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One interpretation of Bézout’s theorem, nonequivariantly, is as a calculation of the Euler class of a sum of
line bundles over complex projective space, expressing it in terms of the rank of the bundle and its degree.
We generalize this calculation to the C2–equivariant context, using the calculation of the cohomology of
C2–complex projective spaces from an earlier paper, which used ordinary C2–cohomology with Burnside
ring coefficients and an extended grading necessary to define the Euler class. We express the Euler class
in terms of the equivariant rank of the bundle and the degrees of the bundle and its fixed subbundles. We
do similar calculations using constant Z coefficients and Borel cohomology and compare the results.

55N91; 14N10, 14N15, 55R40, 55R91

Introduction

Suppose that we have n nonzero homogeneous polynomials fi for 1� i � n in N variables where n<N ,
let di be the degree of fi , and let � D d1d2 � � � dn. If PN�1 is the complex projective space, we can
consider each fi as giving a section of the complex line bundle O.di /, the di–fold tensor power of the
dual of the tautological line bundle over PN�1. Each fi determines a hypersurface Hi � PN�1, its zero
locus. In this context, the (nonequivariant) Bézout theorem, as given by Fulton [5], for example, can be
stated in several ways. Geometrically, it says that the intersection of the hypersurfaces Hi , counted with
multiplicities, is generically rationally equivalent to � copies of PN�n�1. In the classical case, when
nDN � 1, the hypersurfaces intersect in � points.

We can restate Bézout’s theorem as a purely algebraic statement: in the cohomology ring

H�.PN�1IZ/Š ZŒ Oc�=h OcN i;

the Euler class of F DO.d1/˚O.d2/˚ � � �˚O.dn/ is

e.F /D� Ocn;

where OcD e.O.1//. As a consequence, e.F / determines and is completely determined by the rank n of F
(that is, the complex dimension of each of its fibers) and its degree �. (The connection to the geometric
statement is via the Chow ring, isomorphic to cohomology in this case, in which Ocn is represented by
PN�n�1.) Here we want to generalize the algebraic calculation, including giving a generalization of the
notions of rank and degree, and discussing how they determine and are determined by the Euler class; in
a followup paper we will pursue a geometric interpretation.
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In [3] we began to examine how this generalizes in the presence of an action of the two-element group C2.
Let C denote the trivial complex representation of C2 and let C� denote the nontrivial representation.
If p � 0 and q � 0 are integers, let CpCq� be the sum of p copies of C and q copies of C� , and let
P .CpCq� / be its (complex) projective space, a C2–space. Using the equivariant ordinary cohomology
with extended grading defined in [4], we computed the cohomology of P .CpCq� / in [3] with Burnside ring
coefficients. We also gave the zero-dimensional version of an equivariant Bézout theorem, showing that
the equivariant Euler class in equivariant ordinary cohomology with Burnside ring coefficients allows us to
determine the finite C2–set in P .CpCq� / given by the intersection of pCq�1 equivariant hypersurfaces.

Let us set up the context for a generalization to higher dimensions. As mentioned above, if F is a
nonequivariant vector bundle over PN�1, its Euler class has the form e.F /D� Ocn, where n is the rank
of F , � is its degree, and we set �D 0 if n�N .

Now suppose that we have .n<pCq/–many C2–line bundles over P .CpCq� / with direct sum F . We let
� be the nonequivariant degree of F . We can also consider the fixed-set bundle F C2 over P .CpCq� /C2D

P .Cp/tP .Cq� /. Let n0 denote the rank of the restriction of F C2 to P .Cp/ and let �0 be its degree.
We know that n0 � n, and, to keep the situation geometrically meaningful, we would like the generic
intersection of the corresponding hypersurfaces in P .Cp/ to have dimension no more than the dimension
of the intersection of all the hypersurfaces in P .CpCq� /. For that, we require that p�n0�1�pCq�n�1,
that is, n0 � n� q. Similarly, let n1 denote the rank of F C2 over P .Cq� / and let �1 be its degree; we
require that n1 � n�p. We record these notations and conditions for later reference.

Bézout context 0.1 F is the sum of n–many C2–line bundles over P .CpCq� / and� is its nonequivariant
degree. The restriction of F C2 to P .Cp/ has rank n0 and degree �0, while its restriction to P .Cq� / has
rank n1 and degree �1. We assume that

n < pC q; n� q � n0 � n and n�p � n1 � n:

We call the triple .n; n0; n1/ the C2–ranks of F and the triple .�;�0; �1/ the C2–degrees of F .

In this context we will calculate the Euler class e.F / as an element of the equivariant cohomology of
P .CpCq� /, as computed in [3].

Bézout theorem, part I In the context above , the Euler class e.F / is completely determined by the ranks
.n; n0; n1/ and the degrees .�;�0; �1/. Moreover , these ranks and degrees can be recovered from e.F /.
The ranks are additive and the degrees are multiplicative.

This will be proved as Theorem 2.11. When we say that the degrees are multiplicative, we really mean
the following: Suppose that we have two such bundles F and F 0 with ranks .n; n0; n1/ and .n0; n00; n

0
1/,

respectively, and corresponding degrees. We assume that F ˚ F 0 still satisfies the conditions of the
Bézout context above. This allows the possibility that n0C n00 � p, in which case the corresponding
degree is not �0�00 but 0, and similarly if n1Cn01 � q.

Algebraic & Geometric Topology, Volume 24 (2024)
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Nonequivariantly, the cohomology of PN�1 is a free Z–module with a basis given by the powers of Oc .
Explicitly,

.0.2/ H�.PN�1/Š
N�1M
iD0

OciZ:

The nonequivariant Bézout theorem can be viewed as expressing e.F / in terms of this basis. In any given
grading, there is at most one basis element, so there is only one coefficient to specify, which turns out to
be the degree �. Equivariantly, the result is more complicated. In [3] we showed that the cohomology
of P .CpCq� / is free over the RO.C2/–graded equivariant cohomology of a point and gave an explicit
basis that maps to the nonequivariant one. That is, we have a decomposition similar to (0.2), with Z

replaced by the RO.C2/–graded cohomology of a point and the powers of Oc replaced by our preferred
basis. Because the cohomology of a point is not concentrated in grading 0 outside of the Z–graded part,
in any given grading of the cohomology of P .CpCq� / there are up to pC q basis elements that can
contribute, so an element potentially requires a .pCq/–tuple of coefficients (from the cohomology of a
point) to specify. Our second main result is summarized as follows:

Bézout theorem, part II In the context above , the Euler class e.F / is the linear combination of at most
three basis elements.

This is proved as Theorem 2.12, which also gives the details as to which three basis elements are involved
and what their coefficients are. The three basis elements are determined by (p and q and) the ranks
.n; n0; n1/. The coefficients are determined by the degrees .�;�0; �1/, but are not simply equal to them.

This paper is structured as follows. In Section 1 we review the cohomology of P .CpCq� / as computed
in [3], including our preferred basis. In Section 2 we give the main results, proving the two theorems
above. There are two other equivariant ordinary cohomology theories in common use: cohomology with
constant Z coefficients and Borel cohomology. In Section 3 we discuss how the computation changes
if we use constant Z coefficients rather than Burnside ring coefficients, and in Section 4 we discuss
the similar computation in Borel cohomology. There are maps from cohomology with Burnside ring
coefficients to cohomology with constant Z coefficients, and from that theory to Borel cohomology,
both respecting Euler classes, and we will see that the Euler classes in the last two theories carry less
information than the Euler class in cohomology with Burnside ring coefficients. In particular, we cannot
recover the degrees �0 and �1 from the Euler class in cohomology with constant Z coefficients or the
class in Borel cohomology.

Acknowledgements Hudson and Tilson were partially supported by the DFG through the SPP 1786:
Homotopy theory and algebraic geometry, project number 405468058: C2–equivariant Schubert calculus
of homogeneous spaces. While Hudson and Tilson were affiliated to the Bergische Universität Wuppertal,
the research was conducted in the framework of the research training group GRK 2240: Algebro-geometric
methods in algebra, arithmetic and topology, which is funded by the DFG,
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1 The cohomology of P .CpCq� /

1.1 Ordinary cohomology

We will use C2–equivariant ordinary cohomology with the extended grading developed in [4]. This is an
extension of Bredon’s ordinary cohomology to be graded on representations of the fundamental groupoids
of C2–spaces. We review here some of the notation and computations we will be using. A more detailed
description of this theory can be found in [3].

For an ex-C2–space Y over X , we write HRO.…X/
C2

.Y IT / for the ordinary cohomology of Y with
coefficients in a Mackey functor T , graded on RO.…X/, the representation ring of the fundamental
groupoid of X . Through most of this paper we will use the Burnside ring Mackey functor A as the
coefficients, and write simply HRO.…X/

C2
.Y /.

In [4; 3] we considered cohomology to be Mackey functor-valued, which is useful for many computations,
and wrote HRO.…X/

C2
.Y / for the resulting theory. Here we concentrate on the values at level C2=C2,

and write
H

RO.…X/
C2

.Y /DH
RO.…X/
C2

.Y /.C2=C2/:

However, we will still refer to the restriction functor � from equivariant cohomology to nonequivariant
cohomology, and the transfer map � going in the other direction.

For all X and Y , HRO.…X/
C2

.Y / is a graded module over

HDHRO.C2/ DH
RO.C2/
C2

.S0/;

the cohomology of a point. The grading on the latter is just RO.C2/, the real representation ring
of C2, which is free abelian on 1, the class of the trivial representation R, and � , the class of the sign
representation R� . The cohomology of a point was calculated by Stong in an unpublished manuscript,
and first published by Lewis in [6]. We can picture the calculation as in Figure 1, in which a group
in grading aC b� is plotted at the point .a; b/, and the spacing of the grid lines is 2 (which is more
convenient for other graphs we will give). The box at the origin is a copy of A.C2/, the Burnside ring
of C2, closed circles are copies of Z, and open circles are copies of Z=2.

Recall that A.C2/ is the Grothendieck group of finite C2–sets, with multiplication given by products of
sets. Additively, it is free abelian on the classes of the orbits of C2, for which we will write 1D ŒC2=C2�
and g D ŒC2=e�. The multiplication is given by g2 D 2g. We will also write � D 2�g. Other important
elements are shown in the figure: The group in degree � is generated by an element e, while the group in
degree �2C 2� is generated by an element �. The groups in the second quadrant are generated by the
products em�n, with 2e� D 0. We have g� D 2� and ge D 0. The groups in gradings �m� , for m� 1,
are generated by elements e�m�, so named because em � e�m� D �. We also have ge�m� D 0.

To explain �.��2/, we think for a moment about the nonequivariant cohomology of a point. If we grade it
on RO.C2/, we get HRO.C2/.S0IZ/ŠZŒ�˙1�, where deg �D�1C� . (Nonequivariantly, we cannot tell
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a

b�

e�

�.��2/e�1�

Figure 1: HRO.C2/.

the difference between R and R� .) We have �.�/D �2 and �.�2/D g� D 2�. Note also that �.1/D g.
In the fourth quadrant the group in grading n.1� �/ for n � 2 is generated by �.��n/. The remaining
groups in the fourth quadrant will not concern us here. For more details, see [2; 3].

1.2 The cohomology of projective space

As described in the introduction, the form of Bézout’s theorem we shall give expresses the Euler class
of a bundle over P .CpCq� / in terms of a basis of its cohomology. We now review the structure of that
cohomology as calculated in [3].

Write B D P .C1C1� /. Its fixed set is

BC2 D P .C1/tP .C1� /D B0 tB1;

where we use the indices 0 and 1 to evoke the trivial and nontrivial representations of C2, respectively.
(We will use this convention, that a subscript 0 refers to something related to B0 and subscript 1 refers to
something related to B1, throughout.) Representations of …B are determined by their restrictions to B0

and B1, which are elements of RO.C2/ that must have the same nonequivariant rank and the same parity
for the ranks of their fixed-point representations. As shown in [3, Section 2.2, page 13] this leads to the
calculation

RO.…B/D Zf1; �;�0; �1g=h�0C�1 D 2� � 2i;

where�0 is the representation whose value on B0 is 2��2 and on B1 is 0, while�1 is the representation
whose value on B0 is 0 and on B1 is 2� � 2. For any ˛ 2 RO.…B/, write j˛j 2 Z for its underlying
nonequivariant rank, and ˛0 and ˛1 2 RO.C2/ for its restrictions to B0 and B1, respectively. What we
said above can be phrased as: ˛ is completely determined by the triple of ranks .j˛j; j˛C2

0 j; j˛
C2

1 j/, where
the last two ranks have the same parity.

Algebraic & Geometric Topology, Volume 24 (2024)
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We think of the finite projective spaces as spaces over B by the evident inclusions P .CpCq� / !

P .C1C1� /, and so will grade their cohomologies on RO.…B/. Let ! denote the tautological line
bundle over B , let !_ be its dual bundle, let �!D!˝C C� , and let �!_ be the dual of �!. We will also
use the notation from algebraic geometry in which ! DO.�1/ and !_DO.1/; we write �O.�1/D �!
and �O.1/D �!_.

Associated to any bundle over B is a representation in RO.…B/ that we think of as the equivariant rank
of the bundle; this representation is given by the fiber representations over B0 and B1. In the case of !
and �!, we have

! D 2C�1 and �! D 2C�0;

where we write ! and �! again for the associated elements of RO.…B/.

Let Oc! and Oc�! denote the Euler classes of !_ and �!_, respectively. The cohomology of P .C1C1� /

was calculated in [2] as follows:

Theorem 1.1 H
RO.…B/
C2

.BC/ is an algebra over H generated by the Euler classes Oc! and Oc�! together
with classes �0 and �1. These elements live in gradings

grad Oc! D !; grad Oc�! D �!; grad �1 D ! � 2 and grad �0 D �! � 2:

They satisfy the relations

�0�1 D � and �1 Oc�! D .1� �/�0 Oc! C e
2;

which completely determine the algebra. Moreover , HRO.…B/
C2

.BC/ is free as a module over H.

There are two restriction maps we will use,

� WH˛
C2
.BC/!H j˛j.BC/;

restriction to nonequivariant cohomology, and

.�/C2 WH˛
C2
.BC/!H˛

C2
0 .B0C/˚H

˛
C2
1 .B1C/;

the fixed-point map. These are ring maps and their values on the multiplicative generators are given by
the following:

�.�0/D 1; �.�1/D 1; �. Oc!/D Oc; �. Oc�!/D Oc;

�
C2

0 D .0; 1/; �
C2

1 D .1; 0/; OcC2
! D . Oc; 1/; OcC2

�! D .1; Oc/:

Here Oc denotes the first nonequivariant Chern class of O.1/. We also need the values of the similar
restriction maps

� WH˛
!H j˛j.S0/ and .�/C2 WH˛

!H˛C2
.S0/:

The particular values we will need are

�.�.�2k//D 1; �.e�k�/D 0; �.ek/D 0; �.�2k/C2 D 0; .e�k�/C2 D 2 and .ek/C2 D 1:

Algebraic & Geometric Topology, Volume 24 (2024)
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Moving now to finite projective spaces, on pulling back along the inclusion P .CpCq� / ,! P .C1C1� /,
the cohomology of P .CpCq� / contains elements we will also call Oc! , Oc�! , �0, and �1.

Theorem 1.2 [3, Theorem A] Let 0� p; q <1 with pC q > 0. Then HRO.…B/
C2

.P .CpCq� /C/ is a
free module over H, and as a (graded ) commutative algebra over H the ring HRO.…B/

C2
.P .CpCq� /C/

is generated by Oc! , Oc�! , �0, and �1, together with the following classes: Ocp! is infinitely divisible by �0,
meaning that , for k � 1, there are unique elements ��k0 Oc

p
! such that

�k0 � �
�k
0 Oc

p
! D Oc

p
! :

Similarly, Ocq�! is infinitely divisible by �1, so for k � 1 there are unique elements ��k1 Oc
q
�! such that

�k1 � �
�k
1 Oc

q
�! D Oc

q
�! :

The generators satisfy the following further relations:

�0�1 D �; �1 Oc�! D .1� �/�0 Oc! C e
2 and Ocp! Oc

q
�! D 0:

We also gave an explicit basis for HRO.…B/
C2

.P .CpCq� /C/ over H, which we can describe as follows.
We define sets Fp;q.m/, recursively on p and q, that give bases for Hm!CRO.C2/

C2
.P .CpCq� /C/. For

m 2 Z, let
Fp;0.m/ WD

˚
�m1 ; �

m�1
1 Oc! ; �

m�2
1 Oc2! ; : : : ; �

m�pC1
1 Ocp�1!

	
and

F0;q.m/ WD
˚
�m0 ; �

m�1
0 Oc�! ; �

m�2
0 Oc2�! ; : : : ; �

m�qC1
0 Ocq�1�!

	
:

(Note that �1 is invertible in the first case and �0 is invertible in the second.) For p; q > 0 we then define

Fp;q.m/ WD

�
f�m1 g[ iŠFp�1;q.m� 1/ if m� 0;

f�
jmj
0 g[ jŠFp;q�1.mC 1/ if m< 0;

where i W P .Cp�1Cq� / ! P .CpCq� / and j W P .CpC.q�1/� / ! P .CpCq� / are the inclusions. The
pushforward iŠ is given algebraically by multiplication by Oc! , and jŠ is multiplication by Oc�! .

It is possible from this description to write down the bases explicitly, but the results are messy, having to be
broken down by cases depending on wherem falls in relation to p and q; this is done in [3, Proposition 4.7].
However, we can make the following general statements.

(1) For fixed p, q, and m, there are exactly pCq basis elements lying in Hm!CRO.C2/
C2

.P .CpCq� /C/.

(2) Those basis elements have gradings of the form m.! � 2/C 2ai C 2bi� for 0 � i � pC q � 1,
where ai C bi D i .

(3) The basis element with grading m.! � 2/C 2aC 2b� restricts to the nonequivariant class OcaCb ,
where again Oc is the first nonequivariant Chern class of O.1/.

(4) For a given integer k, there are at most two indices i such that ai D k.

Figure 2 illustrates, in the case of P .C4C5� /, how the basis elements can be arranged for various values
of m. In each case, the basis element with grading m.! � 2/C 2aC 2b� is marked by a dot at .a; b/.

Algebraic & Geometric Topology, Volume 24 (2024)
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mD�6 mD�3

mD 0 mD 2 mD 6

Figure 2: Bases for Hm!CRO.C2/

C2
.P .C4C5� /C/.

For ease of reference, we will write the bases as

Fp;q.m/D fP
.m/
0 ; P

.m/
1 ; : : : ; P

.m/
pCq�1g;

where P .m/i is the basis element in Hm!CRO.C2/
C2

.P .CpCq� /C/ restricting to the element Oci nonequiv-
ariantly. When m is understood, we will simply write Pi for P .m/i . We can also say that Pi is the basis
element in grading m.! � 2/C 2aC 2b� with aC b D i , as illustrated for mD 0 in Figure 3.

Definition 1.3 Given any element x 2Hm!CRO.C2/
C2

.P .CpCq� /C/, we can write x uniquely as

x D

pCq�1X
iD0

˛iP
.m/
i

with each coefficient ˛i 2H. We call the .pCq/–tuple .˛i / the coefficient vector of x.

Because elements of H lie in a restricted set of gradings, the number of nonzero coefficients possible
for a given x may be limited, depending on the grading of x, though there are elements x for which all
coefficients are nonzero.

P0

P2

P4

P6

P1

P3

P5

P7

P8

Figure 3: Basis for HRO.C2/

C2
.P .C4C5� /C/.
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2 The algebraic equivariant Bézout theorem

It is possible to take the calculation of Euler classes in [3] and, by brute force, work out their expression
in terms of the basis for the cohomology of P .CpCq� / discussed in the preceding section. Instead, we
will take advantage of some features of the cohomology of a point to give a more conceptual approach
that shows better why the calculation works the way it does.

Definition 2.1 � Let T � H consist of the elements a�.�2`/ for a 2 Z and ` 2 Z, the elements
ae�m� for a 2 Z and m� 1, the elements aem for a 2 Z and m� 1, and all of A.C2/DH0.

� Let Ie � T consist of the elements a�.�2`/ for a 2 Z and ` 2 Z, aem� for a 2 Z and m 2 Z, and
aC bg 2 A.C2/ such that a is even.

Note that em� D 2em if m> 0.

Proposition 2.2 Ie is an ideal of H.

Proof This is a straightforward check from the known structure of H, as given in [3].

On the other hand, T is not an ideal, because e� … T while e 2 T . But T is an additive subgroup.

An important fact about T is that, as shown in Figure 4, all of its elements lie in gradings of the form
n� or 2n.1� �/, that is, on the vertical line through the origin or the diagonal through the origin with
slope �1. Closed circles indicate copies of Z, while the box at the origin is A.C2/. T is a free Z–module.

Another fact that follows from the known structure of H is that the quotient ring H=Ie is all 2–torsion.

a

b�

e�.�2/

�.��2/e�1�

Figure 4: The subset T of H.
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Remark 2.3 The ideal Ie is almost, but not quite, the kernel of the restriction map

HDHRO.C2/
C2

.S0IA/!H
RO.C2/
C2

.S0IZ=2/:

That kernel would not contain all the elements a�.��2m/ for m� 1, but only those of the form 2a�.��2m/.
Either ideal would serve our purpose here, but we chose to use the one that is slightly simpler to describe.

Definition 2.4 � Denote the set of linear combinations of elements of our preferred basis of
H

RO.…B/
C2

.P .CpCq� /C/ with coefficients in T by zT �HRO.…B/
C2

.P .CpCq� /C/.

� Let Je be the ideal defined by

Je D IeH
RO.…B/
C2

.P .CpCq� /C/�H
RO.…B/
C2

.P .CpCq� /C/:

Every element of Je is a linear combination of elements from our preferred basis with coefficients in Ie (and
this would be true for any basis we used). Because Je � zT , the following facts about zT apply to Je as well.

Lemma 2.5 Every element x 2 zT is a linear combination of at most three basis elements: if x lies in
grading m.! � 2/C aC b� , the only basis elements that can contribute to x are the one (if any) lying on
the same diagonal as x, that is , in a grading m.! � 2/C a0C b0� with a0C b0 D aC b, and the two (at
most) lying in the same vertical line as x, that is , in gradings m.! � 2/C aC b0� .

Proof This follows from the description of the locations of the basis elements given in the preceding
section together with the locations of the elements of T .

See the example in Remark 2.15 below for an illustration of this lemma.

Proposition 2.6 If x 2 zT , then x is determined by its restrictions �.x/ and xC2 .

Proof By the preceding lemma, x can be written as a linear combination of at most three elements from
our standard basis. There are various cases that should be considered. Suppose, for example, that x lies
on the same diagonal as a basis element Pn and lies above two basis elements Pk and Pk�1. Then we
can write

x D ˛�.�2`/PnCˇe
mPkC e

mC2Pk�1

for some integers ˛, ˇ,  , `, and m. We now appeal to [3, Proposition 4.6], where we showed that
our standard basis restricts to a nonequivariant basis for P .CpCq� / and a nonequivariant basis for
P .CpCq� /C2 . We have �.x/ D 2˛�.Pn/, so ˛ is determined by �.x/. On the other hand, xC2 D

ˇP
C2

k
C P

C2

k�1
, so ˇ and  are determined by xC2 .

There are other cases, for example, where x lies below two basis elements rather than above, or where
it lies in the same grading as a basis element. Each of these can be handled in the same way as the
case above.

Note that this is not true for general elements of HRO.…B/
C2

.P .CpCq� /C/ because there are elements of
H that vanish under both � and .�/C2 .
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For any x 2HRO.…B/
C2

.P .CpCq� /C/ we have

�.x/ 2HZ.P .CpCq/C/;

so �.x/D� Ock for some integers � and k, or it is 0, in which case we set �D 0. We also have

xC2 2HZ.P .Cp/C/˚H
Z.P .Cq/C/;

so xC2 D .�0 Oc
i ; �1 Oc

j / for some integers �0, �1, i , and j . (Again, we set �0 D 0 if �0 Oci D 0 and
�1 D 0 if �1 Ocj D 0.)

Definition 2.7 We call the triple of integers .�;�0; �1/ determined as above the C2–degrees of x.

Corollary 2.8 If x 2 zT , then x is determined by its grading and its C2–degrees.

Proof Suppose that x lies in grading m.! � 2/C aC b� and that the degrees of x are .�;�0; �1/. By
the structure of zT and the locations of the basis elements, we can assume that a is even. Then

�.x/D

�
� Oc.aCb/=2 if b is even,
0 otherwise,

and xC2 D .�0 Oc
a=2; �1 Oc

a=2�m/:

Thus the grading of x and its degrees determine �.x/ and xC2 , so the result follows from the preceding
proposition.

In order to apply these results to derive the two parts of our Bézout theorem, we need to know a little
more about the line bundles that are the summands of F as in Bézout context 0.1. In [3] we showed that
the line bundles over P .CpCq� / all have the form O.d/ or �O.d/. It is useful to further break these
down into four types:

type I bundles of the form O.2d C 1/,

type II bundles of the form O.2d/,

type III bundles of the form �O.2d C 1/,

type IV bundles of the form �O.2d/.

The fixed points O.2d C 1/C2 of a bundle of type I have fiber C over P .Cp/ and 0 over P .Cq� /, while
the reverse is true for a bundle of type III. The fixed points O.2d/C2 of a bundle of type II have fiber C

over both components of P .CpCq� /C2 , while the fixed points of a bundle of type IV have fiber 0 over
both components.

In [3], for � 2 fI,II,III,IVg we wrote n� for the number of summands of type � and d� for the products of
their degrees. These are related to the ranks and C2–degrees of F by

nD nICnIICnIIICnIV; n0 D nICnII; n1 D nIICnIII; �D dIdIIdIIIdIV;

�0 D

�
dIdII if n0 < p;
0 if n0 � p;

.2.9/

�1 D

�
dIIdIII if n1 < q;
0 if n1 � q:

.2.10/
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Now, dI and dIII are always odd, and dII and dIV are even if and only if there is a summand of type II
or IV, respectively. Notice that, when nII > 0, the quantities �, �0, and �1 will all be even. If nII D 0,
then n0Cn1 � n, which implies that

n0 � n�n1 � n� .n�p/D p

and n1 � q, similarly, with equality possible only if nIV D 0. So, if nII D 0 but nIV > 0, we will have �
even and both �0 and �1 odd. When nII D 0 and nIV D 0, we will have � odd while �0 and �1 will be
odd if nonzero.

Theorem 2.11 (Bézout theorem, part I) Let F be as in Bézout context 0.1. Then e.F / lies in zT , and
hence is determined by its grading , which is

.n0�n1/.! � 2/C 2n0C 2.n�n0/�;

and its C2–degrees , which are .�;�0; �1/. Moreover , the grading and degrees can be recovered
from e.F /. The ranks .n; n0; n1/ are additive while the degrees are multiplicative.

Proof The additivity of the grading and the multiplicativity of the degrees are clear (but see the caveat
about multiplicativity given in the introduction).

Given that n is the nonequivariant (complex) rank of F and n0 and n1 are the ranks of the restriction
of F C2 to P .Cp/ and P .Cq� /, respectively, e.F / must lie in the grading given, which is the grading ˛
with j˛j D n, ˛0 D 2n0C 2.n�n0/� , and ˛1 D n1C 2.n�n1/� .

Conversely, if e.F / lies in grading m.! � 2/C 2aC 2b� , then we can recover nD aC b, n0 D a, and
n1 D a�m.

The degrees .�;�0; �1/ are, by the nonequivariant Bézout theorem, given by

�.e.F //D� Ocn and e.F /C2 D .�0 Oc
n0 ; �1 Oc

n1/;

using the fact that � and .�/C2 preserve Euler classes. Thus, we can recover the degrees from e.F /.

It remains to show that e.F / is determined by its grading and C2–degrees.

Recall the discussion above of the four types of line bundles over P .CpCq� /. In [3, Proposition 6.5] we
computed their Euler classes, which are

e.O.2d C 1//D Oc! C d.�.1/ Oc! C e
�2��1 Oc! Oc�!/� Oc! .mod Je/;

e.O.2d//D d.�.��2/�0 Oc! C e
�2� Oc! Oc�!/� 0 .mod Je/;

e.�O.2d C 1//D Oc�! C d.�.1/ Oc�! C e
�2��0 Oc! Oc�!/� Oc�! .mod Je/;

e.�O.2d//D e2C d�.1/�0 Oc! � e
2 .mod Je/:

From (2.9) and (2.10), we see that�0 and�1 are both even if and only if F contains at least one summand
of the form O.2d/ (type II). If F does not contain such a summand, then n0 is the number of summands
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of the form O.2d C 1/ and n1 is the number of summands of the form �O.2d C 1/, and we will have
n0Cn1 � n. From the congruences above, we have, modulo Je, that

e.F /�

�
0 if �0 and �1 are even,

e2.n�n0�n1/ Oc
n0
! Oc

n1
�! if �0 or �1 is odd.

When �0 or �1 is odd, n0 � p and n1 � q, with at least one of the inequalities being strict, so Ocn0
! Oc

n1
�!

is a basis element and e2.n�n0�n1/ Oc
n0
! Oc

n1
�! 2

zT . It follows that e.F / 2 zT , and then the fact that e.F / is
determined by its grading and C2–degrees follows from Corollary 2.8.

By Lemma 2.5, the Euler class e.F / can be written as a linear combination of just three basis elements.
We next work out the explicit expression, which, by Theorem 2.11, is determined by the grading of e.F /
and its C2–degrees.

Theorem 2.12 (Bézout theorem, part II) Let F be as in Bézout context 0.1. Then we can write

e.F /D ˛P .m/n CˇP
.m/

k
C P

.m/

k�1

for some 1� k < pC q and some coefficients ˛, ˇ, and  in H, so the coefficient vector of e.F / has at
most three nonzero components. Allowing for the possibility that nD k or nD k�1, we can arrange that
the coefficient ˛ is always an integer multiple of �.�2i / for some i 2 Z, and the coefficients ˇ and  are
always integer multiples of e2i or e�2i� for some i � 0.

Use the briefer notation Pn and write � D 0 or 1 for the remainder on dividing nCn0Cn1 by 2. We have

Pn D

8̂<̂
:
�
�.nCn0�n1�2p/
0 Oc

p
! Oc
n�p
�! if nCn0�n1 > 2p;

�
�.n�n0Cn1�2q/
1 Oc

n�q
! Oc

q
�! if n�n0Cn1 > 2q;

��0 Oc
.nCn0�n1C�/=2
! Oc

.n�n0Cn1��/=2
�! otherwise ,

Pk D

�
�0 Oc

n0C1
! Oc

n1
�! if n0 < p;

�
�.n0�p/
0 Oc

p
! Oc
n1
�! if n0 � p;

and Pk�1 D

�
Oc
n0
! Oc

n1
�! if n1 < q;

�
�.n1�q/
1 Oc

n0
! Oc

q
�! if n1 � q:

The coefficient ˛ will be an integer multiple of

�n D

8<:
�.�2.n�n1�p// if nCn0�n1 > 2p;
�.�2.n�n0�q// if n�n0Cn1 > 2q;
�.�n�n0�n1��/ otherwise.

Finally, write Nn0Dminfn0; p�1g and Nn1Dminfn1; qg. Then we break the result into the following cases:

(1) If � is even , then

˛D 1
2
��n; ˇD 1

2
.�1��0/e

�2. Nn0CNn1�nC1/�; D 1
2
.�0/e

�2. Nn0CNn1�n/�; kD Nn0CNn1C1:

(2) If � is odd and �0 ¤ 0, then

˛ D 1
2
.���0/�.1/; ˇ D 1

2
.�1��0/e

�2�;  D�0; k D nC 1:

(3) If � is odd and �0 D 0, then

˛ D 1
2
.���1/�.1/; ˇ D 0;  D�1; k D nC 1:
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Remark 2.13 We should point out some abuses of notation we are indulging in. The formulas for Pk and
Pk�1 evaluate to 0, not basis elements, when both n0 � p and n1 � q. In the case n0 <p�1 and n1 � q,
the formula for Pk is not a basis element, but we know that its coefficient will be a multiple of em� for
some integer m, and the product em�Pk D 0 in that case because of the relations in the cohomology
of P .CpCq� /. A similar vanishing happens in the case of Pk�1 when n0 > p and n1 < q. Finally, the
formulas for Pk and Pk�1 coincide when n0 D p and n1 < q, but in that case �0 D 0 so only one copy
of this basis element appears in the formula for e.F /.

Proof Theorem 2.11 and Lemma 2.5 imply the first claim, that we can write e.F / in terms of just three
basis elements.

To determine Pn, Pk , and Pk�1, we recall from [3, Proposition 4.7] that the basis elements take one of
the six possible forms

�m1 Oc
a
! for m>1; a<p; �m0 Oc

b
�! for m>1; b<q; Oca! Oc

b
�! for a�p; b�q;

�0 Oc
a
! Oc
b
�! for a�p; b<q; ��m0 Ocp! Oc

b
�! for m>0; b<q; ��m1 Oca! Oc

q
�! for m>0; a<p;

where we recall that Ocp! Oc
q
�! D 0, so we do not have aD p and b D q above.

We noted earlier that e.F / lies in grading

grad e.F /D .n0�n1/.! � 2/C 2n0C 2.n�n0/�:

Pn is the unique basis element having grading in .n0�n1/.! � 2/CRO.C2/ restricting to Ocn, and we
can check that the formula given in the statement of the theorem has those properties. Similarly, Pk and
Pk�1 are the (at most) two basis elements having gradings of the form .n0�n1/.! � 2/C 2n0C 2b� ,
and we can check that the formulas given have that property. The coefficient �n is the element of the
form �.�2i / such that �nPn lies in the same grading as e.F /. The terms of the form em� multiplying Pk
and Pk�1 in the formulas for e.F / are determined similarly.

To verify the coefficients of Pn, Pk , and Pk�1, we use the fact that e.F / is determined by the nonequiv-
ariant elements

�.e.F //D� Ocn and e.F /C2 D .�0 Oc
n0 ; �1 Oc

n1/;

so we simply need to check that the formulas of the theorem have the correct values on applying these
restriction maps.

First note that, regardless of which case we fall in, we will always have

�.�nPn/D 2 Oc
n and .�nPn/

C2 D .0; 0/:

For Pk and Pk�1 we have

�.Pk/D Oc
k; �.Pk�1/D Oc

k�1; P
C2

k
D .0; Ocn1/ and P

C2

k�1
D . Ocn0 ; Ocn1/;

which includes the possibility that PC2

k�1
D . Ocn0 ; 0/ if n1 � q.
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Now, when � is even, in the formulas given, ˇ and  each have a factor of the form em�, and �.em�/D 0
and .em�/C2 D 2. Combined with the formulas above, this verifies case (1) of the theorem, except that we
should say something about the parities of�0 and�1. From the discussion before Theorem 2.11, because
� is even, �0 and �1 have the same parity. There is a possibility that �0 is odd, but this can happen only
when nIID 0 and nIV>0, in which case n0<p, n1<q, and n0Cn1<n. The coefficient  in that case is

 D 1
2
�0e

�2.n0Cn1�n/� D 1
2
.�0/2e

2.n�n0�n1/;

which we interpret as �0e2.n�n0�n1/ by another abuse of notation. (The abuse is that division by 2 is
not well defined in H.) We then use that �.em/D 0 and .em/C2 D 1 for m> 0.

If � is odd, then nD n0C n1, n0 � p, and n1 � q. If �0 and �1 are both nonzero, then n0 < p and
n1 < q, Pn D Pk�1, and the formula in case (2) of the theorem is easily verified.

If �0 ¤ 0 but �1 D 0, then n0 < p and n1 D q. In this case,

e�2�Pk D e
�2��0 Oc

n0C1
! Ocq�! D 0;

so we allow the abuse of notation that �1 ��0 is odd in the formula for ˇ. With that caveat, the
verification of case (2) can be completed.

In case (3), since �0 D 0 we must have �1 ¤ 0 and odd. The verification is then just as for the
previous cases.

The asymmetry in these formulas comes from an asymmetry in our preferred basis regarding Oc! vs Oc�! .

Remark 2.14 Theorems 2.11 and 2.12 give us two related ways of determining e.F /: by the ranks
.n; n0; n1/ and the C2–degrees .�;�0; �1/, and also by its triple of nonzero coefficients. The advantage
of using the degrees is that they are multiplicative. This is simpler to calculate with, and also parallels
the result of the nonequivariant Bézout theorem that degrees are multiplicative under intersection of
projective varieties.

Remark 2.15 The summary of Theorem 2.12 is that e.F / can be expressed in terms of at most three basis
elements. This is not a restriction imposed by the locations of the basis elements. As an example, consider
P .C5C5� / and the bundle F D 4�O.2/, the sum of four copies of �O.2/, so nD 4 and n0 D n1 D 0.
This Euler class lives in grading

.n0�n1/.! � 2/C 2n0C 2.n�n0/� D 8�:

Figure 5 shows the location of e.F /, the “�” at 8� , and the locations of the basis elements in the
RO.C2/–grading. The five basis elements within the shaded area have nonzero multiples in degree 8� , so
could conceivably contribute to e.F /, but the theorem says that it can be written in terms of just three of
them: P4, the one on the same diagonal as e.F /, and the two below it, P0 and P1.
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P0

P4P1

Figure 5: Location of e.4�O.2//.

In fact, we are in Theorem 2.12(1), with �D 8 and �0 D�1 D 1, so

e.4�O.2//D 8�.�4/P4C 0P1C e
8P0 D 8�.�

4/ Oc2! Oc
2
�! C e

8:

As it happens, P1 does not actually contribute in this example.

Remark 2.16 In [3], we looked in detail at the case nD pC q� 1, where the hypersurfaces associated
with the line bundle summands of F intersect generically in a C2–set of points in P .CpCq� /. In that
case, we showed that the explicit formula for e.F / can be read as telling us how that collection of points
breaks down as free orbits versus fixed points in each of the components of P .CpCq� /C2 . In a followup
to this paper, we will show how the Euler class more generally gives us geometric information about the
intersection of hypersurfaces.

3 Comparison with constant Z coefficients

Another equivariant cohomology theory commonly used is ordinary cohomology with coefficients in Z,
the constant-Z Mackey functor. We calculate the Euler class e.F / with Z coefficients and compare it to
the class obtained with Burnside ring coefficients.

As shown in [2], HRO.C2/
C2

.S0IZ/ is obtained from H by setting � D 0. This has the effect of removing
the elements e�n� and making 2e D 0. Since � D 2� g, it also has the effect of setting g D 2. Put
another way, this theory cannot distinguish between a free orbit and two fixed points.

Because the cohomology of P .CpCq� / with A coefficients is free over the cohomology of a point, we
obtain the cohomology with Z coefficients by setting � D 0. The result is the following:

Theorem 3.1 [3, Corollary 5.4] Let 0�p; q <1 with pCq > 0. ThenHRO.…B/
C2

.P .CpCq� /CIZ/ is
a free module over HRO.C2/

C2
.S0IZ/. Its structure as a graded commutative algebra over HRO.C2/

C2
.S0IZ/

is described as in Theorem 1.2, except that the relation �1 Oc�!D .1��/�0 Oc!Ce2 is replaced by the relation

�1 Oc�! D �0 Oc! C e
2:

Setting � D 0 in Theorem 2.12, remembering that em is 2–torsion, and paying attention to the abuses of
notation mentioned in the proof of that theorem, we get the following:
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Theorem 3.2 (Bézout’s theorem for constant Z coefficients) Let F be as in Bézout context 0.1. Then
the Euler class eZ.F / 2H

RO.…B/
C2

.P .CpCq� /CIZ/ is given by

eZ.F /D

8̂<̂
:
1
2
��nP

.m/
n if �, �0 and �1 are even ,

1
2
��nP

.m/
n C e2.n�n0�n1/P

.m/

k�1
if � is even and �0 or �1 is odd ,

�P
.m/
n if � is odd ,

where , writing � D 0 or 1 for the remainder on dividing nCn0Cn1 by 2, we set

P .m/n D

8̂<̂
:
�
�.nCn0�n1�2p/
0 Oc

p
! Oc
n�p
�! if nCn0�n1 > 2p;

�
�.n�n0Cn1�2q/
1 Oc

n�q
! Oc

q
�! if n�n0Cn1 > 2q;

��0 Oc
.nCn0�n1C�/=2
! Oc

.n�n0Cn1��/=2
�! otherwise ,

�n D

8<:
�.�2.n�n1�p// if nCn0�n1 > 2p;
�.�2.n�n0�q// if n�n0Cn1 > 2q;
�.�n�n0�n1��/ otherwise ,

and , when � is even and �0 or �1 is odd ,

P
.m/

k�1
D Ocn0

! Oc
n1
�! :

While this result has the benefit of relative simplicity, it carries significantly less information than
Theorem 2.12. In particular, we cannot reconstruct�0 and�1 from eZ.F /. This follows from the formula
in the theorem, but we can also look again at the fixed-point map .�/C2 to see why this must happen.
As defined in [4], the fixed-point map takes G–equivariant cohomology with coefficients in a Mackey
functor T to nonequivariant cohomology with coefficients in TG . In the case of the group C2, we have

T C2 D T .C2=C2/=�.T .C2=e//:

This gives AC2 D Z, but ZC2 D Z=2. We then get the following:

Corollary 3.3 With F as in Bézout context 0.1, we have

eZ.F /
C2 D .�0 Oc

n0 ; �1 Oc
n1/ 2H 2a.P .Cp/CIZ=2/˚H

2.a�m/.P .Cq� /CIZ=2/;

so
eZ.F /

C2 D

�
(0; 0/ if �0 and �1 are even ,
( Ocn0 ; Ocn1/ if �0 or �1 is odd.

Proof From the commutativity of the diagram

H
RO.…B/
C2

.P .CpCq� /CIA/

.�/C2

��

// H
RO.…B/
C2

.P .CpCq� /CIZ/

.�/C2

��

HZ.P .CpCq� /
C2

C
IZ/ // HZ.P .CpCq� /

C2

C
IZ=2/

where the horizontal arrows are given by change of coefficients, eZ.F /
C2 is just the reduction of e.F /C2

modulo 2.
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Thus, from this Euler class we cannot recover �0 and �1, only their parities. This goes back to the fact
that, because g D 2, cohomology with Z coefficients cannot distinguish between a free orbit and two
fixed points, and hence retains only parity information about fixed points.

For example, in the case nD pCq� 1 discussed in detail in [3], we can think of the Euler class in terms
of the finite C2–set given by the zero locus of a section of F , or the intersection of the hypersurfaces
given by the zero loci of sections of the line bundles making up F . The Euler class with Burnside ring
coefficients completely determines this C2–set, including how many fixed points lie in each component
of P .CpCq� /C2 . The Euler class with constant Z coefficients can tell us only the parity of the number of
fixed points in each component.

4 Comparison with Borel cohomology

Borel cohomology was the first theory thought of as equivariant ordinary cohomology, but is a considerably
weaker theory than Bredon cohomology. (See, for example, May’s discussion in [7].) There is a map
from ordinary cohomology with Z coefficients to Borel cohomology, so the latter is also weaker than
cohomology with Z coefficients. To see how much weaker, let us look at the calculation of e.F / in
Borel cohomology.

We take Borel cohomology to be the RO.C2/–graded theory defined on based C2–spaces by

BHRO.C2/
C2

.X/DH
RO.C2/
C2

..EC2/C ^X/;

where, as usual, we use Burnside ring coefficients on the right, but suppress them from the notation.
(BecauseEC2 is free, and A!Z is an isomorphism at the C2=e level, we could instead use Z coefficients
and get naturally isomorphic results.) This is the usual Borel cohomology with Z coefficients, but we
have expanded the grading from the common Z to RO.C2/. As shown in [2], the Borel cohomology of a
point is H with � inverted:

BHRO.C2/
C2

.S0/Š ZŒe; �; ��1�=h2ei:

Here deg e D � and deg � D 2� � 2, as before. In the map H! BHRO.C2/
C2

.S0/, � goes to 0. As with
cohomology with Z coefficients, Borel cohomology cannot tell the difference between g and 2.

Note that, if we restrict to the Z grading, as is usually done, we get a polynomial algebra in e2��1 modulo
2e2��1 D 0, a copy of the group cohomology of C2 with Z coefficients. If we restrict the grading to
� CZ, we see the group cohomology of C2 with twisted Z coefficients. That the twisted and untwisted
cohomologies can be combined in a single algebra like this seems to have been first observed by Čadek [1].

Because the ordinary C2–cohomology of P .CpCq� / is free over the cohomology of a point, we obtain
its Borel cohomology also by inverting �. On doing so, the elements �0 and �1 become invertible, with
the result that, if we continued to grade on RO.…B/, the groups outside the RO.C2/ grading would all
be isomorphic to groups in the RO.C2/ grading via multiplication by an appropriate power of, say, �0.
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So we lose nothing by considering the RO.C2/–graded part only. To give the explicit result, let Oc be the
image of �0 Oc! in BH2�C2

.P .CpCq� /C/. The following is then a corollary of Theorem 1.2:

Corollary 4.1 Let 0� p; q <1 with pC q > 0. Then BHRO.C2

C2
.P .CpCq� /C/ is a free module over

BHRO.C2/
C2

.S0/, and as a (graded ) commutative algebra over BHRO.C2/
C2

.S0/, BHRO.…B/
C2

.P .CpCq� /C/

is generated by Oc in degree 2� , which satisfies the single relation

Ocp. Oc C e2/q D 0:

Of course, we could also use as a generator the element c0 D ��1 Oc in degree 2, but the relation is then

.c0/p.c0C e2��1/q D 0:

For the simplicity of the relation, and to keep the generator more closely related to an element from
ordinary cohomology, we prefer to use Oc .

We view Oc as the Euler class of !_. The Euler class of �!_ is then OcC e2, the image of �1 Oc�! . In doing
this, we are choosing to say that ! is a rank-2� bundle over EC2 �P .CpCq� /. Because EC2 is free,
we are as free to say ! has rank 2� as to say it has rank 2.

Another way of seeing that e.�!/D OcC e2 is to recall that �! D !˝C C� , then use the additive formal
group law of nonequivariant ordinary cohomology and the fact that e.C� /D e2.

Now consider the Euler classes of the bundles O.d/ and �O.d/, all of which we will think of as
having rank 2� . As a corollary of [3, Proposition 6.5], or as a consequence of the formal group law for
nonequivariant cohomology, we have the following:

Proposition 4.2 In the Borel cohomology of P .CpCq� / we have

e.O.d//D d Oc and e.�O.d//D d Oc C e2

for every d 2 Z.

Theorem 4.3 (Bézout’s theorem for Borel cohomology) Let F be as in Bézout context 0.1. The Euler
class of F in the Borel cohomology of P .CpCq� / is

eBH .F /D

8<:
� Ocn if �, �0 and �1 are even ,
� OcnC e2.n�n0�n1/ Ocn0. Oc C e2/n1 if � is even and �0 or �1 is odd ,
� Ocn0. Oc C e2/n�n0 if � is odd.

Proof These formulas can be derived from the preceding proposition or from Theorem 3.2, using the
fact that �.1/D 2 in Borel cohomology.

As we saw with ordinary cohomology with Z coefficients, the Euler class in Borel cohomology contains
significantly less information than the one in ordinary cohomology with Burnside ring coefficients. The
fixed-point map would be

.�/C2 WH
RO.C2/
C2

..EC2/C ^P .CpCq� /C/!HZ...EC2/C ^P .CpCq� /C/
C2 IZ/DHZ.�IZ/D 0:

Thus, Borel cohomology contains no information at all about fixed points.
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