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We construct Lie algebras of derivations (and identify their geometric realizations) whose Maurer–Cartan
sets provide moduli spaces describing the classes of homotopy types of rational spaces having the same
homotopy Lie algebra, homology or cohomology.
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Introduction

Derivations of a Lie algebra are ubiquitous objects in topology. A particular instance is the following
classical result (see M Schlessinger and J Stasheff [16] and D Tanré [17]): when L is a differential
graded Lie algebra (dgl henceforth) characterizing the rational homotopy type of a finite simply connected
CW–complex X , the dgl of positive derivations of L characterizes in the same fashion the rational
homotopy type of the universal covering of Baut�.X/, the classifying space of pointed self-homotopy
equivalences of X . With the recent extension of the Quillen approach to rational homotopy theory (see
U Buijs, Y Félix, A Murillo and Tanré [6]) we were able to extend this result to connected dgls of derivations
as long as the degree-zero derivations characterize a Q–complete (in the sense of Maltsev) subgroup of
aut�.X/; see Félix, M Fuentes and Murillo [8] and also the recent approach of A Berglund and T Zeman [2]
to the description of the rational homotopy type of the classifying spaces of self-homotopy equivalences.

At this stage is convenient to remark that, under the mentioned extension of Quillen theory, which is the
one we consider, only dgls that are complete are susceptible to being topologically realized (see Section 1
for a brief compendium on this theory). Nevertheless, the reader may find other classes of dgls whose
topological realizations have been considered. See for instance the integration procedure of the class of
absolute dgls recently developed by V Roca i Lucio in [12].

Complete dgls contain much more geometric data than their connected covers. For instance, the Maurer–
Cartan set of a dgl modulo the gauge relation (eMC set from now on) corresponds to the set of path-connected
components in which the realization of the given dgl decomposes. We try to collect this extra data for
some sub-Lie algebras of derivations of a given dgl, which are complete and still provide important
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geometric information. In all these cases, their eMC sets, or the space of orbit of a certain action on them,
turn out to be a moduli space governing classes of rational homotopy types sharing certain structures.

To begin with, we consider in Section 3 an extended dual “Lie version” of the deep result of Schlessinger
and Stasheff [16, Main Theorem 4.1] which will also be considered later. Let � be a complete connected
graded Lie algebra and let Ho sset� be the class of homotopy types of rational simplicial sets whose
homotopy Lie algebra is isomorphic to � . If L denotes the bigraded minimal Lie model of � , which
is properly introduced in Theorem 3.1, we prove the following (see Theorem 3.5 and Corollary 3.6 for
precise and detailed statements):

Theorem There exists a complete sub-dgl DerL of DerL such that

Ho sset� ŠeMC.DerL/:

Via this bijection, the quotient stack eMC.DerL/DMC.DerL/=exp.Der0L/ can be seen as the moduli
space of Ho sset� .

It is important to remark that, in the simply connected case, this result was already sketched by D Blanc
[3, Section 3] and explicitly developed by M Zawodniak in his thesis [18].

Then in Section 4 we construct a complete dgl of derivations, which provides a moduli space governing the
class Ho sset1H of homotopy types of rational finite-dimensional simply connected complexes sharing the
same reduced homology with no additional structure. For it, let L.V / be the free Lie algebra generated by
V D s�1H and consider the dgl LD .L.V /; 0/ with trivial differential. With this notation, Corollary 4.4
can be summarized as follows:

Theorem There exists a complete sub-dgl DerL of DerL and a natural action of aut.V / on eMC.DerL/
for which

(1) Ho sset1H ŠeMC.DerL/=aut.V /:

Moreover ,
hDerLi D

a
X2Ho sset1H

a
OX

Baut�H.X/:

Here h � i denotes the realization functor on complete dgls (see Section 1), OX denotes the (cardinality of
the) orbit by the action of aut.V / of any element in eMC.DerL/ representing X by the bijection (1), and
finally aut�H.X/ is the subgroup of pointed homotopy equivalences of X which induces the identity on
homology.

In other words, the realization of DerL is the disjoint union of simplicial sets, one for each X 2Ho sset1H .
Moreover, each of these pieces also decomposes in as many path components as points in the orbit OX ,
each of which is of the homotopy type of the classifying space Baut�H.X/.

Thus in this case eMC.DerL/ is too big to describe Ho sset1H . Nevertheless, there is an action of aut.L/
on MC.DerL/ which provides the quotient stack MC.DerL/=aut.L/ responsible for Ho sset1H .
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We remark that this result is a particular instance of the extended version in Theorem 4.2.

Finally, in Section 5 we consider the augmentation ideal A of a given simply connected finite-dimensional
commutative graded algebra and denote by Ho sset1A the class of homotopy types of rational simply
connected spaces sharing A as rational (reduced) cohomology algebra. We then present a different
description of Ho sset1A than the one given by Schlessinger and Stasheff in [16, Main Theorem 4.1]. For
it (see Section 5 for details), denote by LDL .A]/ the classical Quillen functor on the coalgebra given
by the dual of A. This is a dgl with a purely quadratic differential for which we prove (see Theorem 5.3
for a precise statement):

Theorem There exists a complete sub-dgl DerL of DerL and a natural action of aut.A/ on eMC.DerL/
such that

Ho sset1A ŠeMC.DerL/=aut.A/:
Moreover ,

hDerLi '
a

X2Ho sset1A

a
OX

Baut�H.X/:

Here OX again denotes the orbit by the action of aut.A/ of any element in eMC.DerL/ representing
X by the bijection in (i). On the other hand, as before, aut�H.X/ stands for the subgroup of pointed
self-homotopy equivalences of X which induce the identity on homology. As X is rational, this trivially
coincides with the group of self-homotopy equivalences inducing the identity on cohomology.

As a consequence we can also exhibit a particular quotient stack over MC.DerL/ as a moduli space
of Ho sset1A.

To prove the above results we need some technical statements, which are contained in Section 2. This
section extends and reformulates some results of Félix, Fuentes and Murillo [8, Section 6] to obtain
certain complete sub-Lie algebras of a general DerL containing the whole connected cover.

Acknowledgments We thank the referee for helpful suggestions and corrections which have considerably
improved the content and presentation of this paper. The authors have been partially supported by the
MICINN grant PID2020-118753GB-I00 of the Spanish government and the EXCEL-00827 grant of the
Junta de Andalucía. Murillo also thanks the Instituto de Matemáticas de la UNAM en Oaxaca for its
hospitality during a short stay in which part of this work was developed.

1 Preliminaries

This section is devoted to recalling the basic facts that we use from the homotopy theory of complete
differential graded Lie algebras. We refer to the monograph [6], or the original references [5; 7], for details.

All considered differential graded vector spaces, possibly endowed with additional structures, are rational
and graded over Z. The suspension and desuspension of such a graded vector space V are denoted by sV
and s�1V , respectively. That is .sV /n D Vn�1 and .s�1V /n D VnC1 for any n 2 Z.

Algebraic & Geometric Topology, Volume 24 (2024)



2288 Yves Félix, Mario Fuentes and Aniceto Murillo

We often do not distinguish objects of the category sset of simplicial sets from the topological spaces
given by their realization, which are therefore of the homotopy type of CW–complexes.

We denote by dgl the category of differential graded Lie algebras (dgls henceforth). A dgl L, or .L; d/ if
we want to specify the differential, is connected if LD L�0.

A Maurer–Cartan element, or simply MC element, of a given dgl L is an element a 2 L�1 satisfying
the Maurer–Cartan equation daD�1

2
Œa; a�. We denote by MC.L/ the set of MC elements in L. Given

a 2MC.L/, we denote by da D d C ada the perturbed differential on L where d is the original one and
ad is the usual adjoint operator. The component of L at a is the connected sub-dgl La of .L; da/ given by

Lap D

�
ker da if p D 0;
Lp if p > 0:

The derivations DerL of a given dgl L is a dgl with the usual Lie bracket and differential D D Œd;��:

Œ�; ��D � ı �� .�1/j� jj�j� ı �; D� D d ı � � .�1/j� j� ı d:

A filtration of a dgl L is a decreasing sequence of differential Lie ideals

LD F 1 � � � � � F n � F nC1 � � � �

such that ŒF p; F q�� F pCq for p; q � 1. In particular, the lower central series of L,

L1 � � � � � Ln � LnC1 � � � � ;

where L1 D L and Ln D ŒL;Ln�1� for n > 1, is a filtration for any dgl which satisfies Ln � F n for any
n� 1 and any other filtration fF ngn�1 of L.

A complete differential graded Lie algebra, cdgl henceforth, is a dgl L equipped with a filtration fF ngn�1
for which the natural map

L Š�! lim
 ��
n

L=F n

is a dgl isomorphism. A cdgl morphism between cdgls is a dgl morphism which preserves the filtrations.
We denote by cdgl the corresponding category. By a complete graded Lie algebra, cgl hereafter, we mean
a cdgl endowed with the trivial differential.

If L is a dgl filtered by fF ngn�1, its completion is the dgl

yLD lim
 ��
n

L=F n;

which is always complete with respect to the filtration

yF n D ker.yL! L=F n/:

If no specific filtration is given, the completion of a generic dgl is always taken over the lower central
series. In particular, if L.V / denotes the free Lie algebra generated by the graded vector space V , the
completion of a dgl of the form .L.V /; d/ is the cdgl

yL.V /D lim
 ��
n

L.V /=L.V /n:

Algebraic & Geometric Topology, Volume 24 (2024)



Realization of Lie algebras of derivations and moduli spaces of some rational homotopy types 2289

This is an important object in this theory, whose main properties are detailed in [6, Section 3.2]. Note
that if V D V>0 then yL.V /D L.V /.

Given a cdgl L, the group L0, endowed with the Baker–Campbell–Hausdorff product (BCH product
henceforth), acts on the set MC.L/ by

xGaD eadx .a/�
eadx�1

adx
.dx/D

X
i�0

adix.a/
i Š
�

X
i�0

adix.dx/
.i C 1/Š

for x 2 L0 and a 2MC.L/:

This is the gauge action and we denote by eMC.L/DMC.L/=G the corresponding orbit set. A homotopical
description of the gauge action is given in [6, Section 5.3].

The homotopy theory of cdgls lies in the existence of a pair of adjoint functors [6, Chapter 7]: (global)
model and realization,

(2) sset L��!
h � i
 �� cdgl

The set of 0–simplices of hLi coincides with MC.L/. Moreover, if hLia denotes the path component of
hLi containing the MC element a, then

(3) hLia ' hLai and hLi 'qa2fMC.L/hL
a
i:

If L is connected, for any n� 1 we have group isomorphisms

�nhLi ŠHn�1.L/;

where the group structure inH0.L/ is considered with the BCH product. Under the homotopy equivalence
hLi ' MC�.L/ between the realization of L and the Deligne–Getzler–Hinich groupoid of L (see
[6, Section 11.4]), this is the original explicit isomorphism of Berglund �n MC�.L/ Š Hn�1.L/ in
[1, Theorem 1.1].

We will also use the fact that the realization of a cdgl is invariant under perturbations. That is, for any
cdgl L and any a 2MC.L/,

(4) hLi Š h.L; da/i:

Finally, the realization functor coincides with any other known geometric realization of cdgls. In particular,
if L is a 1–connected dgl of finite type, then (see [6, Corollary 11.17]) hLi has the homotopy type of the
classical Quillen realization of L [15].

On the other hand (see again [6, Chapter 7] for details), the global model LX of a simplicial set X
completely reflects its simplicial structure. In particular, the 0–simplices of X are the Maurer–Cartan
elements of LX .

If X is a simply connected simplicial set of finite type and a is any of its vertices, then [6, Theorem 10.2]
LaX is quasi-isomorphic to �.X/ where � is the classical Quillen dgl model functor [15]. Moreover
(see [6, Theorem 11.14]), for any connected simplicial set X of finite type, hLaX i is weakly homotopy
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equivalent to Q1X , the Bousfield–Kan Q–completion of X [4]. Recall that, whenever X is nilpotent,
Q1X and has the homotopy type of XQ, the rationalization of X .

The category cdgl has a cofibrantly generated model structure (see [6, Chapter 8]), for which the functors
in (2) become a Quillen pair. With this structure the induced functors in the respective homotopy categories
extend the classical Quillen equivalence between rational homotopy types of simply connected simplicial
sets and homotopy types of simply connected dgls.

A model of a connected cdgl L is a connected cdgl of the form .yL.V /; d/ together with a quasi-
isomorphism (and hence a weak equivalence)

.yL.V /; d/ '�! L:

If d is decomposable we say .yL.V /; d/ is the minimal model of L and is unique up to cdgl isomorphism.

Definition 1.1 Let X be a connected simplicial set and a any of its vertices. The minimal model of X is
the minimal model of LaX .

If .yL.V /; d/ is the minimal model of X , then (see [6, Proposition 8.35]) sV Š zH�.X IQ/ and, provided
X is of finite type, sH�.yL.V /; d/Š ��.Q1X/. Again, the group H0.yL.V /; d/ is considered with the
BCH product. If X is simply connected, the minimal model of X is isomorphic to its classical Quillen
minimal model, for which we refer to [13] or [15].

2 Complete Lie algebras of derivations

Derivations of a cdgl are essential objects in this paper. However, even if L is 1–connected, DerL may
fail to be complete, and thus their MC set are not defined and they are unable to be topologically realized
as described in the previous section. For instance, let LD .L.x; y/; 0/ with jxj D jyj D 2, and consider
�1; �2; �3 2 Der0L defined by

�1.x/D x; �1.y/D�y; �2.x/D y; �2.y/D 0 �3.x/D 0 and �3.y/D x:

Note that Œ�1; �2�D �2�2, Œ�1; �3�D 2�3 and Œ�2; �3�D ��1. Hence for any given filtration fF ngn�1
of DerL, �i 2 F n for any n and any i . That is, these derivations live in the kernel of the natural map
DerL! lim

 ��n�1
DerL=F n and thus DerL is not complete.

Nevertheless, for any complete sub-dgl M of .DerL;D/ we shall use the following general fact:

(5) MC.M/D fı 2M�1 such that d C ı is a differential in Lg:

Moreover, the gauge relation is characterized by the following result:

Proposition 2.1 Two Maurer–Cartan elements ı; � 2MC.M/ are gauge related if and only if there exists
an isomorphism of the form

e� W .L; d C ı/ Š�! .L; d C �/

with � 2M0. Moreover , the gauge action is given by �G ı D �.

Algebraic & Geometric Topology, Volume 24 (2024)



Realization of Lie algebras of derivations and moduli spaces of some rational homotopy types 2291

The proof is an obvious extension of [6, Theorem 4.31] to any complete sub-dgl of derivations.

Proof Suppose first that ı and � are gauge related. Thus, there exists � 2M0 such that

�D ead� .ı/�
ead��1

ad�
.D�/:

As D� D Œd; ��,
ead��1

ad�
.D�/D

X
i�0

adi�
.i C 1/Š

Œd; ��D�
X
i�1

adi�
i Š
d:

Therefore,

d C �D d C ead� .ı/C
X
i�1

adi�
i Š
.d/D ead� .d C ı/:

We then use the general formula ead� .d C ı/D e� .d C ı/e�� (see for instance [6, Proposition 4.13]) to
conclude that

d C �D e� .d C ı/e�� ; that is, .d C �/e� D e� .d C ı/;

and e� is the required isomorphism.

For the other implication simply reverse the above argument.

Due to this fact, we often identify M0 with

exp.M0/D fe
� ; � 2M0g;

and write eMC.M/DMC.M/=exp.M0/.

If M is of finite type, choose bases f@igsiD1 and f�`gr`D1 of M�1 and M�2, respectively, and write

Œ@i ; @j �D
X
`

�`ij�` for �`ij 2Q:

Then, given ı 2M�1, the derivation d C ı D
P
i ˛i@i is a differential if and only ifX

i;j

�`ij˛i j̨ D 0 for `D 1; : : : ; r:

In other words, if we denote by VL � Cs the affine algebraic variety defined by the polynomialsP
i;j �

`
ij˛i j̨ , with `D 1; : : : ; r , we conclude that

(6) MC.M/D frational points of VLg:

So eMC.M/DMC.M/=exp.M0/ can be considered as a quotient stack.

Next, consider LD .yL.V /; d/ a connected minimal cdgl in which V is bounded above, that is V>m D 0
for some m. We then identify some complete sub-dgls of DerL which conserve its “connected cover”.
For it, choose an arbitrary finite filtration of V by graded vector subspaces:

(7) V D V 0 � V 1 � � � � � V q�1 � V q D 0:

Algebraic & Geometric Topology, Volume 24 (2024)
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As in [8, Section 6], for n� 1 and p � 0, write

yL
n;p
.V /D Span

��
v1;

�
v2; Œ: : : ; Œvn�1; vn� : : :

�
2 yL

n
.V /

ˇ̌̌
vi 2 V

˛i and
nX
iD1

˛i D p

�
;

and define
F n;p DyL

n;p
.V /˚yL

�nC1
.V /;

so that

yL.V /D F 1;0 � � � � � F 1;q�1 � F 2;0 � � � � � F 2;2q�1 � � � � � F n;0 � � � � � F n;nq�1 � � � � :

In the order given by this sequence, F n;p takes the position

t D qC � � �C .n� 1/qCpC 1D 1
2
.n� 1/nqCpC 1

and we define F t D F n;p for n, p and t as above. In [8, Proposition 6.3] it is proved that fF tgt�1 is a
filtration of L for which it is complete.

This filtration of L naturally determines a decreasing sequence of sub-dgls of DerL

(8) F1 � � � � � Fn � FnC1 � � � � ;

where, for any n� 1,
Fn D f� 2 DerL j �.F r/� F nCr for all r � 0g:

Note that fFngn�1 is a filtration of the dgl F1. Moreover, a simple inspection shows that

(9) F1 D f� 2 DerL j ��.V i /� V iC1 for all ig;

where �� W V ! V denotes the linear part of � . Then:

Proposition 2.2 F1 is a complete dgl.

Proof As
T
n FnD 0, the map F1! lim

 ��n
F1=Fn is injective. On the other hand, write a given element

of lim
 ��n

F1=Fn as a series
P
n �n with �n 2 Fn. Note that, for each v 2 V and any integer m � 1, the

series
P
n �n.v/ contains a finite sum of elements in Lm.V /, and thus

P
n �n.v/ is a well-defined element

in yL.V /. Hence
P
n �n 2 F1, and the above map is also surjective.

We now “enlarge” the cdgl F1 as much as possible in positive degrees: starting from the original
filtration (7) we define a new filtration of V as follows:

V �V 11 ˚V�2�V
2
1 ˚V�2�� � ��V

q�1
1 ˚V�2�V�2�V

1
2 ˚V�3�V

2
2 ˚V�3�� � ��V

q�1
2 ˚V�3�V�3

� � � � � V 1m � V
2
m � � � � � V

q�1
m � 0;

where m is such that V>m D 0. If we rename this filtration of subspaces of V by

V D V0 � V1 � V2 � � � � � Vm.q�1/ � 0;

it clearly satisfies the following property:

(10) V i` ¤ 0 implies V>` � V iC1:
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Definition 2.3 For this new filtration of V , the procedure above determines again a decreasing sequence
of sub-dgls of DerL as in (8), whose first term we denote by DerL.

By Proposition 2.2, DerL is complete and, in view of (9), it can be written as

DerLD f� 2 DerL j ��.V i /� V iC1 for all ig:

Furthermore, from the characterization of F1 in (9) one easily observes that

(11) F1>0 � Der>0L; F10 D Der0L and F1<0 � Der<0L:

Moreover:

Proposition 2.4 Derk LD

8̂<̂
:

Derk L if k > 0;

� 2 Der0L such that �.V i /� V iC1˚yL
�2
.V / if k D 0;

� 2 Derk L such that �.V /�yL
�2
.V / if k < 0:

That is, DerL is a cdgl consisting of all derivations in positive degrees, those derivations of degree 0
which increase the original filtration degree on V modulo decomposables, and all derivations of negative
degrees which increase the word length.

Proof Let k > 0 and � 2 Derk L. Then, for any i and any nonzero element of degree v 2 V i
`
, it follows

by (10) that ��.v/ 2 VkC` � V iC1. By (9), � 2 Derk L.

Let k<0 and � 2Derk L such that �.V /�yL
�2
.V /. By definition � 2Derk L. Conversely, let � 2Derk L

and let v 2 V be a nonzero element. Assume v 2 V` and let i be the maximal filtration index such that
v 2 V i but v … V iC1. Then ��.v/ D 0. Otherwise ��.v/ 2 V iC1

<`
. Hence by (10) V` � V iC2, which

contradicts the fact that v … V iC1.

Finally, for k D 0, the obvious fact F10 D Der0L in (11) amounts to the required equality.

Remark 2.5 Of special interest in what follows is the particular instance of choosing the trivial filtration
V D V 0 � V 1 D 0 on V . In this case,

Derk LD
�

Derk L if k > 0;

� 2 Derk L such that �.V /�yL
�2
.V / if k � 0:

3 Rational homotopy types with prescribed homotopy Lie algebras and
their moduli space

In this section we check that the method for building the moduli space of rational simply connected
homotopy types with prescribed homotopy Lie algebra, already sketched in [3, Section 3] and explicitly
developed in [18], also works in the nonsimply connected case by means of the homotopy theory of cdgls.

First, a simple inspection shows that the procedure to obtain the bigraded model of a simply connected
graded Lie algebra (see [11, théorème 1] or [14, Chapter I]), dual of the classical commutative context
[10, Section 3], extends mutatis mutandis to any connected complete cdgl:

Algebraic & Geometric Topology, Volume 24 (2024)
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Theorem 3.1 (complete bigraded Lie model) Let � be a connected cgl. Then the cdgl .�; 0/ admits a
Lie minimal model

� W .yL.V /; d/ '�! .�; 0/

satisfying:

� V D
L
p;q�0 V

q
p is bigraded , being the lower grading the usual homological one. This bigradation

extends bracketwise to yL.V /.

� dV 0 D 0 and d.V nC1/�yL.V �n/n for n� 0. In particular d decreases by one the upper degree
so that H.yL.V /; d/D

L
p;q�0H

q
p .yL.V; d/ is also bigraded.

� � W yL.V 0/� � is surjective , �.V n/D 0 for n� 1, H 0.�/ WH 0.yL.V /; d/ Š�! � is an isomorphism
and HC.yL.V /; d/D 0.

For completeness we include here a sketch of the proof:

Proof Let � be filtered by fF ngn�1 so that �Š lim
 ��n

�=F n, and consider the projection q W�!�=Œ�; ��

onto the indecomposables of � . Define V 0 to be a space of generators of � by V 0D�=Œ�; �� and choose
� W V 0! � a section of q. Set dV 0 D 0 and extend � first to L.V 0/! � and then, by completion, to

� W yL.V 0/D lim
 ��
n

L.V 0/=Ln.V 0/! lim
 ��
n

�=�n! lim
 ��
n

�=F n D �:

Next, define V 1 to be a space of relations of � by V 1 D ker �=ŒyL.V 0/; ker ��, set �.V 1/D 0 and extend
d to V 1 as a section of the projection ker �� V 1.

For n � 1 define V nC1 D Hn.yL.V �n/=ŒHn.yL.V �n/;H 0.yL.V �n/�, set �.V nC1/ D 0 and define
d W V nC1!yL.V �n/n\ ker d to be a section of yL.V �n/n\ ker d � V nC1.

Definition 3.2 The cdgl .yL.V /; d/ is the (complete) bigraded model of � . We say that the elements of
yL.V /np have weight p�n. Note that the differential d preserves weight as dV np �yL.V /

n�1
p�1

We now show that any cdgl whose homology is isomorphic to the cgl � has a Lie model (not minimal in
general) obtained by perturbing in a particular way the bigraded Lie model of � . The following is again
a straightforward extension to the complete connected setting of [11, théorème 2] or [14, Chapter II],
which is in turn the dual of [10, Theorem 4.4] in the commutative context.

Theorem 3.3 (complete filtered Lie model) Let � W .yL.V /; d/ '�! � be the bigraded model for the cgl
� and let L be a cdgl whose homology is isomorphic to � . Then there is a Lie model of L of the form

� W .yL.V /; d C'/ '�! L

such that ' increases the weight and Œ�.v/�D �.v/ for each v 2 V 0.

Moreover , if 
 W .yL.V /; d C / '�! L is another Lie model under the same conditions , there exists an
isomorphism

f W .yL.V /; d C'/ Š�! .yL.V /; d C /

such that f � idyL.V / increases the weight and 
f is homotopic to �. �
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Definition 3.4 Let � be a connected cgl and .yL.V /; d/ be its bigraded model. Define the sub-Lie algebra

DeryL.V /� DeryL.V /

of derivations which raise the weight. That is, if W m � yL.V / denotes the subspace of elements of
weight m, then � 2DeryL.V / if �.W m/�W �mC1 for all m 2 Z.

We can now easily prove the dual of [16, Theorem 4.1]:

Theorem 3.5 We have that .DeryL.V /;D/ is a cdgl whose eMC set is in bijective correspondence with
the set Ho cdgl� of homotopy types of cdgls whose homology is isomorphic to � .

Proof Filter DeryL.V / by fF ngn�1, where

F n D f� 2DeryL.V / j �.W m/�W mCn for all mg:

A simple inspection shows that fF ngn�1 is indeed a filtration of the dgl .DeryL.V /;D/. Moreover,T
n�1 F

n D 0 so the natural map � WDeryL.V /! lim
 ��n

DeryL.V /=F n is injective.

On the other hand, write any � 2 lim
 ��n

DeryL.V /=F n of degree q as

� D
X
n�1

�n for �n 2 F n;

and observe that, for any p;m� 0, �n.V mp /D 0 as long as n> qCm. Hence, for any v 2 V ,
P
n�1 �n.v/

is always a finite sum. That is, � is a well-defined element in DeryL.V / and thus � is also surjective. This
shows that .DeryL.V /;D/ is a complete dgl. Note that d …DeryL.V / as it does not raise the weight.

We next see that

exp.Der0yL.V //D ff 2 autyL.V / such that f � idyL.V / raises the weightg:

Indeed, given � 2 Der0 yL.V / we have e� � idyL.V / D
P
n�1 �

n=nŠ, which clearly raises the weight.
Conversely, given f 2 autyL.V / such that f � idyL.V / raises the weight, the linear map

� W V !yL.V / given by �.v/D
X
n�1

.�1/nC1
.f � id/n

n

is well defined and clearly raises the degree. In fact, the same argument used above shows that for any
p;m � 0 and any v 2 V mp we have .f � id/n.v/ D 0 for n big enough. To conclude, extend � as a
derivation in Der0yL.V / so that � D logf , or equivalently, f D e� .

Finally, regard the MC set as in (5) and consider the map

MC.DeryL.V /;D/!Ho cdgl� given by x' 7! homotopy type of .yL.V /; d C'/:

It clearly factors through the orbit set

eMC.DeryL.V /;D/DMC.DeryL.V /;D/=exp.Der0 yL.V //! Ho cdgl� ;

and, by a direct application of Theorem 3.3, this is a bijection.
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Corollary 3.6 Let � be a finite type connected cgl and let .yL.V /; d/ be its bigraded model. Then the
set Ho sset� of homotopy types of rational simplicial sets whose homotopy Lie algebra is isomorphic to
� is in bijective correspondence with eMC.DeryL.V /;D/.

Proof We first note that any rational simplicial set whose homotopy Lie algebra is isomorphic to �
is a nilpotent finite type simplicial set. Indeed, every complete finite type Lie algebra � is degreewise
nilpotent [1, Proposition 5.2]. That is, for each degree n there is an integer k � 1 such that any bracket of
length k and degree n vanishes. Moreover, if � is connected, being degreewise nilpotent is equivalent
to �0 being nilpotent and acting nilpotently on �n for all n� 1. Hence, any simplicial set having � as
homotopy Lie algebra is necessarily rational nilpotent and of finite type.

On the other hand, the pair of adjoint functors in (2) restrict to equivalences between the homotopy
categories of rational nilpotent finite type simplicial sets and that of connected cdgls whose homology is
complete and of finite type, ie degreewise nilpotent [6, Chapter 10]. To finish, apply Theorem 3.5

Remark 3.7 Identifying, as in (6), MC.DeryL.V /;D/ with the rational points of the variety VL with
LD .yL.V /; d/, the above corollary exhibits the quotient stack VL=exp.Der0 yL.V // as a moduli space
of Ho sset� .

We are aware that, as we work over the rationals, this topological space is not a quotient of a variety.
Nevertheless, following [16, Section 7], where the authors study the commutative dual context, one could
properly define and study DerL as a scheme and exp.Der0 yL.V // as an algebraic group acting on DerL.
In this way Ho sset� would become a quotient stack. This remark applies to the subsequent sections

4 Rational homotopy types with prescribed homology and their moduli
space

We describe the geometric realization of the cdgls of derivations provided in the previous section and
interpret their eMC sets from the topological point of view.

Definition 4.1 LetH be a simply connected graded vector space bounded above. Denote by Ho sset1H the
class of homotopy types of rational simply connected simplicial sets with reduced homology isomorphic
to H . To avoid excessive notation, we will not distinguish a simplicial set from the homotopy type it
represents.

We fix such a graded vector space H and a finite filtration of it,

H DH 0
�H 1

� � � � �H q�1
�H q

D 0:

This induces a filtration on V D s�1H as in (7). Let LD .L.V /; 0/ and consider the cdgl DerL given in
Proposition 2.4 corresponding to this filtration.
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For each X 2 sset1H , denote by G the subgroup of homotopy classes of self-homotopy equivalences of X
which raise the degree of the homology filtration:

G D fŒf � 2 E.X/ jH.f /.H i /�H iC1 for all ig:

Consider also the subgroup aut�G.X/� aut�.X/ of pointed homotopy automorphisms whose homotopy
classes (free or pointed, as X is simply connected) live in G:

aut�G.X/D ff 2 aut�.X/ j Œf � 2Gg:

In sset1H there is a particular element that we denote by X0, whose minimal model is L. This is the
(co)formal space with free rational homotopy Lie algebra generated by H consisting of a wedge of
rational spheres, one for each generator of H .

Theorem 4.2 (i) There are actions of aut.L/ on MC.DerL/ and aut.L/=exp.Der0L/ on eMC.DerL/
which induce bijections

eMC.DerL/=.aut.L/=exp.Der0L//ŠMC.DerL/=aut.L/Š Ho sset1H :

(ii) Moreover ,
hDerLi D

a
X2Ho sset1H

a
OX

Baut�G.X/:

Here OX denotes the (cardinality of the) orbit by the action of aut.L/=exp.Der0L/ of any element in
eMC.DerL/ providing X via the bijection in (i). In other words, when H is finite dimensional, the
realization of DerL is the disjoint union of simplicial sets, one for each X 2Ho sset1H , and each of which
with as many path components as points in the orbit OX . Finally, each of these path components has the
homotopy type of the classifying space Baut�G.X/, which is nilpotent but clearly not simply connected.

Remark 4.3 In (ii) we may replace the zero differential on L by any other decomposable differential d .
Indeed, in view of (5), any such differential is an MC element in DerL, and by (4),

hDerLi D h.DerL; 0/i ' h.DerL; 0d /i D h.DerL;D/i;

where D D Œd;��, the differential induced by d .

Proof (i) In view of Proposition 2.4, the MC elements of DerL are simply decomposable differentials
on L.V /. Therefore, the group aut.L/ acts on MC.DerL/ by

(12) ' � ı D 'ı'�1 for ' 2 aut.L/ and ı 2MC.DerL/:

That is, ' � ı D ı0 if
' W .L.V /; ı/ Š�! .L.V /; ı0/

is a dgl isomorphism. Note also that the map

MC.DerL/! Ho sset1H given by ı 7! h.L.V /; ı/i
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induces a map on the orbit set,

(13) MC.DerL/=aut.L/ Š�! Ho sset1H ;

which is clearly a bijection.

On the other hand, and although exp.Der0L/ is not in general a normal subgroup of aut.L/, we still can
consider the short exact sequence of pointed sets

(14) exp.Der0L/! aut.L/! aut.L/=exp.Der0L/;

and observe that the action of aut.L/ on MC.DerL/ restricts to the gauge action of Der0L on MC.DerL/:
�G ı D ı0 if, again,

.L.V /; ı/ e
�

�! .L.V /; ı0/

is a dgl isomorphism.

Hence, aut.L/=exp.Der0L/ acts on the orbit set MC.DerL/=exp.Der0L/DeMC.DerL/ and

eMC.DerL/=.aut.L/=exp.Der0L//ŠMC.DerL/=aut.L/:

This and (13) proves (i).

(ii) By (3), the number of connected components of �0hDerLi is in bijective correspondence with
eMC.DerL/. But, in view of (i), each homotopy type of Ho sset1H contains as many eMC elements of
DerL as points in OX . Hence, the number of connected components of hDerLi is as asserted.

Next choose d 2eMC.DerL/, which again corresponds to a decomposable differential d in LDyL.V /.
Then the (algebraic) component .DerL/d is the connected cdgl

.DerL/dk D
�

Derk L if k > 0;
Der0L\ kerD if k D 0;

whose differential is D D Œd;��, induced by d . By [8, Theorem 7.13], if we denote by X 2 sset1H the
(rational homotopy type of the) simplicial set whose minimal model is .L.V /; d/, we deduce that

h.DerL/d i ' Baut�G.X/;
and (ii) follows.

The following instance is of special interest. If we choose in H the trivial filtration H DH 0 �H 1 D 0,
Theorem 4.2 reads:

Corollary 4.4 (i) There are actions of aut.L/ on MC.DerL/ and aut.V / on eMC.DerL/ which
induce bijections

eMC.DerL/=aut.V /ŠMC.DerL/=aut.L/Š Ho sset1H :

(ii) Moreover ,
hDerLi D

a
X2Ho sset1H

a
OX

Baut�H.X/:
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Here, for each X 2Ho sset1H , H denotes the subgroup of homotopy classes of self-homotopy equivalences
that induce the identity on homology. Again, OX denotes the (cardinality of the) orbit by the action of
aut.V / of any element in eMC.DerL/ representing X by the bijection in (i).

Proof Recall from Remark 2.5 that in this case

Der0LD f� 2 Der0L such that �.V /�yL
�2
.V /g:

Then
exp.Der0L/D f' 2 aut.L/ j '� D idV g;

where '� W V ! V denotes the induced map on the indecomposables. Hence (14) becomes

(15) exp.Der0L/! aut.L/! aut.V /;

and Theorem 4.2(i) translates to (i). With this, and the fact that G DH in this case, (ii) is obvious.

In view of the isomorphism in (13),

Ho sset1H ŠMC.DerL/=aut.L/;

we can identify the quotient stack MC.DerL/=aut.L/ as a moduli space of the set of simply connected
rational homotopy types with prescribed reduced homology H . Moreover, two proportional (nontrivial)
differentials in MC.DerL/ are in the same orbit. Hence, as the polynomials defining VL are homogeneous,
we can think of Ho sset1H �fX0g as a quotient stack of a subvariety of a projective space.

Example 4.5 Let H be the vector space with two generators of degrees 2 and 4 and another two
generators of degree 6. We compute the moduli space of Ho sset1H .

Let LD .L.V /; 0/ where V is the vector space with generators x, y, z and w of degrees 1, 3, 5 and 5,
respectively. We endow V with the trivial filtration. Then Der�1L is a 3–dimensional vector space,
generated by the derivations ıy , ız and ıw defined by

ıy.y/D Œx; x�; ız.z/D Œx; y� and ıw.w/D Œx; y�;

and are zero otherwise. In this particular case, MC.DerL/D Der�1L. Moreover, one easily checks that
the gauge action is trivial and thus, in view of Corollary 4.4(i),

MC.DerL/=aut.L/ŠMC.DerL/=aut.V /Š Ho sset1H :

Hence if we use fıy ; ız; ıwg as basis, we identify four different orbits in MC.DerL/=aut.V / represented
by the derivations .0; 0; 0/, .˛; 0; 0/ with ˛ ¤ 0, .0; ˇ; 
/ with either ˇ or 
 not zero, and .˛; ˇ; 
/ with
˛¤ 0 and either ˇ or 
 not zero. By considering which spaces correspond to these differentials, we obtain

Ho sset1H D fS
2
_S4 _S6 _S6 j .S2 �S4/_S6;CP2 _S6 _S6;CP3 _S6g:
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CP3 _S6

.S2 �S4/_S6 CP2 _S6 _S6

S2 _S4 _S6 _S6

CP3 _S6

S2 _S4 _S6 _S6

.S2 �S4/_S6

CP2 _S6 _S6

ız

ıw

ıy

Figure 1

In other words, the moduli space of Ho sset1H consists of four points, where S2 _ S4 _ S6 _ S6 is a
closed point, CP2 _S6 is an open point, and any neighborhood of .S2 �S4/_S6 or CP2 _S6 _S6

contains the point CP3 _S6. As a finite topological space, it is characterized by its corresponding poset
in which x � y if and only if x belongs to the closure of y.

In Figure 1 we depict this poset and the algebraic variety VL, which in this case is all C3, or CP2 if we
consider the corresponding projective variety by removing the origin. There, we identify the rational
points belonging to each orbit of the moduli space: the origin is the only point in its orbit and corresponds
to S2_S4_S6_S6, all rational points of the ıy axis are in the orbit of CP2_S6_S6, rational points
of the plane generated by fız; ıwg comprise the orbit of .S2�S4/_S6, and the rest of the rational points
are in the orbit of CP3 _S6.

Note that in general, for any L, the zero differential is always alone in its orbit space MC.DerL/=aut.L/;
it is a closed set and it corresponds to X0, a wedge of spheres determined by a set of generators of H .

Also, Ho sset1H Š MC.DerL/=aut.L/ is not always a finite space as one can check by, for instance,
computing the example in which H D Spanfx; y; zg with jxj D 5, jyj D 6 and jzj D 22.

An interesting property of the set of elliptic homotopy types sharing the same homology is:

Proposition 4.6 The set EllH � Ho sset1H of homotopy types of elliptic spaces is always an open subset
of the moduli space.

Proof Fix ı 2MC.Der�1L/ such that .L; ı/ is elliptic. Since L is of finite type, the function

dimk WMC.DerL/! Z given by dimk.ı
0/D dimHk.L; ı

0/

is well defined for each k � 1. Note that if V D V�N then dimk.ı/ D 0 for k � 2N ; see for
instance [9, Corollary 1, Section 32]. Moreover, by elementary linear algebra, regarding dimk.ı0/ as
dim ker ı0jLk � dim Im ı0jLkC1

, the map dimk is semicontinuous for all k. In particular, for each k � 1
there is a neighborhood �k of ı such that dimk.ı0/� dim.Hk.L; ı// for any ı0 2 �k .
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Consider the open set � D
T3N
iD2N �i in which dimk D 0 for all k D 2N; : : : ; 3N . This implies that for

any ı0 2 � , .L; ı0/ is elliptic. Otherwise, by [9, Theorem 33.3], if .L; ı0/ is hyperbolic, there must be an
integer k0 with 2N � k0 � 3N such that dimk0.ı

0/¤ 0.

Finally, if we denote by p WMC.DerL/!MC.DerL/=aut.L/ the projection, then p.�/�EllH is clearly
an open set of the moduli space MC.DerL/=aut.L/ containing the orbit of ı.

5 Rational homotopy types with prescribed cohomology algebra and their
moduli space

Let LD .yL.V /; d/ be a connected free cdgl and consider in V , which is supposed to be bounded above,
the trivial filtration, so that Remark 2.5 applies.

Definition 5.1 Define Der.L/ as the complete sub-dgl of DerL given by

Derk LD
�Derk L if k � 0;

f� 2 Derk L such that �.V /�yL
�3
.V /g if k < 0:

This cdgl will be essential in what follows.

Definition 5.2 Consider a simply connected commutative graded algebra of finite dimension whose
augmentation ideal we denote by A. Define Ho sset1A as the class of homotopy types of rational simply
connected simplicial sets with reduced cohomology algebra isomorphic to A. Again, we will not
distinguish a simplicial set from the homotopy type that it represents.

Recall that given X 2 Ho sset1A, a classical fact (see for instance [17, III.3.(9)]) states that the differential
d in L .A]/, necessarily quadratic, is naturally identified with the cup product of X . Here L denotes the
classical Quillen functor from coalgebras to Lie algebras. We then fix A, rename LDL .A]/ and prove:

Theorem 5.3 (i) There is an action of aut.A/ on eMC.DerL/ which induces a bijection

eMC.DerL/=aut.A/Š Ho sset1A:

(ii) Moreover ,
hDerLi '

a
X2Ho sset1A

a
OX

Baut�H.X/:

Once again, OX denotes the (cardinality of the) orbit by the action of aut.A/ of any element in eMC.DerL/
representing X by the bijection in (i).

Proof Write LD .L.V /; d/ where V D s�1A] and d is quadratic. Recall that the differential in DerL
is Œd;��. Hence, an MC element of DerL is, by definition, a derivation ı of L such that ı.V /�L�3.V /

and d C ı is a differential on L. In what follows we use the trivial identification

MC.DerL/Š fdifferentials d C ı on L such that ı.V /� L�3.V /g;
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so that

MC.DerL/�MC.DerL; 0/D fdecomposable differentials on Lg:

We then consider the stabilizer autd .L/ of MC.DerL/ of the action (12) of the (nondifferential automor-
phisms) aut.L/ on MC.DerL; 0/. That is,

autd .L/D f' 2 aut.L/ such that the quadratic part of '�1 ı d ı' is dg:

On the other hand, the surjective map

MC.DerL/! Ho sset1A given by d C ı 7! h.L; d C ı/i

clearly induces a map on the set of orbits

MC.DerL/=autd .L/! Ho sset1A:

Now, h.L; d C ı/i ' h.L; d C ı0/i if and only if there is dgl isomorphism

' W .L; d C ı/ Š�! .L; d C ı0/:

Thus ' 2 autd .L/ and ' � .d C ı/D d C ı0. So the above map is also injective, and we have a bijection

MC.DerL/=autd .L/Š Ho sset1A:

Next, observe that exp.Der0L/� autd .L/ and the quotient autd .L/=exp.Der0L/ is trivially identified
to the group of automorphisms of V which respect the quadratic differential d . That is,

autd .L/=exp.Der0L/Š f� W V Š�! V such that ��1 ı d ı� D dg:

But this group is in bijective correspondence with the algebra automorphisms aut.A/ and we have the
following short exact sequence, analogous to (15),

exp.Der0L/! autd .L/! aut.A/:

Next observe that the action of autd .L/ on MC.DerL/ restricts to the gauge action of Der0L on
MC.DerL/. Hence, as in the proof of Theorem 4.2(i), we deduce that aut.A/ acts on eMC.DerL/ and

(16) eMC.DerL/=aut.A/ŠMC.DerL/=autd .L/Š Ho sset1A:

On the other hand, via this bijection, each homotopy type X of Ho sset1H contains as many eMC elements
of DerL as points in the orbit OX , and thus the number of path components of hDerLi is as asserted
in (ii) for a general A.

Finally, since A is finite dimensional and Der�0LD Der�0L, every connected component of hDerLi
is necessarily of the homotopy type of Baut�H.X/ for the corresponding X 2 Ho sset1A, just as in
Corollary 4.4(ii).
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Remark 5.4 We can also exhibit the set of simply connected homotopy types sharing the same coho-
mology algebra A as a quotient stack. Indeed, in view of (16),

Ho sset1A ŠMC.DerL/=autd .L/;

which by (6) is a quotient of rational points in a variety. Moreover, observe that

Der�1LD Der2�1L˚Der�1L;

where Der2
�1LD f� 2 Der�1L such that �.V /� L2.V /g is the set of quadratic derivations. Therefore

we can identify MC.DerL/ with the intersection of the algebraic variety MC.DerL; 0/ and the affine
linear subspace d CDer�1L:

MC.DerL/DMC.DerL; 0/\ .d CDer�1L/:

Example 5.5 Consider the commutative graded algebra A generated by the elements a, b, c, p and q of
degrees 4, 6, 13, 15 and 19, respectively, and whose only nontrivial products are

ap D q D bc:

We determine the moduli space of Ho sset1A. Note that LDL .A/D .L.V /; d/, where V is generated by
elements x, y, z, u and v of degrees 3, 5, 12, 14 and 18, respectively. The differential is given by

dv D Œx; u�C Œy; z�

and zero on any other generator.

We now compute eMC.DerL/=aut.A/. First, we check that Der�1L is generated by three derivations ız ,
ıu and ıv defined by

ız.z/D ad2x.y/; ıu.u/D ad2y.x/ and ıv.v/D ad4x.y/;

and zero otherwise. Direct computation shows that a general element ˛ızCˇıuC
ıv is in MC.DerL;D/
if and only if ˛ D ˇ.

To compute the gauge action, we first check that Der0L is generated by three derivations defined by

�.u/D ad3x.y/; � 0.v/D ad2x.y/ and � 00.v/D�ad3y.x/;

and zero otherwise. Another straightforward computation shows that

D� D�ıv; D� 0 D 0; D� 00 D 0 and ŒDer0L;Der�1L�D 0:

Therefore the only nontrivial gauge action is

.t�/G .˛ızC˛ıuC 
ıv/D ˛ızC˛ıuC .
 C t /ıv

for any t 2Q. Hence in eMC.DerL/, we can take representatives with 
 D 0, so that

eMC.DerL/D f˛.ızC ıu/ with ˛ 2Qg:
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Finally, any automorphism � 2 aut.A/ is given by

�.a/D �aa; �.b/D �bb; �.c/D �cc; �.p/D �pp and �.q/D �qq;

where the scalars are nonzero and satisfy

�a�p D �q D �b�c :

For ˛ ¤ 0 choose � with �a D �c D �q D 1=˛ and �b D �p D 1. Then one checks that the action of �
on the MC element ızC ıu gives ˛.ızC ıu/.

Therefore in eMC.DerL/=aut.A/ there are only two orbits corresponding to ˛ ¤ 0 and ˛ D 0. By
Theorem 5.3(i) we conclude that

Ho sset1A D fX0; X1g;

where X0 D h.L; d/i is the formal space of cohomology algebra A and X1 D h.L; d C ızC ıu/i is the
rationalization of SU.6/=SU.3/�SU.3/.

Moreover, as a moduli space Ho sset1A has the Sierpinski topology, in which X1 is open.
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