the paper [1] discussed a q–CW complex structure of WGr.d; n/. However, our approach is
different and helps to study torsions in the integral cohomology of WGr.d; n/.

3 Integral cohomology of certain weighted Grassmann orbifolds

In this section, we study several q–CW complex structures on a weighted Grassmann orbifold. We show
how a permutation on the weight vector affects the weighted Grassmann orbifold. We define admissible
permutation � 2 Sn for a prime p and WGr.d; n/. Then we discuss when H�.WGr.d; n/IZ/ has no
p–torsion. We introduce the concept of divisive weighted Grassmann orbifolds, which incorporates the
divisive weighted projective spaces of [15]. We show that a divisive weighted Grassmann orbifold has a
.C�/n–invariant CW complex structure. We describe this action on each cell explicitly. As a consequence,
we get that the integral cohomology of a divisive weighted Grassmann orbifold has no torsion and is
concentrated in even degrees.
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The following lemma is well known, but for our purpose we may need its proof.

Lemma 3.1 The map � 0c WC
mC1�f0g !WP.c0; c1; : : : ; cm/ induces an equivariant homeomorphism

WP.rc0; rc1; : : : ; rcm/!WP.c0; c1; : : : ; cm/ for any positive integer r .

Proof The weighted C�–action on CmC1 n f0g for WP.rc0; rc1; : : : ; rcm/ is given by

t .z0; z1; : : : ; zm/D .t
rc0z0; t

rc1z1; : : : ; t
rcmzm/:

We denote the equivalence class by Œz0 W z1 W � � � W zm��rc .

One can define a map f WWP.rc0; rc1; : : : ; rcm/!WP.c0; : : : ; cm/ by

f .Œz0 W z1 W � � � W zm��rc /D Œz0 W z1 W � � � W zm��c

and a map g WWP.c0; c1; : : : ; cm/!WP.rc0; rc1; : : : ; rcm/ by

g.Œz0 W z1 W � � � W zm��c /D Œz0 W z1 W � � � W zm��rc :

Thus the following diagram commutes:

CmC1 n f0g
Id

//

� 0rc
��

CmC1 n f0g

� 0c
��

WP.rc0; : : : ; rcm/
f

// WP.c0; : : : ; cm/
g
oo

Observe that, we have f ıg D IdWP.c0;:::;cm/ and g ı f D IdWP.rc0;:::;rcm/. Thus f is a bijective map
with the inverse map g.

Let U be an open subset of WP.c0; : : : ; cm/ Then .� 0c/
�1.U / D .� 0rc/

�1 ı f �1.U /. Since � 0c is a
quotient map then .� 0c/

�1.U / is an open subset of CmC1 n f0g. Thus f �1.U / is an open subset of
WP.rc0; : : : ; rcm/ as � 0rc is a quotient map. Thus f is continuous. By similar arguments, we can
show that g is continuous. Hence f is a homeomorphism and also it is equivariant with respect to the
.C�/n–action on WP.c0; : : : ; cm/ and WP.rc0; : : : ; rcm/ defined after (2-8).

Lemma 3.2 Let B be a subset of CmC1 n f0g. Let B 0c WD �
0
c.B/ and B 0rc WD �

0
rc.B/. Then the map

f jB 0rc W B
0
rc! B 0c is a homeomorphism.

Proof Consider the commutative diagram

B B

B 0rc B 0c

Id

� 0rc � 0c
f j
B0rc

The map f is well defined and one-to-one. It follows that f jB 0rc is also well defined and one-to-one.
Note that f jB 0rc is defined by f jB 0rc .�

0
rc.b// D �

0
c.b/. Therefore, � 0rc.b/ 2 B

0
rc is the inverse image

of an element � 0c.b/ 2 B
0
c . So f jB 0rc is bijective. Also .f jB 0rc /

�1 D gjB 0c . To conclude that f jB 0rc is a
homomorphism, recall that the restriction of a continuous map is also continuous.
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We apply the previous result onto some subsets of P.Md .n; d//�CmC1 n f0g for mC 1D
�
n
d

�
, where

P is defined in (2-9). For all k 2 f0; 1; : : : ; mg, consider zXk �Md .n; d/ defined by

zXk WD fA 2Md .n; d/ j det.A�j /D 0 for j > kg:

Then zXk D
Fk
iD0
zE.�i /�Md .n; d/, where zE.�i /D ��1.E.�i / and

P. zXk/D

kG
iD0

P. zE.�i //� P.Md .n; d//:

Note that P. zXk/�CkC1 n f0g �CmC1 n f0g for k 2 f0; 1; : : : ; mg.

One can calculate ci for all i 2 f0; 1; : : : ; mg from (2-5) for a weighted Grassmann orbifold WGr.d; n/.
Let rk WD gcdfc0; c1; : : : ; ckg for all k 2 f1; 2; : : : mg and G.rk/ be the group of r th

k
roots of unity. Since

G.ci / is cyclic, letG.ci=rk/ be the unique cyclic subgroup ofG.ci / of order ci=rk for i 2 f0; 1; 2; : : : ; kg.
Also G.rk/ is a subgroup of G.ci / and G.ci /=G.rk/ is isomorphic to G.ci=rk/ for i 2 f0; 1; 2; : : : ; kg.
Now G.ck/ acts on E.�k/ as a restriction of the weighted C�–action. Then we have a restricted
G.ck=rk/–action on E.�k/.

Lemma 3.3 The space � 0c.P. zXk// is homeomorphic to � 0
c=rk

.P. zXk//. Moreover , E.�k/=G.ck/ is
homeomorphic to E.�k/=G.ck=rk/.

Proof The diagram

P. zXk/ P. zXk/

� 0c.P.
zXk// � 0

c=rk
.P. zXk//

Id

� 0c � 0
c=rk

f j
�0c.P.

zXk//

is commutative. By Lemma 3.2, the lower horizontal map is a homeomorphism. The second statement of
the lemma follows by similar arguments with P. zXk/ is replaced by P. zE.�k//.

Theorem 3.4 The collection fE.�i /=G.ci=rk/gkiD0 gives a q–CW complex structure of � 0
c=rk

.P. zXk//

for k D 1; 2; : : : ; m. Moreover , fE.�i /=G.ci=ri /gmiD0 gives a q–CW complex structure of WGr.d; n/,
where r0 D c0.

Proof Note that the setsP. zE.�i // andP.Md .n; d//D
Fm
iD0 P.

zE.�i // are invariant under the weighted
C�–action defined in Remark 2.3 for all i D 0; 1; : : : ; m. Then we have the commutative diagram

P. zXk/ � CkC1 n f0g

� 0
c=rk

.P. zXk// � WP

�
c0

rk
;
c1

rk
; : : : ;

ck

rk

�� 0
c=rk

� 0
c=rk
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Thus the first part follows from

� 0c=rk .P.
zXk//D �

0
c=rk

� kG
iD0

P. zE.�i //

�
D

kG
iD0

� 0c=rk .P.
zE.�i ///D

kG
iD0

P. zE.�i //

�c=rk

Š

kG
iD0

E.�i /

G.ci=rk/
:

The second part follows from WGr.d; n/Š � 0c.P. zXm// and by applying Lemma 3.3 successively for
every k 2 f1; 2; : : : ; mg.

We show that two weighted Grassmann orbifolds are weakly equivariantly homeomorphic if the associated
weight vectors differ by a permutation � 2 Sn. Let X and Y be two G–spaces. A map f W X ! Y is
called a weakly equivariant homeomorphism if f is a homeomorphism and f .gx/D �.g/f .x/ for some
�2Aut.G/ and for all .g; x/2G�X . If � is the identity, then f is called an equivariant homeomorphism.

Let W D .w1; w2; : : : ; wn/ 2 .Z�0/n, 0 < a 2 Z and �W WD .w�1 ; w�2 ; : : : ; w�n/ for some � 2 Sn.
Consider two weighted Grassmann orbifolds WGr.d; n/ and WGr0.d; n/ associated to .W; a/ and .�W; a/,
respectively. The group .C�/n acts on WGr.d; n/ described in (2-7). Also, there exists a .C�/n–action
on WGr0.d; n/ defined by

(3-1) .t1; : : : ; tn/Œ.a1; a2; : : : ; an/
tr� WD Œ.t�1a1; t�2a2; : : : ; t�nan/

tr�:

Theorem 3.5 There exists a weakly equivariantly homeomorphism between WGr.d; n/ and WGr0.d; n/.
Moreover , this may induce different q–CW complex structures on WGr.d; n/ for different � .

Proof The matrix A D .aij / 2 Md .n; d/ if and only if �A D .a�ij / 2 Md .n; d/. Thus the natural
weakly equivariant homeomorphism xf� WMd .n; d/!Md .n; d/ defined by xf� .A/ D �A induces the
commutative diagram

(3-2)

Md .n; d/ Md .n; d/

WGr.d; n/ WGr0.d; n/

xf�

�w ��w

f�

Here �w is the quotient map defined in Definition 2.1. Thus, (3-2) induces a weakly equivariant
homeomorphism f� WWGr.d; n/!WGr0.d; n/, where .C�/n–action on WGr.d; n/ is defined in (2-7)
and the .C�/n–action on WGr0.d; n/ is defined in (3-1). Note that f� .ŒA��w/D Œ�A���w .

We discuss the effects of the permutation � on the q–CW complex structure on WGr.d; n/. Consider
Ci D f.x1; x2; : : : ; xn/ 2Cn j xj D 0 for j > ig. For � 2 Sn, define

�Cn
WD f.x�1 ; x�2 ; : : : ; x�n/g and �Ci

WD f.x�1 ; x�2 ; : : : ; x�n/ 2 �Cn
j x�j D 0 for �j > ig:

Let �D .�1; : : : ; �d / be a Schubert symbol for d < n. Then

�E.�/D f�Y j Y 2E.�/g

D fX 2 Gr.d; n/ j dim.X \ �C�i /D i and dim.X \ �C�i�1/D i � 1 for i 2 Œd �g;

where Œd �D f1; 2; : : : ; dg. Then E.�/Š �E.�/ and dim.�E.�//D `.�/.
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So the permutation of the coordinates in Cn determines another CW complex structure for Gr.d; n/
given by Gr.d; n/D � Gr.d; n/D

Fm
iD0 �E.�

i /. This induces the following decomposition ofMd .n; d/,
similar to (2-15):

Md .n; d/D

mG
iD0

� zE.�i / and P.Md .n; d//D

mG
iD0

P.� zE.�i //:

Recall that �i D .�i1; : : : ; �
i
d
/ is a Schubert symbol and ci is defined in (2-5) for i D 0; : : : ; m. Then

��i WD .�.�ii1/; : : : ; �.�
i
id
//, where i1; : : : ; id 2 f1; : : : ; dg and �.�ii1/ < �.�

i
i2
/ < � � �< �.�iid /. Let

(3-3) �ci WD aC

dX
jD1

w�.�i
ij
/:

Now from the commutativity of the diagram (2-12), we have

�w.�. zE.�
i ///Š Plw.�w.� zE.�i ///D

P.� zE.�i //

weighted C�–action
:

There exists a homeomorphism
P.� zE.�i /Š �E.�i /�C�

defined by P.�A/! .�.�A/; det.A��i //. This is a C�–equivariant homomorphism, where the weighted
C�–action on the left side is same as the weighted C�–action on CmC1nf0g, and the weighted C�–action
on the right side is defined by

t � .�.�A/; s/D .t ��.�A/; t�ci s/;

where t ��.�A/ is defined in (2-16). Then using Lemma 2.6, we have

P.� zE.�i //

weighted C�–action
Š
�E.�i /

G.�ci /
:

Then we get a q–CW complex structure of the weighted Grassmann orbifold WGr.d; n/ given by

WGr.d; n/Š
�E.�0/

G.�c0/
t
�E.�1/

G.�c1/
t � � � t

�E.�m/

G.�cm/
:

Remark 3.6 Applying the permutation � on the rows of the matrices in E.�/, we get the matrices of
�E.�/. That is, 0BB@

v1
v2
:::
vn

1CCA 2E.�/ ()
0BB@
v�1
v�2:::
v�n

1CCA 2 �E.�/:
Proposition 3.7 [4, Theorem 1.1] Let X be a q–CW complex with no odd-dimensional q–cells , and
p a prime number. Let fptg DX0 �X1 � � � � �Xs DX be a filtration of X such that Xi is obtained by
attaching the q–cell R2ki=Gi toXi�1 for all i 2f1; 2; : : : ; sg. If gcdfp; jGi jgD 1 for all i 2f1; 2; : : : ; sg,
then H�.X IZ/ has no p–torsion and H odd.X IZp/ is trivial.
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Recall �ci as defined in (3-3) for WGr.d; n/ associated to weight vector W D .w1; : : : ; wn/ 2 .Z�0/n

and 1� a 2 Z.

Definition 3.8 A permutation � 2 Sn is called admissible for a prime p and WGr.d; n/ if

gcd
�
p;
�ci

di

�
D 1;

where �ci is defined in (3-3) and di D gcdf�c0; �c1; : : : ; �cig for i 2 f1; 2; : : : ; mg.

Some examples of admissible permutations are discussed in Example 3.12.

Remark 3.9 There may not always exist an admissible permutation � 2Sn for a prime p and WGr.d; n/.
However if d D 1, then mD n� 1 and there always exists an admissible permutation � 2 Sn for every
prime p. The admissible permutation � 2 Sn may not be unique.

The following result says when the integral cohomology of WGr.d; n/ has no p–torsion.

Theorem 3.10 If there exists an admissible permutation � 2 Sn for a prime p and WGr.d; n/, then
H�.WGr.d; n/IZ/ has no p–torsion and H odd.WGr.d; n/IZp/ is trivial.

Proof Suppose � 2 Sn be an admissible permutation for p and WGr.d; n/. Then

gcd
�
p;
�ci

di

�
D 1

by Definition 3.8, where di D gcdf�c0; �c1; : : : ; �cig for all i 2 f1; 2; : : : ; mg. By Theorem 3.5, we have
the q–CW complex structure

WGr.d; n/Š
�E.�0/

G.�c0/
t
�E.�1/

G.�c1/
t � � � t

�E.�m/

G.�cm/
;

where �E.�i /ŠE.�i /ŠC`.�i /. Let

�Xk D

kG
iD0

�E.�i /

G.�ci /
�WGr.d; n/ for k D 0; 1; : : : ; m:

Then �Xk is a subcomplex of WGr.d; n/ for k D 0; 1; : : : ; m and �Xm D WGr.d; n/. This gives a
filtration

fptg D �X0 � �X1 � � � � � �Xm DWGr.d; n/

such that �Xi n �Xi�1 is homeomorphic to �E.�i /=G.�ci /.

Using Lemma 3.3,
�E.�i /

G.�ci /
Š

�E.�i /

G.�ci=di /
:

That is, �Xi n �Xi�1 is homeomorphic to C`.�i /=G.�ci=di / for all i D 1; 2; : : : ; m. Therefore, by
Proposition 3.7, H�.WGr.d; n/IZ/ has no p–torsion and the groupH odd.WGr.d; n/IZp/ is trivial. This
completes the proof.
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Corollary 3.11 [19] H�.WP.c0; c1; : : : ; cm/IZ/ has no torsion.

Proof This follows from Theorem 3.10 and Remarks 2.3 and 3.9.

Example 3.12 Consider the weighted Grassmann orbifold WGr.2; 4/ for weight vector W D .1; 1; 3; 4/
and aD 2. Here

nD 4; d D 2;
�n
d

�
D 6; mD

�n
d

�
� 1D 5:

So, in this case, we have six Schubert symbols, which are

�0 D .1; 2/ < �1 D .1; 3/ < �2 D .1; 4/ < �3 D .2; 3/ < �4 D .2; 4/ < �5 D .3; 4/;

ordered as in Definition 2.4. For the prime p D 3, consider the permutation � 2 S4 defined by

�1 D 3; �2 D 4; �3 D 1; �4 D 2:

Then
�c0 D 9; �c1 D 6; �c2 D 6; �c3 D 7; �c4 D 7; �c5 D 4;

using (3-3). This � is admissible for pD 3 and WGr.2; 4/. Thus H�.WGr.2; 4/IZ/ has no 3–torsion by
Theorem 3.10.

For the prime p D 7, consider the permutation � 2 S4 defined by

�1 D 4; �2 D 2; �3 D 1; �4 D 3:

Then
�c0 D 7; �c1 D 7; �c2 D 9; �c3 D 4; �c4 D 6; �c5 D 6;

using (3-3). This � is admissible for pD 7 and WGr.2; 4/. Thus H�.WGr.2; 4/IZ/ has no 7–torsion by
Theorem 3.10.

To compute that it has no 2–torsion, we need to consider a different total order on the Schubert symbols,
given by

�0 D .1; 2/ < �1 D .1; 3/ < �2 D .2; 3/ < �3 D .1; 4/ < �4 D .2; 4/ < �5 D .3; 4/;

which preserves the partial order in (2-3). In this case, using (2-5),

c0 D 4; c1 D 6; c2 D 6; c3 D 7; c4 D 7; c5 D 9:

The identity permutation in S4 is admissible for p D 2 and this WGr.2; 4/. Then H�.WGr.2; 4/IZ/ has
no 2–torsion by Theorem 3.10.

The only primes which divide the orders of the orbifold singularities of this WGr.2; 4/ are 2; 3 and 7.
Hence the integral cohomology of WGr.2; 4/ of this example has no torsion.

Remark 3.13 Considering the total order given in Definition 2.4 on the Schubert symbols, there may not
exist an admissible permutation � for a prime. However, one can take another total order on the Schubert
symbols for which one can find � satisfying the hypothesis in Theorem 3.10 for this prime.
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The q–CW complex structure in Theorem 3.4 leads us to introduce the following definition, which
generalizes the concept of divisive weighted projective spaces of [15].

Definition 3.14 A weighted Grassmann orbifold WGr.d; n/ is called divisive if there exists � 2 Sn such
that �ci divides �ci�1 for i D 1; 2; : : : ; m, where �ci is defined in (3-3).

Example 3.15 Consider the weighted Grassmann orbifold WGr.2; 4/ for weight vector W D .1; 6; 1; 1/
and aD 3. We have the ordering on the six Schubert symbols given by

�0 D .1; 2/ < �1 D .1; 3/ < �2 D .1; 4/ < �3 D .2; 3/ < �4 D .2; 4/ < �5 D .3; 4/:

Consider the permutation � 2 S4 defined by

�1 D 2; �2 D 1; �3 D 3; �4 D 4:

Then
�c0 D 10; �c1 D 10; �c2 D 10; �c3 D 5; �c4 D 5; �c5 D 5;

using (3-3). Thus �ci divides �ci�1 for i D 1; 2; : : : ; 5. So WGr.2; 4/ of this example is divisive.

Example 3.16 Let ˛ and 
 be any two nonnegative integers and ˇ be any positive integer such that ˇ>d˛.
Let WGr.d; n/ be the corresponding weighted Grassmann orbifold for W D .˛C
ˇ; ˛; : : : ; ˛/2 .Z�0/n

and aD ˇ� d˛ > 0. Consider the total order f�0; �1; : : : ; �mg on the Schubert symbols induced by the
dictionary order. Then

ci D

�
.
 C 1/ˇ if i D 0; 1; : : : ;

�
n�1
d�1

�
� 1;

ˇ if i D
�
n�1
d�1

�
; : : : ; m:

Then ci divides ci�1 for all i D 1; 2; : : : ; m. Therefore this WGr.d; n/ is a divisive weighted Grassmann
orbifold.

Definition 3.17 Let � be a Schubert symbol for d < n. Then a reversal of � is a pair .k; k0/ such that
k 2 �, k0 … � and k0 < k. We denote the set of all reversals of � by rev.�/. If .k; k0/ 2 rev.�/ then
.k; k0/� is the Schubert symbol obtained by replacing k by k0 in � and ordering the later set.

Remark 3.18 If .k; k0/ 2 rev.�/ then .k; k0/� � � and `.�/ is the cardinality of the set rev.�/ where
`.�/ is the length of �. Knutson and Tao [20] and Abe and Matsumura [1] defined an inversion of a
Schubert symbol � as a pair .k; k0/ such that k 2 �, k0 … � and k < k0. In some sense, our definition of
reversal is dual to the definition of inversion. If inv.�/ is the set of all inversions of � and `0.�/ is the
cardinality of the set inv.�/, then `.�/C `0.�/D d.n� d/. Also, if .k; k0/ 2 rev.�/ and .k; k0/�D �,
then .k0; k/ 2 inv.�/ and .k0; k/�D �.

Next, we discuss .C�/n–action on some CW complex structure of a divisive weighted Grassmann orbifold.
Recall the .C�/n–action on WGr.d; n/ which is induced from (2-7). We retain the notation from Section 2.

Algebraic & Geometric Topology, Volume 24 (2024)



Cohomologies of weighted Grassmann orbifolds 2229

Theorem 3.19 If WGr.d; n/ is a divisive weighted Grassmann orbifold , then it has a .C�/n–invariant
CW complex structure with cells fC`.�i / j i D 0; 1; : : : ; mg.

Proof Let WGr.d; n/ be a divisive weighted Grassmann orbifold corresponding to weight vector
W D .w1; : : : ; wn/ 2 .Z�0/n and 1� a 2 Z. Then there exists � 2 Sn such that �ci divides �ci�1 for
all i D 1; 2; : : : ; m. Let us assume that � D Id (the identity permutation in Sn). Then ci divides ci�1 for
all i D 1; 2; : : : ; m. Then gcdfc0; c1; : : : ; cig D ci for all i 2 f1; 2; : : : ; mg. Thus,

�w. zE.�
i //Š

E.�i /

G.ci /
Š

E.�i /

G.ci=ci /
ŠE.�i / for all i D 1; 2; : : : ; m;

by Lemma 3.3. Thus, each element of �w. zE.�i // can be represented uniquely by the equivalence class
of an n� d matrix defined in (2-13).

Let �i D .�1; : : : ; �d / be a Schubert symbol for d < n and let z 2C`.�i /. Since

`.�i /D .�1� 1/C .�2� 2/C � � �C .�d � d/;

we can write zD .z1; z2; : : : ; zd /, where

zl D .z
l
1; z

l
2; : : : ;

c
zl�1 ; : : : ;

c
zl�2 ; : : : ;

c
zl�l�1 ; : : : ; z

l
�l�1

/ for l D 1; : : : ; d:

For .t1; : : : ; tn/ 2 .C�/n, we define s 2C� such that sci D t�1 � � � t�d . Define T 2 GL.d;C/ by

T D diag
��

t�1
sw�1

�
;

�
t�2
sw�2

�
; : : : ;

�
t�d
sw�d

��
:

Then det.T /D sa.

Define g�i WC
`.�i /! �w. zE.�

i // by

g�i .z/ WD

2666666666666666666666666666664

z11 z21 � � � zd1
:::

:::
:::

z1
�1�1

z2
�1�1

� � � zd
�1�1

1 0 � � � 0

0 z2
�1C1

� � � zd
�1C1

:::
:::

:::

0 z2
�2�1

� � � zd
�2�1

0 1 � � � 0

0 0 � � � zd
�2C1

:::
:::

:::

0 0 � � � zd
�d�1

0 0 � � � 1

0 0 � � � 0
:::

:::
:::

0 0 � � � 0

3777777777777777777777777777775

:
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Then g�i is a homeomorphism. Now we have

.t1; t2; : : : ; tn/g�i .z/D

266666666666666666666666666664

t1z
1
1 t1z

2
1 : : : t1z

d
1

:::
:::

:::

t�1�1z
1
�1�1

t�1�1z
2
�1�1

: : : t�1�1z
d
�1�1

t�1 0 : : : 0

0 t�1C1z
2
�1C1

: : : t�1C1z
d
�1C1:::

:::
:::

0 t�2�1z
2
�2�1

: : : t�2�1z
d
�2�1

0 t�2 : : : 0

0 0 : : : t�2C1z
d
�2C1:::

:::
:::

0 0 : : : t�d�1z
d
�d�1

0 0 : : : t�d
0 0 : : : 0
:::

:::
:::

0 0 : : : 0

377777777777777777777777777775

:

Then

.t1; t2; : : : ; tn/g�i .z/D

266666666666666666666666666666666666666666664

sw�1

t�1
t1z

1
1

sw�2

t�2
t1z

2
1 : : :

sw�d

t�d
t1z

d
1

:::
:::

:::

sw�1

t�1
t�1�1z

1
�1�1

sw�2

t�2
t�1�1z

2
�1�1

: : :
sw�d

t�d
t�1�1z

d
�1�1

sw�1

t�1
t�1 0 : : : 0

0
sw�2

t�2
t�1C1z

2
�1C1

: : :
sw�d

t�d
t�1C1z

d
�1C1

:::
:::

:::

0
sw�2

t�2
t�2�1z

2
�2�1

: : :
sw�d

t�d
t�2�1z

d
�2�1

0
sw�2

t�2
t�2 : : : 0

0 0 : : :
sw�d

t�d
t�2C1z

d
�2C1

:::
:::

:::

0 0 : : :
sw�d

t�d
t�d�1z

d
�d�1

0 0 : : :
sw�d

t�d
t�d

0 0 : : : 0
:::

:::
:::

0 0 : : : 0

377777777777777777777777777777777777777777775

�T:
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Thus, .t1; t2; : : : ; tn/g�i .z/ is equal to

D �

2666666666666666666666666666666666666664

sw�1

t�1s
w1
t1z

1
1

sw�2

t�2s
w1
t1z

2
1 : : :

sw�d

t�d s
w1
t1z

d
1

:::
:::

:::

sw�1

sw�1�1 t�1
t�1�1z

1
�1�1

sw�2

sw�1�1 t�2
t�1�1z

2
�1�1

: : :
sw�d

sw�1�1 t�d
t�1�1z

d
�1�1

1 0 : : : 0

0
sw�2

sw�1C1 t�2
t�1C1z

2
�1C1

: : :
sw�d

sw�1C1 t�d
t�1C1z

d
�1C1

:::
:::

:::

0
sw�2

sw�2�1 t�2
t�2�1z

2
�2�1

: : :
sw�d

sw�2�1 t�d
t�2�1z

d
�2�1

0 1 : : : 0

0 0 : : :
sw�d

sw�2C1 t�d
t�2C1z

d
�2C1

:::
:::

:::

0 0 : : :
sw�d

sw�d�1 t�d
t�d�1z

d
�d�1

0 0 : : : 1

0 0 : : : 0
:::

:::
:::

0 0 : : : 0

3777777777777777777777777777777777777775

�T DDMT;

whereDDdiag.sw1 ; : : : ; swn/ is a diagonal matrix. So by the equivalence relation�w as in Definition 2.1,

.t1; t2; : : : ; tn/g�i .z/DM 2 �w.
zE.�i //�WGr.d; n/:

Let akl be the coefficient of zl
k

in the matrix M for 1 � l � d , 1 � k � �l � 1, k ¤ �1; �2; : : : ; �l�1.
Then

akl D
sw�l tk

swk t�l
:

Now for 1� k � �l � 1 with k ¤ �1; �2; : : : ; �l�1 we have .�l ; k/ 2 rev.�i /. Let �j D .�l ; k/�i . Note
that �j < �i . Recall ci from (2-5). So

tks
w�l

swk t�l
D
t�j

t�i
sw�l�wk D

t�j

t�i
sci�cj D

t�j

t�i
t
.ci�cj /=ci

�i
D t�j .t�i /

�cj =ci ;

since sci D t�1 � � � t�d D t�i and t�j D t�1 � � � t�l�1 tkt�lC1 � � � t�d . Since WGr.d; n/ is divisive and
�j < �i , we have that ci divides cj .

Define a .C�/n–action on C`.�i / by

.t1; t2; : : : ; tn/.z
l
k/D .t�j .t�i /

�cj =ci zlk/

for 1� l � d; 1� k � �l � 1; k ¤ �1; �2; : : : ; �l�1. With this action of .C�/n on C`.�i /, the map g�i
becomes .C�/n–equivariant.
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If � ¤ Id, consider the cell

�w.� zE.�
i //Š

�E.�i /

G.�ci /
Š

�E.�i /

G.�ci=�ci /
Š �E.�i / for all i D 1; 2; : : : ; m;

by Lemma 3.3. Hence, we get the map �g�i WC
`.�i /! �w.� zE.�

i // defined by z! �g�i .z/. Then by
similar arguments, we get the .C�/n–action on C`.�i / defined by

(3-4) .t1; t2; : : : ; tn/.z
l
k/D .t��j .t��i /

��cj =�ci zlk/:

Corollary 3.20 If WGr.d; n/ is divisive , then H�.WGr.d; n/IZ/ has no torsion and is concentrated in
even degrees.

We remark that Corollary 3.20 also follows from the proof of Theorem 3.10 and Definition 3.14. However,
Theorem 3.19 describes the representation of the .C�/n–action on each invariant cell explicitly. We also
get that a divisive weighted Grassmann orbifold is integrally equivariantly formal.

4 Equivariant cohomology, cobordism and K–theory of weighted
Grassmann orbifolds

In this section, first we compute the equivariant K–theory ring of any weighted Grassmann orbifold
with rational coefficients. Then we compute the equivariant cohomology ring, equivariant K–theory
ring and equivariant cobordism ring of a divisive weighted Grassmann orbifold with integer coefficients.
We discuss the computation of the equivariant Euler classes for some line bundles on a point. We also
compute the integral equivariant cohomology ring of some nondivisive weighted Grassmann orbifolds.
We retain the notation of previous sections.

We recall the .C�/n–action on WGr.d; n/ which is induced by (2-7). Consider the standard torus
T n D .S1/n � .C�/n. So we have the restricted T n–action on WGr.d; n/. For each Schubert symbol
�D .�1; �2; : : : ; �d /, consider C.�/ 2Md .n; d/ with column vectors given by e�1 ; e�2 ; : : : ; e�d , where
fe1; e2; : : : ; eng is the standard basis for Cn. Therefore ŒC.�/� 2WGr.d; n/, and it is a fixed point of the
T n–action on WGr.d; n/.

Proposition 4.1 Let WGr.d; n/ be a weighted Grassmann orbifold corresponding to weight vector
W D .w1; w2; : : : ; wn/ 2 .Z�0/n and a � 1. Then there is a .C�/n–invariant stratification

fptg DX0 �X1 �X2 � � � � �Xm DWGr.d; n/

such that for i D 1; : : : ; m, the quotient Xi=Xi�1 is homeomorphic to the Thom space Th.� i / of an
orbifold .C�/n–vector bundle

(4-1) � i WC`.�i /=G.ci /! ŒC.�i /�;

where G.ci / is the cyclic group of the cth
i roots of unity.
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Proof Recall the .C�/n–invariant stratification

fptg DX0 �X1 �X2 � � � � �Xm DWGr.d; n/

from (2-17), which is obtained from the q–CW complex structure of WGr.d; n/ as in Proposition 2.7.
Note that Xi=Xi�1 is the one-point compactification of E.�i /=G.ci /, which is the Thom space of the
orbifold .C�/n–vector bundle

E.�i /

G.ci /
! ŒC.�i /�;

where ŒC.�i /� is the .C�/n–fixed point corresponding to the Schubert symbol �i for i D 1; : : : ; m. It
remains to note that E.�i / is .C�/n–equivariantly homeomorphic to C`.�i /; see (2-13).

Now corresponding to rev.�i /, one can define a subset of Schubert symbols

(4-2) R.�i / WD f�j j �j D .k; k0/�i for .k; k0/ 2 rev.�i /g:

Then the cardinality of the set R.�i / is `.�i / for every i 2 f0; 1; : : : ; mg. Note that the bundle in (4-1) is
also an orbifold T n–bundle.

Proposition 4.2 The orbifold T n–bundle in (4-1) has a decomposition

� i W
C`.�i /

G.ci /
! ŒC.�i /�Š

M
j W�j2R.�i /

�
� ij W

Cij
G.cij /

! ŒC.�i /�

�
:

Proof Observe that

Xi nXi�1 D
E.�i /

G.ci /
Š

C`.�i /

G.ci /
:

Since T n is abelian, the T n action on E.�i /ŠC`.�i / determines the decomposition

E.�i /Š
M

j W�j2R.�i /

Cij

for some irreducible representation Cij of T n. By [10, Proposition 2.8] there exists a finite covering
map q W T n! T n such that the projection map � WE.�i /!E.�i /=G.ci / is equivariant via the map q,
ie �.tx/D q.t/�.x/. Therefore,

E.�i /

G.ci /
Š

M
j W�j2R.�i /

Cij
G.cij /

for some positive integers cij which divide ci . Hence the proof follows.

Remark 4.3 (1) The attaching map �i W S.� i /! Xi�1 for the q–CW complex structure in (2-17)
satisfies �i jS.�ij / D fij ı �

ij , where fij W ŒC.�i /�! ŒC.�j /� is the constant map.

(2) The equivariant Euler classes feT n.� ij / j j < ig are nonzero divisors. They are pairwise prime by
[14, Lemma 5.2] and the T n–action on E.�i / discussed in the proof of Theorem 3.19.
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Theorem 4.4 Let WGr.d; n/ be a weighted Grassmann orbifold for d < n, corresponding to weight
vector W D .w1; w2; : : : ; wn/ 2 .Z�0/n and a � 1. Then the generalized T n–equivariant cohomology
E�T n.WGr.d; n/IQ/ can be given by�

.fi / 2

mM
iD0

E�T n.fptgIQ/
ˇ̌̌
eT n.�

ij / divides fi �fj for j < i and j�j \�i j D d � 1
�

for E�T n DK
�
T n , H�T n , where eT n.� ij / represents the equivariant Euler class of � ij .

Proof This follows from [26, Proposition 2.3] using Propositions 4.1 and 4.2, and Remark 4.3.

We note that equivariant cohomology ring of WGr.d; n/ with rational coefficients is discussed in [1].
In the rest, we give a description of the equivariant cohomology ring, equivariant K–theory ring and
equivariant cobordism ring of a divisive weighted Grassmann orbifold with integer coefficients.

Proposition 4.5 Let WGr.d; n/ be a divisive weighted Grassmann orbifold for d < n corresponding to
W D .w1; w2; : : : ; wn/ 2 .Z�0/n and a � 1. Then there is a T n–invariant stratification

fptg DX0 �X1 � � � � �Xm DWGr.d; n/

such that for i D 1; : : : ; m, the quotient Xi=Xi�1 is homeomorphic to the Thom space Th.� i / of the
T n–vector bundle

� i WC`.�i /
! ŒC.�i /�:

Proof Since WGr.d; n/ is divisive, there exists � 2 Sn such that �ci divides �ci�1 for i D 1; 2; : : : ; m.
Then gcdf�c0; �c1; : : : ; �cig D �ci for all i . By Theorem 3.5, one can write

WGr.d; n/D
mG
iD0

�E.�i /

G.�ci /
:

By Lemma 3.3, the q–cell �E.�i /=G.�ci / is homeomorphic to �E.�i /=G.�ci=�ci / Š C`.�i / for
i D 1; : : : ; m. Let Xk D

Fk
iD0 �E.�

i /=G.�ci / for i D 0; 1; : : : ; m. The rest follows from the proof of
Proposition 4.1.

Remark 4.6 For a divisive weighted Grassmann orbifold, Proposition 4.2 and Remark 4.3 hold with
cij D 1 for every j < i .

Theorem 4.7 Let WGr.d; n/ be a divisive weighted Grassmann orbifold for d <n. Then the generalized
T n–equivariant cohomology E�T n.WGr.d; n/IZ/ can be given by�

.fi / 2

mM
iD0

E�T n.fptgIZ/
ˇ̌̌
eT n.�

ij / divides fi �fj for j < i and j�j \�i j D d � 1
�

for E�T n DH
�
T n ; K

�
T n and MU�T n .

Proof This follows from Proposition 4.5, Remark 4.6 and [14, Theorem 2.3].
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Remark 4.8 Let �i and �j be two Schubert symbols with j < i . If WGr.d; n/ is a divisive weighted
Grassmann orbifold then there exists a permutation � 2 Sn such that �ci divides �cj . We write

�dij WD
�cj

�ci
2 Z:

Next we discuss how to compute eT n.� ij /. We recall that

H�T n.fptgIZ/DH�.BT nIZ/Š ZŒy1; y2; : : : ; yn�;

where y1; y2; : : : ; yn be the standard basis of H 2.BT nIZ/. Using (3-4) the character of the one-
dimensional representation for the bundle � ij is given by

(4-3) .t1; t2; : : : ; tn/! t��j .t��i /
��cj =�ci :

Also,
K�T n.fptg/ŠR.T n/Œz; z�1�;

where R.T n/ is the complex representation ring of T n and z is the Bott element in K�2.fptg/. Note
that the ring R.T n/ is isomorphic to the ring of Laurent polynomials with n variables, ie R.T n/ Š
ZŒ˛1; : : : ; ˛n�.˛1���˛n/, where ˛i is the irreducible representation corresponding to the projection on the
i th factor; see [17]. Therefore, using (4-3), one has, for j < i and j�j \�i j D d � 1,

(4-4) eT n.�
ij /D

8̂̂<̂
:̂
1�˛��j ˛

��dij

��i
in K0T n.fptgIZ/;

eT n.˛��j ˛
��dij

��i
/ in MU2T n.fptgIZ/;

Y��j � �dijY��i in H 2
T n.fptgIZ/;

where Y� WD
Pd
iD1 y�i and ˛� D ˛�1 � � �˛�d for a Schubert symbol �D .�1; : : : ; �d /.

We remark that the structure of MU�T n.fptg/ is unknown; however, it is referred to in [15] as the ring of
T n–cobordism forms.

Example 4.9 Consider the weighted Grassmann orbifold WGr.2; 4/ for W D .12; 2; 2; 2/ and a D 6.
We have the ordering on the six Schubert symbols given by

�0 D .1; 2/ < �1 D .1; 3/ < �2 D .1; 4/ < �3 D .2; 3/ < �4 D .2; 4/ < �5 D .3; 4/:

Then c0 D 20; c1 D 20; c2 D 20; c3 D 10; c4 D 10; c5 D 10 from (2-5). Here ci divides ci�1 for all
i D 1; 2; 3; 4; 5. Thus, WGr.2; 4/ is divisive for the identity permutation in S4. Then dij D cj =ci in
Remark 4.8 gives

dij D

�
1 if j < i and both i; j 2 f0; 1; 2g or f3; 4; 5g;
2 if j 2 f0; 1; 2g and i 2 f3; 4; 5g:

Then one can calculate the equivariant Euler class eT n.� ij / from (4-4). The generalized integral equivariant
cohomology ring E�T n.WGr.2; 4/IZ/ of this divisive weighted Grassmann orbifold WGr.2; 4/ can be
described by Theorem 4.7.
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The fixed points of the T n–action on WGr.d; n/ are V WD fŒC.�i /�gmiD0. Two fixed points ŒC.�i /� and
ŒC.�j /� are connected by a T n–invariant WP.ci ; cj /�WGr.d; n/ if and only if �j D .k; k0/�i for some
.k; k0/, where .k; k0/�i is described in Definition 3.17. In that case it is said that there is an edge eij
between ŒC.�i /� and ŒC.�j /�. Let E WD feij j �j D .k; k0/�i for some .k; k0/g. Then � D .V;E/ is
a d.n� d/ valent graph with .mC 1/–vertices. Consider the connection � on � defined similarly as
the GKM–graph of the Grassmann manifold in [12, Theorem 1.11.4, equation (1.34)]. Note that the
T n–action on WP.ci ; cj / is given by .t1; : : : ; tn/Œzi W zj �D Œt�i zi W t�j zj �. This action induces a map

˛ WE!H�.BT nIQ/DQŒy1; : : : ; yn�

defined by ˛.e/ WD .ciY�j �cjY�i /=ci if e is the oriented edge from ŒC.�i /� to ŒC.�j /� with j�j \�i j D
d � 1. Note that if xe is the edge with the opposite orientation on e then ˛.xe/D .cjY�i � ciY�j /=cj . Let
re D ci and rxe D cj . Then

(4-5) re˛.e/D�rxe˛.xe/ 2H
2.BT nIZ/:

Let e and e0 be two edges with the same initial vertex. Let e0 be the oriented edge from ŒC.�i /� to ŒC.�l/�.
Then we have

cj cl
�
˛.�e.e

0//�˛.e0/
�
D 0 mod re˛.e/:

The map ˛ is called the axial function on � . Therefore, .�; ˛; �/ satisfies the definition of orbifold
GKM–graph [8, Definition 2.2]. Hence, .�; ˛; �/ is the orbifold GKM–graph for the weighted Grassmann
orbifold.

The following result gives equivariant cohomology ring of some nondivisive weighted Grassmann orbifolds
with integer coefficients.

Theorem 4.10 Suppose that WGr.d; n/ is a weighted Grassmann orbifold corresponding to the order
�0 < � � �< �m such that r D gcdfc0; c1g and ci jck for k � i with i � 2. Then the integral equivariant
cohomology ring of WGr.d; n/ is given by

H�T n.WGr.d; n/IZ/

D

�
.fi / 2

mM
iD0

ZŒy1; y2; : : : ; yn�
ˇ̌̌
.Y�j � dijY�i / divides .fi �fj / if j < i; j�j \�i j D d � 1;

.i; j /¤ .0; 1/ and c1Y�0 � c0Y�1 divides r.f1�f0/
�
:

Proof By the given condition gcdfc0; c1; : : : ; cig D ci for i � 2. So, by Lemma 3.3, E.�i /=G.ci /
is homeomorphic to E.�i /=G.ci=ci / Š C`.�i / for i D 1; : : : ; m. When i D 1, we have that X1 is
equivariantly homeomorphic to WP.c0; c1/. Therefore, WGr.d; n/ has a T n–invariant CW complex
structure. For the edge e D e01, the minimum of re that satisfies (4-5) is r . Thus, by [8, Definition 2.3
and Theorem 2.9], we get the result.
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Next, we discuss the equivariant cohomology ring of the weighted projective space WP.b0; b1 : : : ; bm/,
where .b0; b1 : : : ; bm/ 2 .Z�1/mC1, for several torus actions. By Remark 2.3, WP.b0; b1 : : : ; bm/ D

WGr.1;mC 1/, where the latter is associated to the weight vector W D .b0� 1; : : : ; bm� 1/ and aD 1.
The Schubert symbols for 1 < mC 1 are f1g; : : : ; fmg and fmC 1g. Assume that WGr.1;mC 1/ is
divisive corresponding to this order, ie bi divides bi�1 for i D 1; 2; : : : ; m. Then

E.i C 1/Š fŒ.u0; u1; : : : ; ui�1; 1; 0; : : : ; 0/� 2WP.b0; b1 : : : ; bm/g ŠCi for i D 0; 1; : : : ; m:

Let .n; d/ be such that d < n and
�
n
d

�
DmC 1. Then (2-8) gives a T n–action on WP.b0; b1 : : : ; bm/.

Recall t�i from (2-8) for the Schubert symbols �0; �1; : : : ; �m corresponding to d < n. We have

.t1; t2; : : : ; tn/Œ.u0; u1; : : : ; ui�1; 1; 0; : : : ; 0/�

D Œ.t�0u0; t�1u1; : : : ; t�i�1ui�1; t�i ; 0; : : : ; 0/�

D Œ..t�i /
�b0=bi t�0u0; .t�i /

�b1=bi t�1u1; : : : ; .t�i /
�bi�1=bi t�i�1ui�1; 1; 0; : : : ; 0/�:

Then E.i C 1/ is T n–invariant as well as TmC1–invariant. Let

Xi WD Œ.u0; u1; : : : ; ui ; 0; : : : ; 0/� 2WP.b0; b1 : : : ; bm/g:

Then Xi gives a filtration

(4-6) fptg DX0 �X1 � � � � �Xm DWP.b0; b1; : : : ; bm/:

Note that the filtration in (4-6) satisfies Proposition 4.5 and Remark 4.6. Thus in this case

� i WE.i C 1/! ŒeiC1�Š

iM
jD0

.� ij WCij ! ŒeiC1�/

for some irreducible representation Cij . Using the proof of [15, Theorem 2.3] one can get the following
result.

Theorem 4.11 If WP.b0; : : : ; bm/ is divisive , then the generalized T n–equivariant cohomology

E�T n.WP.b0; : : : ; bm/IZ/

for E�T n DH
�
T n ; K

�
T n and MU�T n can be given by�
.fi / 2

mM
iD0

E�T n.fptgIZ/
ˇ̌̌
eT n.�

ij / divides fi �fj for all j < i
�
:

We note that there are several pairs .n; d/ such that d < n and
�
n
d

�
DmC 1 > 2. Now we discuss how

to calculate the equivariant Euler class eT n.� ij / in Theorem 4.11. The corresponding one-dimensional
representation on the bundle � ij for j < i is determined by the character

.t1; : : : ; tn/! .t�i /
�bj =bi t�j :

Thus, similar to (4-4), one can calculate the equivariant Euler class eT n.� ij / of the bundle � ij for j < i .
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Example 4.12 For m D 2, we have
�
3
1

�
D
�
3
2

�
D 3. Thus, corresponding to two different pairs .3; 1/

and .3; 2/, we have two different T 3 actions on WP.b0; b1; b2/. The map f W T 3 ! T 3 defined by
.t1; t2; t3/! .t1t2; t1t3; t2t3/ is not an automorphism. So these actions are not equivalent. However, using
Theorem 4.11, one can calculate the equivariant cohomology of WP.b0; b1; b2/ for both the actions if bi
divides bi�1 for i D 1; 2.

5 Equivariant Schubert calculus for divisive weighted Grassmann orbifolds

In this section, we show that there exist equivariant Schubert classes which form a basis for the equivariant
cohomology ring of a divisive weighted Grassmann orbifold with integer coefficients. We show some
properties of the weighted structure constants. Moreover, we discuss some relations that help to compute
the weighted structure constants corresponding to this equivariant Schubert basis with integer coefficients.

For x 2H�T n.WGr.d; n/IZ/, the support of x, denoted by supp.x/, is the set of all Schubert symbols �i

such that xj�i ¤ 0. Recall the partial order � on the Schubert symbols defined in (2-3). We follow this
partial order � and we say that an element x 2H�T n.WGr.d; n/IZ/ is supported above by �i if �i � �k

for all �k 2 supp.x/.

Let WGr.d; n/ be a divisive weighted Grassmann orbifold. Then there exists � 2 Sn such that

(5-1) �ci divides �ci�1 for i D 1; 2; : : : ; m:

Using Theorem 3.5, it is sufficient to consider � D Id, the identity permutation on Sn. For � D Id,
(5-1) transforms to

ci divides ci�1 for i D 1; 2; : : : ; m:

Recall the definition of R.�i / from (4-2). We introduce the following definition.

Definition 5.1 An element x 2H�T n.WGr.d; n/IZ/ is said to be an equivariant Schubert class corre-
sponding to a Schubert symbol �i if the following conditions are satisfied:

(1) xj�k ¤ 0 implies �i � �k . (We say that x is supported above �i .)

(2) xj�i D
Q
�j2R.�i /.Y�j � .cj =ci /Y�i /.

(3) xj�k is a homogeneous polynomial in y1; y2; : : : ; yn of degree `.�i /.

Proposition 5.2 (uniqueness) For each Schubert symbol �i , there is at most one equivariant Schubert
class x corresponding to �i .

Proof Suppose that there were two distinct equivariant Schubert classes x and x0 corresponding to �i .
Let �j be the minimal Schubert symbol such that .x� x0/j�j ¤ 0. By Definition 5.1(1)–(2), we get
�i � �j . Then from the condition in the expression of the equivariant cohomology ring in Theorem 4.7,
we get that .x� x0/j�j is a multiple of

Q
�k2R.�j /.Y�k � .ck=cj /Y�j /, which is of degree `.�j /. This

contradicts the fact that x� x0 is homogeneous of degree `.�i / < `.�j /.
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Let us denote the equivariant Schubert class corresponding to the Schubert symbol �i by w zS�i for
iD0; 1; : : : ; m. We remark that the existence ofw zS�i follows from [14, Proposition 4.3] and Theorem 4.7.
Geometrically, w zS�i is the equivariant cohomology class corresponding to the closure of the cell
�rE.�r�

i /, where �r 2 Sn is the permutation defined by

�r WD

�
1 2 3 � � � n� 1 n

n n� 1 n� 2 � � � 2 1

�
:

Using the arguments in the proof of [20, Proposition 1], one gets the following.

Proposition 5.3 The equivariant Schubert classes fw zS�i g
m
iD0 form a basis for H�T n.WGr.d; n/IZ/ as

a module over H�T n.fptgIZ/. Moreover , any x 2 H�T n.WGr.d; n/IZ/ can be written uniquely as an
H�T n.fptgIZ/–linear combination of w zS�i using only those �i such that �j � �i for some �j 2 supp.x/.

Proof To check that the set fw zS�i g
m
iD0 is linearly independent, let

Pm
iD0 aiw

zS�i D 0 for coefficients
ai 2H

�
T n.fptgIZ/ that are not identically zero. Let

k Dminfi 2 f0; 1; : : : ; mg j ai ¤ 0g:

We also have that w zS�i j�k D 0 for i > k. Thus the restriction
�Pm

iD0 aiw
zS�i
�
j�k D akw

zS�k j�k ¤ 0,
which is a contradiction.

Now, to prove that fw zS�i g spans, consider an element x 2H�T n.WGr.d; n/IZ/. Let

j WDminfi 2 f0; 1; : : : ; mg j �i 2 supp.x/g:

Then xj�j D ǰw zS�j j�j using Theorem 4.7 and (4-4) for some ǰ 2ZŒy1; : : : ; yn�. Subtracting ǰw zS�j ,
we can inductively reduce support of x upwards until it is empty. This uses only those �i such that
�j � �i for some �j 2 supp.x/.

Example 5.4 In Figure 1, we compute the equivariant Schubert class w zS.2;3/ 2H�T 4.WGr.2; 4/IZ/,
where WGr.2; 4/ is a divisive weighted Grassmann orbifold for some W D .˛C 
ˇ; ˛; ˛; ˛/ 2 .Z�0/4

and aD ˇ� 2˛ 2 Z>0. Figure 1, left, is the lattice of the Schubert symbols for 2 < 4. Figure 1, right,
gives the equivariant Schubert class corresponding to the Schubert symbol .2; 3/.

In the rest of this section, we compute the weighted structure constants for the equivariant cohomology
of a divisive weighted Grassmann orbifold. Since the set fw zS�i g

m
iD0 form a H�T n.fptgIZ/–basis for

H�T n.WGr.d; n/IZ/, for any two �i and �j , one has that

(5-2) w zS�i w
zS�j D

X
�k

wckij w
zS�k ;

where �k 2 f�0; �1; : : : ; �mg. The constant wckij 2 H
�
T n.fptgIZ/ in the formula is called a weighted

structure constant.
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.1; 3/

.1; 2/

.1; 4/ .2; 3/

.2; 4/

.3; 4/

0

0

0 .Y.1;3/� .
 C 1/Y.2;3//.Y.1;2/� .
 C 1/Y.2;3//

.Y.1;4/� .
 C 1/Y.2;4//.Y.1;2/� .
 C 1/Y.2;4//

.Y.1;4/� .
 C 1/Y.3;4//.Y.1;3/� .
 C 1/Y.3;4//

Figure 1

Lemma 5.5 The weighted structure constants wckij have the following properties.

(1) The weighted structure constant wckij has degree `.�i /C `.�j /� `.�k/.

(2) The constant wckij is 0 unless `.�k/� `.�i /C `.�j / and �k � �i ; �j .

(3) When i D k, we have wciij D w zS�j j�i .

Proof (1) The degree of w zS�i is `.�i /. So the degree of the weighted structure constant wckij is
given by

deg.wckij /D deg.w zS�i /C deg.w zS�j /� deg.w zS�k /D `.�
i /C `.�j /� `.�k/:

(2) The weighted structure constant wckij D 0 if `.�i /C `.�j /� `.�k/ < 0. Also,

.w zS�i w
zS�j /j�s ¤ 0 D) �s � �i ; �j :

Thus, by Proposition 5.3, wckij ¤ 0 implies �k � �i ; �j .

(3) Comparing the .�i /th component of the both sides in (5-2), we get

w zS�i j�i w
zS�j j�i D wc

i
ij w
zS�i j�i C

X
k¤i

wckij w
zS�k j�i :

We have that wckij D 0 unless �k � �i , but w zS�k j�i D 0 for �k � �i , and �k ¤ �i . Thus all the terms in
the summation vanish. So the claim follows, since w zS�i j�i ¤ 0.

Now we introduce the equivariant Schubert divisor class. Note that `.�i /D 0 if and only if i D 0, and
`.�i /D 1 if and only if i D 1. The equivariant Schubert class corresponding to the Schubert symbol �1

is called the equivariant Schubert divisor class.

Lemma 5.6 The equivariant Schubert divisor class w zS�1 2H
�
T n.WGr.d; n/IZ/ is given by

w zS�1 j�i D Y�0 �
c0

ci
Y�i :
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Proof Consider an element x 2
Lm
iD0H

�
T n.fptgIZ/ defined by xj�i D Y�0 � .c0=ci /Y�i . Let �i and �j

be two Schubert symbols such that �j � �i . Then

xj�i � xj�j D
c0

cj

�
Y�j �

cj

ci
Y�i

�
:

Thus x 2H�T n.WGr.d; n/IZ/ from Theorem 4.7 and (4-4). Note that xj�0 D 0. If xj�k ¤ 0 then �1 � �k .
Now R.�1/D f�0g and

xj�1 D Y�0 �
c0

c1
Y�1 D

Y
�j2R.�1/

�
Y�j �

cj

c1
Y�1

�
:

Also, xj�k is a homogeneous polynomial of degree 1 D `.�1/. Thus x satisfies all the conditions of
Definition 5.1 for i D 1. Therefore, by the uniqueness of the equivariant Schubert classes, we have
xD w zS�1 .

For any two Schubert symbols �i and �j , we write �i ! �j if `.�i /D `.�j /C 1 and �j � �i .

Proposition 5.7 (weighted Pieri rule) w zS�1 w zS�j D .w
zS�1 j�j / w

zS�j C
X

�i!�j

c0

cj
w zS�i .

Proof Using the fact that deg.w zS�1/D 1, we have

w zS�1 w zS�j D .wc
j
1j / w

zS�j C
X

�i!�j

.wci1j / w
zS�i :

From Lemma 5.5, we get wcj1j Dw zS�1 j�j . Fix �i such that �i ! �j and compare the .�i /th component
of both sides; we get

w zS�1 j�iw
zS�j j�i D .wc

j
1j /w

zS�j j�i C .wc
i
1j /w

zS�i j�i

D) .wci1j /w
zS�i j�i D .w

zS�1 j�i �w
zS�1 j�j /w

zS�j j�i

D) .wci1j /w
zS�i j�i D

c0

cj

�
Y�j �

cj

ci
Y�i

�
w zS�j j�i :

Thus wci1j D c0=cj if �i ! �j .

By applying Proposition 5.7 repeatedly, we can compute the following product, as well as the higher
products:

.w zS�1/
2w zS�j D w

zS�1..w zS�1 j�j /w
zS�j C

X
�i!�j

c0

cj
w zS�i /

D .w zS�1 j�j /
2w zS�j C

X
�i!�j

.w zS�1 j�j /
c0

cj
w zS�i C

X
�i!�j

c0

cj
.w zS�1 j�i /w

zS�i

C

X
�k!�i!�j

c0

cj

c0

ci
w zS�k :
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Proposition 5.8 For any three Schubert symbols �i ; �j and �k , we have the recurrence relation

.w zS�1 j�k �w
zS�1 j�i /wc

k
ij D

X
�s!�i

c0

ci
wcksj �

X
�k!�t

c0

ct
wctij :

Proof We use the associativity of the multiplication in H�T n.WGr.d; n/IZ/ and weighted Pieri rule to
expand w zS�1w zS�iw zS�j in two different ways:

.w zS�1w zS�i /w
zS�j D ..w

zS�1 j�i /w
zS�i C

X
�s!�i

c0

ci
w zS�s /w zS�j ;(5-3)

D .w zS�1 j�i /
X
�l

wclijw
zS�l C

X
�s!�i

c0

ci

X
�l

wclsjw
zS�l ;

w zS�1.w zS�iw
zS�j /D w

zS�1
X
�l

wclijw
zS�l D

X
�l

wclij

�
.w zS�1 j�l /w

zS�l C
X
�r!�l

c0

cl
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Comparing the coefficient of w zS�k in (5-3) and (5-4) we get
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