
ATG

Algebraic & Geometric
Topology

msp

Volume 24 (2024)

Projective modules and the homotopy classification of .G; n/–complexes

JOHN NICHOLSON



msp

Algebraic & Geometric Topology 24:4 (2024) 2245–2284
DOI: 10.2140/agt.2024.24.2245

Published: 16 July 2024

Projective modules and the homotopy classification of .G; n/–complexes

JOHN NICHOLSON

A .G; n/–complex is an n–dimensional CW–complex with fundamental group G and whose universal
cover is .n�1/–connected. If G has periodic cohomology then, for appropriate n, we show that there is a
one-to-one correspondence between the homotopy types of finite .G; n/–complexes and the orbits of the
stable class of a certain projective ZG–module under the action of Aut.G/. We develop techniques to
compute this action explicitly and use this to give an example where the action is nontrivial.

55P15; 20C05, 55U15, 57K20

1 Introduction

For a group G and n � 2, a .G; n/–complex is a connected n–dimensional CW–complex X for which
�1.X /Š G and zX is .n�1/–connected. Equivalently, it is the n–skeleton of a K.G; 1/. For example,
a finite .G; 2/–complex is equivalently a finite 2–complex X with �1.X /ŠG. An example of a finite
.G; 3/–complex is a closed 3–manifold M with �1.M /ŠG finite. Given a group G and n� 2, a finite
.G; n/–complex exists if and only if G has type Fn in the sense of Wall [1965].

Let HT.G; n/ be the set of homotopy types of finite .G; n/–complexes, which can be viewed as a graph
with edges between each X and X _ Sn. It is well known that HT.G; n/ is a tree [Whitehead 1939],
i.e. a connected acyclic graph, and has a grading coming from .�1/n�.X / which takes a minimum value
�min.G; n/. The problem of determining the structure of HT.G; n/ as a tree has a long history which
dates back to Cockcroft and Swan [1961] and Dyer and Sieradski [1973; 1975].

In the case of finite abelian groups, the structure of HT.G; n/ has been classified through a series of articles
by Metzler [1976], Sieradski and Dyer [1979], Browning [1979] and Linnell [1993]. However, much
less is known for nonabelian groups and an important class of examples are the groups with k–periodic
cohomology, i.e. finite groups for which the Tate cohomology groups satisfy yH i.GIZ/Š yH iCk.GIZ/

for all i 2 Z. For example, if G is finite and n is even, then it was shown by Browning [1978] that
�.X /D �.Y / implies X _Sn ' Y _Sn (see also [Hambleton and Kreck 1993]). However, when n is
odd, this is known only when G does not have k–periodic cohomology for k j nC 1 (see Question 7.4).

The aim of this article is to make new progress towards the classification over groups with periodic
cohomology, building upon work of Dyer [1976] and Johnson [2003].
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1.1 Main results

Let PHT.G; n/ be the tree of polarised homotopy types of finite .G; n/–complexes, i.e. the homotopy
types of pairs .X; �/ where � W �1.X /ŠG.

Let G be a finite group and let C.ZG/ denote the projective class group, i.e. the equivalence classes
of finitely generated projective ZG–modules where P � Q if P ˚ZGi Š Q˚ZGj for some i and
j . Note that a class ŒP � 2 C.ZG/ can be viewed as the set of (nonzero) projective ZG–modules P0 for
which P0 �P , and this has the structure of a graded tree with edges between each P0 and P0˚ZG. Let
TG � C.ZG/ denote the Swan subgroup (see Section 3.2). If G has k–periodic cohomology, then the
Swan finiteness obstruction is an element �k.G/ 2 C.ZG/=TG which vanishes if and only if there exists
a finite CW–complex X with �1.X /ŠG and zX ' Sk�1.

Recall that a finitely presented group G has the D2 property if every cohomologically 2–dimensional
finite complex X with �1.X /ŠG is homotopy equivalent to a finite 2–complex.

Theorem A Let G have k–periodic cohomology and let nD ik or ik � 2 for some i � 1. Then there is
an injective map of graded trees

‰ W PHT.G; n/! ŒP.G;n/�

for any projective ZG–module P.G;n/ with �ik.G/D ŒP.G;n/�2C.ZG/=TG . Furthermore ,‰ is bijective
if and only if n� 3 or if nD 2 and G has the D2 property.

Remark 1.1 (a) If G satisfies the Eichler condition, then ŒP.G;n/� has cancellation in the sense that
P1˚ZG Š P2˚ZG implies P1 Š P2 for all P1, P2 2 ŒP.G;n/� (see [Jacobinski 1968]). This
implies that PHT.G; n/ and HT.G; n/ have cancellation in the sense that X _Sn' Y _Sn implies
X ' Y , and recovers the main result of Dyer [1976].

(b) An equivalent statement appeared in [Johnson 2003] in the case nD 2, though the proof contained
a small gap which was patched up in [Nicholson 2021b] using a theorem of Browning [1978].

Our proof is based on the work of Hambleton and Kreck [1993] and is independent of [Browning 1978;
Johnson 2003]. After establishing preliminaries in Sections 2 and 3, we will prove general cancellation
theorems for chain complexes of projective modules in Section 4. This suffices to prove Theorem A due
to the correspondence between PHT.G; n/ and the tree of algebraic n–complexes (see Proposition 5.1).
In Theorem 5.3, we give a detailed version of Theorem A which contains an explicit description of the
map ‰.

We then use of this description of‰ to determine the induced action of Aut.G/ on ŒP.G;n/� via the bijection
HT.G; n/Š PHT.G; n/=Aut.G/. To state the induced action, consider the following two operations for
M a (left) projective ZG–module:

(1) If � 2 Aut.G/, then let M� be the ZG–module whose abelian group is that of M but with action
g �x D �.g/x for g 2G and x 2M (see Lemma 6.1).
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(2) If r represents a class in .Z=jGj/� and I �ZG is the augmentation ideal, then .I; r/ is a projective
ZG–module. The tensor product .I; r/˝M is a projective ZG–module since .I; r/ is a two-sided
ideal (see Lemma 4.15).

In Section 6, we will prove the following which is the main result of this article. Note that every projective
ZG–module has the form P ˚ZGr where P has rank one and r � 0 (see Section 3.1).

Theorem B Let G have k–periodic cohomology and let n D ik or ik � 2 for some i � 1. Then ‰
induces an injective map of graded trees

‰ W HT.G; n/! ŒP.G;n/�=Aut.G/;

where the action by � 2 Aut.G/ is given by

� W P ˚ZGr
7! ..I;  k.�/

i/˝P� /˚ZGr ;

where P has rank one , for some map  k W Aut.G/ ! .Z=jGj/� which depends only on G and k.
Furthermore , ‰ is bijective if and only if n� 3 or if nD 2 and G has the D2 property.

This reduces the problem of determining when cancellation occurs in the homotopy trees to the purely
algebraic problem of determining cancellation for ŒP � and ŒP �=Aut.G/ which will be dealt with in
[Nicholson 2020].

1.2 Computing the action of Aut.G /

After proving Theorems A and B, the remainder of this article will be devoted to exploring the action of
Aut.G/ on ŒP.G;n/�. This includes establishing some general theory in preparation for the more detailed
computations in [Nicholson 2020].

First, and perhaps somewhat surprisingly, we could find no example where the Aut.G/–action described
in Theorem B does not take the form of the simpler action P 7! P� . In all examples computed, we had
.I;  k.�//Š ZG which implies that .I;  k.�/

i/Š ZG. If P ˚ZGr 2 ŒP.G;n/� where P has rank one,
then this implies that �.P /Š P� ˚ZGr Š .P ˚ZGr /� . In particular, �.P /Š P� for all P 2 ŒP.G;n/�.
We therefore ask the following:

Question 7.3 Does there exist G with k–periodic cohomology and � 2 Aut.G/ for which .I;  k.�// is
not free?

There are two approaches to finding examples where .I;  k.�// is not free. The first is to find an example
where .I;  k.�// is not even stably free. It was shown by Dyer [1976, page 276] and Davis [1983] that
.I;  k.�// is stably free when �k.G/D 0. Davis [1983, page 488] asked whether this also holds when
�k.G/¤ 0. The second approach is to find an example where .I;  k.�// is stably free but not free. This
is likely to be difficult since the general question of whether .I; r/ can be stably free but not free is still
open and dates back to Wall’s problems list [1979b, Problem A4].
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In Section 8, we develop a general method to compute the action P 7!P� . We will then use this to give the
following example where the action is nontrivial. Let Q4n denote the quaternion group of order 4n, which
has 4–periodic cohomology. Since �4.Q4n/D 0, we can take ŒP.Q4n;2/�D ŒZQ4n�D

S
r�1 SFr .ZQ4n/

where SFr .ZQ4n/ is the set of stably free ZQ4n–modules of rank r � 1. As above, let � 2 Aut.Q4n/

act on ŒZQ4n� by � W P 7! .I;  4.�/
i/˝P� for some i � 1. We show:

Theorem C Aut.Q24/ acts nontrivially on ŒZQ24�. More specifically, we have jSF1.ZQ24/j D 3 and
jSF1.ZQ24/=Aut.Q24/j D 2.

This is in contrast to the case Q4n for 2 � n � 5, where jSF1.ZQ4n/j D 1, and the case Q28, where
jSF1.ZQ28/j D jSF1.ZQ28/=Aut.Q28/j D 2 (see Table 1).

1.3 Overview of the wider project

This article is the first of a two-part series (followed by [Nicholson 2020]) in which we explore the
classification of finite .G; n/–complexes over groups with periodic cohomology. These results are
motivated by the following.

Wall’s D2 problem for groups with 4–periodic cohomology In the language above, the D2 problem
asks whether every finitely presented group G has the D2 property. This dates back to Wall’s paper
on finiteness conditions [1965] and is currently open. The case where G has 4–periodic cohomology
was proposed to contain a counterexample to the D2 problem [Cohen 1977], and has since been studied
extensively. In this case, Johnson [2003] proved Theorem A when n D 2 and, using results of Swan
[1983], he established the D2 property for many new groups. In [Nicholson 2021a; 2021b], we extended
these results and determined when PHT.G; 2/ has cancellation.

In the case where PHT.G; 2/ has noncancellation, the D2 property has only been proven for Q28 (see
[Mannan and Popiel 2021; Nicholson 2021b]). This motivated Theorem B in the case nD 2 since one
imagines it might be easier to prove that ‰ is bijective rather than ‰. The question of when HT.G; 2/
has cancellation is answered in [Nicholson 2020, Theorem A].

Stable and unstable classification of manifolds If X is a finite .G; n/–complex, then there exists an
embedding i W X ,! R2nC1. The boundary of a smooth regular neighbourhood of i gives a smooth
closed 2n–manifold M.X /. If X is determined up to simple homotopy, then M.X / is well defined up to
s–cobordism which coincides with homeomorphism in the case where G is finite by work of Freedman.
Furthermore, M.X _Sn/ŠM.X / # .Sn �Sn/. This can be found in [Bokor et al. 2021, Section 5].

Kreck and Schafer [1984] used this to construct smooth closed 4n–manifolds M1 and M2 for every n� 1

such that M1 # .S2n � S2n/ ŠM2 # .S2n � S2n/ are diffeomorphic but M1 6'M2. Their examples
have the form M.Xi/ where the Xi 2 HT.G; n/ are the noncancellation examples for G abelian found
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by Metzler, Sieradski and Dyer [Metzler 1976; Sieradski 1977; Sieradski and Dyer 1979]. Recently,
Conway, Crowley, Powell and Sixt constructed examples of both simply connected Mi [Conway et al.
2023] and infinitely many Mi [Conway et al. 2021] for all n � 2. However, the examples of Kreck
and Schafer remain the only known examples in dimension 4. In classifying HT.G; n/ when G has
periodic cohomology, we hope to create a second family of examples both in dimension 4 and in higher
dimensions.

Conventions

All rings R will be assumed to have a multiplicative identity and all R–modules will be assumed to be
finitely generated left R–modules.

Recall that groups with periodic cohomology are necessarily finite. For most of this article, we will
therefore restrict to the case where G is a finite group. However, we will briefly consider finitely presented
groups more generally at the start of Sections 5 and 6.
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2 Extensions of modules

Let R be a ring. Recall our convention that all R–modules are assumed to be finitely generated left
R–modules. For R–modules A and B, define ExtnR.A;B/ to be the set of exact sequences

E D .0! B i
�!En�1

@n�1
��!En�2

@n�2
��! � � �

@2
�!E1

@1
�!E0

"
�!A! 0/

for R–modules Ei considered up to congruence, i.e. the equivalence relation generated by elementary
congruences which are chain maps of the form

E

E0

' D

0B@ 0 B En�1 � � � E0 A 0

0 B E0
n�1

� � � E0
0

A 0

id 'n�1 '0 id

1CA
That is, two extensions E and E0 are congruent if there exists extensions E.i/ for 0 � i � n such
that E D E.0/, E0 D E.n/ and, for i � n � 1, there exists an elementary congruence of the form
' WE.i/!E.iC1/ or ' WE.iC1/!E.i/.
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We write extensions in ExtnR.A;B/ as E D .E�; @�/ where the maps i W B!En�1 and " WE0!A are
understood. We will often write @i D @

E
i , i D iE and "D "E when the need arises to distinguish different

extensions.

This is an abelian group under Baer sum, and coincides with the usual definition of ExtnR.A;B/ [Weibel
1994, Section 3.4]. We will assume familiarity with the basic operations on extensions such as pullback,
pushout and the Yoneda product [Johnson 2003, Section 24].

Worth emphasising however is the operation of stabilisation. If E D .E�; @�/ 2 ExtnR.A;B/, then define
the stabilised complex E˚R 2 ExtnR.A;B˚R/ by

E˚RD .0! B˚R
�

�
i
0

0
1

�
���!En�1˚R

�

�
@n�1

0

�
����!En�2! � � � !E0!A! 0/:

This gives a well-defined map of abelian groups

�˚R W ExtnR.A;B/! ExtnR.A;B˚R/:

Let ProjnR.A;B/ denote the subset of ExtnR.A;B/ consisting of extensions .P�; @�/ with the Pi projective.
This is closed under Baer sum, and so is a subgroup, and is also preserved by pullbacks, pushouts, the
Yoneda product and stabilisation. The following is a consequence of the cocycle description of Ext [Wall
1979a, Lemma 1.1].

Lemma 2.1 (shifting) If A, B, C and D are R–modules , E 2 ProjkR.B;C / and k; n;m� 1, then the
Yoneda product induces bijections

�ıE W ExtnR.C;D/! ExtnCk
R

.B;D/; E ı�W ExtmR.A;B/! ExtmCk
R

.A;C /:

This can be viewed as a sort of cancellation theorem for extensions up to congruence in the sense that
F ıE Š F 0 ıE or E ıF ŠE ıF 0 implies that F Š F 0.

A simple consequence of this is the following lemma. This can be interpreted as a kind of duality theorem
for projective extensions.

Lemma 2.2 (duality) If A, B and C are R–modules , F 2 ProjkR.A;C / and k > n� 1, then there are
bijections

‰F W ProjnR.A;B/! Projk�n
R .B;C /; E 7! .�ıE/�1.F /;

‰�1
F W Projk�n

R .B;C /! ProjnR.A;B/; E0 7! .E0 ı�/�1.F /:

We now turn our attention to an equivalence relation on ExtnR.A;B/ which is weaker than congruence. For
R–modules A and B, and E;E0 2 ExtnR.A;B/, a chain map ' WE!E0 is said to be a chain homotopy
equivalence if the restriction to the unaugmented chain complexes ' W .E�; @�/0��<n! .E0�; @

0
�/0��<n

is a chain homotopy equivalence.
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If E;E0 2 ProjnR.A;B/ then, since a chain map between projective chain complexes is a chain homotopy
equivalence if and only if it is a homology equivalence [Johnson 2003, Theorem 46.6], a chain homotopy
equivalence ' WE!E0 can equivalently be defined as a chain map of the form

E

E0

' D

0B@ 0 B Pn�1 � � � P0 A 0

0 B P 0
n�1

� � � P 0
0

A 0

'B 'n�1 '0 'A

1CA
where 'A and 'B are R–module isomorphisms. When convenient, we will often abbreviate this to
' D .'B; 'n�1; : : : ; '0; 'A/. It follows easily that a congruence is a chain homotopy equivalence. We
define hProjnR.A;B/ to be set of equivalence classes in ProjnR.A;B/ up to chain homotopy equivalences,
which is an abelian group under Baer sum.

For special choices of modules, the shifting lemma and the duality lemma also hold for chain homotopy
equivalences. We define Z to be the R–module with underlying abelian group Z and trivial R–action,
i.e. r � nD n for all r 2R and n 2 Z.

Lemma 2.3 (shifting) If A and B are R–modules , F 2 ProjkR.Z;Z/ and n;m; k � 1, then the Yoneda
product induces bijections

�ıF W hProjnR.Z;A/! hProjnCk
R

.Z;A/; F ı�W hProjmR.B;Z/! hProjmCk
R

.B;Z/:

Proof First note that �ıF induces maps on the chain homotopy classes by extending the map to ˙ id
on F . This is necessarily surjective. To see that it is injective, suppose that there is a chain homotopy
equivalence ' WE1 ıF !E2 ıF . By considering �' if necessary, we can assume that 'Z D id, so

E2 ıF Š .'A/�.E1 ıF /D .'A/�.E1/ ıF:

By Lemma 2.1, this implies that E2 Š .'A/�.E1/ and so E1 'E2 as required.

The proof of the duality lemma in this setting is similar and so will be omitted.

Lemma 2.4 (duality) If A is an R–module , F 2 ProjkR.Z;Z/ and k > n� 1, then there are bijections

‰F W hProjnR.Z;A/! hProjk�n
R .A;Z/; E 7! .�ıE/�1.F /;

‰�1
F W hProjk�n

R .A;Z/! hProjnR.Z;A/; E0 7! .E0 ı�/�1.F /:

We now specialise to the case where the underlying abelian group of R is finitely generated and torsion-
free, and where R is a ring with involution, i.e. a ring with an antiautomorphism r 7! Nr such that NNr D r

for all r 2R. For example, for a finite group G, the group ring ZG has underlying abelian group ZjGj

and involution
Pn

iD1 nigi 7!
Pn

iD1 nig
�1
i where ni 2 Z and gi 2 G. Using this involution, any right

R–module A can be viewed as a left R–module under the action r �x D x � Nr for r 2R and x 2A. If A

is a left R–module, then A� D HomR.A;R/ is a right R–module under the action .' � r/.x/D '.x/r
for ' 2A� and r 2R. We will view A� as a left R–module using the involution on R.
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Note that . � /� can be viewed as a functor of R–modules: if f WA1!A2 is a map of R–modules, we
can define f � WA�

2
!A�

1
by ' 7! ' ıf . For E D .P�; @�/ 2 ProjnR.A;B/, define the dual extension by

E� D .0!A� "�
�! P�0

@�
1
�! P�1

@�
2
�! � � �

@�
n�2
��! P�n�2

@�
n�1
��! P�n�1

i�
�! B�! 0/:

The dual of a projective module is projective since P ˚QŠRn implies that P�˚Q� Š .Rn/� ŠRn.
In particular, the P�i are projective R–modules.

Whilst E� is not exact in general, it is true under mild assumptions on the modules involved. We say that
an R–module A is an R–lattice if its underlying abelian group is finitely generated and torsion-free. For
example, if P is a (finitely generated) projective R–module, then P is an R–lattice. This follows from
the fact that P �Rn is an R–submodule for some n and so its underlying abelian group is a subgroup of
Zm where mD n � rankZ.R/.

Recall that the evaluation map is the map eA W A! A��, defined by x 7! .f 7! f .x//. We say an
R–module is reflexive if eA is an R–module isomorphism.

Lemma 2.5 If A is an R–lattice , then A is reflexive.

Remark 2.6 Since projective R–modules are R–lattices, this implies that they are reflexive. We note
that this is true for arbitrary rings R, not just rings with involution whose underlying abelian group is
finitely generated and torsion free.

This follows by noting that, if A ŠAb Zk , then the R–module structure is determined by a map
�A WR!Mk.Z/. It can be shown that �A�.r/D �A. Nr/

T using the induced identification A� ŠAb Zk ,
from which the claim follows.

It follows easily from this that the reflexivity property of R–lattices also holds on the level of extensions.

Lemma 2.7 (reflexivity) If A and B are R–lattices and n� 1, then dualising gives an isomorphism of
abelian groups

�W hProjnR.A;B/! hProjnR.B
�;A�/:

If E 2 ProjnR.A;B/, then there is a chain homotopy equivalence e WE!E�� induced by the evaluation
maps.

This has the following useful consequence which, in the language of [Johnson 2003, Theorem 28.5], says
that projective R–modules are injective relative to the class of R–lattices.

Lemma 2.8 Suppose A, B and E are R–lattices such that .E;�/ 2 Ext1R.A;B/ and P is a projective
R–module. Then , for any map f W B! P , there exists Qf WE! P such that Qf ı i D f , i.e.

0 B E A 0

P

f

i "

Qf
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We conclude this section by discussing an important invariant of projective extensions. Let P .R/ denote
the R–module isomorphism classes of (finitely generated) projective R–modules and define the projective
class group C.R/ as the quotient of P .R/ by the stable isomorphisms, where P;Q 2 P .R/ are stably
isomorphic, written ŒP �D ŒQ�, if P ˚Ri ŠQ˚Rj for some i; j � 0. This forms a group under direct
sum and coincides with the Grothendieck group of the monoid P .R/.

For a projective extension

E D .0! B i
�! Pn�1

@n�1
��! Pn�2

@n�2
��! � � �

@2
�! P1

@1
�! P0

"
�!A! 0/;

we define the Euler class e.E/D
Pn�1

iD0.�1/i ŒPi � 2 C.R/. This is known to be a congruence invariant
[Wall 1979a, Lemma 1.3]. In fact, more is true:

Lemma 2.9 If A and B are R–modules , the Euler class defines a map

e W hProjnR.A;B/! C.R/;

i.e. e is a chain homotopy invariant.

Proof Suppose E1;E2 2 ProjnR.A;B/ and that ' W E1! E2 is a chain homotopy equivalence. Then
E2 Š .'A/

�..'B/�.E1// and, since e is a congruence invariant, e.E2/D e..'A/
�..'B/�.E1///. Since

pushout and pullback by automorphisms can be made to not affect the isomorphism classes of the
modules in the extension, this implies that e..'A/

�..'B/�.E1///D e.E1/ and so e is a chain homotopy
invariant.

The following tells us how the Euler class interacts with the Yoneda product.

Lemma 2.10 Let A, B and C be R–modules. If E 2 hProjnR.A;B/ and F 2 hProjmR.B;C /, then

e.F ıE/D e.E/C .�1/ne.F /:

Proof Let E D .P�; @�/
n�1
�D0

and let F D .P�Cn; @�Cn/
m�1
�D0

. Then F ıE D .P�; @�/
nCm�1
�D0

and

e.F ıE/D

nCm�1X
iD0

.�1/i ŒPi �D

n�1X
iD0

.�1/i ŒPi �C

m�1X
iD0

.�1/iCnŒPiCn�D e.E/C .�1/ne.F /:

For a class � 2 C.R/, we define ProjnR.A;BI�/ to be the subset of ProjnR.A;B/ consisting of those
extensions with e.E/D �, and we can define hProjnR.A;BI�/ similarly as a subset of hProjnR.A;B/.

We have the following nice interpretations for the extensions E 2 ProjnR.A;B/ with e.E/ D 0. This
follows easily by repeatedly forming the direct sum with length two extensions P Š

�! P for various
P 2 P .R/.

Lemma 2.11 If A and B are R–modules and n� 2, then every congruence class in ProjnR.A;BI 0/ has
a representative E of the form E D .F�; @�/ with the Fi free.
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This fails in the case nD 1, where it is not possible to form the direct sum with length two extensions
R Š
�!R without altering the chain homotopy type. In fact, for a projective extension

E D .0! B! P !A! 0/;

we can define the unstable Euler class Oe.E/D P 2 P .R/.

Lemma 2.12 If A and B are R–modules , the unstable Euler class defines a map

Oe W hProj1R.A;B/! P .R/:

Proof For E1 D .P1;�/;E2 D .P2;�/ 2 Proj1R.A;B/, recall that a chain map ' WE1!E2 is a chain
homotopy equivalence if it induces a chain homotopy equivalence between the length one chain complexes
P1 and P2, i.e. if the restriction 'jP1

W P1! P2 is an isomorphism.

3 Projective ZG –modules and the Swan finiteness obstruction

Throughout this section, we will let G be a finite group. The results of the previous section apply in the
case RDZG since ZG is a ring with involution which is finitely generated and torsion-free as an abelian
group. The aim of this section will be to recall some of the special features of projective modules over
ZG and to introduce the Swan finiteness obstruction.

3.1 Preliminaries on projective ZG –modules

We will now summarise the main special properties of (finitely generated) projective ZG–modules in the
case where G is finite.

The first was shown by Swan [1960a, Theorem A].

Proposition 3.1 Let P be a projective ZG–module. Then there is a projective ideal I � ZG such that
P Š I ˚ZGr for some r � 0.

For a prime p, let Zp denote the p–adic integers and let Z.p/ D fa=b j a; b 2 Z; p−bg �Q denote the
localisation at p. The next property that projective modules over ZG have is that they are locally free in
the following sense (see [Swan 1980, Section 2] for further discussion).

Proposition 3.2 Let P be a projective ZG–module. There exists n� 0 such that

(i) P ˝Z.p/ Š Z.p/G
n are isomorphic as Z.p/G–modules ,

(ii) P ˝QŠQGn are isomorphic as QG–modules ,

(iii) P ˝Zp Š ZpGn are isomorphic as ZpG–modules ,

(iv) P ˝Qp ŠQpGn are isomorphic as QpG–modules.
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Proof Items (ii) and (iv) each follow from [Swan 1970, Theorem 4.2]. Given this, (i) and (iii) now
follow from [Swan 1970, Theorem 2.21].

We define the rank of P , denoted by rank.P /, to be the n� 0 in the proposition above. For example, if
I �ZG is a nonzero projective ideal, then it can be shown that rank.I/D 1; see [Swan 1960a, Section 7].

Let P .ZG/ denote the set of ZG–module isomorphism classes of nonzero projective ZG–modules. This
is a monoid under direct sum. Since rank.P ˚Q/D rank.P /C rank.Q/ for all P;Q 2 P .ZG/, there is
a surjective homomorphism of monoids

rank W P .ZG/! Z; P 7! rank.P /:

Note that rank.P / D 0 if and only if P D 0. That is, if P is a nonzero projective ZG–module, then
rank.P /� 1. This has the following consequence.

Corollary 3.3 Let P be a nonzero projective ZG–module. Then there exists a surjection ' W P ! Z.

Proof Let nD rank.P /� 1 and consider the composition

P x 7!x˝1,�����! P ˝Q Š
�!QGn �1

��QG "
��Q

where �1 is projection onto the first coordinate and " is the augmentation map. Since P is finitely
generated, the image of the composition is a finitely generated subgroup of Q and so is isomorphic to Z.
This gives the required surjection.

3.2 Swan modules

We will now define Swan modules which are a special type of projective module first introduced in [Swan
1960b, Section 6]. Let " W ZG! Z denote the augmentation map and let I D Ker."/� ZG denote the
augmentation ideal. For any r 2 Z coprime to jGj, the ideal .I; r/� ZG is projective and depends only
on r mod jGj up to ZG–isomorphism [Swan 1960b]. Since .I; r/ is a nonzero ideal, it has rank one as a
projective ZG–module by the remarks in Section 3.1.

The modules .I; r/ are known as Swan modules and the map

S W .Z=jGj/�! C.ZG/

given by r 7! Œ.I; r/� is known as the Swan map. This is a well-defined group homomorphism [Swan
1960b], and we define the Swan subgroup to be TG D Im.S/� C.ZG/.

Whilst we will not make explicit use of it in this article, we will briefly mention the closely related ideal
.N; r/ � ZG where N D

P
g2G g denotes the group norm. Many authors take the .N; r/ to be Swan

modules instead of the ideals .I; r/. In fact, the two notions are equivalent, as the following proposition
shows.

Proposition 3.4 If G is a finite group and r 2 .Z=jGj/�, then .I; r/Š .N; r�1/.
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This is presumably well known, but we will include a detailed proof here since we are not aware that one
is currently available in the literature.

Proof By the uniqueness of pullbacks, it will suffice to prove that both .I; r/ and .N; r�1/ arise as
pullbacks of the map r WZ!Z=jGj which sends 1 7! r , and the map " WZG=.N /!Z=jGj which sends
xC .N / 7! ".x/CjGj.

First let i W I ,! .I; r/ denote inclusion, let ' W .I; r/! ZG=.N / and let q W ZG� ZG=.N / denote the
quotient map. Then there is a diagram

0 I .I; r/ Z 0

0 I ZG=.N / Z=jGj 0

i

id

.1=r/"

q r

j "

where q and .1=r/" denote the restrictions of these maps to .I; r/�ZG and j D q ı i . It can be checked
that the diagram commutes and that the rows are exact, and so the right hand square is a pullback.

Now let s 2Z be such that sD r�1 2 .Z=jGj/�, so that .N; r�1/Š .N; s/. Define f W .N; s/!ZG=.N /

by sending N xC sy 7! y. Then consider the diagram

0 I .N; s/ Z 0

0 I ZG=.N / Z=jGj 0

s

id

"

f r

j "

Similarly, it can be checked that this commutes and that the rows are exact.

3.3 Projective extensions

We will now consider the classification of extensions ProjnZG.Z;A/ for a fixed ZG–module A. The follow-
ing can be found in [Johnson 2003, Proposition 34.2] and shows that any two elements of ProjnZG.Z;A/

are related by pullbacks. Note that this isomorphism depends on the choice of E and so only exists when
ProjnZG.Z;A/ is nonempty.

Proposition 3.5 Let A be a ZG–module and n� 1. Then , for any E 2 ProjnZG.Z;A/, there is a bijection

.m�/
�
W .Z=jGj/�! ProjnZG.Z;A/

given by r 7! .mr /
�.E/, where mr W Z! Z denotes multiplication by r .

Remark 3.6 This corresponds to the fact that extensions with fixed ends are determined by their
k–invariants; see, for example, [Johnson 2003, Chapter 6].

Let e denote the stable Euler class as defined in Section 2. The next result computes the image of
projective extensions under the stable Euler class.
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Proposition 3.7 Let e denote the stable Euler class. Let n � 1 and let A be a ZG–module such that
there exists E 2 ProjnZG.Z;A/. If e.E/D ŒP �, then

e.ProjnZG.Z;A//D ŒP �CTG � C.ZG/:

Proof This was proven in [Swan 1960b, Lemmas 7.3 and 7.4] in the case A D Z, and the proof for
arbitrary A is analogous. We will outline the steps here for the convenience of the reader.

The first step is to show that, for any E;E0 2 ProjnZG.Z;A/, we have e.E0/� e.E/ 2 TG . By applying
Schanuel’s lemma (see [Swan 1960b, Proposition 1.1]) to the duals E�; .E0/� 2 ProjnZG.A

�;Z/, we get
an isomorphism Z˚e.E�/ŠZ˚e..E0/�/ and so e..E0/�/�e.E�/2TG by [Swan 1960b, Lemma 6.2].
Since e.E�/D e.E/� and projective ZG–modules are reflexive, dualising gives that e.E0/� e.E/ 2 TG .

The second step is to show that, given E 2 ProjnZG.Z;A/, there exists E0 2 ProjnZG.Z;A/ such that
e.E0/� e.E/D Œ.I; r/�. This can be constructed in the same way as in [Swan 1960b, Lemma 7.4]. That
is, using [Swan 1960b, Remark 2.1].

3.4 The Swan finiteness obstruction

We will now specialise further to the case AD Z. Recall that a finite group G is said to have k–periodic
cohomology if there is an isomorphism of abelian groups yH i.GIZ/Š yH iCk.GIZ/ for all i 2 Z.

Remark 3.8 Many authors define finite groups with periodic cohomology by the a priori stronger
condition that there exists a class u 2 yH k.GIZ/ such that cup product induces an isomorphism

u[�W yH i.GIZ/! yH iCk.GIZ/

for all i 2 Z. These definitions are equivalent since, if yH i.GIZ/ Š yH iCk.GIZ/ for all i 2 Z, then
yH k.GIZ/Š yH 0.GIZ/ŠZ=jGj which implies that the condition above holds by [Brown 1982, VI.9.1].

The following can be extracted from [Cartan and Eilenberg 1956, Chapter XII].

Proposition 3.9 Let G be a finite group. Then G has k–periodic cohomology if and only if ProjkZG.Z;Z/

is nonempty.

If G has k–periodic cohomology then, since ProjkZG.Z;Z/ is nonempty, Proposition 3.7 implies that
there exists P 2 P .ZG/ for which

e.ProjkZG.Z;Z//D ŒP �CTG � C.ZG/

where P .ZG/ denotes the set of nonzero projective ZG–modules. We can then quotient by TG to get a
unique class in C.ZG/=TG which depends only on G and k. The Swan finiteness obstruction is defined
as

�k.G/D ŒP � 2 C.ZG/=TG :
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Recall that a group G has free period k if there exists E D .F�; @�/ 2 ProjkZG.Z;Z/ with the Fi free.
The following is [Swan 1960b, Proposition 5.1].

Proposition 3.10 Let G have k–periodic cohomology. Then �k.G/ D 0 if and only if G has free
period k.

Remark 3.11 By a construction of Milnor, this is equivalent to the existence of a finite CW–complex X

with �1.X /ŠG and zX ' Sk�1 [Swan 1960b, Proposition 3.1]. Examples of groups with �k.G/¤ 0

were found by Milgram [1985].

We will conclude this section by giving a constraint on the projective ZG–modules P which can arise as
a representative of the Swan finiteness obstruction.

We would like to compare ŒP � and ŒP�� when �k.G/D ŒP �CTG . This is difficult for general projectives
since there exists finite groups G and projectives P for which ŒP��¤˙ŒP �, even in C.ZG/=TG . For
example, we can take G D Z=372 [Curtis and Reiner 1987, Theorem 50.56]. However, in our situation,
we have the following.

Proposition 3.12 If G has k–periodic cohomology, and �k.G/D ŒP �CTG , then

ŒP �D�ŒP�� 2 C.ZG/=TG :

Proof By Proposition 3.7, there exists E 2 ProjkZG.Z;Z/ with e.E/D ŒP � and, by forming the direct
sum with length two extensions ZG Š

�! ZG, we can assume that

E Š .0! Z i
�! P

@k�1
��! Fk�2

@k�2
��! � � �

@1
�! F0

"
�! Z! 0/

for some Fi free. Dualising then gives that

E� Š .0! Z "�
�! F0

@�
1
�! � � �

@�
k�2
��! Fk�2

@�
k�1
��! P� i�

�! Z! 0/

and, since k is necessarily even [Cartan and Eilenberg 1956, page 261], Schanuel’s lemma implies that

Z˚P ˚P�˚F Š Z˚F 0

for some F and F 0 free. By [Swan 1960b, Lemma 6.2], we then get that ŒP ˚P�� 2 TG .

Remark 3.13 For a finite group G, the standard involution on C.ZG/ is given by ŒP � 7! �ŒP��; see
[Curtis and Reiner 1987, Section 50E]. This turns C.ZG/ into a ZC2–module where the C2–action is
given by the involution. This additional structure has proven to be a useful for computing class groups
[Curtis and Reiner 1987, page 284]. Note that TG is fixed by this involution. This follows from the
fact that .I; r/� Š .N; r/ Š .I; r�1/ by [Swan 1983, Lemma 17.1] and Proposition 3.4 respectively.
Hence the involution induces an involution on C.ZG/=TG and so endows it with a natural ZC2–module
structure. With respect to this action, Proposition 3.12 says that �k.G/ 2 .C.ZG/=TG/

C2 .

Algebraic & Geometric Topology, Volume 24 (2024)



Projective modules and the homotopy classification of .G; n/–complexes 2259

4 Classification of projective chain complexes

We would now like to consider more generally the classification of projective extensions over ZG with
only one fixed end. Throughout this section, G will denote a finite group. For n � 0, a projective
n–complex E D .P�; @�/ over ZG is a chain complex consisting of an exact sequence

E D .Pn
@n
�! Pn�1

@n�1
��! � � �

@1
�! P0/

where H0.P�/ŠZ and the Pi are (finitely generated) projective ZG–modules. An algebraic n–complex
is a projective n–complex such that the Pi are free.

Let Proj.G; n/ denote the set of chain homotopy types of projective n–complexes over ZG, which is a
graded graph with edges between each E D .P�; @�/ and

E˚ZG D .Pn˚ZG
.@n;0/
���! Pn�1

@n�1
��! � � �

@1
�! P0/:

Similarly, let Alg.G; n/ denote the set of chain homotopy types of algebraic n–complexes over ZG,
which is also a graded graph under stabilisation. By extending the projective n–complex by Ker.@n/, it is
easy to see that there is a bijection

Proj.G; n/Š
a

A2Mod.ZG/

hProjnC1
ZG

.Z;A/:

By abuse of notation, we will assume they are the same, i.e. that an extension E 2 Proj.G; n/ lies in
hProjnC1

ZG
.Z;A/ for some A. For a class � 2 C.ZG/, let Proj.G; nI�/ denote the subset of projective

extensions E with e.E/D �. Note that Alg.G; n/Š Proj.G; nI 0/ for n� 2.

4.1 General classification of projective n–complexes

The following is well known; see [Mannan 2007, Theorem 1.1; Hambleton et al. 2013, Proof of
Lemma 8.12].

Theorem 4.1 If n � 0 and � 2 C.ZG/, then Proj.G; nI�/ is a graded tree , i.e. if E;E0 2 Proj.G; n/
have e.E/D e.E0/, then E˚ZGi 'E0˚ZGj for some i; j � 0.

We will now prove a cancellation theorem for projective n–complexes. Our proof will be modelled on
Hambleton and Kreck’s proof [1993, Theorem B] that, if X and Y are finite 2–complexes with finite
fundamental group such that X 'X0 _S2 and X _S2 ' Y _S2, then X ' Y . This idea was applied
to algebraic 2–complexes in [Hambleton 2019].

If A is a ZG–module, then x 2A is unimodular if there exists a map f WA! ZG such that f .x/D 1.
Let Um.A/�A denote the set of unimodular elements in A.

Lemma 4.2 Let A and B be ZG–modules. Then:

(i) If ' WA! B is an isomorphism , then '.Um.A//D Um.B/.

(ii) .0; 1/ 2 Um.A˚ZG/, i.e. if ' WA˚ZG! B is an isomorphism , then '.0; 1/ 2 Um.B/.
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Suppose a ZG–module A has a splitting A D A1˚A2˚ � � � ˚An. Then a map f W Ai ! Aj can be
viewed as an endomorphism of A by extending it to vanish everywhere else. Write GL.A/ for the group
of automorphisms of A and define

E.Ai ;Aj /D h1Cf; 1Cg j f WAi!Aj ;g WAj !Aii � GL.A/

to be the subgroup of elementary automorphisms for i ¤ j , where 1 WA!A denotes the identity map.

The main result we will use is the following, which can be proven by combining [Hambleton and Kreck
1993, Corollary 1.12 and Lemma 1.16]. Let Z.p/ D fa=b j a; b 2Z; p−bg �Q denote the localisation at
a prime p and A.p/ DA˝Z.p/.

Theorem 4.3 Suppose A is a ZG–module for which Z.p/˚A.p/ is a free Z.p/G–module for all but
finitely many primes p. If F1;F2 Š ZG, then

GD hE.F1;A˚F2/;E.F2;A˚F1/i � GL.A˚F1˚F2/

acts transitively on Um.A˚F1˚F2/.

We will now establish criteria for which the above conditions hold for a ZG–module A. First recall that,
by an extension of Maschke’s theorem of representations, the group ring RG is semisimple whenever R

is a commutative ring such that jGj 2R�. This is the case when RDZ.p/ for p a prime not dividing jGj.
This has the following consequence.

Lemma 4.4 Let n� 1 be odd , let p be a prime not dividing jGj and let A be a ZG–module for which
ProjnZG.Z;A/ is nonempty. Then Z.p/˚A.p/ is a free Z.p/G–module.

Proof Let ED .P�; @�/ 2 ProjnZG.Z;A/. Recall that localisation is an exact functor (since, for example,
Z.p/ is a flat module). Hence we obtain E.p/D ..P�/.p//; @�/ 2 ProjnZ.p/G.Z.p/;A.p// where the @� are
the induced maps. By the extension of Maschke’s theorem mentioned above, Z.p/G is semisimple and so
the exact sequence E.p/ splits completely. This implies that there is an isomorphism of Z.p/G–modules

Z.p/˚A.p/˚
M
i odd

.Pi/.p/ Š
M
i even

.Pi/.p/:

By Proposition 3.2, the .Pi/.p/ are all free Z.p/G–modules. It follows that Z.p/˚A.p/ is a stably free
Z.p/G–module. Since Z.p/G is semisimple, this implies that Z.p/˚A.p/ is a free Z.p/G–module.

Note that the fact that GL.A˚ZG2/ acts transitively on Um.A˚ZG2/ already implies the following
cancellation theorem for modules.

Corollary 4.5 Suppose A is a ZG–module , AŠA0˚ZG and Z.p/˚.A0/.p/ is a free Z.p/G–module
for all but finitely many primes p. Then A˚ZG ŠA0˚ZG implies AŠA0.

Proof Let  WA˚ZG!A0˚ZG be an isomorphism and let x D  �1.0; 1/ 2 Um.A˚ZG/. Since
ADA0˚ZG, Theorem 4.3 implies that GL.A˚ZG/ acts transitively on Um.A˚ZG/ and so there is
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an isomorphism ' WA˚ZG!A˚ZG such that '.0; 1/D x. Hence  ı' WA˚ZG!A0˚ZG has
. ı'/.0; 1/D .0; 1/ and so induces an isomorphism . ı'/jA WA!A0˚ZG= Im.0˚ZG/ŠA0.

We will upgrade the above argument from modules to projective n–complexes. The existence of a
well-understood subgroup G � GL.A˚ZG2/ which acts transitively on Um.A˚ZG2/ is important
since we need only show that elements in G can be extended to chain homotopy equivalences on the short
exact sequences.

Theorem 4.6 Let n� 0 be even and let E;E0 2 Proj.G; n/. If E'E0˚ZG and E˚ZG 'E0˚ZG,
then E 'E0.

Proof Let E02hProjnC1
ZG

.Z;A0/, ED .P�; @�/2hProjnC1
ZG

.Z;A/ and E0D .P 0�; @
0
�/2hProjnC1

ZG
.Z;A0/.

If  WE˚ZG!E0˚ZG denotes the given chain homotopy equivalence in hProjnC1
ZG

.Z;A0˚ZG2/ and
 A WA0˚ZG2!A0˚ZG is the induced map on the left, consider x D  �1

A
.0; 1/ 2 Um.A0˚ZG2/.

We now claim that there exists a self chain homotopy equivalence ' WE˚ZG!E˚ZG such that the
induced map 'A WA˚ZG!A˚ZG has 'A.0; 1/D x.

Let F1;F2 Š ZG be such that A D A0 ˚ F1 and A˚ZG D A0 ˚ F1 ˚ F2. Since ProjnC1
ZG

.Z;A0/

is nonempty and nC 1 is odd, we can combine Theorem 4.3 and Lemma 4.4 to get that there exists
'A 2GD hE.F1;A0˚F2/;E.F2;A0˚F1/i �GL.A0˚F1˚F2/ such that 'A.0; 0; 1/D x. We claim
that 'A can be extended to a chain homotopy equivalence ' WE˚ZG!E˚ZG.

First recall that E.F2;A0˚F1/DE.F2;A/�GL.A˚F2/ is generated by elements of the form
�

1
f

0
1

�
for f WA! F2 and

�
1
0

g
1

�
for g W F2!A.

If i WA ,! P , then there exists Qf W P ! ZG such that Qf ı i D f by Lemma 2.8. It is straightforward to
verify that the following diagrams commute, and so are chain homotopy equivalences:

E˚ZG

E˚ZG

'1 D

0BB@ 0 A˚ZG Pn˚ZG Pn�1 � � � P0 0

0 A˚ZG Pn˚ZG Pn�1 � � � P0 0

�
i 0
0 1

�
�

1 0
f 1

�
.@n;0/

� 1 0
Qf 1

�
@n�1

idPn�1

@1

idP0�
i 0
0 1

�
.@n;0/ @n�1 @1

1CCA
E˚ZG

E˚ZG

'2 D

0BB@ 0 A˚ZG Pn˚ZG Pn�1 � � � P0 0

0 A˚ZG Pn˚ZG Pn�1 � � � P0 0

�
i 0
0 1

�
�

1 g
0 1

�
.@n;0/

�
1 iıg
0 1

�
@n�1

idPn�1

@1

idP0�
i 0
0 1

�
.@n;0/ @n�1 @1

1CCA
Similarly, we can show that the generators of E.F1;A0˚F2/ extend to chain homotopy equivalences.
Hence, by writing 'A 2 G as the composition of maps of this form, we can get a chain homotopy
equivalence ' WE˚ZG!E˚ZG by taking the composition of equivalences on each of the generators.

Now consider the map

 ı' D . A ı'A;  P ı'P ; id; : : : ; id/ WE˚ZG!E0˚ZG:
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:::

Figure 1: A graded tree which is a fork.

Since . A ı'A/.0; 1/D .0; 1/, it must have the form  A ı'A D
�
�A 0
0 1

�
since it is an isomorphism. By

commutativity, . P ı 'P /.0; 1/ D .0; 1/ and so similarly  P ı 'P D
�
�P 0
0 1

�
for some �P W P ! P 0.

We are now done by noting that the triple .�A; �P ; id; : : : ; id/ defines a chain homotopy equivalence
E 'E0.

We say that a graded tree is a fork if it has a single vertex at each nonminimal grade and a finite set of
vertices at the minimal grade.

Corollary 4.7 If n � 0 is even , G is a finite group and � 2 C.ZG/, then Proj.G; nI�/ is a fork. In
particular , Alg.G; n/ is a fork for n� 2 even.

This recovers the even-dimensional case of a result of Browning [1978, Theorem 5.4]. This fails in odd
dimensions, i.e. there are examples of finite groups G for which Alg.G; n/ is not a fork for some n odd
[Dyer 1979].

4.2 Projective 0–complexes and the unstable Euler class

We now consider the case nD 0. Recall that P .ZG/ denotes the set of ZG–module isomorphism classes
of (finitely generated) nonzero projective ZG–modules. This is a graded graph with edges between each
P and P ˚ZG.

Note that a projective 0–complex has the form

E D .0!A i
�! P "

�! Z! 0/;

and so consists of a nonzero projective module P 2P .ZG/ as well as the additional data .A; i; "/. If Oe is
the unstable Euler class, then Oe W Proj.G; 0/! P .ZG/ is a map of graded graphs since

Oe.E˚ZG/Š Oe.E/˚ZG:

We will now show the following:
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Theorem 4.8 If G is a finite group , then the unstable Euler class gives an isomorphism of graded graphs

Oe W Proj.G; 0/! P .ZG/:

Remark 4.9 Such a statement is implicit in the proof of [Johnson 2003, Theorem IV, Theorem 57.4],
though the argument there contains an error and can only be used to recover the statement above in
the case of projective modules of rank one. This, however, suffices since one can instead rely on the
cancellation theorems of Hambleton and Kreck [1993, Theorem B] or Browning [1978, Theorem 5.4] at
that stage in the proof.

Proof To see that Oe is surjective, let P 2 P .ZG/. By Corollary 3.3, there is a surjection ' W P ! Z and
this defines an extension E D .P;�/ 2 hProj1ZG.Z;Ker.'// which has Oe.E/D P .

We will now show injectivity. First let ED .P;�/2hProj1ZG.Z;A/ and let E0D .P;�/2hProj1ZG.Z;A
0/.

We will begin by considering the case where P has rank one. To show that E 'E0, it suffices to find
isomorphisms 'A WA!A0 and 'Z W Z! Z such that the following diagram commutes:

E

E0

' D

0B@ 0 A P Z 0

0 A0 P Z 0

i

'A

"

id 'Z

i0 "0

1CA
Consider the maps N"D "˝Q; N"0 D "0˝Q W P ˝QŠQG!Q. Since Q has trivial G–action, each map
is determined by the fact that N".g/D N"0.g/D 0 for all g 2 G and N".1/D N"0.1/D xi for some xi 2Q�.
Hence Ker.N"/D Ker.N"0/ and so ."0 ı i/˝QD 0. Since A is a ZG lattice, this implies that "0 ı i D 0 and
so we can define maps 'A and 'Z as above. Now 'Z is necessarily surjective and so an isomorphism.
Hence 'A is an isomorphism by the five lemma, and so E 'E0.

Now suppose E and E0 are as above but with rank.P / � 2. By Proposition 3.1, this implies that
there exists P0 of rank one such that P Š P0 ˚ ZGi for some i � 1. Since Oe is surjective, there
exists E0 D .P0;�/ 2 hProj1ZG.Z;A0/ for some A0. By Theorem 4.1, there exists j � 0 for which
E0˚ZGiCj 'E˚ZGj 'E0˚ZGj . Since i � 1, Theorem 4.6 then implies E0˚ZGi 'E'E0.

For use in later sections, it will be necessary to further refine the isomorphism given by Oe. Consider
following two decompositions (where Š denotes bijection):

Proj.G; 0/Š
a

�2C.ZG/

Proj.G; 0I�/Š
a

A2Mod.ZG/

hProj1ZG.Z;A/:

We will begin by determining the image of Proj.G; 0I�/ under Oe. This is immediate from Theorem 4.8
and the definition of hProj1ZG.Z;AI�/. For convenience, we will write �D ŒP � for some P 2 P .ZG/.

Proposition 4.10 Let P 2 P .ZG/. Then there is an isomorphism of graded trees

Oe W Proj.G; 0I ŒP �/! ŒP �:
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We will next determine the image of Proj1ZG.Z;A/ under Oe for A a fixed ZG–module such that
Proj1ZG.Z;A/ is nonempty. Recall that, if E 2 Proj1ZG.Z;A/, then Proposition 3.5 implies that there is a
bijection

.m�/
�
W .Z=jGj/�! Proj1ZG.Z;A/

given by r 7! .mr /
�.E/, where mr W Z! Z denotes multiplication by r .

If M is a (left) ZG–module and r 2 .Z=jGj/�, then the tensor product .I; r/˝M can be considered as
a (left) ZG–module since .I; r/ is a two-sided ideal. This allows us to find an explicit form for pullbacks
of extensions. We will begin with the following special case.

Lemma 4.11 Let A be a ZG–module and suppose E D .P;�/ 2 Proj1ZG.Z;A/ where rank.P / D 1.
Then , for any r 2 .Z=jGj/�, there are maps Ni and N" such that

.mr /
�.E/Š .0!A

Ni
�! .I; r/˝P N"

�! Z! 0/:

Proof Let E D .P;�/ 2 Proj1ZG.Z;A/ and note that we have the diagrams

.I; r/ Z

ZG Z

.1=r/"

i r

"

.I; r/˝P Z˝P

ZG˝P Z˝P

.1=r/"˝1

i˝1 r˝1

"˝1

where i W .I; r/ ,! ZG is inclusion. It can be checked directly that the first diagram is a pullback, and
this implies that the second diagram is a pullback since P is projective and so flat. Since rank.P /D 1,
we can choose identifications ZG˝P Š P and Z˝P ŠZ for which "˝ 1 corresponds to "E . We now
have a map .idA; ';mr / WE

0!E where E0 D ..I; r/˝P;�/. Hence E0 Š .mr /
�.E/ by uniqueness of

pullbacks.

We can now upgrade this to the general case using Theorem 4.8.

Lemma 4.12 Let A be a ZG–module and suppose E D .P;�/ 2 Proj1ZG.Z;A/.

(i) There exists a projective ZG–module P0 with rank.P0/D 1 and k � 0 such that P Š P0˚ZGk

and
E Š .0!A

i0
�! P0˚ZGk ."0;0/

���! Z! 0/

for some maps i0 and "0 W P0! Z.

(ii) With P0, i0 and "0 as above ,

.mr /
�.E/Š .0!A

Ni0
�! ..I; r/˝P0/˚ZGk .N"0;0/

���! Z! 0/

for some maps Ni0 and N"0 W .I; r/˝P0! Z.

Proof (i) Since P � Z, we know that P is nonzero. Hence, by Proposition 3.1, there exists a
projective ZG–module P0 with rank.P0/D 1 and k � 0 such that P Š P0˚ZGk . Since Oe is an
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isomorphism of graded trees, there exists E0 2 Proj1ZG.Z;A0/ for some ZG–module A0 such that
E ŠE0˚ZGk . Write

E0 D .0!A0
i0
0
�! P0

"0
�! Z! 0/

for some i 0
0

and "0. The result follows by forming E0˚ZGk .

(ii) The result follows by noting that .mr /
�.E0 ˚ ZGk/ Š .mr /

�.E0/ ˚ ZGk and evaluating
.mr /

�.E0/ using Lemma 4.11.

Remark 4.13 The proof of (i) also implies that AŠA0˚ZGk .

This implies the following. This is the analogue of Proposition 3.7 which established the corresponding
result for the stable Euler class e.

Proposition 4.14 Let A be a ZG–module and suppose E D .P;�/ 2 Proj1ZG.Z;A/. Then

Oe.Proj1ZG.Z;A//D f..I; r/˝P0/˚ZGk
j r 2 .Z=jGj/�g � P .ZG/

where P0 is any rank one projective ZG–module such that P Š P0˚ZGk for k � 0.

For completeness, as well as for later use, we will note the following which is a consequence of [Fröhlich
et al. 1974, Remark 1.30]. This shows that Propositions 3.7 and 4.14 agree in the case nD 1.

Lemma 4.15 Let P be a projective ZG–module with rank.P /D 1 and let r 2 .Z=jGj/�. Then

Œ.I; r/˝P �D Œ.I; r/�C ŒP � 2 C.ZG/:

5 Polarised homotopy classification of .G; n/–complexes

Recall that, for a group G, a G–polarised space is a pair .X; �X / where X is a topological space
and �X W �1.X;�/ ! G is a given isomorphism. We say that two G–polarised spaces .X; �X / and
.Y; �Y / are polarised homotopy equivalent if there exists a homotopy equivalence h WX ! Y such that
�X D �Y ı�1.h/.

Let PHT.G; n/ denote the set of polarised homotopy types of finite .G; n/–complexes over G. This is a
graded graph with edges between each .X; �X / and .X _S2; .�X /

C/ where .�X /
C is induced by �X

and the collapse map X _S2!X .

If X is a finite CW–complex, then the cellular chain complex C�. zX / can be viewed as a chain complex
of ZŒ�1.X /�–modules under the monodromy action. We can use a G–polarisation � W �1.X /!G to get
a chain complex of ZG–modules C�. zX ; �/ which is the same as C�. zX / as a chain complex of abelian
groups but with action g �x D ��1.g/x for all g 2G and x 2 Ci. zX / for some i � 0.
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The following is a mild generalisation of [Nicholson 2021b, Theorem 1.1]:

Proposition 5.1 Let G be a finitely presented group and let n � 2. Then there is an injective map of
graded trees

zC� W PHT.G; n/! Alg.G; n/

induced by the map .X; �/ 7! C�. zX ; �/. Furthermore:

(i) If n� 3, then zC� is bijective.

(ii) If nD 2, then zC� is bijective if and only if G has the D2 property.

Remark 5.2 (a) Even if G does not satisfy the D2 property, Proposition 5.1 can be replaced with
an isomorphism zC� W D2.G/! Alg.G; 2/ where D2.G/ denotes the polarised homotopy tree of
D2–complexes over G [Nicholson 2021b, Theorems 1.1].

(b) This is often vacuous in the case n � 3 since PHT.G; n/ and Alg.G; n/ are often empty. More
specifically, PHT.G; n/ is nonempty if and only if G is of type Fn. Alg.G; n/ is nonempty if
and only if G has type FPn (see [Bieri 1976]), and it is well known that Fn() FPn for finitely
presented groups. This situation arises since there exist finitely presented groups which are not of
type Fn for n� 3 [Stallings 1963].

(c) This fails in general for nonfinitely presented groups. In particular, for each n� 2, Bestvina and
Brady [1997] constructed a nonfinitely presented group G of type FPn. Here PHT.G; n/ is empty
and Alg.G; n/ is nonempty and so zC� is not bijective.

We will now use the results from the previous section to study projective n–complexes over groups with
periodic cohomology. By Proposition 5.1, this will lead to a proof of the following more detailed version
of Theorem A. Note that, if X is a finite .G; n/–complex, then

�n.X /ŠHn. zX /Š Ker.@n W Cn. zX /! Cn�1. zX //

are isomorphisms of ZG–modules.

Theorem 5.3 Let G have k–periodic cohomology , let nD ik or ik � 2 for some i � 1 and let P.G;n/

be a projective ZG–module with �ik.G/D ŒP.G;n/� 2 C.ZG/=TG . Let F 2 ProjikZG.Z;Z/ be such that
e.F /D ŒP.G;n/�. Then there is an injective map of graded trees

‰ W PHT.G; n/! ŒP.G;n/�;

defined as follows:

(i) If nD ik � 2, then ‰ WX 7! P , where P is the unique projective ZG–module for which

.0! Z ˛
�! P�

ˇ
�! �n.X /! 0/ ıC�. zX /' F

for some ˛ and ˇ.

Algebraic & Geometric Topology, Volume 24 (2024)



Projective modules and the homotopy classification of .G; n/–complexes 2267

(ii) If nD ik, then ‰ WX 7! P , where P is the unique projective ZG–module for which

C�. zX /' .0! �n.X /
˛
�! P

ˇ
�! Z! 0/ ıF

for some ˛ and ˇ.

Furthermore , ‰ is bijective if and only if n� 3 or nD 2 and G has the D2 property.

Remark 5.4 The definition of P.G;n/ depends on G, n and k. Note that n and k determine i except
when k D 2 where nD ik D .i C 1/k � 2. However, in this case there is no ambiguity since G is cyclic
[Swan 1965, Lemma 5.2] and so �2i.G/D 0 for all i .

First note that, when G has periodic cohomology, we get the following two relations between projective
complexes of different dimensions.

Lemma 5.5 Suppose G has k–periodic cohomology and let F 2 ProjkZG.Z;Z/. If n� 0, then we have
isomorphisms of graded graphs

�ıF W Proj.G; n/! Proj.G; nC k/; � ı‰F W Proj.G; n/! Proj.G; k � .nC 2//;

where nC 2� k in the second case.

Proof The first isomorphism is immediate from the shifting lemma. The second isomorphism consists
of the compositions

hProjnC1
ZG

.Z;A/
‰F
�! hProjk�n�1

ZG .A;Z/ ��! hProjk�n�1
ZG .Z;A�/

for all ZG–modules A. These are bijections by the duality and reflexivity lemmas.

To see that the image of the full map is Proj.G; k� .nC2// note that, if B is such that hProjk�n�2
ZG .Z;B/

is nonzero, then B is a ZG–lattice since it is a submodule of a free module. By Lemma 2.5, B�� Š B

and so there is an isomorphism � ı‰F W hProjnC1
ZG

.Z;B�/! hProjk�n�1
ZG .Z;B/.

Remark 5.6 Furthermore, if E 2Proj.G; n/ has �D e.E/, then it is easy to see that e.EıF /D e.F /C�

since k is even and e.. F .E//
�/D e.F /����.

The proof of Theorem 5.3 will now consist of applying Lemma 5.5 in the case k j n or nC 2 and then
composing with the isomorphism from Theorem 4.8.

We will need the following result of Wall [1979a, Corollary 12.6].

Proposition 5.7 If G has k–periodic cohomology, then

2�k.G/D 0 2 C.ZG/=TG :

By iterating extensions using the Yoneda product, it can be shown that n�k.G/D �nk.G/ and so this
theorem is equivalent to showing that �2k.G/D 0, i.e. that the obstruction vanishes whenever k is not
the minimal period.
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Theorem 5.8 If G has k–periodic cohomology and �k.G/D ŒP.G;n/�CTG for some P.G;n/ 2 P .ZG/,
then there exists F 2 ProjkZG.Z;Z/ such that there are isomorphisms of graded trees

Alg.G; k/ .�ıF /
�1

����! Proj.G; 0I ŒP.G;n/�/
Oe
�! ŒP.G;n/�:

Proof By Proposition 5.7, �k.G/D ŒP.G;n/�CTGD�ŒP.G;n/�CTG and so there exists F 2ProjkZG.Z;Z/

with e.F /D�ŒP.G;n/� by Proposition 3.7.

If E 2 Alg.G; k/, then e.E/D 0 and so e..�ıF /�1/D�.�1/ke.F / by Lemma 2.10. Since k is even,
this is equal to ŒP.G;n/�. Hence the map .�ıF /�1 is as described. By Lemma 5.5, we get that .�ıF /�1

is an isomorphism.

That Oe is an isomorphism follows from Proposition 4.10.

Theorem 5.9 If G has k–periodic cohomology and �k.G/D ŒP.G;n/�CTG for some P.G;n/ 2 P .ZG/,
then there exists F 2 ProjkZG.Z;Z/ such that there are isomorphisms of graded trees

Alg.G; k � 2/
�ı‰F
���! Proj.G; 0I ŒP.G;n/�/

Oe
�! ŒP.G;n/�:

Proof By Proposition 3.12, we have that �k.G/D ŒP.G;n/�CTG D�ŒP
�
.G;n/

�CTG and so there exists
F 2 ProjkZG.Z;Z/ with e.F /D�ŒP�

.G;n/
� by Proposition 3.7.

If E 2 Alg.G; k � 2/, then e.‰F .E//D�e.F / by Lemma 2.10. This implies that

e..� ı‰F /.E//D�e.F /� D ŒP.G;n/�

and so the map � ı‰F is as described. By Lemma 5.5, � ı‰F is an isomorphism.

That Oe is an isomorphism follows from Proposition 4.10, as in the previous theorem.

Proof of Theorem 5.3 If G has k–periodic cohomology, then it also has ik–periodic cohomology for
any i � 1. Hence, by swapping k for ik, we can assume i D 1. By combining Theorems 5.8 and 5.9 with
Proposition 5.1, we obtain injective maps of graded trees ‰ W PHT.G; n/! ŒP.G;n/� for nD k or k � 2,
which are bijective as required. It remains to show that, in each case, ‰ has the form given in (i) and (ii).

If nD k � 2, then .� ı‰F /.C�. zX //' .0!A! P ! Z! 0/ for some A and some P 2 ŒP.G;n/�. By
Lemma 2.7, ‰F .C�. zX //' .0!Z!P�!A�! 0/. Hence .0!Z!P�!A�! 0/ıC�. zX /'F

and A� Š �n.X /.

If nD k, then .�ıF /�1.C�. zX //' .0!A! P !Z! 0/ for some A and some P 2 ŒP.G;n/�. Hence
C�. zX /' .0!A! P ! Z! 0/ ıF and AŠ �n.X /.

This completes the proof of Theorem A.
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6 Homotopy classification of .G; n/–complexes

For a finitely presented group G, an automorphism � 2Aut.G/ acts on PHT.G; n/ by .X; �/ 7! .X; � ı�/.
It is straightforward to see that

HT.G; n/Š PHT.G; n/=Aut.G/

and the goal of this chapter will be to determine the induced action of Aut.G/ on ŒP.G;n/� under the
isomorphism PHT.G; n/Š ŒP.G;n/� obtained in Theorem 5.3.

6.1 Preliminaries on the action of Aut.G /

We begin by defining natural actions of Aut.G/ on ZG–modules and chain complexes of ZG–modules.
First, for a ZG–module A and � 2 Aut.G/, let A� denote the ZG–module whose underlying abelian
group is that of A and whose action is g �x D �.g/x where g 2G, x 2A. This action has the following
basic properties:

Lemma 6.1 Let � 2 Aut.G/.

(i) There is a ZG–module isomorphism

i� W ZG! ZG� ;
X
g2G

aigi 7!

X
g2G

ai�.gi/:

(ii) If A;B 2Mod.ZG/, then .A˚B/� ŠA� ˚B� .

(iii) If P 2 P .ZG/, then P� 2 P .ZG/.

We can extend the action to chain complexes as follows. If A and B are ZG–modules and

E D .E�; @�/ 2 ExtnZG.A;B/;

then we define E� 2 ExtnZG.A� ;B� / by

E� D .0! B�
@n
�! .En�1/�

@n�1
��! .En�2/� ! � � � ! .E1/�

@1
�! .E0/�

@0
�!A� ! 0/:

It is easy to see that this is well defined up to chain homotopy and, by the lemma above, it preserves
projective extensions and so also induces a map on hProjnZG.A;B/. The following is immediate from the
definition of zC�.X; �/.

Lemma 6.2 If E 2Alg.G; n/, then the induced action of � 2Aut.G/ on E is given by � �EDE� , i.e. if
E D zC�.X; �/, then E� D zC�.X; � ı �/.

We now establish a few basic properties of this action which we will use later in this section. From now
on, we will specialise to the case where G is a finite group. First, we note that the action commutes with
dualising.
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Lemma 6.3 If A and B are ZG–lattices , E 2 ProjnZG.A;B/ for n� 1 and � 2 Aut.G/, then

.E� /
�
Š .E�/� :

Proof We begin by proving the corresponding statement for modules, i.e. that, if A is a ZG–lattice,
then .A� /� Š .A�/� . Let A ŠAb Zk , so that the ZG–module structure is determined by an integral
representation �A W G! GLk.Z/. As remarked earlier, �A�.g/ D �A.g

�1/T and it is easy to see that
�A� D �A ı � . Therefore .A� /� Š .A�/� follows by noting that

�.A� /�.g/D �A� .g
�1/T D �A.�.g

�1//T D �A.�.g/
�1/T

and
�.A�/� .g/D �A�.�.g//D �A.�.g/

�1/T :

The result for extensions now follows immediately since � only affects the underlying modules and not
the maps between them.

In light of this, for ZG–lattices A and B and E 2 ProjnZG.A;B/, it now makes sense to write A�
�

and E�
�

.
Note that the action also commutes with pushouts.

Lemma 6.4 If � 2Aut.G/, f WB1!B2 is a ZG–module homomorphism and E 2 ExtnZG.A;B1/, then

f�.E� /Š .f�.E//� :

6.2 Proof of Theorem B

In the case where ADBDZ, we can consider this as an action on ProjnZG.Z;Z/ by using the identification
Z� Š Z.

Lemma 6.5 If G has k–periodic cohomology, then there exists a unique map  k WAut.G/! .Z=jGj/�

such that , for every F 2 ProjkZG.Z;Z/ and � 2 Aut.G/,

F� Š .m k.�//�.F /:

Proof Fix an extension F0 2 ProjkZG.Z;Z/. By dualising and then applying Proposition 3.5, it follows
that every extension in ProjkZG.Z;Z/ is of the form .mr /�.F0/ for some r 2 .Z=jGj/�. For � 2Aut.G/,
define  k.�/D r 2 .Z=jGj/� for any r 2 .Z=jGj/� such that .F0/� Š .mr /�.F0/.

If F 2 ProjkZG.Z;Z/, then F Š .mr /�.F0/ for a unique r 2 .Z=jGj/�. By Lemma 6.4, we now have that

F� Š ..mr /�.F0//� Š .mr /�..F0/� /Š .mr /�..m n.�//�.F0//

Š .m n.�//�..mr /�.F0//Š .m n.�//�.F /:

Lemma 6.6 If E;E0 2 ProjkZG.Z;Z/ and r 2 Z is coprime to jGj, then

E ı .mr /�.E
0/Š .mr /�.E/ ıE0:
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Proof Consider the pushout map � WE0! .mr /�.E
0/. Since this induces mr on the left copy of Z, we

can extend it to a map Q� W E ıE0! E ı .mr /�.E
0/ which induces multiplication by r 2 Z � ZG on

every module in E, i.e.

E ıE0

E ı .mr /�.E
0/

Q� D

0BBB@
0 Z Pk�1 � � � P0 P 0

k�1
� � � P 0

0
Z 0

0 Z Pk�1 � � � P0 P 0
k�1

� � � P 0
0

Z 0

i

r

@k�1

r

@1 i0ı"

r

@0
k�1

�k�1

@0
1 "0

�0 1

i @k�1 @1 i0ı" @0
k�1

@0
1 "0

1CCCA
By the uniqueness of pushouts, this implies that E ı .mr /�.E

0/Š .mr /�.E ıE0/D .mr /�.E/ ıE0 as
required.

Note that, if G has k–periodic cohomology and k j n, then it also has n–periodic cohomology and so  n

can still be defined using Lemma 6.5. The above lemma now allows us to give the following relation
between  k and  n for k j n.

Lemma 6.7 If G has k–periodic cohomology, i � 1 and � 2 Aut.G/, then

 ik.�/D  k.�/
i :

Proof For F 2 ProjkZG.Z;Z/ and F i 2 ProjikZG.Z;Z/, Lemma 6.5 implies that F� Š .m k.�//�.F / and
.F i/� Š .m ik.�//�.F

i/. Since .F i/� Š .F� /
i , this implies that .m ik.�//�.F

i/Š ..m k.�//�.F //
i .

By repeated application of Lemma 6.6,

.m ik.�//�.F
i/Š ..m k.�//�.F //

i
Š .m k.�//

i
�.F

i/Š .m k.�/i
/�.F

i/

and so  ik.�/ Š  k.�/
i mod jGj by the extension of Proposition 3.5 to arbitrary extensions via the

shifting lemma.

In order to prove Theorem B, it suffices to check what the action of Aut.G/ corresponds to under the
isomorphisms described in Section 5. Similarly to Section 5, it will suffice to consider the cases where
k D n or nC 2.

Theorem 6.8 Suppose that G has k–periodic cohomology and �k.G/ D ŒP.G;n/� C TG for some
P.G;n/ 2 P .ZG/. If F 2 ProjkZG.Z;Z/ is such that e.F /D�ŒP.G;n/�, then

hProjkC1
ZG

.Z;AI 0/
.�ıF /�1

����! hProj1ZG.Z;AI ŒP.G;n/�/
Oe
�! ŒP.G;n/�;

E 7!E0 7! P ˚ZGr ;

E� 7! .m k.�//
�..E0/� / 7! ..I;  k.�//˝P� /˚ZGr ;

where P is a rank one projective ZG–module and r � 0.
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Proof For the first map, it suffices to check that . k.�//
�..E0/� / ıF ' E� . Since E0 ıF D E, we

have .E0/� ıF� 'E� . By Lemma 6.5, F� Š .m n.�//�.F / and so

E� ' .E
0/� ı .m n.�//�.F /D .m n.�//

�..E0/� / ıF:

The form for the second map follows directly from Lemma 4.12.

Theorem 6.9 Suppose that G has k–periodic cohomology and �k.G/ D ŒP.G;n/� C TG for some
P.G;n/ 2 P .ZG/. If F 2 ProjkZG.Z;Z/ is such that e.F /D�ŒP�

.G;n/
�, then

hProjk�1
ZG .Z;AI 0/

‰F
�! hProj1ZG.A;ZI ŒP

�
.G;n/�/

�
�! hProj1ZG.Z;A

�
I ŒP.G;n/�/

Oe
�! ŒP.G;n/�;

E 7!E0 7! .E0/� 7! P ˚ZGr ;

E� 7! .m k.�/-1
/�..E

0/� / 7! .m k.�//
�..E0/�� / 7! ..I;  k.�//˝P� /˚ZGr ;

where P is a rank one projective ZG–module and r � 0.

Proof For this first map, it suffices to check that .m k.�/�1/�..E
0/� / ıE� ' F . Since E0 ıE ' F , we

have .E0/� ıE� ' F� . By Lemma 6.5, F� Š .m n.�//�.F / and so

F ' .m k.�/�1/�..E
0/� ıE� /' .m k.�/�1/�..E

0/� / ıE� :

For the second map, it is easy to see that pushouts dualise to pullbacks in the other direction, i.e. if
E0D .m k.�/�1/�..E

0/� //, then .m k.�/�1/�.E
�
0
/' .E0/�

�
and so E�

0
' .m k.�//

�..E0/�
�
//. The form

for the third map follows directly from Lemma 4.12.

If G has k–periodic cohomology and nD ik or ik � 2 for some i � 1, then the above shows that the
induced action of � 2 Aut.G/ on ŒP.G;n/� is given by P ˚ZGr 7! ..I;  ik.�//˝P� /˚ZGr where P

has rank one and r � 0. Furthermore,  ik.�/D  k.�/
i by Lemma 6.7.

This completes the proof of Theorem B except for a possible discrepancy in the case where k D 2 and i

is not determined by the fact that nD ik or ik � 2 (see Remark 5.4). However, in this case, G is cyclic
and so .I; r/Š ZG for all r 2 .Z=jGj/� by [Swan 1960b, Corollary 6.1]. Hence .I;  k.�/

i/Š ZG is
independent of i .

7 Stably free Swan modules and .G; n/–complexes

Before computing the action of Aut.G/ on ŒP.G;n/�, we will pause to consider the role of Swan modules
in the classification of .G; n/–complexes. We begin by considering the map

 k W Aut.G/! .Z=jGj/�

where G has k–periodic cohomology.

If � 2Aut.G/, then the action E 7!E� induces an action of Aut.G/ on H k.GIZ/D ExtkZG.Z;Z/. This
agrees with the usual action coming from the alternate definition of H k.�IZ/ as a functor on groups
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[Cartan and Eilenberg 1956, Chapter XII]. This implies that Im. k/ D Autk.G/ which is defined in
[Dyer 1976, Section 8]. We will now give several examples of maps  k W Aut.G/! .Z=jGj/�.

Cyclic If Cn D hx j x
n D 1i is the cyclic group of order n, then

Aut.Cn/D f�i W x 7! xi
j i 2 .Z=n/�g

and  2 W Aut.Cn/! .Z=n/� sends �i 7! i by [Swan 1960b, Proposition 8.1]. This is surjective and so
recovers the classical results TCn

D 1.

Dihedral If D4nC2 D hx;y j x
2nC1 D y2 D 1;yxy�1 D x�1i is the dihedral group of order 4nC 2,

then
Aut.D4nC2/D f�i;j W x 7! xi ; y 7! xj y j i 2 .Z=.2nC 1//�; j 2 Z=.2nC 1/g

and  4 W Aut.D4nC2/! .Z=.4nC 2//� sends �i;j 7! i2 by the discussion in [Johnson 2002, Section 5].
Since .Z=.4nC 2//� D˙..Z=.4nC 2//�/2, this recovers the result TD4nC2

D 1.

Quaternionic Let Q4n D hx;y j x
n D y2;yxy�1 D x�1i is the quaternion group of order 4n. For

nD 2, it is shown in [Swan 1960b, Proposition 8.3] that  4 W Aut.Q8/! .Z=8/� sends � 7! 1 for all
� 2 Aut.G/. For n� 3,

Aut.Q4n/D f�i;j W x 7! xi ; y 7! xj y j i 2 .Z=2n/�; j 2 Z=2ng

and  4 W Aut.Q4n/ ! .Z=4n/� sends �i;j 7! i2 by, for example, [Golasiński and Gonçalves 2004,
Proposition 1.1].

The following was noted by Davis [1983] and Dyer [1976, Note (b)]. It would be interesting to know, as
was asked by Davis, whether this holds in the case �k.G/¤ 0.

Proposition 7.1 If G has free period k, then S ı k D 0, i.e. .I;  k.�// is stably free for all � 2Aut.G/.

Proof Note that Theorems 6.8 and 6.9 each show that ŒP �D Œ.I;  k.�//˝P� � for all P 2 P .ZG/ of
rank one such that �k.G/D ŒP �CTG . By Lemma 4.15, the composition

Aut.G/  k
�! .Z=jGj/� S

�! TG � C.ZG/

is given by S ı k W � 7! ŒP �� ŒP� � which is well defined since � gives a well-defined action on C.ZG/.
By Lemma 6.1, .ZG/� Š ZG and so the composition is trivial in the case where �k.G/D 0.

We say that a finite group G has weak cancellation if every stably free Swan module is free. The following
was asked by Dyer [1976, page 266] and later appeared in Wall’s problems list [1979b, Problem A4].

Question 7.2 Does there exist G with periodic cohomology and r 2 .Z=jGj/� such that .I; r/ is stably
free but not free?
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This is equivalent to asking whether every group with periodic cohomology has weak cancellation and is
still open, even for arbitrary finite groups. There are two important consequences that a negative answer
to Question 7.2 would have.

First, recall the following question from the introduction. Note that, if .I;  k.�// is free, then the action
described in Theorem B has the simpler form P 7! P� .

Question 7.3 Does there exist G with k–periodic cohomology and � 2 Aut.G/ for which .I;  k.�// is
not free?

It follows from Proposition 7.1 that, if G has free period k and has weak cancellation, then .I;  k.�//ŠZG

for all � 2 Aut.G/. In particular, if Question 7.2 has a negative answer, then the only groups for which
the action in Theorem B might not have the form P 7! P� are the groups with �k.G/¤ 0.

Second, consider the following:

Question 7.4 Let n� 2, let G be finite and let X and Y be finite .G; n/–complexes with �.X /D �.Y /.
Then X _ rSn ' Y _ rSn for some r . Does r D 1 always work?

This is equivalent to asking whether HT.G; n/ is a fork when G is finite. The case where n is even was
proven by Browning [1978], and also follows by combining Corollary 4.7 and Proposition 5.1. When n is
odd, this is known to hold provided G does not have k–periodic cohomology for any k j nC 1. If G has
k–periodic cohomology for k j nC 1, then this holds provided G has weak cancellation (see [Dyer 1976,
pages 276–277]). In particular, if Question 7.2 has a negative answer, then Question 7.4 has an affirmative
answer. Note that the corresponding question for infinite groups is also still open (see [Nicholson 2021c,
Problem B2]).

8 Milnor squares and the classification of projective modules

Given the observations in the previous section, the primary obstacle to computing sufficiently interesting
examples of HT.G; n/ and PHT.G; n/ for our groups is the classification of projective ZG–modules.

One method to classify projective R–modules over a ring R is to relate this to the classification of
projective modules over simpler rings using Milnor squares. In this section, we will present a refinement
of the basic theory of Milnor squares which will also allow us to determine how a ring automorphism
˛ 2 Aut.R/ acts on the class of projective R–modules. We will then apply these methods in Section 9.

Suppose R and S are rings and f WR! S is a ring homomorphism. We can use this to turn S into an
.S;R/–bimodule, with right-multiplication by r 2R given by x � r D xf .r/ for any x 2 S . If M is an
R–module, we can define the extension of scalars of M by f as the tensor product

f#.M /D S ˝R M
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since S as a right R–module and M as a left R–module, and we consider this as a left S–module where
left multiplication by s 2 S is given by s � .x˝m/D .sx/˝m for any x 2 S and m 2M . This comes
equipped with maps of abelian groups

f� WM ! f#.M /

sending m 7! 1˝m, and defines a covariant functor from R–modules to S–modules [Curtis and Reiner
1981, page 227]. It has the following basic properties which follow from the standard properties of tensor
products such as associativity [Mac Lane 1963, page 145].

Lemma 8.1 Let f WR! S and g W S ! T be ring homomorphisms and let M and N be R–modules.
Then

(i) f#.M ˚N /Š f#.M /˚f#.N /,

(ii) f#.R/Š S ,

(iii) .g ıf /#.M /Š .g# ıf#/.M /.

If P .R/ denotes the set of isomorphism classes of projective R–modules, then the first two properties
show that f# induces a map f# W P .R/! P .S/ which restricts to each stable class.

Recall that, if R, R1, R2 and R0 are rings, then a pullback diagram

RD

R R2

R1 R0

i2

i1 j2

j1

is a Milnor square if either j1 or j2 are surjective. If P1 2 P .R1/ and P2 2 P .R2/ are such that there is
an R0–module isomorphism h W .j1/#.P1/! .j2/#.P2/, then define

M.P1;P2; h/D f.x;y/ 2 P1 �P2 j h..j1/�.x//D .j2/�.y/g � P1 �P2;

which is an R–module where multiplication by r 2R is given by r � .x;y/D ..i1/�.r/x; .i2/�.r/y/. It
was shown by Milnor that M.P1;P2; h/ is projective [Milnor 1971, Theorem 2.1]. Let AutR.P / denote
the set of R–module automorphisms of an R–module P . The main result on Milnor squares is as follows.
This is a consequence of the results in [Milnor 1971, Section 2] and the precise statement can be found in
[Swan 1980, Proposition 4.1].

Theorem 8.2 Suppose R is a Milnor square and Pi 2 P .Ri/ for i D 0; 1; 2 are such that

P0 Š .j1/#.P1/Š .j2/#.P2/

as R0–modules. Then there is a one-to-one correspondence

AutR1
.P1/nAutR0

.P0/=AutR2
.P2/$ fP 2 P .R/ j .i1/#.P /Š P1; .i2/#.P /Š P2g

given by sending a coset Œh� to M.P1;P2; h/ for any representative h.
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Now suppose ˛ 2 Aut.R/. If M is an R–module, define M˛ as the R–module whose abelian group is
that of M but whose R–action is given by r �mD ˛.r/m for r 2R and m2M . For example, if RDZG,
then � 2 Aut.G/ induces a map � 2 Aut.ZG/ and M� coincides with the definition given earlier.

This is a special case of restriction of scalars, but can also be viewed as a part of extension of scalars as
follows.

Lemma 8.3 Let R be a ring and let ˛ 2 Aut.R/. If M is an R–module , then there is an isomorphism of
R–modules

 WM˛! .˛�1/#.M /

given by m 7! 1˝m.

From this, it is clear that this action has basic properties which are analogous to Lemma 6.1. The following
is then immediate by combining Lemmas 8.1 and 8.3.

Corollary 8.4 Suppose f WR! S is a ring homomorphism and ˛ 2 Aut.R/ and ˇ 2 Aut.S/ are such
that f ı˛ D ˇ ıf . If M is an R–module , then

f#.M˛/Š f#.M /ˇ:

We can turn the set of Milnor squares into a category with morphisms defined as follows. If R and R0 are
Milnor squares, then a morphism is a quadruple

Ǫ D .˛; ˛1; ˛2; ˛0/ WR!R0

where ˛ WR!R0 and ˛i WRi!R0i such that there is a commutative diagram

R R2

R R2

R1 R0

R1 R0

˛ ˛2

˛1 ˛0

Let Aut.R/ denote the set of automorphisms of a Milnor square R, i.e. the set of isomorphisms Ǫ WR!R.

Lemma 8.5 Let R be a Milnor square and let P1 2 P .R1/ and P2 2 P .R2/ be such that there is an
R0–module isomorphism h W .j1/#.P1/! .j2/#.P2/. If Ǫ D .˛; ˛1; ˛2; ˛0/ 2 Aut.R/, then

M.P1;P2; h/˛ ŠM..P1/˛1
; .P2/˛2

; h/

where , on the right , we view h as a map h W .j1/#.P1/˛0
! .j2/#.P2/˛0

.
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Proof Let P DM.P1;P2; h/ so that, by Theorem 8.2, .i1/#.P /Š P1 and .i2/#.P /Š P2. It is easy to
see directly that the natural map

M..i1/#.P /; .i2/#.P /; h/!M..i1/#.P˛/; .i2/#.P˛/; h/

is an isomorphism. We are then done by applying Corollary 8.4.

This has the following simplification when P1 and P2 are free of rank one. Here we will use the
identification AutR0

.R0/ŠR�
0

which sends h WR0!R0 to h.1/ 2R�
0

.

Lemma 8.6 Let R be a Milnor square and let u 2R�
0

. If Ǫ D .˛; ˛1; ˛2; ˛0/ 2 Aut.R/, then

M.R1;R2;u/˛ ŠM.R1;R2; ˛
�1
0 .u//:

Proof Fix identifications  i W .ji/#.Ri/!R0 and let h W .j1/#.R1/! .j1/#.R1/ be such that

. 2 ı h ı �1
1 /.1/D u 2R�0 :

By Lemma 8.5,
M.R1;R2; h/˛ ŠM..R1/˛1

; .R2/˛2
; h/

where h W ..j1/#.R1//˛0
! ..j1/#.R1//˛0

coincides with h as a map of abelian groups. For i D 0; 1; 2,
let ci WRi! .Ri/˛i

be the isomorphism which sends 1 7! 1. Then it is easy to see that

.ji/#.Ri/ ..ji/#..Ri/˛i
/ ..ji/#.Ri//˛0

R0 .R0/˛0

1˝ci

 i

f

 i

c0

commutes for i D 1; 2, where f W .ji/#..Ri/˛i
/ ! ..ji/#.Ri//˛0

is the isomorphism coming from
Corollary 8.4. Using the isomorphisms ci for i D 1; 2, we get that

M..R1/˛1
; .R2/˛2

; h/ŠM.R1;R2; h0/

where h0 W .j1/#.R1/! .j2/#.R2/ induces h W ..j1/#.R1//˛0
! ..j1/#.R1//˛0

via f ı .1˝ ci/. Let
u0 D . 2 ı h0 ı  

�1
1
/.1/ 2 R�

0
. Then, since the above diagram commutes, we get the commutative

diagram

R0 R0

.R0/˛0
.R0/˛0

 2ıhı 
�1
1

c0 c0

 2ıh0ı 
�1
1

1 u0

1 ˛0.u0/

which implies that uD ˛0.u0/ and so u0 D ˛
�1
0
.u/, as required.

If R is a Milnor square, we say that ˛2Aut.R/ extends across R if there exists Ǫ D.˛;˛1;˛2;˛0/2Aut.R/.
The following gives conditions under which this induced map is unique.
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Lemma 8.7 Let R be a pullback square with all maps surjective. If ˛ 2Aut.R/ extends across R, then it
does so uniquely. That is , there exist unique maps ˛1, ˛2 and ˛0 for which Ǫ D .˛; ˛1; ˛2; ˛0/ 2Aut.R/.

Proof This follows from the simple observation that, if f WR� S is a surjective ring homomorphism
and ˛ WR!R and ˇ1; ˇ2 W S ! S are ring homomorphisms such that f ı˛ D ˇi ıf for i D 1; 2, then
ˇ1 D ˇ2. To see this, note that the conditions imply that .ˇ1�ˇ2/ ı f D 0 and so ˇ1 D ˇ2 on Im.f /.
Since f is surjective, Im.f /D S and so ˇ1 D ˇ2.

We conclude this section with the following result which is a consequence of Theorem 8.2 and Lemmas 8.6
and 8.7.

Proposition 8.8 Let R be a pullback square with all maps surjective and such that every ˛ 2 Aut.R/
extends across R. Then there is a one-to-one correspondence

R�1 n.R
�
0 =Aut.R//=R�2 $ fP 2 P .R/ W .i1/#.P /ŠR1; .i2/#.P /ŠR2g=Aut.R/

where ˛ 2Aut.R/ acts on R�
0

by sending r 7! ˛�1
0
.r/ for r 2R�

0
and where ˛0 2Aut.R0/ is the unique

automorphism such that Ǫ D .˛; ˛1; ˛2; ˛0/ 2 Aut.R/.

9 Example: quaternion groups

The aim of this section is to illustrate how Theorems A and B can be combined with the known techniques
to classify projective ZG–modules to obtain a detailed classification of finite .G; n/–complexes up to
homotopy equivalence.

For k � 2, recall that the quaternion group of order 4k has presentation

Q4k D hx;y j x
k
D y2; yxy�1

D x�1
i:

It is a finite 3–manifold group and so has free period 4. For n� 2 even, Theorem A and Proposition 5.1
imply that PHT.Q4k ; n/ Š ŒZQ4k � D

S
r�1 SFr .ZQ4k/ where SFr .ZQ4k/ is the set of stably free

ZQ4k–modules of rank r � 1.

Since stably free ZG–modules of rank � 2 are free for G finite [Swan 1960a] (or since PHT.G; n/
is a fork by Corollary 4.7), it remains to compute SF1.ZQ4k/. This was completed by Swan [1983,
Theorem III] for k � 9. For k � 7, he showed that jSF1.ZQ4k/j D 1 for 2� k � 5, jSF1.ZQ24/j D 3

and jSF1.ZQ28/j D 2. It also follows from his classification that ZQ4k has weak cancellation in all
these cases and so the action of � 2 Aut.Q4k/ on ŒZQ4k � sends P 7! P� (see Section 7).

In the case Q28, the action of Aut.Q28/ on ŒZQ28� is trivial since .ZQ28/� ŠZQ28 for all � 2Aut.Q28/

and so this must also hold for the nonfree stably free module also. The main result of this section will be
to compute the action in the case Q24.

Theorem 9.1 Aut.Q24/ acts nontrivially on ŒZQ24�. More specifically, we have jSF1.ZQ24/j D 3 and
jSF1.ZQ24/=Aut.Q24/j D 2.
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G Q8 Q12 Q16 Q20 Q24 Q28

PHT.G; n/ � � � � � � � � �

HT.G; n/ � � � � � � � �

Table 1: Minimal complexes for any n even with n¤ 2.

All of this is summarised in Table 1, which gives the structure of PHT.G; n/ and HT.G; n/ when n¤ 2 is
even. These graded trees are both forks by Corollary 4.7 and each dot represents a finite .G; n/–complex
at the minimal level.

Remark 9.2 This also holds in the case nD 2 provided G has the D2 property. This holds trivially in
the cases Q8, Q12, Q16 and Q20, and is otherwise only known to be true in the case Q28 by [Nicholson
2021b, Theorem 7.7] using the presentation of Mannan and Popiel [2021].

We will now proceed to the proof of Theorem 9.1. First let x and y be generators for Q24 in the
presentation given above. Let ƒ D ZQ24=.x

6 C 1/ and note that the quotient map f W ZQ24 � ƒ

induces a map
f# W SF1.ZQ24/! SF1.ƒ/

by Lemma 8.1. This is a bijection by the proof of [Swan 1983, Theorem 11.14].

Now note that the factorisation x6C1D .x2C1/.x4�x2C1/ implies that the ideals I D .x2C1/ and
J D .x4�x2C 1/ have I \J D .x6C 1/ and I CJ D .3;x2C 1/. It follows from [Curtis and Reiner
1987, Example 42.3] that we have a pullback diagram

ƒ ZQ24=.x
4�x2C 1/

ZQ24=.x
2C 1/ F3Q24=.x

2C 1/

which is a Milnor square since all maps are surjective.

For a field F , let HF D F Œi; j � denote the quaternions over F and we define HZ D ZŒi; j � and ZŒ�12; j �

to be subrings of HR, where �12D e2�i=12 is the 12th root of unity in the i direction. It is straightforward
to check that there are isomorphisms of rings

�1 WHZ! ZQ24=.x
2
C 1/; i 7! x; j 7! y

�2 W ZŒ�12; j �! ZQ24=.x
4
�x2

C 1/; �12 7! x; j 7! y:

Using this, we can rewrite the Milnor square above as

RD

ƒ ZŒ�12; j �

HZ HF3

i2

i1 j2

j1

x;y �12; j

i; j i; j
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By [Swan 1983, Lemma 8.14], the induced map .i2/� W C.ƒ/! C.ZŒ�12; j �/ is an isomorphism. It also
follows from [Swan 1983, page 84] that the rings HZ and ZŒ�12; j � both have stably free cancellation,
i.e. that every stably free module is free. It follows easily that

SF1.ƒ/D fP 2 P .ƒ/ W .i1/#.P /ŠHZ; .i2/#.P /Š ZŒ�12; j �g:

In particular, by combining with Theorem 8.2, we get that there is a bijection

SF1.ƒ/$H�ZnH
�
F3
=ZŒ�12; j �

�:

Lemma 9.3 H�ZnH
�
F3
=ZŒ�12; j �

� D fŒ1�; Œ1C j �; Œ1C k�g.

Proof If N WHF3
! F3 is the norm, then H�F3

DN�1.˙1/. Now note that H�Z D f˙1;˙i;˙j ;˙kg,
and it is easy to check that

H�ZnH
�
F3
D
˚
Œ1�; Œ1C i �; Œ1C j �; Œ1C k�; Œ1C i C j C k�; Œ1� i � j � k�

	
:

By [Magurn et al. 1983, Lemma 7.5(b)], ZŒ�12; j �
� D ZŒ�12�

� � hj i and so it remains to determine

Im.ZŒ�12; j �
�
!H�ZnH

�
F3
/D Im.ZŒ�12�

�
!H�ZnH

�
F3
/� fŒ1�; Œ1C i �g;

where the last inclusion follows since �12 7! i and H�Znh1; ii D fŒ1�; Œ1C i �g.

Consider the nth cyclotomic polynomial

ˆn.x/D
Y

k2Z�n

.x� �k
n /:

It is well known, and can be shown using Möbius inversion, that ˆn.1/D 1 if n is not a prime power. In
particular, ˆ12.1/D 1 and this implies that 1� �12 2 ZŒ�12�

�. Hence

Œ1C i �D Œ1� i � 2 Im.ZŒ�12�
�
!H�ZnH

�
F3
/:

The result then follows since

j .1C i C j C k/.1C i/D 1C k; �j .1� i � j � k/.1C i/D 1C j

implies that Œ1C j �D Œ1� i � j � k� and Œ1C k�D Œ1C i C j C k� in H�ZnH
�
F3
=ZŒ�12; j �

�.

This implies that jSF1.ZQ24/j D 3, which recovers the result of Swan. In order to determine the action
of Aut.Q24/ on SF1.ZQ24/, first recall from Section 7 that

Aut.Q24/D f�a;b W x 7! xa; y 7! xby j a 2 .Z=12/�; b 2 Z=12g:

If R denotes the Milnor square defined above, then the following is easy to check.
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Lemma 9.4 If a 2 .Z=12/� and b 2 Z=12, then �a;b 2 Aut.Q24/ extends to a Milnor square automor-
phism

O�a;b D .�
0
a;b; �

1
a;b; �

2
a;b;
N�a;b/ 2 Aut.R/

where , for aD 2a0C 1, the maps are defined as follows:

(i) � 0
a;b
2 Aut.ZQ24=.x

6C 1// is given by x 7! xa and y 7! xby.

(ii) �1
a;b
2 Aut.HZ/ and N�a;b 2 Aut.HF3

/ are each given by

i 7! ia
D .�1/a0i; j 7! j b

D

�
(� 1/b0j if b D 2b0C 1;

(� 1/b0k if b D 2b0:

(iii) �2
a;b
2 Aut.ZŒ�12; j �/ is given by �12 7! �a

12
and j 7! �b

12
j .

Since R is a pullback square with all maps surjective, we can now apply Proposition 8.8. By combining
with Lemma 9.3, this implies that there is a bijection

SF1.ZQ24/=Aut.Q24/$ fŒ1�; Œ1C j �; Œ1C k�g=Aut.Q24/

where �a;b 2 Aut.Q24/ acts on the double cosets via the action described in Lemma 9.4. In particular,

N�a;b.Œ1C j �/D

�
Œ1C .�1/b0j �D Œ1C j � if b D 2b0C 1;

Œ1C .�1/b0k�D Œ1C k� if b D 2b0;

and so N�a;b acts nontrivially when b is even. Hence jSF1.ZQ24/=Aut.Q24/j D 2. This completes the
proof of Theorem 9.1.
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